
Contactless palm print recognition:
Novel design and palm openness

classification

Leo Li & Simon Mahdavi

Master’s thesis in Mathematics

Supervisors
Johan Windmark
Axel Kärrholm
Filip Winzell

Anders Heyden

Department of Mathematics



Contents

Table of Contents II

Abstract III

Acknowledgements IV

Notations and Abbreviations V

1 Introduction 1

2 Background 3
2.1 User design . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Palm print characteristics . . . . . . . . . . . . . . . . . . 4
2.3 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . 4

2.3.1 Machine learning classifiers . . . . . . . . . . . . . 6
2.3.2 Transfer learning . . . . . . . . . . . . . . . . . . . 8
2.3.3 Neural networks . . . . . . . . . . . . . . . . . . . 8
2.3.4 Evaluation metrics . . . . . . . . . . . . . . . . . . 10
2.3.5 Precise Biometrics matcher . . . . . . . . . . . . . 11

2.4 MediaPipe . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Methods 14
3.1 System and devices . . . . . . . . . . . . . . . . . . . . . . 14

3.1.1 Enroll & Verify . . . . . . . . . . . . . . . . . . . . 15
3.2 Datasets and acquisition . . . . . . . . . . . . . . . . . . . 15

3.2.1 Openness collection . . . . . . . . . . . . . . . . . . 15
3.2.2 Smartphone enroll images . . . . . . . . . . . . . . 17
3.2.3 Precise Biometrics dataset . . . . . . . . . . . . . . 17

3.3 Hand landmarks . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Region of Interest segmentation . . . . . . . . . . . . . . . 19

I



3.4.1 Segmentation logic . . . . . . . . . . . . . . . . . . 20
3.5 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5.1 Blur detection . . . . . . . . . . . . . . . . . . . . . 21
3.5.2 Hand distance - area . . . . . . . . . . . . . . . . . 23
3.5.3 Hand posture . . . . . . . . . . . . . . . . . . . . . 24

3.6 Openness classification . . . . . . . . . . . . . . . . . . . . 25
3.6.1 Data labeling . . . . . . . . . . . . . . . . . . . . . 26
3.6.2 Landmark based methods . . . . . . . . . . . . . . 27
3.6.3 Transfer learning . . . . . . . . . . . . . . . . . . . 30
3.6.4 Lighting . . . . . . . . . . . . . . . . . . . . . . . . 32
3.6.5 Evaluating Openness by matching score . . . . . . 33

4 Results 34
4.1 System design . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1.1 Lighting . . . . . . . . . . . . . . . . . . . . . . . . 35
4.1.2 User feedback . . . . . . . . . . . . . . . . . . . . . 37

4.2 Openness classification . . . . . . . . . . . . . . . . . . . . 38
4.2.1 MediaPipe landmarks approach . . . . . . . . . . . 38
4.2.2 Transfer learning . . . . . . . . . . . . . . . . . . . 40
4.2.3 Matching score openness . . . . . . . . . . . . . . . 42

5 Discussion 47
5.1 System design . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1.1 Lighting . . . . . . . . . . . . . . . . . . . . . . . . 47
5.1.2 Hand posture & distance . . . . . . . . . . . . . . . 48
5.1.3 (1:N problem) . . . . . . . . . . . . . . . . . . . . . 49

5.2 Openness classification . . . . . . . . . . . . . . . . . . . . 50
5.2.1 Landmark based method . . . . . . . . . . . . . . . 50
5.2.2 Transfer learning . . . . . . . . . . . . . . . . . . . 52
5.2.3 Relevance of the openness classifiers . . . . . . . . 53

5.3 Conclusion and future work . . . . . . . . . . . . . . . . . 54

Bibliography 55

II



Abstract
Biometric technologies, such as facial and fingerprint recognition, have
become widely adopted for identity verification in various applications.
Palm biometrics, utilizing the unique patterns of the human palm, has
gained significant attention for its accuracy and security. This thesis
aims to investigate and propose a comprehensive design for certain as-
pects of a contactless palm print recognition system, taking into account
the issue of usability and palm openness. Contactless palm print recog-
nition offers several advantages over other commonly adopted biometric
systems. Firstly, it can operate effectively with low-resolution images
and inexpensive cameras, making it more cost-efficient. However, the
most significant advantage, particularly in the present circumstances, is
its hygienic nature. But the technology also comes with new challenges:
distance to the camera and the changes in palm print due to palm open-
ness to name a few. Through the employment of transfer learning and
landmark-based methods, the classification of palm openness from in-
put images achieved an average accuracy of 0.90. In conclusion, despite
their perceived visual quality, openness creates slight variations in width,
depth, and crease distances on the palm print, which in turn affects the
matching between images. Our results indicate that palm images are
best matched to ones of the same openness. These findings validate the
importance of palm openness and its impact on system performance, as
well as the ability of the classifier to correctly classify the openness. By
addressing these challenges, we can improve the accuracy and applicab-
ility of contactless palm print recognition technology.

III



Acknowledgements
This thesis project has been conducted at Precise Biometrics in Lund.
We would like to thank our supervisors at LTH, Anders Heyden and Filip
Winzell, for always providing good input and making sure we stayed
on the right track. Another big thank you goes to our supervisors at
Precise Biometrics, Johan Windmark and Axel Kärrholm, for answering
both well-formulated and less well-formulated questions throughout the
project. Finally, we would like to express our gratitude to all Precise
Biometrics employees for making us feel a part of the team and frequently
allowing us to capture photos of their hands.

IV



Notations and Abbreviations
ROI - Region of Interest
FAR - False Acceptance Rate
FRR - False Rejection Rate
EL - Enrolled images taken with additional light source
ENL - Enrolled images taken with no additional light source
VL - Verification images taken with additional light source
VNL - Verification images taken with no additional light source
DPI - Dots per inch
ML - Machine learning
XGBoost - Extreme Gradient Boosting
KNN - K-Nearest Neighbour
NN - Neural Network
CNN - Convolutional Neural Network
RF - Random Forest

Verify - Saved ROI templates in the system to be matched against
Enroll - Input image asking for access to the system
Spoof - Fabricated biometric information
Handedness - Right or left hand
Genuines - Images that should be matched
Imposters - Images that should not be matched

V



1 Introduction
Biometric technologies, such as facial and fingerprint recognition have
become commonplace in our daily lives, serving as reliable means of veri-
fying our identity when using our devices or accessing various services.
Palm biometrics uses the patterns of the human palm for identification
and authentication of individuals. The field has gained attention in re-
cent years for being highly accurate and secure. This technology utilizes
unique biometric features of the palm, and the information can be ex-
tracted through different techniques such as contactless palm print, palm
vein, and contact-based palm print. Contactless palm print recognition,
although less common than palm vein and contact-based palm recog-
nition, has gained traction among researchers and industry experts in
recent years.

Contactless palm print recognition involves capturing an image of the
palm surface and analyzing the pattern of lines and ridges to create a
biometric template. The pattern is formed during fetal development and
remains the same throughout a person’s life, providing a highly reliable
means of identification [1].

The use of biometrics has proven to be particularly useful in scenarios
where traditional identification methods, such as passwords or PINs,
may not provide adequate security [2]. Compared to more commonly
used biometric solutions like face and fingerprint recognition, contact-
less palm print recognition offers several advantages. It serves as a less
intrusive and invasive alternative to face recognition as it can’t be used
for identification by public surveillance cameras. Additionally, many
consider facial information to be more delicate information than hand-
related information. There are also security concerns, as faces often are
publicly available on social media, and can be used for spoofs. Palm
prints, with their larger surface area as well as distinctive lines in com-
parison to fingerprints, offer a viable option for contactless recognition
with low-resolution cameras, which has risen in demand in recent years,

1



due to infectious diseases giving cause to hygienic solutions [3].

A major challenge for contactless palm print recognition is to reliably
extract the region of interest (ROI), particularly in a mobile setting where
background, lighting, and hand posture can vary greatly. In this context,
the ROI refers to an area of the hand from which the information to
identify an individual is extracted. The quality and choice of ROI is
critical to the accuracy of identification, and much research has been
conducted on developing methods for extracting the ROI [4]. Despite
these efforts, challenges still exist in achieving accurate and reliable ROI
extractions.

Contactless palm print shows many benefits in comparison to other more
established biometrics. But the technology also encounters a new set of
challenges.

The purpose of this thesis aims to investigate and propose a good design
for some parts of a biometric palm print system, employing a holistic
approach. Among the various challenges, we have chosen to focus spe-
cifically on addressing the issue of palm openness.

It is crucial to clarify that our thesis is not solely focused on design
aspects, but rather incorporates machine learning and image analysis.
While the primary objective lies in developing these technical compon-
ents, we recognize the significance of creating practical tools that extend
beyond theoretical concepts. Thus, it becomes essential to consider the
ultimate application and end-use of the technology we are developing.
By aligning our research with practical limitations and intended use, we
aim to bridge the gap between theoretical advancements and real-world
usability.

From the outset, our intention was to develop a minimal yet functional
system that would allow us to explore the primary challenges involved.
Consequently, this report is structured to reflect our work process, en-
compassing various design implementations and providing an overview
perspective before delving into the specific problem of openness classific-
ation.

2



2 Background

2.1 User design

Before delving into the different aspects of the system, it is essential
to establish a clear understanding of what constitutes a "good" design
within the context of a biometric palm print system. Within the scope
of this thesis, the definition of a "good" system, as established by the au-
thors, includes two fundamental aspects: user experience and accuracy,
both explained below.

User experience

• Affordance - From the interface the user understands how the sys-
tem should be used and interacted with.

• Feedback - Information to the user is necessary to ensure that
everything is functioning correctly, make adjustments if needed,
or provide reassurance that their action has triggered a response.
Instructions may be given to guide the user in modifying their ac-
tion if necessary.

• Mapping - The relationship between control and effect. The ef-
fect of action needs to be in relation, in terms of magnitude and
similarity, to the effect it generates.

• The system needs to be designed with a visually pleasing aesthetic,
good responsiveness, and fast processing.

Accuracy

• The information the system requires needs to be extracted in a
consistent and reliable way.

• The information needs to be of high quality or otherwise rejected.

3



• The correct person needs to be identified and authorized, and if
not, rejected.

• Liveness & spoof - Synthetic, altered, or fake information needs to
be rejected.

2.2 Palm print characteristics

The surface of the palm contains three principal lines, also called flex-
ion creases. Then there are secondary creases, more commonly called
wrinkles, and lastly the ridges. The flexion and major secondary creases
are formed between the third and fifth months of pregnancy and the
rest are created after we are born. The three principal lines are genetic-
ally dependent, for instance, principal lines look different for individuals
of some genetic diseases such as Down syndrome, for whom the distal
transverse and proximal transverse are replaced by a singular transverse
crease. [2].

However, besides the principal lines, the remaining creases are not ge-
netically dependent, and even identical twins differ in these patterns [5].

These principal lines together with secondary creases are what allow
contactless palm print recognition using low-resolution cameras, as ridges
are too small to be captured reliably contactless, see Figure 2.1 for the
creases on the palm.

2.3 Machine Learning

Machine learning is a field of study in computer science that deals with
the development of algorithms and models that can learn from data to
make predictions or decisions. The term "learning" refers to the process
by which a machine learning algorithm adjusts its parameters to minim-
ize a given loss function, based on the data it has been trained on [6].
Furthermore, it can be said that the final objective of machine learning
is to construct a model that can accurately predict outcomes for new
data points drawn from an unknown probability distribution [7].

Machine learning models can be classified into two categories based on

4



Figure 2.1: Principal lines, secondary lines, and ridges of the palm print

the structure of the input data and the desired output: supervised learn-
ing, and unsupervised learning [8]. Supervised learning uses data that is
labeled, where the inputs are paired with their corresponding desired out-
puts. The goal of the model is to create an algorithm that understands
how the mapping between the inputs and the outputs is conducted. Un-
supervised learning, on the other hand, includes learning patterns in the
data without the use of labeled examples.

Modern machine learning techniques, such as deep neural networks, ex-
treme gradient boosting and transfer learning, have pushed the bound-
aries of what is possible with machine learning algorithms. These tech-
niques have enabled the development of models that can perform complex
tasks such as image recognition, natural language processing, and play-
ing games at a superhuman level [9]. However, despite these advances,
machine learning algorithms are still far from possessing human-like in-
telligence, and the development of such algorithms remains an active
area of research [10].

5



2.3.1 Machine learning classifiers

Support vector machines

A support vector machine (SVM) is a robust and non-probabilistic clas-
sifier that separates classes by using a hyperplane in the feature space.
The main goal of SVM is to find the hyperplane that maximizes the dis-
tance, known as the margin, between the hyperplane and the data points
of different classes. While this concept is easily visualized in two dimen-
sions, it becomes more challenging as the number of classes increases
[11].

k-nearest neighbor

The k-nearest neighbors (k-NN) algorithm is a simple yet effective clas-
sification method. It works by measuring the distances between a given
point and all labeled data points in the feature space. The algorithm then
identifies the k nearest neighbors to that point and assigns it the label
that is most frequent amongst those neighbors. The process of training
involves mapping the data to the feature space, while the classification
step involves counting the frequency of labels among the k-nearest neigh-
bors [12].

Let d be some distance metric (e.g., Euclidian) and k a defined positive
integer. The algorithm of classifying a data point, x, with k-NN, can
then be summarized as follows:

1. D ← d(x, xi) for i = 1, ..., n

2. Sort D in increasing order.

3. D ← D(1, ..., k)

4. Let Ki define the number of data-points belonging to class i among
D.

5. Assign x to class max(Ki)

6



Random forest

Random forest is an ensemble machine learning algorithm that combines
predictions from multiple decision trees to make accurate predictions.
The algorithm constructs a collection of decision trees by using bagging,
a technique that creates multiple subsets of the original training dataset
[13]. Each subset is used to train a separate decision tree. The trees are
constructed independently, allowing them to capture different aspects of
the data [14].

To make a prediction using random forest, the algorithm clusters the
predictions of all the decision trees. For classification tasks, it takes a
majority decision among the trees, while for regression tasks, it computes
the average prediction. This ensemble approach helps to reduce the
variance and increase the overall accuracy of the model [15].

Extreme gradient boosting

Extreme gradient boosting (XGBoost) is a machine learning algorithm
that has gained popularity due to its impressive performance in various
competitions and real-world applications. The algorithm is an extension
of the traditional gradient boosting method and incorporates several en-
hancements to improve efficiency and accuracy [16].

The main idea behind XGBoost is to create a strong ensemble model by
iteratively adding weak learners, typically decision trees, to the ensemble.
Each weak learner is trained to correct the mistakes made by the previous
ones. The final prediction is obtained by combining the predictions of
all the weak learners.

XGBoost also includes additional features to improve its performance. It
employs a technique called tree pruning to remove unnecessary branches
during the construction process, reducing model complexity and prevent-
ing overfitting. Moreover, it utilizes parallel processing and distributed
computing frameworks to accelerate training and prediction times for
large-scale datasets [17].

7



2.3.2 Transfer learning

Training machine learning models often requires a substantial amount of
data for effective training. Transfer learning offers a solution by lever-
aging knowledge gained from a previous classification task and applying
it to a new task.

One commonly used form of transfer learning is inductive transfer learn-
ing. In this approach, a model is initially trained on a large labeled
dataset, such as ImageNet [18], and subsequently fine-tuned to classify
new data. The early layers of a network captures general information
about low-level structures like edges and corners, which often remain
relevant to the new classification task. On the other hand, the dense or
fully connected layers at the network’s end contain specific classification
information, making them better suited for replacement when training
on new datasets with different classes [19].

2.3.3 Neural networks

Neural networks, first proposed by Donald Hebb in 1949, are a type of
machine learning model that use interconnected nodes to transmit signals
[20]. In a typical neural network, artificial neurons are arranged in layers
with connected nodes that apply a linear transformation to the input
through a connective edge called a synapse.

Nodes in a neural network apply an activation function to calculate their
output. By sequentially transforming the input through multiple layers,
the network produces an output, which could be a classification decision
or another desired outcome. Training the neural network involves ad-
justing the weights and biases of the network to ensure that a given
input yields the desired output when processed through the network.
This parameter-tuning process is achieved using a technique called back-
propagation. Back-propagation calculates gradients to optimize weights,
turning them in the opposite direction of the gradient [21]. The optim-
izer algorithm determines the update rule and learning rate for weight
adjustments, aiming to minimize the loss and improve network perform-
ance [13].

8



The architecture of neural networks varies greatly depending on the spe-
cific purpose of the model. For image classification tasks, commonly used
and effective architectures are convolutional neural networks or residual
neural networks.

Convolutional neural networks

One popular type of neural network is the convolutional neural network
(CNN), commonly used for image analysis tasks. CNNs utilize con-
volutional layers to apply learnable filters to input images, identifying
different features and creating feature maps. These feature maps are
then passed through activation functions to produce nonlinear trans-
formations of the data. The convolutional layer performs convolutions
by sliding filters over the image, extracting features at different locations.
This allows CNNs to automatically learn and extract meaningful features
from images, making them effective in tasks like image classification and
object detection. [9].

CNNs also use pooling layers, which downsample the feature maps to re-
duce the number of parameters in the network and increase its robustness
to variations in the input. The final layers of a CNN are fully connected
layers, which perform classification based on the features identified in
the earlier layers [22].

Residual neural networks

Residual Networks, also known as ResNets, are a type of deep neural
network architecture that were introduced by He et al. in 2015 [23]. The
objective was to address the issue of degradation or vanishing gradients
in very deep neural networks, where the performance of the network
degrades as the depth increases.

The key idea behind ResNets is the use of residual blocks, which intro-
duce shortcut connections or skip connections, that allow the network
to bypass one or more layers. This is achieved by adding the input of a
layer to the output of a subsequent layer, effectively creating the residual
mapping. By doing so, the network can learn residual functions, which
capture the difference between the input and the desired output.

9



ResNets have demonstrated superior performance in various computer
vision tasks, such as image classification, object detection, and image
segmentation, surpassing the performance of previous network architec-
tures [24].

2.3.4 Evaluation metrics

In this section, we will summarize the commonly used metrics for evalu-
ating palm print recognition algorithms and machine learning algorithms
in general. Once a model is trained, it is typically assessed using a test
dataset. To facilitate the discussion, we introduce the following terms:

• P : The number of positive samples or examples corresponding to
a match.

• N : The number of negative examples.

• TP : The number of true positives predicted by the model.

• TN : The number of true negatives predicted by the model.

• FP : The number of false positives.

• FN : The number of false negatives.

With these terms, four metrics can be described using the following equa-
tions:

Recall = TP
P

Accuracy = TP+TN
P+N

F1 Score = TP
TP+ 1

2
(FP+FN)

False Acceptance Rate (FAR) = FP
N

False Rejection Rate (FRR) = FN
P

10



2.3.5 Precise Biometrics matcher

The core part of a biometric palm print system is needless to say the
matching algorithm. However, as this has not been the focal point of
this project and is also the intellectual property of Precise Biometrics
this report will not explain in detail on how it works, or has been further
developed. What can be said is that the algorithm is based on the same
technology as Precise Biometric’s fingerprint matcher, and is a pattern-
based algorithm that analyzes image texture. The algorithm itself is
general and can give a matching score to any two images, not only palm-
or fingerprints. As mentioned, the basis of the algorithm is the same as
their fingerprint technology but the algorithm has then been retrained
on the Precise Biometrics dataset (see Chapter 3.2.3) to be specifically
adapted to palm prints.

When two images are sent to the matching algorithm it gives a score on
how "similar" the images are, the score itself is based on a multitude of
proprietary algorithms. However, the matching score is closely related
to the False Acceptance Rate, FAR, as well as the False Rejection Rate,
FRR, and for the purpose of this report, the matching score can be
considered a representation of FAR.

In biometrics, the concept FAR is the ratio of imposters that are incor-
rectly accepted. Imposters are invalid inputs or in our case, palm prints
that should not be accepted. A FAR value of 1/50K means that theor-
etically one out of 50,000 palm prints from the dataset would be falsely
accepted. FRR is instead the number of genuines that are falsely rejec-
ted, genuines are palm prints that should be accepted. For a biometric
system in commercial use, FAR is often prioritized as a false accept would
incur a security risk, whilst a false reject could be solved by another at-
tempt. A common minimum requirement is a FAR value of 1/50K.

As the matching score itself is an arbitrary value, its sentiment is decided
by what FAR values it corresponds to. For instance, if the matching
algorithm would be used to determine whether a pattern is a right or left
hand, a score of 2,500 would be enough to correspond to a FAR of 1E−5.
Whilst in our case of matching different palm prints a score of 7,223 is
necessary to correspond to a FAR of 1E−5. For the matching algorithm

11



Score at 1/FAR
1/FAR 100k 50k 10k 5k 1k 500 100 50
Score 7,223 5,357 4,685 4,391 3,802 3,552 2,980 2,731

Table 2.1: FAR to score values for the palm matcher

that we’ve utilized we get the following score to FAR-value relationship,
see Table 2.1.

A higher matching score is always preferable. What score to choose as a
threshold depends on what FAR it corresponds to, and in turn what FAR
to use is a result of the security requirement of the task. Values larger
than the threshold will be accepted as matches, while smaller numbers
will be rejected.

Note that the FAR is logarithmic in relation to the linearly increasing
matching scores. Meaning that low scores represent very poor FAR and
that the score of 2,000 should not be considered half as "good" as a score
of 4000.

2.4 MediaPipe

MediaPipe is an open-source project by Google, currently at the alpha
stage. MediaPipe consists of the Framework and the Solutions which are
built upon the Framework. The multiple solutions solve different types
of computer vision tasks as well as tools to customize their machine
learning solutions and retraining for specialized tasks. The Solutions;
Hand Landmark Detection, Face Detection, Image Segmentation, Pose,
Object Detection to name a few, are "examples" or complete Solutions
that solve a specific machine vision task and that are based on pre-trained
TensorFlow models [25].

The Framework consists of multiple components, with the main ones
being the Packets, Graphs and Calculators. A Graph is the complete
processing pipeline where data in the form of Packets, C++ type pay-
load, are transported throughout. In the Graph there are Nodes or Cal-
culators that produce/consume packets. The calculators can be for
example the TensorFlow model, Image to Tensor transformers or Ren-

12



derer component. These Calculators or Nodes are written in C++, and
handle specific computational tasks [26].

The Framework is written in C++. However, the solutions are also avail-
able in Python, JS, Coral, iOS, and Android. The MediaPipe Framework
handles still images, decoded video frames as well as live video feeds, and
can be used with embedded devices.

MediaPipe has been an internal tool at Google since 2012, since then it
has been integrated into many of the services Google provides, including
YouTube, Google Photos, Gmail, and Augmented Reality Ads to name
a few. One of the core strengths of MediaPipe is how efficiently it is
written, as it can be run even on IoT devices. As of 2019, MediaPipe
was publicly released and available to all, as well as being continuously
updated and having new solutions and features added to this day [25].

13



3 Methods

3.1 System and devices

The setup presented in Figure 3.1 shows how the data set described in
the following section was collected, as well as the intended setup for veri-
fication images. Users are instructed to position their hand in front of the
iPad’s camera, which captures an image for identification. To optimize
image quality and enhance the palm’s biometric characteristics, a Ledgo
LG-268c light source was employed. The image acquisition process util-
ized the front-facing camera of a 9th-generation iPad running iPadOS
version 16.3. Linux-based computers served as the processing units in
our setup, facilitating the connection of the iPad camera via the Iriun
Webcam application.

Figure 3.1: The intended setup for the contactless palm print recognition
system.

14



3.1.1 Enroll & Verify

In biometric systems, there are two types of images that the system in-
teracts with. There are the enrolled templates that are stored by the
system. These enrolled templates often consist of multiple ROI tem-
plates and connected IDs, and are considered by the system as "ground
truth" and grant access to the system. Then there are the verification
images. These images are sent to the system and are requesting access.
Verification images are pre-processed to be matched against all the en-
rolled templates in the database, and if the matching score is above the
set threshold the system grants access. If a verification image is granted
access, they are often stored to update the enrolled template in the case
of minor changes in the biometric measurement.

In the scope of this thesis, remote enrollment is intended in the end
system. In this context, remote enrollment means that a user can send
an image or video of the palm biometric from a mobile phone to be saved
as templates in the access system.

3.2 Datasets and acquisition

To be able to train, evaluate and develop algorithms we needed data
to work with. From an earlier data collection, we had the Precise Bio-
metrics dataset to work with, collected on behalf of Precise Biometrics
in 2020. Besides the Precise Biometrics dataset, we also collected two
smaller sets, one being the Openness collection, to develop and train our
openness classifiers, using an iPad front-facing camera. The other was
the Smartphone enroll images. These images were captured using various
models of smartphones to develop and evaluate different algorithms that
we have developed, as well as to assess the performance of the matcher
and openness classifiers.

3.2.1 Openness collection

The "Openness collection" was collected by the authors of this paper and
contains palm videos of 19 employees at Precise Biometrics as well as 33
students at the Faculty of Engineering, Lund University. Of the 52 people

15



in the collection 10 (19%) were women and the remaining 42 (81%) were
men. The videos were converted to images skipping every other frame,
totaling 9213 images and taking up 3,2GB. Worth noting that the videos
are not of the same length, as it was dependent on the speed at which
the subjects closed their palm. Meaning that the dataset is unbalanced,
where some individuals are represented with more images than others.
This report will only showcase example images of the authors and not
that of the other subjects in the data collection.

The purpose of the Openness collection was to develop methods of eval-
uating the level of openness of the palm, each level of openness was
divided into different classes to be classified by different models. This is
described more in detail in later sections.

Verification

The videos were collected using the front-facing camera of a 9th-generation
iPad, with iPadOS version 16.3. The iPad was mounted and a Ledgo LG-
268c was used as a light source to minimize differences between images
and control affecting parameters. See Figure 3.1 for the setup. In each
video the subject was asked to perform a controlled motion, going from
a maximally stretched hand to a closed fist, see Figure 3.5.

Data split

When training classifiers standard practice is to split the data into train-
ing and testing sets. However, as we converted videos of subjects closing
their palms into multiple still frames, many images belonging to one sub-
ject are very similar. This means that if we were to split the whole data-
set randomly the algorithms would train on data that is almost identical
to the data it later is tested on. To avoid this we split the data based
on subjects, meaning that we excluded all images from certain subjects
when splitting the data. In total two train-test splits were made.

However, some considerations were lacking in the forming of the split.
When we split the data we did it by subject ID, with 10 test subjects and
42 training subjects, and mistakenly failed to consider that the subjects
had uneven number of images as well as being unbalanced in terms of the

16



different classes, which resulted in the two splits having different sized
train and test sets, see Table 3.1. To compensate for this we weighed
the evaluation metrics in relation to the size of the validation sets. The
reasoning for the two splits was to mimic a small-scale k-fold operation,
with k=2.

Test data split
Split IDs Class

1
Class
2

Class
3

Class
4

No.
im-
ages

Ratio

1 43-52 627 131 107 309 1174 0.376
2 31-40 823 313 299 509 1945 0.624

Table 3.1: Test data split, number of samples in each class and split

3.2.2 Smartphone enroll images

As the intended system uses remote enrollment with smartphones, it was
also necessary to collect images and videos shot with different smart-
phones. The following smartphones were included in the study:

• iPhone 12 mini

• iPhone 7

3.2.3 Precise Biometrics dataset

One of the databases we utilized was a database collected by a data
collection center on behalf of Precise Biometrics in August 2020. The
database consists of 223 subjects and 2533 images of left and right hands,
totaling 1,7GB of data. However, in the collection a number of images
lacked hands, the posture was too poor to extract a ROI from, and some
images were too blurry to use. From the original 2533 images, 429 were
removed due to lacking hands or poor posture. Blurry images were kept.
No images from the collection will be shown in this report.

17



Figure 3.2: MediaPipe annotation of 21 hand landmarks, (figure from
MediaPipe documentations [27]

3.3 Hand landmarks

The Solution that we’ve based large parts of our work on is the MediaPipe
"Hand Landmarker task". From an input image, the Task gives a confid-
ence score on whether there is a hand in the image. On the premise that
there is a hand within the frame, the "hand landmark model bundle", a
TensorFlow model, locates 21 hand-knuckle landmarks, and returns xyz-
coordinates for them.

The TensorFlow model was trained on 30,000 real-world images as well
as synthetically rendered hand models imposed over different kinds of
backgrounds.

Each of the 21 hand landmarks consists of x,y, and z coordinates. The x
and y coordinates are normalized to the width and length of the frame re-
spectively (in pixels) whilst the z coordinate is estimated using the wrist
or "0" landmark as the origin. The z coordinate represents the landmark
depth, with the depth at the wrist ("0" landmark) being the origin. The
smaller the value, the closer the landmark is to the camera. The mag-
nitude of z uses approximately the same scale as x. The MediaPipe
annotation of the hand landmarks can be seen in Figure 3.2, observe
that the hand shown in the Figure is a left hand and that the annotation
is the same for a right hand, with "1" always being THUMB_CMC.

18



MediaPipe parameters
Parameters Value
running_mode Image
static_image_mode True
model_complexity 0
max_num_hands 1
min_detection_confidence 0.5
min_tracking_confidence N/A

Table 3.2: Overview of MediaPipe settings employed in our thesis

MediaPipe settings

MediaPipe offers several adjustable parameters. The primary parameter
is the running_mode setting, which determines whether the input data
is treated as a single-shot frame or as a continuous video or live-stream
feed. Depending on the chosen mode, MediaPipe either extracts land-
marks from a "clean" slate or utilizes historical landmark positions from
previous frames to detect new landmarks. While using the system we
observed significant differences in landmark coordinates based on the
running_mode set, static image setting and video returned different co-
ordinates for the landmarks. Apart from the running_mode, there are
other parameters that can be adjusted. For a complete list, please see
the MediaPipe Hands documentation [27]. Table 3.2 displays the settings
used in our application.

3.4 Region of Interest segmentation

Extracting a Region of Interest, or ROI, is one of the first hurdles when
developing a biometric palm print matcher. The ROI of a palm print
is often defined as a square at the center of the palm. Most approaches
are similar in the way that they start with some type of hand segment-
ation, for example color thresholding. Then the methods differ, some
documented methods are; using a CNN to segment, alternatively using a
mass center to find valley points, or maximizing a circle within the hand
area and extracting a square from that [28].

We have decided to approach this problem using MediaPipe Hand Land-

19



Figure 3.3: Illustration of the segmentation logic used to extract the ROI.
V1 and v2 indicates the valley points and landmarks 0, 5, 9, 13,
and 17 are also annotated.

marks and solve this using the 21 hand landmarks and a logical approach
to finding valley points and center.

3.4.1 Segmentation logic

The general idea of the approach is to use the valley between (see Figure
3.2 for numeric annotation) the index (5) and middle (9) finger as well as
the valley between the ring (13) and little (17) finger to create a plane,
see Figure 3.3. This plane will be the upper border of the square that
will become the ROI. From the plane, a rotation angle is computed and
later used to rotate the whole image accordingly, see Algorithm 1 for the
rotation algorithm. The rotation center (also the center of the ROI) is
determined by the mean of the wrist (0), index (5), and little (17) finger
landmarks. The size of the ROI is determined by the distance between
the index (5) and little (17) finger, multiplied by a size factor which is
1.3 and centered around the rotation center.

From this approach, we get a consistent ROI that is invariant to rota-
tion and insensitive to lighting differences. However, it is dependent on
MediaPipe Landmark detection.

20



Algorithm 1 Rotation algorithm
Used in ROI segmentation, landmark normalization, and posture method
v1(x, y) = mean(L5(x, y), L9(x, y)) ▷ Index-Middle valley
v2(x, y) = mean(L13(x, y), L17(x, y)) ▷ Ring-little valley
V = v1(x, y)− v2(x, y)

θ = tan−1(
v2y − v1y
v2x − v1x

) ∗ 180
π

(3.1)

if Left hand is True then
V (x, y) = (−Vx,−Vy) ▷ Invert the vector

end
if Vy < 0 then
θ = θ + 180◦ ▷ If the hand is upside down

end

rotation_center = mean(L0,L5,L17)
M = getRotationMatrix2D(rotation_center, θ, 1)
lengthX,lengthY = image.shape()
s = abs(M(0,0))
c = abs(M(0,1))
newX = lengthY*s+lengthX*c
newY = lengthY*c+lengthX*s

rotated = warpAffine(image, M, (newX,newY) ▷ Rotated image or
landmars
return rotated

3.5 Tools

During the project, there were multiple tools developed for different pur-
poses. Some of these purposes are ROI segmentation, data collection,
database filtering, and more. This is a description of those methods.

3.5.1 Blur detection

Blur detection is a classical computer vision task to assess the sharpness
of an image. The perception of blur is closely related to the level of
contrast, detail, and high-frequency presence in an image.

21



In our work, we’ve had two reasons for blur detection. In the proposed
system a ROI with high blur content will yield poor information for
the matcher, and motion blur can easily emerge from quick movements
when the palm is recorded. Therefore, a need to filter out blurry images
is necessary to know if an image is rejected because of no match, or poor
image quality. Secondly, when training our algorithms we utilized data
collections, one collected by us the authors, and one at a data collection
center on behalf of Precise Biometric. The data collection from the data
collection center was performed in a much larger scope, but also in a less
controlled way. Therefore a challenge with using the collection was the
number of blurry images, mislabeled images, and images without palms.
For our algorithms to be trained on "good" data, we had to create tools
to filter out images of poor quality.

In the scope of this thesis, two different methods of detecting blur in
images were implemented, a Fast Fourier Transform (FFT) method and
a Laplacian method.

Fast Fourier transform

When constructing a Fast Fourier Transform (FFT) blur detector, the
frequency domain representation of an image is computed by using the
FFT algorithm [29]. The algorithm converts the image from the spa-
tial domain to the frequency domain, by applying two one-dimensional
Fourier Transforms, see Equation 3.2, which also reduces the number of
computations [30].

F (k, l) =
1

N

N−1∑
b=0

P (k, b) · exp
(
−2πi lb

N

)
, where (3.2)

P (k, b) =
1

N

N−1∑
a=0

f(a, b) · exp
(
−2πika

N

)

The low frequencies in the obtained image, which correspond to the
smooth regions of the image are then removed by applying a high-pass
filter. This leaves only the high-frequency components, which correspond
to the edges and details of the image that are often lost in blurry im-

22



ages. Lastly, by computing the inverse FFT, a filtered image is obtained.
By taking the mean of the magnitude values in the filtered image and
comparing it to a set threshold the image could be classified as blurry or
not.

Laplacian variance

Laplacian blur detection is an image processing technique used to detect
edges and sharp transitions in an image. The image is first grayscaled
using a single channel. Then, a Laplacian filter is applied to the im-
age, convolving it with a Laplacian kernel (see Figure 3.4) to obtain the
second derivative of the image intensity. This results in a new image that
enhances the edges and features in the original image. Edges and sharp
features are defined by rapid changes in intensity in a grayscale image,
which the Laplacian filter can effectively highlight [31].0 1 0

1 −4 1

0 1 0


Figure 3.4: Laplacian kernel

After obtaining the Laplacian image, the variance of the pixel values can
be used as a blur metric. A higher variance indicates that the image has
more edges and features and therefore less blur. In contrast, an image
with a lower variance is considered to be blurrier. Lastly, the images are
classified as either blurry or not blurry based on a pre-defined threshold
that is set after inspecting the variance of multiple palm images.

3.5.2 Hand distance - area

The logic behind the ROI segmentation ensures that the ROI is chosen
at the same location invariant to change in distance. However, the res-
olution or quality of the ROI is dependent on the distance between the
camera and the palm.

To ensure the distance between the palm and the sensor, an area-based
method was developed to guide the placement of the hand. A bounding

23



box is set around the hand, and the area of the bounding box is continu-
ously measured, and by setting a threshold value for the bounding box,
real-time feedback can be provided to the user for adjusting the distance
from the camera. This approach aids in acquiring an optimal distance
for accurate ROI segmentation, thereby enhancing the reliability and
effectiveness of the system.

3.5.3 Hand posture

Just as information about whether a hand is shown to the camera is
relevant, the information about whether the hand is in a position to
show usable features is also important. To capture images more reliably,
where the palm is shown the "hand posture" method was developed.

The idea of the hand posture method is to make sure that the palm
is visible. It does this with rather simple logic. First, the image is
rotated (see Algorithm 1), then the algorithm can be divided into three
conditions, and if all three are True the posture is considered good.
Rotation of the landmarks is necessary for the hand posture method to
function properly.

1. Fingertips are the highest-located joint of each finger

2. Thumb is not occluding the palm

3. Hand is perpendicular to the camera

The conditions explained in more detail:
1) If the y coordinate of each fingertip is greater than the respective DIP
joints (distal interphalangeal) the first condition is true.
For example: Ly12 > Ly11, the y coordinate of the middle fingertip is
greater than the y coordinate of the distal interphalangeal of the middle
finger.

2) If the x coordinate of the thumb tip is greater (the opposite is true
for a left hand) than the metacarpophalangeal joint of the index finger,
the condition is considered satisfied.
Right hand: Lx4 > Lx5, Left hand: Lx4 < Lx5.

24



3) If a) and b) below are within the threshold, the third condition is
true. The thresholds are experimentally set values, and specific to each
setup.

a) if the z coordinate of landmark 9 is within threshold values the vertical
angle is considered acceptable. This works as the z coordinates use the
wrist landmark as origin, meaning that all z coordinates are given in
relation to the wrist.
tlow < Lz9 > thigh

b) If the ratio between the width of the palm to the length of the palm
is within threshold, the horizontal angle is considered acceptable. See
Equations in 3.3.

width_palm =
√

(Lx5 − Lx17)2 + (Ly5 − Ly17)2

mid_point(x, y) =
(∥∥∥∥Lx5 − Lx17

2

∥∥∥∥ , ∥∥∥∥Ly5 − Ly17

2

∥∥∥∥)
length_palm =

√
(Lx0 −mid_pointx)2 + (Ly0 −mid_pointy)2

width_palm >
length_palm

threshold
(3.3)

3.6 Openness classification

While testing the matching algorithm we learned that the openness of
the palm is one of the key factors for a good matching score. As flex-
ion (closing of the hand) alters the principal and secondary creases of
the palm, from which the pattern matching is done. It also affects the
shading of the palm. Therefore, investigating how the openness of the
palm can be classified and integrated into the system design is of great
importance.

Two main approaches were considered for this task. The first one was
openness classification based on landmarks extracted from Mediapipe,
and the second one involved using transfer learning on images from the
Openness collection dataset. The second approach was tested on both

25



(a) Class 1 (b) Class 2 (c) Class 3 (d) Class 4

Figure 3.5: A selection of the Openness collection dataset with their
respective class.

input images of original data in the dataset and of its extracted ROIs.

3.6.1 Data labeling

The dataset used for the openness classification task was the Openness
collection dataset. This dataset was annotated manually, where each
image was assigned a label (1-4) indicating the level of openness exhibited
by the hand. Figure 3.5 illustrates the four different classes of openness
defined and Figure 3.6 showcases the extracted ROI from these images.

Class 1 spans everything from a closed fist to the point where the nails
of the little, ring, middle, and index finger are parallel to the camera
(see Figure 3.5a). This means that class 1 images, as can also be seen
in the ROI image (Figure 3.6a), are images where the principal lines are
covered to a degree where relevant information is not visible. Therefore,
these images need not be considered when matching as they are of too
"poor" quality.

Class 2 is defined as when all the fingers (excluding the thumb) are
perpendicular to the camera, or alternatively when the fingertips are
pointing at the camera, see Figure 3.5b. These images will often yield
an ROI with some shadow at the top. The creases are also deeper and
more compact (see Figure 3.6b).

26



(a) Class 1 (b) Class 2 (c) Class 3 (d) Class 4

Figure 3.6: A selection of the extracted ROIs from the Openness collection
dataset with their respective class.

Class 3 images are defined by the angle of the little to index fingers. The
fingers are at a roughly 45-degree angle to the camera, being in between
classes 2 and 4, see Figure 3.5c. The charachteristics of class 3 ROI
images are in between those of class 2 and class 4.

Class 4 is defined by a completely flexed palm. The angle of the fingers
is at a ≥ 90-degree angle and, see Figure 3.5d, the resulting ROI has
creases that are stretched and flat (see Figure 3.6d).

3.6.2 Landmark based methods

In the case of the landmark-based approach, the entire dataset was
processed through a landmark extraction script. This script used the
MediaPipe hand landmarks segmenter to extract landmark coordinates,
along with a blur detector to filter out images where landmarks could
not be extracted or the image quality was insufficient. Additionally, the
dataset was divided into a training set and a validation set, see Table
3.1.

Normalization methods

After extracting landmarks using MediaPipe Hand Landmarks, it’s im-
portant to consider how to pre-process the data and what information
to include for optimal results.

As mentioned in Chapter 3.3 the native format of the hand landmarks
are normalized values with respect to the frame of the image (width and
height), when it comes to x and y coordinates. The z coordinate is not

27



Landmark (x,y,z)
1 (0, 0, 0.01)
2 (0.21, 0.02, 0.43)
.
.
.
21 (0.43, 0.81, 0.02)

Table 3.3: Example of MediaPipe landmark coordinates

normalized but shares a magnitude scale similar to the x coordinates,
and has its origin in the wrist landmark, see Table 3.3 for an example.

When feeding the classifiers the landmarks there is no obvious way to
pre-process or normalize the data. Therefore, we chose to evaluate six
different ways of pre-processing and normalizing the data to see which
had optimal outcomes. The following six methods were evaluated.

1. "Native" untouched xyz data as given by MediaPipe.

2. "Native" xy data as given by MediaPipe excluding the z coordin-
ates.

3. The x and y coordinates are expressed using the wrist landmark
as origin, then normalized using max(x) and max(y) respectively.
Excluding the z coordinate.

4. The x and y coordinates are expressed using the wrist landmark
as origin, then normalized using max(x) and max(y) respectively.
Including the z coordinate.

5. The x and y coordinates are expressed using the wrist landmark
as the origin. However, normalized using max(x) and max(y) on
only the palm, i.e. excluding fingers. Rotating the landmarks using
algorithm 1 and including z coordinate.

6. The x and y coordinates are expressed using the wrist landmark
as origin, then normalized using max(x) and max(y) respectively.
The x and y landmarks are then rotated using algorithm 1 also
including the z coordinate.

28



Method 1 serves as the reference, assessing the performance of classifiers
on the unaltered data. In normalization method 2, the investigation
focuses on the relevance of the z coordinate. Initially, when examining
the data, uncertainties arose regarding the validity and significance of
the z coordinates.

Starting from normalization method 3, all x and y coordinates have ori-
gin in "0"-wrist landmark and are normalized to max(x) and max(y),
where the motivation is to emphasize the relationships between land-
marks rather than their exact positions in the frame, considering the
landmarks as a cluster instead. Method 3 evaluates the data without
considering the z coordinate, while method 4 includes the z coordinate.

For method 5, the data is normalized by utilizing the maximum values on
the palm, excluding the fingers. Rather than normalizing the coordinates
including the fingers, this approach tightens the cluster and lessens the
effect of fingers or an odd finger positioning. The landmarks are also ro-
tated to be invariant to rotational differences in the input data. Method
6 closely resembles method 5, with the distinction that the landmarks are
normalized to the absolute maximum and minimum coordinates, thereby
incorporating the fingers again.

Machine learning classifiers

Five classifiers, namely SVM (RBF-kernel), k-NN (n=5), random forest,
XGBoost, and a neural network were trained using a training dataset
and a separate validation dataset, following the aforementioned split ap-
proach (see Table 3.1). Notably, an assessment of the Openness collection
dataset revealed an inherent imbalance in class distribution. To make
up for the unbalanced dataset the training was performed using class
weights, which causes the model to pay more attention to the underrep-
resented classes. All classifiers except the k-NN were trained with class
weights since the k-NN algorithm determines the class of a sample based
on the majority class among its k-nearest neighbors. It does not expli-
citly consider class weights or adjust its decision-making process based
on the distribution of the classes.

The architecture of the neural network classifier was a sequential model

29



Sequential Neural network architecture
Layer Layer size
Input layer (21*3)
Dropout (rate = 0.2)
Dense layer, ReLu 20
Dense layer, Sigmoid 20
Dropout (rate = 0.4)
Dense layer, ReLu 10
Output layer, softmax 4

Table 3.4: Neural network architecture

with an input layer of either size 63 or 42 depending on the inclusion of
the z coordinate. As the openness classes are to be viewed as a decision
based on the general formation of the landmarks and not any specific
one, dropout layers were introduced to minimize over-fitting and the
classifier to be too dependent on any one landmark. See Table 3.4 for
the whole architecture. Furthermore, the F1-score and accuracy metrics
were systematically computed to evaluate the classification performance
of the trained models.

3.6.3 Transfer learning

As an alternative approach to the openness classification of the hand,
transfer learning was used for classifying the data in the Openness col-
lection. The pre-trained network used for this task was the residual
network, ResNet50. The model consists of 50 layers and uses residual
blocks that contain skip connections that allow the information to trans-
fer from one layer to another, skipping intermediate layers. The model
uses a building block that consists of two 3x3 convolutional layers, fol-
lowed by batch normalization and a ReLU activation function. The skip
connection adds the input to the output of the second convolutional layer.
In addition to the residual blocks, ResNet50 also uses average pooling
instead of fully connected layers at the end of the network [23]. The
network is pre-trained on ImageNet, a large-scale visual database used
to train and evaluate computer vision models. It contains millions of
labeled images covering a wide range of objects and scenes. The dataset
is organized into classes, with the commonly used subset consisting of

30



around 1.2 million images from 1,000 classes.

To adapt ResNet50 for the openness classification task, a top layer was
added. This top layer, often called the classifier, is responsible for learn-
ing task-specific patterns and making predictions. By freezing the layers
of the ResNet50 model, their weights are not updated during training,
ensuring that the learned features are preserved. The trainable top layer
is added on top of the pre-trained layers and trained to adapt the model’s
learned features specifically for the openness classification task. Lever-
aging the learned features from the pre-trained model through transfer
learning significantly reduces the time and computational resources re-
quired to train the model from scratch.

Training of the models

The models were at first trained on labeled data from the Openness col-
lection using the labels presented in 3.5. Later on the Openness collection
was further processed where the input data was images of ROIs only (see
Figure 3.6. The same labels were used for this training as well.

For images where the entire hand was visible, the input shape was (224,
224, 3), while for ROI data, the input size was (200, 200, 3). Both
models utilized sparse categorical cross-entropy as the loss function and
the ADAM optimizer.

To prevent over-fitting, an adaptive learning rate strategy was imple-
mented. The initial learning rate was set to 0.0001 and was gradually
reduced by a factor of 0.2 whenever the learning process plateaued. The
minimum learning rate was set to 1e6.

Data augmentation was applied to the input data during training. The
dataset was augmented with random transformations, such as rotation,
zooming, and flipping, using parameters randomly generated with a
factor of 0.1. These augmented images were combined with the ori-
ginal dataset to increase diversity. A simplified workflow of the training
process is shown in Figure 3.7.

In addition to the mentioned techniques, class weights were used during
training to account for class imbalance in the data and ensure balanced

31



Figure 3.7: Overview of the training workflow.

learning between the classes. By assigning higher weights to the less-
represented classes, the model was encouraged to give it more attention
during the training process.

3.6.4 Lighting

When evaluating the system, we noticed that one of the critical factors
was lighting on the palm. Consequently, we chose to set up tests to see
how much and in what way lighting affected the matching algorithm.
The main question was whether the verification images, taken with an
iPad front-facing camera, and enroll images taken, taken with the back-
facing camera of a smartphone, should be taken with extra lighting/flash
or no extra light. To test this we set up two experiments with different
enrollment cameras and subjects. Both subjects had 5 enroll images
taken with flash and 5 images without flash. They were then matched
against 165 verification images of the same subject without extra lighting
and 165 with extra lighting, see Figure 3.1 for setup. The average scores
of the matches were then computed for each case, see Chapter 2.3.5.

Subject 1: Iphone 7, single camera system 12MP.
Subject 2: Iphone 12 mini, double camera system 12MP.

32



3.6.5 Evaluating Openness by matching score

In the previous subsections, we describe the different methods for clas-
sifying openness. However, the usefulness of the openness metric is only
hypothesized. Therefore, our last implemented test is intended to eval-
uate the relevance of an openness metric as well as the performance of
the best classifier, that being the XGBoost classifier trained on data
normalized using method 6, see Chapter 3.6.2.

Using an iPad verification video, see Chapter 3.2.1, 108 images of the
palm in different states of openness were stored as templates. Similarly,
using the back-facing camera of an iPhone 12 mini an enrollment video
was recorded of the palm closing to a fist from a flexed state, see Figure
3.5d. From this video, 105 frames were extracted.

Both enrollment and verification frames were then classified into classes
1-4 using the XGBoost classifier, with the data pre-processed using method
6, see Chapter 3.6.2. See Table 4.5 for the number of samples in each
class. Using the ROI segmentation described in Chapter 3.4.1, all images
were then segmented and gray-scaled, extracting the ROI. All the ROIs
were then matched against each other, totaling 11,340 matches. From
these matches, the average score of each state was computed.

33



4 Results
In this section, the results of the essential tests for evaluating a con-
tactless palm print recognition system are presented. Additionally, the
evaluation of palm openness using various approaches is included, along
with the corresponding results.

4.1 System design

A pipeline describing the functionality of a proposed design for a biomet-
ric palm print system is presented in Figure 4.1. Implementing an end-
to-end solution allowing the enrollment and verification of palm prints.

The reasoning and details of the proposed system will be described more
thoroughly in the subsections below and in the discussion.
But to gain an initial overview:

Enrollment

Users begin enrolling their hands by taking a photo or short video se-
quence, using the back camera, of the whole face of their hand. The
image or video should be taken without flash or any other light besides
natural occurring light in the room or space. This image or video is then
segmented to an ROI template and labeled with an openness class as
well as a left/right-hand label.

Verification

When the user then arrives at the access system an iPad is setup with a
light source at the top part of the iPad, with the iPad showing the screen
outwards. The user places the hand in front of the front camera, receiving
feedback through the screen on the hand distance to the camera, hand
posture, and palm openness and visibility. When the palm is positioned
at an optimal distance, posture, and openness, the iPad records a short

34



Figure 4.1: A simplified overview of the proposed system design.

video sequence of the palm. The recorded video captures the openness
labels and landmarks, and the resulting image is then sent for processing.

Matching

The image is segmented using the saved landmarks. The ROIs are
checked for blur and blurry ones are discarded. Then the ROI is sent
for pre-processing and finally to the matcher, to be matched against en-
rolled templates. When matching, the algorithm can use the handedness
labels as well as the openness class to optimize the number of enrolled
templates it needs to go through (1:N-problem). If the verification ROI
receives an acceptable score from any of the enrolled templates, the user
is granted access.

4.1.1 Lighting

The enrolled images were taken using 12MP iPhone cameras (7 and 12
mini) whilst the verification images were taken using an iPad front-facing
12MP ultra-wide camera, see Figure 4.2. From Table 4.1, it can be seen
that the enrolled images with no extra lighting in combination with the
verification images with extra lighting yield significantly higher scores.
After that, the light-to-light combination has the highest average score,

35



and verification images without extra light combined with the enrolled
images with extra light produce the lowest average. Keeping in mind
from Table 2.1 that scores above 7,200 are considered matches.

The following annotations are used for the four image types:

• Enroll light = EL

• Enroll no additional light = ENL

• Verify light = VL

• Verify no additional light = VNL

They can be seen in Figure 4.2 in the same order from left to right.

Verify

Light No Light

E
nr

ol
l Light 5628 3129

No Light 8395 5157

Table 4.1: Average matching scores of verification and enrollment images
taken with and without extra lighting

(a) EL (iPhone 12
mini)

(b) ENL (iPhone
12 mini)

(c) VL (iPad 9th
Gen)

(d) VNL (iPad 9th
Gen)

Figure 4.2: Example images of the four light-to-no light cases of the same
palm

36



(a) (b) (c) (d)

Figure 4.3: Four different user cases showcasing the functionality and
limitations of the hand distance tool.

4.1.2 User feedback

There are three main systems to guide the user into the correct position,
the distance method, the hand posture method, and finally the openness
method. The aforementioned two are presented in this section.

Hand distance - area

The results from the implementation of the hand area tool are presented
in Figure 4.3. The implementation functioned as expected, as can be
seen in Figure 4.3a and 4.3b. However, the tool alone has limitations as
it relies solely on the area of the bounding box for feedback. In the user
cases demonstrated in Figures 4.3c and 4.3d, the area of the bounding
box remains above the set threshold, even though the palm is not visible
and the user’s hand posture is poor.

Hand posture

Some examples from the implementation of the hand posture tool are
presented in Figure 4.4. The method was tested thoroughly but only
some images from the collection are presented to demonstrate the benefit
and issues with the method. The three conditions perform as expected
and function as an extension of the hand distance tool, see the examples
below.

37



Figure 4.4: Example output from hand posture and hand distance methods

4.2 Openness classification

In this section, we present the results obtained from the classification
of the openness of the hand, employing two distinct approaches. The
first approach involves the utilization of landmarks extracted through
MediaPipe, while the second approach relies on transfer learning.

4.2.1 MediaPipe landmarks approach

The extracted landmarks require addressing two crucial decisions: 1)
determining the appropriate normalization technique, if necessary, for
the data, and 2) selecting an optimal classifier to achieve the most fa-
vorable outcomes. To comprehensively evaluate these factors, we im-
plemented various normalization methods in combination with multiple
machine-learning classifiers. The subsequent sections present and discuss
the results of these experiments.

Landmark normalization methods

When evaluating each normalization method and machine learning al-
gorithm we chose to split the data by whole subjects, instead of doing
it randomly by image from the whole set. Meaning that we left out
certain people when training the algorithms that we later could use for
testing. The reasoning behind the decision was that we didn’t want the
algorithm to have trained on the same individuals it later was evaluated
on, simulating a more realistic situation.

38



Two data splits were made, see Table 3.1, and then the evaluation met-
rics were averaged according to the size of each testing set. In total
six different normalization methods were tested, see Chapter 3.6.2 for
the comprehensive list. In combination, five classifiers were trained and
tested on each normalization method. The classifiers were initially im-
plemented with minimal parameter tweaking, to be later improved.

From Table 4.2, we could see which normalization method performed
best, and we also had an understanding of which machine learning meth-
ods showed the most promise.

From the table, it can be seen that the native format of the data has
decent results across the board. However, normalization methods 5 &
6 have the highest average F1 scores. A big discrepancy can be seen
between the data splits, where split 2 consistently gives a lower F1 score.

Regarding the classifiers, the SVM and XGBoost classifiers yield the best
results with the highest F1 scores.

F1-score matrix: ML-Algorithms to Normalization Methods
SVM k-NN XGBoost NN RF

1 2 w 1 2 w 1 2 w 1 2 w 1 2 w Average
Norm 1 0.92 0.87 0.89 0.85 0.80 0.82 0.86 0.87 0.87 0.83 0.73 0.77 0.85 0.86 0.79 0.82707
Norm 2 0.91 0.86 0.88 0.84 0.77 0.80 0.84 0.87 0.85 0.80 0.69 0.73 0.81 0.89 0.86 0.82355
Norm 3 0.92 0.88 0.90 0.85 0.85 0.85 0.88 0.89 0.89 0.85 0.76 0.79 0.88 0.87 0.88 0.86028
Norm 4 0.93 0.88 0.90 0.89 0.81 0.84 0.90 0.87 0.88 0.85 0.77 0.80 0.88 0.88 0.88 0.86006
Norm 5 0.90 0.88 0.89 0.86 0.81 0.83 0.91 0.90 0.90 0.86 0.78 0.81 0.90 0.90 0.90 0.86525
Norm 6 0.90 0.87 0.88 0.87 0.82 0.84 0.92 0.89 0.90 0.86 0.78 0.81 0.91 0.90 0.90 0.86701
Average 0.88 0.83 0.88 0.78 0.86

Table 4.2: The accuracy for the five different machine learning classifiers on
both data splits (see Table 3.1) and the weighted average of the
two.

Machine learning classifiers

In the following section, the result of the machine learning classifiers is
presented.

The confusion matrices for the five different classifiers are presented in
Figure 4.5. Following the evaluation of various normalization meth-
ods presented earlier in Table 4.2, it was determined that normaliza-
tion method 6 yielded the best results. Consequently, we’ve chosen to
highlight the machine learning classifiers trained using said data. The
data split used during training was exclusively based on split 1 (see Table

39



3.1), due to time constraints. Furthermore, to account for the imbalanced
nature of the data, class weights were employed during the training of all
classifiers to try to improve the results further. To evaluate the perform-
ance of each classifier, key metrics such as accuracy and F1-score were
assessed and the outcomes are presented in Table 4.3.

Classifier Accuracy F1 Score

XGBoost 0.92 0.92

SVM 0.92 0.92

k-NN 0.87 0.86

Random Forest 0.91 0.91

Neural Network 0.87 0.83

Table 4.3: Performance metrics for the five classifiers on data split 1.

A general pattern across all classifiers is that classes 2 and 3 are the
classes with most misclassified samples. When comparing the confusion
matrices of the XGBoost and SVM classifiers it can be seen that the
SVM classifier has a slightly higher number of samples misclassified two
classes away. The XGBoost classifier has in total 4 such samples that
have been misclassified two classes away compared to 13 such samples
for the SVM classifier.

4.2.2 Transfer learning

The results from training the models using transfer learning are presen-
ted in this section. For both the original data and the ROI extracted
data from the Openness collection, the training was conducted using the
ResNet50 model with a modified top layer. Many different architectures
of the top layer together with a variation of hyper-parameters were tested
with the objective to optimize the models fully.

To ensure a robust evaluation of the model’s performance on unseen
hands, the validation set comprised hands from specific individuals who
were not included in the training set, according to the splits in Table 3.1.
This separation allowed for a rigorous assessment of the model’s gener-
alization ability to hands it had not encountered during the training.

40



(a) Confusion matrix for the
XGBoost classifier.

(b) Confusion matrix for the
SVM classifier.

(c) Confusion matrix for the
k-NN classifier.

(d) Confusion matrix for the
random forest classifier.

(e) Confusion matrix for the
neural network classifier.

Figure 4.5: Confusion matrices for five different machine learning classifiers
using data split 1. The y-axis shows the true label while the
x-axis shows the predicted label.

41



Validation accuracy Validation loss
Split 1 Split 2 Weighted average Split 1 Split 2

PALM 0.9130 0.9002 0.9050 0.3122 0.3971
ROI 0.8309 0.8480 0.8416 0.6093 0.8005

Table 4.4: Comparison of the validation accuracy and validation loss for the
different datasets and data splits respectively.

ResNet50

In this section, we present the results obtained from the ResNet50 model
on both the PALM dataset (see Figure 3.5) and the ROI dataset (see
Figure 3.6). Beginning with the PALM dataset, the top layer of the
model consisted of a fully connected layer with 512 nodes, utilizing the
ReLU activation function. To prevent over-fitting, a dropout layer with
a dropout rate of 0.4 was incorporated. The training process spanned
800 epochs, considering both split 1 and split 2 (refer to Table 3.1). The
combined weighted average of the two splits, along with the training
and validation accuracies, is illustrated in Figure 4.6a. The training and
validation losses for the two splits are presented in Figure 4.6b.

Regarding the ROI dataset, the top layer also consisted of a fully connec-
ted layer with a 512 number of nodes and used the ReLU activation func-
tion. Similarly, a dropout layer with a dropout rate of 0.4 was utilized.
The training process spanned 800 epochs, and the evaluation metrics,
analogous to those for the PALM dataset, are shown in Figure 4.7.

The final values for the evaluation metrics are summarized in Table 4.4
and Figure 4.8 demonstrates the confusion matrices for both datasets
and splits respectively.

4.2.3 Matching score openness

The landmark-based classifier with the highest performance, XGBoost,
underwent a final evaluation. Using XGBoost, the verification and enroll
images were sorted into their respective classes, as presented in Table 4.5.
Subsequently, all images were cross-matched against each other, using the
Precise Biometrics matcher, and the average score was computed to see

42



(a) (b)

Figure 4.6: PALM dataset. a) Accuracy over epochs curve for the training
and validation data for both data splits, together with the
weighted average. b) Loss over epochs curve for the training and
validation data for both data splits.

(a) (b)

Figure 4.7: ROI dataset. a) Accuracy over epochs curve for the training and
validation data for both data splits, together with the weighted
average. b) Loss over epochs curve for the training and
validation data for both data splits.

43



(a) PALM dataset split 1 (b) PALM dataset split 2

(c) ROI dataset split 1 (d) ROI dataset split 2

Figure 4.8: Confusion matrices for the PALM and ROI dataset for data
split 1 and 2.

the relevance of the different classes, see Table 4.6 for the result. For a
comprehensive explanation of the methodology, see Chapter 3.6.5.

In Figures 4.9 and 4.10 some representative examples have been chosen to
show how the XGBoost classifier has sorted the data. From the figure,
it can be seen that class 2 has both images with and without fingers
included, see Figure 4.10b. And that the creases of class 2 images are
much deeper, but also more distinct that the class 3 and 4 images. Class
4 images are correctly so flatter and more spread out in comparison to
classes 2 and 3.

44



Classes
1 2 3 4

Enroll 25 10 11 59
Verify 51 15 11 31

Table 4.5: Number of samples in each openness class, as classified by the
XGBoost classifier using the normalization method 6.

(a) Openness
class 1

(b) Openness
class 2

(c) Openness
class 3

(d) Openness
class 4

Figure 4.9: Selected examples from Enrolled images classified by XGBoost.

45



(a) Openness
class 1

(b) Openness
class 2

(c) Openness
class 3

(d) Openness
class 4

Figure 4.10: Selected examples of Verification images classified by XGBoost.

From Figures 4.9 and 4.10 it can be seen that some of the images have
been misclassified. The bottom ROI of Figure 4.9b should be a class 1
image. And the bottom ROI of Figure 4.10a should be of class 2.

Verify
1 2 3 4

1 3857 1473 1099 935
2 751 5291 7157 4758
3 599 3086 8809 7874E

nr
ol

l

4 544 2898 8652 9011

Table 4.6: Average matching scores between verification (VL) and enroll
(ENL) images for each class

From Table 4.6, the highest average score can be observed along the
diagonal, except for class 2. Classes 1, 3, and 4 exhibit the highest
average scores when matched against their respective classes. The enroll
2 class instead produces the highest average score against the verify 3
class. Notably, five average scores closely approximate the 1/100,000
FAR threshold of 7,200, all within verification classes 3 and 4.

46



5 Discussion

5.1 System design

In this section, the various tests that prompted different system design
decisions are discussed and explained in further detail. The main focus
will be on lighting setup for enrollment and verification, and the result
and relevance of openness classification, as these have quantifiable results
presented.

5.1.1 Lighting

From Table 4.1 it is apparent that the combination of verification images
taken with extra lighting (VL), and enrollment with no flash (ENL),
produces the highest average score. This came as somewhat of a surprise
as we assumed that images of higher quality would be the ideal match.
Assuming images are taken with more light to give more contrast from
the reflected surface, resulting in a higher resolution image.

But when examining the images more closely, see Figure 4.2, the quality
of the smartphone images is definitely better than that of the iPad front-
facing camera. When comparing the EL (see Figure 4.2a) and VL (see
Figure 4.2c) images we can see a big discrepancy in terms of visible lines.
We believe that this causes the EL images to have more lines extractable
for the matcher than its VL counterpart, resulting in penalties for all
patterns that are not matched, yielding a lower average score for EL to
VL matches.

From this, the conclusion is drawn that the matcher yields better results
when matching images of a similar level of detail, which is why the ENL
to VL produces the highest average scores, see Figures 4.2b and 4.2c.

Following the same logic the matches between VNL (see Figure 4.2d) to
EL images should result in the lowest average score. As the significantly

47



higher resolute enrolled images create too much of a discrepancy with
the lower resolute VNL images, which is the case.

There is the possibility that the scores are a result of palm images taken
differently, giving lower or higher scores due to differently positioned
ROIs, meaning that the scores are not a reflection of the presence of
light. But under visual inspection, the ROI templates in 4.2 are posi-
tioned almost identically on the palm as well as the openness is similar.
Considering this we believe the discrepancy in scores to be too significant
for such small differences.

In conclusion, this is the reason for having no flash for the enrollment
images whilst the verification images should be lit up using an additional
light source in the proposed system. An alternative or addition to the
system would be to down-sample enrollment images of too high quality
to gain more similar-quality images.

5.1.2 Hand posture & distance

One of the challenges that arise with contactless palm print recognition
is to ensure the distance between the camera and the palm. If the palm is
too close to the camera, an out-of-focus image will be obtained. However,
if there is too much distance between the palm and the camera the dots
per inch (DPI) will be too low, and not enough valuable information
extracted.

As the iPad camera has no time-of-flight sensor, distance had to be con-
trolled in another manner. To solve this, the area-based method was
developed, see Chapter 3.5.2 for implementation. This method proved
to have two main drawbacks. Firstly, as the area is calculated using a
bounding box, by extending the fingers in certain manners the bounding
box is falsely enlarged, see Figures 4.3c and 4.3d. Secondly, very small
or large hands can have a bounding box area that is not representative
of the distance to the camera. Resulting in out-of-focus or low-resolute
images if the set distance interval is not wide enough.

To solve the first problem as well as other posture challenges, the hand
posture method was developed. The hand posture method guarantees

48



that the fingers are not occluding the palm, by not overlapping any land-
marks. It also checks the angle horizontally and vertically. By ensuring
that the posture is good the distance method also works correctly, result-
ing in a system that requires both conditions to pass, see Figure 4.4. The
feedback in our early implementation is only a text box. In an optimal
system, this should be replaced by a combination of graphic and textual
feedback, that guides the user.

In retrospect, an alternative solution to the distance hand area method
would have been to make a bounding box of the palm landmarks instead,
i.e. excluding the fingers. In this way, the bounding box is not affected
by finger placement that can falsely enlarge the bounding box.

In conclusion, the proposed distance and posture methods function as
intended. They solve the challenge of controlling the distance to the
camera in most cases and ensure that the posture of the user’s hand is
open and ready for the openness classifier. With that said, the hand
area-based distance controller leaves a lot of room for improvement for
future work.

5.1.3 (1:N problem)

As the 1:N problem is not one of the challenges we have chosen to focus
this thesis on, it will not be discussed to any length. With that said
some insights have been gained regarding the subject that we would like
to note for future work. A common challenge for biometric systems used
in large-scale commercial settings is the number of matches that need
to be processed. To improve on this we have some proposals that could
optimize the number of samples looped through:

• By labeling ROI templates with handedness, i.e. right or left hand,
N can be halved.

• The Openness classifier we have developed can be used as a metric
to prioritize templates saved with the same openness class.

• The 2:4, or second-to-fourth digit ratio, is one that divides the
world population physiologically. What is meant is whether the

49



index or ring finger is longer giving a larger or smaller than one
ratio. Using MediaPipe Landmarks this metric could be stored and
used for minimizing the number of templates matched against.

5.2 Openness classification

As mentioned two main methods of classifying openness were pursued.
Landmark-based classifiers and transfer learning. The transfer learn-
ing approach was investigated to see how well openness could be pre-
dicted without the use of MediaPipe Landmarks, and in addition if it
was possible to predict openness solely from the ROI. The results of the
approaches are discussed in the sections below.

Data

It is important to note that openness classes are not natural phenomena
that can be measured or defined exactly, but definitions that the authors
have created, and should not be considered as an exact class but instead a
scale. Furthermore, as the Openness collection was manually annotated
by the authors, and the existence of mislabeled images is apparent when
going through the collection, there are traces of human errors. Therefore,
it would be impossible for the classifiers to reach 100 % accuracy, and
if we were to say that 5% of images are mislabeled then the theoretical
maximal accuracy possible would be 95%, in practice this number would
most likely be lower.

5.2.1 Landmark based method

Analyzing Table 4.3, it becomes apparent that the XGBoost and SVM
classifiers performed best, achieving a weighted average accuracy and F1-
score of 0.90, using normalization method 6. Overall, all five classifiers
demonstrated good performance.

Normalization methods

From Table 4.3 we see that all normalization methods function reason-
ably well with the lowest F1 score being 0.69 for normalization method 2
combined with the neural network classifier. With that said the highest

50



normalization method to classifier scores are definitely produced by nor-
malization methods 5 and 6. The normalization, rotation, and new ori-
gin were implemented with the intention to express the landmarks as a
cluster, invariant to hand size, absolute positioning on the frame, and
rotation. And as a result, more clearly states the relation between land-
marks for the classifiers. Our hypothesis was that normalization method
5 would be the most promising method as it expresses the landmarks
in relation to the palm and not the fingers. And given more or differ-
ent splits this might be the case as the average scores of normalization
methods 5 and 6 are very close.

From the significantly lower split 2 scores, there are still uncertainties
regarding the outcome, if there were more splits and more balanced ones
in terms of class representation the result might have shown a different
outcome. In conclusion, normalization method 6 was the ideal method
according to our tests, and is as a result the one incorporated into the
proposed system design.

Machine learning classifiers

While the random forest classifier showed comparable results to both
SVM and XGBoost, the preference for XGBoost stems from a detailed
examination of the confusion matrices. Notably, XGBoost and SVM
exhibited a more balanced distribution of accurately predicted images
across all four classes, where XGBoost performs slightly better when
looking at samples misclassified more than one class away.

Furthermore, evaluation of the misclassified images and the confusion
matrices illustrated in Figure 4.5, it is apparent that a majority of the
incorrect classifications originated from class 3. The images of class 3 gen-
erally had the largest variations as different people’s movements when
closing a fist varies. Another reason behind the poor classification of
class 3 could be the imbalance in the dataset. Applying class weights
help to better capture and learn from the minority class that was tested.
However, the effectiveness of class weights may vary depending on the
dataset and problem at hand. By testing the SVM classifier without us-
ing class weights for instance showed that it had minimal to no impact as
the accuracy and F1 score showed no improvement for split 1. However,

51



class 3 was most commonly misclassified to class 4 which isn’t a huge
problem for the end system, as they have high matching scores against
each other, see Table 4.5.

5.2.2 Transfer learning

The results presented in Table 4.4 demonstrate that the ROI data was
more challenging to classify compared to the other dataset, which was
expected. Upon analyzing the dataset, it became evident that the images
within different classes exhibited significant similarities, making classific-
ation more difficult. This similarity can lead to confusion for the model
as it tries to distinguish between similar patterns or features. This ar-
gument is strengthen by studying the confusion matrices in Figure 4.8,
where it is obvious that the model used for classifying the ROI dataset
struggled heavily with class 3. Similar observations are found for the
PALM dataset, but the results there are slightly better.

Examining the loss per epoch curve in Figure 4.6b, we observe a no-
ticeable gap between the training and validation loss curves. Such a
discrepancy suggests that the training dataset is unrepresentative of the
entire data distribution, as it fails to fully capture the essential features
necessary to accurately represent a new palm image. Moreover, the val-
idation loss in Figure 4.6b appears to be noisy and stochastic, indicating
that the validation data is limited and does not adequately represent the
training data. This further supports the notion of an unrepresentative
validation dataset.

Similar behavior can be observed for the ROI dataset, as depicted in
Figure 4.7b. However, the deviations in this case are even higher and
increase with time. This suggests that the limited amount of data avail-
able in the training dataset is a significant factor contributing to the
observed issues. The model struggles to generalize due to the insufficient
representation of variations and patterns in the training data, leading to
an increasing deviation between the training and validation loss curves.

While employing cross-validation could potentially address the issue of
unrepresentative training data, it may introduce additional uncertainty
in this specific case due to the high similarity of input images from a

52



subject. Therefore, a more sustainable solution would involve collecting
more data and applying further pre-processing techniques to enhance the
PALM dataset. By collecting a larger and more diverse set of images,
the training data can better capture the essential features and variations
necessary for accurate palm classification. Additionally, applying pre-
processing techniques that focus on reducing unnecessary image inform-
ation and highlighting key features relevant to palm classification can
further enhance the dataset’s quality and improve the model’s perform-
ance.

In summary, the observed challenges in classifying the ROI data and
the unrepresentative nature of the training dataset indicate the need for
more diverse and informative data, as well as appropriate pre-processing
techniques, to overcome these limitations and improve the model’s classi-
fication performance. The model can also be optimized further to better
classify the ROI data. This task which was something we decided to add
to the project a bit late, and its clear insufficient time and research has
been conducted to obtain desired results.

5.2.3 Relevance of the openness classifiers

At the beginning of the project, when evaluating the scores of different
matches we could see significantly lower scores for some ROI images that
under visual inspection were assessed as good-quality images. After fur-
ther inspection, subtle differences in width, depth, and distance between
creases could be seen between the images, it was from this observation
that the hypothesis that the openness made a big impact. In comparison,
contact-based palm print or fingerprint systems don’t face this problem
as the hand or finger is pressed against a surface.

From the scores presented in Table 4.5, it is evident that higher scores are
obtained when matching the class to itself, resulting in the best scores
for classes 3 and 4. Additionally, our assessment was that class 1 images
had too few visible lines to yield satisfactory matching results, while
class 2 was to be considered borderline in terms of suitability. When
inspecting Figures 3.5a and 3.5b the lines are almost completely blocked
for class 1 images. For class 2 there is also the case of some images

53



having fingers inside the frame, blocking the principal lines. Classes
3 and 4 were intended to result in ideal ROI templates and matching
scores. When inspecting Figures 3.5c and 3.5d the ROI images are of
the highest quality. Despite the small-scale nature of the test, we assert
that the results strongly support the validity of our hypotheses, thereby
confirming and validating our selection of the main topic: palm openness,
for this thesis.

5.3 Conclusion and future work

In the scope of this thesis, we have shown a novel design of a palm print
recognition system that is fully functional. With the hardware setup,
feedback systems, as well as ROI segmentation method, described, a ROI
can be segmented to a quality that reaches the necessary FAR values of
a commercial biometric system. The relevance of openness as a metric
has been shown through the correlation it has with matching scores,
with images of the same level of openness having the highest scores.
Subsequently, we have shown that both landmark-based methods using
MediaPipe, and transfer learning with ResNet and the whole palm can
be implemented to classify openness with good accuracy. Using transfer
learning solely on the ROI to classify openness resulted in an accuracy
of 0.84 which is lower than the other methods but a method that could
be considered with further work. For the landmark-based approach the
XGBoost classifier in combination with normalization method 6, showed
the most promise, with the highest average F1-score of 0.90. The distance
and posture methods are functional, but we strongly believe that there is
a better way of ensuring the distance between the palm and the camera.

For future work, we would be interested in seeing if down-sampling high-
quality images to match lower-quality images could work to improve
matching scores. It would also be interesting to see if a CNN could be
trained to geometrically reconstruct a palm ROI from one openness class
to another, for instance from class 3 to 4.

54



Bibliography
[1] Anil K Jain, Patrick Flynn and Arun A Ross. Handbook of biomet-

rics. Springer Science & Business Media, 2007.

[2] Adams Kong, David Zhang and Mohamed Kamel. “A survey of
palmprint recognition”. In: pattern recognition (2009). doi: https:
//doi.org/10.1016/j.patcog.2009.01.018.

[3] Kah Ong Michael Goh, Tee Connie and Andrew Teoh. “Touch-Less
Palm Print Biometric System.” In: vol. 2. Jan. 2008, pp. 423–430.

[4] Goh Kah Ong Michael, Tee Connie and Andrew Beng Jin Teoh.
“Touch-less palm print biometrics: Novel design and implementa-
tion”. In: Image and vision computing (2008). doi: https://doi.
org/10.1016/j.imavis.2008.06.010.

[5] Schmidt R. Dar H. and H.M Nitowsky. “Palmar crease variants
and their clinical significance: A study of newborns at risk”. In:
Pediatric Research 11 (2), pp. 103-108 (1977). doi: doi:10.1203/
00006450-197702000-00004.

[6] Michael I Jordan and Tom M Mitchell. “Machine learning: Trends,
perspectives, and prospects”. In: Science (2015). doi: https://
doi.org/10.1126/science.aaa8415.

[7] Ethem Alpaydin. Introduction to machine learning. MIT press,
2020.

[8] Trevor Hastie, Robert Tibshirani, Jerome H Friedman and Jerome
H Friedman. The elements of statistical learning: data mining, in-
ference, and prediction. Springer, 2009.

[9] Yann LeCun, Yoshua Bengio and Geoffrey Hinton. “Deep learning”.
In: Nature (2015). doi: https://doi.org/10.1038/nature14539.

[10] Gary Marcus. “Deep learning: A critical appraisal”. In: arXiv pre-
print arXiv:1801.00631 (2018).

[11] Theodoros Evgeniou and Massimiliano Pontil. Support vector ma-
chines: Theory and applications. Springer, 2001.

55

https://doi.org/https://doi.org/10.1016/j.patcog.2009.01.018
https://doi.org/https://doi.org/10.1016/j.patcog.2009.01.018
https://doi.org/https://doi.org/10.1016/j.imavis.2008.06.010
https://doi.org/https://doi.org/10.1016/j.imavis.2008.06.010
https://doi.org/doi:10.1203/00006450-197702000-00004
https://doi.org/doi:10.1203/00006450-197702000-00004
https://doi.org/https://doi.org/10.1126/science.aaa8415
https://doi.org/https://doi.org/10.1126/science.aaa8415
https://doi.org/https://doi.org/10.1038/nature14539


[12] Kashvi Taunk, Sanjukta De, Srishti Verma and Aleena Swetapadma.
“A brief review of nearest neighbor algorithm for learning and clas-
sification”. In: IEEE (2019). doi: https://doi.org/10.1109/
ICCS45141.2019.9065747.

[13] M Ohlsson and P Edén. “Introduction to artificial neural networks
and deep learning”. In: Lund: Computational Biology, Biological
Physics, Department of Astronomy, and Theoretical Physics, Lund
University (2021).

[14] Leo Breiman. “Random forests”. In: Machine learning (2001). doi:
https://doi.org/10.1023/A:1010933404324.

[15] Andy Liaw, Matthew Wiener et al. “Classification and regression
by randomForest”. In: R news (2002).

[16] Jerome H Friedman. “Greedy function approximation: a gradient
boosting machine”. In: Annals of statistics (2001). doi: https:
//doi.org/10.1214/aos/1013203451..

[17] Tianqi Chen and Carlos Guestrin. “Xgboost: A scalable tree boost-
ing system”. In: (2016).

[18] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li and Li
Fei-Fei. “Imagenet: A large-scale hierarchical image database”. In:
2009. doi: https://doi.org/10.1109/CVPR.2009.5206848.

[19] Karl Weiss, Taghi M Khoshgoftaar and DingDing Wang. “A survey
of transfer learning”. In: Journal of Big data (2016). doi: https:
//doi.org/10.1186/s40537-016-0043-6.

[20] Donald Olding Hebb. The organization of behavior: A neuropsy-
chological theory. Science editions, 1949.

[21] David E Rumelhart, Geoffrey E Hinton and Ronald J Williams.
“Learning representations by back-propagating errors”. In: nature
(1986). doi: https://doi.org/10.1038/323533a0.

[22] Yann LeCun, Léon Bottou, Yoshua Bengio and Patrick Haffner.
“Gradient-based learning applied to document recognition”. In: Pro-
ceedings of the IEEE (1998). doi: https://doi.org/10.1109/5.
726791.

56

https://doi.org/https://doi.org/10.1109/ICCS45141.2019.9065747
https://doi.org/https://doi.org/10.1109/ICCS45141.2019.9065747
https://doi.org/https://doi.org/10.1023/A:1010933404324
https://doi.org/https://doi.org/10.1214/aos/1013203451.
https://doi.org/https://doi.org/10.1214/aos/1013203451.
https://doi.org/https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/https://doi.org/10.1186/s40537-016-0043-6
https://doi.org/https://doi.org/10.1186/s40537-016-0043-6
https://doi.org/https://doi.org/10.1038/323533a0
https://doi.org/https://doi.org/10.1109/5.726791
https://doi.org/https://doi.org/10.1109/5.726791


[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun. “Deep
residual learning for image recognition”. In: arXiv preprint arXiv:1512.03385
().

[24] Sasha Targ, Diogo Almeida and Kevin Lyman. “Resnet in resnet:
Generalizing residual architectures”. In: arXiv preprint arXiv:1603.08029
(2016). doi: https://doi.org/10.48550/arXiv.1603.08029.

[25] Kukil. Introduction to MediaPipe. 2022. url: https://learnopencv.
com/introduction-to-mediapipe/ (visited on 03/05/2023).

[26] Google. Framework conecpts. 2023. url: https://developers.
google.com/mediapipe/framework/framework_concepts/overview
(visited on 03/05/2023).

[27] Google. Hand Landmarks Detection Guide. 2023. url: https://
developers.google.com/mediapipe/solutions/vision/hand_
landmarker (visited on 31/05/2023).

[28] Dane Brown and Karen Bradshaw. “Deep palmprint recognition
with alignment and augmentation of limited training samples”. In:
SN Computer Science (2022). doi: https://doi.org/10.1007/
s42979-021-00859-3.

[29] Paul Heckbert. “Fourier transforms and the fast Fourier transform
(FFT) algorithm”. In: Computer Graphics (1995).

[30] R. Fisher and T. Drummond. “Fourier Transform”. In: (2003).

[31] Raghav Bansal, Gaurav Raj and Tanupriya Choudhury. “Blur im-
age detection using Laplacian operator and Open-CV”. In: 2016
International Conference System Modeling & Advancement in Re-
search Trends (SMART). 2016. doi: https://doi.org/10.1109/
SYSMART.2016.7894491.

57

https://doi.org/https://doi.org/10.48550/arXiv.1603.08029
https://learnopencv.com/introduction-to-mediapipe/
https://learnopencv.com/introduction-to-mediapipe/
https://developers.google.com/mediapipe/framework/framework_concepts/overview
https://developers.google.com/mediapipe/framework/framework_concepts/overview
https://developers.google.com/mediapipe/solutions/vision/hand_landmarker
https://developers.google.com/mediapipe/solutions/vision/hand_landmarker
https://developers.google.com/mediapipe/solutions/vision/hand_landmarker
https://doi.org/https://doi.org/10.1007/s42979-021-00859-3
https://doi.org/https://doi.org/10.1007/s42979-021-00859-3
https://doi.org/https://doi.org/10.1109/SYSMART.2016.7894491
https://doi.org/https://doi.org/10.1109/SYSMART.2016.7894491

	Table of Contents
	Abstract
	Acknowledgements
	Notations and Abbreviations
	Introduction
	Background
	User design
	Palm print characteristics
	Machine Learning
	Machine learning classifiers
	Transfer learning
	Neural networks
	Evaluation metrics
	Precise Biometrics matcher

	MediaPipe

	Methods
	System and devices
	Enroll & Verify

	Datasets and acquisition
	Openness collection
	Smartphone enroll images
	Precise Biometrics dataset

	Hand landmarks
	Region of Interest segmentation
	Segmentation logic

	Tools
	Blur detection
	Hand distance - area
	Hand posture

	Openness classification
	Data labeling
	Landmark based methods
	Transfer learning
	Lighting
	Evaluating Openness by matching score


	Results
	System design
	Lighting
	User feedback

	Openness classification
	MediaPipe landmarks approach
	Transfer learning 
	Matching score openness


	Discussion
	System design
	Lighting
	Hand posture & distance
	(1:N problem)

	Openness classification
	Landmark based method
	Transfer learning
	Relevance of the openness classifiers

	Conclusion and future work

	Bibliography

