FOG DETECTION USING AN
ARTIFICIAL NEURAL
NETWORK

QUANWEI LI, TIANCHENG MA

Master’s thesis
2023:E48

LUND UNIVERSITY

Faculty of Science
Centre for Mathematical Sciences
Mathematical Statistics

WNYVIILVINTHLVIN INNYVILNIIDS WNYLNID

Abstract

This project studies a method of image-based fog detection directly from a
camera without using the transmissometer.

Fog can be detected using transmissometers which could be a very costly
approach. This thesis presents an image-based approach for fog detection
using Artificial Neural networks. A neural network model will be used to
classify images either into two classes, whether it contains fog or not, or into
multiple fog intensity classes, based on visibility derived from Koschmieder’s
Law. By applying neural network model foggy weather can be detected
directly from surveillance cameras and makes fairly accurate predictions,
which is useful in many aspects of industry and life.

The goal of the thesis is to improve on previous methods that have used
neural networks for similar tasks. To achieve the goal, the work starts with
creating a suitable dataset for training and validation based on a combination
of real images and images generated from Unreal Engine or other simulation
scrips. And then, create an effective model based on neural network with the
dataset to solve the classification problem. Finally, validate the completed
model and implement it on a real surveillance camera to test the actual
performance, the model will be retrained if necessary according to the test
result.

Keywords: Machine Learning, Deep Learning, Image Analysis, Computer
Vision

Acknowledgement

First of all, our sincere thanks to our kind and knowledgeable supervisors
Johan Lindstrém (LU) and Joakim Viklund (AXIS Communications AB)
for providing the precious opportunity to work on this project. We could not
imagine progressing through the hardest parts of the project without their
kind support, informative discussions and valuable feedback. We are forever
grateful.

In addition, we would like to thank our colleagues at the PTZ Imaging
group for helping us come up with brilliant ideas. We are grateful for you
all making us feel like a part of the team and welcoming us in the best way
possible.

Finally, we would like to thank our parents and friends for their support
during the hardest times of the thesis project and for taking an interest in
our project.

Contents

Introduction
1.1 Previous Works
1.2 Project Description

Data Collection and Selection

2.1 Collecting data from Trafikverket
2.2 Simulating Images 0oL
2.3 Usage of Unreal Engine 5.

Theory: Machine Learning

3.1 The Artificial Neural Network
3.1.1 Imputlayer
3.1.2 Deep Feed-forward Neural Network
3.1.3 Convolutional Neural Network
3.14 Max-pooling
3.1.5 Choices of activation functions

3.2 Edge detection algorithms

3.3 Loss and Gradient Descent Training
3.3.1 Cross-entropy Loss
3.3.2 Result of trainingo

Methods

4.1 Overviewo
4.1.1 Image processing pipeline
4.1.2 Trainingo
4.1.3 Validation process

4.2 Analysis
4.2.1 Data set and image processing pipeline

4.2.2 Training the Neural Network Model 27

4.2.3 Tweaks to the networks 29

4.2.4 Validations 29

4.2.5 Adjustmento 30

4.2.6 Tweaks and retrain 31

5 Experiment Results 32
5.1 Binary Classification Neural Network 33
5.2 4-class Classification Neural Network 35
5.3 Model Infeasability 38
5.4 Results and Discussion 40
5.4.1 Results for the binary classification model 40

5.4.2 Results of the 4-class classification model 41

5.5 Conclusions and Possible Future work 42

A Images 47
A.1 Simulated images from Unreal Engine 5. 48
A.2 Simulated images from Foggy Cityscape 49

Chapter 1

Introduction

Foggy weather could severely affect image quality and decreases the web-
cam user experience. In addition, foggy weather poses a significant risk in
transportation. Reduced visibility can seriously affect autonomous vehicles
with image sensors and other applications such as sector and public safety
surveillance, highway safety supervision, that require excellent visibility in
the footage. Defogging filters are now widely applied to cameras, yet they
come with the cost of reduced image quality. Therefore, one needs to think of
a method to detect the reduction in visibility and determine when the filter
should be applied to improve image quality.

Usually, the visibility measurement is performed by transmissometers,
consisting of a ray transmitter emitting rays and a receiver that receives
and detects the loss of ray energy. The measure is robust, yet the cost and
complexity of such sensors are often prohibitive. Therefore, image-based
visibility estimation methods would provide an interesting alternative. Most
work regarding visibility estimation are based on the Koschmieder law which
suggests that visibility is inversely proportional to the atmospheric extinction
coefficient. The coefficient describes how the loss in light ray energy increases
when passing through increasing aerosol concentrations.

Several previous studies have been carried out to achieve image-based
visibility detection without using transmissometers, where some use image
component analysis ([19, 7]) and some use artificial intelligence approaches
([12, 4]).

1.1 Previous Works

In 2016, [19] presented an image-based method of estimating air transmissi-
bility through landmark discrimination via edge detection and using a dark-
channel prior. That work was an extension of previous work from [7], which
uses the dark channel prior and edge detection. Another method, presented
in [11] uses images from a vehicle and is applied to estimate the horizon
line based on an edge detection algorithm finding the point where the road
feature (e.g. lane markings) vanishes. The author of [19] used the Sobel
edge detection algorithm to detect the edge of the pedestrian crossing and
the lane markings on the ground. Lastly, in [2], the authors used similar
approaches which also includes Sobel edge detection. In addition, Hough
line detection([8]) is used to estimate vanishing points to segment the road
and sky, and finally proceed with all the image component information to
classify various intensities of fog. However, this method mainly works on
road images.

On the other hand, some research papers have applied Artificial Neural
Networks to classify weather conditions and different visibility classes. In
2018, [12] presented the method of using a Deep Feed-Forward Neural Net-
work to perform binary visibility classification based on road and weather
cameras across Amsterdam. Analysing the model fitting result presented
from [12], the model yielded high accuracy solely due to the sheer amount
of images used. Judging from the confusion matrix, the model did not per-
form well because of the heavily imbalanced dataset that contains way more
non-foggy pictures than foggy pictures, resulting in a high false negative rate
and low F1l-scores of 0.19, 0.35, 0.51 and 0.65 for each of the models they
created.

The model presented in [12] does not seem appropriate as the data selec-
tion was not carefully performed. In particular, using a deep Feed-Forward
Neural Network will not excel in dealing with images. On the bright side, [12]
shows that applying an artificial neural network is a possible solution to fog
detection. In another study [4], the researchers used Convolutional Neural
Networks to classify different intensities of fog based on visibility, producing
very robust results. However, their image data were mainly based on the
FROSI (Foggy ROad Sign Images) dataset which only contains simulated
road images with traffic signs and fog. Hence, this neural network model
could be less useful when implemented on cameras located in more diverse

environments. The work presented in [4] indicates a possibility to use gen-
erated images for training, and using Convolutional Neural Network models
seems very effective.

The overview of previous work motivated us to try the artificial neural
network approach for image-based fog detection using image data that could
be gathered from real life, from the internet or obtain by synthetic image
generation using fog generation schematics based on Koschmieder law.

1.2 Project Description

The project aims to create several artificial neural network models that can
detect visibility reduction and then use the predictions to determine which
defogging filter to apply to improve image quality.

i
¥ L nuan Y
F‘ﬂ T

1L

(a) A photo without fog. (b) A foggy photo.

Figure 1.1: Two image examples of foggy and clear photos. Author: Quanwei
Li

The first step was to collect image data for model training and valida-
tion (see Chapter 2). This includes but is not limited to a) gathering images
from the internet, b) fetching publically available web camera images through
open-data APIs and c) taking pictures in real life (see 1.1. In addition,
the weather data was collected from Trafikverket (Swedish Transportation
Administration) and SMHI (Swedish Meteorological and Hydrologic Insti-
tution). The weather data will be used for the detection task of multiple
intensities of fog. In addition to real pictures, synthetic image generation

will be used to generate more image data for training, so the network will
yield good performance on a diverse image dataset. The data will be mod-
elled using a neural network and an overview of the theory is given in Chapter
3

The second step (see Chapter 4.2.1 - 4.2.3) is to construct a pipeline
that processes the images into regular sizes. After that, the neural network
model design will be carried out, including proposing the network type, the
network structure, the choices of activation functions, training methods and
training regularization options etc. The network will be designed from small
models to large models to avoid model underperforming or over-training.
The network will be trained, validated and tested using different data set, to
achieve robust model performance, and out-of-sample validation.

The third step (see Chapter 4.2.4 - 4.2.6) is to perform an extra test-
ing phase of the neural network to diagnose the model’s performance. This
is done by using image data that were not involved in the train-validate-
test dataset, for example, pictures taken from mobile phones and pictures
provided by Trafikverket. The extra testing phase will provide diagnostic
results and the neural network and dataset will be improved based on the
performance indicators and which images it failed to classify correctly. The
extra testing is an attempt to identify scenes for which the network performs
poorly and could benefit from additional training data. Once the extra test-
ing phase is carried out successfully, the neural network model will be tested
on videos for the demo. If the video test is completed, the model will be
connected to a webcam live stream for the product showcase. The results
and conclusions are given in Chapter 5, with some example images presented
in the appendix.

Chapter 2

Data Collection and Selection

This section describes how the data was collected and processed for the neural
network model training. Throughout the project, the images will be collected
using the following methods:

1. Searching for images in Google Images.

2. Gather road camera/weather camera clips, based on the visibility mea-
sured at nearby weather stations equipped with a transmissometer.

3. Simulate images with fog using Unreal Engine 5 or other image pro-
cessing based on Koschmieder’s Law

2.1 Collecting data from Trafikverket

This subsection presents the data collection method for obtaining data via
Trafikverket’s Open-data API [17]. The primary interest is the availability
of visibility data from weather stations, and road pictures taken from the the
surveillance cameras nearby weather stations through the API.

By sending requests from a pre-made Python pipeline, one receives a
JSON line that contains the visibility data and the weather station loca-
tions, which can be used to download road condition captures from nearby
traffic cameras. However, not all Trafikverket’s weather stations are equipped
with transmissometers, resulting in missing visibility data for some weather
stations, so one needs to detect these cases and implement appropriate error
handling.

An example of available data is presented in Table 2.1 and Figure 2.1.

Table 2.1: Example of visibility output from the API

Weather Station Location | Visibility(m)
Persborg 8190
Stocksund 20000
Dannemora 2488
Bergfors 20000
Brottby 20000
Kullebo 10440
Luten o377
Skulltorpsmotet 5173

" @l Hidrup Nordost 2023-03-21 09:13:00

(a) A clear photo with visibility > (b) A foggy photo with visibility < 300m
2000m from trafikverket from trafikverket

Figure 2.1: Example of camera captures from Trafikverket’s Database, note
the information on the top left corner

Once the visibility data collection is done, the images will be gathered
from the weather station (if applicable) and the road cameras close to the
weather station. Images are 1920 x 1080 pixel in JPEG format, with infor-
mation bars that usually sit on the top left. The bars will be cropped out in
the image processing pipeline before being feed to the neural network.

However, it is not always possible to have foggy weather across Sweden,
as the weather condition appears rather unlikely, and there are not many
road cameras in the remote regions, which limits the availability of image
data. To generate data, one needs to think of a way to simulate the fog
directly in the image, which will be presented in the following subsection.

9

2.2 Simulating Images

The fog image simulation pipeline was made by Christos Sakaridis et al [14]
and originally implemented in MATLAB. The workflow is to first take stereo
images, with depth maps and camera data to generate transmission map-
pings. Finally, Koschmieder’s Law is applied to simulate fog of different
intensities in the images.

Let us assume that we have a non-foggy RGB image J to which a foggy
effect should be added. The following formula shows the synthetics of the
fog effect ([14]):

I(xz,y) = ZZt(w —s,y—m)J(s,m) + A-(1—t(x,y)) (2.1)

The above equation represents a convolution operation between the image
matrix and transmission mapping t(x,y); (z,y) is the image coordinate in
terms of pixels for the new images, J(s,m) is each pixel within the orig-
inal RGB image J, and A is white the atmospheric light represented by
(255,255,255). Furthermore, the transmission mapping ¢(x,y) depends on a
distance mapping d(z,y) according to the result of Koschmieder’s Law:

t(z,y) = e P, (2.2)

Here, [is the atmospheric extinction coefficient. Its relation to meteorolog-
ical visibility can be described as follows:

V= %m (%) (2.3)

In equation (?7), V is the meteorological visibility, 5 is the atmospheric ex-
tinction coefficient, and € is a threshold constant set to 0.05. For the selection
of B, we used 8 = 0.002, 8 = 0.005, 5 = 0.01 and § = 0.02 corresponding to
roughly 1500, 600, 300 and 150 meters meteorological visibility.

The stereo-image dataset provided by Cityscapes Dataset [5], consists of
5000 images and corresponding distance mappings. The pipeline starts by
using the depth map of the image to generate a transmission mapping for
the images. Finally, by applying the transmit mapping to the pictures, the
pipeline returns foggy images which will then be used for the training process.

10

(a) A light fog photo (b) A medium fog photo (¢) A dense fog photo
generated by the simula- generated by the simula- generated by the simula-
tion pipeline, 8 = 0.002 tion pipeline, 5 = 0.004 tion pipeline, 8 = 0.008

Figure 2.2: Example of simulated pictures

2.3 Usage of Unreal Engine 5

Another effective method to generate foggy images is using Unreal Engine
5 [6]. The setup begins with downloading a map from the internet and
then using a weather environment plugin called " Dynamic Weather”, which
has adjustable foggy weather parameters. Once the map is created and the
weather parameters are set, the rendering pipeline will be designed. The
rendering pipeline generates random render camera positions with random
facing and then adds objects to the environment. Next, the fog parameter
will be set, and finally, the capture will be rendered, labelled with the number
of tasks and the fog parameter. The fog visibility can be determined before
the rendering take place. It can be measured easily by looking at a black
object in the scene, according the definition of visibility.

(a) An image generated with unreal en- (b) Another image generated with un-
gine 5, with fog intensity 1. real engine 5, with fog intensity 9.

Figure 2.3: Example of images generated by Unreal Engine 5.

11

Extra image test

The extra image set includes images taken by mobile phones or gathered
from Google, which look different to those used in the training set. The
extra validation images get labels manually and will pass through the same
pre-processing pipeline described in 4.1.1. The accuracy of classification of
this image set can represent the model’s accuracy and performance in the
real world, and the misclassified images can be evaluated and used for further
correction and improvement of the training dataset.

12

Chapter 3

Theory: Machine Learning

3.1 The Artificial Neural Network

This section describes various components of neural networks including the
choices of layers, activation functions and how performance can be evaluated
during and after the training process. The actual design of the neural network
models will be presented in the Analysis section (Chapter 4.2). The Python
package TensorFlow [10] is used for all the neural network components and
configurations.

3.1.1 Input layer

The input layer will take the image data, of either 128 x 128, 256 x 256
or 512 x 512 resolution, with normalized RGB intensities. This layer does
not modify the image and only serves as the input that will be used for the
deeper layers in the model.

3.1.2 Deep Feed-forward Neural Network

The deep feed-forward neural network or the Multi-Layer Perceptron (MLP)
is one of the most basic neural networks that takes multiple data and extracts
features via hidden layers consisting of a huge number of nodes. Each node
is fully connected to the next layers via weights, with the last layer being
the output layer, which gives a prediction based on the input image. The
deep feed-forward neural network can effectively model non-linear patterns

13

in the data and works especially well for numerical data. Figure 3.1 shows
a typical Deep Feed-forward Neural Network using an image as input:

layer1 layer2 layer3

input layer hidden layer output layer

1 3
4 5 6
7 8 9 y
10 |11 |12
4x3 pixels

Figure 3.1: Example of using Deep Feed-forward neural network to classify
data. Source: Internet

In Figure 3.1, z} represents the data input from 4 x 3 image pixels with
indices n, 2L indicates the value of m’th node at layer L, bZ is the bias term
adds to corresponding nodes z% ol is the activation function of node 2%
and y is the output value computed by an activation function ¢3(z) taking
the argument of z* 4 b%. Between the layers, there are weights w;’; represents
the weight that are indexed such that the weight multiplies the value of a
node with index m = f and send to the node with index ¢ in the next hidden
layer D. Ultimately, according to the notations in Figure 3.1, the output of

the MLP will be:
y=o*(0"+ Y whon(bh, + D wh ,wn)

MLP usually consists of multiple layers with different nodes; the number
of output nodes will also differ depending on the number of classification
categories. MLP usually deals well with numeric vector data as the nodes
with activation functions serve as automatic feature extraction when training

14

the network. However, it usually struggles with image data as it could be
inefficient to find the feature in 2 dimensions after flattening the image into
a vector. In the next subsections, we will introduce another method which
excels at image feature extraction, and it will become the main component
of our project.

3.1.3 Convolutional Neural Network

The convolutional neural network (CNN) was introduced by the famous Deep
Learning pioneer Yann LeCun and his coworkers in 1998 [9]. They introduced
a convolution-based neuron operator that classifies hand-written numbers
images, also known as the MNIST dataset, with high accuracy. The CNN
consists of two parts: it uses a convolution kernel to extract features from
the image and create feature maps. After the convolution step, the maps will
be flattened and passed through a fully-connected MLP, which returns the
classification decision at the output nodes.

The convolution layer performs matrix convolution over the input images.
The layer uses convolution with a square kernel to produce feature maps. For
example, the convolution using a 3 x 3 kernel will be:

c
fl®l

0

C =

Q@ Q2
> oo

Here, I is an image from the previous layer and C' is the feature map output
after the convolution step. Figure 3.2 shows the mechanism of the convolu-
tion kernel convolving a matrix into a feature map (output) as an example.

15

1({0f1}]0 1|0 1101 10213 31
ol1f{1]of1]1 > ol1|1]|*[4a|5]6]—p
1{0|J1jJo|1]0 1101 7189
1joj1j1/1/0 Image patch Kernel

ol1l1lol 1|1 (Local receptive field) (filter)

Output

Input

Figure 3.2: Illustration of the convolution layer’s mechanism. Author: Anh
H. Reynolds

Between each image patch and the corresponding feature map compo-
nents, there will be weights connecting to each other that will change dur-
ing the training process. Besides the regular weights, the convolution layer
has additional parameters, such as padding that loops edge values on the
image boundaries which could enhance the performance to classify certain
features. To reduce the output dimension and improve the training speed,
the ”strides” can skip a certain number of pixels during the convolution, re-
sulting in a smaller feature map. The feature maps will be expanded into
multiple channels and fed into the fully connected layers. At the end of the
convolution layers, the activation function will be applied to each component
in the feature map.

In order to ”highlight” some important features from the feature map,
max pooling will be used.

3.1.4 Max-pooling

To make the features ”stand-out” more, one could perform a process called
"pooling”. Hence, Max-Pooling is used to enhance image edge features. Fig-
ure 3.3 presents the mechanism of Max-Pooling convolutes a matrix as an
example:

16

12 120 | 30| O

8 1121 2 | 0 | 2 %2 MaxPool | 20 |30

34 | 70 | 37 | 4 112 | 37

112|100 | 25 | 12

Figure 3.3: An example of 2D-Maxpooling using 2 x 2 kernel. The red output
number 20, for example, comes from the maximum value of the red matrix
in the input.

At this point, the feature map will be flattened, which is now ready to be
fed into an MLP for feature analysis. In the next subsection, the choices of
activation functions will be described, for those between hidden layers and
for the output layer in our neural network model.

3.1.5 Choices of activation functions

Each layer in the neural network structure should have non-linear activation
functions that allow the neural network to model complex relationships in
the data. The Rectified Linear Unit (ReLU) is commonly used since it serves
as a threshold similar to an ”"on/off switch”. It is defined as:

f(z) = max(0,x)

Hence, any mode with value x will be itself if x is positive, and 0 otherwise.
Appending ReLLU between structure layers helps regularize the training pro-
cess and feature recognition. In the output layer, there will be two choices of
activation function: The Logistic/sigmoid activation function or the Softmax
activation function. The sigmoid activation function is:

1 e*

- 1+e= - 1+ e’

/() (3.1)
The above function is typically used for binary classification since it takes
values between 0 and 1 and is differentiable.

For the classification of multiple classes, the sigmoid would give different
probabilities for each class and determine which class is most likely may be
hard due to the lack of connection between probabilities, a better alternative,

17

is the Softmax activation function. The Softmax has the following expression:

evi
Z]K:l e*s

where K is the number of classes and xz; are output from the K nodes in
the final layer. Softmax normalizes each prediction x; by their sum in the
denominator so o(x;) will become numbers between 0 and 1 that also sum
to 1, making multi-class classification possible.

For our network, we will mainly be using ReLLU activation functions be-
tween the convolution and max-pooling layers, as well as between the fully
connected hidden layers. At the end of the MLP network, the sigmoid func-
tion will be used for the binary classification model and the Softmax function
will be used for categorical classification.

With all the settings chosen for the neural network model design, the
model will be compiled and it will undergo training as described in Chapter
4.2. The model will fit its weights to the training data (see Ch 3.3) and val-
idate itself with the validation data. After each training epoch, performance
indicators will be provided. The indicators show how the network performs
as well as any abnormalities in network behaviour. The performance analysis
will be presented in 3.3.2.

3.2 Edge detection algorithms

To improve image features, principle component analysis of images will be
carried out. If one compares an image without fog and another image with
dense fog, one should notice that image edges diminish for the image with
fog. In contrast, the images without fog preserve clear outlines for many
objects. The observation motivated us to use edge detection algorithms to
detect the overall edge profile of images, and hopefully, the neural network
models will learn from them.

This project uses the Sobel and Canny edge detection algorithm for out-
line sharpness detection based on image gradient computation. By doing this,
the image data will be shrunken into single-channel arrays with significantly
reduced dimensions while keeping most of the image features.

The Sobel edge detection algorithm is one of the most commonly-used
methods in image analysis that computes the image intensity gradient, de-

18

veloped by Irwin Sobel and Gary Feldman in 1968 [15], inspired by Larry
Roberts’ ”Robert’s Cross” operator.

Generally speaking, the Sobel edge detection algorithm uses two convo-
lution windows that compute the grey-scale image intensity derivative across
the horizontal and vertical axis. Suppose P is the source image. The Sobel
operator computes image gradients in the following manner:

10 1

G,=|-2 0 2|®A (3.3)
10 1
1 2 1

G,=|0 0 0|®A, (3.4)
1 -2 -1

where G, and G, are the images of derivative approximations across the
horizontal and vertical directions.
An Alternative to the Sobel algorithm is the Canny edge detection [3].

(a) Original Image (b) Sobel Filtered Image (c) Canny Filtered Image

Figure 3.4: Images filtered by Sobel and Canny filters. Image source:
Wikipedia

The Canny edge detector works similarly to the Sobel edge detector, it is
also a convolutional kernel but it is a Gaussian Convolutional Kernel. The
kernel has the following expression if the size is (2k + 1) x (2k + 1):

iy = eI LU D i < k1) 35)

27 o?

If we have k = 5 and 0 = 1, we will then end up with the following kernel

19

and convolution operator:

2 4 5 4 2
L4912 9 4
— |5 12 15 12 5| %4
15914 9 12 9 4

2 4 5 4 2

the asterisk is the convolution operator and A is the original image.

When applying the Canny Image Filter with sigma parameter 3, the
filter keeps fewer edge profiles for foggy images. In contrast, for the pictures
with less fog or no fog, the filter keeps more edge profiles. This will be a
significant feature to help the neural network. The filters will be used for
image processing and will be used as image inputs to the CNN.

For this project, the Canny Image Filter will be used.

3.3 Loss and Gradient Descent Training

This section describes the loss functions selected and how they will be used
for training of the neural network. Generally, the loss function represents
the inaccuracy of the machine learning model predicting data labels based
on its current choices of weights. To reduce the loss function, the model
must adapt to the dataset by updating the weight. This process is called
the "training” process, which is essentially an optimizing process. The main
optimization process is based on gradient descent and several modifications
will be presented in this section.

3.3.1 Cross-entropy Loss

Throughout this project, the Binary Cross-entropy loss and Categorical Cross-
entropy loss were used:

Lpop(w;z) = ——Z yi - log(fi(w; ;) + (1 — 4i) - log(1 — i (w; 7)), (3.6)

LCCE w IB ZZ tzklog sz W [EZ)) (37)

i=1 k=1

20

In the Binary Cross-entropy loss function (3.6), n is the number of ob-
servations for which the network should produce predictions, y; is the ¢’th
true label and g;(w;2) is the i'th sigmoid prediction if the labels ¢ is the
probability of y = 1 from the neural network given weights w and the input
data x; corresponding to the i'th image. This corresponds to the negative
log-likelihood of Bernoulli observations where y; ~ Be(p(w, x;))

In the Categorical Cross-Entropy Loss Function (3.7), C'is the number of
classes, ;1 are true indications of class for the i’th observation where ¢;;, = 1
for the correct class and 0 otherwise, and p(w, 7;) are the softmax predictions
of each class probability based on data z;

Using the true data and the loss function, the neural network model could
adapt and update its weights to minimize the loss. Generally speaking, the
choice for the weights w should satisfies the following:

w = argmin L(w;),
w

This means that the neural network must adjust its weights w to find the
global minimum of the loss function, which is known as training the weights.

Usually, there are plenty of training methods we could use, such as basic
Stochastic Gradient Descent (SGD) learning:

Wiy = wy — NV (L(wg), (3.8)
where t is the training epoch and 7 denotes the ”learning rate” that controls
how much the gradient V(L(w;z)) affects the correct weights. SGD is effi-
cient and easy to implement, which leaves plenty of room for the code and the
neural network to be tuned. However, SGD requires some regularization to
prevent the weights from wandering of at plateaus or being trapped at local
minima. To prevent the training from encountering those problems, engineers
have made several variations to the SGD. One commonly used variation of
SGD is adding "momentum” to the gradient. The idea was introduced by
Rumelhart, David E., Hinton, Geoffrey E. and Williams, Ronald J. in 1986
during an experiment with a back-propagation learning procedure described
in [13]. In 2016, Ilya Sutskever, James Martens, George Dahl, and Geoffrey
Hinton presented the linear combination of momentum coefficient to the SGD
weight update (3.8) in their work [16]. In their words, momentum-augmented
SGD learning has the following schematics:

Viy1 = HU: — EVL(wt)
Wi =W — T](wt) + Q{Awt

21

where o, p are the momentum coefficient and v, is the an average of past
gradient direction.

The second modification to SGD is called Root Mean Square Propagation
(RMSProp) and regularizes the learning rate via a function. The recursion

1s:
Ui

Wi =w-— WV(L(UJ;IL‘)), (3.9)
where
T, t) = 75w, t 1) + (1 - 7)|VL(w;)2

and v is called the forgetting rate. RMSprop performs well for non-convex
optimization problems with the help of the moving average of the squared
gradients giving faster convergence speed.

Finally, Adaptive Moment Estimation (ADAM) is one of the most com-
monly used modifications of SGD, it makes use of both mechanisms of the
RMSProp and Momentum method, together with other parameters, mak-
ing itself an efficient training method. ADAM has the following parameter
recursion:

- = gl + (1= BV (L(w:)

- USH) = ﬂQUg) + (1 — @2)(V(t)(L(w;m)))2

(t+1)

A m,

- mw g 1(1—/85
~ _ mL(‘,H—l)

- Uy = 17,85

st) Uﬁ
Where f; is the forgetting factor for the gradients and [, is the forgetting
factor for the second moments of the gradient, with i and S the beta
parameters to the power of epochs. The tiny (1 x 107®) number ¢ is applied
to avoid division by zero.

When training neural network models, it is common that over-training
effect will occur as the training epochs increase due to the neural network
learning too much from the training dataset. To reduce the over-training,
one could perform L2-regularization to suppress weight developments when
training, or one could perform Branch drop-out which, with a certain proba-
bility between 0 and 1, randomly removes weight branches between the layers

22

to make room for generalization. In this project, we use the drop-out to reg-
ularize over neural networks in training because drop-out works very well
when the neural network model has many trainable weights.

3.3.2 Result of training

The performance indicators of the model include training, validation and test
accuracy. The training accuracy and validation accuracy together tell how
well the model is training: If the validation accuracy starts to fall too far
behind the training accuracy, the model is overtrained. If validation accuracy
is better than testing accuracy, then it is considered undertrained.

Train vs Valid Accuracy

—&— Tain
5 Valid

accuracy

0 2 4 B B
epoch

Figure 3.5: A plot of training (blue) and validation (orange) accuracy against
training epochs of an overfitted model

Over-trained models are not good as they lose generalization when clas-
sifying images. To avoid over-training, one should apply a method called
"early-stopping” to detect increasing validation loss and stop the training,
this method is provided by Keras ([10]).

However, sometimes it is not enough to value the high validation accuracy.
To obtain a robust model, one must keep a dataset that is not involved in
the training process and use it to test the model. This process serves as
a sanity test as some models could learn the wrong feature to achieve a
high validation accuracy. This test dataset will be used after the training is

23

finished and serves as a sanity check. The performance indicators such as
accuracy and F1-score will be the main focuses.

Consider an image classification result with True Positive (TP, given a
picture belongs to the test label and the model classifies that picture belongs
to the test label), True Negative (TN, given a picture does not belong to
the test label and the model classifies that picture does not belong to the
test label), False Positive (FP, given a picture belongs to the test label but
the model classifies that picture does not belong to the test label) and False
Negative (FN, given a picture does not belong to the test label but the
model classifies that picture belongs to the test label) numbers, the accuracy

is defined as:
TP +TN

n

Acc =

where n is the total number of test images. The accuracy gives a straightfor-
ward overall performance indication, but it gets less sensitive to inaccuracy
when the test dataset is huge and unbalanced as presented in [12]. To avoid
losing sensitivity, the Fl-score is chosen for the thesis instead of accuracy.
The F1 score presents a combination measure of how the model makes cor-
rect decision is and how it classifies positive cases for all the classes. The F1

score is defined as:
2.TP

T TP+ FP+FN

Fy

24

Chapter 4

Methods

Now that the foundation has been laid, let us describe the training and im-
plementation of a reliable Artificial Neural Network for detection of reduced
visibility. Output from the network will be used to trigger a defogging filter
in the camera.

This section describes the pre-processing of the dataset, training and the
validation of the network.

4.1 Overview

4.1.1 Image processing pipeline

The original images before the pre-processing can include watermarks or
have different resolutions, which will be handled by an image pre-processing
pipeline before the database creation. Because it will be impossible for the
neural network to execute the training if the input images have different
resolutions, and the watermark will influence the features learned by the
neural network model.

4.1.2 Training

To give the neural network model a robust ability to classify images, the
training process will carefully proceed and will be mainly discussed in the
later chapter. However, it is hard to validate the dataset quality since there
was no data set initially. Therefore, an important step is to retrain the neural

25

networks with increased dataset amount consisting of new images targeted
to the probablistic training result after a few training epochs.

At the same time, To validate the actual performance of a neural network,
it is essential to focus on its test accuracy. The test accuracy can be provided
from the testing over the test set which is made using the Python function
train_test_split() from the Scikit-Learn package. But the result of the test
set generated by train-test-split cannot fully represent the neural network
performance in the real world. Therefore, an extra validation method based
on a completely different validation set is required to represent the models’
performance in real-life scenarios.

4.1.3 Validation process

Because the final neural network will be used on web cameras, it is suitable
to validate the model directly on webcams. This is achieved by letting the
neural network classify images from the web camera and monitor the results
manually. By examining the performance from a web camera, one can re-
spond to the actual performance and accuracy of the neural network in the
real world.

Although testing on a real webcam seems reasonable, it also has a draw-
back since foggy weather is rare in the real world. To solve the issue, foggy
scenery videos can be used to validate the neural networks and they can be
downloaded from the internet.

On the other hand, an extra data set of images taken from mobile phones
can also be used to validate the neural networks further. They can also
represent the actual performance and accuracy of the network in real life
because the images are independent from the dataset used to train the model.

4.2 Analysis

4.2.1 Data set and image processing pipeline

The dataset used to train and validate the models in this project consists of
several photos with and without fog. As described in Chapter 2, the source of
the images includes the internet, Trafikverket, simulation from Unreal Engine
5, Foggy Cityscape Dataset and photos from mobile phones. The data set
is divided into two parts, one for the binary classification and another for

26

the multi-class classification of visibility. For the first part, the accurate
value of visibility is not required. Therefore, this set includes the images
from the internet and mobile phones, the images from Trafikverket. In the
second part of the project, the multi-classes classification requires values of
visibility and images from Trafikverket, and image with simulated fog are
used. The simulation parameters can be converted into a visibility metric.
In the end, the images will be loaded and will be labelled as ”clear” (Vis >
2000m), "lighter fog” (2000m > Vis > 1000m), "medium fog” (1000m > Vis
> 400m) or "dense fog” (400m > Vis) in one-hot encoding for the multi-label
classification task.

The original images have different resolutions and proportions, hence it
requires an image pre-processing pipeline to correct the images to a unified
format before training. The first step of the pipeline is to check the aspect
ratio of images and then crop two square images along the longer side using
the package PIL in Python [18]. The second step is to resize the squares
to the largest resolutions and mirror one of the two squares horizontally.
Finally, these two images are given identity numbers and class indices and
stored in folders of processed images.

4.2.2 Training the Neural Network Model

Included packages and setup

For training, the dataset will then be split into three parts: 60% of the
data will be the training data, 20% will be the validation data, and the
remaining 20% will be used for testing. The motivation is to ensure that
the neural network model undergoes sufficient training while allowing for
rigorous testing and validation.

Similar to conventional statistical parameter estimation, the training pro-
cess for the neural network model is based on the error (loss) function and the
goal is to minimize the loss function using the function gradient to update
the network weights. Once the dataset is established, the structure design of
the neural network is carried out.

Structure design

Ultimately we have created the model structures for the binary classifiers
presented in Table 4.1 and the model structures for the 4-class classifiers

27

presented in Table 4.2:

Table 4.1: Binary ANN structure (poolsz = maxpooling size, strd = stride)

convx1-2-128p covx1-256p covx1-512p
Input size 128 x 128 x 3 256 x 256 x 3 512 x 512 x 3
Conv 1 | 128,5 x5, poolsz = 2 | 128, 5 x 5, poolsz = 2, strd = 2 | 128, 7 x 7, poolsz = 2, strd = 2
Conv 2 | 128, 3 x 3, poolsz = 2 | 128, 5 x 5, poolsz = 2, strd = 2 | 160, 5 x 5, poolsz = 2, strd = 2
Conv 3 | 256, 3 x 3, poolsz = 2 256, 3 x 3, poolsz = 2 192, 5 x 5, poolsz = 2, strd = 2
Conv 4 | 256, 3 x 3, poolsz = 2 256, 3 x 3, poolsz = 2 256, 3 x 3, poolsz = 2
Conv 5 / / /
Conv 6 / / /
dense 1 1024, dropout = 0.25 1024, dropout = 0.2 1024, dropout = 0.2
dense 2 128, dropout = 0.2 256, dropout = 0.2 256, dropout = 0.2
dense 3 / / /
dense 4 / / /
add-on / / /
output 1, sigmoid 1, sigmoid 1, sigmoid
Table 4.2: 4-class ANN structure (poolsz = maxpooling size, strd = stride)
convx1-2-128p-4c covx1-256p-4c covx1-512p-4c
Input size 128 x 128 x 3 256 x 256 x 3 512 x 512 x 3
Conv 1 | 128, 5 x 5, poolsz = 2 | 128, 5 x 5, poolsz = 2, strd = 2 | 128, 5 x 5, maxpool = 2, strd= 2
Conv 2 | 128, 3 x 3, poolsz = 2 128, 3 x 3, poolsz = 2 128, 5 x 5, poolsz = 2, strd = 2
Conv 3 | 128, 3 x 3, poolsz = 2 128, 3 x 3, poolsz = 2 128, 3 x 3, poolsz = 2
Conv 4 | 256, 3 x 3, poolsz = 2 256, 3 X 3, poolsz = 2 256, 3 X 3, poolsz = 2
Conv 5 | 256, 3 x 3, poolsz = 2 256, 3 X 3, poolsz = 2 256, 3 X 3, poolsz = 2
Conv 6 / / /
dense 1 1024, dropout = 0.25 1024, dropout = 0.25 1024, dropout = 0.25
dense 2 128, dropout = 0.2 128, dropout = 0.2 128, dropout = 0.2
dense 3 / / /
dense 4 / / /
add-on / / /
output 4, Softmax 4, Softmax 4, Softmax

28

These neural networks will then be applied to adjust the defogging filter
once the model is trained and considered satisfactory. The tweaking proce-
dure will be presented in the next section.

4.2.3 Tweaks to the networks

In this section, the neural network model mechanism tweaking will be de-
scribed and motivated. Overall, the model will be tweaked according to the
test results, such as the performance index (Fl-score, accuracy, precision
and recall) and the type of misclassified images. The reason for tweaking
the models can be the insufficiency of the current training set, which can
not cover every situation of foggy weather in the real world. The prediction
performance could also be affected by faulty images in the current training
set, which can decrease the accuracy, or cause incorrectness in the hyperpa-
rameters of the model.

The whole tweaking process includes the following: first, validate the
model with an extra validation process, like a video test, camera test or the
extra image set test; second, adjust the hyperparameters and validate the
new models again; third, update the current training set according to the
result of each validation.

4.2.4 Validations

As described before, the trained neural networks will validate the model
with a test set independent of the training set. But this validation cannot
represent the performance and the accuracy of the model in real life because
it only represents the performance and the accuracy of a limited dataset.
Therefore the extra validation stages will be taken, including testing over an
extra image set, video streams and a camera test.

The extra image dataset consists of images taken from a mobile phone
and is not involved in the training dataset. The video test will be performed
by reading video stream captures into the neural network model, using the
OpenCV-Python [1] package for capture. The neural network predictions will
be manually verified. Results from the neural network will be diagnosed to
see if the neural network is working well or not. In the following subsections,
the details will be explained.

29

Camera test

The camera test is a test script based on Python. At the same time, the script
can also control the camera defog filter by sending requests, that change the
parameters in the camera according to Table 4.3.

Table 4.3: Web camera’s defogging filter parameters

Variable name | default explain
Defog false turn on/off the defog filter.
Defog effect 0 Effect of the defog filter, max 100.

The selected web camera has a defogging filter implemented, and the
strength of the filter can be chosen as an integer number between 0 and 100.
The camera test script will try to boost up the sampling speed and the effect
of the defog filter when it detects fog in the image until the video stream is
no longer foggy. Then, it will try to decrease the effect of the defog filter to
check if the fog has cleared. If the model finds fog in the video stream again,
the value of defog effect will increase according to the model’s decision.

Video test

The video test script works similarly to the camera test, but it loads the video
from a local device and then converts it into a video stream. It takes images
from the video stream at a fixed interval with a certain rate and then lets the
model classify the captured images. The whole process will be monitored to
evaluate model performance.

Once we have evaluated and retrieved the performance indicators of the
models, we will carry out model adjustments as described in section 4.2.5
below.

4.2.5 Adjustment

The adjustment of the models includes changing the hyperparameters or the
structure of the networks. The hyperparameters include the learning rate,
MaxPooling kernel size, the number of filters and the size of the kernel of
the convolution layers and the number of nodes in the hidden layer. For
the overall structure, the number of convolution and hidden layers and the
chosen optimizer will also be adjusted. According to the theory, the same

30

hyperparameters are not 100% suitable for every similar network. Therefore,
it is vital to get the specific and most suitable hyperparameter for each
model. For example, the learning rate should be increased when the network
converges too slowly, and the dropout should be increased when overfitting.

4.2.6 Tweaks and retrain

Once the adjustment has been established, the model needs to retrain and
the data set needs to be edited to address any errors in the extra validation
procedure. Such as adding more images to the training dataset which are
similar to the misclassified images. This action will fill the data set with
the missing scenarios of foggy weather in the real world and will hopefully
improve the model’s performance.

With all the model tweaks and retraining, the model will be further ver-
ified by training it from scratch 20 times to verify reliability. After several
iterations of this procedure, the results have been gathered and will be pre-
sented in the next chapter.

31

Chapter 5

Experiment Results

This chapter will present the results of the most important models developed
during this master thesis work, and the models will be represented by their
identification number. All the test results are generated by the confusion
table from the SciKit-Learn package.

32

5.1 Binary Classification Neural Network

Record of one training run and shown in Figure 5.1. The blue line in Figure
5.1a represents the loss under training, and the orange line represents loss
for validation data under training. And the blue line in Figure 5.1b presents
the accuracy under training, and the orange line presents the accuracy of the
validation data under training.

model loss model accuracy
1.0 A

071 — wain
test

0.6 \ 04
\

0.5 '\ addf A4

v

loss
o
@

accuracy

e
~

0.3

0.2
0.6 9

—— train
test

0.19

0.5

T T T T T T T T T T

] 20 40 60 80] 20 40 60 80
epoch epoch

(a) The loss for both training and vali- (b) The accuracy for both training and
dation data during a training. validation data during a training.

Figure 5.1: The training records of binary model.

The relation between each model and its identity number are presented
in Table 5.1, and box plots of every result of the models are shown in Figure
5.2. The losses are presented in Figure 5.5a and the accuracy are presented
in 5.5b. At the same time, the table of every model’s average and median
are shown in Table 5.2. Below is the table of all binary classification models
we have experimented with:

33

Table 5.1: The table of identify number to model

No. Input Size Structure
1 RGB 128P | 4 Normal convolution layers
2 RGB 256P | 4 Normal convolution layers
3 RGB 512P | 4 Normal convolution layers
4 G+canny 128P | 4 Normal convolution layers
) G+canny 256P | 4 Normal convolution layers
6 G+-canny 512P | 4 Normal convolution layers
7 RGB 128P | 5 Normal convolution layers
8 RGB 256P | 5 Normal convolution layers
9 RGB 512P | 5 Normal convolution layers
10 G+canny 256P | 5 Normal convolution layers
11 RGB 32P | No convolution 7 hidden layers
12 | RGB+histogram | 256p 4 convolution layers

0.55 1 o J_‘
'l‘ 0.90 4
\I‘ 0.85

0.80

—T—

coorH®
T o
o —{TH

o — [

0.75

—
H TH
— T
—{
1
T
—
—{
—

(a) The losses of all models (b) The accuracy of all models
Figure 5.2: Boxplots of testing’s losses and accuracy for all models, the

definition of the models is presents in Table 5.1.

The statistic of every models performance in Table 5.1 presents in Fig-
ure 5.2, and best results of every terms are shown in bold.

34

Table 5.2: Average, median and best results of testing and the result of extra
test of the binary classification models, note the best results of every term
are highlighted in bold.

ID | Average | Median | Best | Extra
1 0.902 0.923 | 0.906 | 0.967
2 0.903 0.902 0.927 | 0.967
3 0.901 0.900 | 0.934 | 0.978
4 0.875 0.879 | 0.910 | 0.956
5 0.869 0.869 | 0.902 | 0.945
6 0.856 0.858 | 0.895 | 0.956
7 0.893 0.894 | 0.938 | 0.967
8 0.904 0.906 | 0.927 | 0.967
9 0.901 0.906 | 0.921 | 0.967
10 | 0.838 0.847 | 0.885 | 0.945
11| 0.783 0.781 | 0.813 | 0.846
12 | 0.798 0.777 | 0.929 | 0.923

5.2 4-class Classification Neural Network

Record of one training run of the 4-class model is shown in Figure 5.3. The
blue line in Figure 5.3a presents the total loss under training, and the orange
line presents the total loss to the validation test under training. And the blue
line in Figure 5.3b presents the total accuracy under training, and the orange
line presents the total accuracy to the validation test under training.

35

model loss

model accuracy

141 — train

test
124

1.0

0.8

loss

0.6

0.4 4

0.2

accuracy

o o e o =4 =

wn o ~) © o
L L .

=3
~
L

e
w
|

— train
test

T T
0 20

40
epoch

T
60

T
80

40
epoch

T T
0 20

T T
60 80

(a) The loss of both the train set and (b) The accuracy for both the train set

test set during a training.

and test set during a training.

Figure 5.3: The training records of a 4-classes model.

The table below shows the information for all 4-class classification models
which have been used in the experiment:

Table 5.3: The table of identification numbers for the models

No. | Input | Size Structure
1 | RGB | 128P | 5 Normal convolution layers
2 | RGB | 256P | 5 Normal convolution layers
3 | RGB | 512P | 5 Normal convolution layers

The statistical information of both accuracy and loss of 20 training inter-
vals of models is shown in Figure 5.4, and more details of the result show in

Table 5.4.

36

0.525 4 o 0.89 T

0.500 4 0.88 1
T —

0.475 1 0.87 9 ’_|v_‘ ’7—‘

0.450 ’7—‘ 0.86 1 I \—AF‘

0.425 - % 0831 %

0.400 0.841 1

0.375 1 0.83 o

0.82 4 o

0.350 1

(a) The losses of all 4 classes models (b) The accuracy of all 4 classes models

Figure 5.4: The result of the 4 classes models, the first one has the size 128,
the second has 256 and the third has 512.

Table 5.4: Average, median and best results of testing and the result of extra
test of the 4-class classification models, note the best results of every term
are highlighted in bold.

Model No. 1 2 3
average 0.857 | 0.860 | 0.867
median 0.857 | 0.861 | 0.870

best 0.878 | 0.890 | 0.878
extra testing | 0.570 | 0.557 | 0.468

Table 5.5: The classification result of the model with 128P input, note the
best results of every term are highlighted in bold.

precision | recall | fl-score | number
0.86 0.92 0.89 232
0.87 0.86 0.87 184
0.87 0.82 0.85 202
0.94 0.88 0.91 210

WIN| =D

37

Table 5.6: The classification result of the model with 256P input, note the
best results of every term are highlighted in bold.

precision | recall | fl-score | number
0.88 0.92 | 0.90 231
0.92 0.87 0.89 183
0.86 0.85 0.86 202
0.92 0.88 0.90 209

W N =[O

Table 5.7: The classification result of the model with 512P input, note the
best results of every term are highlighted in bold.

precision | recall | fl-score | number
0.92 0.87 0.90 198
0.85 0.85 0.85 182
0.88 0.80 0.84 198
0.92 0.90 0.91 183

WIN| = O

5.3 Model Infeasability

The following images in Figure 5.5 were extremely difficult for the binary-
classify models to predict, These images were used in the extra testing
dataset.

38

(a) An example of a clear image (b) An example of a foggy image which
which was predicted as foggy. was predicted as clear.

Figure 5.5: Example of the wrongs during the experiment, for the binary
classification networks.

39

5.4 Results and Discussion

5.4.1 Results for the binary classification model

Models using raw RGB images

From the result, it could be seen that the overall performance of the binary
classification neural network using raw RGB input was high, yielding an over-
all accuracy of over 90%. Among the raw-RGB input models, the one using
512p images (no.3 from Table 5.2) yields the highest accuracy. Meanwhile,
the one using 256p and 128p image inputs are ranked 2nd and 3rd. This is
very likely due to the higher amount of information provided by the higher
dimension images, which allows the model to make more accurate predic-
tions. The convolutional neural network works much better than model 11,
consisting of 7 fully-connected layers, which only yielded 78% accuracy. None
the less, model 7 yields better results compared to the model presented in [12]

From the models with 5 convolution layers (model number 7,8,9), it seems
that an additional layer has little effect on the model’s performance. Still, it
enhances the performance of the models that use smaller image input dimen-
sions (such as model 7). The reason for yielding the lower average accuracy
is probably due to the one additional convolution layer making the model
too powerful, so it overtrained during the training process and hence loses a
certain portion of generality.

Models using Canny filtered images

Compared to the models with raw RGB images, the neural network model
using Canny filter images yielded slightly lower prediction accuracy, as the
image processing step could have removed important feature information
which could be caused by a high sigma value set for the filter. Despite this,
the memory footprint was smaller than the models taking in raw RGB im-
ages. Those models could make themselves easier to implement in compact
camera products. It can also be seen that an extra convolution layer has
made this model too powerful and has over-fitted to the data.

There are other attempts, such as using the Sobel image filter but the

40

idea quickly became unfeasible as the filtered image quality was bad. Pre-
filtering using 2D-FFT was also ineffective. By far the most effective filter
method is the Canny image filter.

Models using raw RGB image and RGB Histogram

The binary neural network that classifies RGB Histogram was unsuccess-
ful(model 12 in Table 4.1), as it only yielded 79% average accuracy. From
this, we conclude that using RGB Histogram as the feature to classify foggy
pictures seems to be a failure. Interestingly, in one training epoch, the model
obtained 93% accuracy, but the results were not repeatable. The main reason
is because of the RGB histogram algorithm takes all pixels as a group and
erases spatial information.

5.4.2 Results of the 4-class classification model

All the 4-class classification models performed well, with an average accuracy
of 0.857, 0.860 and 0.873 respectively. However, the models did not match
our expectations as they only yielded F1-scores of 0.55, 0.57 and 0.468. The
worst result was obtained from the model with 512p resolution that failed
to converge. The inferior accuracy of the models during the extra testing
phase is possibly caused by undiscovered image feature differences between
the training dataset and the extra testing dataset. This might be resolved in
future works as the dataset gathering would be rather time-consuming.

In terms of the generated images, some images had poor generation qual-
ity which could potentially corrupt the models’ feature extraction, such as
the similarity of the overall colour tone and the scenery of the captures. The
improvement for future works is to generate more images with better image
sources and more efficient algorithms or to find and use more real-life images
rather than simulated images.

However, there exist pictures mentioned in section ?7 that the neural
network could not correctly classify, which are pictures with tree branches
or any object close to the camera that has a significantly foggy background.
The problem could be caused by the weakness of convolutional layers that
could not perceive spatial differences of the object.

41

5.5 Conclusions and Possible Future work

Throughout this project, we have explored the possibilities of applying Ar-
tificial Neural Network models for image-based fog detection and using gen-
erated images for neural network model training. The result shows the ap-
proach has great potential and could be developed further from this project
or could inspire other tasks.

From the results, we concluded that the CNN with RGB image inputs
with the highest acceptable resolution is the best combination to classify fog
accurately. The other CNN models with alternative input sizes and all other
CNN models with image feature input have inferior performance compared
to the CNN with 512p image input size. Nevertheless, the CNN models
yielded better results than the Deep Feed-forward neural network approach
used in [12].

When preparing the data, the data quality was mostly fine. The MAT-
LAB image generation pipeline worked great, except sometimes it generated
strange fog patterns in the image. This indicates a drastic difference between
MATLAB and Unreal engine. The images rendered from Unreal Engine 5
were also quite successful. For the model 2nd-round validation, we employed
the strategy of adding images similar to the misclassified images to the train-
ing dataset. The neural network efficiency improved and it led the neural
network to classify more images accurately. And yet, the process should be
repeated for future work to strengthen the model performance and general-
ization.

The neural network model based on Gray-scale images and the Canny im-
age filter performed well, yet they have lower overall test accuracy compared
to the CNN models with RGB inputs. It is likely due to several different
reasons, mainly due to the loss of image information caused by the reduc-
tion of spatial information, or the improper parameter settings. This could
be improved by alternating or combining multiple image feature extraction
methods to process the image data. However, as shown in this project, it is
a valid solution to recommend against using the RGB histogram method.

Finally, the 4-class classification neural network was a possible attempt

42

to classify visibility reduction, but it failed miserably as the model did not
survive the extra image testing phase, which is likely due to the problem with
the mismatched dataset features. In future works, one should improve the
dataset quality by selecting more realistic camera captures and increasing its
size and balance.

Many future works could be developed, or inspired by this project. As one
used the neural network to detect aerosol-caused visibility reduction based
on the captured images, one could also make a neural network model that
could detect smoke in indoor or outdoor environments so one could employ
the model for webcam-based fire safety, for example. Similar approaches
could also apply to other types of visibility reductions such as detecting fog
forming on the camera dome and detecting sandstorms or snowstorms.

43

Bibliography

[1] G. Bradski. “The OpenCV Library”. In: Dr. Dobb’s Journal of Software
Tools (2000).

[2] Sebastian Bronte, Luis Bergasa, and Pablo Ferndndez Alcantarilla.
“Fog Detection System Based on Computer Vision Techniques”. In:
Nov. 2009, pp. 1-6. DOI: 10.1109/ITSC.2009.5309842.

[3] John Canny. “A Computational Approach To Edge Detection”. In:
Pattern Analysis and Machine Intelligence, IEEE Transactions on PAMI-
8 (Dec. 1986), pp. 679-698. DOT: 10.1109/TPAMI.1986.4767851.

[4] Hazar Chaabani et al. “A Neural network approach to visibility range
estimation under foggy weather conditions”. In: Procedia Computer
Science 113 (2017). The 8th International Conference on Emerging
Ubiquitous Systems and Pervasive Networks (EUSPN 2017) / The 7th
International Conference on Current and Future Trends of Informa-
tion and Communication Technologies in Healthcare (ICTH-2017) /
Affiliated Workshops, pp. 466-471. 1ssN: 1877-0509. DOIL: https://
doi.org/10.1016/j.procs.2017.08.304. URL: https://www.
sciencedirect.com/science/article/pii/S1877050917317131.

[5] Marius Cordts et al. The Cityscapes Dataset for Semantic Urban Scene
Understanding. 2016. arXiv: 1604.01685 [cs.CV].

[6] Epic Games. Unreal Engine. Version 4.22.1. Apr. 25, 2019. URL: https:
//www.unrealengine.com.

[7] Kaiming He, Jian Sun, and Xiaoou Tang. “Single image haze removal
using dark channel prior”. In: 2009 IEEE Conference on Computer
Viston and Pattern Recognition. 2009, pp. 1956-1963. DO1: 10.1109/
CVPR.2009.5206515.

44

[12]

[15]

[16]

P V.C. Hough. “Method and means for recognizing complex patterns”.
In: (Dec. 1962).

Yann LeCun et al. “Gradient-based learning applied to document recog-
nition”. In: Proceedings of the IEEE 86.11 (1998), pp. 2278-2324.

Martin Abadi et al. TensorFlow: Large-Scale Machine Learning on Het-
erogeneous Systems. Software available from tensorflow.org. 2015. URL:
https://www.tensorflow.org/.

Mihai Negru and Sergiu Nedevschi. “Image based fog detection and
visibility estimation for driving assistance systems”. In: Sept. 2013,
pp. 163-168. 1SBN: 978-1-4799-1493-7. DO1: 10 . 1109/ ICCP . 2013 .
6646102.

Giuliano Andrea Pagani, Wiel Wauben, and Jan Willem Noteboom.
“Neural network approach for automatic fog detection using surveil-
lance camera images”. In: EGU General Assembly Conference Ab-
stracts (Apr. 2018), p. 2988.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. “Learn-
ing representations by back-propagating errors”. In: nature 323.6088
(1986), pp. 533-536.

Christos Sakaridis, Dengxin Dai, and Luc Van Gool. “Semantic Foggy
Scene Understanding with Synthetic Data”. In: International Journal
of Computer Vision 126.9 (Sept. 2018), pp. 973-992. URL: https:
//doi.org/10.1007/s11263-018-1072-8.

Irwin Sobel. “An Isotropic 3x3 Image Gradient Operator”. In: Presen-
tation at Stanford A.I. Project 1968 (Feb. 2014).

Ilya Sutskever et al. “On the importance of initialization and mo-
mentum in deep learning”. In: Proceedings of the 30th International
Conference on Machine Learning. Ed. by Sanjoy Dasgupta and David
McAllester. Vol. 28. Proceedings of Machine Learning Research 3. At-
lanta, Georgia, USA: PMLR, 17-19 Jun 2013, pp. 1139-1147. URL:
https://proceedings.mlr.press/v28/sutskever13.html.

Trafikverkets oppna API for trafikinformation. URL: https://api.
trafikinfo.trafikverket.se/.

P Umesh. “Image Processing in Python”. In: CSI Communications 23
(2012).

45

[19] Wiel M. F. Wauben and Martin Roth. “Exploration of fog detection
and visibility estimation from camera images”. In: (2016).

46

Appendix A

Images

This appendix is an album of the images which were used/generated under
the experiment.

47

A.1 Simulated images from Unreal Engine 5

(a) Generated image from UE5, with no (b) Another generated image from UES5,
fog. also with no fog.

(c) Generated image from UE5, with (d) Another generated image from UE5,
light fog. also with light fog.

(e) Generated image from UES5, with (f) Another generated image from UES,
medium fog. also with medium fog.

(g) Generated image from UES5, with (h) Another generated image from UES,
dense fog. also with dense fog.

Figure A.1: More images generated from the UE5 rendering pipeline, took the
picture from random places with random perspectives including the scenery
of road, parking lot, buildings and parks, with 4 classes of visibility

A.2 Simulated images from Foggy_Cityscape

(a) An image in the middle of an alley, (b) Another image in the middle of an
with light fog. avenue, also with light fog.

Figure A.2: Example of an original image which was used in Foggy_Cityscape.

(a) The same picture after the process- (b) Another image in the middle of an
ing, dense fog. avenue, also with light fog.

Figure A.3: Example of images that are generated of Foggy_Cityscape

49

Master’s Theses in Mathematical Sciences 2023:E48
ISSN 1404-6342

LUNFMS-3120-2023

Mathematical Statistics
Centre for Mathematical Sciences
Lund University
Box 118, SE-221 00 Lund, Sweden

http://www.maths.lu.se/

