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Abstract

Statistical modelling could be included in a betting strategy where the value of
a bet is assessed by comparing model predictions and market odds. This the-
sis presents several models based on statistical learning methods for predicting
the total number of corners in a football match. Generalised linear regression
and decision tree models were developed and their profitability was examined
by using historical odds data. The models were trained and tested on recent
seasons of the English Premier League. To further test the predictive strength,
the models were tested on the German Bundesliga. Since the number of corners
in a football match is count data but exhibits overdispersion, negative bino-
mial regression was used to numerically model the number of corners. This
approach was accompanied by logistic regression as well as numerical-based and
classification-based random forest models. The number of corners could be seen
as a classification variable with the classes defined as above or below a certain
number of corners, often referred to as the betting line on the over-under odds
market.

The explanatory variables used to develop the models were match-by-match
statistics from the Premier League, processed by creating averages of different
lengths and supplemented by variables representing team capabilities and self-
created variables representing current form and motivation. Backward stepwise
selection and elastic net were used to select variables to include in the gen-
eralised linear regression models. The combinations of model approaches and
methods resulted in fifteen possible models, which were assessed using statistical
evaluation measures. Level stakes and the Kelly criterion were applied as bet-
ting strategies on the best-performing models for each method. Furthermore,
the over-under betting market for corners was examined in order to identify
potential asymmetries in the offered odds implying an inefficient market.

The results indicated that the best-performing models from each method
were all profitable when tested on new data from the Premier League, despite
having a low degree of explanatory power. On the contrary, the explanatory
power and profitability decreased significantly when the Premier League-based
models were tested on the Bundesliga without retraining leading to the majority
of the models turning unprofitable. The analysis of the over-under market
suggested that the under odds offered in the Premier League matches were
generally undervalued, while this undervaluation was not statistically significant
for the Bundesliga.
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1 Introduction

1.1 Association Football

Association football (hereafter football) is the world’s most popular sport both
in terms of practitioners and supporters (Rollin et al., 2023). According to the
international governing body of football, Fédération Internationale De Football
Association (FIFA), 130 000 professional football players are registered in the
world (FIFA, 2019). Furthermore, it is estimated that over five billion people
support a club or a national team (FIFA, 2021). The worldwide appeal of
football has led to a dominant position in relation to other sports.

Football is a fast-paced sport and the outcome of a match can change quickly.
Set pieces occur after a stoppage in the game due to a foul, misconduct or if the
ball is out of play and is a way to return the ball into play (Rollin et al., 2023).
A set piece could be a free kick, a throw-in, a goal kick or a corner. These
moments could be of strategic importance, providing an opportunity for the
players of a team to coordinate and execute practised tactics. Set pieces have
the potential to be a significant goal-scoring opportunity and create a moment
of anticipation for both players and fans.

1.2 Sports Betting

By definition, gambling or betting is the act of risking money or any other staked
object in the hope of correctly predicting the outcome of an event and making
a profit (Glimne, 2023). Sports betting, where a bettor places a wager on an
outcome connected to a sports event, has increased vastly in popularity during
the last decades (Market Decipher, 2022). The global sports betting market is
steadily growing and accounted for USD 85 billion in 2022 and is expected to
grow further in the foreseeable future. Betting companies today offer a wide
range of betting opportunities for their customers. For example, a money line
bet involves the prediction of the outcome of a match, whereas over-under bets
involve the prediction of a certain statistic in a match to be over or under a given
number (Mollenkamp, 2022; Webber, 2022). This given number will hereafter
be referred to as ”the line”. The line is often stated as an integer added by 0.5 to
ensure that the outcome strictly will end up over or under. A consequence of the
large amount of accessible information and statistics related to sports events,
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and in particular football, is that data analysis and prediction of matches have
increased in use for betting purposes.

1.3 Purpose

The purpose of this thesis is to investigate whether it is possible to predict the
aggregated number of corners that occur in a football match based on publicly
available match statistics. It will be examined if the corner betting market
shows signs of inefficiency and if asymmetry in the pricing could be found.
Furthermore, the possibility of creating a profitable strategy based on the models
and betting theories will be investigated. The disposition of the thesis will be
as follows. Background and related work will be covered in chapter 2, data in
chapter 3, theory in chapter 4, method in chapter 5, the result and analysis are
presented in chapter 6 and conclusions and future work are found in chapter 7.

1.4 Problem Statement

This thesis aims to create data-driven prediction models based on match-by-
match statistics. The models will predict the total number of corners or if the
number of corners will be over or under a predetermined line with a certain
probability. The models will be trained, validated and tested on matches from
the English Football Association Premier League Limited (hereafter Premier
League) over eight seasons. To further test the models’ predictive ability, they
will be used for the same purpose in the German top tier 1. Bundesliga (hereafter
Bundesliga). In order to evaluate the profitability of the prediction models, the
predicted probabilities will be compared against historical market odds for a
certain line on the over-under market for corners.

1.5 Delimitations

To provide a more narrow and focused study, several delimitations have been
considered. Firstly, the thesis will only consider corners and no other set pieces
situations or possible match outcomes. This is motivated by the fact that the
over-under market for corners is considered to be smaller compared to the money
line market, but still widely offered, and may therefore be more likely to show
signs of inefficiency. Secondly, the study is geographically delimited to develop
the prediction models on football matches in England and tested on matches
in England and Germany. More precisely, the study focuses solely on the top
men’s leagues in each country. Finally, the prediction models are exclusively
based on publicly available match statistics from previous matches and do not
include pre-match market-affecting changes close to kick-off. No subjectivity in
the probability assessment of a certain outcome is included, all predictions are
based on the mathematical models applied.
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2 Background and Related Work

2.1 Concepts of Football

2.1.1 Corner Kicks in Football

A corner kick is a type of set piece situation in football which is awarded to
the attacking team when the ball has crossed the defending team’s goal line,
outside the goal posts or over the crossbar, and is last touched by a player in
the defending team (The International Football Association Board, 2022). The
game is restarted by placing the ball at the corner of the football pitch closest
to where the ball went out of play. The corner kick is performed by one of the
players in the attacking team who undisturbed kicks the ball from the designated
corner area, generally, towards the defending team’s penalty area where players
of both teams are positioned.

A corner kick is seen as a potential goal-scoring situation for the attacking
team. Since the ball is out of play and restarted from the corner, both the
attacking and defending team are able to organise themselves tactically before
the corner kick is taken. Thus, some teams may be particularly successful
in scoring goals from corner kicks. In an analysis of 18 seasons in the Premier
League, 9-14% of the goals per season were scored through a corner kick (Clarke,
2022). Because a corner kick may result in a goal for the attacking team, it can
have a significant impact on the dynamic and outcome of the match. The
number of corners in a football match could vary significantly from match to
match. For example, in the match between Burnley and West Ham United in
the season 2021/2022 the aggregated number of corners was 20 (FootyStats,
2023). On the other hand, in the match between Newcastle United and Chelsea
in the same season, the total number of corners amounted to two.

2.1.2 Top Leagues in Europe

The Premier League is the top tier of the English football league system for men
(Premier League, 2023b). Founded in 1992, the Premier League has become
the most viewed football league in the world (Premier League, 2023a). The
league is contested by 20 clubs each season in accordance with a promotion and
relegation system. The table is determined based on a point system where a
team is awarded three points for a win, one point for a draw and no points
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for a loss (UEFA, 2022). According to the country coefficient ranking system
of the governing body of European football, the Union of European Football
Associations (UEFA), the Premier League is 2023 regarded as the highest-ranked
and most prominent league in Europe followed by the Spanish Liga Nacional de
Fútbol Profesional (commonly referred to as LaLiga), the German Bundesliga
and the Italian Serie A (UEFA, 2023). Just as the Premier League, LaLiga
and Serie A are contested by 20 clubs while the Bundesliga is contested by 18
clubs. In relation to each other, the Premier League is exceptional regarding
broadcasting and sponsorship deals making the league the most well-known
league globally (Ajadi et al., 2022). Furthermore, the UEFA ranking system also
affects the opportunity for the clubs to qualify for European cup competitions,
such as the UEFA Champions League (UEFA, 2022). For top-ranked European
leagues, there may be as many as six clubs that could qualify for the group
stages of the UEFA tournaments, of which the top four automatically qualify
for the UEFA Champions League the following season.

A common belief in football is that there exist distinctive differences between
the top leagues in Europe in terms of playing style and physicality. A study
by Oberstone (2011) aimed to quantitatively map the key differences in the
major European football leagues. The author was able to empirically claim that
there exist disparities concerning passing, goal scoring and tactical organisation
between leagues. For example, the Premier League is particularly known for
its fast pacing and physical style of playing, whereas LaLiga is more technically
and attacking-oriented. Serie A is according to the study the most possession-
oriented league. In a similar and more recent study made by Yi et al. (2019),
the results confirmed that there exist differences between the European top
leagues with respect to technical aspects, but the results differed somewhat
from Oberstone’s findings. The differences between the Premier League and
LaLiga were not as apparent and the authors concluded that players in Serie A
performed worse in passing and tactical organisation in comparison to the other
leagues. To further exemplify the differences, the goals per match in Bundesliga
in season 2021/2022 were 3.12, while Serie A amounted to 2.87, Premier League
to 2.82 and LaLiga to 2.50 (Bundesliga, 2022).

Table 2.1 presents some key metrics of corner kicks in the four leagues dur-
ing the seasons 2015/2016 to 2021/2022. The variance-to-mean ratio (VMR)
represents the variance divided by the mean, where a value above 1 indicates
overdispersion. Overall, these numbers confirm that there may exist some dif-
ferences between the leagues worth considering.

2.2 Bookmakers and Odds

Betting companies, or so-called bookmakers, offer a large variety of bets on all
kinds of events (Glimne, 2023). Traditionally, competitive sports events such
as horse racing and football matches have attracted betting but bookmakers
may also offer bets on political elections and other non-sport-related contests.
Unlike other gambling forms, such as lottery or roulette which completely rely
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Table 2.1: Statistics of corners in the European top leagues during the seasons
2015/2016 to 2021/2022.

League Corner mean Corner variance VMR
Premier League 10.4 12.0 1.15
Bundesliga 10.3 12.7 1.23
Serie A 9.6 11.3 1.18
LaLiga 9.5 10.7 1.13

on chance, sports betting has a significant element of subjective evaluation.
Common for all types of betting is that the probability of a certain outcome
is inversely expressed as odds. A high probability relates to low odds. In case
of a favourable outcome for the bettor the profit is determined by the odds,
otherwise, the betting company retain the wager and the payoff for the bettor
is zero. The odds reflect the bookmaker’s probability estimation for a certain
outcome and can be expressed in various formats (Sohail, 2023). The decimal
format is most established in European countries and is sometimes also referred
to as ”European odds”. A decimal odds reflects the total payout of a bet, and
the total payoff is calculated as the product of the wager and the odds. Other
types of odds formats such as fractional odds and money line odds also occur.

In order to ensure a sustainable profit margin towards the bettors, the offered
odds’ implied probability differs from the actual probabilities determined by the
bookmakers. Hence the sum of the probabilities for related outcomes exceeds
1. This is known as the betting margin. As a consequence, the bettor’s profit
is less than what the actual probability would generate.

Odds are usually offered to the market several days before the event. These
odds constitute the pre-match market. When the match starts, the live-betting
market is launched which allows the bettor to place bets with respect to the
real-time dynamics of a game. Since the pre-match odds are offered well in
advance of the match, probability-affecting circumstances may arise which in
turn affect the odds (Smarkets, 2023). An example could be unforeseen changes
in a team’s starting lineup. The pre-match odds may also fluctuate from the
initial odds offered depending on the flow of stakes and market competitors’
odds.

2.2.1 Betting Exchanges and Arbitrage

An alternative to placing bets on odds offered by betting companies is to use a
betting exchange. In traditional betting, the bookmaker acts as a counterpart
and bets that the outcome the bettor places its wager on will not occur. Con-
versely, a betting exchange enables bettors to both buy (known as back) and
sell (known as lay) an outcome (Betfair, 2023b). In that way, the odds offered
on the exchange are backed by another bettor who believes in the opposite out-
come and hence holds the liability. The range of offered betting alternatives
on the betting exchange is hence not limited to the bookmaker’s selection. An-
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other difference compared to bookmakers is that the exchange’s odds do not
include the margin. Instead, the trading venue charges a commission on the
net winning (Betfair, 2023a). A prerequisite for the betting exchange to be an
attractive alternative to betting companies is that there exists sufficiently high
liquidity. The leading and most liquid betting exchange is Betfair which has
operated on the betting market since 2000 (Betfair, 2017).

An important aspect when considering several types of betting platforms is
arbitrage betting, which involves taking advantage of differences in offered odds
on a certain outcome generating a risk-free profit. The differences could occur
because of differing expectations of the probability of an outcome, either among
bookmakers or among actors on the betting exchange. However, bookmakers
actively take precautions in order to avoid arbitrageurs taking advantage of such
opportunities, for example by stake limitations or closing the bettor’s account
(Bet Types, 2023).

2.3 Betting Strategies

In order for a bettor to consider that a bet may be profitable, the offered odds
should exceed the odds implied by the predicted probability, either based on
subjectivity or quantified analysis. In that case, the bettor could argue that
there exists a value in the bet. If the discrepancy between the offered odds and
the odds implied by the predicted probability is large and positive, the expected
value of the bet becomes large.

The majority of bettors gamble mainly for entertainment purposes (Hult̊aker,
2022). Regardless of betting for pleasure or with the aim of long-term profit,
different betting strategies can be used. A simple betting strategy is to evaluate
if there exists a value in the bet and then place a predetermined wager on the
outcome (Wheatcroft, 2020). The wager is constant regardless of the betting
value. Another, more sophisticated yet simple, betting strategy is to adjust the
wager depending on the value. Introduced by Kelly (1956), the strategy has
had a significant impact both on betting and within investing strategies on the
financial market. The strategy relies on a formula which determines the pro-
portion of the bettor’s capital that should be placed on the bet. A large value
in the bet relates to a larger wager.

2.4 Related Work

A large amount of data and statistics related to sports events is available today,
particularly in football. This has led to a growing interest in prediction and
quantitative sports analysis in recent years (Fathima et al., 2018). It is not
only applicable for professional analysts hired by clubs to improve performance
and gain tactical advantages against competitors, or to use for betting decision-
making, but has also gained interest as a research area for statisticians.
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Moroney (1956) examined which distribution fits the number of goals scored
in a football match best and favoured the negative binomial distribution, whereas
Maher (1982) demonstrated that a bivariate Poisson distribution, including the
teams’ defence and attacking capabilities, accurately describe football goals.
Dixon and Coles (1997) continued Maher’s findings, but also considered home
team advantage and let recent performances have larger weight in their model.
Their model was used for betting purposes, and bets were placed on all out-
comes where the model predicted a higher probability than the market. The
betting strategy turned out to yield a positive return.

Yip et al. (2022) changed the perspective and tried to model corners with
respect to overdispersion and the phenomenon of corner clustering. Once again,
the most well-fitting distribution was investigated. The authors claimed that
the aggregated number of corners was best explained by a negative binomial
distribution or a geometrical Poisson distribution. The modelling consisted of
regression analysis and led to a profitable betting model. A moving average of
the number of corners as well as shots on goal by the home team and away team
in the last three matches were included as explanatory variables. In addition,
a slightly adjusted mean corner count, the expected total number of goals in
the match and the goal supremacy of the home team, derived from a double-
independent Poisson model were also considered in the regression model.

Furthermore, machine learning methods have been used to forecast the like-
lihood of match events. Baboota and Kaur (2018) developed a predictive model
for match results in the Premier League. Both random forests and gradient
boosting were examined and performed roughly equivalently. The prediction ac-
curacy of the machine learning models was benchmarked against market-leading
betting companies, with the conclusion that the methods slightly underper-
formed the market. Similarly, Alfredo and Isa (2019) used machine learning
algorithms to predict the results of Premier League matches. In the analysis,
the random forest model outperformed extreme gradient boosting and C5.0, but
the authors concluded that their approach of using decision tree-based methods
was unable to accurately predict match outcomes.

There exists several studies that examine signs of inefficiency in the over-
under market. In addition to creating a prediction model, Yip et al. examined
asymmetry in the over-under market in favour of betting on the under selection.
Their findings indicated that the market may overvalue the over selection, in
other words overestimating the probability of an outcome being over the line and
hence systematically increasing the odds for the under selection. Another well-
documented phenomenon linked to market inefficiency is the favourite-longshot
bias, where the market undervalues high probability events (Constantinou and
Fenton, 2013). There are several theories for why this bias occurs, such as some
bettors having more risk-loving behaviour and thus affecting the odds. Both the
asymmetry in the over-under market in favour of the under selection and the
favourite-longshot bias imply that the market occasionally is mispricing betting
options which leads to inefficiency in the betting market.
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3 Data

3.1 Match Statistics

Match-by-match statistics were collected from the football statistics provider
FootyStats. The downloaded statistics included all relevant information about
the played matches including date, home team name, away team name, goals
in the first and second half, corners, free kicks, possession and shots on and off
target for each team. The data set also included pre-match odds for the home-
draw-away market for each match. The statistics were collected for all the Pre-
mier League seasons from 2013/2014 to 2022/2023. The season 2020/2021 was
assumed to be heavily affected by restrictions during the COVID-19 pandemic
and not to be completely representative of seasons played under normal cir-
cumstances, hence it was excluded from modelling and testing. Matches played
after the 13th of March during the 2019/2020 season were excluded for the same
reason. For the season 2022/2023, all matches until the turn of the year were
included. The data from the seasons 2014/2015 to 2019/2020 were used for
modelling and the data from the seasons 2021/2022 to 2022/2023 were used for
testing. The season 2013/2014 and 2020/2021 were used to obtain initial values
for the averages for seasons 2014/2015 and 2021/2022, respectively. Match data
of the corresponding test seasons were collected from the Bundesliga. Table 3.1
presents the minimum, median and maximum values of the variables in the
model data set.

3.2 FIFA Ratings

As a measure of each team’s capabilities, the FIFA index was used. The FIFA
index is a player database used in the video games series FIFA, developed by
EA Sports, based on actual players (Britannica, 2023). Ratings for each team
and season were collected. Defence, midfield and attacking statistics based on
the team roster’s skills were weighted together to create an overall rating of
a team’s capabilities. A new edition of FIFA is released every year, usually
in September. FIFA also updates the ratings continuously during the year,
approximately twice a month.

The major European leagues have two transfer windows, a summer transfer
window and a winter transfer window. A transfer window is a determined
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Table 3.1: Summary of match data for model data seasons. The home team’s
corners (goals) were interpreted as the away team’s conceded corners (conceded
goals) and vice versa. These statistics will be identical when considering all
matches, but not identical when calculating variable averages for a specific team.

Variable Name Min Median Max
Home team corners 0 5 19
Away team corners 0 4 16
Home team goals 0 1 9
Away team goals 0 1 9
Home team goals first half 0 0 5
Away team goals first half 0 0 5
Home team shots on target 0 5 19
Away team shots on target 0 4 17
Home team shots off target 0 6 25
Away team shots off target 0 5 21
Home team fouls 1 10 23
Away team fouls 1 11 26
Home team possession 18 51 82
Away team possession 18 49 82
Home team points per game 0 1 3
Away team points per game 0 1 3
Game week 1 19 38
Odds full time home team win 1.05 2.26 23.00
Odds full time draw 2.73 3.70 20.50
Odds full time away team win 1.10 3.41 42.75

period of time which allows the clubs to trade and register new players on their
team roster. In England, the summer window is open from the 10th of June
to the 1st of September, while the winter transfer window is open from the
1st of January to the 31st of January (Transfermarkt, 2023). In Germany, the
winter transfer window is open during the same dates, while the summer transfer
window is open from the 1st of July to the 1st of September. To account for
changes in the teams’ capabilities, FIFA ratings were collected for each team
just before each season starts and updated after the winter transfer window
closed. Table 3.2 presents the minimum, median and maximum FIFA ratings
of the Premier League clubs contesting the seasons used for modelling.

3.3 Historical Odds

It could be assumed that the betting market is arbitrage-free and that the odds
from a betting exchange are representative of the betting market as a whole.
Hence, historical odds from Betfair were downloaded in order to perform a
profitability analysis of the prediction models. Odds for over and under 10.5
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Table 3.2: Summary of FIFA ratings for the teams in the Premier League seasons
used for modelling.

Rating Name Min Median Max
Attack 66 78 89
Midfield 66 77 88
Defence 65 76 85
Overall 66 77 86

corners were collected for each match in the Premier League and the Bundesliga,
ranging from the season 2018/2019 to 2022/2023. Since this thesis aims to
further examine the tendency of asymmetries in favour of the under selection
on the over-under market, more odds data than covered by the matches in the
test set was downloaded.

The unprocessed odds data showed how the odds changed until kick-off.
Because bets can be placed long before the start of the match and since they
can be affected by new information reaching the market, the last over and under
odds placed before kick-off were chosen. The odds data set contained matches
where no bets had been placed on the betting exchange, hence no historical
odds were available. If there existed betting volume on only one of the options
or no betting volume at all, the match was treated as a missing value. The odds
data was connected to the match data by team names and match dates. Some
odds were not able to be connected to a match due to conflicts in the match
date which could be a consequence of match rescheduling. These matches were
filtered out. For the Premier League, 14.8% of the matches were excluded and
for the Bundesliga 35.8% of the matches were excluded.
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4 Theory

Previous studies show that predicting the outcomes of a match is difficult. It
could be assumed that there is both a statistical pattern and a randomness in
how many corners occur in a football match. Hence, statistical learning methods
could be applied. Generalised linear regression and tree-based methods are used
to investigate which football statistical variables affect the aggregated number
of corners. To approach the problem, statistical learning models are developed
and combined with betting strategies to, hopefully, create profitability.

4.1 Generalised Linear Regression

There are several different statistical learning methods which could be classi-
fied as generalised linear regression methods (James et al., 2013). Depending
on which distribution within the exponential family the dependent variable is
assumed to follow, a particular generalised linear regression method will be
preferred. Generalised linear regression is characterised by a link function g
which creates a mapping between the explanatory variables and the conditional
expectation of Y given X,

g(E(Y |X)) = Xβ, (4.1)

or reformulated as

E(Y |X) = µ = g−1(Xβ). (4.2)

4.1.1 Poisson Regression

Since the number of corners in a match always is a positive integer or zero,
the dependent variable Y should be treated as count data. Therefore, Poisson
regression could be an adequate method to fit a model,

Y ∼ Po(λ). (4.3)

The number of corners then is assumed to follow a Poisson distribution as

Pr(Y = k) =
e−λλk

k!
, (4.4)
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where λ = E(Y ) = V ar(Y ) > 0 (James et al., 2013). The mean is then written
as a function of the explanatory variables as

E(Y |X) = µ = λ(X) = eXβ , (4.5)

hence Poisson regression uses the following link function

g(µ) = lnµ. (4.6)

The β-coefficients are estimated by maximising the likelihood function

l(β) =

n∏
i=1

e−λ(xi)λ(xi)
yi

yi!
, (4.7)

resulting in parameter estimate β0 and approximate covariance matrix Σ for
the estimated parameters.

4.1.2 Negative Binomial Regression

However, by studying table 2.1 the variability in the number of corners is greater
than the mean, thus

V ar(Y )

E(Y )
> 1. (4.8)

The observed data hence shows signs of overdispersion, a finding that is con-
sistent across the leagues. Poisson regression strictly assumes that E(Y ) =
V ar(Y ). For that reason, negative binomial regression could instead be used
since it is especially suitable when handling overdispersed count data,

Y ∼ NB(λ, θ), (4.9)

where θ represents the dispersion parameter allowing for a higher variability
than what is assumed in the Poisson distribution (James et al., 2013). Negative
binomial regression uses the same logarithmic link used in Poisson regression.

The number of corners is then assumed to follow a negative binomial distri-
bution

Pr(Y = k) =
Γ(k + θ)

Γ(k + 1)Γ(θ)

(
θ

θ + λ

)θ (
λ

θ + λ

)k

, (4.10)

according to a common parameterisation with mean E(Y) = λ and variance
Var(Y) = λ + λ2θ−1 (Ismail and Jemain, 2007). Γ(·) is the gamma function.

In correspondence to eq. (4.7), the regression coefficients are obtained with
maximum likelihood estimation as

l(β) =

n∏
i=1

Γ(yi + θ)

Γ(θ)yi!

(
θ

θ + λ(xi)

)θ (
λ(xi)

θ + λ(xi)

)yi

, (4.11)

resulting in parameter estimate β0 and approximate covariance matrix Σ for
the estimated parameters.
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Since the output of the Poisson or negative binomial regression are predic-
tions of the number of corners, it has to be processed further to be interpreted
as a probability that the total number of corners will be above the line and to
use the results in a betting strategy.

4.1.3 Logistic Regression

Logistic regression is used when modelling the probability that a certain outcome
is either true or false (James et al., 2013). The dependent variable is then
assumed to follow a Bernoulli distribution and hence may only take a value of
either 0 or 1,

Y ∼ Be(p). (4.12)

On the other hand, the explanatory variables are allowed to be continuous or
binary. Instead of fitting a linear line to the data, an S-shaped link function
which goes from 0 to 1 is used for the fitting.

The link used in logistic regression, called logit-link, has the form

g(µ) = ln

(
µ

1− µ

)
(4.13)

(Nelder and Wedderburn, 1972). Accordingly, the conditional expectation of Y
given X is

E(Y |X) = Pr(Y = 1|X) = µ =
eXβ

1 + eXβ
(4.14)

and the coefficients are estimated by maximising the likelihood function

l(β) =
∏

i:yi=1

pi(xi)
∏

i:yi=0

(1− pi(xi)) (4.15)

resulting in parameter estimate β0 and approximate covariance matrix Σ for
the estimated parameters (James et al., 2013).

Applied to predicting corners, the classification variable considers if the num-
ber of corners is greater or smaller than the line. This can be intuitively linked
to the offers that are available on the over-under betting market for a certain
match statistic. Unlike negative binomial regression, a probability prediction if
the number of corners will be above or below the line will be directly obtained
and the output does not need further processing.

A potential drawback of using logistic regression is the loss of information
within the classes when classifying the outcomes. The model then does not count
for the variability of the outcomes as it does when using numerical variables.
Although, this could also be seen as a potential advantage as outliers do not
affect the model to the same extent.

4.2 Variable Selection

The number of explanatory variables is large and many of the variables are
correlated. To evaluate which variables should be included in the model, some
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form of variable reduction has to be applied in order to obtain a reduced data
set of manageable size.

4.2.1 Lasso Regression, Ridge Regression and Elastic Net

One option to reduce the number of variables is to use a so-called shrinkage
method (James et al., 2013). In this concept, there are mainly two techniques,
lasso regression and ridge regression, which both penalise variables that are
weakly informative by forcing their coefficients towards zero. An important
difference between lasso regression and ridge regression is that the former will set
weak predictors to exactly zero while ridge regression will shrink the coefficient
close to zero but never exactly to zero.

In ridge regression, a penalising term with a tuning parameter λ ≥ 0 is
added to the maximum likelihood expression. The penalty is only applied to
the β-coefficients that relate to an explanatory variable and not the intercept,
according to

min
β

1

n

n∑
i=1

L(yi, Xβ) + λ

p∑
j=1

β2
j , (4.16)

where L is the negative log-likelihood contribution of observation i, n is the
number of observations and p is the number of coefficients.

Depending on the value of λ, a set of coefficients will be generated. A
higher value of λ will lead to a decreased prediction variance, but a more biased
estimation. Ridge regression is particularly favourable as a variable selection
method when the explanatory variables exhibit a high level of multicollinearity
(NCSS, 2023).

Lasso regression is similar to ridge regression, but is stricter in the penali-
sation of variables. Because lasso regression can set non-informative variables
to zero, it increases the interpretability of the model. The expression to be
minimised is largely consistent with ridge regression but instead uses the sum
of the coefficient’s absolute values instead of the squared values (James et al.,
2013)

min
β

1

n

n∑
i=1

L(yi, Xβ) + λ

p∑
j=1

|βj |. (4.17)

There is no definitive answer as to which of the shrinkage methods should
be preferred. Both ridge regression and lasso regression lead to a reduction in
the variance of the coefficients at the expense of increased bias, even though the
reduction tends to be slightly larger for ridge regression.

Instead of choosing between the two options it is possible to combine them.
This method is called elastic net, which weighs the trade-off between high model
interpretability and increased prediction performance. The minimisation prob-
lem solved in the elastic net can be expressed as the combination of eq. (4.16)
and eq. (4.17) with some reformulations. A parameter α is introduced which
controls the penalisation of the respective shrinkage method, while λ sets the
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general penalty strength (Hastie et al., 2023). The optimisation problem can be
formulated as

min
β

1

n

n∑
i=1

L(yi, Xβ) + λ

 (1− α)

2

p∑
j=1

β2
j + α

p∑
j=1

|βj |

 . (4.18)

Since a new set of coefficients arises generated for each value of λ, cross-validation
can be used to choose an appropriate model. Two adequate ways to do this
are either to find the λ-value that gives the lowest mean cross-validated error
(λmin) or the λ-value which yields the most shrunken model and where the
cross-validated error is still within one standard error from the minimum (λ1se).

4.2.2 Stepwise Selection

An alternative to shrinkage methods is to use stepwise selection to reduce the
number of variables (James et al., 2013). Forward stepwise selection starts with
a model with no explanatory variables and successively adds new variables to
the model. Backward stepwise selection starts in the other end and iteratively
removes the least informative variable. All variables are included in the model
from the beginning and the method excludes one variable at a time. A regression
is performed and the variable with the highest p-value is excluded. That is,
the least statistically significant variable to explain the dependent variable is
removed.

4.3 Tree-Based Methods

4.3.1 Decision Tree

Tree-based methods are another way to examine the relationship between the
explanatory variables and a dependent variable. These models are built on
decision trees which can be applied to both regression problems and classification
problems (James et al., 2013). A decision tree consists of a root, internal nodes
and leaves, also called terminal nodes. The tree is often visualised upside down
with the root at the top and the leaves at the bottom, see fig. 4.1a.

The root represents the entire data set and could be seen as the predictor
space. For each internal node the predictor space is divided into different regions,
see fig. 4.1b. The internal nodes represent a decision which is based on one of
the variables. The path that connects nodes is called a branch. The leaves
represent the final result of the algorithm and are either a numerical value or a
class.

The construction of a decision tree consists of two steps. Firstly, the pre-
dictor space is divided into distinct and non-overlapping regions. The predictor
space is the set of all possible values for the variables, X1, X2, ..., Xp and is
divided into R1, R2, ..., RJ regions. For regression trees, the idea when dividing
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Figure 4.1: Illustrations of a generic decision tree and predictor space. The
predictor space is divided into the regions R1, R2, R3, R4, R5 determined by
decisions based on the variables X1, X2 and the cut points s1, s2, s3, s4.

the predictor space is to minimise the Residual Sum of Squares (RSS) where
ŷRj is the mean response from the training data in the region j,

RSS =

J∑
j=1

∑
i∈Rj

(yi − ŷRj
)2. (4.19)

Due to computational expense, it is often preferable to only optimise the split
one step at a time. The variable with the most impact is chosen and the split is
made to minimise RSS. This method is called recursive binary splitting. In every
step, a predictor Xj and a cut point s have to be determined. The predictor
space is divided into two new regions

R1(j, s) = {X|Xj < s} and R2(j, s) = {X|Xj ≥ s}. (4.20)

Xj and s are chosen to minimise∑
i:xi∈R1(j,s)

(yi − ŷR1)
2 +

∑
i:xi∈R2(j,s)

(yi − ŷR2)
2. (4.21)

At the root, the predictor space is divided into two regions. In the next step,
one of the regions is divided into two new regions. The region, predictor and cut
point are chosen to minimise RSS. The process is repeated until a stop criterion
is reached, for example, a maximum number of predictors in each region.

The idea is the same for a classification tree, but RSS can not be used as a
criterion for the splits. Instead, the classification error rate could be minimised.
The classification error rate is defined as the proportion of the observations from
the training data that do not belong to the most common class in a region

E = 1−max
k

(p̂mk), (4.22)

18



where p̂mk is the proportion of the training observations in region m that are
from class k. A more sensitive criterion is the Gini index. The Gini index
measures the variance across K classes and should be minimised,

G =

K∑
i=1

p̂mk(1− p̂mk). (4.23)

The method described, for both regression trees and classification trees, is likely
to overfit the tree to the training data. A way to reduce this risk is to have
a smaller tree with fewer splits. Hopefully, this will lead to lower variance but
with the downside of potential bias. This is called tree pruning.

Secondly, a prediction is determined in each region based on the training
data. The new observations that end up in the region are assigned that predic-
tion. How to determine the prediction differs between a regression tree and a
classification tree. In a regression tree, the prediction is determined as the mean
of the observations in the region for the training data, while in a classification
tree the prediction is determined as the majority class in the region.

4.3.2 Bagging and Random Forest

The downside of decision trees is the high variance and the risk of overfitting
(James et al., 2013). A possible improvement is the bootstrap aggregation (bag-
ging) method. The idea is to build a forest with many different decision trees.
The trees are constructed from bootstrapped training samples. Bootstrap means
that several training sets are sampled from the original training set. Some ob-
servations may then occur more than once since the sampling is performed with
replacement. The observations are selected randomly with the same probability
of being drawn. By constructing a decision tree for each bootstrapped training
sample, one gets a forest of trees. Each tree is constructed without pruning,
hence it has low bias and high variance. Since there are a lot of trees, the vari-
ance can be reduced by averaging across the trees. For the regression problem,
the prediction is the mean of all predictions. For the classification problem, the
prediction could be made by taking the most frequently predicted class from the
trees. A risk with bagging is that the trees become correlated. If one variable
has high importance, almost all of the trees will use that predictor for the first
split. This will give correlated trees and the variance reduction will be limited.
A method which considers this problem is the random forest. To decorrelate
the trees, only m out of all p predictors are considered for each split when cre-
ating the decision trees. The m predictors are chosen as a random sample of
p. The split is then performed based on one of the predictors in m. m new
predictors are sampled for every split. This reduces the correlation since the
most important predictors can not be considered in every split. It is common
to use m =

√
p. A small value of m often improves the result when there are

many correlated variables. Bagging could be seen as a special case of random
forest where m = p. Hence, both methods are hereafter referred to as random
forest.
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No cross-validation is needed to test the performance of a random forest
model. In the bootstrap process, approximately two-thirds of the data is used
for each tree, since the probability that one observation is in the bootstrap
sample is

P = 1−
(
1− 1

n

)n

. (4.24)

An observation that is not included in a tree is called an out-of-bag (OOB)
observation. Hence, it is suitable to use the OOB observations for the evaluation
of the prediction quality. Since approximately one-third of the observations are
OOB in a tree, the same proportion of predictions are obtained.

For a large number of trees, it is no longer clear which parameters are the
most important. Node purity is a measure of how well a variable is able to split
the data. For regression trees, the total difference in RSS resulting from splits
for a specific variable, for all trees, is calculated. The sum of these differences
indicates the importance. A large value means an important variable. For
classification trees, the same could be done but instead using the decrease in
Gini index for the splits for the variable.

4.4 Model Evaluation Measures

For variable selection, a decision rule is needed in order to know how many
variables to exclude from the model without losing too much information and
model quality. The Akaike Information Criterion (AIC) is a model selection
criterion based on maximum likelihood estimation (James et al., 2013). The
criterion considers the risk of overfitting and underfitting, as well as penalising
models with too many explanatory variables. The AIC value for a certain model
can be calculated as

AIC = −2 ln (l) + 2k, (4.25)

where l is the likelihood function and k is the number of parameters in the
model.

The Bayesian Information Criterion (BIC) is similar to AIC but, in general,
penalises models with many variables more than AIC. The BIC value for a
certain model can be calculated as

BIC = −2 ln (l) + k ln (n), (4.26)

where n is the number of observations.
By comparing equation 4.25 and 4.26, the natural logarithm in the second

term in BIC penalises a large number of variables more than the corresponding
term in AIC. For both AIC and BIC, a lower value means that the model fits
the data better.

4.4.1 Numerical Model Evaluation

In order to evaluate and compare the predictive strength of the developed nu-
merical models, several statistical measures can be used.
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R2 measures the fit of the model to the data as a proportion of the explained
variance in relation to the total variance calculated as

R2 =

∑n
i=1(ŷi − y)2∑n
i=1(yi − y)2

, (4.27)

where ŷi denotes the prediction of observation i, y is the average of the obser-
vations and yi is the actual outcome of observation i.

Root mean squared error (RMSE) is calculated as

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2. (4.28)

A small RMSE indicates that the predicted value is close to the true outcome.
As a complement to RMSE, mean absolute error (MAE) could also be used

and is computed as

MAE =

∑n
i=1 |yi − ŷi|

n
. (4.29)

MAE is the average distance between the observed values and the model predic-
tions (Willmott and Matsuura, 2005). In comparison to RMSE, MAE does not
increase to the same extent when a few predictions deviate significantly from
the observations.

4.4.2 Classification Model Evaluation

The actual outcomes and predictions of the number of corners could be defined
by a classification variable. The number of corners is then binary classified
in relation to the line. The confusion matrix, illustrated in fig. 4.2, presents
the possible relationships between the prediction and the actual outcome for
an arbitrary classification problem (James et al., 2013). The matrix consists of
four components. True positive (TP) is when the model correctly predicts the
outcome being positive. False positive (FP) is when the model falsely predicts
the outcome to be positive. True negative (TN) is when the model correctly
predicts the outcome being negative. False negative (FN) is when the model
falsely predicts the outcome to be negative.

F1-score and Matthew’s Correlation Coefficient (MCC) could be used as
evaluation metrics of the model performance in a classification problem (Matthews,
1975).

F1 score =
2 · TP

2 · TP + FP + FN
(4.30)

and can take values between 0 and 1 where a score of 1 indicates perfect model
precision in relation to the outcome.

MCC =
TP · TN − FP · FN√

(TP + FP ) · (TP + FN) · (TN + FP ) · (TN + FN)
(4.31)
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Figure 4.2: Illustration of a generic confusion matrix.

and the metric takes values in the range of -1 to 1 where 1 indicates perfect
model precision in relation to the outcome. F1-score gives reliable results for
balanced data but is misleading for imbalanced data. MCC manages to give
reliable results also for imbalanced data (Chicco and Jurman, 2020).

4.5 Betting Strategies

The predicted probabilities from the models should be combined with a betting
strategy to optimise the profitability. Two betting strategies were taken into
consideration, namely level stakes and the Kelly criterion.

The level stakes strategy suggests placing one unit on every bet where the
offered odds is greater than the odds implied by the predicted probability, in
other words where there is value in a bet. The amount placed on the bet is
the same regardless of how large the value is (Wheatcroft, 2020). The wager
normalised to 1 is defined as

W =

{
1 if o > op
0 if o ≤ op

, (4.32)

where op is the odds implied by the predicted probability for an outcome and o
is the offered decimal odds for the same outcome. For the predicted probability
p, the implied odds op is defined as

op =
1

p
. (4.33)

Unlike the level stakes strategy, the Kelly criterion suggests that the number
of units placed on a bet should be dependent on the size of the value (Thorp,
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2008). A large difference between the predicted probability and the odds implied
probability suggests a larger wager. The fraction of wealth placed on a particular
outcome is calculated as

W = max

(
p− 1− p

o− 1
, 0

)
. (4.34)

In order to make the betting strategies comparable, the stakes proposed by the
Kelly criterion for match i can be normalised as

si = c ·Wi, (4.35)

with normalising constant c, for m matches, such that

1

m

m∑
i=1

c ·Wi = 1. (4.36)

In their study, Yip et al. (2022) found that the market may be underesti-
mating the probability of the under selection. This means that the odds are
overvalued and indicating a potential profitability opportunity in consistently
betting on the under selection. If this theory holds, a strategy could be to bet on
the under alternative without any modelling. The simplest strategy is to use the
level stakes strategy and always place a bet on the under alternative. Another
option could be to combine this theory with Kelly criterion using the models.
Then a bet could be placed on the under alternative only when the model pre-
dicts that betting value exists and the wager size is determined according to the
Kelly criterion.
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5 Method

The dependent variable could be described as the number of corners in the
match or as a classification variable. In the latter case, the dependent variable
takes the value 1 if the number of corners is less than 10.5 and 0 otherwise. A
logistic regression can then be used to estimate the probability that the number
of corners will be above or below the line. Related to the confusion matrix, the
value 1 corresponds to a positive outcome and prediction, while 0 corresponds
to a negative outcome and prediction. An alternative to the regression approach
when modelling this type of event is to treat the data as a time series, one time
series for each team and season. However, the number of time series would then
have become large and too short which would complicate the handling of the
data and the ability to obtain reliable results. Hence, time series modelling was
not applied.

One way to model the number of corners in the match would be to divide the
problem into modelling the home team and away team corners separately, with
individual regressions and the team’s individual corner count as a dependent
variable. Then the predictions could be added to get the prediction for the
total corner count. Alternatively, the total number of corners may be modelled
directly. For the classification problem, the line has to be determined to be able
to classify the dependent variable, hence only the classification variable of the
total corners could be used as the dependent variable.

The modelling was divided into two main methods, generalised linear regres-
sion methods and tree-based methods. For each main method, one numerical
and one classification modelling approach was applied. The variable process-
ing was made in MATLAB (R2022b) and the modelling as well as testing in R
Statistical Software (version 4.2.2).

5.1 Data Processing

5.1.1 Data Splitting and Cross-Validation

The model data consisted of Premier League seasons from 2014/2015 to 2019/2020,
while the seasons 2021/2022 and 2022/2023 formed the test set. For the test
data set covering the Bundesliga, the seasons 2021/2022 and 2022/2023 were
used. The model data from the Premier League was used to find appropriate
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models which were then tested on the test data from the Premier League and
the Bundesliga. The splitting of model data and test data season-wise was used
to test the model’s ability to predict on completely new data.

By using cross-validation, the risk of overfitting the model to the training
data decreased and instead strengthened the prediction model’s capability to
handle new data. This may also increase the interpretability of the model and
the stability of the predictions, since it focuses on the underlying structure rather
than particular patterns of noise (James et al., 2013). k-fold cross-validation is
commonly used which means that the data set is divided into k subsets, where
k − 1 subsets are used as training data and the remaining subset is used for
validation. This procedure is repeated k times, where all subsets are used as
validation data once. A 10-fold cross-validation was used on the model data
when training the model. The number of folds was determined to get an ap-
propriate size of the subsets. When it was not possible to divide the data set
into exactly equal subsets, the remaining observations were included in the last
subset. When performing the 10-fold cross-validation, the data were randomly
rearranged and divided into subsets and later sorted back to the original order.
For the generalised linear regression models, the same randomisation was made
for all models. For the random forest problem, the function rfcv in the random-
Forest package was used for the cross-validation (Liaw et al., 2004). Hence, the
cross-validations were not performed with identical subsets for the generalised
linear models and the random forest models.

5.1.2 Variable Processing

Based on the match data set, moving averages with lengths of three, four and
five matches were computed for each variable and team. A season average
of all matches played so far during the current season was also computed, in
tables and figures denoted as avg while the moving averages are denoted as
avg3, avg4 and avg5. Corresponding moving averages and seasonal averages
were also made separately for the team’s home and away matches, creating
home and away averages for each variable and each team. This resulted in that
every variable, for the home team and away team, respectively, had eight sub-
variables which together form a variable family, see fig. 5.1. For the averages,
values for the initial matches for each season were missing. One option to deal
with this problem was to exclude enough matches in the first rounds of play each
season to obtain a data set capable of providing values up to the fifth moving
average in each variable. Since moving averages based only on home and away
matches were also taken into account, this meant that a considerable number
of matches would have been needed to be excluded from the data set. At the
same time, it was important to have enough matches in each season to maintain
the robustness of the data set. For that reason, the problem was addressed by
using the previous season’s mean value for each variable during the first rounds
of play. Thus, for the 2014/2015 season, which was the first season in the model
data, team averages from the 2013/2014 season were used as initial values. As
the matches in the first game weeks were played, the moving averages were built
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up and the averages of the previous seasons faded out. For the clubs that were
promoted, average values of the variables of the clubs placed in the bottom
quarter the previous season were used as initial values.

Home team =



Home team season average
Home team average 3
Home team average 4
Home team average 5

Home team home season average
Home team home average 3
Home team home average 4
Home team home average 5

Away team =



Away team season average
Away team average 3
Away team average 4
Away team average 5

Away team away season average
Away team away average 3
Away team away average 4
Away team away average 5

Figure 5.1: Variable family for a home team and an away team. The averages
are of different lengths and divided to represent all matches played by a team,
as well as home and away matches separately.

5.1.3 Additional Variables

In addition to using actual historical match data and the teams’ FIFA ratings,
other potentially helpful variables were created. This was done in order to
supplement the available match statistics with the purpose of further explaining
the randomness in the number of corners.

Two variables that could possibly affect a team’s performance in a match are
the team’s form based on recent matches and its motivation to perform. Both
form and motivation largely depend on psychological factors of players and staff
rather than physical, technical and tactical abilities which otherwise are easier
to measure. For example, if a team is in good form as a consequence of being
on a winning streak or has incentives which lead to boosted motivation, it may
enter a match with enhanced confidence which could spill over into the overall
performance and willingness to take risks.

Form Variable

The approach of the form variable was to create a point system, similar to the
standard point system of the match outcome. The form point system should
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reflect whether the match result in terms of win, draw or loss was expected or
an upset. The difference in the teams’ overall FIFA rating indicated how big
a potential upset would be if the lower-rated team beat the higher-rated team,
which gave the so-called FIFA rating compensation. The form point system
also compensated the team playing away. The form points a team received
from a match were determined based on the points the team received from the
match result multiplied by the compensation factors. A team’s form was then
determined based on moving averages of the points of three, four or five matches.
The form points a team was given in a match were defined as

form points = match points · away compensation · FIFA compensation. (5.1)

The away compensation for a team was defined as

away compensation =

{
1 if team is home
1.3 if team is away

, (5.2)

and was derived as the mean of points obtained by the home teams divided by
the points obtained by the away teams of the model data.

The FIFA compensation was defined as

FIFA compensation =

 1 if ∆FIFA < 4
1.2 if 4 ≤ ∆FIFA < 8
1.4 if ∆FIFA > 8

, (5.3)

where ∆FIFA was the difference in the overall FIFA rating between the opponent
team and the team considered. Hence, the weaker team was rewarded but the
stronger team was not penalised.

Motivation Variable

The motivation variable was assumed to be particularly important at the end of
the season and was created to take into account the teams’ table position and
the importance of the match. The variable was only valid for the last five game
weeks. For the other matches, the teams were considered to have a normal level
of motivation. The motivation variable was binary and thus only took the values
0 or 1. In the cases where a team had the value 1 in the final game weeks, it was
considered to have increased motivation due to the risk of relegation, its chances
of qualifying for a UEFA tournament or its chances of winning the league title.
The motivation variable for a team in a match was defined as

M =

{
1 if ML ≤ 5 and TT ≤ 7 or TB ≤ 5

0 otherwise
, (5.4)

where ML was matches left the current season, TT was table placement from
top and TB was table placement from bottom.
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5.2 Modelling Framework

An overview of the modelling framework is illustrated in fig. 5.2, explaining
the process starting from the selection of averages in the variable families and
ending with the predicted probabilities of the models. For the generalised lin-
ear regression models, the number of variables was further reduced with either
backward stepwise selection or elastic net. The modelling framework resulted
in 15 different model predictions.

Average
Selection

Random
Forest

Generalised
Linear

Regression

Numerical
Random
Forest

Classification
Random
Forest

Backward
Stepwise
Selection /
Elastic Net

Negative
Binomial
Regression

Logistic
Regression

Probability

Probability

Probability

Probability

Figure 5.2: Modelling framework with used selection and statistical learning
methods, leading to 15 model predictions.

5.3 Average Selection

After the variable processing has been conducted, the full data set included 198
explanatory variables. The large amount mainly depended on that eight moving
averages of different lengths were included from each variable family. Therefore,
a methodical approach of selecting the average from each variable family that
best explains the dependent variable was used.

The purpose of creating averages of different lengths was to identify the
average of a certain length that best could relate to the dependent variable.
The averages of different lengths were naturally strongly correlated, hence it
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was unnecessary to include more than one moving average per variable fam-
ily. Variables that did not belong to a specific variable family, namely game
week, FIFA ratings, match odds and the motivation variable were left out of
this primary variable selection. In the case of predicting corners with negative
binomial regression, a negative binomial regression was first performed on each
variable family independently and the average with the lowest p-value was cho-
sen to represent that variable family in the model. For the logistic regression
case, each family underwent a logistic regression in order to choose the most
informative average. In the logistic case, the built-in function glm was used and
in the negative binomial case, the function glm.nb in the package MASS was
used (Venables and Ripley, 2002). The procedure was repeated for all depen-
dent variables. This led to the number of variables being reduced to 38 for each
dependent variable.

5.4 Generalised Linear Regression

When the first variable filtering was completed, the backward stepwise selec-
tion and the elastic net were performed in parallel. In the backward stepwise
selection, one variable was removed at a time until the smallest AIC and BIC
values were found, thus two different models were obtained. To perform the
backward stepwise selection, the built in-function step was used. The back-
ward stepwise selection was conducted with both negative binomial regression
and logistic regression. The elastic net was used as a variable selection method
and the α-value was set to 0.5, weighing lasso regression and ridge regression
equally. The glmnet package in R was used to fit a regression model with the
elastic net (Friedman et al., 2010). With the partially reduced data set of 38
variables, 100 λ-values were generated and thereby 100 different models. In the
case of negative binomial regression, a Poisson distribution was used due to the
absence of the option of negative binomial distribution in glmnet. Note that the
Poisson distribution was only used in the elastic net in order to select which
variables should be included in the final negative binomial regression. Models
obtained from a Poisson-based elastic net are still referred to as negative bino-
mial models. In the classification case, binomial distribution was used. Based
on the cross-validation, the models corresponding to λmin and λ1se were iden-
tified. New negative binomial and logistic regressions were conducted based on
the variables included in the chosen models.

Cross-validation was performed for all models. The best-performing negative
binomial regression model and logistic regression model were selected for the
numerical and classification problem with respect to the evaluation metrics.
For the selected models, predictions were subsequently made on the test data.
From the predicted values, evaluation metrics were determined to evaluate the
models’ performance on test data.
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5.4.1 Probability Sampling

Based on the regression for the number of corners, a probability that the number
of corners in a particular match ended up over or under the line had to be
identified. This step had to be done for the negative binomial regression models,
but not for the logistic regression models since the sought probabilities then were
obtained directly.

The following steps show how the predicted corner distribution for the de-
pendent variable t and match i was derived. The first step was to generate a
sample βt from a normal distribution from the regression coefficient estimates
β0
t and the variance Σt. When estimating the regression coefficients with max-

imum likelihood estimation, the assumption of asymptotic normality gave that
the estimate was distributed as

βt ∼ N (β0
t ,Σt). (5.5)

The mean µti of the sampling was then, in line with eq. (4.5), computed as

µti = eXtiβt (5.6)

where Xti is the explanatory variables for dependent variable t and match i.
The number of corners yti for dependent variable t in match i was drawn from
a negative binomial distribution as

yti ∼ NB(µti, θ), (5.7)

where θ is the estimated dispersion parameter. The procedure was repeated
1000 times for each match.

Finally, when modelling home team corners and away team corners, respec-
tively, the aggregated number of corners was given by the pairwise summation
of the samples. The probability of the number of total corners being less than
the line of 10.5 was given by calculating the proportion below the line. When
modelling the total corner count directly, the proportion could be calculated
without pairwise summation.

5.5 Bagging and Random Forest

Random forest was conducted in the same way for both the regression problem
and the classification problem. The package randomForest in R was used for
the regression (Liaw and Wiener, 2002). The number of trees and the number
of variables considered in each split, m, were inputs to the random forest algo-
rithm. The number of trees was set to 500, which was the default value in the
randomForest package. To perform the cross-validation, the function rfcv was
used. m ranged from m = p to m = 1. The value of m which resulted in the
smallest cross-validation error was chosen. The evaluation metrics were deter-
mined from the cross-validated predictions and the best-performing numerical
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model was selected to make predictions on test data. Only the model predicting
total corner count was optional for the classifier.

The function randomForest was used to train the final model on the entire
model data and then predictions were made on the test data. The number of
variables considered in each split, m, from the cross-validation which resulted
in the smallest cross-validation error was used. The evaluation metrics were
determined based on the predicted values to evaluate the models’ performance
on test data.

To determine the importance of the variables, the function importance was
used. Importance is defined as the total decrease in node impurities from split-
ting on the variable, averaged over all trees. For classification, importance is
based on the Gini index and for regression, it is based on RSS.

The predicted probability for having over or under 10.5 corners for the re-
gression problem was obtained by the proportions over-under 10.5 corners of
all trees from each prediction. In the same way, the predicted probability was
obtained in the classification problem based on the proportions of predictions
over and under the line.

5.6 Under Odds Theory

As described in chapter 2, there are findings indicating an asymmetry in the
over-under market in favour of betting on the under selection. To examine
this theory, a hypothesis test was performed where the null hypothesis and
alternative hypothesis were formulated as

H0 = under odds market are correct or overvalued,
H1 = under odds market are undervalued.

(5.8)

The outcomes were seen as a classification variable where under 10.5 corners
corresponded to 1 and over 10.5 corners corresponded to 0. The odds implied
probability for the under market for match i, p1i, was calculated as

p1i =
o1i

o1i + o0i
, (5.9)

where o1i was the odds for the under market and o0i was the odds for the over
market for match i. For sampling t, an outcome for match i was sampled from
the implied probability as

Y t
p1i

∼ Be(p1i). (5.10)

The expected value of the sampled outcome t minus the implied probability for
match i was

E[Zt
i ] = E[Y t

p1i
− p1i] = 0. (5.11)

The mean of the sampled outcomes t minus the implied probabilities for N
matches had an expected value

E[Zt] = E

[∑N
i=1 Z

t
i

N

]
= 0. (5.12)
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The sampling was repeated 1000 times for each implied probability. The means
of the sampled outcomes minus the implied probabilities for N matches belong
asymptotically to a normal distribution with zero mean due to the Central Limit
Theorem. Hence,

Zt ∼ N (0, σ2) (5.13)

where σ2 is an arbitrary variance. The mean of the actual outcomes minus the
implied probabilities was calculated as

Zobs =

∑N
i=1 Y

obs
i − p1i
N

(5.14)

where Y obs
i was the actual outcome for match i. If the under market odds

were undervalued, Zobs should be sufficiently larger than zero. A p-value was
obtained from a one-sided Z-test based on Zobs and a fitted normal distribution
to determine if the null hypothesis could be rejected as

p-value = P (Zobs > Z) = 1− Φ

(
Zobs − 0

σ

)
, (5.15)

where σ =
√

V ar[Z] is estimated based on the samples Zt. The Z-test is
illustrated in fig. 5.3.

0

10

20

−0.06 −0.03 0.00 0.03 0.06
Z

F
re

qu
en

cy

Figure 5.3: A histogram of Zt values and a fitted normal distribution. The red
dashed line represents Zobs which should be examined whether it belongs to the
distribution.
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5.7 Profitability Analysis

In order to evaluate the profitability of the models, the predicted probabilities
were combined with the betting strategies presented. Since the theory of con-
sistently betting on the under selection was analysed, the models and betting
strategies were also combined with only playing on the under selection. The
profitability analysis was made on the test data both for the Premier League
and the Bundesliga. The profitability was evaluated both on profit in units and
return on investment (ROI). ROI measures the return on placed bets only, while
total profit considers the overall profitability taking all available matches into
account. These two ways of measuring profitability differ, and the difference can
become particularly apparent when applying conditional betting strategies. In
2023, the commission for Swedish customers at Betfair was 2% on net profits,
which was considered in the calculated profitability (Betfair, 2023a).
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6 Result and Analysis

The modelling was accomplished as described by theory and methods. The
result is demonstrated by first presenting which variables that were included
in each model. Then model evaluation metrics are presented which are the
foundation for the model selection. Finally, the profitability analysis is presented
where the best-performing models are combined with the betting strategies.

6.1 Variable Selection

6.1.1 Average Selection

The first step in the variable selection process is to select one average from each
variable family. This process is performed by using negative binomial regression
and logistic regression, respectively, for each of the dependent variables. How
the averages are selected is illustrated in fig. 6.1. As can be seen, the season
average is dominant, especially when modelling the home team and away team
corner count, respectively. The regular average is preferred over the home-away-
dependent average.

6.1.2 Generalised Linear Regression

Further variable selection is made either by elastic net or backward stepwise
selection. In the elastic net, the λ-value is chosen either as λmin or λ1se. Fig-
ure A.1, fig. A.2, fig. A.3 and fig. A.4 in appendix A provide illustrations of the
tuning parameter selection. In the figures, the mean cross-validated error is plot-
ted against λ-values. The red vertical lines mark the values for λmin and λ1se.
For all regression models considered, the smallest mean cross-validated error is
found for a relatively low λ-value. Since the curves for the negative binomial
regression models have a markedly positive slope after finding the minimum,
λ1se is related to a comparatively higher mean cross-validated error. The curve
for the logistic regression models instead flattens out after finding the minimum,
indicating a lower sensitivity for selecting the tuning parameter. Both for neg-
ative binomial and logistic regression, modelling the total number of corners,
λ1se results in models where the elastic net shrinks the number of explanatory
variables to zero. It is again mentioned that the Poisson distribution was used
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Figure 6.1: Selection of variables from the variable families. Each variable family
consists of eight averages, where H/A denotes if the average is only taking home
or away matches into account.

as input in glmnet, instead of the non-optional negative binomial distribution,
which may have led to a sub-optimal choice of the tuning parameter.

6.1.3 Bagging and Random Forest

The number of variables considered in each split, m, in the random forest mod-
els is chosen to generate the smallest cross-validation error. Random forest is
considered for the four types of dependent variables. In all cases m = p is chosen
in order to minimise the cross-validation error, this means bagging is performed.

6.1.4 Analysis of Included Variables

The number of included variables in the generalised linear regression models
clearly varies both regarding to the variable selection method and the depen-
dent variable used in the model. For many of the models, the variables selected
are logical to describe the number of corners in relation to the dependent vari-
able, while some combinations of selected variables may be perceived as coun-
terintuitive. This can be explained by the fact that many explanatory variables
in the data are correlated, which can cause some variables to be selected over
other variables that may be more intuitive. The analysis will therefore focus on
identifying logical patterns in the variable selection and comparing similarities
and differences between the models. A complete presentation of all variables in
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each model can be found in table B.2, table B.3, table B.4, table B.5, table B.6,
table B.7, table B.8 and table B.9 in appendix B.

Studying the variables selected in the negative binomial regression models
when modelling the total number of corners, the away team’s overall FIFA
rating and the home team home average goal count in the first half occurs
most frequently. When modelling the teams’ corners separately with negative
binomial regression, the money line winning odds occurs multiple times as well
as the corner count and the opponent team’s conceded corner count. In logistic
regression, the home team corner season average and the away team possession
season average are included in several models.

In numerical random forest, most variables have a relatively high level of im-
portance. When modelling the total number of corners with random forest, the
away team’s season average for shots off target in away games as well as both
teams’ goal count in the first half get the highest importance. For the home
team, the latter variable concerned the average of matches played at home,
which is in line with the findings in negative binomial regression. When mod-
elling the number of corners for the home team in numerical random forest, the
money line odds for the home team win has a remarkably high importance and
the odds for the away team win has the second highest importance. The impor-
tance is evenly spread across most of the remaining variables. Worth noting is
that the motivation variable has by far the lowest level of importance, both for
the home team and away team. Similar observations can be made when mod-
elling the away team’s corner in numerical random forest. The motivation and
form variables are however included in several generalised linear regression mod-
els. On the whole, the results indicate a pattern that numerical random forest
and negative binomial regression lead to similar variable selection. For classi-
fication random forest, variables such as the team’s season average of corners,
fouls and possession have considerable importance and the motivation variables
have again negligible importance. This is also in line with the classification
equivalent in generalised linear regression modelling.

Moreover, variables connected to the home team and away team respectively
are evenly distributed among the models. The number of included variables in
negative binomial and logistic regression is larger for the backward stepwise
variable selection with AIC and the elastic net using λmin compared to the
backward stepwise variable selection with BIC and the elastic net using λ1se,
which is in line with the expectations from theory.

6.2 Model Performance Evaluation

For negative binomial regression and numerical random forest, the modelling
results are presented both for the case when the total number of corners is pre-
dicted and when the teams’ corners are predicted separately and then combined.
For logistic regression and classification random forest, only the total number
of corners is modelled. The predictions are obtained by 10-fold cross-validated
data. Furthermore, the results include the variable selection methods leading
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to eight different model alternatives for negative binomial regression and four
model alternatives for logistic regression. Two model alternatives are obtained
when using numerical random forest and one for classification random forest.
Altogether, fifteen models are developed and analysed. The best-performing
models for each regression method are highlighted in bold in table 6.1. The
negative binomial and logistic regression models with elastic net using λ1se,
modelling the total number of corners, are reduced to solely a constant due to
heavy penalisation. Hence, these models will hereafter not be considered in the
analysis. For comparison, a naive numerical model and a naive classification
model are added. The naive numerical model uses the arithmetic mean of the
model data as a prediction and the naive classification model uses the share of
matches with under 10.5 corners as the predicted probability. Naturally, the
naive models are the same as the disqualified constant models. The naive mod-
els differ considerably since the mean of total corners is 10.55 while the share of
matches with less than 10.5 corners is 52.4%, hence their predictions are each
other’s opposites. When cross-validation is performed, the predictions do not
need to be constants for the whole data set since all subsets do not necessarily
have the same distribution.

6.2.1 Model Evaluation Measures

When evaluating the models, F1-score and MCC are used to make the results
comparable between the numerical and the classification methods. The nu-
merical methods have been supplemented with RMSE, R2 and MAE for inter-
nal comparison. Since the data can be considered to be balanced, F1-score is
favoured over MCC due to its simplicity and higher interpretability.

6.2.2 Model Comparison

The results show that the F1-score is consistently larger for all classification
models compared to the numerical models. It can also be seen that the F1-
score is generally larger for the generalised linear regression models than for the
random forest models. On the other hand, MCC is larger for the numerical
models compared to the classification models and is also larger for the gen-
eralised linear regression models compared to the random forest models. The
MCC value for the classification random forest is notably low but still has a
competitive F1-score. The naive classification model gets an undefined MCC
value since no true negatives or false negatives are obtained. On the other hand,
it has the largest F1-score. The naive numerical model has both a low F1-score
and MCC value. This finding confirms that F1 and MCC differ and may not
lead to identical results.

RMSE, R2 and MAE for the numerical models indicate that the explana-
tory power for the models is low. Still, there are differences in the model perfor-
mances worth considering. For negative binomial regression, separate modelling
using λ1se is competitive since it exhibits the second highest R2 and the sec-
ond lowest RMSE and MAE, only surpassed by modelling the total number
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Table 6.1: Performance of all models for the Premier League model seasons,
supplemented by a naive numerical model and a naive classification model.

Model F1 MCC RMSE R2 MAE

Numerical
Naive

0.173 0.011 3.482 0.000 2.764

Total Numerical
NegBin Stepwise AIC

0.536 0.082 3.452 0.017 2.730

Total Numerical
NegBin Stepwise BIC

0.520 0.055 3.461 0.012 2.739

Total Numerical
NegBin λmin

0.530 0.072 3.460 0.013 2.740

Total Numerical
NegBin λ1se

0.173 0.011 3.482 0.000 2.764

Home/Away Numerical
NegBin Stepwise AIC

0.533 0.074 3.462 0.012 2.736

Home/Away Numerical
NegBin Stepwise BIC

0.519 0.084 3.462 0.012 2.736

Home/Away Numerical
NegBin λmin

0.513 0.054 3.474 0.005 2.749

Home/Away Numerical
NegBin λ1se

0.533 0.082 3.456 0.015 2.733

Classification
Naive

0.688 -

Total Classification
Logistic Stepwise AIC

0.606 0.059

Total Classification
Logistic Stepwise BIC

0.621 0.070

Total Classification
Logistic λmin

0.605 0.056

Total Classification
Logistic λ1se

0.688 -

Total Numerical
Random Forest

0.514 0.054 3.476 0.003 2.755

Home/Away Numerical
Random Forest

0.490 0.054 3.500 -0.010 2.773

Total Classification
Random Forest

0.578 0.020
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of corners with AIC. Regarding the numerical random forest models, RMSE
and MAE are higher and R2 is lower for modelling the total number of corners
compared to separate modelling. The numerical random forest models perform
worse across all metrics compared to the negative binomial regression models.
For separate modelling using random forest, the R2 is negative implying that it
performs worse than a constant model. Worth mentioning is that the R2 values
when modelling home team corners and away team corners, separately, are sig-
nificantly higher than when the two models are merged. The predictive strength
is reduced when the separate predictions are summed since the variance of the
merged model is the sum of the variance and covariance of the separate models.
RMSE, R2 and MAE for the models of the home team corners and the away
team corner could be found in table C.1 in appendix C.

6.2.3 Method Comparison

Concerning the elastic net versus the backward stepwise variable selection, the
results suggest that the latter may be preferred for handling the large number of
explanatory variables. The generalised linear regression models perform better
across the metrics compared to the random forest models. It can also be seen
that modelling with a classification approach is preferred over a numerical pro-
cedure. The results indicate that modelling the total number of corners should
be preferred to modelling the teams’ corners separately. An advantage of mod-
elling the total corner count is also the opportunity to transfer the dependent
variable from numerical to classification.

6.2.4 Qualified Models

Modelling the total number of corners with stepwise variable selection based
on AIC performs best among the negative binomial regression models, while
modelling with BIC is preferred in the logistic regression. Modelling the total
number of corners is also preferred in the numerical random forest. These three
models together with the classification random forest are qualified for further
investigation. Altogether, the results based on model data show that the logistic
regression model using stepwise variable selection with BIC is superior to all
other models. The naive numerical model performs worse than the negative
binomial models and the numerical random forest when modelling the total
number of corners. The naive classification has a better F1-score than the other
classification models but has an undefined MCC value.

The qualified negative binomial regression model and logistic regression
model with their included variables and coefficient estimates are presented in
table 6.2 and table 6.3.
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Table 6.2: Best performing negative binomial regression model and its estimated
parameters.

Model Included variables β

Total Numerical
NegBin Stepwise AIC

intercept 2.8028
away team OVR -0.0078
away team avg 4 goal count 0.0198
home team avg conceded goal count -0.0275
away team avg conceded goal count 0.0451
home team avg home goal count first
half

0.0863

home team avg4 corner count 0.0129
home team avg conceded corner count 0.0177
away team avg3 away conceded corner
count

-0.0062

away team avg possession -0.0016

Table 6.3: Best performing logistic regression model and its estimated parame-
ters.

Model Included variables β

Total Classification
Logistic Stepwise BIC

intercept -0.3731
home team avg corner count -0.1303
away team avg possession 0.0231

6.3 Model Testing

The performance evaluation metrics are presented in table 6.4 for all qualified
models when the Premier League test data is applied. Some differences in
the evaluation measures arise when studying how the models handle new data.
All qualified models increase in F1-score and the improvement is especially
apparent for the random forest models. This is not an expected result. It
can either depend on a coincidence or that the test data is easier to predict on.
The generalised linear regression models get a worse MCC value. The MCC
value for classification random forest increases considerably compared to when
evaluated on model data, and an improvement is also apparent for the numerical
random forest. In fact, the highest F1 and MCC values hitherto are found for
the classification random forest model. Regarding RMSE and MAE for the
numerical models, the former is improved while the latter is slightly worsened
compared to the results in table 6.1. At the same time, the R2 values for both
numerical models are negative. When comparing the models in table 6.4, the
random forest models outperform the generalised linear regression models with
respect to F1 and MCC values, both for numerical and classification modelling
respectively, which is opposite to the findings in table 6.1. The naive numerical
model performs better than the other numerical models according to RMSE
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and R2 while is in between according to MAE. The F1-score for the numerical
naive model is 0 since the predictions result in no true positives. The naive
classification model has the highest F1-score among the classification models.

Table 6.4: Performance of qualified models for the Premier League test seasons.

Model F1 MCC RMSE R2 MAE

Numerical
Naive

0 - 3.413 -0.004 2.752

Total Numerical
NegBin Stepwise AIC

0.566 0.058 3.429 -0.014 2.743

Classification
Naive

0.717 -

Total Classification
Logistic Stepwise BIC

0.642 0.062

Total Numerical
Random Forest

0.558 0.100 3.435 -0.017 2.757

Total Classification
Random Forest

0.671 0.120

6.4 Profitability Analysis

6.4.1 Under Odds Theory

To assessing the under odds theory, the statistical test described in section 5.6 is
performed. The aim is to investigate whether the under odds are systematically
undervalued and hence there would exist inefficiency in the considered over-
under market for corners. Odds from the seasons 2019/2020 to 2022/2023, with
only matches in 2023 included in the latest season, are used in the test. Due to
missing data, the Premier League data set includes 1211 matches. The p-value
is determined to be 0.0010. This means that the null hypothesis can be rejected
at a low significance level. The test result is illustrated in fig. 5.3.

6.4.2 Betting Analysis

The best-performing models were combined with the betting strategies. As part
of analysing the asymmetry in the over-under market in favour of betting on
the under alternative, the models were also combined with the betting strategies
under the condition of only betting on the under alternative if value exists. This
led to each model having four different betting approaches. The result for con-
sistently betting on the under alternative, without first assessing the potential
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betting value, is presented along with the models’ profitability. This strategy is
the same as the naive classification model combined with level stakes, thus the
naive classification model is included in the analysis. Since the betting format is
over-under, the naive classification model is assumed to be more relevant than
the naive numerical model, hence the latter is not included in the analysis.

In table 6.5, it can be seen that all models generate positive returns when
the models are tested on new Premier League data, consisting of odds from 544
matches. The Kelly criterion is outperforming level stakes for all models both
in terms of total profit and ROI. Considering when the models are allowed to
place bets either on the over or under alternative, the total profit is in most
cases nearly twice as high using the Kelly criterion compared to level stakes.
Classification random forest then yields the highest profit, followed by the logis-
tic regression model. On the other hand, the negative binomial regression model
under level stakes performs worst but is still profitable. Consistently betting on
the under alternative generates a positive profit. It performed worse than the
models in combination with the Kelly criterion but in most cases better than
the models in combination with level stakes.

Generally, the ROI and the share of successful bets increase significantly
when betting on the under alternative only when the model predicts that value
exists on the under odds. The percentage of placed bets then decreases from
94-97% to 45-53% and the share of wins increases from 51-53% to 57-59%.
Classification random forest using the conditional Kelly criterion exhibits the
highest ROI. This could be explained by the fact that there, in general, exists
more value in the under odds offer. Still, the model has a lower total profit
compared to when it is combined with the unconditioned Kelly criterion. This
observation is consistent with the other models as well.

Figure 6.2, fig. 6.3, fig. 6.4 and fig. 6.5 illustrate how the profit of the models
develops over time. It is noteworthy that for many models and betting strate-
gies, an initial short negative trend is visible during the first 50 matches, followed
by a recovery period and a horizontal trend during the following 200 matches.
Then a clearly positive trend is apparent during the remaining matches of the
test data set. The initial negative trend could be due to the usage of average
statistics from the previous season, which is faded out as the matches are played
and may not be representative to yield enough predictive strength. On the other
hand, the test data consists of two seasons, with the second season starting at
match 327, and no such negative trend can be discerned in either of the charts.
The profit graph from consistently betting on the under alternative follows the
trends of the other graphs quite well apart from a scaling factor.

Figure 6.5 demonstrates clearly how well classification random forest per-
forms in combination with the Kelly criterion, both when using it conditionally
and unconditionally to the under odds. Contrary to the other model and bet-
ting strategy combinations, the positive trend starts already after 150 matches
played. Another interesting aspect can be seen in fig. 6.3 and fig. 6.4 where the
models combined with the Kelly criterion actually generates negative return
during the first 150 matches, but then recover and eventually yield the highest
returns among the betting strategies applied on the respective model. This may
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indicate that the Kelly criterion is largely dependent on being combined with a
prediction model that is competitive in assessing the value of the bet in order to
be successful. Classification random forest may be better at assessing the value
of the bet compared to numerical random forest and logistic regression. This
should result in a wager that better reflects the risk in the bet and eventually
higher profitability.

Furthermore, the logistic regression model in combination with level stakes
exhibits a persistent negative return during the majority of the matches, but
later improves and generates profit. When comparing the numerical models
to the classification models, the spread of the profitability curves is larger for
the classification models. This could be explained by how large the difference
is between the model prediction and the line, which in turn affects the wager
size when betting under the Kelly criterion. Classification modelling, regard-
less of whether it is based on generalised linear regression or random forest, is
then more successful in assessing the potential value in the bet leading to more
profitable models compared to numerical modelling.

Table 6.5: Profitability analysis on the Premier League test seasons.

Model Betting
Strategy

Bets
Played
(%)

Wins
(%)

Total
profit

ROI
(%)

Under 100 56.6 29.5 6.1

Total Numerical
NegBin Stepwise AIC

Level stakes 96.7 50.9 14.1 3.0

Kelly criterion 96.7 50.9 32.0 6.9

Level stakes U 47.5 57.2 23.5 10.3

Kelly criterion U 47.5 57.2 34.1 14.9

Total Classification
Logistic Stepwise BIC

Level stakes 94.4 50.5 17.2 3.8

Kelly criterion 94.4 50.5 54.2 11.9

Level stakes U 44.8 57.4 26.3 12.2

Kelly criterion U 44.8 57.4 49.9 23.1

Total Numerical
Random Forest

Level stakes 97.1 50.6 16.9 3.6

Kelly criterion 97.1 50.6 36.4 7.8

Level stakes U 44.8 57.4 25.4 11.8

Kelly criterion U 44.8 57.4 35.8 16.6

Total Classification
Random Forest

Level stakes 96.3 53.0 35.7 7.7

Kelly criterion 96.3 53.0 74.0 15.9

Level stakes U 53.1 59.0 36.9 14.4

Kelly criterion U 53.1 59.0 65.9 25.8
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Figure 6.2: Profitability chart for Total Numerical NegBin Stepwise AIC on the
Premier League test seasons.
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Figure 6.3: Profitability chart for Total Classification Logistic Stepwise BIC on
the Premier League test seasons.
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Figure 6.4: Profitability chart for Total Numerical Random Forest on the Pre-
mier League test seasons.
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Figure 6.5: Profitability chart for Total Classification Random Forest on the
Premier League test seasons.
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6.4.3 The Value of F1 and MCC

The model selection is mainly based on the models’ F1-score and MCC value,
where the F1-score is prioritised. To evaluate whether this is a good decision
criterion or not, the total profits for the test data for all betting strategies and
models, except the disqualified constant models, are calculated. Total profits
are plotted against the F1-score from the test data in order to examine the
relationship. The plot and the trend line can be seen in fig. 6.6. The betting
strategies are colour coded, which illustrates the profitability spread for the
different betting strategies. It can be seen that there is a positive correlation
between F1 and profit. The MCC values are also plotted against the profits, see
fig. 6.7. There is a positive correlation between MCC and profit as well, although
the correlation is weaker. The positive correlations indicate that F1 and MCC
are good metrics when choosing a model. The data points in the plots do not
follow the line exactly which indicates that there may be additional factors that
affect the profit as well.

When investigating the relationship between profit from test data and met-
rics from model data, the profits and F1-scores are positively correlated while
there is a negative correlation for the MCC values. This result contradicts
the reasoning above. The negative correlation between profit and MCC values
could be a consequence of differences between the test data and model data.
The models’ performance differs for model data and test data. The differences
in performance could depend the low degree of explanatory power in the models.
Small differences in the data set could thus affect the model performance. The
share of matches in the test data where the total number of corners is less than
10.5 is 55.9% compared to 52.4% in the model data. It is quite small difference,
but it affects the F1-score. The profitability is dependent on the odds and which
matches have missing odds which could affect the relationship between model
performance and profit. Still, F1-score and MCC values are considered as good
performance metrics based on the positive correlation with the profit for the
same data.

6.5 Bundesliga

In order to evaluate how well the qualified models handle differences between
leagues, the models are tested on the Bundesliga. The same procedure of evalu-
ating the models on test data together with a profitability analysis is performed.

6.5.1 Model Testing

The test results from the Bundesliga are generally worse compared to the Pre-
mier League, see table 6.6. The MCC values have decreased and turned negative.
The majority of the F1-scores are worsened, but the F1-score for the logistic
regression model is higher compared to its counterpart in the Premier League
result. RMSE, R2 and MAE are all lower compared to the results in table 6.4.
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Figure 6.6: Profit plotted against F1-scores for the Premier League test data
for all models. The figure also illustrates the profitability spread for model and
betting strategy combinations.
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for all models. The figure also illustrates the profitability spread for model and
betting strategy combinations.
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When the models are compared to each other in table 6.6, the two numerical
models perform roughly equally. The classification models have a competitive
F1-score but the classification random forest model has a notably low MCC
value. Overall, the logistic regression model with backward stepwise selection
based on BIC performs best among the statistical methods. The performance
metrics of the naive models follow the same pattern as in table 6.4.

Table 6.6: Performance of qualified models for the Bundesliga test seasons.

Model F1 MCC RMSE R2 MAE

Numerical
Naive

0 - 3.307 -0.072 2.710

Total Numerical
NegBin Stepwise AIC

0.439 -0.066 3.445 -0.163 2.788

Classification
Naive

0.754 -

Total Classification
Logistic Stepwise BIC

0.679 -0.036

Total Numerical
Random Forest

0.423 -0.074 3.460 -0.173 2.829

Total Classification
Random Forest

0.657 -0.099

6.5.2 Profitability Analysis

When the profitability of the models is evaluated on the test data from the Bun-
desliga, consisting of odds from 441 matches, considerable differences compared
to the results obtained from the Premier League data can be found. As can be
seen in table 6.7, the majority of the model and betting strategy combinations
now generate negative returns. When the models are used with the uncondi-
tioned betting strategies they turn out to be markedly unprofitable, with the
Kelly criterion applied on numerical random forest generating the largest loss.
When the betting strategies conditional on the under odds are applied, the mod-
els are more restrictive and only place bets in 9-23% of the matches, compared
to 98-99% for unconditional betting strategies, which results in the profit turn-
ing positive for some models. The logistic regression model conditional on only
betting on the under alternative with level stakes is the most profitable model
both with respect to total profit and ROI. However, all models are outper-
formed in total profitability by consistently betting on the under alternative for
all matches. Figure D.1, fig. D.2, fig. D.3 and fig. D.4 in appendix D illustrate
how the profit of the models develops over time.

The strategy of betting one unit on the under market generates positive
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profit, but has lower ROI and a less distinct trend compared to the Premier
League. The same statistical test is performed as in section 6.4.1, with data
from the same seasons consisting of odds from 589 matches. The p-value is
determined to be 0.1909. Hence, the null hypothesis cannot be rejected for the
Bundesliga. However, the relatively low p-value for the Bundesliga indicates
that the odds may still be somewhat undervalued.

Table 6.7: Profitability analysis on the Bundesliga test seasons.

Model Betting
Strategy

Bets
Played
(%)

Wins
(%)

Total
profit

ROI
(%)

Under 100 63.1 9.0 3.3

Total Numerical
NegBin Stepwise AIC

Level stakes 98.5 37.8 -21.2 -7.8

Kelly criterion 98.5 37.8 -19.3 -7.1

Level stakes U 8.8 54.2 -0.9 -3.6

Kelly criterion U 8.8 54.2 1.4 5.7

Total Classification
Logistic Stepwise BIC

Level stakes 97.4 39.0 -17.9 -6.7

Kelly criterion 97.4 39.0 -15.9 -5.9

Level stakes U 11.7 62.5 2.7 8.4

Kelly criterion U 11.7 62.5 1.9 5.9

Total Numerical
Random Forest

Level stakes 97.8 35.1 -37.9 -14.1

Kelly criterion 97.8 35.1 -44.9 -16.8

Level stakes U 10.6 41.4 -7.8 -26.9

Kelly criterion U 10.6 41.4 -6.5 -22.6

Total Classification
Random Forest

Level stakes 98.9 40.6 -17.7 -6.5

Kelly criterion 98.9 40.6 -21.0 -7.8

Level stakes U 22.6 58.1 0.1 0.1

Kelly criterion U 22.6 58.1 1.8 2.9
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7 Conclusions and Future Work

7.1 Conclusions

This thesis has aimed to predict the aggregated number of corners of the two
teams playing in a football match using numerical and classification statistical
learning methods. It has aimed to evaluate the profitability of the created
models by using historical odds and applying established betting strategies. In
addition, it has been investigated whether the market for over-under corner odds
is asymmetric causing market inefficiency.

The results suggest that the models trained on the Premier League data are
profitable when tested on new data from the same league. On the contrary, when
the models are tested on the Bundesliga they become unprofitable and the degree
of explanation decreases. The assessment of the asymmetry for the over-under
corner odds market displays a significant undervaluation of the under market in
the Premier League, which generates profitability for the test data. The same
trend could be seen in the Bundesliga but not as clearly and the undervaluation
is not statistically significant, although it generates positive profit for the test
data.

Based on the reasoning in model performance evaluation, it is questionable if
the processed match-by-match statistics applied on generalised linear regression
and tree-based models are sufficiently explanatory to predict the total num-
ber of corners in a football match. The match statistics-based models are not
significantly better than the naive models. This result suggests that the cre-
ated models seem not to be sufficient to explain the number of corners. Since
the over-under market for corners shows signs of inefficiency, it is nevertheless
possible to generate profit and it is clear that the models actually improve the
profitability despite having low explanatory power. The winning with the mod-
els versus the naive model in the profitability analysis is that the stake can
be varied depending on the value of the bet. In general, the profitability for
the naive model with level stakes is better than the statistical model with level
stakes but worse than the statistical model with varying stakes. Due to the per-
sistent randomness in the models, it is difficult to draw indisputable conclusions
regarding which model that should be preferred.

When the models are trained and validated, the conclusion is that gener-
alised linear regression models are favoured, while the model testing shows the
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opposite. Regarding numerical or classification modelling, the result is vague
when evaluating the models on model data but is in favour of classification
modelling on the test data. The profitability analysis shows that all qualified
models end up being profitable when tested on the Premier League data, no
matter if a conditional or unconditional betting strategy is applied. The Kelly
criterion is superior as a betting strategy, exhibiting consistently higher total
profit and ROI compared to level stakes. Since the share of bets played de-
creases when using conditional betting strategies the net gain of applying the
Kelly criterion conditional to only playing on the under odds is small, but the
ROI is significantly higher. The findings also indicate that there is a positive
correlation between the models’ profit and F1-score, as well as profit and MCC
when the metrics are calculated on the same data. Since the most profitable
model is not the best-performing model in the model selection, it is not obvious
that the model selection should only be based only on the considered evaluation
measures. An explanation of why the profitability is consistent across models
could be the inefficiency of the over-under market for corner odds in the Premier
League. It is possible that if the models were aiming to predict a match statistic
connected to a highly efficient odds market, some models could potentially be
unprofitable. Except for the market odds implied probabilities, the profitabil-
ity depends on the commission the betting exchange charges or the margin the
bookmaker odds. This means that the possibility of profit could vary between
which betting platform the bettor is using.

To summarise, it is difficult to predict the number of corners in a football
match. Due to inefficiencies in the over-under corner odds market, profitability
can be obtained either by using statistical models, taking advantage of the
asymmetry in the over-under corner odds market or combining both parts.

7.2 Future Work

Since the model performance and profit are significantly lower when the models
are tested on the Bundesliga, it could be examined in future research whether
this modelling framework is successfully applicable by training, testing and eval-
uating the profitability in another league than the Premier League. It could
also be assessed if refitting the models to the Bundesliga with the same variable
selection as for the Premier League-trained models could give better model per-
formance and profitability. Another suggestion for future work is to determine
the model profitability on model data and use it as a complementing decision
criterion together with the existing model evaluation metrics. Furthermore,
although modelling the teams’ corners separately led to promising results the
profitability could not be assessed due to the lack of available historical odds
data. This could potentially increase the profitability since the explanatory
power of the models is higher.
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Appendix

A Tuning Parameter Selection
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Figure A.1: Mean cross-validation error plotted against tuning parameter λ for
modelling total corners with a negative binomial regression.
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Figure A.2: Mean cross-validation error plotted against tuning parameter λ for
modelling home team’s corners with a negative binomial regression.
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Figure A.3: Mean cross-validation error plotted against tuning parameter λ for
modelling away team’s corners with a negative binomial regression.
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Figure A.4: Mean cross-validation error plotted against tuning parameter λ for
modelling total corners with a logistic regression.
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B Variable Selection

Table B.1: Abbreviations of average names. The number indicates the length of
the moving average. Home and away averages consider home or away matches
separately for a team.

Abbreviation Average
A avg
A3 avg3
A4 avg4
A5 avg5
HA home avg
HA3 home avg3
HA4 home avg4
HA5 home avg5
AA away avg
AA3 away avg3
AA4 away avg4
AA5 away avg5
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Table B.2: Overview of the variable selection for total negative binomial regres-
sion. X indicates an included variable. Abbreviations are stated in table B.1.

Variables
Total Numerical NegBin

AIC BIC λmin λ1se

game week
home team ATT
home team MID
home team DEF X
home team OVR
away team ATT
away team MID
away team DEF
away team OVR X X X
odds home team win X
odds draw
odds away team win
home team motivation X
away team motivation
home team points per game
away team points per game
home team goal count
away team goal count A4
home team conceded goal count A A3
away team conceded goal count A A
home team goal count first half HA HA HA
away team goal count first half
home team conceded goal count first half
away team conceded goal count first half
home team corner count A4 A4
away team corner count
home team conceded corner count A
away team conceded corner count AA
home team shots on target
away team shots on target
home team shots off target
away team shots off target
home team fouls
away team fouls
home team possession A3
away team possession A
home team form A3
away team form
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Table B.3: Overview of the variable selection for home negative binomial regres-
sion. X indicates an included variable. Abbreviations are stated in table B.1.

Variables
Home Numerical NegBin

AIC BIC λmin λ1se

game week
home team ATT
home team MID X
home team DEF
home team OVR
away team ATT
away team MID X
away team DEF
away team OVR
odds home team win X X X X
odds draw
odds away team win X X X X
home team motivation X
away team motivation X X
home team points per game A
away team points per game A A
home team goal count
away team goal count A
home team conceded goal count A A
away team conceded goal count A
home team goal count first half
away team goal count first half A A
home team conceded goal count first half
away team conceded goal count first half
home team corner count A A A A
away team corner count AA
home team conceded corner count A
away team conceded corner count A A A
home team shots on target
away team shots on target
home team shots off target HA HA
away team shots off target AA AA
home team fouls
away team fouls
home team possession
away team possession AA AA AA AA
home team form A5
away team form
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Table B.4: Overview of the variable selection for away negative binomial regres-
sion. X indicates an included variable. Abbreviations are stated in table B.1.

Variables
Away Numerical NegBin

AIC BIC λmin λ1se

game week
home team ATT
home team MID
home team DEF
home team OVR
away team ATT
away team MID X
away team DEF X
away team OVR
odds home team win X X
odds draw
odds away team win X X X X
home team motivation X
away team motivation X
home team points per game
away team points per game AA AA
home team goal count
away team goal count A A
home team conceded goal count A
away team conceded goal count
home team goal count first half
away team goal count first half A5 A5 A5
home team conceded goal count first half
away team conceded goal count first half
home team corner count A
away team corner count AA AA AA AA
home team conceded corner count A A A A
away team conceded corner count A
home team shots on target
away team shots on target
home team shots off target HA HA
away team shots off target A A
home team fouls
away team fouls AA4 AA4
home team possession A A
away team possession A3
home team form A3
away team form
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Table B.5: Overview of the variable selection for logistic regression. X indicates
an included variable. Abbreviations are stated in table B.1.

Variables
Total Classification Logistic
AIC BIC λmin λ1se

game week
home team ATT
home team MID
home team DEF X
home team OVR X
away team ATT
away team MID
away team DEF X
away team OVR X
odds home team win X
odds draw
odds away team win X
home team motivation
away team motivation
home team points per game
away team points per game
home team goal count
away team goal count
home team conceded goal count
away team conceded goal count
home team goal count first half
away team goal count first half
home team conceded goal count first half
away team conceded goal count first half
home team corner count A A A
away team corner count
home team conceded corner count A5
away team conceded corner count
home team shots on target
away team shots on target A
home team shots off target
away team shots off target
home team fouls
away team fouls
home team possession
away team possession A A A
home team form A5
away team form
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Table B.6: Overview of total numerical random forest model and variable im-
portance.

Total Numerical Random Forest
Included variables Importance
away team avg away shots off target 1214.55
away team avg goal count first half 1043.93
home team avg home goal count first half 1005.10
home team avg conceded corner count 980.96
away team avg4 away fouls 975.74
away team avg3 possession 967.18
home team avg points per game 967.10
home team avg home shots on target 960.16
away team avg conceded goal count first half 942.52
home team avg5 possession 895.28
odds home team win 892.00
home team avg4 corner count 880.20
away team avg4 away corner count 871.46
home team avg3 fouls 844.10
away team avg points per game 818.60
away team avg conceded goal count 818.57
away team avg3 away shots on target 776.25
away team avg3 away conceded corner count 775.91
away team avg5 form 775.60
odds draw 744.03
game week 729.87
home team avg3 shots off target 706.49
home team avg3 form 668.22
away team avg4 goal count 567.38
odds away team win 544.10
home team avg3 conceded goal count 513.11
away team ATT 477.56
home team avg3 goal count 476.16
away team DEF 410.70
home team ATT 396.89
home team avg3 conceded goal count first half 394.15
home team DEF 364.58
home team MID 328.40
away team MID 313.03
away team OVR 297.53
home team OVR 238.35
home team motivation 37.00
away team motivation 32.88
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Table B.7: Overview of home numerical random forest model and variable im-
portance.

Home Numerical Random Forest
Included variables Importance
odds home team win 3006.08
odds away team win 1024.91
away team avg conceded corner count 731.48
home team avg home shots off target 720.99
away team avg away shots off target 705.76
away team avg away corner count 688.22
away team avg goal count first half 687.66
away team avg away possession 645.83
away team avg shots on target 640.63
home team avg corner count 630.46
home team avg conceded goal count first half 622.81
home team avg3 home fouls 615.54
odds draw 611.83
home team avg conceded goal count 607.42
home team avg conceded corner count 597.60
away team avg conceded goal count first half 585.11
home team avg shots on target 574.93
away team avg4 away fouls 551.04
home team avg goal count first half 546.78
away team avg goal count 540.54
home team avg points per game 526.70
home team avg5 form 514.35
away team avg conceded goal count 512.70
away team avg5 form 504.67
away team avg points per game 501.75
home team avg goal count 498.00
home team avg possession 492.96
game week 478.97
home team ATT 257.22
away team DEF 245.37
away team ATT 238.18
home team MID 186.32
home team DEF 176.71
away team MID 165.19
home team OVR 163.73
away team OVR 143.69
away team motivation 37.94
home team motivation 19.62
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Table B.8: Overview of away numerical random forest model and variable im-
portance.

Away Numerical Random Forest
Included variables Importance
odds home team win 1120.10
odds away team win 826.88
home team avg conceded corner count 690.92
away team avg away corner count 579.38
away team avg shots off target 565.96
away team avg goal count 554.46
away team avg conceded corner count 548.41
home team avg possession 504.64
home team avg conceded goal count 493.02
away team avg3 possession 492.37
home team avg corner count 483.94
away team avg conceded goal count first half 464.11
home team avg3 fouls 463.12
home team avg home shots off target 462.37
home team avg goal count first half 460.97
away team avg shots on target 457.55
away team avg4 away fouls 456.35
odds draw 452.08
home team avg conceded goal count first half 448.16
home team avg shots on target 439.62
away team avg5 form 426.68
away team avg away points per game 420.52
home team avg points per game 413.53
away team avg conceded goal count 402.11
home team avg goal count 386.24
game week 378.87
home team avg3 form 366.46
away team avg5 goal count first half 269.20
away team MID 198.59
away team ATT 186.87
home team ATT 179.12
home team MID 166.59
away team DEF 149.65
home team DEF 131.15
away team OVR 116.78
home team OVR 113.92
away team motivation 15.45
home team motivation 13.12
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Table B.9: Overview of classification random forest model and variable impor-
tance.

Total Classification Random Forest
Included variables Importance
home team avg corner count 23.65
home team avg home fouls 23.12
away team avg fouls 21.20
away team avg possession 20.45
away team avg away corner count 20.27
away team avg away shots off target 19.93
home team avg shots off target 19.44
home team avg conceded goal count 18.85
home team avg conceded goal count first half 18.57
home team avg3 possession 18.53
away team avg away conceded goal count first half 17.97
home team avg shots on target 17.89
away team avg away goal count 17.54
home team avg home points per game 17.24
away team avg conceded corner count 17.24
home team avg home goal count 17.18
home team avg5 form 17.04
away team avg conceded goal count 17.04
home team avg5 conceded corner count 17.03
away team avg shots on target 16.77
game week 15.73
away team avg points per game 15.30
away team avg3 form 14.69
odds home team win 14.15
odds draw 13.49
odds away team win 10.42
away team avg3 away goal count first half 8.74
home team avg3 goal count first half 8.67
home team ATT 7.39
away team ATT 6.49
home team DEF 6.08
home team MID 5.79
away team DEF 5.41
away team MID 4.97
home team OVR 4.29
away team OVR 3.91
away team motivation 0.99
home team motivation 0.84
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C Modelling Home and Away

Table C.1: Model evaluation statistics for cross-validated data, numerical mod-
elling of home and away teams’ corners separately.

Model RMSE R2 MAE

Home Numerical
NegBin Stepwise AIC

2.873 0.163 2.275

Home Numerical
NegBin Stepwise BIC

2.878 0.160 2.275

Home Numerical
NegBin λmin

2.881 0.159 2.279

Home Numerical
NegBin λ1se

2.876 0.161 2.275

Away Numerical
NegBin Stepwise AIC

2.519 0.115 2.015

Away Numerical
NegBin Stepwise BIC

2.527 0.110 2.021

Away Numerical
NegBin λmin

2.529 0.108 2.026

Away Numerical
NegBin λ1se

2.526 0.110 2.022

Home Numerical
Random Forest

2.916 0.138 2.304

Away Numerical
Random Forest

2.528 0.109 2.025
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D Profitability on the Bundesliga
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Figure D.1: Profitability chart for Total Numerical NegBin Stepwise AIC on
the Bundesliga test seasons.
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Figure D.2: Profitability chart for Total Classification Logistic Stepwise BIC on
the Bundesliga test seasons.
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Figure D.3: Profitability chart for Total Numerical Random Forest on the Bun-
desliga test seasons.
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Figure D.4: Profitability chart for Total Classification Random Forest on the
Bundesliga test seasons.
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