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Abstract

The combination of graphical models with Aalen’s additive hazards model,
resulting in a model known as dynamical path analysis, permits assessing the
effects of different variables on times until an event and decomposing these
total effects into direct and indirect effects. This thesis proposes novel boot-
strapping methods designed for left-truncated right-censored data, conditional
on covariates within the framework of Aalen’s additive hazards model, in order
to obtain confidence intervals for the estimates.

To illustrate the practical application of the bootstrapping methods, we con-
duct a case study utilising data from the Malmö diet and cancer study. The
data set consists of left-truncated right-censored data. Our analysis aims to
examine causality and estimate the direct effects of various covariates on the
incidence of major adverse cardiovascular events and indirect effects between
covariates. We compute confidence intervals for these effects with the proposed
bootstrapping methods.

I



Acknowledgements

I would like to thank my supervisor, Dragi Anevski, for his guidance and
support throughout this thesis. Additionally, I am grateful to Olle Melander for
providing the data for the case study and to my examiner, Magnus Wiktorsson,
for his valuable feedback.

Thank you to my parents for giving me the opportunity to study abroad; and
to Mikkel and my friends for accompanying me and making sure I had fun
along the way.

II



Contents

1 Introduction 1

2 Mathematical background 4

2.1 Processes, filtrations and stopping times . . . . . . . . . . . . . 4

2.2 Martingales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Doob-Meyer decomposition . . . . . . . . . . . . . . . . . . . . . 5

2.4 Predictable and optional variation processes . . . . . . . . . . . 6

2.5 Counting processes . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Survival analysis for right-censored data 8

3.1 Right-censored data . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Kaplan-Meier estimator . . . . . . . . . . . . . . . . . . . . . . 10

3.3 Nelson-Aalen estimator . . . . . . . . . . . . . . . . . . . . . . . 12

3.3.1 Handling tied data . . . . . . . . . . . . . . . . . . . . . 15

3.4 Regression models . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4.1 Cox Proportional Hazards Model . . . . . . . . . . . . . 17

3.4.2 Aalen’s Additive Hazards Model . . . . . . . . . . . . . . 18

3.5 Causality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

III



3.5.1 Path analysis . . . . . . . . . . . . . . . . . . . . . . . . 20

3.5.2 Dynamic path analysis . . . . . . . . . . . . . . . . . . . 22

3.6 Bootstrap for survival data . . . . . . . . . . . . . . . . . . . . . 25

3.6.1 The bootstrap idea . . . . . . . . . . . . . . . . . . . . . 26

3.6.2 Bootstrap for right-censored data . . . . . . . . . . . . . 26

3.6.3 Bootstrap for Cox multiplicative hazards model . . . . . 27

3.6.4 Bootstrap for Aalen’s additive hazards model . . . . . . 28

4 Survival analysis for left-truncated right-censored data 31

4.1 Left-truncated right-censored data . . . . . . . . . . . . . . . . . 31

4.2 Bootstrap for left-truncated right-censored data . . . . . . . . . 31

4.3 Bootstrap for Aalen’s additive hazards model with left-truncated
right-censored data . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Implementation 35

5.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2 Causality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.3 Direct effects of covariates on MACEs . . . . . . . . . . . . . . . 39

5.4 Direct effects between covariates . . . . . . . . . . . . . . . . . . 42

5.5 Interpretation of results . . . . . . . . . . . . . . . . . . . . . . 44

IV



5.6 Method comparison . . . . . . . . . . . . . . . . . . . . . . . . . 45

6 Conclusions, discussion, and open problems 47

References 50

Appendix 1 51

V



1 Introduction

Even though some events happen without a reason, many others can be at-
tributed to underlying factors. However, studying causality in statistics re-
quires caution due to the difficulty in differentiating statistical dependence
from causal dependence. The study of causal effects in times to an event is
possible with graphical models and regression. However, there are no asymp-
totic results for these effects. Bootstrapping, a non-parametric method, can
be applied in situations where no asymptotic results are known. This thesis
proposes bootstrapping methods for causality effects in the context of survival
analysis.

Wright (1921) pioneered path analysis, a methodology used to examine causal
relationships between variables [17]. It utilises graphical models to visualise
these dependencies. However, path analysis fails to consider time in the model
and causality relations vary with time. Fosen et al. (2005) introduced dy-
namic path analysis as a solution to this limitation [7]. This method combines
graphical models with continuous time development to study the temporal
dependencies among variables. Dynamic path analysis can investigate causal
dependencies in survival analysis problems. Different regression models can
be used to estimate the effects of covariates on the time until an event us-
ing dynamic path analysis. Aalen et al. proposed combining dynamic path
analysis with Aalen’s additive hazards model [1]. This approach enables the
estimation of effects and the decomposition into direct and indirect compo-
nents. The regression functions of Aalen’s additive hazards model determine
the direct effect of the covariates on the event times. The indirect effects be-
tween the covariates are estimated by regressing each covariate on its parents
by (multiple) linear regression. This thesis investigate different bootstrapping
techniques to compute confidence intervals for the estimates due to the lack of
asymptotic results.

Bootstrapping is a non-parametric method introduced by Efron (1979) that
can assess the uncertainty of statistics without making assumptions about the
underlying distribution of the data [5]. Given a data set with sample size n,
bootstrapping consists of sampling with replacement from the data set to ob-
tain bootstrapped samples of size n. By repeatedly computing the statistics for
different bootstrapped samples, one can analyse the distribution of the statis-
tics. Efron (1981) developed two bootstrapping methods, known as the ‘simple’
and the ‘obvious’ method, developed to handle right-censored data, and they
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are, in fact, equivalent [6]. Wang (1991) proposed a generalisation of Efron’s
‘obvious’ bootstrapping method to sample from left-truncated right-censored
(l.t.r.c.) data under some assumptions [16]. Gross and Lai (1996) discussed
the generalisation of Efron’s ‘simple’ bootstrapping method for l.t.r.c. data,
which does not rely on Wang’s assumptions. The ‘obvious’ and the ‘simple’
method for l.t.r.c. data are not equivalent, c.f. [16]. Burr (1994) studied boot-
strapping considering covariates and suggested two methods for bootstrapping
right-censored data within the Cox regression model framework [3]. We mod-
ify the methods presented by [3] and [16] for bootstrapping right-censored
and l.t.r.c. data conditional on the covariates within Aalen’s additive hazards
model framework.

This thesis considers a method presented for l.t.r.c. data under Aalen’s model.
In order to showcase the feasibility of the method, it is applied on survival data.
The data used comes from the Malmö diet and cancer study, having partici-
pants entering the study in their middle age, the data is left-truncated. The
data is also right-censored since individuals are followed until they experienced
a major adverse cardiovascular event (MACE), or until death, emigration or
the end of the study. Thus, this data is a suitable basis for illustrating the
applicability of the method.

The thesis is organised as follows:

In Section 2, we introduce the mathematical foundations required for our study.
In particular, we explain the Doob-Meyer decomposition, which allows us to
decompose counting processes into martingales and predictable processes.

Section 3 focuses on survival analysis with right-censored data, commonly
encountered in longitudinal studies and clinical trials. Right-censored data
refers to situations where individuals may not experience the event of interest
within the study period. To handle right-censored data, we give an overview
of several methods. From a counting-process approach, we discuss estimators
of the survival function and cumulative hazard rates, specifically the Kaplan-
Meier and Nelson-Aalen estimators. We then examine two regression models,
the Cox proportional hazards model and Aalen’s additive hazards model, to
analyse the influence of covariates on survival. Furthermore, we investigate the
study of causality in survival analysis by combining dynamic path analysis with
Aalen’s additive hazards model. This approach allows us to examine temporal
dependencies among variables and estimate direct, indirect, and total effects.
To finish the section, we examine bootstrapping methods for sampling from
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right-censored data. We provide an overview of the methods proposed by
Burr in [3] to sample from right-censored data considering covariates, within
the framework of Cox proportional hazards model. We present a modification
of these methods to sample from right-censored data within the framework of
Aalen’s additive hazards model.

Section 4 introduces modifications to the methods presented in Section 3 to
handle l.t.r.c. data. This type of data occurs when individuals are not ob-
served from the origin but conditionally on having survived until a specific
point. We give an overview of the literature for bootstrapping l.t.r.c. data and
propose bootstrapping methods to sample from this data within the framework
of Aalen’s additive hazards model.

In Section 5, we present data from the Malmö diet and cancer study and
hypothesise causal relationships between the covariates and the outcome of
interest, MACE. We apply one of the proposed bootstrapping methods for
l.t.r.c. data within Aalen’s additive hazards model framework (Method 2) to
the data set. We present and interpret the resulting bootstrapped confidence
intervals for the causality effects. Lastly, we compare these results with results
obtained using sampling with replacement from the data. This naive approach
is Efron’s ‘simple’ method for l.t.r.c. data (Method 1).

Finally, in Section 6, we present a conclusion and some open problems.
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2 Mathematical background

2.1 Processes, filtrations and stopping times

To model the occurrence in time of random events, begin by fixing a continuous
and finite time interval T = [0, τ ]. Let (Ω,F , P ) be a probability space. A
filtration {Ft}t∈T is defined as an increasing right-continuous family of sub-σ-
algebras of F . The σ-algebra Ft contains all events up to time t. The σ-algebra
Ft− is the smallest σ-algebra containing all Fs such that s < t, i.e. it contains
all events that happen strictly before time t.

A stochastic process X = {X(t)}t∈T is said to be adapted to the filtration
{F t}t∈T if X(t) is Ft-measurable for all t, which means that at time t, the
value of X(s) is known for all s ≤ t.

A realisation of the process X can be seen as a function of t, and this function
is referred to as a sample path. The process X is called càdlàg (continue à
droite, limité à gauche) if its sample paths are right-continuous with left hand
limits.

A random variable C taking values in T is defined as a stopping time if {C ≤ t}
is Ft-measurable for all t, i.e. at time t it is known whether C ≤ t or C > t.

Given the process X and a stopping time C, the stopped process XC is defined
as

XC(t) = X(t ∧ C),

where t∧C denotes the minimum of t and C. If X is càdlàg and adapted and
C is a stopping time, then XC is càdlàg and adapted, cf. [2].

2.2 Martingales

A stochastic process M = {M(t); t ∈ T } is a martingale relative to the fil-
tration {Ft}t∈T if it is adapted to the filtration, is integrable and satisfies the
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martingale property given by

E(M(t)|Fs) = M(s), for all s ≤ t.

If the process satisfies the inequality

E(M(t)|Fs) ≥ M(s), for all s ≤ t,

then it is a sub-martingale. Any non-decreasing process, like a counting pro-
cess, is a sub-martingale.

A stochastic process H is called predictable if, loosely speaking, its value is
known just before time t. Sufficient conditions for H to be predictable are
that H is adapted to the filtration Ft and that all its sample paths are left-
continuous.

2.3 Doob-Meyer decomposition

The Doob-Meyer decomposition states that any sub-martingale can be de-
composed uniquely into the sum of a martingale and a predictable process.
Specifically, let X = {X(t); t ≥ 0} be a sub-martingale relative to a filtration
{Ft}t∈T , then there exists a unique decomposition of X of the form

X(t) = X̃(t) +M(t),

where M = {M(t); t ∈ T } is a mean-zero martingale, and X̃ = {X̃(t); t ∈ T }
is a non-decreasing predictable process, often denoted as the compensator of
X. So,

dX̃(t) = E(dX(t)|Ft−), (2.1)

and

dM(t) = dX(t)− E(dX(t)|Ft−). (2.2)

Therefore, the process X can be decomposed into a predictable part X̃, the
sum of the conditional expectations (2.1); and an innovation part M , the sum
of the increments minus the conditional expectations (2.2).
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2.4 Predictable and optional variation processes

The predictable variation process ⟨M⟩ and the optional variation process [M ]
are defined as the following limits in probability

⟨M⟩(t) = P-lim
n→∞

n∑
k=1

Var(∆Mk|F(k−1)t/n)

and

[M ](t) = P-lim
n→∞

n∑
k=1

(∆Mk)
2,

where the interval [0, t] is partitioned into n sub-intervals of equal length, and
∆Mk = Mkt/n − M(k−1)t/n is the increment of the martingale over the kth
sub-interval. It can be shown that M2 − ⟨M⟩ and M2 − [M ] are mean-zero
martingales [1]. Thus, since M(t) is a mean-zero martingale,

Var(M(t)) = E(M(t)2) = E(⟨M⟩) = E([M ]).

The predictable and the optional variation processes are unbiased estimators
of the variance of M(t).

2.5 Counting processes

The counting process Ni = {Ni(t); t ∈ T }, i = 1, ..., n, are n adapted càdlàg
process with piece-wise constant and non-decreasing paths, with jumps of size
1 at event times. Assume that none of the n processes jumps simultaneously.
Then, the aggregated process, given by

N(t) =
n∑

i=1

Ni(t),

is also a counting process.

Consider a small interval [t, t + dt) and assume that, at most, one event can
happen during the time interval. The intensity process λi(t) of a counting
process Ni(t) with respect to the filtration {Ft}t∈T is the probability of the

6



event occurring given the information prior to time t divided by the length of
the interval

λi(t)dt = P (dNi(t) = 1|Ft−),

where dNi(t) equals the number of jumps of process i in [t, t+dt). Since dNi(t)
is Bernoulli distributed, λi(t)dt also equals

λi(t)dt = E(dNi(t)|Ft−).

Let Λi =
∫ t

0
λi(u)du be the cumulative intensity of the counting process Ni.

Then, Λ(t) =
∑n

i=1 Λi(t) is the compensator of the aggregated counting process
N(t). Since the process N(t) is non-decreasing, it is a sub-martingale. By the
Doob-Meyer decomposition, N(t) can be decomposed into its compensator and
a zero-mean martingale

N(t) = Λ(t) +M(t).

Thus, the increments of the counting process can be written as

dN(t) = λ(t)dt+ dM(t). (2.3)
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3 Survival analysis for right-censored data

Given data times to an event, one might be interested in calculating the prob-
ability that an individual survives past a specific time. Let the data times to
an event, t1, ..., tn, be observations of the independent identically distributed
positive random variables T1, ..., Tn with distribution function F .

The survival function S specifies the unconditional probability that the event
of interest has not happened by time t, and is given by

S(t) = 1− F (t)

= P (T > t).

A goal of survival analysis is to estimate S or, equivalently, estimate F .

If the data times t1, ..., tn are observed, then the empirical distribution function
Fn is the optimal estimator of F . The empirical distribution function is defined
as

Fn(t) =
1

n

n∑
i=1

1{ti ≤ t}, (3.1)

where n is the total number of observations.

Survival analysis deals with situations where not all event times are directly
observed. Instead, the data comes as a mixture of complete and incomplete
observations. For instance, in observational studies, individuals are monitored
until the event of interest occurs or until a predetermined endpoint, resulting in
right-censored observation times. In the case of left-truncation, the observation
is not recorded from the beginning but is instead conditioned on surviving until
a specific starting point.

However, it is important to note that there are other types of survival data not
considered in this thesis, namely interval-censored data and left-censored data.
Interval-censored data refers to situations where the exact timing of an event
is unknown but falls within a certain time interval. This type of data typically
arises when information is gathered during follow-up visits, with no additional
data available between visits. Furthermore, left-censored data occurs when the
event process is not observed from the beginning, but it is known whether the
event has occurred prior to entering the study. This type of data occurs in,
for example, registers, such as population cancer registers.
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3.1 Right-censored data

Survival analysis often deals with incomplete data as not all individuals in the
study might experience the event of interest. As a result, not all of the samples
t1, ..., tn from the underlying random variables T1, ..., Tn are observed. Instead,
the observed data consists of

τi = min(Ti, Ci),

for i = 1, ..., n, where Ci is the stopping or right-censoring random variable for
individual i and Ci is assumed to be independent of Ti. For each individual,
it is known whether the event time was observed, referred to as an exact
observation, Ti ≤ Ci, or was censored, Ti > Ci. The indicator δi, defined by

δi = 1{Ti ≤ Ci},

denotes whether the event time was observed or censored.

The right-censored processes Ni, i = 1, ..., n, are defined as

Ni(t) = 1{τi ≤ t, δi = 1},

so that the counting process jumps to one at the time of an exact observation.

Right-censoring may alter the intensities of the events of interest. If the cen-
soring preserves the intensity processes of the counting processes, then it is
said to be independent. Formally, the censoring is independent if it holds that

P (τi ∈ [t, t+ dt), δi = 1|τi ≥ t,Ft−) = P (Ti ∈ [t, t+ dt)|Ti ≥ t),

see [1].

The intensity process λi(t) for the process Ni(t) is given by

λi(t)dt = P (dNi(t) = 1|Ft−)

= P (τi ∈ [t, t+ dt), δi = 1|τi ≥ t,Ft−),

which, for independent right-censoring, can be expressed as

λi(t)dt =

{
P (Ti ∈ [t, t+ dt)|Ti ≥ t), τi ≥ t

0, τi < t
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= Yi(t)hi(t)dt,

where Yi(t) = 1{τi ≥ t} denotes whether individual i is at risk at time t, that
is, it has not experienced the event, nor censoring, by time t. The hazard rate
hi(t) of the process Ni(t) is defined as the instantaneous rate of experiencing
the event at time t, given that the individual has not experienced the event of
interest by time t. Thus, hi(t) is given by

hi(t) = lim
∆t→0

1

∆t
P (Ti ∈ [t, t+∆t)|Ti ≥ t).

Consider the aggregated counting process N(t) =
∑n

i=1Ni(t). When the haz-
ard rate of all individuals is equal, i.e. hi(t) = h(t) for all i, the aggregated
process N(t) has an intensity process of the form

λ(t) = Y (t)h(t),

where Y (t) =
∑n

i=1 Yi(t) is the number of individuals at risk just before time
t. When an intensity process is of this form, the process N(t) is said to fulfil
the multiplicative intensity model, and by the Doob-Meyer decomposition, the
increments of the counting process can be written as

dN(t) = Y (t)h(t)dt+ dM(t),

as seen in (2.3).

3.2 Kaplan-Meier estimator

The Kaplan-Meier estimator provides an estimator of the survival function in
situations where censoring occurs.

Let 0 = u0 < u1 < · · · < uk = t be a partition of the interval [0, t]. The
survival function S at t can be rewritten as

S(t) = P (T > t)

= P (T > t|T > uk−1)P (T > uk−1)

= P (T > t|T > uk−1) · · ·P (T > u1|T > u0)

=
k∏

i=1

P (T > ui|T > ui−1), (3.2)
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by the multiplication rule for conditional probabilities.

Let τ(1), τ(2), ... be the observed times ordered increasingly and let δ(i) equal the
indicator for the occurrence at time τ(i). Then, 0 = τ(0) < τ(1) < · · · < τ(k) = t
is a partition of the interval [0, t] and the survival function S at t equals

S(t) =
k∏

i=1

P (T > τ(i)|T > τ(i−1)),

by (3.2).

Let the risk set at time t be the set of individuals for whom the event has not
happened before time t and who have not been censored before time t. Let
Yi(t) indicate whether individual i is at risk at time t. Then, Y (t) =

∑n
i=1 Yi(t)

determines the cardinality of the risk set at time t.

To estimate the probability

p(i) = P (T > τ(i)|T > τ(i−1)),

consider the case that the ordered ith observation was an exact observation,
δ(i) = 1, meaning that one individual experienced the event at time τ(i). Since
the number of individuals at risk right before τ(i) is Y

(
τ(i)
)
and Y

(
τ(i)
)
− 1

did not experience the event at time τ(i), the estimate of the probability is

given by
Y (τ(i))−1

Y (τ(i))
. Consider the case where the ordered ith observation was a

censored time, δ(i) = 0. Since Y (τ(i)) individuals did not experience the event

at time τ(i), the estimate of the probability is given by
Y (τ(i))

Y (τ(i))
.

Therefore, the probability p(i) can be estimated by

p̂(i) =


Y (τ(i))−1

Y (τ(i))
= 1− δ(i)

Y (τ(i))
if δ(i) = 1,

Y (τ(i))

Y (τ(i))
= 1− δ(i)

Y (τ(i))
if δ(i) = 0.

Thus, the plug-in estimator of S is given by

Ŝ(t) =
∏

i,τ(i)≤t

(
1−

δ(i)

Y
(
τ(i)
))

=
∏
ti≤t

(
1− 1

Y (ti)

)
,
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where the equality holds since censoring times do not contribute to the prod-
uct. This estimator of the survival function results in a non-increasing right-
continuous step function with jumps at exact observations, where the size of
the jump is affected by the censoring observations. The estimator is known as
the Kaplan-Meier estimator and was introduced in [9].

3.3 Nelson-Aalen estimator

The Nelson-Aalen estimator provides an estimator of the cumulative hazard
function H. The cumulative hazard function and the survival function are
related, and the Kaplan-Meier estimate of the survival function can be obtained
from the Nelson-Aalen estimator by the plug-in approach.

The cumulative hazard function H(t) is given by

H(t) =

∫ t

0

h(t)dt,

where h(t) = lim∆t→0
1
∆t
P (T ∈ [t, t+∆t)|T ≥ t).

In the case where the survival function S is absolutely continuous, the cumu-
lative hazard function can be related to the survival function by the following
equation

h(t) = lim
∆t→0

1

∆t
P (T ∈ [t, t+∆t)|Ti ≥ t)

=
f(t)

S(t)

=
−S ′(t)

S(t)
, (3.3)

and the survival function can be written in terms of the cumulative hazard
function by

S(t) = e−H(t).

If S is not absolutely continuous, it is càdlàg. Let dS(t) be the increments of
S over the time interval [t, t+ dt)

dS(t) = P (T ∈ [t, t+ dt)),
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and let S(t−) denote the left hand limit of S(t). Then, using the definition of
h, it follows that

h(t)dt = P (T ∈ [t, t+ dt)|T ≥ t) =
−dS(t)

S(t−)
.

Integrating both sides yields an expression for the cumulative hazard function

H(t) = −
∫ t

0

dS(u)

S(u−)
, (3.4)

which is a Riemann-Stieltjes integral.

If S(t) is absolutely continuous, the hazard rate h from equation (3.4) equals
(3.3). In the case where S is discrete, then the cumulative hazard equals

H(t) =
∑
u≤t

hu,

where

hu = −S(u)− S(u−)

S(u−)

= P (T = u|T ≥ u).

As seen in (3.2), S can be written as

S(t) =
k∏

i=1

P (T > ui|T > ui−1),

where 0 = u0 < u1 < · · · < uk = t is a partition of the interval [0, t].

From (3.4), it follows that

dS(t) = −S(t−)dH(t),

which can be approximated by

S(ui)− S(ui−1) ≈ −S(ui−1)(H(ui)−H(ui−1)),

dividing both sides by S(ui−1) yields

S(ui|ui−1) ≈ 1− (H(ui)−H(ui−1)).
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By inserting this expression in (3.2), the following expression is obtained for S

S(t) ≈
k∏

i=1

(1− (H(ui)−H(ui−1))) .

By increasing the number of sub-intervals of the partition, the approximation
improves. The right hand side will approach a limit, denoted the product-
integral, which is defined as

π
0≤u≤t

(1 + dB(u)) = lim
maxi |ui−ui−1|→0

k∏
i=1

(1 + (B(ui)−B(ui−1)))

for an arbitrary càdlàg function B(t).

The survival function can be written as

S(t) = π
0≤u≤t

(1− dH(t)),

where π corresponds to the product-integral [1].

For a continuous distribution,

S(t) = π
0≤u≤t

(1− dH(t))

= π
0≤u≤t

(1− h(u)du)

= exp

{
−
∫ t

0

h(u)du

}
= e−H(t),

since e−x ≈ (1− x).

For a discrete distribution,

S(t) =
∏
u≤t

(1− hu).

In general, the cumulative hazard can be decomposed into a continuous Hc

and a discrete part Hd in the following way

H(t) = Hc(t) +Hd(t).
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Then, the survival function is given by

S(t) = e−Hc(t)
∏
ti≤t

(1−∆Hd(ti)).

The probability hτ(i) = P (T = τ(i)|T ≥ τ(i)) can be estimated by

ĥτ(i) =
δ(i)

Y (τ(i))
.

The cumulative hazard function can be estimated using the plug-in approach

Ĥ(t) =
∑
τ(i)≤t

ĥτ(i)

=
∑

i,τ(i)≤t

δ(i)
Y (τ(i))

=
∑
ti≤t

1

Y (ti)
,

where the last equality holds since censoring times do not contribute to the
sum. This estimate of the cumulative hazard function is known as the Nelson-
Aalen estimator [1]. The estimator is a non-decreasing and right-continuous
step-function with jumps at the observed events.

An estimator of the survival function Ŝ can be obtained using the plug-in
approach in the following way

Ŝ(t) = π
0≤u≤t

(1− dĤ(t))

=
∏
ti≤t

(
1− 1

Y (ti)

)
.

This estimator is equal to the Kaplan-Meier estimator.

3.3.1 Handling tied data

Tied event times refer to situations where two or more exact observations occur
at the same time. The estimators described beforehand assume that the event
times are time-continuous. However, in practice, tied event times are often
present. To address this issue, [1] suggests two approaches.
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(i) One option is to assume that the events happen in continuous time
so that the event times do not coincide. However, the recorded event
times are equal due to rounding.

(ii) Another option is to explicitly model as time-discrete processes.
Thus, tied event times are events that have happened simultaneously
and not due to rounding.

Let di represent the number of individuals experiencing the event at time τi.
If the observed time is a censoring time, di is zero. If the tied event times are
due to rounding, it might be reasonable to assume that the true event times
would have been slightly different had it not been for measurement error. The
Nelson-Aalen estimator for approach (i) can be used to estimate the cumulative
hazard function at time t. The estimator is given by

Ĥ(t) =
∑
i,ti≤t

di−1∑
l=0

1

Y (ti)− l
.

If di = 1, the Nelson-Aalen estimator reduces to the untied data case. If di > 1,
it is assumed that the individuals experience the event one at a time, and the
risk set decreases by one for each event.

For approach (ii), the events are assumed to be discrete. Therefore, it is
reasonable to estimate the cumulative hazard function by

Ĥ(t) =
∑
i,ti≤t

di
Y (ti)

.

Using the Nelson-Aalen estimator, the survival function can be estimated by
plugging in the corresponding estimator for the cumulative hazard function.
For both approaches, the resulting estimator equals

Ŝ(t) =
∏
i,ti≤t

(
1− di

Y (ti)

)
. (3.5)

For approach (ii), expression (3.5) is obtained directly. For approach (i), the
survival function is estimated by

Ŝ(t) =
∏
i,ti≤t

di−1∏
l=0

(
1− 1

Y (ti)− l

)
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=
∏
i,ti≤t

(
1− 1

Y (ti)

)(
1− 1

Y (ti)− 1

)
· · ·
(
1− 1

Y (ti)− di + 1

)
=
∏
i,ti≤t

(Y (ti)− 1) (Y (ti)− 2) · · · (Y (ti)− di + 1− 1)

Y (ti) (Y (ti)− 1) · · · (Y (ti)− di + 1)

=
∏
i,ti≤t

Y (ti)− di
Y (ti)

=
∏
i,ti≤t

(
1− di

Y (ti)

)
.

3.4 Regression models

Neither the Nelson-Aalen nor the Kaplan-Meier estimates include covariates.
Nevertheless, there are several regression models to be able to assess the effect
of covariates on survival.

3.4.1 Cox Proportional Hazards Model

The Cox proportional hazards model is widely used in survival analysis and
has become a standard method for analysing time-to-event data. The Cox
model is a type of relative risk regression model that is semi-parametric.

The hazard function for the relative risk model has the form

h(t|zi) = h0(t)c(θ, zi(t)), (3.6)

where h0(t) is the baseline hazard, θ = (θ1, ..., θp)
T are unknown parameters,

zi(t) = (z1,i(t), ..., zp,i(t))
T are the covariates for individual i and c(θ, zi(t)) is

a known function.

The ratio of the hazard rates of individuals i and j is equal to

h(t|zi)

h(t|zj)
=

h0(t)c(θ, zi(t))

h0(t)c(θ, zj(t))

=
c(θ, zi(t))

c(θ, zj(t))
,
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which is constant over time if the covariates are fixed. In that case, the model
(3.6) is referred to as the proportional hazards model.

A common choice for the function c(θ, zi(t)) is

c(θ, zi(t)) = eθ1z1,i+···+θpzp,i ,

yielding the Cox proportional hazards model for the hazard rate

h(t|zi) = h0(t)e
θ1z1,i+···+θpzp,i .

The model is semi-parametric since the baseline hazard is an arbitrary function.
Thus, the parameter estimates of θ are obtained by maximising the Cox partial
likelihood, which is given by

L(θ) =
n∏

i=1,
δi=1

h0(τi) exp{θ1z1,i + · · ·+ θpzp,i}∑
j∈Ri

h0(τi) exp{θ1z1,j + · · ·+ θpzp,j}

=
n∏

i=1,
δi=1

exp{θ1z1,i + · · ·+ θpzp,i}∑
j∈Ri

exp{θ1z1,j + · · ·+ θpzp,j}
,

where Ri is the at-risk index set just before time ti, i.e. it consists of the
indices of the individuals that have not yet experienced the event, nor have
been censored, just before time ti.

The estimate of θ is obtained by

θ̂ = argmax
θ

L(θ).

The assumption of proportional hazards might not hold in some situations,
such as when the hazard rate varies with time or when covariates are time-
varying. When the assuption does not hold, Aalen’s additive hazard model
may be an alternative.

3.4.2 Aalen’s Additive Hazards Model

Aalen’s additive hazards model is a non-parametric regression model that esti-
mates the effect of covariates on the hazard function without assuming propor-
tionality. Instead, it models the hazard rate as the sum of unknown functions
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of covariates, which allows for a more flexible and interpretable modelling of
the effect of covariates on survival.

Let the intensity process be equal to

λi(t) = Yi(t)hi(t)

= Yi(t)h(t|zi).

The hazard rate for Aalen’s model has the form

h(t|zi) = β0(t) + β1(t)z1,i(t) + · · ·+ βp(t)zp,i(t),

where β(t) = (β1(t), ..., βp(t))
T is a vector of unknown parameter functions

and zi(t) = (z1,i(t), ..., zp,i(t))
T are the covariates for individual i.

Then, by the Doob-Meyer decomposition (2.3), the increments of the process
can be expressed as

dNi(t) = Yi(t) (β0(t) + β1(t)z1,i(t) + · · ·+ βp(t)zp,i(t)) dt+ dMi(t). (3.7)

Let Bj(t) =
∫ t

0
βj(u)du, j = 0, 1, ..., p, be the cumulative regression functions

and introduce the matrix notation

N (t) = (N1(t), ..., Nn(t))
T ,

B(t) = (B0(t), ..., Bp(t))
T ,

X i(t) = Yi(t) (1, z1,i(t), ..., zpi(t)) ,

M(t) = (M1(t), ...,Mn(t))
T ,

and the n× (p+ 1) matrix X(t) with ith row given by X i(t). Then (3.7) can
be rewritten as

dN (t) = X(t)dB(t) + dM (t).

Suppose X(t) has the generalised inverse

X−(t) =
(
XT (t)X(t)

)−1
XT (t).

If X(t) has full rank, the increments dB(t) can be estimated by

dB̂(t) = X−(t)dN (t).
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For a general X(t), introduce the indicator J(t) of X(t) having full rank at
time t, J(t) = 1{rank(X(t)) = p+1}. The estimator of cumulative regression
functions B(t) is obtained by accumulating the increments dB̂(t) over the
times when an event occurs and X(t) has full rank,

B̂(t) =

∫ t

0

J(u)X−(t)dN (u)

=
∑
ti≤t

J(ti)X
−(ti)∆N (ti),

where ∆N (ti) = N (ti)−N (ti−1) for t ≥ 1 and N (t0) = 0, cf. [1].

3.5 Causality

Path analysis is a technique used to study causality. Introduced in [17], path
analysis allows visualising the dependencies among variables and decomposing
total effects into direct and indirect effects. However, a limitation of path
analysis is that it does not consider time, which is often a critical aspect of
causality. To address this, dynamic path analysis combines graphical models
with continuous time development to study the temporal dependencies among
variables [7].

3.5.1 Path analysis

Path analysis investigates the relationships between variables by examining
their direct and indirect effects. Path analysis uses directed acyclic graphs
(DAGs) to provide a graphical representation of the causal relationships be-
tween variables. A hypothesised causal model in the form of a DAG is first
specified, where each vertex represents a variable and each directed edge rep-
resents a hypothesised causal relationship between two variables. Statistical
methods such as regression can be used to estimate path coefficients.

A directed graph G is determined by (V,E), where V is a set of vertices and
E is a set of directed edges. Each edge in E is represented by an ordered pair
of vertices from V and is drawn as an arrow.
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A directed path in G is a sequence of edges such that the ending vertex of one
edge is the starting vertex of the next edge. If the starting and ending vertices
of a directed path are the same, the path is called a directed cycle. Directed
acyclic graphs (DAGs) are directed graphs that do not contain any directed
cycles.

For a vertex v1 ∈ V , the set of children of v1 is defined as all vertices vi ∈ V
such that (v1, vi) ∈ E, i.e. there is a directed edge from v1 to vi. The set of
children of v1 is denoted by ch(v1). Similarly, the set of parents of v1 is defined
as all vertices vj ∈ V such that (vj, v1) ∈ E, i.e. there is a directed edge from
vj to v1. The set of parents of v1 is denoted by pa(v1). More information on
DAGs, and other graphical models, can be found in [4].

DAGs are used to study the direct and indirect effects of the random variables
X1, ..., Xp on a outcome Y . The vertex set V can be partitioned into the
set of covariates Vc = {X1, ..., Xp} and the outcome variable Y . The set of
hypothesised edges E respects the DAG assumption. The outcome Y is the
ending vertex for all paths in the graph and the set of children of Y , ch(Y ),
is empty. Each edge (Xi, Xj) is associated with a path coefficient denoted θi,j
and each edge (Xi, Y ), with a path coefficient denoted βi.

Let Xi be a variable such that the vertex (Xi, Y ) ∈ E, i.e. there exists a path
of length one between Xi and Y . Then the coefficient βi represents the direct
effect of the variable Xi on the output Y , denoted by

dir(Xi, Y ) = βi.

Indirect paths from Xi to Y , i.e. paths of length greater than one, are defined
by

Pj = {(Xj1 , Xj2), (Xj2 , Xj3), ..., (Xjkj
, Y )},

where Xj1 = Xi for all j, and kj is the length of the path Pj. Suppose that
there are r indirect paths from Xi to Y and denote them by P1, ..., Pr. The
indirect effect of Xi to Y is then given by

ind(Xi, Y ) =
r∑

j=1

kj−1∏
l=1

θjl,jl+1

 βjkj
.

The path coefficients θs and βs can be estimated using layered (multiple) linear
regression. The output is regressed on its parents to obtain β estimates, and
then each of the variables on its parents to get θ estimates.
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3.5.2 Dynamic path analysis

A dynamic path is a set of directed acyclic graphs G(t) = (V (t), E(t)) indexed
by time t, where V (t) denotes the vertices and E(t) the edges at time t. Let the
vertex set V (t) be partitioned into a set of covariates Vc(t) = {X1(t), ..., Xp(t)}
and an outcome Y (t). The partition of vertices is time-invariant, but the edges
may vary with time. For all t, the set E(t) respects the DAG assumption, and
Y (t) is not the starting vertex for any edge, i.e. the set of children of Y (t),
ch(Y ), is empty.

In the counting process framework, the output is the aggregated counting
process N(t) for n individuals, which counts the number of individuals who
have experienced the event of interest during the time interval [0, t].

Dynamic path analysis considers collections of DAGs indexed by time t, where
the vertices remain constant, and the edges may vary with time. Additionally,
the coefficients corresponding to the edges can vary. When the outcome is a
counting process, a DAG is defined for each jump in the counting process.

It is necessary to perform a regression analysis on the occurrence of a single
jump in the counting process to estimate direct, indirect and total effects. A
linear model must be used for regression analysis to separate total effects into
direct and indirect effects. The study of direct and indirect effects is impossible
with non-linear models like the Cox model. Therefore, Aalen’s additive hazards
model is used in combination with linear regression between covariates.

Example 3.1. Consider the dynamic path model diagram shown in Fig-
ure 1, which illustrates a single jump in the counting process. The di-
agram includes a fixed covariate X1 (e.g., a treatment indicator) and a
possibly time-varying covariate X2(t). The coefficient θ1,2(t) is the stan-
dard coefficient in the ordinary linear regression of X2(t) on X1, where
the analysis is performed on the relevant risk set at time t. Although X1

and X2 may not change over time, the coefficient θ1,2(t) may vary since
the risk set changes over time. The direct effect of X1 and X2(t) on the
number of events dN(t) is given by β1(t)dt and β2(t)dt, where β1(t) and
β2(t) correspond to the regression functions in Aalen’s additive model.

The equations corresponding to the path diagram are given by

dN(t) = (β0(t) + β1(t)X1 + β2(t)X2)dt+ dM(t), (3.8)
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X1

X2(t)

dN(t)θ1,2(t)

β1(t)

β2(t)

Figure 1: Dynamic path model diagram for a single jump
in the counting process

X2(t) = θ0(t) + θ1,2(t)X1 + ε(t), (3.9)

where equation (3.8) is the Doob-Meyer decomposition for counting pro-
cesses so that the intensity of N(t) is given by h(t) = β0(t) + β1(t)X1 +
β2(t)X2. In equation (3.9), ε(t) is independent of X1 and M(t).

Inserting (3.9) into (3.8) leads to

dN(t) = [β0(t)+β2(t)θ0(t)+(β1(t)+β2(t)θ1,2(t))X1+β2(t)ε(t)]dt+dM(t).

The total effect of X1 on dN(t), referred to as treatment effect, is given
by

tot(X1, dN(t)) = (β1(t) + β2(t)θ1,2(t))dt,

which can be decomposed into the direct and indirect effects of X1

dir(X1, dN(t)) = β1(t)dt,

ind(X1, dN(t)) = β2(t)θ1,2(t)dt.

Estimation of direct and indirect effects

Combining path analysis with Aalen’s additive hazards model makes it possible
to estimate the total effects of a covariate on the counting process by adding
the estimates of direct and indirect effects.
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The coefficients βi(t)dt represent the direct effects of variable Xi(t) on the
single jumps of the counting process,

dir(Xi(t), dN(t)) = dBi(t),

and the cumulative direct effect is given by

cdir(Xi(t), N(t)) = Bi(t).

Assume that there are r paths from Xi(t) to dN(t). Then, indirect effect of
Xi on dN(t) is given by

ind(Xi(t), dN(t)) =
r∑

j=1

kj−1∏
l=1

θjl,jl+1
(t)dBjkj

(t),

and the cumulative direct effect is given by

cind(Xi(t), N(t)) =

∫ t

0

r∑
j=1

kj−1∏
l=1

θjl,jl+1
(s)dBjkj

(s).

The total effect and the cumulative total effects are given by

tot(Xi(t), dN(t)) = dir(Xi(t), dN(t)) + ind(Xi(t), dN(t)),

ctot(Xi(t), N(t)) = cdir(Xi(t), N(t)) + cind(Xi(t), N(t)).

As seen in Section 3.3, the cumulative regression functions can be estimated
by

B̂(t) =
∑
tm≤t

J(ti)X
−(tm)∆N (tm),

where tm are the observed time events. The estimator can be rewritten as

B̂(t) =
∑
tm≤t

∆B̂(tm),

where ∆B̂(t) = J(t)X−(t)∆N (t).

Then, the cumulative direct and indirect effects can be estimated using the
plug-in approach, resulting in

ĉdir(Xi(t), N(t)) =
∑
tm≤t

∆B̂i(tm),
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ĉind(Xi(t), N(t)) =
∑
tm≤t

r∑
j=1

kj−1∏
l=1

θ̂jl,jl+1
(tm)∆B̂jkj

(tm).

The cumulative total effect of the variable Xi is then estimated by

ĉtot(Xi(t), N(t)) = ĉdir(Xi(t), N(t)) + ĉind(Xi(t), N(t)).

3.6 Bootstrap for survival data

Bootstrapping is a non-parametric method introduced by Efron (1979) that
can assess the uncertainty of statistics without making assumptions about
the underlying distribution of the data [5]. Given a data set with sample
size n, bootstrapping consists of sampling with replacement from the data set
to obtain bootstrapped samples of the size n. By repeatedly computing the
statistics for different bootstrapped samples, one can analyse the distribution
of the statistics.

To introduce the general bootstrap, let x1, ..., xn be independent identically
distributed observations from the distribution F that is known except for the
parameter θ. The empirical distribution function Fn of F is given by (3.1).
Given that the unknown parameter θ is a functional of the distribution function

θ = T (F ),

the plug-in estimator of θ is given by

θ̂n = T (Fn).

By Donsker’s theorem [15], it holds that

√
n(Fn(x)− F (x))

d−→ B ◦ F,

on the space D[−∞,∞] of càdlàg functions, where B is an standard Brownian
bridge. If the functional T is Hadamard differentiable and the derivative T ′

f is
linear, then it holds that

√
n
(
θ̂n − θ

)
d−→ T ′

F (B ◦ F ),

by [15]. However, since F is unknown, the asymptotic distribution T ′
F (B ◦ F )

is also unknown.
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3.6.1 The bootstrap idea

Given the observational data z1, ..., zn, a bootstrap sample z∗1 , ..., z
∗
n is a sam-

ple with replacement from the data. For each bootstrapped sample, one can
calculate the bootstrapped empirical distribution function F ∗

n . The following
result holds

√
n(F ∗

n − Fn)
d∗−→ B ◦ F,

by [15], and with the exact meaning of
d∗−→ described in [15, p. 332-333]. If T

is Hadamard differentiable, then
√
n
(
θ̂∗n − θ̂n

)
d∗−→ T ′

F (B ◦ F ) ,

where θ̂∗n = T (F ∗
n). Thus

√
n
(
θ̂∗n − θ̂n

)
and

√
n
(
θ̂n − θ

)
have the same

asymptotic distribution. The asymptotic distribution for
√
n
(
θ̂∗n − θ̂n

)
only

depends on the sample and can be approximated by resampling the original
data x1, ..., xn many times and by providing the empirical densities based on
the resampled samples. The bootstrap method was introduced by Efron in [5].

3.6.2 Bootstrap for right-censored data

Efron [6] introduces two methods for bootstrapping right-censored data: the
‘simple’ and the ‘obvious’ method. The ‘simple’ method consists of sampling
n times with replacement from the observed data {(τi, δi)}ni=1. On the other
hand, the ‘obvious’ method involves constructing a new data set by drawing
bootstrapped event times t∗i and censoring times c∗i .

In the ‘obvious’ method, event times t∗i are drawn from the Kaplan-Meier
estimate of the survival function S(t) = P (T > t). Similarly, censoring times
c∗i are drawn from the Kaplan-Meier estimate of the cumulative censoring
function G(t) = P (C > t), which can be computed as

Ĝ(t) =
∏
i,τi≤t

(
1− δ̃i

Y (τi)

)
,

where δ̃i = 1− δi indicates whether a censoring time has been observed. Once
t∗i ∼ Ŝ and c∗i ∼ Ĝ are generated, the bootstrapped sample is given by (τ ∗i , δ

∗
i ),

where τ ∗i = min(t∗i , c
∗
i ) and δ∗i = 1{t∗i ≤ c∗i }.
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Both the ‘simple’ and ‘obvious’ methods yield equivalent results, because of
certain properties of the Kaplan-Meier estimates Ŝ and Ĝ, c.f. [6].

3.6.3 Bootstrap for Cox multiplicative hazards model

Burr introduces in [3] three methods for bootstrapping the Cox model. The
first method is non-parametric and does not rely on any assumptions about
the model. The second method draws samples of the time-to-events from the
survival function estimated from the fitted Cox model. The censoring times are
drawn from a Kaplan-Meier estimate of the survival function of the censoring
variable. The third method utilises the fact that the censoring pattern is an
ancillary statistic and uses the available information, specifically that Ci is
either observed or Ci ≥ Ti.

Method 1: Resample with replacement the triplets (τi, δi, z
T
i ), where

zi = (z1,i, ..., zp,i)
T are the covariates for individual i. Equivalent to

Efron’s ‘simple’ method, but including covariates.

Method 2: Let zi = (z1,i, ..., zp,i)
T be the fixed covariates for individual

i and assume the time to the events t1, ..., tn are completely observed.
The fitted model is obtained by maximising the Cox partial likelihood.
The Breslow estimator Ĥ0(t) estimates the cumulative baseline hazard.
The fitted survival curve for individual i is given by

Ŝi(t|zi) = π
0≤u≤t

(1− dĤ(t))

=
∏
ti≤t

(1−∆Ĥ(ti))

=
∏
ti≤t

(
1−∆Ĥ0(ti)e

θ̂1z1,i+···+θ̂pzp,i
)
.

To obtain an observation time t∗i , simulate from Ŝi.

Let δ̃i = 1−δi indicate whether a censoring time has been observed. Since
the censoring is independent of the covariates, the survival function for
the random variable C can be estimated by the Kaplan-Meier estimator
of G(t) = P (C > t). The censoring times c∗i can be simulated from Ĝ(t).

After generating t∗i and c∗i , the bootstrapped sample is constructed as
(τ ∗i , δ

∗
i , z

T
i ), where τ ∗i = min(t∗i , c

∗
i ) and δ∗i = 1{t∗i ≤ c∗i }.
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Method 3: Let zi = (z1,i, ..., zp,i)
T be the fixed covariates for individual

i and generate t∗i as in Method 2. The censoring pattern is an ancillary
statistic since the distribution of Ci, by assumption, does not depend on
the parameters of the Cox model. If δi = 0, i.e. an observation from Ci

is observed, let c∗i be equal to τi. If δi = 1, draw the censoring time c∗i
from the Kaplan-Meier estimate of the survival function G given Ci ≥ Ti,
namely

Ĝ(t|Ci ≥ ti) = P̂ (Ci > t|Ci ≥ ti)

=
P̂ (Ci > t)

P̂ (Ci ≥ ti)

=
Ĝ(t)

Ĝ(ti)
.

After generating t∗i and c∗i , the bootstrapped sample is constructed as
(τ ∗i , δ

∗
i , z

T
i ), where τ ∗i = min(t∗i , c

∗
i ) and δ∗i = 1{t∗i ≤ c∗i }.

3.6.4 Bootstrap for Aalen’s additive hazards model

Method 2 and 3 can be modified to draw bootstrap samples from Aalen’s
model.

Method 2: Let zi = (z1,i, ..., zp,i)
T be the fixed covariates for indi-

vidual i and assume the time to the events t1, ..., tn are completely ob-
served. Given the estimates of the cumulative regression functions B(t)
for Aalen’s model, to obtain the fitted survival curve for individual i
compute

S̃i(t|zi) = π
0≤u≤t

(1− dĤ(t|zi))

=
∏
tk≤t

(1−∆Ĥ(tk|zi))

=
∏
tk≤t

(
1−

(
∆B̂0(tk) + ∆B̂1(tk)z1,i + · · ·+∆B̂p(tk)zp,i

))
.

Since there is no condition on ∆Ĥ(tk|zi) being positive, the resulting
function S̃i(t|zi) is not monotone. To obtain a monotone estimate of
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the survival curve, perform antitonic regression on S̃i(t|zi). Antitonic
regression is equivalent to performing isotonic regression on F̃i(t|zi) =
1− S̃i(t|zi) to obtain F̂i and the survival curve Ŝi(t|zi) = 1− F̂i(t|zi).

Isotonic regression is a technique used when the underlying regression
function is assumed to have specific order restrictions. It aims to esti-
mate a non-decreasing function that fits the data by optimising a crite-
rion function under the monotonicity constraint. Consider the data set
(ti, F̃ (ti)), i = 1, ..., k, where k is the number of distinct times at which
an individual has experienced the event. Define F , the set of increasing
sequences, as follows

F = {x = (x1, ..., xk) ∈ Rk;x1 ≤ · · · ≤ xk}.

The isotonic regressor of the data is defined by

F̂ = argmin
x∈F

k∑
i=1

(xi − F̃ (ti))
2.

The isotonic regressor F̃ exists and is characterised as the slopes of the
greatest convex minorant of the partial sum process, defined by(

ti,
i∑

j=1

F̃ (tj)

)
,

for i = 1, ..., k. The greatest convex minorant is the supremum of all
convex functions which lie entirely below the partial sum process. The
pool-adjacent-violators algorithm (PAVA), implemented by the isoreg

function in the statistical package R, is a well-known algorithm to com-
pute the isotonic regression. A comprehensive study of order restricted
inference can be found in [12].

Note that the isotonic regression of F̃ does not give a function that ends
in 1, i.e. that is necessarily a distribution function. However, this is a
general problem for the plug-in estimator of F in the Cox model, Aalen’s
model and, in fact, even for the Kaplan-Meier estimator since all of these
give possibly defective distributions.

To obtain an observation time t∗i , simulate from Ŝi. The censoring times
c∗i can be simulated from the Kaplan-Meier estimator of G(t) = P (C >
t), i.e. Ĝ.

After generating t∗i and c∗i , the bootstrapped sample is constructed as
(τ ∗i , δ

∗
i , z

T
i ), where τ ∗i = min(t∗i , c

∗
i ) and δ∗i = 1{t∗i ≤ c∗i }.
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Method 3: Let zi = (z1,i, ..., zp,i)
T be the fixed covariates for individual

i and generate t∗i as in Method 2. The censoring pattern is an ancillary
statistic since the distribution of Ci, by assumption, does not depend on
the parameters of Aalen’s model. If an observation from Ci is observed,
i.e. δi = 0, let c∗i be equal to τi. Otherwise, if δi = 1, draw the censoring
time c∗i from the Kaplan-Meier estimate of the survival function G given
Ci ≥ ti.

After generating t∗i and c∗i , the bootstrapped sample is constructed as
(τ ∗i , δ

∗
i , z

T
i ), where τ ∗i = min(t∗i , c

∗
i ) and δ∗i = 1{t∗i ≤ c∗i }.
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4 Survival analysis for left-truncated

right-censored data

Section 3 addresses right-censored data. This section presents the modifica-
tions necessary for dealing with left-truncated right-censored (l.t.r.c.) data. As
seen previously, right-censored data occurs when the event of interest does not
happen for all individuals within the study period. In contrast, the data is
left-truncated if individuals are not observed from the origin but conditional
on having survived until a baseline.

The method presented here is adapted from [16]. However, the application to
Aalen’s model and to graphical models is, to the best of our knowledge, novel.

4.1 Left-truncated right-censored data

Let e1, ..., en be the entry points in the study, generated from the underlying
truncation random variables E1, ..., En with distribution function FE. The
observed data consists of (ei, τi, δi), where τi and δi are given by

τi = min(Ti, Ci)

and

δi = 1{Ti ≤ Ci}.

The entry point and the censoring random variables (Ei, Ci) are assumed to
be independent of the time until the event Ti. Also, (τi, δi) is only observed if
τi ≥ Ei.

4.2 Bootstrap for left-truncated right-censored data

Wang [16] generalises Efron’s ‘obvious’ bootstrap method to sample from
l.t.r.c. data under the assumptions

Ei ≤ Ci and Ci − Ei is independent of Ei, (4.1)
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S is continuous, a < inf{t|F (t) > 0} and b < sup{t|S(t) > 0}, (4.2)

where a = inf{e|FE(e) > 0} and b = sup{e|1− FE(e) > 0}. Assumption (4.1)
ensures the independence of Ti, Ei and Ci − Ei. Assumption (4.2) ensures
that the minimum truncation time is less than the minimum life-time and the
maximum truncation time is less than the maximum life-time. This technical
assumption avoids non-identifiability problems regarding estimating S and FE.
If this assumption is not satisfied in practice, it suffices to trim part of the
observations so that it is.

Let the risk set at time t be the set of individuals who have entered the study
by time t, i.e. the set of indices i for which Ei ≤ t; for whom the event has not
happened before time t and who have not been censored before time t. Let
Yi(t) = 1{ei ≤ t ≤ τi} indicate whether individual i is at risk at time t. Then,
Y (t) =

∑n
i=1 Yi(t) equals the cardinality of the risk set at time t.

Under these assumptions, the survival function S can be consistently estimated
by the Kaplan-Meier estimate of S given by

Ŝ(t) =
∏
ti≤t

(
1− 1

Y (ti)

)
.

The distribution function of the truncation variables E is obtained by the non-
parametric maximum likelihood estimator (NPMLE) of the ”working” data,
(ei, ti, ci). The NPMLE of FE is given by

F̂E

(
e, Ŝ
)
=

1∑n
j=1

1

Ŝ(ej)

∑
ei≤e

1

Ŝ(ei)
.

The distribution Q of Di = Ci − Ei is given by

Q̂(d) =

{
1 if d ≥ maxi{τi − Ei},
1−

∏
di≤d

(
1− 1

Y ′(di)

)
if d < maxi{τi − Ei},

where di are the observed differences Di = Ci −Ei, and where the cardinality
of the risk set at time d is given by Y ′(d) =

∑n
i=1 1{τi − ei ≥ d}. Note in

particular that
∏

di≤d

(
1− 1

Y ′(di)

)
is a Kaplan-Meier type estimator, but with

censored differences di = ci − ei being event times.

Bootstrap samples from E, D and T are generated independently. The trun-
cation times e∗i are sampled from F̂E, the differences d∗i are sampled from Q̂
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and, finally, the event times ti, from Ŝ. Let c∗i = e∗i + d∗i , τi = min{t∗i , c∗i }
and δ∗i = 1{t∗i ≤ c∗i }. If ti ≤ ei, the observation is truncated and discarded.
Generate samples until n observations have been accepted.

This generalisation of Efron’s ‘obvious’ method for l.t.r.c. data is not equivalent
to the ‘simple’ method. The ‘simple’ method for l.t.r.c. data is discussed in [8]
and does not require the assumtions (4.1) and (4.2).

4.3 Bootstrap for Aalen’s additive hazards model with
left-truncated right-censored data

We next propose three methods to sample from l.t.r.c. data with covariates.
The first is a trivial generalisation of Efron’s ‘simple’ method. The second and
the third are more substantial adaptions of Wang’s [16] method to regression
models for survival data. Also, we note the need for order-based inference
methods, i.e. isotonic regression. The method we propose is, to the best of our
knowledge, not previously studied.

Method 1: Perform the generalisation of Efron’s ‘simple’ method for
l.t.r.c. data [8]. Resample the quadruplets {(ei, τi, δi, zT

i )}ni=1 to obtain a
bootstrapped data set of size n.

Method 2: Let zi = (z1,i, ..., zp,i)
T be the fixed covariates for indi-

vidual i and assume the time to the events t1, ..., tn are completely ob-
served. Given the estimates of the cumulative regression functions B(t)
for Aalen’s model, the fitted survival curve for individual i is given by

S̃i(t|zi) = π
0≤u≤t

(1− dĤ(t|zi))

=
∏
tk≤t

(1−∆Ĥ(tk|zi))

=
∏
tk≤t

(
1−

(
∆B̂0(tk) + ∆B̂1(tk)z1,i + · · ·+∆B̂p(tk)zp,i

))
.

Since there is no condition on ∆Ĥ(tk|zi) being positive, the resulting
function S̃i(t|zi) is not monotone. To obtain a monotone estimate of the
survival curve, perform isotonic regression on F̃i(t|zi) = 1 − S̃i(t|zi) to
obtain F̂i and the survival curve Ŝi(t|zi) = 1− F̂i(t|zi).
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The truncation variables e∗i can be sampled from the NPMLE

F̂E

(
e, Ŝ
)
=

1∑n
j=1

1

Ŝj(ej |zj)

∑
ei≤e

1

Ŝi(ei|zi)
.

Obtain an observation time t∗i and a truncation time e∗i by sampling from

Ŝi and F̂E

(
e, Ŝ
)
, respectively. If t∗i ≥ e∗i keep the samples. Repeat until

samples t∗i and e∗i are obtained for each i.

The differences d∗i can be obtained by sampling from the distribution Q
of Di = Ci − Ei which is estimated by

Q̂(d) =

{
1 if d ≥ maxi{τi − Ei},
1−

∏
di≤d

(
1− 1

Y ′(di)

)
if d < maxi{τi − Ei},

where di are the observed differences Di = Ci−Ei, the cardinality of the
risk set at time d is given by Y ′(d) =

∑n
i=1 1{τi−ei ≥ d}. The censoring

times are given by c∗i = e∗i + d∗i .

After generating e∗i , t
∗
i and c∗i , the bootstrapped sample is constructed

as (e∗i , τ
∗
i , δ

∗
i , z

T
i ), where τ ∗i = min(t∗i , c

∗
i ) and δ∗i = 1{t∗i ≤ c∗i }.

Method 3: Let zi = (z1,i, ..., zp,i)
T be the fixed covariates for individual

i and generate t∗i and e∗i as in Method 2. The differences pattern is an
ancillary statistic since the distribution of Di does not depend on the
parameters of Aalen’s model. If an observation from Di is observed, i.e.
δi = 0, let d∗i be equal to ci− ei. Otherwise, if δi = 1, draw the difference
time d∗i from the distribution function estimate Q̂ of D given Di ≥ ti−ei.
The censoring times are given by c∗i = e∗i + d∗i .

After generating e∗i , t
∗
i and c∗i , the bootstrapped sample is constructed

as (e∗i , τ
∗
i , δ

∗
i , z

T
i ), where τ ∗i = min(t∗i , c

∗
i ) and δ∗i = 1{t∗i ≤ c∗i }.
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5 Implementation

5.1 Data

This project employs data from the Malmö diet and cancer study, which is
a population-based prospective cohort study that recruited middle-aged men
and women residing in Malmö during the early 1990s. The baseline screening
of the study was conducted between 1991 and 1996, and the participants were
monitored until 31st December 2019.

The data set consists of baseline measurements, an indicator of major adverse
cardiovascular event (MACE), and the duration of the period from baseline
until the first MACE, death, emigration or last follow-up. The data set com-
ponents considered are listed in Table 1.

The response variable to study is the age at which individuals experience the
first MACE. In this study, individuals begin to be followed at a specific age and
are monitored from that point, which leads to the data being left-truncated.
Thus, the age at entry into the study is used as a left-truncation time instead
of a covariate. The variable of interest is the sum of fumc and age, which
represents the age at which an individual experiences the first MACE, death,
emigration, or the end of the follow-up period.

The data set contains missing values, and individuals with incomplete informa-
tion are excluded from the analysis. The original data set included information
about 30,447 individuals, but after removing those with missing data, the re-
maining sample size is 27,679.

The goal of the analysis is to examine the risk factors associated with the inci-
dence of MACE during the study period, identify potential causal relationships
between covariates, and calculate the direct effects between the variables and
MACEs, utilising bootstrapping to compute confidence intervals for these ef-
fects. The statistical analysis was conducted in R, using the survival package
[14].
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Table 1: Data set variables

Covariate Information

sex
Sex
(0 = male, 1 = female)

age
Age at baseline
(years)

systolic
Systolic blood pressure at baseline
(mmHg)

diastolic
Diastolic blood pressure at baseline
(mmHg)

pr-dm
History of prevalent diabetes event
(0 = no, 1 = yes)

BMI
Body mass index (BMI) at baseline
(kg/m2)

ApoA-I
Apolipoprotein A-I (ApoA-I) level at baseline
(mg/dl)

ApoB
Apolipoprotein B (ApoB) level at baseline
(mg/dl)

current-smoker
Smoking status at baseline
(0 = no, 1 = yes)

lipid-low
Low lipid levels at baseline
(0 = no, 1 = yes)

AHT
Anti-hypertensive therapy (AHT)
(0 = no, 1 = yes)

hypertension
Hypertension at baseline
(0 = no, 1 = yes)

inc-mc
History of MACE incidence until last follow-up
(0 = no, 1 = yes)

fumc
Follow-up period from baseline until first MACE,
death, emigration, or last follow-up
(years)
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5.2 Causality

This section examines the causal relationships between variables and the in-
cidence of MACEs. Specifically, the focus is on apolipoproteins, including
apolipoprotein A-I (ApoA-I) and apolipoprotein B (ApoB), which are accu-
rate markers of cardiovascular risk. Apart from their direct effects on MACE
incidence, these apolipoproteins also influence other variables. Additionally,
smoking has been linked to decreased ApoA-I levels and elevated ApoB levels,
further affecting cardiovascular health.

Apolipoproteins are proteins that bind to lipids to form lipoproteins, which
are complex particles that transport lipids throughout the body. There are
several classes of apolipoproteins, including apolipoprotein A-I (ApoA-I) and
apolipoprotein B (ApoB). ApoB is a component of low-density lipoprotein
(LDL). LDL cholesterol is colloquially referred to as ‘bad cholesterol’ be-
cause high levels of LDL and ApoB are associated with an increased risk of
atherosclerosis, the underlying cause of heart attack and stroke [11]. Con-
versely, ApoA-I is the major structural protein component of high-density
lipoprotein (HDL). HDL cholesterol is colloquially referred to as ‘good choles-
terol’ because it absorbs excess cholesterol in the blood and carries it back to
the liver for excretion, thus preventing the accumulation of cholesterol in the
arterial wall. High levels of HDL and ApoA-1 are protective against atheroscle-
rosis [11].

The levels of apolipoproteins in the body can affect the risk of cardiovascular
problems by influencing lipid metabolism and blood clotting. In particular,
high ApoB levels are associated with an increase in cardiovascular risk, whereas
high ApoA-I levels are associated with a reduction in cardiovascular risk.

Besides the direct effect of ApoA-I and ApoB on the incidence of MACEs,
ApoA-I and ApoB levels also influence other variables. Studies on mice have
shown that ApoA-I has anti-obesity properties [13], implying that ApoA-I
affects BMI, which is also associated with coronary heart disease. ApoA-I,
ApoB and high blood pressure are also related since high cholesterol levels can
cause plaque build-up in the arteries. Plaque build-up can restrict blood flow
and increase blood pressure. A variable that influences apolipoprotein levels
is smoking. Smoking has been associated with decreased levels of ApoA-I and
with elevated levels of ApoB [10].
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Taking into account the previously known risk factors and relations between
these, we have in Figure 2 hypothesised causal relations between variables and
the outcome. All the direct effects between the variables and the MACE are
considered. The only direct effects between the variables that are examined
are linear, since these can be combined with Aalen’s additive hazards model
to study causality.

current-smoker

ApoB

ApoA-I

BMI

pr-dm

diastolic

systolic

sex

lipid-low

AHT

hypertension

dN(t)

Figure 2: Hypothesised causal path between variables and
the aggregated counting process dN(t) of the number of
MACE occurred by time t
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5.3 Direct effects of covariates on MACEs

The cumulative direct effects of the variables on the number of MACEs are
given by the cumulative regression functions from Aalen’s additive hazards
model. These are computed using the function aareg from the survival

package.

We created nB = 100 bootstrapped samples from the l.t.r.c. data using Method
2, provided in Section 4.3. We obtained the survival curve estimates Ŝi using
the function isoreg to perform isotonic regression. To sample the times t∗i
from the survival curve, we performed inverse transform sampling.

Inverse transform sampling is a method to sample from any distribution or,
equivalently, survival function S. We will apply the method to sample from the
survival function estimate Ŝ. The method consists of drawing a value u from
a uniform distribution U ∈ Un(0, 1). Since the survival curve estimates are
possibly defective if the value u < Ŝ(t(maxk)) is less than the minimum value of

Ŝ, the sampled value t∗i equals the time t(maxk). If u is greater or equal than the

minimum value of Ŝ, the sampled value t∗i is equal to the time t(k) such that

Ŝ(t(k)) ≤ u < Ŝ(t(k−1)), since Ŝ(t) is a right-continuous step-function. These
two cases are illustrated in Figure 3.

1

u1

Ŝ(t(maxk))

t(maxk)

0

2

1

u2

Ŝ(t(k−1))

Ŝ(t(k))

t(k−1) t(k)
0

Figure 3: Inverse transform sampling from a possibly de-
fective survival curve estimate

For each bootstrapped sample {(e(b)i , τ
(b)
i , δ

(b)
i , zT

i )}ni=1, b = 1, ..., nB, we com-
puted the cumulative regression functions for each of the variables. At each
time point, we compute confidence intervals at 95% confidence level. The
resulting estimates and confidence intervals are presented in Figure 4 and 5.
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Figure 4: Estimates of the cumulative direct effects of the
variables sex, systolic, diastolic, pr-dm and BMI on the in-
cidence of MACE (black) and 95% point-wise bootstrapped
confidence intervals (blue)
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Figure 5: Estimates of the cumulative direct effects of the
variables ApoA-I, ApoB, current-smoker, lipid-low, AHT
and hypertension on the incidence of MACE (black) and
95% point-wise bootstrapped confidence intervals (blue)

41



5.4 Direct effects between covariates

We computed the direct effects between the variables by regressing each vari-
able on its hypothesised parents, as presented in Figure 2. The coefficients are
calculated point-wise on the risk set at time t using the function lm.

For each bootstrapped sample {(e(b)i , τ
(b)
i , δ

(b)
i , zT

i )}ni=1, b = 1, ..., nB, we com-
puted the coefficients of each variable on its parents on the risk set at time
t. At each time point, we calculated confidence intervals at 95% confidence
level. The resulting estimates and confidence intervals are presented as follows.
Figure 6a and 6b present the results from regressing the variables ApoA-I and
ApoB on current-smoker, respectively. Figure 7 presents the results from re-
gressing the variable systolic on ApoA-I and ApoB. Figure 8 presents the
results from regressing the variable diastolic on ApoA-I and ApoB. Finally,
Figure 9 presents the results from regressing the variable BMI on ApoA-I and
ApoB.
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(a) ApoA-I is regressed on current-
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Figure 6: Estimates of the direct effects of the variable
current-smoker on ApoA-I and ApoB (black) and 95%
point-wise bootstrapped confidence intervals (blue)
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Figure 7: Estimates of the direct effects of the variables
ApoA-I and ApoB on systolic (black) and 95% point-wise
bootstrapped confidence intervals (blue)
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Figure 8: Estimates of the direct effects of the variables
ApoA-I and ApoB on diastolic (black) and 95% point-wise
bootstrapped confidence intervals (blue)
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Figure 9: Estimates of the direct effects of the variables
ApoA-I and ApoB on BMI (black) and 95% point-wise
bootstrapped confidence intervals (blue)

5.5 Interpretation of results

This section focuses on interpreting the previous results. We begin by dis-
cussing the results in Section 5.3.

The cumulative regression functions describe how the covariates influence sur-
vival over time. If the cumulative regression function estimate is constant,
the effect of the covariate does not vary with time. On the other hand, if
the estimate is increasing or decreasing, there is a time-varying effect of the
covariate.

For numerical variables, given that it takes positive values, estimates that
are increasing indicate an increase in the hazard. Conversely, for categorical
variables, the cumulative regression function compares the effect of the variable
with respect to the reference category (assigned a value of 0). The cumulative
regression function for the reference category of all categorical variables is given
by the intercept. An increase in the cumulative regression function for the
other categories indicates an increase in the hazard compared to the reference
category.

Examining Figure 4, the cumulative regression function for the intercept re-
veals a higher hazard rate for individuals in older age groups, particularly
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those nearing 90 years old, in experiencing a MACE. Furthermore, the regres-
sion function for female individuals indicates that females, compared to males,
have a lower hazard rate of experiencing a MACE.

Regarding blood pressure, higher systolic blood pressure appears to slightly
increase the hazard rate for MACE from ages 60 onwards, while higher diastolic
blood pressure seems to slightly decrease this hazard rate from ages 70 onwards.

Individuals with prevalent diabetes before entering the study (pr-dm) seem to
have a higher hazard rate of experiencing a MACE. Lastly, the cumulative re-
gression function for the variable BMI indicates that BMI does not significantly
effect MACEs, except for older individuals where the hazard increases.

Moving to Figure 5, it appears that high levels of ApoA-I lower the hazard
rate of MACE. Conversely, high ApoB levels increase the hazard rate. Indi-
viduals who smoke also have a greater hazard rate compared to non-smokers.
Low levels of lipids and anti-hypertensive therapy (AHT) are two factors that
increase the hazard rate for MACE. Hypertension, however, does not seem to
affect the hazard.

Nevertheless, some of these plots indicate that the bootstrapped confidence
intervals are biased, particularly for the cumulative regression function for
ApoA-I, ApoB, current-smoker and hypertension.

Additionally, the results from Section 5.4 further support that the original
estimates are biased. Upon exploring Figure 6 - 9, it becomes apparent that
the confidence intervals only capture the average direct effect between the
variables but lacks variability in the individual bootstrapped samples.

5.6 Method comparison

The same confidence intervals calculated using Method 2 are computed using
Method 1. This is done to demonstrate the possible advantages and limitations
of Method 2 since Method 1 is a naive way of sampling. The results are
presented in Appendix 1. This section focuses on comparing the quality of the
results obtained for Method 1 and 2.
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The confidence intervals for Method 1 do not present bias, whereas some of
the plots for Method 2 do. Nonetheless, it is worth noting that some of the
confidence intervals computed for Method 1 show higher variance compared to
their counterpart for Method 2.

In total, the bootstrapped results present bias and show a somewhat odd lack
of variability in the regression coefficients. We would like to emphasise that
our suggested method is, to the best of our knowledge, new, has not been
studied before, and there is, of course, the question of whether ‘bootstrapping
works’.
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6 Conclusions, discussion, and open problems

The main goal of this thesis was to study bootstrapping methods for survival
data, in particular, for right-censored and left-truncated right-censored (l.t.r.c.)
data, and in combination with graphical models for assessing causal relations
and direct/indirect effects of covariates. This thesis proposes three methods
for generating bootstrapped samples for l.t.r.c. data. Method 2 and 3 are novel
and designed within the framework of Aalen’s additive hazards model. The
first method consists of sampling with replacement from the l.t.r.c. data. This
method is referred to as the generalisation of Efron’s ‘simple’ method for l.t.r.c.
data [8]. The second method draws data conditional on the covariates under
Aalen’s model. Method 3 is an extension of Method 2, which is suitable under
the assumption that the censoring time is an ancillary statistics.

The second method is applied to the Malmö diet and cancer study data set to
compute confidence intervals for the effects of the covariates on MACEs and
between the variables. The method seems to generate results that capture un-
derlying trends. However, some confidence intervals for the effects of covariates
on the output seem to indicate that the original estimates are biased. Also,
the method cannot effectively compute the confidence intervals for the effects
between the variables. Conversely, Method 1, bootstrapping with replacement
from l.t.r.c. data, provides unbiased confidence intervals.

Therefore, we encourage further research to solve the limitations of Method
2. Concerning the bias, studies with an empirical approach could perform
a simulation study to better understand the factors contributing to the ob-
served biases in the results. This can help identify whether the bias is due to
implementation issues or limitations with the suggested method. Concerning
the estimation technique, the survival function obtained with the plug-in of
Aalen’s hazard is not monotone. However, by the use of antitonic regression,
we obtain a monotone survival curve. It might be fruitful studying how other
ways of estimating the survival curve impact the results.

We would like to suggest three alternative ways of continuing this project.
First, studying different methods for sampling and extrapolating defective
survival curves. In this thesis, the survival curve estimates were found to be
defective and drawing from them was done by an inverse transform sampling
approach. It would be of interest to study ways to extrapolate the survival
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curve to unseen times.

Second, the approach employed to investigate causality in survival only con-
siders linear effects between the covariates. Another approach to continuing
this project would be exploring methods to incorporate non-linear effects of
variables in the study of causality in survival. This would enable a more
comprehensive analysis of the relationships between covariates and survival
outcomes.

Third, it is of interest to consider alternative approaches for studying the effects
of covariates on survival that do not assume time-varying effects. While this
thesis primarily focuses on investigating time-varying effects, it is important to
contemplate the possibility that the resulting effects may not exhibit variations
over time. In such instances, computing non-time-varying effects would be a
simpler and more efficient approach for studying causality in survival.
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Appendix 1

Results for Method 1: Direct effects of covariates on
MACEs

The cumulative direct effects of the variables on the number of MACEs are
given by the cumulative regression functions from Aalen’s additive hazards
model. These are computed using the function aareg from the survival

package.

We created nB = 100 bootstrapped samples from the l.t.r.c. data using Method
1, provided in section 4.3. Given the original data, sample with replacement
to obtain a data set of size n. For each of bootstrapped data set, we computed
the cumulative regression functions for each of the variables. At each time
point, we compute confidence intervals at 95% confidence level. The resulting
estimates and confidence intervals are presented in Figure 10 and 11.

Results for Method 1: Direct effects between covariates

We computed the direct effects between the variables by regressing each vari-
able on its hypothesised parents, as presented in Figure 2. The coefficients are
calculated point-wise on the risk set at time t using the function lm.

For each bootstrapped sample {(e(b)i , τ
(b)
i , δ

(b)
i , zT

i )}ni=1, b = 1, ..., nB, we com-
puted the coefficients of each variable on its parents on the risk set at time
t. At each time point, we calculated confidence intervals at 95% confidence
level. The resulting estimates and confidence intervals are presented as follows.
Figure 12a and 12b present the results from regressing the variables ApoA-I
and ApoB on current-smoker, respectively. Figure 13 presents the results from
regressing the variable systolic on ApoA-I and ApoB. Figure 14 presents the
results from regressing the variable diastolic on ApoA-I and ApoB. Finally,
Figure 15 presents the results from regressing the variable BMI on ApoA-I
and ApoB.
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Figure 10: Estimates of the cumulative direct effects of the
variables sex, systolic, diastolic, pr-dm and BMI on the in-
cidence of MACE (black) and 95% point-wise bootstrapped
confidence intervals for Method 1 and 2
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Figure 11: Estimates of the cumulative direct effects of
the variables ApoA-I, ApoB, current-smoker, lipid-low,
AHT and hypertension on the incidence of MACE (black)
and 95% point-wise bootstrapped confidence intervals for
Method 1 and 2

53



-20

-10

0

10

20

50 60 70 80 90
t (years)

θ̂ c
u
rr
en
t-
sm

ok
er
,A

p
o
A
-I
(t
)

Method 1 2

1

(a) ApoA-I is regressed on current-
smoker

-20

-10

0

10

20

50 60 70 80 90
t (years)

θ̂ c
u
rr
en
t-
sm

ok
er
,A

p
oB

(t
)

Method 1 2

1

(b) ApoB is regressed on current-
smoker

0.0

0.2

0.4

0.6

50 60 70 80 90
t (years)

B̂
p
r-
d
m
Y
es
(t
)

Method 1 2

1

0.000

0.005

0.010

0.015

50 60 70 80 90
t (years)

B̂
B
M
I(
t)

Method 1 2

1

Figure 12: Estimates of the direct effects of the variable
current-smoker on ApoA-I and ApoB (black) and 95%
point-wise bootstrapped confidence intervals for Method
1 and 2
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Figure 13: Estimates of the direct effects of the variables
ApoA-I and ApoB on systolic (black) and 95% point-wise
bootstrapped confidence intervals for Method 1 and 2
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Figure 14: Estimates of the direct effects of the variables
ApoA-I and ApoB on diastolic (black) and 95% point-wise
bootstrapped confidence intervals for Method 1 and 2
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Figure 15: Estimates of the direct effects of the variables
ApoA-I and ApoB on BMI (black) and 95% point-wise
bootstrapped confidence intervals for Method 1 and 2
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