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Abstract

This project delves into the 3D reconstruction of both single and multiple rigid mo-
tions, examining the potential of deep learning methods, such as that proposed by
Moran et al., to supplant traditional geometry-based approaches. The project is struc-
tured into two main parts.

In the first part, we focus on the 3D reconstruction of a single rigid motion, building
on the work of Moran et al. In addition to using the dataset they used in their paper,
we expand it with a new one named BlendedMVS and evaluate the generalization per-
formance of the network on this enriched dataset. The network, in general, performs
commendably in both single-scene optimization and multi-view learning settings. Fur-
thermore, by exploring different architectures and enhancing the network, we manage
to slightly improve the success rate of single-scene optimization.

In the second part, our attention shifts to multiple rigid motions. We initially employ
YOLOV7 and Deep Sort for motion segmentation, using a portion of the Hopkins 155
dataset. In total, there are nine video files, each corresponding to a segmentation
accuracy. The results reveal five instances of 100% accuracy, with the lowest accuracy
standing at 99.55%. In terms of single-scene optimization and multi-view learning
settings, there are no failed 3D reconstructions, indicating that all the reprojection
errors fall below two pixels.
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Popular science summary

Transforming 2D Images into 3D Reality: Recovering Objects and Camera
Positions

From multiple 2D images, we can recreate a vivid 3D object. Amazing, isn’t it? The
real challenge lies in the accuracy of this reconstruction. We measure this accuracy
using something called ’reprojection errors’, which simply put, tells us how closely our
3D reconstruction matches the original 2D images.

The objective of this project is to reconstruct 3D objects from multiple 2D images.
This task can be complex, especially when images contain both stationary and moving
objects, such as buildings and vehicles. So, the project is divided into two parts based
on the object types.

In the first part, we worked with images containing only stationary objects like build-
ings, parked cars, and trees. We used a new dataset named ’BlendedMVS’. With
the help of advanced image processing techniques, we extracted ’point matches’ from
these images. A ’point match’ represents the same 3D point viewed from different
images. After compiling these points into an input for our model, we used the network
proposed by researchers Moran et al. to automatically generate the 3D objects and
camera positions in space. We also add some improvements based on the network
to increase the reconstruction quality. The results were promising; we managed to
improve the accuracy of the reconstructions, as indicated by lower reprojection errors.

In the second part, we worked with video files, which can be seen as a series of images.
This time, the data contained both stationary and moving objects. For this task, we
used a dataset called ’Hopkins 155’. In each video, some 2D point matches from both
the stationary scene and moving cars were already provided. Since we couldn’t recon-
struct all of them at once, we segmented them and reconstructed each individually.
To do this, we used tools like YOLOV7 and Deep Sort to detect and isolate different
objects, such as cars and trucks. By seeing which bounding box a point was located
in, we could roughly determine which object it came from. This method gave us
highly accurate segmentation results, close to 100%. Using our improved architecture,
we achieved reprojection errors below 1 pixel for ’Hopkins 155’ dataset, indicating
high-quality 3D reconstructions. Figures 1 and 2 are provided here to illustrate the
process.
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Figure 1: One image from the
input image set:
multiple angle views of
an ox sculpture.

Figure 2: This image illustrates
both the 3D point cloud
and cameras. The red
signs denote camera
locations and
orientations. The point
cloud is surrounded by
those cameras. The
point cloud is a set of
3D points on the surface
of a 3D object.
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1 Introduction

This chapter provides an overview of the thesis, including the research problem, its
background, and the purpose of the study. It also outlines the motivation for invest-
igating deep learning-based methods for Structure from Motion (SfM) problems.

1.1 Research Problem

1.1.1 Background

The basic understanding of structure from motion (SfM) problem is the recovery of
3-dimensional structure of objects from their images (projections) taken by several
cameras. The fact that the 3-D structure of an unfamiliar object can be recovered
via its projections was first proved by Wallach and O’Connell [1] without the need to
recognize it.

SfM is a technique for estimating the three-dimensional structure of a scene from a
series of two-dimensional images taken at different viewpoints. A common approach
to solving SfM problems is using geometry-based methods, which generally consist of
two main stages. In the first stage, a starting solution is built by alternately solving
triangulation and resection problems, a process known as Incremental Reconstruction.
Triangulation is the process of determining the 3D position of a point by measuring its
position in multiple images, while resection is the process of estimating the camera’s
position and orientation based on the known 3D positions of visible points in the scene.
After obtaining a starting solution, the second stage involves applying an optimization
technique called Bundle Adjustment (BA). BA minimizes the difference between the
observed positions of points in the images and the positions predicted by the 3D model
and camera parameters. This optimization results in a more accurate reconstruction
of the 3D scene, as it refines both the estimated 3D points and camera parameters
simultaneously [2].

An alternative way of solving SfM problems is based on neural networks. Recent
years have seen more and more such related works [3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15] and the deep network architectures they proposed seemed to have shown
great power on the reconstruction task of 3-D objects. Fu et al. [6], Eigen et al.
[7] and Lee et al. [8] focus on the depth map estimation with a single input image
using deep neural networks. Although these methods perform well, they suffer from
the scale problem, which refers to the difficulty in determining the absolute size and
distance of objects in a scene from a single image. Also, these methods are limited
by unseen data. To address the scale problem, one useful approach is to utilize at
least two different images taken from different viewpoints. Wang et al. [4] proposed a
so-called DICL-Flow deep neural network to extract dense matching points between 2
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consecutive views instead of SIFT matching as the first step of estimating depth maps.
Then they, based on the extracted point matches, followed the traditional geometry-
based method to successively estimate the essential matrix E, extract the rotation
and translation matrices and recover the 3-D structure via triangulation. Tang and
Tan [9], Yao et al. [13], Yu and Gao [14] and Gu et al. [15] utilized the multi-view
setting to do 3-D structure recovery. Most of the work is based on the convolutional
neural network (CNN). Apart from CNN, some people utilize the recurrent neural
network (RNN) to directly estimate the depth maps and camera poses (equivalent to
3-D structure) like Gu et al. [5], who designed the network with 2 sub-networks, called
depth GRU optimizer and pose GRU optimizer that are used to iteratively update the
depth and camera pose estimations. It showed that such RNN model outperformed
several state-of-the-art methods.

Besides direct recovery of 3-D scene structure like [5], people such as Wang et al.
[4] employed the deep learning method to replace one of the 2 stages of traditional
geometry-based method, giving an initial reconstruction of 3-D objects and BA. Moran
et al. [16] employed a deep permutation equivariant neural network to simultaneously
recover the camera poses and 3-D points with 2 sub-networks, one for camera pose
estimation and the other for 3-D point recovery. With the help of a useful neural
network, we can have a good starting solution, which will be sent to BA processing,
the second stage. [16] is exactly the basis and starting point of the thesis work.

In addition to those static scenes, the work will explore the deep learning-based method
for non-rigid scenes. Non-rigid scenes include those that comprise of static objects like
buildings and moving objects such as moving cars and those that consists of moving
objects and/or deforming objects. For deformable objects, Novotny et al. [3] solved
the structure from motion problem via a deep network by firstly factoring the effects
of viewpoint changes and object deformations. For scenes including only static and
moving non-deformable objects, Sabzevari and Scaramuzza [17] solved this so-called
multi-body structure from motion (MBSfM) problem based on the factorization of
multiple-trajectory matrix instead of an initial motion segmentation which is often
used in MBSfM problem. Addressing such problem makes up the second part of my
thesis work.

1.1.2 Motivation

We have observed that various deep learning methods have been employed to address
SfM and MBSfM problems. Researchers have used networks to estimate depth maps
solely from input images, extract feature point correspondences between two images,
or recover 3-D points only. They have even tackled the same type of problems using
different network types (CNN, RNN). All of these approaches have achieved a certain
degree of success, which demonstrates the usefulness of deep learning-based methods
in this field.

Moran et al. [16] designed a deep neural network euiqvariant to the order of cameras
and 3-D points to recover the camera poses and 3-D scene structure simultaneously.
They also demonstrated that, with a fine-tuning step, it is possible to successfully
reconstruct a novel scene using a pre-trained neural network.
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Building on the work of Moran et al. [16], it is meaningful to improve and generalize the
method for unseen scenes. In their paper, they tested their neural network architecture
on 38 static scenes, achieving impressive performance on par with several state-of-the-
art methods. Testing the method on a larger variety of scenes and achieving similar
performance as described in the paper would further strengthen the method’s validity
and increase its persuasiveness.

Furthermore, researchers have studied the reconstruction of deforming and/or multiple
moving objects in a scene to some extent. Regarding the MBSfM problem, they often
start by segmenting different motions or factoring the multiple-trajectory matrix and
then perform clustering for 3-D reconstruction [3, 17]. Testing the generalization per-
formance of the improved network based on [16] on such a database is worth exploring,
as well as investigating the deep learning-based method for clustering.

1.2 Purpose

The primary goal of this master thesis is to investigate the potential of deep learning-
based methods, such as the one proposed by Moran et al. [16], to replace traditional
geometry-based approaches for Structure from Motion problems. Our focus will be on
further improving the method and assessing its generalization capabilities.

To achieve this goal, we will carry out the following tasks:

1. Identify and collect new suitable datasets for testing the performance of the
proposed model.

2. Improve the existing model as much as possible, focusing on enhancing its ac-
curacy and robustness.

3. Investigate the generalization properties of the improved model, both for familiar
and unseen data.

With respect to Multi-Body Structure from Motion (MBSfM), we plan to:

1. Explore the use of deep learning-based methods for segmenting or clustering
point tracks of objects in a scene.

2. If possible, further improve upon the proposed method for more accurate and
efficient segmentation or clustering.

3. Test the generalization performance of the improved network, based on Moran
et al. [16], on the reconstruction of segmented motions. We hope to achieve
satisfactory generalization, regardless of whether the model is fine-tuned or not.

By addressing these objectives, we aim to provide valuable insights into the capabil-
ities and limitations of deep learning-based methods for Structure from Motion and
contribute to the ongoing research in this field.
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2 Theory

In this chapter, we describe some basic and useful theories of knowledge we will use in
the thesis project. We begin with an overview of the network proposed in [16], which
forms the basis of our project. The network architecture is shown in figure 2.1.

Figure 2.1: The network proposed in [16] is shown here. The first component of the network
is the permutation equivariant feature encoder E which is a 3-layered network.
Each layer is a linear equivariant layer. The feature encoder is shared by 2
heads. One head outputs the 3D points and the other one outputs the camera
matrices.

Figure 2.1 illustrates the neural network architecture that we aim to use and enhance.
The feature encoder is concatenated with 2 heads. The essential component of both
the feature encoder and the 2 heads is a linear equivariant layer, which imposes a
constraint on its parameters. The network takes as input an input tensor and directly
outputs a 3D point cloud and all camera parameters. More detailed information is
included in subsequent sections and chapters.

2.1 Some notations in 3D reconstruction from mul-

tiple images

In this section, we introduce several notations commonly used in 3D reconstruction
from multiple images. These notations provide a consistent and concise way to de-
scribe the mathematical models and algorithms involved in the reconstruction process.
Understanding these notations is essential for comprehending the technical details
presented in the following sections and chapters.
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Assume a 3-D point X, a camera matrix P , a projection x and a scale λ. They have
the following relationship:

λx = PX (2.1)

In the equation above,X is represented by a 4-dimensional column vector, i.e. (X, Y, Z, 1)T

and x, i.e. (x, y, 1)T , where X, Y, Z are the 3 coordinates of a point in the world co-
ordinate system and x, y the 2 coordinates in an image. P is a 3×4 matrix, which
can be factorized as P = K · [R|t], where K is the camera intrinsic parameter, a
3x3 matrix, R a 3x3 rotation matrix which has a determinant 1 and t a translation
vector of length 3. In SfM problem, given at least 2 different x1 and x2, we can use
triangulation method to compute the unique 3-D point X if the camera matrices are
known. This process is a simple demonstration of recovering 3D structure. Figure 2.2
illustrate the triangulation process.

Figure 2.2: The demonstration of the triangulation process. The 2 cameras are known
whose camera centers are denoted in C1 and C2.

Figure 2.2 illustrates the task of recovering a 3D point. In this figure, X1, X2, and
X3 denote three different 3D points, represented by a green point and two red points,
respectively. These three points all lie on the blue line. The projection of points on
this blue line in camera 1 is x1, while x2, x3, and x4 are the respective projections
in camera 2 of X1, X2, and X3. When relying solely on camera 1, it is impossible to
determine the precise location of the 3D point; it could be any point on the blue line,
such as X1, X2, or X3. Let’s assume X1 is the true 3D point. When an additional
camera (camera 2) is introduced, we draw a green dashed line that includes x2 and C2.
This green line intersects with the blue line at X1. This intersection point is unique
and represents the exact 3D point we seek.

2.2 Reprojection errors

The reprojection error is a usual, accurate, important and widely-used measure of
the accuracy of a 3D reconstruction from multiple images. It is the distance between
a 3D point in the world and its corresponding 2D projection in an image, after the
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point has been projected back into the image using the estimated camera parameters
and 3D model. What we want of 3D reconstruction is to minimize the reprojection
error. A smaller reprojection error indicates a better alignment between the 2D image
projections and the 3D model, and thus a more accurate reconstruction. It can be
computed in the following way:

err = ||(P
1X

P 3X
− x,

P 2X

P 3X
− y)||2 (2.2)

where err is a reprojection error, P 1 the first row of the camera matrix P and so
on. || · ||2 is 2-norm. The equation means that in order to compute the reprojection
error, given projection x = (x, y, 1)T , we need to compute the reprojection and the
distance between the reprojection and projection. In general since there is noise in the
projection, the computed camera matrix and the 3-D point are also noisy. Therefore
there is often a difference between the projection and reprojection. Figure 2.3 is an
example that shows the difference between projection and reprojection. In figure 2.3 we
can see the reprojection error clearly. Some reprojected points coincide with measured
points while some don’t.

Figure 2.3: A plot of both projection and reprojection. The red circles denote projec-
tion(measured by SIFT or other methods), while the blue ”x” denotes repro-
jected 2-D points.

2.3 Deep learning architecture

In [16], they designed the network that comprises of 3 sub-networks, one shared fea-
ture encoding and 2 headings for the recovery of camera poses and 3-D structure
individually. The neural network architecture is the basis of my project work.

2.3.1 Fully-connected layer

A fully connected layer, also known as a dense layer, is a type of neural network layer
in which each neuron in the layer is connected to every neuron in the previous layer.
This means that every input feature is connected to every output feature in the layer,
and each connection has a weight associated with it.
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Fully connected layers are often used in deep learning models for tasks such as classi-
fication and regression, where the goal is to predict a label or numerical value based
on some input features. These layers can be added to a neural network architecture
after a series of convolutional or pooling layers, for example, in order to learn high-
level representations of the input data. A figure downloaded from [18] in figure 2.4
demonstrates the fully-connected layers.

Figure 2.4: A plot of network for classification task that use fully-connected layers

From figure 2.4, we can see that there are an input layer, 2 hidden layers and a output
layer (softmax layer) that are fully connected to each other. Therefore each layer is a
so-called fully-connected layer.

2.3.2 Permutation equivariant architecture

An equivariant layer is a unique type of fully-connected layer, which employs a parameter-
sharing scheme (see [19, 20]) to constrain its parameters. An essential component
of constructing equivariant networks is the integration of equivariant layers. In SfM
problem, permutation equivariant networks are designed to maintain equivariance with
respect to the permutation of the order of images and 3-D points [16]. For example,
the order of images changes, the resulting camera matrices should change in the same
way. Figure 2.5 that is taken from [16] describes the permutation equivariant property
vividly.

In Figure 2.5, the plots at the upper left and upper right illustrate the input meas-
urement tensor M . In these plots, each row represents a distinct image, where points
along the row correspond to 2D representations of different 3D points captured in the
same image. Conversely, each column represents a specific 3D point, where points
along the column correspond to its 2D representations captured in different images.
The plots at the bottom left and bottom right illustrate the outputs of the neural
network, specifically the camera poses and 3D points respectively. Moving from the
upper left plot to the upper right plot illustrates a specific operation, which involves
swapping the positions of two rows and two columns. Correspondingly, the output
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Figure 2.5: Predicting a set of camera positions and 3D points from an input measurement
tensorM is equivariant to reordering of the points and the cameras, represented
by the pair of permutations (τcams, τpts). The figure is taken from [16]

of the upper left plot also undergoes a similar permutation, resulting in the swapped
positions of two rows and two columns as shown in the lower right plot.

To ensure optimal network generalization, it’s crucial to incorporate the permutation
equivariant property within the layers of the architecture. This property is particularly
essential due to the random order of images and 3D points. Therefore, the permutation
equivariant architecture, which comprises several permutation equivariant layers, has
the distinct advantage of significantly enhancing the model’s ability to generalize.

Suppose Sd is the group of permutations on d elements. Then Sm (m corresponds
to the number of cameras) can be considered as a specific ordering of cameras. Let
n be the number of point tracks and G be the product of Sm and Sn. According
to [16], in the case of multiple input and output channels, every G-equivariant affine
mapping L can be suitably represented as follows. Assuming the transition from a
feature space with d channels denoted as Rm×n×d to another feature space with d′

channels represented as Rm×n×d′ , the map L can be symbolized as:

L(M̃)ij = W1M̃ij +W2

m∑
k=1

Mkj +W3

n∑
l=1

M̃il +W4

m∑
K=1

n∑
l=1

M̃kl + b. (2.3)

Here, the input tensor M̃ij acts as a vector in Rd. The variables Wi are each a member
of Rd′×d for i ranging from 1 through 4, and b ∈ Rd′ are parameters that can be
learned. Then we can see, from equation 2.3, that any G-equivariant affine map L can
be factorized as a sum of 4 matrix products, which can be seen as a sum of 4 linear-
layered (fully-connected-layered) outputs, greatly reducing the number of parameters
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from n2m2dd′ to 4dd′.

2.3.3 Activation functions

A fully connected layer can be represented as a matrix multiplication followed by a
bias term and an activation function. In general, an activation function is a non-linear
mathematical function that is applied to the output of a neuron in a neural network
layer. The purpose of an activation function is to introduce non-linearity into the
output of the neuron, which allows the neural network to learn more complex patterns
and relationships in the input data. Some commonly used activation functions in
neural networks include the sigmoid function, the hyperbolic tangent (tanh) function,
the rectified linear unit (ReLU) function and the leaky ReLU. The plots of ReLU and
leaky ReLU activation functions are in figures 2.6 and 2.7.

Figure 2.6: The plot of the ReLU activa-
tion function

Figure 2.7: The plot of the Leaky ReLU
activation function

From figures 2.6 and 2.7, we know that the 2 functions are similar and both non-linear.
In their study, Moran et al. [16] utilized ReLU function in the network architecture and
argued that any point-wise nonlinearities maintain equivariance to the permutation
action. Then it is reasonable to replace ReLU with leaky ReLU if the network gives a
better generalization performance when applying leaky ReLU. Leaky RuLU and other
functions will be tested later in improving the architecture.

2.4 Residual structures

ResNet, short for Residual Network, is a deep neural network architecture (convolu-
tional neural network, CNN) for image classification, object detection and segment-
ation, which was first introduced by He et al. [21]. It was designed to overcome the
degradation problem in deep neural networks. The degradation problem refers to the
phenomenon that increasing the depth of a neural network leads to the accuracy get-
ting saturated and then degrading rapidly. He et al. [21] used such architecture and
won the 1st place in the ImageNet classification, detection, and localization competi-
tions in 2015. The key innovation of ResNet is the use of residual blocks, which allow
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for very deep neural networks to be trained without the problem of degradation and
vanishing/exploding gradient problems. Residual blocks enable the network to learn
only the difference between the input and the output of the block, which makes it easier
for the network to learn the identity mapping and to maintain the gradient throughout
the entire network. ResNet has become a popular and widely used architecture in deep
learning research and applications.

The basic building block of ResNet is the residual block, which consists of two convolu-
tional layers with batch normalization and ReLU activation, and a residual connection
that adds the input to the output of the second convolutional layer. It is plotted in
figure 2.8.

Figure 2.8: A plot of the residual block, the basic building block of Resnet

From figure 2.8 we can see that the difference between the residual block and a normal
convolutional block is the shortcut connection (or skip connection) added in the resid-
ual block. The skip connection is basically adding the input to the output to extract
and learn both global and local features. This idea can be very useful when we design
relatively deep architecture.

2.5 The segmentation method

Here we briefly introduce the way and tool of solving the motion segmentation problem.
The first tool we use is YOLO (you only look once) version 7 [22]. It is an extremely
deep convolutional neural network that is often used to detect and locate objects.
YOLOv7 is a more advanced version that gives more accurate location coordinate and
classification categories. When it detects an object, it will draw a rectangular box to
surround it and assigns a unique identification number to it with the help of a tracking
algorithm. An example is shown in figures 2.9 and 2.10.

The second tool is Deep Sort algorithm. Deep SORT (Simple Online and Realtime
Tracking with a Deep Association Metric) [23] is an advanced object tracking algorithm
that combines both deep learning and Kalman filtering techniques to accurately track
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Figure 2.9: The input image with 5
persons in it.

Figure 2.10: The output image of
YOLOv7.

moving objects in real-time. It extends the original SORT (Simple Online and Real-
time Tracking) algorithm by incorporating a deep association metric to improve the
matching of detected objects across video frames. This deep association metric is ob-
tained from a pre-trained neural network that learns to measure the similarity between
object appearance features. Consequently, Deep SORT enables more robust and ac-
curate tracking of objects in complex environments and maintains consistent object
identities even during occlusions or when objects temporarily leave the frame.

So we use YOLOv7 + Deep Sort to track the object we are interested across a video
file. Boxes coordinates are stored. The Hopkins 155 dataset provides us with the
unnormalized coordinates (point tracks). To find which motion a specific point track
belongs to, we can roughly do it by looking if points are located in boxes. Another
way is to set pixels outside bounding boxes to zero and leave the pixels inside boxes
unchanged because target objects are inside boxes and we only care about target
objects. Then send these cropped images to COLMAP which will be introduced in
chapter 3. An example of cropped images is shown in figures 2.11 and 2.12.

Figure 2.11: The cropped image 1. Figure 2.12: The cropped image 2.

Even though we refer to them as cropped images, their sizes remain the same as the
original video frames. The only difference is that the pixels we are not interested in
are all set to zero.
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3 Data and computational resources

In this chapter, we introduce what is the data for the neural network, what it looks
like and what new datasets we found and how we did preprocessing, as well as the
hardware we have.

3.1 The dataset used in the proposed network

According to [16], the dataset they used are the 39 scans from Olsson and Enqvist [24]
and VGG datasets. The datasets consists of both images and point tracks of static
scenes. A point track is a set of 2-D points projected from a 3-D point. The 2-D points
are the measurements from multiple images. In general, people use SIFT to extract
the 2-D feature points and matches and RANSAC to remove outliers [25, 26, 27]. The
rest of the points are used to make an input tensor, the exact input for the network.

The tensor size is m · n · 2, where m means the number of images or camera matrices,
n the number of 3D points detected from a static scene and 2 the 2 dimensions (x and
y coordinate). What’s more, assuming M is such a tensor, Mij is a 2D point where
0 < i ≤ m and 0 < j ≤ n. M:j is the jth point track of size m · 2 of the jth 3D point.
If the jth 3D point is not detected in image i, then set Mij to (0, 0).

Moran et al. [16] used 39 scans which means they made 39 tensors of that kind and in-
put them to a network. The 39 scans Moran provided in his github acount Equivariant-
SFM are 39 files for Euclidean Reconstruction and 41 for Projective Reconstruction,
both ending with ”.npz”. Because of the limitation of equipment, we only utilize the
files for Projective Reconstruction. In each file, there are 3 individual files which are
the tensor named M mentioned above, the matrices named Ns used to normalize 2-D
points in tensor M and the camera matrices named Ps gt denoting the ground truth,
respectively. Figure 3.1 shows some images of a scene out of 39.

3.2 New datasets for single and multiple rigid mo-

tions

The project is divided into two parts: one focuses on static scenes with a single rigid
motion, while the other targets scenes consisting of multiple rigid motions. To enrich
the dataset for the proposed network, I have identified two new types of datasets that
cater to these distinct scenarios.
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Figure 3.1: The plot shows 4 views of a scene from [24], a house on Mårtenstorget. Note
that I have merged them into one image.

3.2.1 BlendedMVS dataset: single rigid motion

The new dataset we found are [28] named BlendedMVS. It is a large-scale multi-view-
stereo (MVS) dataset for generalized multi-view stereo networks. The dataset contains
17k MVS training samples covering a variety of 113 scenes, including architectures,
sculptures and small objects. It seemed to be a bit tricky to download the low-
resolution datasets so I downloaded the high-resolution instead. There are no points
or point tracks in the dataset, but images, camera parameters and so on.

To prepare the tensor dataset for the neural network, we utilized COLMAP 3.8 in-
stalled on an UBUNTU 22.04 system for sparse reconstruction, generating both 2D
points and camera parameters. COLMAP was chosen as our primary tool for three
key reasons. First, according to [16], the COLMAP algorithm provides a high-quality
reconstruction. Second, COLMAP software is user-friendly and capable of exporting
reconstruction information in txt file format, facilitating data reading. Lastly, it allows
for the comparison of the results with those derived from COLMAP, ensuring a robust
and accurate analysis.

The high-resolution images were a bit too large for the laptop to run COLMAP as
it always crashed. So we resized all of the images to their half sizes. In this case,
we normalized input points in the way described in [29], the same way Moran did for
Projective Reconstruction.

To ensure that readers can accurately locate the data we employed, we provide specific
details about the dataset utilized. Within the BlendedMVS dataset folder, scenes are
not explicitly named. Therefore, we have assigned them names based on their order,
such as BlendedMVS 16 (the 16th scene data), BlendedMVS 45 (the 45th scene data),
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and so forth. Additionally, considering the considerable number of images in a scene
and the constraints of our current GPU, a TITAN X, we selected 21 scene data. The
BlendedMVS folder contains three sub-folders, from which we selected 14 scenes from
the second sub-folder and 7 scenes from the third one.

3.2.2 Hopkins155 dataset: multiple rigid motions

The second new dataset we use is from [30], called Hopkins 155. We downloaded Part
6, Part 7 and Part 8 from its data page. In these 3 parts, we picked 9 video data
in which there are 2 or 3 motions. Along with a video file, there is a ground truth
file. The ground truth file contains normalized and unnormalized point tracks x and
y respectively, the intrinsic parameter K, motion segmentation ground truth s and so
on. In our case, we just utilized the unnormalized point tracks to make input data for
the neural network and ground truth to check the segmentation performance of our
method. Figure 3.2 shows an example of the scene data.

Figure 3.2: An example of an image containing multiple motions.

In Figure 3.2, the red ”+” symbols represent background points, which are associated
with one specific rigid motion. Conversely, the points denoted by the green ”+”
symbols correspond to a different motion. In this particular case, there are two distinct
rigid motions in total. It’s noteworthy that other datasets may present two or three
separate motions.

3.3 Data preprocessing

Upon acquiring the first new dataset, the primarily useful data consisted of images.
To process these images to obtain point tracks, we employed COLMAP to extract 2D
feature points. One crucial aspect to consider is the tensor size. As we know, the
original tensor size is m · n · 2. However, when fed into the neural network, the tensor
is resized to 2m · n. To visualize the measurements of an image in Python, you can
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extract the coordinates as follows: use ”M[0, :]” to obtain the x coordinates of the
first image, and ”M[1, :]” for the corresponding y coordinates.

3.4 Computational resources and some tools

For implementation and training we used a computer equipped with a TITAN X GPU.
With that device, the time cost is around 11 seconds for the code running 100 epochs
for a scene data containing 116K 2D points. We preprocessed the scene data and saved
them as an npz file on my laptop. When they were done, we transferred them to the
remote computer with a TITAN X CPU and edited the code via VI editor.

The basis of deep learning tool I used is the proposed network by Moran et al. [16],
which can be downloaded on his github account. The artificial intelligence framework
they used is Pytorch. For bundle adjustment, They used the Ceres BA implementation
[31].
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4 3D reconstruction of BlendedMVS
dataset with a single rigid motion

In this chapter, we present the results obtained from testing the network architecture
on part of BlendedMVS dataset. Similar to the methodology employed by Moran et
al. in their paper, we evaluated the model under two different settings: single-scene
optimization and multi-view learning. This rigorous testing approach allows for a
comprehensive understanding of the model’s performance across a variety of scenarios.
Due to hardware limitations and time constraints, in single-scene optimization setting,
we ran the code one time for the majority of the datasets. For the datasets that proved
to be more challenging, we executed the code two times. The hyper-parameters used
in the network training process are as follows:

1. Learning rate: 10−4,

2. Network width: 256,

3. Number of layers in the feature encoder (E): 3,

4. Number of training epochs: 105.

4.1 Single-scene optimization results

In a typical SfM or 3D reconstruction pipeline, the input is a set of images capturing
a single scene from different viewpoints. These images are used to recover the 3D
structure of the scene as well as the camera poses. The term ”single-scene optimiz-
ation” refers to the process of optimizing a network, which processes an input scene
tensor over many epochs. This reduces the loss and gradually yields accurate 3D point
coordinates and camera parameters.

We tested the model on part of the data Yao et al. [28]. The testing result is shown
in table 4.1. Note that ”B 31” means ”BlendedMVS 31” mentioned above.

In table 4.1, the reprojection errors of scenes are shown at epochs 20000, 40000, 70000
and 100000. The time costs are given in seconds and the size of input tensor ”M” are
also included. ”BA repro” in the table means the reprojection error after the bundle
adjustment (BA) and “COL repro” is the reprojection error given by COLMAP. The
boldfaced numbers means the smaller value between ”BA repro” and ”COL repro”.
The numbers in red here means values exceeding the threshold (2 pixels) and marked
as a failure. From table 4.1, we have the following conclusions.
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Table 4.1: The testing result on part of BlendedMVS dataset in the uncalibrated setup.

Scan 2e+4 4e+4 7e+4 1e+5 time/s size of ”M” BA repro COL repro
B 31 10.264 6.382 4.819 5.758 3669 114x6875 0.677 0.383
B 32 6.69 3.333 2.319 1.381 6309 134x10243 0.42 0.429
B 33 7.565 6.763 6.24 10.081 2633 58x3990 2.324 0.295
B 34 111.936 64.863 67.093 93.835 10958 344x20877 6.044 0.355
B 35 2.581 1.163 0.608 0.582 3242 58x4772 0.326 0.333
B 36 2.493 1.001 0.582 0.548 2370 32x2757 0.267 0.272
B 37 3.056 1.26 0.426 0.38 5336 74x9748 0.281 0.299
B 38 1.291 0.775 0.602 0.58 6543 66x9760 0.502 0.46
B 39 2.53 1.156 0.724 0.7 2488 44x2662 0.308 0.314
B 40 11.26 9.47 9.065 9.054 2396 32x3209 3.487 0.267
B 42 39.147 4.453 1.728 1.524 4611 146x10252 0.272 0.298
B 43 7.794 2.888 1.571 1.44 3652 74x7013 0.277 0.285
B 44 23.428 16.316 13.428 13.168 5376 192x12879 2.652 0.325
B 45 2.796 1.636 0.889 0.774 11524 132x15031 0.346 0.339
B 62 68.689 9.223 3.775 3.134 7720 128x17278 0.343 0.357
B 63 24.134 11.218 8.599 8.491 10732 294x23301 0.38 0.479
B 64 3.938 2.069 1.477 1.386 2574 68x5324 0.316 0.345
B 65 1.231 0.781 0.576 0.563 2368 28x2696 0.365 0.415
B 68 10.45 4.943 3.673 3.518 4353 156x9003 0.902 0.265
B 69 39.799 22.96 18.511 18.102 6590 182x13087 1.464 0.36
B 70 115.135 17.26 15.412 22.314 11188 256x123773 3.132 0.273

1. With the epoch increases, the reprojection error often decreases monotonically
while in a few cases, it firstly reaches the minimum and then increases or fluc-
tuates.

2. There are 5 failures compared to 0 failure given by COLMAP.

3. In 11(out of 21) cases, the reprojection errors given by the network and BA are
smaller than those given by COLMAP.

4. For some data like ”B 37”, the reprojection error before BA reaches below a
pixel, which to some extent means the model is good.

Since the result given by stochastic optimization may vary a bit, we re-ran the code
for those failure scans, which are ”B 33”, ”B 34”, ”B 40”, ”B 44” and ”B 70”.

In Table 4.2, ”B 34 new” represents the test result obtained during the second run.
From the table, it is evident that for the scan ”B 34”, the outcome varies significantly,
with a reprojection error of 1.771, indicating a successful optimization. The results for
other scans do not exhibit much variation. Consequently, running the code just once
is deemed sufficient.

To conclude, the network, in general, gives a good performance on new data in single-
scene optimization in uncalibrated setup.
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Table 4.2: The testing result on the failed scans from 4.1 in the uncalibrated setup.

Scan 2e+4 4e+4 7e+4 1e+5 time/s size of ”M” BA repro
B 33 7.565 6.763 6.24 10.081 2633 58x3990 2.324

B 33 new 8.845 7.234 6.671 6.665 2509 58x3990 2.842
B 34 111.936 64.863 67.093 93.835 10958 344x20877 6.044

B 34 new 22.466 14.09 10.146 9.473 10971 344x20877 1.771
B 40 11.26 9.47 9.065 9.054 2396 32x3209 3.487

B 40 new 12.723 10.079 9.578 9.478 2396 32x3209 3.487
B 44 23.428 16.316 13.428 13.168 5376 192x12879 2.652

B 44 new 61.792 25.456 19.402 18.897 5377 192x12879 2.309
B 70 115.135 17.26 15.412 22.314 11188 256x123773 3.132

B 70 new 24.986 17.506 16.036 20.341 11566 256x123773 2.845

4.2 Multi-view learning results

Now we test the network in multi-view learning setting on both old and new data. In
this setting, Moran et al. selected 23 scans to learn, 10 for training, 3 for validation
and 10 for testing. We have 21 new scans and those scans are from 2 groups. Therefore
we choose ”B 31” and ”B 62” for validation, random 9 scans for testing and 10 for
training.

Figure 4.1 records the reprojection errors of validation dataset every 5000 epochs when
training the network.

Figure 4.1: The reprojection errors of 5 scans from validation dataset when training the
network. They are given every 5000 epochs.
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In figure 4.1, ”mean” denotes the mean reprojection error of the 5 scans. Note that
in general the starting reprojection error is over 1000 pixels. From figure 4.1, we can
see that the reprojection errors reach hundreds and even dozens of pixels. With the
training progresses, the reprojection errors don’t decrease much.

Table 4.3 records the evaluation on test set and the result given by Moran is also
included as comparison since the output of a network may vary a bit and we used
different devices.

Table 4.3: The evaluation on testing dataset and comparison between my result and
Moran’s.

scan fine tune after BA Moran’s after BA
Nijo 44.526 0.39 0.39

Drinking Fountain 88.412 0.284 0.28
Dino 4983 11.661 1.093 1.14

Some Cathedral in Barcelona 110.264 2.441 0.51
Skansen Kronan 36.847 0.411 0.41

Dome 45.173 0.249 1.27
Dino 319 13.649 1.455 1.30
Gustav 76.065 0.157 0.16

Sri Veeramakaliamman Singapore 183.972 8.079 5.45
Alcatraz Water Tower 29.714 1.617 0.47

B 32 203.947 0.45 -
B 33 30.464 2.738 -
B 34 71.478 4.597 -
B 35 123.959 1.517 -
B 36 22.412 0.267 -
B 37 123.694 0.335 -
B 63 175.266 23.394 -
B 64 26.261 1.327 -
B 65 154.916 0.365 -

During the evaluation of test data, we utilized the trained network for inference, fine-
tuning (optimizing for an additional 500 epochs), and performed bundle adjustment
(BA). Table 4.3 reveals several findings as follows.

1. For the majority of scenes, the learning outcome is satisfactory, with errors below
2 pixels. However, for 5 scenes, the mean reprojection error after BA is slightly
higher.

2. Among the 10 shared scenes, the errors exhibit a similar pattern.

3. Interestingly, even if the error after fine-tuning is high (e.g., 203), the error after
BA can be significantly reduced (e.g., 0.45).

By defining a success as having an error below 2 pixels and a failure as having an error
above 2 pixels, we can observe from Table 4.3 that the failure rate is approximately
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26%. The failure rate on the training data is 30%, as shown in Table 4.4, with most
failures occurring in the new dataset. In this context, the network’s generalization
performance is somewhat limited.

Table 4.4: The result of evaluation on training dataset

scan fine tune after BA
Corridor 2.53 0.248
De Guerre 12.645 0.219

East Indiaman Goteborg 34.762 0.282
Buddah Tooth 26.941 2.31

Toronto University 7.919 0.503
Sri Thendayuthapani 29.263 0.681

Parg Gate 4.987 0.241
Smolny Cathedral 6.438 0.268
Alcatraz Courtyard 6.033 1.008
Porta San Donato 27.142 0.225

B 38 13.296 0.437
B 39 12.996 1.649
B 40 20.407 2.914
B 42 114.611 3.611
B 43 29.295 4.217
B 44 68.592 0.604
B 45 23.665 4.876
B 68 14.918 0.94
B 69 76.137 6.983
B 70 22.664 0.282

In order to see whether the failure rate results from device and new data, we run the
learning code only on Moran’s provided data. The corresponding results are included
in tables 4.5 and 4.6.

Table 4.5: The result of evaluation on Moran’s testing dataset.

scan fine tune after BA
Nijo 46.701 0.39

Drinking Fountain 71.053 3.065
Dino 4983 12.959 1.15

Some Cathedral in Barcelona 124.111 2.309
Skansen Kronan 31.616 0.411

Dome 49.535 0.278
Dino 319 17.206 1.458
Gustav 51.437 0.532

Sri Veeramakaliamman Singapore 134.476 7.241
Alcatraz Water Tower 35.399 2.689

From Tables 4.5 and 4.6, we observe that the optimization of ”Alcatraz Water Tower”
and ”Drinking Fountain” failed, which differs from the results in Table 4.3. Never-
theless, the outcomes for most scenes remain similar. In this case, we believe that
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Table 4.6: The result of evaluation on Moran’s training dataset

scan fine tune after BA
Corridor 1.555 0.259
De Guerre 11.741 0.236

East Indiaman Goteborg 2.444 0.346
Buddah Tooth 11.74 2.354

Toronto University 6.034 0.78
Sri Thendayuthapani 30.143 0.276

Parg Gate 8.671 0.698
Smolny Cathedral 5.11 0.295
Alcatraz Courtyard 6.295 0.688
Porta San Donato 12.807 1.089

the failure rate does not stem from the device or new data. Consequently, the net-
work’s performance in terms of generalization seems to be somewhat limited within
the multi-view learning setup.

When comparing the results produced by our computer with those obtained using
Moran’s device, a slight difference can be observed. Therefore, it is reasonable to use
our results as the baseline for future comparisons with further work in the subsequent
chapters.
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5 Improvement on neural network
structure

In this chapter, we try to improve the network to have a better performance both in
single-scene optimization and multi-view learning settings. We firstly add more layers
since the original feature encoder layer has only 3 layers. Then we design a architecture
similar to ResNet in which people introduce the residual structure to a convolutional
neural network that allows for both deeper architecture and better performance.

5.1 Adding 1 and 2 extra layers to the feature en-

coder layer

The architecture of a network matters a lot. Now we try to improve the proposed
network, expecting to get lower reprojection errors. Moran et al. [16] did the hyper-
parameter research regarding the learning rate, network width for the encoder E and
2 heads, number of layers in {2, 3}, the depth threshold h and the std normalization
for the layer output. We can see that the depth of the network is not deep. So we
firstly add 1 and 2 extra layers to the encoder E. We call the 2 networks ”Dense-4”
and ”Dense-5” because they have 4 and 5 layers in the encoder layer, respectively.

5.1.1 Single-scene optimization results

Firstly we test the new networks in single-scene optimization setting on those scenes
that are difficult for the old network to optimize. The result is recorded in table 5.1.
And to see if the network has been improved or not, we include the previous result.

In table 5.1, ”Dense-3” means the network proposed by [16]; ”repro BA” means the re-
projection error after BA. Boldfaced numbers are smaller. ”-” denotes missing entries,
meaning I just optimize the scene for 40000 epochs. There is a scene named ”Buddah
Statue” which is hard to optimize but not included in the table because it has many
tracks for the computer to allocate enough CUDA memory. ”Skansen Lejonet” is also
not included in table 5.1. The reprojection errors at epochs 20000, 40000, 70000 and
100000 before BA are assistant metrics of determining whether the network architec-
ture is good or not. The reprojection errors after BA, denoted as ”repro BA” in the
table, is the main metric.

From table 5.1, there are 4 successful cases each for ’Dense-4’ and ’Dense-5’. With
the increase of the number of layers, the time costs increases too. Among these 9
”difficult” scenes, ”Dense-5” gives 5 smaller reprojection errors over ”Dense-4” and
”Dense-3”.
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Table 5.1: The evaluation result on ”difficult” scenes in single-scene optimization setting.

scan 2e+4 4e+4 7e+4 1e+5 time/s repro BA architectures

B 33
9.196 7.234 6.761 6.651 2509 2.842 Dense-3
10.259 7.047 10.186 9.01 3056 2.994 Dense-4
7.565 5.978 4.958 4.932 3526 2.046 Dense-5

B 40
12.723 10.079 9.578 9.478 2428 2.88 Dense-3
17.865 9.86 8.463 8.294 2835 3.837 Dense-4
14.835 5.9 1.795 1.514 3226 0.253 Dense-5

B 44
61.792 25.456 19.402 18.897 5377 2.309 Dense-3
22.86 14.75 10.598 12.855 7131 1.986 Dense-4
23.355 15.651 - 13.261 - 5.018 Dense-5

B 70
24.986 17.506 16.036 20.341 11566 2.845 Dense-3
19.991 14.28 12.902 12.948 14339 2.983 Dense-4
18.869 13.365 10.771 11.023 18953 1.955 Dense-5

Folke Filbyter
29.063 19.183 - - 2335 3.964 Dense-3
17.816 12.298 - - 2930 1.324 Dense-4
18.721 15.699 - - 3689 0.877 Dense-5

GustavIIAdlof
19.261 18.582 17.303 17.375 3859 5.502 Dense-3
19.87 18.886 18.697 18.74 5068 5.902 Dense-4
20.101 19.438 19.178 18.827 6178 5.989 Dense-5

Jonas Ahlstromer
17.572 15.737 15.224 15.225 2423 4.496 Dense-3
17.118 15.278 14.45 14.644 2834 0.185 Dense-4
17.28 13.933 13.287 12.918 3303 4.855 Dense-5

Urban II
25.935 21.349 19.435 19.518 14682 6.909 Dense-3
20.15 17.336 16.711 17.846 19909 7.594 Dense-4
20.502 21.098 20.332 22.046 26542 6.522 Dense-5

Tsar Nikolai I
13.502 10.43 - - 11270 1.877 Dense-3
13.839 8.097 - - 14448 1.655 Dense-4
18.068 7.935 - - 18729 1.665 Dense-5

To conclude, in single-scene optimization setting, adding 1 or 2 extra layers does
improve the performance of the network.

5.1.2 Multi-view learning results

Next we test ”Dense-4” and ”Dense-5” in multi-view learning setting where the net-
work first learns things from the train set and then gives predictions (fine tune and
BA) of test scenes. The result is recorded in table 5.2 and the testing result of previous
architecture is also included to be compared with.

Note that the results are based on running the multi-view learning code for only
20000 epochs partly because 21 new scenes were added to the dataset and the running
process took much time and partly because from many experiments we found that the
reprojection error after learning 10 epochs and after BA was still very small in most
cases.
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Table 5.2: The evaluation on test set and comparison between the result of the new archi-
tectures and of the old architecture.

scan
Dense-3 Dense-4 Dense-5

fine tune after BA fine tune after BA fine tune after BA
Nijo 44.526 0.39 53.889 0.39 54.043 0.39

Drinking Fountain 88.412 0.284 24.217 0.28 31.409 0.28
Dino 4983 11.661 1.093 9.07 1.039 9.294 0.955

Some Cathedral 110.264 2.441 104.809 0.761 98.663 4.781
Skansen Kronan 36.847 0.411 26.56 0.411 25.766 0.411

Dome 45.173 0.249 117.958 0.483 35.331 0.325
Dino 319 13.649 1.455 11.845 1.348 11.46 1.293
Gustav 76.065 0.157 39.78 0.156 24.785 0.156

Sri Veeramakaliamman 183.972 8.079 126.487 9.978 103.263 7.163
Alcatraz Water Tower 29.714 1.617 30.496 1.599 30.006 2.498

B 32 203.947 0.45 86.969 0.643 89.709 0.504
B 33 30.464 2.738 29.389 2.125 27.364 2.154
B 34 71.478 4.597 64.322 2.383 68.038 2.323
B 35 123.959 1.517 123.155 0.399 77.096 3.789
B 36 22.412 0.267 17.392 0.267 15.688 0.267
B 37 123.694 0.335 83.608 5.738 81.229 0.281
B 63 175.266 23.394 169.686 19.822 205.49 16.762
B 64 26.261 1.327 22.933 1.566 23.456 1.353
B 65 154.916 0.365 99.244 0.365 1125.586 0.365

From table 5.2, we can see that firstly there are 5, 5 and 7 failed cases for ”Dense-3”,
”Dense-4” and ”Dense-5” respectively. Then ”Dense-4” and ”Dense-5” often give
better starting solution, which means the reprojection errors after fine-tuning are
smaller. For reprojection errors after BA, there are 7 cases that ”Dense-3” gives
the smallest numbers and 10, 12 cases for ”Dense-4” and ”Dense-5” respectively.

To conclude, in multi-view learning setting, adding 1 or 2 layers to the feature encoding
layer improves the performance of the proposed network.

5.2 Introducing the residual structure to the fea-

ture encoder layer

Since the limitation of time and equipment, we didn’t try to find how many layers gives
the best performance by adding 1 layer each time to the encoder layer. We know that
with the number of layers increases, the performance of a network will eventually fall
down, which is the so-called degradation problem (high training and testing errors).
The residual structure is exactly one of the solutions. So in this section, we introduce
the residual structure to the encoder layer of the network. We design the encoder
layer with the residual structure, which is shown in figures 5.1. As we can see, the
layer consist of 2 basic blocks that is comprised of 2 linear equivariant layers. Each
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layer like ”layer 1” in the figure also contains a Batch Normalization layer and a ReLU
layer. Since network shown in figures 5.1 consists of 2 basic blocks, we call it ”Res-2”
for convenience.

Figure 5.1: The designed architecture of a residual network, adding input to the output of
the second layer and adding y2 to the output of the last layer.

5.2.1 Single-scene optimization results

We test the new network in single-scene setting on those scenes that are difficult for
the old network to optimize like before. The result is recorded in table 5.3. For the
convenience of making comparison, we include the results of ”Dense-4” and ”Dense-
5”. ”Dense-3”’s result is not included because the other 2 architectures are better
according to section 5.1.

From table 5.3 we can see that ”Res-2” only gives 1 successful optimization case and 1
smallest reprojection error. The time cost for ”Res-2” is larger than that for ”Dense-
4”. So in single-scene optimization setting, ”Res-2” is not as good as ”Dense-4” or
”Dense-5”.

5.2.2 Multi-view learning results

Next we test the new network in multi-view learning setting. The result is given in
table 5.4. For the result, we only record the reprojection errors after BA because
smaller reprrojection error after BA is our ultimate purpose.

In Table 5.4, ’Dense-4’ shows somewhat superior performance over ’Res-2’ when eval-
uated from the perspective of failure cases. From the point of smaller errors, there
are equal number of cases for ”Dense-4” and ”Res-2”. All in all, ”Res-2” performs as
good as ”Dense-4” in multi-view learning setting.
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Table 5.3: The evaluation result on ”difficult” scenes in single-scene optimization setting.

scan 2e+4 4e+4 7e+4 1e+5 time/s repro BA architectures

B 33
10.259 7.047 10.186 9.01 3056 2.994 Dense-4
7.565 5.978 4.958 4.932 3526 2.046 Dense-5
9.229 43.454 8.001 8.106 3241 2.029 Res-2

B 40
17.865 9.86 8.463 8.294 2835 3.837 Dense-4
14.835 5.9 1.795 1.514 3226 0.253 Dense-5
22.303 10.785 10.751 10.825 2959 1.84 Res-2

B 44
22.86 14.75 10.598 12.855 7131 1.986 Dense-4
23.355 15.651 - 13.261 - 5.018 Dense-5
18.468 13.134 11.326 10.819 7713 3.114 Res-2

B 70
19.991 14.28 12.902 12.948 14339 2.983 Dense-4
18.869 13.365 10.771 11.023 18953 1.955 Dense-5
21.71 16.94 18.872 14.004 15951 3.244 Res-2

Folke Filbyter
17.816 12.298 - - 2930 1.324 Dense-4
18.721 15.699 - - 3689 0.877 Dense-5
14.392 12.874 - - 3109 1.489 Res-2

GustavIIAdlof
19.87 18.886 18.697 18.74 5068 5.902 Dense-4
20.101 19.438 19.178 18.827 6178 5.989 Dense-5
22.44 19.879 19.283 19.228 5398 5.973 Res-2

Jonas Ahlstromer
17.118 15.278 14.45 14.644 2834 0.185 Dense-4
17.28 13.933 13.287 12.918 3303 4.855 Dense-5
16.961 15.33 14.194 14.026 2920 3.808 Res-2

Urban II
20.15 17.336 16.711 17.846 19909 7.594 Dense-4
20.502 21.098 20.332 22.046 26542 6.522 Dense-5
29.888 53.116 34.667 40.768 21816 8.053 Res-2

Tsar Nikolai I
13.839 8.097 - - 14448 1.655 Dense-4
18.068 7.935 - - 18729 1.665 Dense-5
19.209 16.229 - - 15813 4.699 Res-2

5.3 Test of the best architecture on all scene data

From previous result we can see that ”Dense-4” and ”Dense-5” are good both in single-
scene optimization and multi-view learning setting. Considering the time cost, I think
”Dense-4” is better.

In previous experiments we just tested new networks on those ”difficult” scenes. Now
we test the best network on all data that we found and made from [28]. For the
convenience of doing comparison with that of ”Dense-3”, we copy table 4.1 and paste
it here as table 5.5. In table 5.5, we insert a column ”Dense-4” after ”BA repro”,
which is the result of reprojection errors.

From table 5.5, we can see that ”Dense-4” is a bit better than ”Dense-3” as expected,
but not better than ”COLMAP” since ”COLMAP” always gives good results(errors
below 0.5 pixel), even though for some scenes ”Dense-3” and ”Dense-4” give better
results.
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Table 5.4: The evaluation on test set and comparison between the results of new architec-
ture and of the old 2 architectures.

scan Dense-4 Dense-5 Res-2
Nijo 0.39 0.39 0.39

Drinking Fountain 0.28 0.28 0.28
Dino 4983 1.039 0.955 1.003

Some Cathedral 0.761 4.781 0.95
Skansen Kronan 0.411 0.411 0.411

Dome 0.483 0.325 0.296
Dino 319 1.348 1.293 1.294
Gustav 0.156 0.156 0.156

Sri Veeramakaliamman 9.978 7.163 5.578
Alcatraz Water Tower 1.599 2.498 1.847

B 32 0.643 0.504 0.435
B 33 2.125 2.154 3.716
B 34 2.383 2.323 2.535
B 35 0.399 3.789 0.326
B 36 0.267 0.267 0.267
B 37 5.738 0.281 2.27
B 63 19.822 16.762 36.692
B 64 1.566 1.353 1.574
B 65 0.365 0.365 8.793

Table 5.5: The testing result on part of BlendedMVS dataset in the uncalibrated setup.

Scan 2e+4 4e+4 7e+4 1e+5 time/s BA repro Dense-4 COL repro
B 31 10.264 6.382 4.819 5.758 3669 0.677 0.385 0.383
B 32 6.69 3.333 2.319 1.381 6309 0.42 0.42 0.429
B 33 7.565 6.763 6.24 10.081 2633 2.324 2.994 0.295
B 34 111.936 64.863 67.093 93.835 10958 6.044 2.682 0.355
B 35 2.581 1.163 0.608 0.582 3242 0.326 0.326 0.333
B 36 2.493 1.001 0.582 0.548 2370 0.267 0.267 0.272
B 37 3.056 1.26 0.426 0.38 5336 0.281 0.281 0.299
B 38 1.291 0.775 0.602 0.58 6543 0.502 0.502 0.46
B 39 2.53 1.156 0.724 0.7 2488 0.308 0.308 0.314
B 40 11.26 9.47 9.065 9.054 2396 3.487 3.837 0.267
B 42 39.147 4.453 1.728 1.524 4611 0.272 0.272 0.298
B 43 7.794 2.888 1.571 1.44 3652 0.277 0.277 0.285
B 44 23.428 16.316 13.428 13.168 5376 2.652 1.986 0.325
B 45 2.796 1.636 0.889 0.774 11524 0.346 0.346 0.339
B 62 68.689 9.223 3.775 3.134 7720 0.343 0.35 0.357
B 63 24.134 11.218 8.599 8.491 10732 0.38 0.38 0.479
B 64 3.938 2.069 1.477 1.386 2574 0.316 0.316 0.345
B 65 1.231 0.781 0.576 0.563 2368 0.365 0.365 0.415
B 68 10.45 4.943 3.673 3.518 4353 0.902 0.253 0.265
B 69 39.799 22.96 18.511 18.102 6590 1.464 1.338 0.36
B 70 115.135 17.26 15.412 22.314 11188 3.132 2.983 0.273
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6 3D reconstruction of Hopkins 155
dataset with multiple rigid mo-
tions

In this chapter, we do 3D reconstruction of the second dataset we found that consists
of multiple rigid motions. The content of this chapter can be divided into 2 sections.
Firstly, we segment the motions and evaluate the segmentation result. Lastly we
reconstruct the object for each motion separately using the best model, ”Dense-4”.

6.1 Motion segmentation and performance evalu-

ation

The idea of segmentation is that we firstly detect the object (like cars) and locate them
with some coordinates. Then based on the 2D point tracks provided by Hopkins 155
dataset, determine if the point is inside some boundaries set up by some coordinates in
the first step. For example, if there are 10 points in total are inside a boundary, then
the 10 points are considered as being part of the same motion. The other points are
attributed to other motions. This method forms the basis of our motion segmentation
approach.

In the first step, the tool we used is YOLOV7 [22] (+Deep Sort [23]) which more
quickly gives more precise result than previous YOLO versions. When the algorithm
detects an object, it will classify it as some category and draw a rectangular box to
surround it. The box is mainly based on 4 values, which are the coordinates of 2 points
at top left and bottom right. An example illustrating those can be seen in figures 2.9
and 2.10.

However, there are 2 main issues that need to address. We take a video file as an
example and give the solutions to corresponding problems. Generally put, the first
issue is that the shape of a segmentation ground truth provided by Hopkins 155 dataset
is inconsistent with the number of target objects detected by YOLO. The second issue
is that there are potential location errors in bounding boxes drawn by YOLO.

The video consists of 25 frames. The motion we would like to reconstruct is a red
truck with an id 12. The corresponding point tracks y have a shape of 3 × n × 25.
3 means each point is denoted in homogeneous coordinate like (x, y, 1)T ; n represents
the number of point tracks and 25 is the number of frames in the video. The first issue
is that an object may be classified as different categories. Out of the 25 frames, there
are 22 frames in which the red truck is correctly classified. However there is a fact
that the id 12 corresponds to 23 objects which means there is an object that is not
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classified as a truck but has an id 12. The object we find is the exactly the red truck
but classified as a car. The solution to the first issue is that we ignore the category
and select those objects with id 12. Then we can have 23 boxes (coordinates). The
third dimension of point tracks y is 25, which corresponds to 25 frames in the video
file. With some tricks we locate which frame a box is from. After that we remove
some data from y and obtain new point tracks ynew which has a shape of 3× n× 23.
Note that with YOLO, we can also obtain the coordinates of 23 boxes named boxes12
with a shape of 23× 4.

What’s next is to determine if a point is in a box or not. For example, for 1 ≤ i ≤ 23
and 1 ≤ j ≤ n, I feed ynew[:, j, i] and boxes12[i, :] into a function which measures the
distance between the point and the specific box. Algorithm 1 is the pseudo code that
illustrates the process in detail.

Algorithm 1 Pseudocode for determining if a point is inside a box

1: counter ← 0
2: for j = 1 to n do
3: for i = 1 to 23 do
4: distance← f(ynew[:, j, i], boxes12[i, :])
5: if distance < threshold then
6: counter ← counter + 1
7: end if
8: end for
9: if counter > threshold count then

10: ynew[:, j, i]← motion1
11: end if
12: end for

In algorithm 1, n is the number of points tracks. As can be seen, there are 23 points
tracks in the example. For each point track, (1) Looping over the 23 points and 23
boxes, we compute the distance between a point and a corresponding box. If the
distance is below some threshold, we consider the point is inside the box. (2) Assume
there are 10 points are inside corresponding boxes. we compare 10/23 with another
threshold (we call it frequency threshold). If 10/23 is larger than the threshold, the
point track is assigned with label 1 or 0 otherwise. Looping over n point tracks, we
can assign 1 or 0 to every point track. In the end, those point tracks with label 1 are
part of the same motion. Those point tracks with label 0 can be further divided into
background and other motions with the same method described above.

After many trials, we set the frequency threshold to 0.95. This high value can solve
a problem that in some frames points from other motions are inside the boxes. The
next issue is that some points of a car may be outside of the box corresponding to
the car because of location errors. To address this, the threshold for the distance
between a point and a box is set to 2 pixels. If the distance is below 2, then the point
is considered as inside the box. The rules of computing the distance are : (1) If the
point is inside the rectangle, the distance is 0. (2) If the point is on the left, right,
top, or bottom side of the rectangle, the distance is the horizontal or vertical distance
from the point to the rectangle boundary. (3) If the point is outside the rectangle but
not on any of the four corners, the distance is the Euclidean distance from the point
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to one of the four corners of the rectangle. They can be shown in figures 6.1 - 6.4.

Figure 6.1: A plot shows positions
of a point and a box
and the distance. The
point is inside the box.

Figure 6.2: A plot shows positions
of a point and a box
and the distance. The
point is on the left side
of the box.

Figure 6.3: A plot shows positions
of a point and a box
and the distance. The
point is under the bot-
tom side of the box.

Figure 6.4: A plot shows positions
of a point and a box
and the distance. The
point is on the out-
side of the box and is
closest to the bottom
left corner of the box.

After addressing those issues, we obtain a motion segmentation result named sours.
Comparing it to the ground truth s, we have the following levels of accuracy in table
6.1. Note that we selected 9 video files from Hopkins 155 Part6, Part7 and Part8. Each
file contains 2 or 3 motions. ”Nbr mo” in table 6.1 means the number of motions.

Table 6.1: The segmentation accuracy results of 9 video files. The first row is the file name.

Name cars1 cars2B cars3 cars4 cars5 cars6 cars7 cars8 cars9
Nbr mo 2 3 3 2 3 2 2 2 3
Accuracy 100% 99.81% 100% 100% 100% 99.78% 99.80% 100% 99.55%

We can see that the smallest value is 99.55% and there are 5 100% accuracy. So this
segmentation method is good on these 9 video files. There is an extra advantage for
this method that when 2 cars move in the same direction and at the same speed, some
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methods may consider them as 1 motion but our method will not make this mistake
because 2 cars will be surrounded with 2 boxes and motions are segmented based on
their own boxes.

6.2 Reconstruction of multiple motions

Based on the segmentation result in last section, we reconstruct those motions using
the best model ”Dense-4” described in previous chapters. There are 13 motions (not
including background) in total from 9 video files and we pick 6 motions to do 3D
reconstruction in both single-scene optimization and multi-view learning settings.

6.2.1 Single scene optimization results

The result is recorded in table 6.2.

Table 6.2: The testing result on part of the segmented motions from Hopkins 155 dataset
in the uncalibrated setup.

Scan
Epochs

2e+4 4e+4 7e+4 1e+5 time/s after BA

cars1 motion1 1.106 1.083 1.287 1.226 2662 0.906
cars2B motion2 0.272 0.277 0.271 0.271 2635 0.223
cars3 motion1 0.358 0.349 0.342 0.342 2565 0.302
cars3 motion2 0.499 0.49 0.48 0.477 2762 0.373
cars5 motion1 0.398 0.397 0.397 0.397 2681 0.365
cars5 motion2 0.345 0.342 0.344 0.344 2679 0.309

From table 6.2, we can see that for all of the 6 motions, the reprojection errors after
BA are below 1 pixel, which means single-scene optimization succeeds for all scenes.
What’s more, the reprojection errors before BA from 20000 epochs to 100000 epeochs
are all below 2 pixels. It means that the improved network gives good starting solution
for BA for those 6 motions. The reason is mainly because the numbers of 3D points
are very small which can be shown by the time cost to some degree. Compared to the
time costs in Chapter 5, the time costs in table 6.2 are pretty cheap.

6.2.2 Multi-view learning results

In this setting, we add the 6 segmented motions to the dataset and put them all as
test dataset, which means the train dataset is the same to that of Section 5.2. The
result of reprojection errors before and after BA are recorded in table 6.3.

As can be seen, the result for the same test data almost keeps the same to that in
Section 5.2. As for data from Hopkins 155, the inference result is similar to its
optimization result in subsection 6.2.1. The reconstruction of data from Hopkins
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Table 6.3: The evaluation on test set and comparison between the result of new architecture
and of old architecture.

scan before BA after BA
Nijo 42.765 0.39

Drinking Fountain 30.031 0.28
Dino 4983 10.611 0.978

Some Cathedral 106.743 5.607
Skansen Kronan 27.092 0.411

Dome 42.338 0.562
Dino 319 12.371 1.457
Gustav 49.329 0.157

Sri Veeramakaliamman 113.409 8.845
Alcatraz Water Tower 29.759 1.881

B 32 85.696 0.436
B 33 30.966 2.732
B 34 65.542 2.098
B 35 75.091 1.870
B 36 18.990 0.267
B 37 78.265 3.298
B 63 203.537 25.878
B 64 21.232 1.325
B 65 85.296 1.460

cars1 motion1 1.417 0.904
cars2B motion2 0.542 0.209
cars3 motion1 0.660 0.290
cars3 motion2 0.676 0.373
cars5 motion1 2.890 0.365
cars5 motion2 0.812 0.309

155 succeeds if error below 2 pixels defines a success. What’s more, before BA, the
network already gives a good starting solution since the errors are all below 2 pixels.
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7 Conclusion

In this chapter, we present our conclusions. We also acknowledge the limitations of
our work and suggest potential directions for future research.

7.1 Research objectives

In this section, we revisit the research objectives outlined in the goal document and
assess the extent to which they have been achieved during the course of this master’s
thesis project.

1. Evaluate the performance of deep learning methods for Structure from
Motion (SfM) problems: The test data was enriched using the BlendedMVS
dataset. The project successfully investigated the neural network’s ability to
provide good starting solutions for bundle adjustment. Comparisons were made
with COLMAP, demonstrating that the deep learning method is not as good as
COLMAP since it does not always yield a good solution.

2. Improve network performance and output quality: Several network ar-
chitectures were explored, and the network was trained on the enriched dataset,
leading to moderate improvements in the network’s performance. The quality
of the network output was evaluated using reprojection errors, which provided
insights into the effectiveness of the proposed method.

3. Extend the method to moving and deforming objects: The focus of this
part was on moving objects rather than deforming objects. Instead of using a
clustering method for motion segmentation, the project employed YOLOv7 and
Deep Sort, achieving a high segmentation accuracy of approximately 100%.

In summary, the project made noteworthy progress in addressing the research object-
ives outlined in the goal document. While some objectives were fully achieved, others
warrant further investigation and development. The work presented in this thesis lays
a foundation for future research in the field of Structure from Motion, with potential
implications for computer vision.

7.2 Limitations and Regrettable Aspects

Despite the successful application and acquisition of a GPU TITAN X, several lim-
itations and regrettable aspects emerged during the course of this 4-month master’s
thesis project:
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1. Single-scene optimization tests in Chapter 5 were performed on a limited number
of ”difficult” scenes rather than the entire scene dataset.

2. Architectural tests were conducted only in the Projective setting, while Moran’s
work also explored the Euclidean setting.

3. Additional ideas for network improvement were not explored due to time con-
straints.

4. State-of-the-art methods from [16] were not tested on any scene data.

5. Multi-view training was conducted for only 20,000 epochs, in contrast to the
100,000 epochs used by Moran.

6. The BlendedMVS dataset, which contains approximately 82 scenes, was under-
utilized, with only 21 scenes being tested.

7. The majority of test cases were run only once, which may result in variability in
the reported results.

8. Deeper residual networks with more than 4 layers were not tested due to com-
putational limitations.

7.3 Future Work

Given the opportunity to continue this research, the following directions could be
pursued:

1. Address the limitations and regrettable aspects mentioned above.

2. Perform dense reconstruction and improve the quality of the final model.

3. Design and train a network to directly extract feature points and perform point
matching, followed by reconstruction work and potentially replacing bundle ad-
justment with another network.

4. Investigate traditional projective methods to determine if a network can replace
them.

5. Generalize the proposed method for use with deforming objects, expanding the
potential applications of the approach.

By addressing these limitations and exploring future research directions, the current
work can be further developed and refined, potentially yielding significant advance-
ments in the field.
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