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Abstract

A growing trend within the technologies acting as enablers for 6g, such as Massive
MIMO and Large Intelligence Surfaces, is benefiting from both the communication
and the positioning aspects that they can provide. As these kinds of systems
are employing a large number of arrays which provide high amounts of data, a
distributed hardware approach having near-antenna processing is explored in this
work. The emulated set-up consists of two FPGA boards, where one is mimicking
the local processing which would take place near the LIS panels, while the other
aggregates all the data gathered from the panels to have joint processing. The
channel state information is gathered through four LIS panels and is processed
locally with the help of deep neural networks in order to achieve the position of a
user. The next step is sending this data onwards to the board which acts as the
central processing unit in order to fuse it, thus achieving a better estimation of
the position.

This thesis is proposing a hardware implementation focusing on different op-
timization techniques that could be used in order to achieve a low-latency and
high-throughput system. For real-time applications where latency is critical, such
as, for example, autonomous vehicles – a good approach are hardware accelera-
tors tailored exclusively to the function which needs to be implemented. Finally,
the communication between hardware units is also managed, with the help of an
Ethernet link.

Keywords : Large Intelligent Surfaces, Deep Neural Networks, FPGA, VHDL,
Ethernet
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Popular Science Summary

With the rise of Internet of Things, which enables communications between smart
devices, people have been yearning and thinking about the possibilities that may
arise with controlling IoT in real time. This can only be possible by achieving
more speed and accuracy within the human-machine interaction. In the technical
world, this means combining different growing technologies such as Large Intelli-
gent Surfaces,Deep Neural Networks or Systems on Chips.

As the developing wireless technology is approaching 6G, the need for hard-
ware supporting this emerging technology is directly increasing. 6G is promising
high communication data-rates and high positioning accuracy, which needs to be
supported in some manner by the real-time systems. This work aims to emulate
a software distributed system proposed in [1], in hardware. The system consists
of four panels situated on each wall of a room which capture the information of
how the signal propagates from the user to the panels. This is called CSI – Chan-
nel state Information. These signals have to be processed rapidly and accurately
to get a precise location before, for example, the user moves. With the help of
Deep Neural Networks, this is achieved in software in [1]. In hardware, one has to
consider the limitations of a computationally-intensive algorithm which are often
about how much data can be stored at once, how many operations can be per-
formed in parallel or with which accuracy the numbers need to be represented.
Moreover, the problem of transmitting data from one panel is also tackled. As the
architecture of a distributed system implies having different hardware units which
are processing data in parallel which is then sent to a central processing unit, the
communication between them will also represent a challenge. All of these dilemmas
are handled within this work.

The Field Programmable Gate Arrays – FPGAs are an excellent platform for
developing new architectures, as it allows for fast prototyping. As the provided
FPGAs boards include an Ethernet port, this protocol has been chosen to transmit
the data.

iii



iv



Table of Contents

1 Introduction 1
1.1 Background Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 5
2.1 Introduction to Digital Hardware Design . . . . . . . . . . . . . . . . 5
2.2 Digital design for FPGAs . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Arithmetic in Hardware . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 On Chip Communication Protocols . . . . . . . . . . . . . . . . . . 14
2.5 Pipelining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 System Overview 17
3.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Deep Neural Networks 21
4.1 Theoretical aspects of deep neural networks . . . . . . . . . . . . . . 21
4.2 Architecture of the implemented neural network . . . . . . . . . . . 23
4.3 Optimization techniques for NNs in Hardware . . . . . . . . . . . . . 24
4.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Gaussian Probability Fusion 33
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2 Theoretical aspects of probability fusions . . . . . . . . . . . . . . . 33
5.3 Probability fusion implemented in hardware . . . . . . . . . . . . . . 34

6 Communication System Using Ethernet 43
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2 Original plan and issues . . . . . . . . . . . . . . . . . . . . . . . . 43
6.3 PYNQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7 Results 49
7.1 Hardware accelerators . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

v



8 Conclusion 55
8.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

References 57

vi



Acronyms

AXI Advanced eXtensible Interface
AXIS Advanced eXtensible Interface Stream
AMBA Advanced Microcontroller Bus

Architecture
ASIC Application Specific Integrated Circuit
CCY Clock Cycles
CPU Central Processing Unit
CSI Channel state information
DNN Deep Neural Networks
DMA Direct Memory Access
DSP Digital Signal Processing or Processor
FPGA Field Programmable Gate Array
FF Flip Flop
GPU Graphical Processing Unit
HDL Hardware Descriptor Language
IC Integrated Circuit
ISO International Organization for

Standardization
IoT Internet of Things
LIS Large Intelligent Surface
ML Machine Learning
MIMO Massive Input Massive Output
MAC Multiply-Accumulate Operation
NN Neural Network
OSI Open System Interconnection
PCB Printed Circuit Board
PS Processing System
PL Programmable Logic
RTL Register Transfer Level
SoC System on Chip
ULP Unit in the last place

vii



viii



List of Figures

1.1 Different ways to distribute antennas for a massive MIMO system.
Picture taken from[2]. . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 An example of tree topology where every node has three children. The
amount of children can vary between different systems. . . . . . . . 3

1.3 The set-up of 4 antenna arrays in a square room. . . . . . . . . . . . 4

2.1 The different hierarchy levels of digital hardware design. . . . . . . . 6
2.2 The base functionality of the DSP48E2[3]. . . . . . . . . . . . . . . 8
2.3 The geometrical principle of Newton’s approximation [4] . . . . . . . 10
2.4 Pipeline strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Block diagram of the sending side, where FIFO is a memory of the
first-in, first-out, RR is a round-robin router, DMA is direct memory
access and PS is the processing system. . . . . . . . . . . . . . . . . 18

3.2 Block diagram of the receiving side, where FIFO is a memory of the
first-in, first-out, RR is a round-robin router, DMA is direct memory
access and PS is the processing system. . . . . . . . . . . . . . . . . 18

4.1 The general architecture of a feedforward-network. . . . . . . . . . . 22
4.2 The architecture of Jesus distributed positioning DNN[1]. . . . . . . 23
4.3 Design considerations for the NN hardware accelerator. . . . . . . . . 25
4.4 An overview of the data path of the Neural Network. . . . . . . . . . 28
4.5 General matrix multiplication . . . . . . . . . . . . . . . . . . . . . . 29
4.6 The data path of layer one and layer three. . . . . . . . . . . . . . 30

5.1 Histogram of the covariance values before the matrix inversion(top)
and after the matrix inversion(bottom) . . . . . . . . . . . . . . . . 35

5.2 Bit fields in the floating-point representation . . . . . . . . . . . . . 35
5.3 Floating-point addition . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.4 The prefusion module with the pipeline stages . . . . . . . . . . . . 39
5.5 The fusion module. For the simplicity of the figure, the three individual

covariance values are regarded as one signal, depicted with a thicker
line. The same applies for the values of the means. . . . . . . . . . . 40

5.6 Taylor series implementation in hardware . . . . . . . . . . . . . . . 41

ix



6.1 The hierarchies of the PYNQ framework[5]. . . . . . . . . . . . . . . 45
6.2 The communication path between two FPGA boards. . . . . . . . . 46

x



List of Tables

2.1 The Resources available on the ZCU102 board[6]. . . . . . . . . . . 9
2.2 The Resources available on the RFSoC 2x2 board[7]. . . . . . . . . . 9
2.3 The four used signals in the AXIS Protocol and their function[8]. . . 15

4.1 Parameter breakdown of the neural network shown in Fig. 4.2 . . . . 24
4.2 The amount of DSP slices need per layer depending on the amount

of clock cycles the execution per layer takes. . . . . . . . . . . . . . 26
4.3 The accuracy for different quantization for the NN. . . . . . . . . . . 27
4.4 The values of Paraiin and Paraiout for every fully connected layer. . 30

7.1 Performance measurements for the implemented hardware modules . 49
7.2 The resource utilisation after implementation for different modules . 50
7.3 The error achieved at different stages of the system . . . . . . . . . 50
7.4 Performance of the DMA through jupyters notebook with varying

package size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.5 Performance of the DMA through jupyters notebook with varying

amount of data sent. . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.6 Performance of the Ethernet transmission, encode and decode func-

tion, with varying package size. . . . . . . . . . . . . . . . . . . . . 51
7.7 Performance of the Ethernet transmission, encode and decode func-

tion, with varying amount of data sent. . . . . . . . . . . . . . . . . 51
7.8 The performance of the Ethernet system with custom DMA transmission 51
7.9 Performance of the DMA as recorded in Xilinx’s documentation[9]. . 53

xi



xii



Chapter 1
Introduction

One of the most talked about developing technologies of the the last decade is the
internet of things, IoT. The vision behind it is a world where every electrical com-
ponent communicates with the net in order to increase efficiency and automation.
A world where our watch records our heartbeat and transmits it to a health app in
our phone, where reports from soil moisture sensors optimizes farmers’ yields[10],
sensors through out the city to allow smart city planning[11] and so on. By 2019
the reported number of connected devices outnumbered the world population, and
around a quarter of industries were using IoT technologies in their business[10]
and according to all predictions this will just keep on increasing[12][10].

To support this ever-growing amount of devices, the continual development of
communication networks is necessary. The newest generation of communications
is 5G, which is being continuously adopted all over the world[13], but it is not
believed to be enough to support all these devices[12]. Therefore researchers have
already began looking at 6G, to both determine what standards are needed to
meet the requirements of the world’s growing communication demands, and the
key technologies that have the potential to allow 6G to meet those standards[12].

A trending research topic in relation to the next generations’ communica-
tion systems is the ability to combine the network architecture with localisa-
tion and sensing procedures. This is practical as modern communication sys-
tems have inherent localisation and sensing benefits[14]. 6G, for example, is ex-
pected to be made up of large antenna arrays with high spatial resolution[1],
and a common infrastructure is therefore beneficial from both a cost and main-
tenance perspective[1]. Several interesting use cases that benefit from positioning
information were also identified with the launch of 5G such as asset tracking,
transportation and logistics systems, augmented reality and so on[14].

One promising technology for enabling the high data rate of 6G that is also
highly beneficial for a positioning system is massive MIMO[1]. In massive MIMO
the number of antennas at the base station is much larger than the number of de-
vices connected to it. This allows for high spectral efficiency as the high amounts
of antennas can focus the radiated energy toward the user which minimizes the
interference between signals[15]. There are many possibilities in how the anten-
nas could be deployed across an area as demonstrated in Fig.1.1[2]. A concept
called Large Intelligent Surfaces, originally a concept of making the environment
intelligent by making man-made structures electronically active, could also be im-
plemented through massive MIMO principles by spreading antenna arrays across
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2 Introduction

the desired surfaces[16].

Figure 1.1: Different ways to distribute antennas for a massive
MIMO system. Picture taken from[2].

Both LIS and massive MIMO provide CSI with high spatial resolution[1] and
this data can be used by a machine learning algorithm to determine the position of
a connected device[14]. The data provided by both the LIS and the massive MIMO
system are low-level raw measurements about the state of the communication
channel. It’s very hard to build an accurate mathematical model for that, but as
there is plenty of available data ML doesn’t face the same problem and can achieve
high accuracy[14].

However, there are many challenges for these techniques that need to be solved
before they can reach their full potential[14][2][1]. One interesting thing to look at
is what the hardware demands for this type of system would be. As the systems
are composed of antennas deployed at multiple locations the data needs to be
transmitted to a CPU. This makes the necessary interconnection a key bottleneck
for any implementation. In order to lessen the demand for high interconnect
bandwidth a panelised LIS connected with a tree topology has been proposed.
Panels could then utilise local processing, to reduce the amount of data that needs
to be transmitted. The data from different panels can be aggregated together
along the transmit paths, further reducing the needed bandwidth compared to a
centralized approach where the raw baseband samples are directly transmitted to
the CPU. The amount of needed interconnection bandwidth is still likely to be
high, which makes it vital that the positioning part of the system also tries to
minimize the data it needs to transmit[1].

Another main bottleneck will be the amount of computational resources needed[1].
ML algorithms are notoriously computationally heavy, memory intensive and re-
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source consuming[17]. Due to this, it is vital to look into the current research for
how to optimize the resource utilization for ML systems while still achieving high
throughput and utilize all the available techniques that are suited for the desired
system. Position applications often also require low latency to work as intended,
which create yet another constraint that the design needs to be optimized for.

What this work proposes to do is to explore the performance that can be
achieved for a distributed system, while catering for both the computational and
communication demands that arise.

1.1 Background Work

This thesis aims to do a hardware implementation of a positioning system pre-
sented in [1]. A NN positioning system has been designed which is meant to work
concurrently with a LIS system as described above.

Previous works have presented neural networks that enable wireless position-
ing, but most of these are processed centrally while the one presented in [1], is
distributed. The concrete difference is that the NN runs locally on the antenna
panel and outputs a probability of the position. Thus, the raw data from the mas-
sive MIMO systems is not sent to the central processing unit anymore. The four
resulting probabilities are then fused together on the CPU, yielding a combined
probability function and a more accurate estimate for the position.

Figure 1.2: An example of tree topology where every node has three
children. The amount of children can vary between different
systems.

This implementation reduces the necessary interconnection bandwidth mas-
sively. It is also simple to scale, as the fusion outputs the same type of probability
function as it demands as input. If the panels are connected with a tree topology
as displayed in Fig. 1.2 fusion can be done in every non leaf node thus making
sure that every node only sends one probability function to its parent no matter
the amount of children.

The scenario considered in the article is when four separate antenna arrays are
used, containing 64 antennas each, and deployed in a square room as displayed
in Fig. 1.3. The data for the scenario is simulated as the corresponding massive
MIMO set up has not been implemented. An interesting topic to explore is running
the system with acquired data from the real system.

Two FPGA boards are used to simulate the scenario presented in [1]. Two NNs
are implemented on each board and a Ethernet communication link is established
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Figure 1.3: The set-up of 4 antenna arrays in a square room.

between them. One of the boards acts as the CPU, containing the processing for
the fusion as well as for two of the NNs.

The simulated massive MIMO system is set to generate an up-link pilot, the
data used for the positioning system, every 0.5ms. It’s assumed that there are
16 simultaneous users. This gives a throughput requirement of 16 positioning
inference calculated every 0.5ms or 32 000/second. As it is a real time system, it
is desirable to minimize the latency as much as possible.

1.2 Thesis Structure

The thesis, excluding the introduction, is organized as follows:

• Background – In this chapter theoretical aspects of digital hardware design
targeting FPGAs are presented.

• Deep Neural Networks – Here, the theory behind the most used types
of neural networks is introduced as well as the necessary techniques to im-
plement these efficiently in hardware. Moreover, details about the imple-
mentation on the RFSoC2x2 FPGA are presented.

• Gaussian Probability Fusion – Aims to familiarize the reader with the
concept of conflation of gaussian probability distributions, what operations
are needed in hardware and what compromises have been made regarding
accuracy and speed.

• Communication System Using Ethernet – This chapter describes the
software implementation of the Ethernet on the Processing System.

• System Integration – is about how all the parts described previously come
together to emulate the scenario of a real-time system with 4 LIS panels.

• Results – here, different results of the subsystems are presented and dis-
cussed.



Chapter 2
Background

This thesis presumes that the reader has a basic understanding of the theory
behind digital hardware design, but if not, this chapter will briefly cover some key
concepts regarding it. More advanced concepts and concepts specific for digital
design targeting FPGAs will also be covered in this chapter.

2.1 Introduction to Digital Hardware Design

The world of digital hardware design has evolved rapidly the last century as the
capability of the enabling technology has developed exponentially. This rapid de-
velopment has made it necessary for digital hardware designers to develop many
different techniques and to divide the work into several different abstract hierar-
chies. To get a wider context of how these techniques are related to a finished
design it is good to take a brief look at how the technology has developed in the
last half century.

The underlying technology of all modern digital, and analog, hardware is the
transistor which was invented in 1947. In 1958 the first integrated circuit, a struc-
ture in which all components were integrated on a one semiconductor substrate,
was conceived. Then in the 1960s Gordon Moore made a prediction that later
came to be called Moore’s law, which states that the number of transistors that
can be integrated on a single die would grow exponentially with time[18]. This
turned out to have held true, with integration complexity doubling approximately
every one or two years until just recently when it has slowed down to every three
years[19].

This massive increase in the amount of transistors per chip has made it neces-
sary to adopt new and more advanced techniques for digital design. In the early
years, every transistor could be laid out and optimized individually. This approach
is clearly no longer feasible with billions of transistors on one chip. Instead, a hi-
erarchical approach has been adopted, in which the levels are designed to interfere
with each other as little as possible and where as much as possible in the lower
levels can be reused[18]. The used hierarchy can be seen in Fig. 2.1

Engineers working in the lower levels create a library of standard cells which
the RTL code can be mapped to in an automated process called synthesis. These
standard cells can be more complicated modules like full adders or simpler gates
like an AND gate. This means that cells with the same functionality, using the

5



6 Background

Figure 2.1: The different hierarchy levels of digital hardware design.

same technology, do not have to be designed multiple times for different systems
and can instead be reused. The performance of these cells has to be taken into
consideration by the system level designer as it impacts the performance and
timing of the larger design. The last step is usually called place and route, or
implementation in designs targeting FPGAs, consist of an automated process that
places these cells and creates the appropriate routing between them[18].

This work process follows a divide and conquer approach and allows system
designers to consider the cells as black box systems following certain specifications
instead of having to deal with their full complexities. The level of most interest
to us is the system level in which an overarching description of the system logic is
described. This is done using a HDL to write RTL code, describing the behaviour
of the digital signals, and the operations done upon them, between hardware
registers. In this thesis, RTL code is written to design the different hardware
systems and automated tools for FPGA design is used to map it to the lower
levels.

2.2 Digital design for FPGAs

When doing a hardware design different platforms can be targeted, either an ASIC
or a FPGA. An ASIC is a IC designed for a specific task, while an FPGA is
an already produced chip composed of configurable logic blocks connected via
programmable interconnects[20]. This allows the FPGA to be reprogrammed to
implement whatever hardware design the user desires, as long as the available
resources are enough. The FPGA chip is often put onto a larger PCB that can
contain a varied amount of extras, like a usb port, an ethernet port, off-chip
memory and so on.

The implementation process for both ASIC and FPGA usually starts with
writing RTL code. For an ASIC, the RTL code will then be mapped to a set of
standard cells, which depends on the library used, while for an FPGA the RTL
code will be mapped to the available resources on a chosen FPGA. The resources
available on a FPGA depends on which vendor the FPGA was bought from and
what are the FPGA’s specifications. The target FPGA for this thesis is a Xilinx
FPGA and these following components are the most relevant for this thesis.
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• CLBs - These are also called LUTs by Xilinx’s tool, Vivado. These are
the core components of the FPGA, the logic blocks that can be configured
to follow the hardware specifications in the RTL description.

• DSP slices - These are hardware accelerators for multiply-and-add oper-
ations, and will be presented in more detail further down in this section.

• FF - These are simple FFs, the registers written in the RTL code are made
up of these components.

• Block RAM - These are specifically useful when larger memory chunks
are needed. When specifying the available memory in a FPGA, both the
FF capacity and Block Ram capacity are often calculated together in the
same category which is showing the available on-chip memory.

When creating and designing a digital system targeting a specific FPGA, it is
important to start by checking the resources available on the target FPGA, since
that is an inherent limiting factor. Another important factor is that a FPGA is
not usable at a 100% utilization rate, as the routing – the interconnects between
the different components – becomes extremely hard to execute and usually does
not allow the system to fit within timing constraints.

When evaluating the performance of a digital system there are several impor-
tant factors. In the design stage it’s important to decide which of these factors
are a priority, as improving one factor in a design leads to worse performance for
another one.

• Throughput – Throughput is one of the aspects of performance the digital
design. It measures how much data gets processed per time unit, usually
per clock cycle or per second.

• Latency – Latency is the second aspect of performance. It measures the
time it takes for a package of data to travel through the system.

• Resource Utilization – In a FPGA design, this keeps track of how much of
the available resources are used. It is also included to keep track of how well
the used resources are utilized.

• Power Usage – This measures the amount of power used by a system.

• Accuracy – This metric is particularly important in arithmetic systems.
The accuracy of an arithmetic operation depends on many factors, such
as the number representation or the chosen algorithm for a more advanced
operation. These choices impact the previously mentioned factors.

2.2.1 DSP slices

FPGAs are significantly used in Digital Processing Systems, as the custom al-
gorithms that can be implemented can achieve a high level of parallelism. DSP
systems are extensively using MAC operations, which can be both time-consuming
and resource-demanding to implement with standard CLBs. Therefore, to keep
high performance, it’s better to have dedicated resources for these operations, and
this is the function the DSP slice provides.
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The DSP slices are a core component of Xilinx FPGAs. It is a dedicated
DSP processing block implemented in full silicon. In the UltraScale architecture
the DSP slice used is the DSP48E2(source). A block diagram showing the base
functionality of this DSP slice is presented in Fig. 2.2[3].

Figure 2.2: The base functionality of the DSP48E2[3].

For example, Xilinx mentions in their manuals applications such as wide
dynamic bus shifters, memory address generators, wide bus multiplexers, and
memory-mapped I/O registers. Another area in which they have proven efficient
are Neural Networks, as they are mainly employing matrix multiplications which
are basically being translate into a multitude of MAC operations. The multiplica-
tion unit inside the DSP slice is 27x18bits wide[3], and this uneven number can be
utilized to optimized the DSP slice to run two concurrent INT 8 operations[21].

2.2.2 Target FPGA

The target FPGA for this thesis was originally the Zynq UltraScale+ MPSoC
ZCU102 board. Due to issues with licensing, which will be described in detail in
the Ethernet section, it was changed to the Zynq UltraScale+ RFSoC XCZU28DR,
also called the RFSoC 2x2. This was changed quite late in the work process for
the thesis, which means that large parts of the system was design in accordance to
the available resources for the ZCU102 board. Therefore the available resources
for both the boards will be presented in the section.

The available resources in the ZCU102 board are presented in Table 2.1 and
the available resources in the RFSoC 2x2 is presented in Table 2.1. The three
types of resources that are relevant in this project is the System Logic Cells, also
referred to as CLBs earlier, Memory, which includes both FFs and Block Ram,
and the DSP slices. The RFSoC 2x2 board has more available resources in all
categories, which means that all designs that fit on the ZCU102 board also fit on
the RFSoC 2x2 board.

The FPGA chip on both boards belong to the Zynq UltraScale+ series, which
are all System on Chips. A SoC refers to an IC that integrates many different parts
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System Logic Cells(K) 600
Memory (Mb) 32.1

DSP Slices 2520

Table 2.1: The Resources available on the ZCU102 board[6].

System Logic Cells(K) 930
Memory (Mb) 60.5

DSP Slices 4272

Table 2.2: The Resources available on the RFSoC 2x2 board[7].

of a computer on one chip. Xilinx SoCs are chips that integrate an FPGA unit,
an arm processor and a I/O programmability on the same chip. The arm core can
be configured to run bare metal or run a Linux variant. The FPGA fabric of the
ZYNQ UltraScale+ is referred to as the PL and the arm processor is referred to
as the PS.

Xillinx has two separate tools that can be used to program the PS, Vitis
and PYNQ. PYNQ cannot be run in a bare metal configuration as it requires
an operating system that contains a set of software libraries. These operating
systems are read from an SD card on the board, and for some boards, Xilinx
provides already generated SD images with it. The RFSoC 2x2 board is one of
these, which makes PYNQ a simple option for controlling its PS. For other SoC
boards, like the ZCU102, these images can be generated through a Xilinx tool
called Petalinux.

2.3 Arithmetic in Hardware

To implement complex arithmetic operations in hardware it is necessary to break
the operation down into simpler sub-operations that can be mapped to the avail-
able resources. For FPGAs these smaller sub-operations are often addition, sub-
traction, multiplication or shifting. The sequence of these sub-operations are then
detailed in an algorithm. For most complex arithmetic, there are several different
standard algorithms that can be used, with different advantages and disadvantages.
In the following subsections, several algorithms for more complicated arithmetic
operations which are used later in the thesis are presented.

2.3.1 Division Algorithms

When broken down, division is essentially a series of subtractions, where the div-
idend is repeatedly subtracted by the divisor to calculate the reminder and the
quotient. There are several different algorithms for division and they can be di-
vided into two main groups, slow division and fast division. The slow division
algorithms are simpler and calculate a bit of the result at a time through a series
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of subtractions, while the fast algorithms start with approximating the answer and
then calculates two bits of the result every iteration. Both a slow and fast division
was implemented for this thesis in different sections[22].

Non-Restoring Division algorithm

The two most common algorithms among the slow algorithms is the Restoring
Division algorithm and Non-Restoring Division algorithm. The two algorithms
are very similar both in execution and resource requirements. Both are executed
iteratively and one bit is calculated per iteration[23].

The Restoring Algorithm has a somewhat higher resource utilization due to the
nature of the algorithm. As in it both subtraction and addition can be done in the
same iteration, while the Non-Restoring Algoritm only does either one addition
or subtraction per iteration. Due to this the focus was on the Non-Restoring
Algorithm, and the steps that were followed while implementing this algorithm
are explained in detail in [23].

Newton–Raphson algorithm

Newton-Raphson division falls into the fast-division category of algorithms. Its
core is the Newton–Raphson method, which produces the root approximation of
a real–valued differentiable function in an iterative manner. The algorithm starts
with an initial guess x0, which will determine the convergence of the algorithm.
Based on the successive approximations, the tangent line at (x0, f(x0)) is con-
structed and the next iterative value, x1 is approximated, by taking the intersec-
tion of the abscissa with the newly found tangent line.

Figure 2.3: The geometrical principle of
Newton’s approximation [4]

For the general case, given the
differentiable function f(x), when the
tangent line to the curve f(x) at x =
xn intersects the x-axis at xx+1, then
the slope becomes[4]:

f ′ (xn) =
f (xn)− 0

xn − xn+1
(2.1)

Rearranging the terms,

xn+1 = xn − f (xn)

f ′ (xn)
(2.2)

where xn is the current approximation, and xn+1 is the next approximation. A
graphical interpretation of the algorithm can be seen in Fig. 2.3.

For the case at hand, the division can be seen as a multiplication with the
inverse of the divisor. Therefore, the equation that needs to be solved, f(x) = 1

x−y,
where y is the initial approximation, becomes:

xn+1 = xi(2− y × xi), (2.3)
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thus arriving at a series of additions and multiplications from a hardware perspec-
tive.

As stated previously, the convergence speed of the algorithm depends on the
initial estimated value, which, if not chosen adequately, can pose a disadvantage
when choosing the fast division algorithm. From equation (2.3), it can be intu-
itively deducted that the error decreases quadratically with each iteration. The
advantage of the Newton–Raphson method is the speed and the relatively accurate
achieved result.

2.3.2 Logarithm and exponential approximation using Taylor series

The Taylor expansion around a certain point x0 gives the opportunity to approxi-
mate any function within a small neighbourhood with the help of polynomials[24].
Given a function f(x), the corresponding Taylor polynomial around a point a and
order k is

f(x) =

∞∑
k=0

f (k)(a)
(x− a)k

k!
. (2.4)

Since polynomials are essentially a series of multiplications and additions the
problem of describing non-linear functions in hardware becomes a compromise
between having enough accuracy by considering enough Taylor terms at the cost
of resources.

For the exponential function, equation (2.4) becomes:

ex = ea
∞∑
k=0

(x− a)k

k!
, (2.5)

and for the logarithm:

ln(x) = ln(a) +

∞∑
k=1

(x− a)k

ak × k!
. (2.6)

The point of expansion has been chosen according to the range of values in
which x resides, thus aiming for a high accuracy for a specific interval of values.

2.3.3 Number Representation

Another important consideration when using arithmetic operations in hardware
is how to represent the numbers. In order to be able to reach an accurate result
when processing the real data fed into the neural network, a strategy of how to
represent and manipulate real numbers has to be employed. When doing signal
processing, decimal numbers are usually represented and computed either by using
fixed-point or floating-point arithmetic. There are certain aspects to weigh and
consider when picking the right notation for the design in cause.

• Dynamic Range and Precision – The floating-point arithmetic inherently
possesses the ability to cater to a much bigger dynamic range – that is,
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the smallest and biggest numbers that can be represented. The "gaps"
between the numbers or the ulps can be, therefore, bigger in a fixed-point
representation resulting in a more pronounced rounding-off error[25].

• Cost and resource utilisation – Since the fixed-point arithmetic usually re-
quires fewer bits for the same accuracy as the floating-point can achieve
with more bits for a given number range, the fixed approach is more com-
putation and memory effective. Usually, floating-point arithmetic requires
substantially more gates than fixed-point.

• Performance – The speed with which a processing unit executes operations
is an essential consideration. Depending on the application, floating-point
arithmetic might be more efficient for certain algorithms that are compu-
tationally extensive[25], but fixed-point can be deemed comparable since it
requires less computational power but being capable of achieving similar
results.

When considering which type of number representation to use, one ought to
ponder the requirements of the application at hand. While fixed-point is cost-
efficient and can prove accurate for a certain number span, there is always a
limitation given by the number of fractional bits. Thus arises the need to perform
floating-point computations which give more flexibility in regards to the dynamic
range.

Following the analysis we have conducted, a mix of both fixed-point and
floating-point ought to be used to be able to accurately and efficiently describe
the neural network and the probability distribution fusion computations.

Fixed-point representation

As the real numbers have a fractional component, a way had to be found in order
to be able to represent them in digital hardware. All the numbers are stored in
binary words and in fixed-point they have a length, a binary point and are either
signed or unsigned. A fractional number N can be represented with an infinite
number of bits in binary form in the following manner:

bnbn−1bn−2...b2b1b0.b−1b−2...

When choosing the parameters for fixed-point arithmetic, such as word length and
fractional length, there are certain aspects that need to be taken into consideration
such as precision, resolution and dynamic range. Precision is the maximum
number of non-zero bits representable, and for fixed-point this value is the word
length. The resolution is the smallest representable value, and it is given by

resolution =
1

2f
,

where f represents the number of fractional bits. The dynamic range is the ratio
of the maximum absolute value and the minimum positive absolute value that can
be represented[26].
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Another aspect to consider is how the numbers behave when doing multipli-
cations and additions. For fixed-point addition, if two numbers that have the
same amount of bits are considered, then to preserve the correct added value in
case of an overflow, one extra bit is needed. To generalize, if we have N number
of additions of numbers, then the result requires the following M number of extra
bits:

M = log2 N.

For fixed-point multiplications, if one needs to multiply two numbers of A bits
and B bits respectively, to preserve the full-precision of the result, A + B bits
are needed. Different strategies are implemented for different layers, which will be
discussed in the later sections.

Floating-point representation

In contrast to the fixed-point notation, in floating-point the numbers are depicted
in a way which allows the binary point to not be fixed in a certain position.
Generally, a floating-point number can be represented as the following[27]:

x = (−1)s ×m× βe, (2.7)

where:

• s ∈ {0, 1} which represents the sign of the number;

• m is the significand or the mantissa of the representation;

• a base β ≥ 2;

• e is the exponent of the number such that emin ≤ e ≤ emax. These extremal
exponents are usually specified as being emin = 1− emax.

Oftentimes, some numbers may not have unique representation when using this
notation. In order to solve that, one can use normalization, therefore choosing the
depiction in which the exponent is minimum, and consequently, there exists no
leading zeroes[27]. If we consider the base β = 2, then any number can be seen
as[28]:

1.xxxxxxxxtwo × 2yyyy

When designing floating-point arithmetic in hardware, one must find a com-
promise between precision and range – meaning a compromise between the size of
the fraction and the size of the exponent. Increasing the size of the fraction adds
precision to the number, while increasing the exponent extends the range[28].

The IEEE 754 floating-point standard which is found in virtually every com-
puter adds different elements to the base representation increasing the portability
as well as the quality of computer arithmetic[28]. For example, the standard
makes the mantissa 24-bits long by making the leading 1 bit of normalized num-
ber, implicit. Moreover, the IEEE 754 can employ different rounding modes where
different rounding strategies of the numbers are employed[27]. For simplicity, these
features were left out of the implementation of the system.
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Floating-point arithmetic requires additional hardware compared to fixed-
point arithmetic due to the fact that the numbers have to go through normal-
ization or denormalization. For example, for floating-point addition, numbers
have to be rescaled to the same exponent to achieve the correct result of the ad-
dition. The normalization of the numbers is an expensive operation since it is
basically implementing a general shifter. After that, the mantissas are summed
with a basic integer summation. The floating-point multplication is less hard-
ware demanding as the significands can be multiplied immediately without any
pre-normalization. The resultant exponent is calculated by adding the operands’
exponents.

2.4 On Chip Communication Protocols

A complicated digital design is divided into multiple functional blocks. Some
blocks might be custom designed for a very specific function, while others imple-
ment a general functionality that can have wide usage. Xilinx offers these kinds of
general-usage IPs that have their own communication protocol, which is a standard
defining how their blocks transmit and receive data.

The on chip communication protocol used by Xilinx is the AXI protocol, which
was created by ARM as part of their AMBA standard. There are multiple variants
of the AXI protocol as it has been in use for many years, but the ones used by
most Xilinx IPs belong to the fourth version of the AMBA standard. The version
is made up of three different protocols, the full AXI4 protocol, the AXI4-lite
protocol and the AXI-Stream protocol[29]. Only the AXIS and AXI-lite protocol
is employed in this thesis, and they are presented in detail further down.

There are some things in common to all three AXI4 protocols. They all have
two types of ports, subordinates and managers. These interfaces are symmetrical,
and a connection is always formed between subordinates and managers. This
makes the integration of IPs relatively simple[30].

Another thing they have in common is that a data transfer is always preceded
by a handshake mechanism which is the same for all three protocols. It is based
on the use of a valid and ready signal, the valid originates from the source of the
data and the ready originates from the destination. The valid is asserted when the
source is ready to transmit data and the ready is asserted when the destination is
ready to receive new data. Both the valid and ready signal can be asserted first,
but the transmission of data is only valid when both are raised. This handshake is
not asynchronous so it also requires the rising edge of the clock for the handshake
to be completed[31].

Both the subordinate and the manger port can work as a source and destination
depending on where the data originates from for the specific transfer as specified
in the individual protocol.

2.4.1 AXI-lite Protocol

The AXI4 Lite protocol defines a simple low throughput memory mapped interface.
The protocol defines a series of transfers for both reading and writing to the
memory that includes the transmission of the address.
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Many of Xilinx reconfigurable IPs are controlled by status and control registers
coupled to an AXI-lite subordinate port. It connects to a manger port that can
either be implemented in the FPGA logic or if the FPGA is a SoC it can be
connected to a manger port in the PS. When controlling it through a program
written on the PS, different classes exist that remove the need to know all the
signals defined in the protocol in detail. In this project the IPs with AXI-lite
ports are all connected to the PS.

2.4.2 AXI-Stream Protocol

The AXIS protocol defines an interface made for high speed streaming data. It
defines several different signals wherein many are optional[8]. In this thesis only
four signals, excluding the clock and reset signal, are used and these are presented
in Table 2.3. In the AXIS protocol the manager is always the source and the
subordinate is always the destination.

Signal Source Description

TVALID Transmitter Indicates that the data
is ready to be transmitted.

TREADY Receiver Indicates that the receiver
can accept new data.

TDATA Transmitter

The signal transmitting the data.
It has a variable width with recommended

values being 8, 16, 32, 64,
128, 256, 512 or 1024.

TLAST Transmitter Indicates the last valid data for a package.

Table 2.3: The four used signals in the AXIS Protocol and their
function[8].

2.5 Pipelining

One important technique to improve the performance of a system is pipelining.
The idea is to run several tasks simultaneously, therefore increasing the throughput
of a design[32].

In Fig. 2.4a a simple non-pipelined data path is shown and in Fig. 2.4b
the same data path is showed but pipelined. In Fig. 2.4a the clock has to be
slow enough to allow two multiplications per cycle while in Fig. 2.4b it can be
twice as fast, thus increasing the circuit’s throughput. Theoretically, the design’s
throughput will continue to increase as more pipeline stages are added, but in
practice there is a limit. This is due to both set-up and hold time of the register,
which has a larger impact on a higher clock frequency, and due to the fact that it
is often to impossible to keep dividing up the design into these pipeline stages[32].
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The latency of the system is often negatively impacted by pipelining, though
executing it well can decrease this impact. In the example above, the latency
of the system would not be affected as the tasks can be divided evenly into the
pipeline stages, but most times latency would increase, as one pipeline stage would
be more time consuming than the others[32].

A digital system often has a target clock frequency and if a design has long
data paths, pipelining is a useful technique to ensure that the design meets its
timing requirements.

(a) Non-pipelined data path. (b) Pipelined data path.

Figure 2.4: Pipeline strategies



Chapter 3
System Overview

This chapter covers a detailed description of implemented system as whole, along-
side the interface between the developed IPs and the data generation.

3.1 Implementation

Following the idea of a distributed system, two RFSoC2x2 boards have been used
to emulate the idea of distributed computing for the LIS panels. One board rep-
resents the sending side, depicted in Fig. 3.1 and the other board represents the
receiving side, shown in Fig. 3.2. Each board contains two NN hardware accelera-
tors, each accelerator mimicking the local processing on a LIS panel. The receiving
board also acts as the central processing unit performing a Gaussian Fusion with
the aggregated data from the four NNs to calculate the final position.

The three main modules of the system, the Neural Network, the Fusion and
the Ethernet connection between the FPGAs are presented in chapter 4, 5 and
6. In order to obtain a functioning system on the SoC, these three parts require
smaller interface modules acting as bridges between the different types of data and
on-chip communication protocols.

3.1.1 The sending side

The set-up on the sending side as well as on the receiving side has been created
to accommodate all the implemented programmable logic within the resources of
the used FPGA. Thus, on the transmitting side, there are two NNs corresponding
to two LIS panels and certain blocks which are managing the interfacing with the
NNs and DMA, or are generating the data. These will further be explained briefly.

• M1/M2 are in fact, one single IP and their task is storing and sending
the data required for the input of the neural network. Therefore, they act
as a memory comprised of the CSI data needed for the prediction of the
position coordinates. To emulate the real-time generation of the data, these
send onwards 16 inputs each every 2.5ms. Moreover, these memories are
controlled with the Jupyter Notebook, in the sense that they are enabled
through python with the help of an AXI Lite port.

17
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Figure 3.1: Block diagram of the sending side, where FIFO is a
memory of the first-in, first-out, RR is a round-robin router,
DMA is direct memory access and PS is the processing system.

• FIFO stands for first-in, first-out and is a Xilinx IP that acts as a buffer.
This IP is parametrizable and it can be chosen to be used with the full AXI
protocol or just with certain signals.

• NN is the neural network implemented which is presented in depth in chap-
ter 4.

• RR is a round-robin router which handles the AXI interface between the
NN and FIFO. In addition, it packages the 16-bit outputs from the NN into
a 32-bit number so that it can be easily received by the DMA.

• DMA is the direct memory access IP provided by Xilinx, which is control-
lable through python. It is a centeral part of the communication system and
presented in depth in chapter 6.

• PS is the processing system on which python is ran on. Here the Ethernet
connection is handled via the socket class.

Figure 3.2: Block diagram of the receiving side, where FIFO is a
memory of the first-in, first-out, RR is a round-robin router,
DMA is direct memory access and PS is the processing system.
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3.1.2 The receiving side

The board which will be receiving the data from the two LIS panels has a similar
overlay, basically containing all the elements from the transmitter side. Addition-
ally, as it can be seen from Fig. 3.2, consists of:

• RR and converter whose task is to unpack and store the output of the
four NNs received from the Ethernet as well as from the NNs present lo-
cally. Moreover, it converts the 16-bit fixed-point numbers in floating-point
equivalents, preparing the values for the fusion.

• Fusion which aggregates all the data from the panels with the aid of the
conflation operation yielding the approximated mean values for the position.
This was presented in detail in chapter 5.

• Display which is a software function that basically prints the values from
the hardware sent via DMA in a readable manner.
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Chapter 4
Deep Neural Networks

In this chapter the theory behind Neural Networks will be covered briefly. Then the
NN that shall be implemented is presented in detail. Some general optimization
methods for implementing NNs in hardware are mentioned and how they apply to
the case at hand. Lastly, the hardware implementation of the NN is described.

4.1 Theoretical aspects of deep neural networks

Since the breakthrough of Deep Neural Networks(DNN) in modern artificial in-
telligence, the use of them has grown extensively within a mass of different appli-
cations. Their predicting accuracy puts them at the forefront of most AI tasks.
However, this comes with a high computational complexity which cannot be fur-
ther satisfied only with GPUs [33].

As their name suggests, DNN are inspired from how the brain functions and
does calculations. The fundamental computational element is the perceptron,
whose functional principle resides in the basic idea of a weighted sum. Thus,
given a number or inputs, N , each having its own corresponding weight, wi, the
resultant output will be the scaled sum of the inputs with these weights, on which
a non-linear function σ is applied:

y = σ(

N∑
i=1

wixi). (4.1)

Neural networks are arranged in groups of units called layers, usually in a
chain structure. That means that the current layer is a function of the layer that
preceded it[34]. Fig. 4.1 shows the general architecture of a feedforward-network
which is also called a multi-layer perceptron. The goal of these kinds of networks
is to approximate a given function. For example, if the task is classification, then
the network maps an input x to a category y. Besides the input layer and the
output layer, there exists hidden layers which define the depth of the network.
By and large, networks with more hidden layers than one are capable of learning
high-level features with more complexity and abstraction than shallower neural
networks[33].

21
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The general equation for a certain layer with multiple neurons hi+1 within a
DNN is:

hi+1 = ai(W
T
i hi + bi), (4.2)

where i is the layer, ai : RNi is the activation function applied for given layer,Wi ∈
RMi×Ni is the weight matrix, hi is the preceding layer and bi ∈ RNi is a bias
correction applied to the sum.

Figure 4.1: The general architecture of a feedforward-network.

Since DNNs are comprised within machine learning algorithms, they follow
similar learning schemes. Training the network means learning its parameters,
which are the weights and biases. The most utilised algorithm for updating
these parameters is gradient descent with different added optimization techniques.
Based on this, the weights and parameters are adjusted in a way such that it
minimizes a chosen cost function. The newly updated values can be, therefore,
expressed as:

wi,j(t+ 1) = wi,j(t)− µ
∂J

∂wi,j
, (4.3)

where wi,j(t) is the previous value for layer i and neuron j, µ is the learning rate
and ∂J

∂wi,j
is the partial derivative of the cost function in regards to the specified

weight. The learning rate represents one of the hyperparameters which needs to
be chosen carefully when designing and training the neural network.

Once trained, the network is able to perform the task of, for example, classi-
fication or prediction, with an achieved accuracy, on new inputs. This is referred
to as inference. This work is focusing on the latter, since DNN inference is often
performed on embedded devices, where resources are limited and performance is
critical.
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4.2 Architecture of the implemented neural network

As stated previously, this work is proposing a hardware implementation of a deep
neural network architecture which was first presented in [1]. Since NNs have
started to be employed tremendously for user positioning in wireless systems, the
need of hardware which can deploy and support these kinds of algorithms had
arisen.

Figure 4.2: The architecture of Jesus distributed positioning
DNN[1].

The architecture of the feed-forward deep neural network is shown in Fig. 4.2.
After the channel has been estimated by the software simulated CE block, the
feature vector ĥ represents the input to the DNN. Four dense layers with fully
connected neurons, modeled by the equation (4.2), are used. During training,
different optimization techniques are used such as employing dropout layers(DP)
and batch normalization layers(BN).

Dropout has proven really effective when training large NN with small datasets.
As a regularization method, dropout refers to dropping out units, which is remov-
ing neurons from the network, along with all its incoming and outgoing connections[35].
This layer is disregarded during test time.

Batch normalization assists with the "whitening" of the network’s distribution
for each layer, improving the speed of the training as well as acting as a regular-
ization method. Since the change in the distribution of the layers’ inputs presents
a problem as they continuously adapt, the batch normalization layer aims at cor-
recting this issue. The first step is normalizing each scalar feature independently,
where the expectation and variance are computed over the training data set[36]:

x̂(k) =
x(k) − E

[
x(k)

]√
V ar

[
x(k)

] , (4.4)

and x represents the input vector of dimension k. To preserve the proprieties of
the normalized layer, an additional step is required:

y(k) = γ(k)x̂(k) + β(k), (4.5)

which is essentially scaling and shifting with the parameters γ(k) and β(k) which
are learnt during training. Furthermore, these trained parameters are used during
inference.
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RELU stands for rectified linear unit and acts as the activation for the first
three dense layers. It implements the function:

f(x) = max(0, x). (4.6)

The last layer depicted in the picture is the probabilistic layer which provides the
values for the probability density function described by the parameters µ,Σ needed
by the loss function that is minimized during training[1]. This is not taken into
account during inference, as the last dense layer provides the mean – µ and the
lower triangular matrix – Σ from which the covariance can be computed that are
required for the computation of the gaussian fusion.

The number of parameters used by each layer and the number of multiplica-
tions required in hardware is shown in Table 4.1

Layer 1 BN Layer Layer 2 Layer 3 Layer 4 Total
Mul. 204 800 200 20 000 2000 100 227 100

Param. 204 800 800 20 000 2000 100 227 700

Table 4.1: Parameter breakdown of the neural network shown in
Fig. 4.2

.

4.3 Optimization techniques for NNs in Hardware

Before designing the architecture of any hardware accelerator it is important to
consider the performance requirements, the constraints and what type of system
is being designed. Fig. 4.3 shows the design methodology used for this hardware
accelerator. First, the structure of the NN was analysed, as presented in section
4.2. Then, different optimization techniques for the relevant performance factors
and constraints were studied, as presented in this section. Several of the presented
techniques were especially designed for NN implementations on FPGAs, since
FPGAs are an inherently suitable platform, due to their flexibility and efficiency.

Lastly all of this information was considered together with the system require-
ments and a trade off between the different performance factors had to be done to
create a final Hardware Architecture, as presented in section 4.4.

4.3.1 Pipelining the NN

One important technique, enabled by the large size of modern FPGAs, is to imple-
ment all layers of the DNN on the FPGA in a pipeline structure. This enables one
to adopt different optimization strategies for each layer, as they have their own
dedicated logic. As the layers of a DNN can be widely different this allows for bet-
ter optimizations which in turn maximise throughput, and decrease the frequency
of memory access[17].
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Figure 4.3: Design considerations for the NN hardware accelerator.

4.3.2 Distribution of the DSP slices

When creating the pipeline structure, a major consideration is how to best utilize
the DSP slices. To maximise the throughput of a pipeline, the execution time of
each pipeline stage should be around the same. The DSP slices should also be
distributed in a way such that they are utilized every clock cycle and do not lie
dormant[17].

Equation (4.7) and (4.8) can be used together to determine how to best dis-
tribute the DSP slices through the layers of the DNN. N i

in and N i
out denotes the

amount of input, respective output neurons of the i-th layer and CCY denotes the
amount of clock cycles it takes to compute a layer. As CCY should be the same
for every layer to best utilize the pipeline its value is not tied to the actual layer.
Parain and Paraout denote the amount of neurons inputted from the previous
layer every CCY and the amount of result neurons the results are sent towards.

Paraiin × Paraiout =
1

CCY
×N i

in ×N i
out (4.7)

The target is to determine Parain and Paraout for every layer so that the
following requirement are met. Paraiin and Paraiout should be divisors of Nini

and N iout, this guarantees that all DSP slices are used every clock cycle. The
amount of multiplication operations done per clock cycle also needs to be smaller
than the amount of available DSP slices, as shown by equation (4.8).

Nlayer∑
i=1

Paraiin × Paraiout ≤ DSPtotal (4.8)

This NN was designed with the ZCU102 board in mind, which is described in
detail in section 2.2.2. One board needs to be able to fit two NNs and the Gaussian
Fusion. In total, it has 2520 DSP Slices available, but one NN can use at most
1200 slices, and preferably less to increase the ones available for the fusion.
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In Table 4.2 an analysis over how many DSP slices will be needed per layer
depending on the CCY, calculated using equation (4.7), is shown. The result of
Paraiin ∗Paraiout shows how many multiplications are executed in parallel for the
chosen layer. How to distribute them between Parain and Paraout can be decided
later depending on what is most suitable.

Paraiin × Paraiout
CCY i=1 i=2 i=3 i=4 Sum
100 2048 200 20 1 2269
160 1280 125 12.5 0.625 1429
200 1024 100 10 0.5 1135
320 640 62.5 5.25 0.3125 710
400 512 50 5 0.25 568

Table 4.2: The amount of DSP slices need per layer depending on
the amount of clock cycles the execution per layer takes.

4.3.3 Optimizations for Fully Connected Layers

After determining the overarching structure of the system it is important to look
at how to optimize every individual layer. When optimizing the individual layers
the technique that is most suitable depends on what type of layer it is used on.
For Dense layers, also called Fully Connected layers, the largest bottleneck is the
large memory bandwidth needed to access the weights during computation. One
way to solve this is to use a batch-based computing method, which trades higher
latency and more on chip memory for a reduced required memory bandwidth[17].
As implemented network is fairly small it is feasible to keep all parameters in the
on-chip memory, which removes the need for this optimization.

4.3.4 Number Representation

Another major consideration is the manner in which the numbers are represented.
This impacts both the amount of memory needed, and the amount of resources
needed for computation. Multiple works have shown that NNs are inherently noise
tolerant and that low precision quantization can be used without sacrificing high
amounts of accuracy.

To determine which number representation to use in the implementation a
behavioural model was created where the accuracy of different options was tested.
The result of this is displayed in Table 4.3. To achieve higher accuracy for the lower
resolutions it is desirable to fine tune the network. That is an added process at the
end of the training where the parameters are adopted to the picked quantization,
but that was outside the scope of this thesis as training the network is not included
in the work process.

When doing multiplication in two complement fixed-point, it is important to
decide how to round the numbers. When two 8-bit numbers are multiplied it is
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Number Representation average error(cm) max error(cm)
32 bit Floating Point 2.30 9.04

32 bit Fixed Point - full precision 2.25 8.04
16 bit Fixed Point - full precision 2.26 7.93
8 bit Fixed Point - full precision 3.39 12.30

8 bit Fixed Point - INT8 NaN NaN
8 bit Fixed Point layer 1, 16 bit 2.26 7.93

for the rest - full precision
8 bit Fixed Point layer 1, 16 bit for 2.26 7.93

the rest INT8 for layer 1

Table 4.3: The accuracy for different quantization for the NN.

possible for the result to overflow, and in that case the result will wrap around
and become negative. To keep full precision one can for example double the bits
just before multiplication therefore increasing the range to all the possible results.
If nothing else is specified, Vivado executes the multiplication in full precision.

The INT8 notation refers to a number representation where both the inputs
and outputs of a multiplication are 8 bits, which means that full precision is not
guaranteed as overflow is possible. If this representation is picked, it is possible to
utilise one DSP slice for two multiplications, which doubles the amount of parallel
computations without needing more resources[21].

The ability to utilize a DSP slices for two multiplications is especially suitable
to NNs. This is due to the requirement that one of the inputs needs to be the
same for both multiplications, a scenario that’s common for NNs. For the second
input vector, which needs to contain two different values, the 27 bit input to the
DSP slice is utilized. It’s possible to pack the first value in the least significant
eight bits and then leave 8 empty bits before packing in the second value. This
empty space means that the results of the multiplications can be taken directly
from the output vector as the result bits from the first calculation does not impact
the second[21].

4.3.5 Latency Optimization

The previous optimization techniques are focusing on increasing throughput, de-
creasing the needed memory or the resources used, as these are usually the most
relevant factors. This network though is designed to run in real-time which makes
latency a relevant factor to optimize for as well.

The pipeline structure discussed in the beginning would divide every individual
layer into its own stage, which for this network would create five pipeline stages.
But by utilizing the inherent structure of a fully connected layer it is possible to
combine two layers into one pipeline stage, thus decreasing the latency. In a fully
connected layer all output nodes from the previous layer are used to calculate
the results of the current layer. If the first layer was to focus on computing its
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first output node as rapidly as possible, the second layer can start by calculating
the values related to that node. This reduces latency dramatically, by allowing
the second layer to start computations much earlier. It also does not affect the
throughput as long as the time to calculate an output node of the first layer
matches the time it takes to calculate all operations regarding that node for the
second layer.

4.4 Implementation

The performance requirements for the NN are the following: Performance wise
the throughput needs to be 32 000 inference calculated per second and the latency
should be minimized as much as possible. The resource utilization to archive this
performance should also be minimized if possible, as there needs to be resources
left for the other parts of a Massive MIMO system. This should be achieved
without degrading the accuracy of the system too much. The final consideration
is power usage, and for this implementation, that is not a prioritized parameter.
It will only be taken into consideration when it does not affect the other factors.

To fulfill these requirements, it is important to use the optimization tech-
niques presented in the previous section. To minimize the resources usage for
both memory and computational resources, it is desirable to pick the smallest
number representation that doesn’t sacrifice too much accuracy. It is most impor-
tant to optimize the first layer, as it does 90% of the operations. Therefore, it was
decided to pick the representation depicted in the last row of Table 4.3, with INT8
representation for layer 1 and then 16-bit full precision for the rest. The accuracy
is reduced somewhat, but it allows for the optimization technique where one DSP
slice can be utilized for two operations for the first layer.

The next step is to decide how to distribute the DSP slices through the layers.
Table 4.2 shows the amount of DSP slices utilized in different layers, depending on
how many clock cycles it takes to compute on layer. As only half of the DSP slices
will be used for the layer 1, the numbers on the second column of the table do
not apply anymore. Keeping all the numbers presented in Table 4.2 will result in
a low-enough throughput which is way better than the requirement, so the trade-
off becomes trading resource usage for low latency. Finally, CCY = 200, which
needs 623 DSP slices and gives a throughput of 500 000 inference per second when
clocked at 100MHz.

Figure 4.4: An overview of the data path of the Neural Network.

Fig. 4.4 shows an overview of the data path of the Neural Network. Two
fully connected layers are merged into one big pipeline stage to reduce latency as



Deep Neural Networks 29

described in the previous section. This gives us two big pipeline stages in the NN,
one that contains layer one, the batch normalization calculations and layer two,
and one that contains layer three and layer four. The next step now is how exactly
these separate modules are designed to fit the design requirements.

Previously, the result for Paraiin ∗Paraiout has been shown for every layer, but
not their individual values. This decision has a big impact on the implementation,
and to fully illustrate it a combination of figures and equations will be used.

The general equation for a fully connected layer with multiple neurons is shown
in equation (4.2) and the equation for a single neuron, without the bias, is shown
in equation (4.1). In Fig. 4.5 the calculations for one layer, excluding the bias and
activation function, is shown as the matrix multiplication it is. The input matrix
has dimension 1 ∗ n and the weights matrix has dimension n ∗m. Where n is the
amount of input nodes, same as Nini, and m the amount of output nodes, same
as Nouti.

When deciding Paraiin and Paraiout, the decision is in which order all the
matrix operations are done in. One can choose the traditional approach of matrix
multiplication which is taking the row of the input and multiplying it with the
columns of the matrix. If we consider, for example, 4 DSP slices, then they will be
mapped to the first 4 column values in the matrix, which will be further traversed
vertically. Following this approach will yield a partial product of a one output
node. A different perspective is traversing the matrix horizontally, in batches,
illustrated with the grey box in Fig. 4.5. Considering the same number of DSP
slices, two inputs are processed every clock cycle to calculate intermediate values
towards two separate output nodes. In this case, Parain = 2 and Paraout = 2
and two output nodes would be fully calculated after n/2 clock cycles.

Figure 4.5: General matrix multiplication

The final values used when designing are displayed in Table 4.4. Two different
strategies have been employed for the layers at the beginning of the pipeline, and
at the end of the pipeline, respectively. Layer one and layer three are focusing
on computing one output node at the time, so layer two and four can use the
results in their calculations. Therefore the matrix should be traversed column-
wise. Paraiout is 2 for layer one, since the DSP slices in this layer are configured to
run two separate operations, which is only possible if one parameter is the same.
This happens when the NN is calculating values for two output nodes, as they
have the same inputs, but different weights. In layer three and four the opposite
structure is needed. As only one input is available when the calculations start, the
matrix has to be traversed row wise instead.

There are different implementation challenges for traversing the matrix row-
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Layer Paraiin Paraiout
1 512 2
2 1 100
3 10 1
4 1 1

Table 4.4: The values of Paraiin and Paraiout for every fully con-
nected layer.

wise or column-wise. When traversing it column wise, memories for all partially
calculated operations are needed. In this case though the DSP slices accumulate
register can be utilized for that. Thus, no extra resources have to be used for this
memory. When traversing it row-wise, the amount of additions done to sum up
the values from the multiplication are numerous. To decrease the length of the
critical path an addition tree is implemented as shown in Fig. 4.6.

Figure 4.6: The data path of layer one and layer three.

The last layer to implement is the batch normalization layer. The equations
for batch normalization are equation (4.4) and (4.5). The implementation needs
to have a throughput of one input calculated every 200 clock cycles. As there are
200 input values per input as shown in Fig. 4.2, the batch normalization needs to
output a new value every clock cycle. This is a very high throughput as the batch
normalization is made up of notoriously slow arithmetic operation, division.

To achieve the throughput one simplification is first done. As V ar[x(k)] is a
constant, the result of the square root is also a constant. Therefore this value is
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pre-calculated removing the need for implementing square root in the hardware
implementation.

The division is implemented using the Non-Restoring Algorithm, as described
in section 2.3.1. It’s an iterative algorithm that is performed over multiple clock
cycles. One bit in the result is calculated per iteration, thus the execution time
in clock cycles is the same as the amount of bits in the dividend. To increase
throughput a combination of pipelining and loop unrolling is utilised. The division
can be loop unrolled slightly, as more than one iteration can be executed per clock
cycle without timing violations. The limit was concluded to be three iterations
per clock cycle. To further improve the throughput the division is fully pipelined,
and therefore able to accept a new input every clock cycle.

The division is not the only module that needed to be further pipelined to meet
the requirements. A degree of pipelining was necessary for the DSP slices and some
of the longer critical paths inside the adder trees to achieve good throughput. This
creates a structure of a "big" pipeline, which is shown in Fig. 4.4, and smaller
pipeline stages inside of these to allow the design to meet its timing requirements.
To prevent a decrease in throughput, the first stage in the big pipeline accepts
new inputs as soon as the first "small" pipeline stage is empty instead of waiting
for all the calculations inside of the stage be done.
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Chapter 5
Gaussian Probability Fusion

The goal of the implemented system is to provide an accurate estimation of a user
location from the probability densities provided by the four LIS panels. All these
outputs are fused together by a central processing unit to attain more precise
position coordinates. The design and the theory behind the fusion of the four
outputs from the panels will be presented in the current chapter.

5.1 Introduction

The fusion of the results of the panels is done by combining a finite number of
probability densities into a single one through a method named conflation[1]. The
user position is modeled as a multivariate normal distribution:

pi = N (µi,Σi), (5.1)

for the i-th panel, and µi ∈ R2 is the mean, Σi ∈ R2×2 is the covariance. Con-
sequently, each panel estimation is represented by the tuple {µi,Σi} which will
further be the input of the fusion module.

5.2 Theoretical aspects of probability fusions

Conflation is essentially consolidating the information from several independent
experiments, all measuring the same unknown quantity[37]. This technique pre-
serves the type of the individual distributions, thus the resulting distribution hav-
ing the same proprieties as the individual ones. For this particular case, since the
distributions outputted by the NNs are gaussian, the combined distribution will
also be gaussian. The covariance and mean are represented as[1]:

Σf =

(
P∑
i=1

Σ−1
i

)−1

, (5.2)

and, respectively,

µf = Σf

(
P∑
i=1

Σ−1
i µi

)
. (5.3)
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In the software model, all computations for both the NN and the fusion cal-
culations are done using python. To be able to represent and use these entities in
python while training the neural network, the Tensorflow library offers this possibil-
ity through the distributions class[38]. In [1], a distribution – MultiVariateNormal-
TriL[39] – which is entirely characterized by the mean of the random variables and
a lower triangular matrix denoted as scale, is used. These variables are obtained
after the last dense layer pictured in Fig. 4.2. The class provides the possibility
of retrieving different parameters such as samples, the standard deviation or the
covariance. However, the way the computations when calling these parameters
are done has to be fully known in order to be able to completely characterize the
hardware describing it. Thus, a behavioral model written in matlab, emulating the
hardware has been used as a bridge between the hardware description in VHDL
and the software implementation in python.

5.3 Probability fusion implemented in hardware

Given that the NN python model containing the multivariate gaussian distribution
does not output the covariance directly, the resulting values have to be prepro-
cessed since they are needed for the fusion according to equations (5.2) and (5.3).
The five resulting values from 4.2 are the mean values for the two coordinates, and
the lower triangular matrix values scale, such that:

covariance = scale* scaleT , (5.4)

where * denotes matrix multiplication and T is the transpose operator.
Before computing the covariance accordingly, preprocessing of the resultant

diagonal values of the scale matrix, within the MultiVariateNormalTriL python
class is conducted in conformity with the source code. First, a softplus trans-
formation is applied and then a small number is added to the resulting diagonal
values. Thus, the diagonal numbers in the scale matrix become:

scale_diag_new = log(1 + exp(scale_diag)) + 1−5. (5.5)

To be able to describe any given function in hardware, one must think about
the elementary building blocks : adder, multiplier and shifter. In the following
sections the manner in which these blocks have been implemented with the help
of VHDL and further used will be presented.

5.3.1 Floating-point arithmetic

In order to capture the whole dynamic range of the numbers, the fusion opera-
tion is implemented in floating-point arithmetic. The number distribution for the
covariance values is shown in Fig. 5.1 for all the panels, each having 100 inputs.
While the general curve shape is preserved, the dynamic range changes as much
as from 10−5 to 103. To represent this full range accurately, 38 bits would be re-
quired. This would mean more than doubling the number of bits resulted from the

https://github.com/tensorflow/probability/blob/main/tensorflow_probability/python/distributions/mvn_tril_test.py
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neural network, so a compromise between precision and accuracy has to be done.
If 16-bit or 32-bit fixed-point would be used, the operations which require rounding
would cause a bigger loss in accuracy in the long run. This makes floating-point
the preferable choice that can cater to the maintaining of the accuracy.

Figure 5.1: Histogram of the covariance values before the matrix
inversion(top) and after the matrix inversion(bottom)

Fixed-point to floating-point converter

Usually, a number represented in floating-point is stored in hardware like in Fig.
5.2. Given the fact that the result from the NN is in fixed-point arithmetic, a
to_float converter has been implemented which takes the signed 16-bit number
and splits it into the fields as shown in Fig. 5.2, by converting the signed value
into sign, signed exponent, and unsigned mantissa. For simplicity, no rounding
scheme was used, and instead the numbers are truncated during different comput-
ing stages.

Figure 5.2: Bit fields in the floating-point representation



36 Gaussian Probability Fusion

Normalization

Figure 5.3: Floating-point addition

The normalization of the numbers is imple-
mented by shifting the number of leading
zeroes out of the mantissa[40]. The lead-
ing zeroes are counted by checking each
bit starting from the most significant one.
Then the number of leading zeroes are
added to the exponent.

Floating-point adder

The floating-point addition requires more
steps then integer addition and thus, more
clock cycles. The hardware implementa-
tion follows the control flow depicted in
Fig. 5.3 and is based on the algorithm
shown in [28]. The sign is computed based
on the larger number. The whole process
starts once both operands are available.
When the addition is done and the result
stored in the register, the manager_valid
is raised. The reason of connecting a reg-
ister directly to the addition’s result is to
utilize the capability of the DSP slices.

Floating-point multiplier

The floating point multiplier is simpler
than the adder, due to the fact that de-
normalization is not necessary before mul-
tiplying the mantissas. The resulting sign is the XOR operation between the
inputs’ signs and the exponent is calculated by summing the operands’ exponents.
After the multiplication operation, the result is normalized.

5.3.2 Exponential and logarithm

The exponential and logarithm functions are implemented following alike strate-
gies, namely approximating them with the aid of the Taylor series presented in
chapter 2. Since the basic principle of the expansion is achieving accurate values
around a given expansion point, this has to be chosen according to the expecting
range of the input values. Thus, for the exponential, the expansion point was
chosen to be -1.5 and by rearranging the terms in the equation (2.5), we obtain:

ex = e−1.5

[
1 + q

(
1 + q

(
1

2
+ q

(
1

6
+

q

24
+ q

(
1

120
+

q

720

))))]
, (5.6)
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where q = x + 1.5. This is a well-known method to reduce the number of
multiplications in Taylor series[41].

Given that the inherent operation that needs to be performed is ln(1 + x)
according to equation (5.5), then the Taylor series with the chosen expansion
point being 0.625, becomes:

ln(1+x) = 0.1009+
8x

13
+
32t2

169

[
−1 +

16t

13

(
1

3
+

2t

13

(
−1 +

32t

13

(
1

5
− 4t

39

)))]
(5.7)

where t = x− 5
8 . Since most of the divisions here are done with the divisor being

a constant, it is only practical and resource efficient to perform multiplication with
the pre-calculated inverse value rather than division. As it can be seen from the
equations, the non-linear functions that needed to be implemented are becoming
a series of floating-point addition and floating-point multiplications.

The expansion points have been chosen by estimating the range of the numbers
at the prefusion stage with the help of the behavioral model. The schematic for
both the exponential and the logarithm function can be seen in Fig. 5.6. Only the
adders and the multipliers are depicted to simplify the diagram, but registers are
also present in certain places so that the timing requirements are met. Moreover,
the result is normalized before being sent on to the next module.

5.3.3 Matrix inversion

Once the covariances are calculated from the scale matrices, they have to be in-
verted according to (5.2) then added together and inverted again. Given the fact
that Σi ∈ R2×2, the matrix inversion can be achieved by only calculating the
inverse of the determinant and multiplying it with the adjoint matrix. Let

A =

[
a11 a12
a21 a22

]
be a full-rank 2× 2 matrix. Then detA ≡ |A| = a11a22 − a12a21 ̸= 0 and

A−1 =

[
a11 a12
a21 a22

]−1

=
1

|A|

[
a22 −a12

−a21 a11

]
.

The determinant is easily calculated with two multipliers and an adder. For
calculating the inverse of the determinant the Newton-Raphson method, explained
in chapter 2, was chosen. To perform floating-point division, it is only necessary
to calculate the inverse of the divisor’s mantissa, multiply it with the dividend’s
mantissa, and then subtract the exponents. The sign is computed as it is for
multiplication, using a XOR gate. Initially, the division function implemented in
the batch normalization layer for the NN was chosen for this step as well. Since
the mantissa contains 23 bits, 46 iterations would have been necessary to achieve
the correct result of the division. This would have impacted the latency and
throughput significantly. Furthermore, with the fast division method, the inverse
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of the determinant has to be calculated once and within the span of notably
less clock cycles, by just iterating through the algorithm three or four times and
achieving similar accuracy.

The limitation of the chosen algorithm is that it is very sensitive to the initial
estimation[42]. In hardware this is done with the help of a look-up Table, as it
has been done in [43]. To achieve higher accuracy, one can run more iterations.
When following equation 2.3, one must be careful about the how the intermediate
results’ scaling behaves. Since the floating-point numbers are always used in their
normalized form one can assume the following about the divisor and the initial
inverse approximation:

1 ≤ divisor < 2,Q1.22

0.5 ≤ inverse < 1,Q23

If we regard the numbers as being represented in fixed-point and we keep the
most significant bits of the multiplication result, then:

0.5 ≤ divisor · inverse < 2,Q1.22

To represent the number 2, 2 bits are required for the integer part. Thus, we
shift the multiplication result to match the number of 2’s integer bits and we get:

0.25 ≤ divisor · inverse < 1,Q2.21

1 ≤ 2− divisor · inverse < 1.75,Q2.21

The subtraction result is smaller than 2, so the first bit can be shifted out,
yielding:

0.5 ≤ 2− divisor · inverse < 0.875,Q1.22

0.25 ≤ inverse ·(2− divisor · inverse) < 0.875,Q1.22

Since both the operands are smaller than 1, then the first bit can be discarded,
leaving us with the generated Q23 inverse which is going to be the input to the
next iteration. At the end of the algorithm the result is normalized and the
manager_valid is asserted.
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5.3.4 Prefusion block

This block implements the equation (5.5) followed by the matrix multiplication in
(5.4) and finally, it inverts the calculated covariance matrix as explained in the
previous section, preparing it for the computations in (5.3) and (5.2). Because the
matrix contains the same values on the secondary diagonal, only three values are
needed to be able to fully represent it. To match the throughput of the NN, all
the computations had to be pipelined. One pipeline stage lasts 40 clock cycles, as
it matches the slowest module’s speed, which is the logarithm . The data changes
based on a input subordinate_valid signal which is also going through the pipeline
stages. Although the values of the means do not get changed within this block,
they are still pipelined to ensure they correspond with the values of the covariance
matrix. The data path is illustrated in 5.4

Figure 5.4: The prefusion module with the pipeline stages

5.3.5 Fusion block

The fusion itself does not contain any complicated functions or operations, apart
from calculating the inverse of the resultant covariance needed to compute the
fused mean. A simplified version of this block is presented in Fig. 5.5, with
only the pipeline registers being shown. Since the arithmetic takes less than the
required clock cycles, the adders are being reused for each value of the covariance
matrix, and the mean matrix, respectively. This gives the opportunity to save
resources on the FPGA as well. For example, the top adder will take 12 clock
cycles to add all the three covariance values. A select logic based on two counters
is employed to choose which of these three values are being added at a specific
moment. Moreover, it decides if the addition will take place for fusing the first two
panels, or for the third panel and the fused first two panels, and so on. Naturally,
more registers are used to store the intermediate values computed during different
stages. This module is easily scalable to be able to fuse extra panels maintaining
the same hardware resources, at the expense of latency.
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Figure 5.5: The fusion module. For the simplicity of the figure, the
three individual covariance values are regarded as one signal,
depicted with a thicker line. The same applies for the values of
the means.
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(a) ex (b) ln(1 + x)

Figure 5.6: Taylor series implementation in hardware
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Chapter 6
Communication System Using Ethernet

In the current chapter, a brief description of the Ethernet is introduced, alongside
with the presentation of the implemented module within the system.

6.1 Introduction

As the usage of computers continued to grow, people started to realize the need of
a common standard of how computers talked to each other regardless of manufac-
turer or operator. The ISO therefore started to develop a standardized architecture
called OSI. Modern communications do not follow this standard and it is instead
used as a reference model for how a communication network ought to be built[44].

The OSI layer is divided into seven different layers. Every layer can contain
one or more different protocols, and they should work independently of each other.
This means that if the protocol on the lowest layer, the physical, was switched due
to changing transmission medium, this should not affect any other layer[44].

The Ethernet protocol resides in the physical and data link layer, therefore
defining the lowest abstraction levels of a communication link. The Ethernet
standard contains several different specifications differing by both data rate and
different interconnect medium interfaces[45]. These are all defined in the IEEE
802.3 standard.

6.2 Original plan and issues

The aim of the communication system is to use an Ethernet port to provide a
communication channel between two FPGA boards. Depending on which board
is in use, it is possible to implement this in several different ways.

The ZCU102 board has two sets of Ethernet Ports, it has an 4xSFP+ cage
connected directly to the PL and a RJ45 Ethernet Port coupled to the PS. The
RJ45 port can support a data rate up to 1Gb/s while the 4x SFP+ cage contains
four ports that can each support 10Gb/s[6]. The RJ45 also has to take an inefficient
detour through the PS system of both FPGAs causing both increased latency and
being wasteful in regards to resources utilisation. The only benefit of the RJ45 is
that it allows the full usage of the PS and therefore lowers development time as
the Ethernet can be controlled through programming instead of hardware.

43
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Originally, the approach was to use the SFP+ cage and to control the Ethernet
transmission entirely over hardware. This decision was made for the following
reasons: It gave the best performance both in regards to throughput and latency,
which is desirable. This is not only due to the fact that the link itself can support
a higher bandwidth, it’s also because the link would be implemented on lower
level removing the unneeded procedures that exist on the higher levels created for
general Internet communication.

It’s also the most suitable approach to work with an actual massive MIMO
system, as the bandwidth would then have to support both the positioning system
and the information for the MIMO processing. Lastly it also leaves the processing
system unoccupied, which means it can be utilized for something else like a real
time graphical display of the ongoing transfer.

To implement this system, the Xilinx IP for controlling the Ethernet would be
utilized and a control system for it would be created in the FPGA logic. A Xilinx
example design existed for this IP when it was configured in a loop back mode.
This one was to be used as a basis for the control block, but when a bitstream
was to be generated to test its function on the FPGA that did not work. This
is when it was first noticed that the available license only covered simulation and
not actual bitstream generation. This was discovered at a point when it was too
late to get the actual license, which meant that the communication system would
need to be implemented in a different way.

At this point the time left to implement the communication system had de-
creased dramatically, which meant it was necessary to pick an option that would
be time efficient. It would be necessary to implement it through the PS and both
available ways to do that with the ZCU102 board, through vitis or generating a
PYNQ image through petalinux, was time consuming. So instead it was decided
to switch boards to the RFSoC 2x2 that already had an available PYNQ image
which would cut down implementation time dramatically.

6.3 PYNQ

PYNQ is a fairly new open source framework created by Xilinx, and it has been
specifically designed to control their SoC FPGAs through python code written in
Jupyter notebook. To work with PYNQ, certain requirements must be met. First,
the FPGA needs to be a SoC and thus contain a processor. Second, a slot for a SD
card is necessary as the operating system for PYNQ is stored in an SD card image.
The image contains a Linux variant with all the necessary files for running PYNQ.
For some boards, the RFSoC 2x2 among them, there exist pre-made PYNQ SD
card images that can be downloaded and put directly on the board, while for
others the image has to be made manually through their petalinux toolset[46].

The functionality of PYNQ is easily visualised through looking at its hierarchy
levels, which are shown below in Fig. 6.1[5]. The lowest level contains the actual
hardware designs. The desired IPs need to be put together with the processing
system in a block diagram, called an overlay. The next two hierarchy levels are
made up of the Linux kernel and the python libraries that make up PYNQ. These
bind the software written by the designer to the hardware. If the standard li-
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braries are not enough for the designer it is possible to add new python files to the
libraries. One major example is creating a device driver for a complicated custom
IP. The highest hierarchy level is the PYNQ notebooks that are written in Jupyter
notebooks, an interactive web based environment. The computer connects to a
server on the FPGA where all the files are saved and the code is run thus being
only a visual interface.

Figure 6.1: The hierarchies of the PYNQ framework[5].

PYNQ has been designed with several different purposes, some of them being
helping hardware designers reach a wider possible audience, as their finished de-
signs can be controlled and customized purely through software, creating an easy
software interface that can help with rapid prototyping and development[5], and
allowing for run time configurations of hardware.

6.4 Implementation

The implementation of the communication system is different from the previous
modules. Since as it goes through the processing system the implementation is
done in both hardware and software. An overview of the communication path is
shown in Fig. 6.2.

6.4.1 Direct memory access – DMA

There are several ways to move data from the PS to the PL. For a high performance
communication link, a DMA is the most suitable. A DMA is a system that allows
hardware modules to access the memory of a processing system independently of
the CPU. The DMA used in this project is a finished Xilinx IP whose specifications
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Figure 6.2: The communication path between two FPGA boards.

can be found in [47]. Its functionality is that it takes data from an AXI Stream and
moves it into the system memory through the AXI4 memory mapped interface.
In this project the system memory is the memory of the PS. The DMA has two
different channels, Memory Mapped to stream (MM2S), from PS to PL, and Stream
to Memory Mapped (S2MM), from PL to PS[47].

The DMA is controlled through several control and status registers. In this
project, these registers are written to from the Jupyter notebook through the
PYNQ libraries. There are a lot of different features that can be enabled or
disabled for this IP, but most of these cannot be used as the PYNQ library is
not yet compatible with them. The DMA is therefore implemented in its simplest
mode, the Direct Register Mode[48]. In this mode the data transfer does not
happen independently of the CPU. This lowers the performance both by increasing
set up time and by not allowing the CPU to be utilised by other operations during
parts of the transfer.

Since the DMA is a very important IP when working with both the PS and
the PL, PYNQ has classes to control it. A class called allocate, is used to manage
the memory buffers inside of the PS that the DMA interacts with. The DMA
demands that the memory buffer in the PS memory has a continuous physical
address, which the buffers created through the allocate class always have.

The need for allocate buffers for the DMA transfer made the development of the
python software somewhat complicated, as the code used for the Ethernet transfer
could not work with an allocate buffer. Therefore, it was necessary to decode and
encode the data into a bytes object when interfacing with the Ethernet transfer.
The encode method loops over every individual sample to translate it from an
integer in an allocate array into a bytes object, while the decode method loops
over every individual sample to translate it from a bytes object into an integer
entered in a pre-created allocate array.

6.4.2 Ethernet

To create the Ethernet transfer, a simple set up with the python socket class[49]
was used. Socket programming is usually used to connect two nodes which need
to communicate with each other. A server-client application on the CPUs of the
FPGAs has been established as it was done in [50]. The simple principle behind
it is that one board acts as the server, listening to any available ports. The
second board acts as the client, trying to form a connection with the listening
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port. The client could then continuously send data that would be collected by
the server. One of the pitfalls that arised when using this approach was that the
send and recv methods within the class were not handling all the bytes which were
transmitted[49]. Since the unit of the sent data is made out of 4 bytes, the integrity
of the numbers on the receive side is of the utmost importance in order to decode
them correctly. Since the ethernet directly talks to the DMA on the both sides,
an approach of buffering the data on the receiving side before sending it further
to the programmable logic had to be employed in software.

Another characteristic of the socket class is that it will not stop transmission
by itself, when it is not receiving data anymore[49]. This makes it suitable for real-
time systems as the time between data transfers might not be always constant.
On the other hand, the recv method might wait forever, if the connection is not
broken in some way.

The disadvantage of this type of set-up is that both of the ARM cores are
occupied and therefore no other action can be performed on them.
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Chapter 7
Results

This chapter is presenting different performance measurements during different
stages of the project. The hardware accelerators and the Ethernet subsystem are
treated separately as their implementation has been done on different platforms
and with different strategies. The system requirement which needed to be met
was a throughput of 0.5ms for 16 simultaneous users. Nevertheless, this could not
have been achieved due to the slow nature of the Ethernet module.

7.1 Hardware accelerators

Both of the modules have been implemented and tested in VHDL. For the current
clock frequency, 100Mhz, no timing violations were present. To paint a better
picture regarding where the bottlenecks lie in hardware, throughput and latency
were measured individually for both the neural network and the fusion and they
can be seen in Table 7.1. The time for latency was considered between the time
when the first valid value that was inputted to the module, and the time when this
value would have been computed. To lower these values, one can have a bigger
clock frequency which is achievable by pipelining the smaller modules, but at the
same time increasing latency.

Module Throughput(clock cycles) Latency(clock cycles)
Neural network 200 429

Fusion 160 283

Table 7.1: Performance measurements for the implemented hard-
ware modules

In Table 7.2 the utilisation rate of the Neural Network and the Fusion is
presented for the RFSoC2x2 board. As the constraints for the hardware resources
were higher in the beginning, the utilisation is fairly small.

Table 7.3 presents the accuracy achieved at different stages of the system. The
average and maximum error have been computed for 100 inputs points. The NN
results from the hardware implementation have been integrated with the 32-bit
floating-point software model of the fusion. The error for the complete system
implemented in hardware is shown as well.
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LUT FF DSP
Available 425280 850560 4272
Neural Network 43289 (10%) 11377 (1%) 629 (15%)
Fusion 22569 (5.31%) 6417 (0.75%) 156 (3.65%)

Table 7.2: The resource utilisation after implementation for different
modules

Average error(cm) Max error(cm)
Neural Network 2.7 10.97
Complete system 2.7 10.97

Table 7.3: The error achieved at different stages of the system

7.1.1 Ethernet Communication System

The result for the Ethernet communication system is taken through Jupyter note-
book using the PYNQ framework. This is because the processing system cannot
be simulated in Vivado. Therefore the measurements have to be taken during run
time and through the processing system, and it is no longer possible to check the
results on a bit level.

The Ethernet System is made up of two different vital components, the DMA
and the socket Ethernet implementation. To test the performance of the DMA, a
small design is created that generates new data as soon as the DMA is ready to
process it. The FPGA is clocked at 240MHz for all different tests.

In Table 7.4 and 7.5, the results for the DMA are presented. For these tests,
the data is generated in the PL by a simple counter IP, and then the data is sent
through the DMA’s Stream to Memory Channel to the PS as controlled by Jupyter
notebook. In Table 7.4 it is shown that the data rate varies greatly depending on
the package size of the data transfer, when the package size is doubled, the data
rate is almost doubled as well. The reasons for this are explored in the discussion.

Package Size Data sent(Mb) Run Time(s) Data rate(Mb/s)
30 319.68 58.07 5.51
100 320 17.65 18.13
200 320 9.01 35.52

Table 7.4: Performance of the DMA through jupyters notebook with
varying package size.

The performance of the Ethernet transmission together with the encode and
decode function is shown in Tables 7.6 and 7.7.
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Package Size Data sent(Mb) Run Time(s) Data rate(Mb/s)
100 32 1.77 18.08
100 320 17.65 18.13
100 3200 177.38 18.04

Table 7.5: Performance of the DMA through jupyters notebook with
varying amount of data sent.

Package Size Data sent(Mb) Run Time(s) Data rate(Mb/s)
30 319.68 57.75 5.54
100 320 56.67 5.65
200 3200 57.35 5.58

Table 7.6: Performance of the Ethernet transmission, encode and
decode function, with varying package size.

Package Size Data sent(Mb) Run Time(s) Data rate(Mb/s)
100 32 5.84 5.48
100 320 56.67 5.65
100 3200 574.03 5.57

Table 7.7: Performance of the Ethernet transmission, encode and
decode function, with varying amount of data sent.

The performance achieved by the Ethernet-DMA system is presented in Table
7.8. The performance is very low and only 1% of the available bandwidth, 1Gb/s,
is utilised. The reasons for the low performance are explored in the discussion.

It is important to note that the code for the full system is run sequentially,
which together with the low performance of the individual parts of the system
explains the final result.

Data sent(Mb) Run Time(s) Data rate(Mb/s)
30.72 30.54 1.01
307.2 238.56 1.29
1536 1163.26 1.32

Table 7.8: The performance of the Ethernet system with custom
DMA transmission
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7.2 Discussion

7.2.1 FPGA utilisation

The final utilisation rate is fairly low for the RFSoC 2x2 board. This is due to the
fact that the hardware accelerators were originally designed for the ZCU102 board,
which has fewer available resources. This means that there are resources left to
utilise for increasing the performance, either in regards to latency, throughput or
accuracy when running it on this board.

To truly analyse the amount of resources that is suitable to use in a positioning
system it would be good to analyse it together with a full massive MIMO system.

7.2.2 Accuracy of Hardware accelerators

The accuracy of the system degrades as it is translated from software into hard-
ware. This is due to simplifications being done to the calculations to increase
throughput, lower latency and reduced resources used, but the cost of it is the
loss in accuracy. It’s interesting to note that all the accuracy is lost in the Neural
Network.

In Table 7.3 the accuracy after the Neural Network hardware implementation
and the accuracy of the full system is presented. Compared to the accuracy of the
software system, as presented in Table 4.3, the average error has doubled and the
max error has also increased. This is a fairly large increase and makes it relevant
to look at what can be done to minimise that.

The accuracy for the NN as presented in Table 7.3 is different from the accu-
racy presented for the picked quantization scheme in Table 4.3. This is due to the
fact that rounding had to be introduced in a few spots in the hardware architec-
ture to, for example, match the decimal points for the fixed point addition. The
numbers are also rounded down into 16 bits just before the division in the batch
normalization, to reduce the resource utilization and latency, and this causes most
of that difference.

To increase the accuracy of the NN there are two main points of interest. The
resolution of the division could be increased. There is also a technique that can be
done during the training of the NN to better adapt it to a fixed point quantization.
It is briefly mentioned in section 4.3.4, but as stated there it is not done in this
thesis as the training of the NN is outside of the scope. It would be interesting to
see what impacts that technique would have one the accuracy of the final system,
and might be something that could be studied in future works.

No notable accuracy is lost in the fusion, as the resulting average error and
maximum error values come very close to the 32-floating point software model.
Although some of the approximations of the non-linear functions are introduc-
ing notable errors during different steps of the fusion, due to its structure, these
differences are not substantial in the final result. This proves that the number rep-
resentation choice has fulfilled its purpose of catering to the dynamic range of the
numbers during different computation stages, thus preserving the initial accuracy.
The disadvantages of this implementation is the increased implementation time,
as well as the additional required hardware for the floating-point operations. This
could have presented somewhat of a bottleneck for a different choice of FPGA.
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7.2.3 Ethernet Communication System

All the parts of the Ethernet communication system have a lower performance than
originally expected. Fig. 7.9 presents the performance of the DMA as written
in Xilinx’s own documentation. This data cannot be evenly compared to the
results in this thesis since they are achieved on a different FPGA at a different
clock frequency, but it can be used as a guide to see around what magnitude the
performance should be. The performance of the DMA in the current set-up is far
less. The reasons for this are most likely that the set-up time for the DMA through
PYNQ is very large, pulling the performance down. In Table 7.4 it is shown that
the data rate almost doubles when the package size, the amount sent per transfer,
doubles, which clearly indicates that the majority of the time is taken up by a
constant set-up and not the actual transfer.

Channel Clock
Frequency(MHz)

Throughput
(MB/s) Percent of theoretical

MM2S 100 399.04 99.76
S2MM 100 298.59 76.64

Table 7.9: Performance of the DMA as recorded in Xilinx’s
documentation[9].

The low performance of the socket class is probably due to two factors. The
writers of this thesis do not have good background knowledge into this type of
python code, which means that the software most likely does not utilise the avail-
able functionality in the best way. The second and larger reason is the incom-
patibility between the socket Ethernet implementation and the DMA transfer. As
explained in Chapter 5, the Ethernet class and the DMA had to work with different
memory buffers, and to move the data between these formats without dropping
information, an encode and decode method had to be constructed. This method
has to loop through all the values and translate them one at a time, which is very
inefficient.

Table 7.5 shows the performance of the full system, which is lower than both
sub modules. The reason for this is that the python code is written in a sequential
fashion, which means the sub modules have to wait for each other and can not
fully utilise the CPU on their own anymore. The class for controlling the DMA
in PYNQ is also implemented using polling. This means that the DMA class is
continuously checking whether the transfer is done or not, leaving the CPU unable
to process the other tasks while the DMA transfer is happening.

In the Chapter 5 it was explained how this was the non-preferred implemen-
tation method, but that it was the only choice left due to licensing issues. These
results confirm that thought. To fully utilise the implemented hardware accelera-
tors, the communication system would need to be implemented in a different way,
where the achievable data rate is much larger.
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Chapter 8
Conclusion

With the new emerging technologies, there is obviously the need for efficient hard-
ware acceelerators to support certain computationally-intensive applications. This
thesis has managed to achieve a system based on Large Intelligence Surfaces, which
is a potential enabler of 6G.

The hardware accelerators implemented in this thesis utilise different optimiza-
tion techniques to increase throughput with the minimized amount of resources,
while preserving accuracy at appeasable values. The current interconnect imple-
mentation can not satisfy the bandwidth need of the accelerators though, so to
fully utilise them, a different interconnect implementation would still need to be
created.

8.1 Future work

There are several more interesting ways this project could be expanded on in future
works. As mentioned in the previous chapter, it would be interesting to explore
the bandwidth achievable with the original Ethernet set-up, which was a hardware
implementation, rather than a software application.

The CSI data used in this thesis is created through simulation, and not through
measurements taken through a real massive MIMO system. It would be interesting
to see how big impact the real data would have on the accuracy of the the training
of the NN.

Another important factor in regards to using real data is that a big challenge
for this kind of system is gathering the high amount of real-life labeled data with
the accuracy demanded for training. If the technology is ever going to be viable to
use in actual system outside of research, it will be necessary to decrease the cost of
gathering in the live data. This can be done either through developing clever NN
that needs less accurate training data or reducing the amount of data needed for
the actual training. To reduce the amount of data needed there is, for example,
one viable NN training technique called Transfer Learning, which uses knowledge
gathered during a previous training round with a similar set-up to decrease the
data needed for the new training
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