
Simulation of Quantum Cascade Lasers

Zakaria Mohamed

Thesis submitted for the degree of Bachelor of Science
Project duration: 2 months

May 2023

Supervised by Andreas Wacker

Mathematical Physics
Department of Physics

Acknowledgements
I would like to express my sincere gratitude to my supervisor, Andreas Wacker, for
his exceptional support and guidance throughout the entire duration of my thesis.
His open door policy and insightful conversations played a crucial role in shaping
my understanding and cultivating my interest in the subject, which makes me very
lucky to be under his mentorship. I would also like to extend my heartfelt appreci-
ation to my parents for their unwavering support and encouragement throughout
my life, which has been invaluable to me, and for which i am fortunate to have.
Additionally, I would like to acknowledge my colleague, Francessco Diotallevi, for
his technical assistance and motivation during this thesis. His expertise, willing-
ness to help, were instrumental in overcoming challenges and pushing me to work
harder. I am grateful for his collaboration and friendship.

1

Abstract
This thesis aimed to contribute to the improvement of Quantum Cascade Lasers
(QCLs) by focusing on the effective determination of quantum levels in these de-
vices. The current method relies on an outdated Fortran code, which poses chal-
lenges when integrating into optimization schemes. To address this issue, the thesis
proposed the development of an improved version of the code using Python, thus
enhancing readability and flexibility.

2

Contents
1 Introduction 5

2 Operation Principles of QCLs 6
2.1 Electron Extraction Methods . 7
2.2 Electron Injection Methods . 8

3 Basis States 8
3.1 Two Band Kane Model . 9
3.2 Bloch States . 11
3.3 Wannier States . 12

4 Implementation of Localised Wannier Functions 13
4.1 Method . 13
4.2 Special Techniques . 15

5 Simulated QCL Structures 16
5.1 Under Zero Bias . 16
5.2 Under Bias . 18

6 Conclusion and Outlook 20

7 Appendix 22

3

List of Abbreviations
ULS - Upper Laser State
LLS - Lower Laser State
LO - Longitudinal Optical Phonon Energy
RT - Resonant Tunneling

4

1 Introduction
In the early 1970s, the discovery of the quantum well by Esaki and Tsu [5] paved the
way for researchers to explore the unique properties that heterostructures exhibit
and their potential use in existing technologies. One area of interest was the use of
these structures for light amplification, which led to the development of the first
Quantum Well Laser by Raymond Dingle at Bell Laboratories. Dingle suggested
that the use of quantum well structures with layers of different band gaps allowed
for a higher level of wavelength tunability, simply by altering the thickness of
the layers , whereas traditional lasers required a change in layer composition, see
Figure 1. This lead to the invention of the first Quantum Well Laser [4], however,
the technology was still in its early stages, and the first Quantum Well Lasers
suffered from several limitations, which further motivated researchers to explore
new approaches that may overcome these challenges.

electron tunneling

λ

λ

Figure 1: Simple diagram portraying the idea of using a heterostructure under bias for
light amplification.

Through advances in band structure engineering, groundbreaking development in
semiconductor laser technology was achieved with the invention of the Quantum
Cascade Laser (QCL) by researcher Federico Capasso at Bell Laboratories [6].
Unlike conventional lasers that rely on interband transitions, QCLs use optical
transitions between subbands within the semiconductor material, providing several
key advantages. One such advantage is the emitted radiation being dependent on
the structure’s dimensions, with the subband gap determined by the size of the
barrier. These subband gaps are also much smaller than the band gaps in materials,
allowing QCLs to operate at lower frequencies. Initial designs emitted radiation
within the infrared (IR) region of the optical spectrum, ranging from 3.4 to 24
µm (88 to 12.5 THz). However, these designs came with limitations such as the

5

Reststrahlen band, which sets a lower limit for emitted frequencies, additionally
operations at room temperature were not yet possible [7].
Further breakthrough was realised in 2002, researchers accomplished continuous
wave (cw) operation by IR-QCLs at room temperature, which was made possible
by the two-phonon resonance design [1]. More significant was the development
of THz-QCLs that operate below the Reststrahlen band, which prove to have the
potential to unlock a host of new technological applications[13], albeit achieving
room temperature THz-QCLs remains a current area of research.

2 Operation Principles of QCLs
The basic building blocks of a QCL are a series of quantum wells, designed by
layering thin semiconductor material (∼ 10Å order of magnitude) with varying
bandgap energies. A very commonly employed material combination is GaAs as
the well material and AlxGa1−xAs as the barrier material, where x represents the
relative proportion of aluminum to gallium. At the heterojunctions of the struc-
ture, the conduction and valence band edges will bend, due to the discontinuity
of the bands at the edges, forming the band offsets. These band offsets are the
barriers of the Quantum Well, see Figure 2.

Figure 2: Schematic diagram of the offsets in a heterostructure. Here the conduction
band offset acts as the barrier height.

The electron energy states now depend on the barrier height Ec and the thickness of
the layers. These parameters may now be tuned to obtain the desired eigenstates.

6

The active region of a QCL, where stimulated emission takes place, consists of a
minimum of 3 bands. These are commonly referred to as the Upper and lower
laser levels, where light is emission takes place, and a 3rd subband known as the
extractor level. The extractor level ensures that higher energy levels, in this case
the Upper laser level, are re-populated after de-excitations to allow for further
emissions to take place.

2.1 Electron Extraction Methods

The most prevalent and effective method currently utilized for depopulating the
LLS is known as the direct-phonon method [12]. This method entails positioning
the extractor level directly below the LLS, with a separation equivalent to one Lon-
gitudinal Optical (LO) phonon energy. By strategically positioning the extractor
level below the LLS, transitions from the ULS to the extractor level happen at
a much slower rate as the spatial overlap is much lower, resulting in significantly
shorter lifetimes for the LLS state in comparison to the ULS. The LO-phonon
scattering process is fast, causing subband lifetimes to be ∼ 1 ps whenever LO-
phonon scattering is energetically feasible. This helps maintain what is known as
population inversion, which is necessary for continued stimulated emission. Dif-
ferent QCls designs are centered around his important concept, with the mid-IR
and THz designs operating at freqeuncies above and below the longitudinal optical
phonon energy ELO.

Figure 3: Diagram of the energy states in a THz QCL, here Eλ < ELO where ELO is
the energy between the LLS and the extractor level.

7

2.2 Electron Injection Methods

Electrons are then injected back into the ULS through Resonant Tunneling (RT).
Resonant tunneling occurs when the energy levels of the adjacent quantum wells
are aligned in such a way that electrons can tunnel through the barrier separating
them with high probability. By carefully designing the QCL structure, the energy
levels of the extractor state and the ULS are chosen to align under a bias, as
illustrated in Figure 3. The width of the barrier plays a critical role in determining
the rate at which electrons transfer through resonant tunneling. Specifically, the
narrower the barrier width, the higher the rate of electron transition. However
reducing the barrier width comes with its own drawbacks, in particular for low
frequency devices, i.e. when the ULS and the LLS are in close proximity, there
is a possibility for electrons to tunnel into the LLS instead of the ULS resulting
in a higher current without the desired emission of a photon [8]. In such case
Scattering-Assisted Injection (AS) has been shown to perform better [10], where
electron injection into the ULS is also performed by the direct phonon method. In
such case electrons are extracted from the LLS through resonant phonon extraction
[18], and subsequently injected into the ULS, with the injector state 1 ∆ELO above
the ULS.

3 Basis States
The electronic energy states in the periodic potential of a crystal structure is
described by the Bloch theorem. It states that the wavefunction of an electron in
a crystal can be expressed as a product of a plane wave and a periodic function
that has the same periodicity as the crystal lattice [2]. The electron wavefunction
can then be written as

ψk(r) = eik·ruk(r) (1)

Here, k is the wavevector, also known as the Bloch vector, taking values that lie
within the Brillouin zone, and uk(r) is a periodic function with the periodicity of
the crystal lattice, satisfying the condition:

uk(r+R) = uk(r) (2)

where R is any lattice vector.
By substituting the wavefunction expression from Eq. 1 into the Schrödinger
equation,

Ĥψ(r) = Eψ(r) (3)

8

one can obtain the energy eigenvalues and eigenstates of the electrons in the crystal.
The resulting energy bands depict the allowed energy levels for electrons as a
function of k.
While this theorem provides a powerful framework for understanding the elec-
tronic properties of crystalline materials, they may not be the most intuitive basis
for understanding localized electronic states. This is due to the fact that these
Bloch functions have an indeterminacy regarding their phase, meaning that they
are oscillating and delocalized in real space. One may negate this delocalization
by simply performing an arbitrary unitary transformation, subsequently arriving
at a set of solutions that are equally valid.
In order to obtain useful microscopic insights into the chemical and physical pro-
cesses of a structure, it is important to consider basis states that are localized in
real space.

This localisation is achieved by performing a Fourier transform on the Bloch states,
and inserting a new k-dependent phase factor, such that it is real for a given vector
φ.

ω(r) =
1

N

∑
j

eikj ·φukj
(r) (4)

These states, described in Eq. 4, are known as the Wannier states [16]. Note
that the Wannier states are not eigenstates of the Hamiltonian and as such trade
localization in energy for localization in space, instead they are labelled by the
unit cell they are localised too, and their band index ν.

3.1 Two Band Kane Model

Theoretical determination of electronic energy states has traditionally relied on
solving for the eigenstates of the one-band envelope-function Hamiltonian, which
focuses solely on the conduction band. This approach is accurate for energy levels
located near the bottom of the conduction band. However, as the barrier energy
becomes comparable to the energy gap between different bands, it becomes neces-
sary to consider the contribution of the valence band due to the non-parabolicity
of the conduction band.
To address this, a simplified two-band model, known as the Kane Model [15], has
been introduced. Within this model, electronic energies can be calculated with
remarkable agreement to experimental values by also incorporating an energy-
dependent effective mass. The following part of this chapter essentially follows
internal notes by Andreas Wacker.
The Hamiltonian for the two-band model is as follows [17]

9

Ĥ =

[
Ec(z)− eϕ(z, t) pcv

me

ℏ
i

∂
∂z

pvc
me

ℏ
i

∂
∂z

Ev(z)− eϕ(z, t)

]
(5)

where ϕ(z, t) is the scalar potential, Ec(z) is the conduction-band offset and Ev(z)
approximates the valence-band offset. The stationary form without any external
bias ϕ(z, t) reads (

Ec(z)
pcv
me

ℏ
i

∂
∂z

pvc
me

ℏ
i

∂
∂z

Ev(z)

)(
Ψc(z)
Ψv(z)

)
= E

(
Ψc(z)
Ψv(z)

)
(6)

Where the lower component reads

pvc
me

ℏ
i

∂Ψc(z)

∂z
+ Ev(z)Ψv(z) = EΨv(z) (7)

Rearranging results in the expression for Ψv(z) as follows

Ψv(z) =
1

E − Ev(z)

pvc
me

ℏ
i

∂Ψc(z)

∂z
(8)

substituting this expression into the upper component of Eq. 6 the wavefunction
for the conduction becomes

[
Ec(v)− ∂

∂z
ℏ2

2mc(E,z)
∂
∂z

]
Ψc(z) = EΨc(z) with mc(E, z) =

m2
e(E−Ev(z))
2|pcv |2 (9)

where mc(E, z) is the energy dependent effective mass, which also depends on z
through the valence band offset, and |pvc| is the momentum operator obtained
from the Kane Energy denoted

K =
2|pvc|2

me

(10)

This value, pvc is required to be constant throughout the heterostructure within
the two band model. Using the known effective mass at the conduction-band offset
m(Ec, v) allows for the calculation of the valence band offset using

Ev(z) = Ec(z)− 2|pcv|2
m∗

c(z)

m2
e

(11)

The valence band value obtained through Eq. 11 does not agree with the material
value, as it neglects the degeneracy of the valence band. Finally, by selecting the
appropriate phase for the momentum matrix elements,

pvc = i|pcv| (12)

a real Hamiltonian is obtained, enabling the possibility to select real eigenstates.

10

3.2 Bloch States

We now consider the periodicity in a QCL superlattice, with N layers of varying
thickness of b1, b2, ...bN , the Bloch conditions provides as follows

eiqd
(
Ψ qν
c (z)
Ψ qν
v (z)

)
=

(
Ψ qν
c (z + d)
Ψ qν
v (z + d)

)
(13)

where the Bloch states (Ψ qν
c (z), Ψ qν

v (z))tr are also the eigenstates for a vanishing
potential ϕ(z) and d is the length of the module, Σibi. The Bloch states are fur-
ther characterised by the Bloch vector q in the range of the first Brillouin zone
(−π/d < q ≤ π/d), and the band index ν.

It is important to note that the effective mass for a given layer depends only on
the energy and as the valence-band offset, Ev(c), remains constant in the region
zi−1 < zi < zi+1, the solution in this region of uniform potential is therefore given
by the general solution to Schrodinger’s equation

Ψ i
c(z) = Aeλi(z−zi) +Be−λi(z−zi) where λi(E) =

√
2mi(E − Ec)

ℏ
(14)

Ensuring that both Ψ i
c(z) and Ψ i

v(z) and their derivatives are continuous at the
layer boundaries, that is to say

Ψ i
c(zi − 0+) = Ψ i+1

c (zi + 0+) and
1

mi

∂Ψ i
c(z)

∂z

∣∣∣∣
z=zi−0+

=
1

mi+1

∂Ψ i+1
c (z)

∂z

∣∣∣∣
z=zi+0+

(15)
provides the relation between adjacent layers(

Ai+1

Bi+1

)
= Mi

(
Ai

Bi

)
with Mi =

[
eλibi(1 + αn) e−λibi(1− αn)
eλibi(1− αn) e−λibi(1 + αn)

]
(16)

where αi = mi+1λi

miλi+1
and the matrix Mi is energy-dependent through λi and αi,

which may also be complex in the instance that E > Ec(z).
A further boundary condition may be applied at the end of the module to satisfy
the Bloch condition in Eq. 13. With N being the number of layers in each module,
we obtain the following Bloch relation between modules.

eiqd
(
A1

B1

)
=

(
AN+1

BN+1

)
= M

(
A1

B1

)
with M = MNMN−1MN−2...M1 (17)

Given this condition A1 and B1 are non-vanishing only if det{MN — eiqdI} = 0,
resulting in a set of solutions Eν(q) for a given Bloch vector q. From these energies

11

Eν(q) one may evaluate the corresponding eigenvectors (A1, B1)
tr and subsequently

the whole set of wavefunction coeffiecients using Eq. 16(
Ai

Bi

)
= Mi...M2M1

(
A1

B1

)
These coefficients then enable the construction of the wavefunction for the con-
duction band for an arbitrary z using Eq. 14. From these evaluated wavefunctions
Ψ i
c(z), the valence band wavefunctions may be determined via Eq. 8. All that

is now left is to normalise the obtained wavefunctions, this is performed by set-
ting the integral over the entire module of the sum of the absolute wavefunctions
squared to one. ∫ d

0

[|Ψ νq
c (z)|2 + |Ψ νq

v (z)|2] dz = 1 (18)

3.3 Wannier States

So far, we have calculated the Bloch functions for an arbitrary complex phase.
The localised Wannier functions are given by

(
ωνi
c (z)
ωνi
v (z)

)
=

d

2π

∫ π/d

−π/d

dq e−iqnd

(
Ψ qν
c (z)
Ψ qν
v (z)

)
eiϕq ≈ 1

j

∑
j

e−iqjnd

(
Ψ

qjν
c (z)
Ψ

qjν
v (z)

)
eiϕq (19)

In order to evaluate the localised Wannier functions, one must choose phase factor
which is q-dependant, eiϕq , with the constraint ϕ−q = −ϕq. In 1959, Kohn demon-
strated that selecting Wannier functions to be real at symmetry points often yields
the most optimal localization [11]. In the case of quantum cascade lasers (QCLs),
such symmetry points are non-existent, making the selection process more chal-
lenging. However, a viable strategy is to choose all Bloch states to be real and
positive at specific points. This approach often proves advantageous, leading to
Wannier functions that are localized at the chosen artificial symmetry points.
To calculate the phases we adopt the method outlined in [3], which necessitates
selecting initial phases in such a way that the Bloch functions remain continuous
in q, accounting for the periodicity at q = ±π/d. The phase is then given by Eq.
20 of [3],

ϕML
ν (q) =

∫ q

0

dq′[Xν(q
′)− xν] (20)

where Xν(q
′) snd xν are taken from Eq. 12 and 13 respectively, denoted

12

xν =
d

2π

∫ π/d

−π/d

dqXν(q), Xν(q) = i
∫ d

0

dzeiqz((Ψ qν
c (z))(Ψ qν

v (z))∗
∂

∂q

[
eiqz

(
Ψ qν
c (z)
Ψ qν
v (z)

)]
The Bloch states with index ν, q are then multiplied by their corresponding phase
factors. It is these states that are employed in Eq. 16 to calculate the maximally
localized Wannier functions.

4 Implementation of Localised Wannier Functions

4.1 Method

To compute the localized Wannier functions the necessary parameters for a given
heterostructure must be provided. Namely the thickness of each layer bi, the
conduction band offset m∗

c , which represents the barrier height, the effective mass
at the conduction band offset energy Ec, also known as the Γ -point and the Kane
Energy. The algorithm requires the inputs to be provided as numpy arrays in
order to perform subsequent calculations. Calculations begin by identifying the
energy eigenvalues that fulfill the Bloch condition. In other words, that is to solve
f(E) = det{MN — eiqdI} = 0
The old code achieved this by the use of the Bisection method. This method
iteratively narrows down the search interval of a given function by dividing it in
half and selecting the sub-interval in which the function changes sign, effectively
converging towards the root, as depicted in Fig.4.

Figure 4: For an interval {x, x+∆}, the method works by finding the function sign at
the mid-point f(x+∆/2), subsequently narrowing the search interval

13

However, when dealing with a large number of roots, this method can become
time-consuming due to the need for iterative evaluations of the function and up-
dating of interval bounds.

To improve efficiency, the new code incorporated the root_scalar function from the
scipy.optimize library, which leverages faster programming languages like C, C++,
and Fortran for time-critical computational loops. An additional challenge arose
from the fact that the function f(E) has multiple roots, in fact limE→∞ f(E) = 0.

Figure 5: As seen, f(E) oscillates and dampens around the x-axis, proving difficult for
the root_scalar function to solve over an unspecified interval

This posed difficulties for root_scalar without an appropriate search interval.
To address this, a hybrid approach was devised, combining a modified bisection
method with root_scalar. This hybrid method starts with an initial guess and step
size to identify the interval where the root is likely to lie, by checking for a sign
change. Finally, root_scalar is used to converge on the root itself. By combining
the strengths of both methods, the code achieves a more efficient and accurate
determination of the energy roots compared to relying solely on either method.

For each wavevector q the number of roots found, Nr, is an initial parameter set,
each root is then identified by its band index and q, E(ν, q). It is important to
discard any energies higher than the barrier height, since these states cannot easily
be localised within the structure.

14

The q-values used to determine the Bloch functions are chosen such that they cover
the first Brillouin zone with equal spacing.

qj = −π
d
− π

Nqd
+

2π

Nqd
j for j = 1, 2, 3....Nq

These qj values restricts to the eigenstates of a system of length L = Nqd, with
boundary conditions Ψ(x+L) = (−1)Nq+1Ψ(x), resulting in the Born von-Karman
boundary condition for odd Nq. After the eigenvalues E(ν, q) have been deter-
mined, the eigenvectors A1 and B1 are evaluated as

A1 = −ϵ11, B1 = ϵ12 (21)

where ϵ11 and ϵ12 are given by

M =

[
ϵ11 ϵ12
ϵ21 ϵ22

]
for M = MN — eiqdI

Subsequent co-efficients [Ai, Bi] are determined using Eq. 16, allowing for the
construction of the conduction band Bloch wavefunctions for a given position z
using Eq. 14. The valence band functions Ψ i

v(z) are further obtained via Eq. 8.
Both functions are then normalised by re-scaling An and Bn to satisfy Eq. 18.
All that remains is to determine the phase factor from Eq. 20 and evaluating the
Wannier function using Eq. 19.

4.2 Special Techniques

In the calculation of the Bloch functions, certain specialized techniques were em-
ployed to perform specific computations. One notable technique was the utilization
of numpy.roll for calculating function derivatives. By appropriately shifting the
array elements, the derivative of a function can be calculated using finite differ-
ences. This approach proves useful in situations where analytical derivatives are
not readily available. Additionally, masks were employed to generate functions for
different regions. A mask is a binary array that serves as a filter to select specific
elements or regions of an array. By applying masks, one can selectively include or
exclude elements based on specified conditions. In this particular context, masks
were employed to delineate and define distinct layer regions for the calculation of
their respective Bloch functions. Thus specific areas within the system could be
identified and isolated, allowing for targeted computations on individual layers.

15

5 Simulated QCL Structures
The table below illustrates the structures of THz QCL models in this study, show-
casing the layer sequences and corresponding materials. The structures G938 and
G936 taken from [14] were chosen due to their similarity to the model LU2022
which the code was initially modelled for.

Label x Layer Sequence (nm) Material
LU2022 0.3 3.1, 7.1, 2.1, 14.2 AlxGa1−xAs, GaAs
G938 0.35 2.88, 7.45, 1.76, 15 AlxGa1−xAs, GaAs
G936 0.3 3.3, 6.43, 1.9, 14.7, 2.4, 8.33 AlxGa1−xAs, GaAs

Table 1: Table of structures of simulated models from [9], where the bold layers
denote the barriers separating the GaAs wells.

5.1 Under Zero Bias

The Longitudinal Optical Phonon Energy of GaAs is ∼36.6meV [14], The following
three simulated structure are very similar, differing omly in the Al composition in
the barriers in the case of G938, and the number of layers in the case of G936.

Figure 6: LU2022 structure under no bias, here the energy states of interest are the
three first states.

16

Figure 7: Model G936 similar to LU2022 with an added well and barrier providing
additional energy states denoted by the turquoise and yellow bands.

In Figure 7 the 2nd excited state and the extractor state are no longer spatially
aligned, rendering the 3rd excited state to now act as the LLS.

Figure 8: G938 with an increased barrier height, here the barrier widths are smaller,
increasing resonant tunnelling rate from the extractor to the ULS.

17

5.2 Under Bias

Figure 9: LU2022, under 0.07eV bias per module, extraction and injection are performed
by DP and RT respectively.

Figure 10: G936 under same bias as LU2022, the lower laser state is now the 3rd excited
stated, since it spatially alligns with extractor state.

18

The bias 0.07meV was chosen in order that the ULS and the Extractor state are
resonant, meaning that the two states align energetically, thus increasing the tun-
nelling amplitude through the barrier. Fig. 9 & Fig. 10 represent structures with
similar barrier heights, however in the case of the latter, the 2nd excited state
which was previously the LLS no longer spatially aligns with the extractor state.
For this reason the the 3rd excited becomes the LLS. This key observation high-
lights the flexibility and customisability of QCLs and the importance of simulation
frameworks in identifying the roles each energy state plays.

Figure 11: G938 again under 0.07meV bias per module, here similar states play similar
roles to LU2022, with an expected increase in resonant tunneling due to decrease in
barrier widths.

Larger barrier heights allow for more localised states, which can be beneficial
for QCLs operating at higher energies, i.e. MID-IR QCLs, but may not be so
productive for THz QCLs such as G938 model shown in Fig. 11. This due to the
overlapping of the energy state since they are in such close proximity, creating a lot
of noise since the electron may now tunnel into undesired states. This is also one
of the reasons why THz QCL require to be at cryogenic temperatures to operate.

19

6 Conclusion and Outlook
Simulations and modeling play a pivotal role in the development and understand-
ing of Quantum Cascade Lasers. These tools allow researchers to investigate the
physical behaviors of QCL devices, resulting in optimized performances, and gain-
ing insights that are otherwise challenging to obtain experimentally. In this the-
sis, the focus was on enhancing the existing Fortran code by developing a Python
framework, which offers increased readability and flexibility, thereby establishing a
foundation for more sophisticated calculations. The developed code is not yet com-
plete and requires further testing and improvement, in particular, specific anomaly
situations, such as when the energy is equivalent to the barrier height, need to be
examined more carefully. In conclusion, despite the minor issues that exist in the
developed code, it serves as a solid foundation for conducting further complex cal-
culations in Quantum Cascade Lasers research. With this improved framework,
researchers can now embark on improving other aspects related to QCLs, such as
gain and operating temperatures, thus unlocking their full potential for a wide
range of applications.

References
[1] Mattias Beck, Daniel Hofstetter, Thierry Aellen, Jérôme Faist, Ursula

Oesterle, Marc Ilegems, Emilio Gini, and Hans Melchior. Continuous wave op-
eration of a mid-infrared semiconductor laser at room temperature. Science,
295(5553):301–305, 2002.

[2] Felix Bloch. Über die quantenmechanik der elektronen in kristallgittern.
Zeitschrift für physik, 52(7-8):555–600, 1929.

[3] Alexys Bruno-Alfonso and Dennis R. Nacbar. Wannier functions of isolated
bands in one-dimensional crystals. Physical Review B, 75(11):115428, 2007.

[4] Raymond Dingle and Charles H. Henry. Quantum effects in heterostructure
lasers, September 21 1976. US Patent 3,982,207.

[5] Leo Esaki and Raphael Tsu. Superlattice and negative differential conductiv-
ity in semiconductors. IBM Journal of Research and Development, 14(1):61–
65, 1970.

[6] Jerome Faist, Federico Capasso, Deborah L. Sivco, Carlo Sirtori, Al-
bert L. Hutchinson, and Alfred Y. Cho. Quantum cascade laser. Science,
264(5158):553–556, 1994.

20

[7] Claire Gmachl, Federico Capasso, Deborah L. Sivco, and Alfred Y. Cho. Re-
cent progress in quantum cascade lasers and applications. Reports on progress
in physics, 64(11):1533, 2001.

[8] Christian Jirauschek and Tillmann Kubis. Modeling techniques for quantum
cascade lasers. Applied Physics Reviews, 1, 02 2014.

[9] Ali Khalatpour, Man C. Tam, Sadhvikas J. Addamane, John L. Reno,
Zbignew Wasilewski, and Qing Hu. Enhanced operating temperature in tera-
hertz quantum cascade lasers based on direct phonon depopulation. Applied
Physics Letters, 122(16):161101, 2023.

[10] Sudeep Khanal, John L. Reno, and Sushil Kumar. 2.1 thz quantum-cascade
laser operating up to 144 k based on a scattering-assisted injection design.
Optics express, 23(15):19689–19697, 2015.

[11] Walter Kohn. Analytic properties of bloch waves and wannier functions. Phys-
ical Review, 115(4):809, 1959.

[12] Sushil Kumar, Chun Wang I. Chan, Qing Hu, and John L. Reno. Two-well
terahertz quantum-cascade laser with direct intrawell-phonon depopulation.
Applied Physics Letters, 95(14):141110, 2009.

[13] Mark Lee and Michael C. Wanke. Searching for a solid-state terahertz tech-
nology. Science, 316(5821):64–65, 2007.

[14] Denizhan E. Önder. Dynamical analysis of terahertz quantum cascade lasers.
2023.

[15] Carlo Sirtori, Federico Capasso, Jérôme Faist, and Sandro Scandolo. Non-
parabolicity and a sum rule associated with bound-to-bound and bound-to-
continuum intersubband transitions in quantum wells. Physical Review B,
50(12):8663, 1994.

[16] Gregory H. Wannier. The structure of electronic excitation levels in insulating
crystals. Physical Review, 52(3):191, 1937.

[17] Steven R. White and Lu J. Sham. Electronic properties of flat-band semicon-
ductor heterostructures. Physical Review Letters, 47(12):879, 1981.

[18] Benjamin S. Williams, Sushil Kumar, Hans Callebaut, Qing Hu, and John L.
Reno. Terahertz quantum-cascade laser operating up to 137 k. Applied Physics
Letters, 83(25):5142–5144, 2003.

21

7 Appendix

1 """
2 Created on Tue Feb 21 18:34:42 2023
3

4 @author: zakariam
5 """
6 import numpy as np
7 from scipy.optimize import root_scalar
8 import scipy.constants as cd
9 import matplotlib.pyplot as plt

10 import pandas as pd
11

12 #%%
13 # constants
14

15 c = cd.e # electric charge
16 me = cd.m_e# mass of electron
17 hbar = cd.hbar
18 C = np.sqrt(me*c)* 1e-9 / hbar
19

20 #%%
21

22 #input variables , in final version these will be
empty lists , appended with values from an input
file

23

24 thlist = np.array ([3.1, 7.1, 2.1, 14.2]) #
thickness of the layers

25 Ecn = np.array ([0.303 , 0, 0.303, 0])# conduction
band offset

26 mcn = np.array ([0.0919 , 0.067, 0.0919 , 0.067])# eff
mass , in me

27 p = 22.67# Eg/meff
28 d = sum(thlist)# 1e-9 # thickness of module
29 Nq = 900 #Number of q values
30 Ev = Ecn - (p*mcn)#Valence band offset
31 Nr = 8#Number of bands
32 Nz = 300
33

22

34

35 #%%
36 def lambdar(E):# function to calculate the effective

mass and lambda for each layer
37 m = (E- Ev)/p
38 l = np.sqrt (2*m*(Ecn - E) + 0j)*C
39 return l, m
40

41

42 def layer_matrices(E):#function to calculate
hamiltonian the matrices for each layer

43 l, m = lambdar(E)
44 a = (np.roll(m,1)/m) * (l/np.roll(l,1))#

expression for alpha
45 b = thlist
46 exp1 = np.exp(l*b)
47 exp2 = 1/exp1
48 M = 0.5 * np.array ([[exp1 *(1 + a), exp2 *(1 - a)

], #matrix of current layer
49 [exp1 *(1 - a), exp2 *(1 + a

)]])
50

51 M = np.rollaxis(M, 2)#shift axis of the matrix
into a more understandble form

52

53 return M#returns H-matrix for each layer
54

55

56 #%%
57

58 def moduleprod(E):
59 md = layer_matrices(E)
60 result = md[0]
61 for matrix in md [1:]:# iterate over matrices ,

except first matrix
62 result = np.matmul(matrix , result)# multiply

matrices
63 return result#return product(matrix of final

layer)
64

23

65

66 def det_func(E, q):#def det_func(E):# the
determinant that must be zeroed

67 return np.linalg.det(moduleprod(E) - np.eye(2)*
np.exp(1j*q*d))

68

69

70 def rootfinder(q):
71 # Define the bounds of the energy search

interval
72 E_min = 0.001
73 E_max = 0.011
74

75 # Find all the roots using root_scalar
76 roots = []
77 while True:
78 if np.sign(det_func(E_min , q)) != np.sign(

det_func(E_max , q)):
79 sol = root_scalar(det_func , bracket =[

E_min , E_max], args=(q,), method='
brentq ')

80 roots.append(sol.root)
81 E_min = sol.root + 0.01
82 E_max = E_min + 0.01
83 else:
84 E_min = E_max
85 E_max += 0.01
86

87 # Stop if the maximum number of roots is
found or if the search interval is too
large

88 if len(roots) >= Nr:
89 break
90

91 return roots
92

93

94 #q = np.linspace(-np.pi/d, np.pi/d, Nq)# Define the
range of q values

24

95 q = np.linspace(-np.pi/d*(1 -1/Nq), np.pi/d*(1 -1/Nq),
Nq)# Define the range of q values as script NEW

96

97

98 def rootsarr(Nq):#function to store the roots for
each q value

99 roots_arr = np.zeros((Nq, Nr, 3), dtype=np.
complex128) # Initialize an array to store
the roots for each q value

100

101 for i in range(Nq):
102 roots = rootfinder(q[i])# Find the roots for

the current q value
103 for j in range(Nr):
104

105 M = moduleprod(roots[j])# Calculate the
module product for the current root

106

107 # Obtain co-effiecients A and B from
current matrix

108 A = -M[0,1]
109 B = M[0,0] - np.exp(1j*q[i]*d)
110 #print(B)
111

112 # Store the root and its associated
values in the roots_arr array

113 roots_arr[i,j,:] = np.array([roots[j], A
, B])

114

115 return roots_arr
116

117 # df is numpy array [iq,inu ,sort] sort =0:E sort =1:A,
sort =2:B

118 df = rootsarr(Nq)#make roots_arr global for ease of
access to values

119

120

121 #%%
122

25

123 def psi_Cfunc(A, B, lambd , z_n , z_arr):#function to
construct conduction band wavefunction

124 exper = np.exp(lambd * (z_arr - z_n))
125 #here z_n -z_arr gives the distance travelled

within a specific layer
126 return A*exper + B/exper
127

128 def psiV_func(E, Ev , grad):#function to calculate
valence band wavefunction

129 const = np.sqrt(p*me*c/2)*(hbar/me)*1e9
130 return (1/(E - Ev))*(const/c)*grad
131

132

133 z = np.linspace(0, d, 300, endpoint=False)
134 dz = z[1]-z[0]
135

136

137 def derivative_arr(i, arr):#bespoke derivative
calculator with the correct Bloch boundary
conditions

138 del_arr = (np.roll(arr , -1) - np.roll(arr , 1))/
(2*dz)

139 del_arr [0] = (arr [1] - np.exp(-1j*q[i]*d)*arr
[-1])/ (2*dz)

140 del_arr [-1] = (np.exp(1j*q[i]*d)*arr[0]-arr[-2])
/ (2*dz) #NEW

141

142 return del_arr
143

144

145 def calculate_Bloch(q, v):
146 # Define the boundaries of each layer
147 bounds = np.zeros(len(thlist)+1)
148 bounds [1:] = np.cumsum(thlist)
149

150 # Initialize arrays for the conduction and
valence band wavefunctions

151 psiC_arr = np.zeros(len(z), dtype=np.complex128)
152 psiV_arr = np.zeros(len(z), dtype=np.complex128)
153

26

154 # Get the coefficients for the current energy
eigenvalue and wavevector

155 coeff = df[q,v,:]
156 E = coeff [0]
157 AB = coeff [1:]. reshape ((2,1))
158

159 # Obtain Lamba and layer matricies for the given
energy

160 lambd , _ = lambdar(E)
161 M = layer_matrices(E)
162

163 ev_arr = np.zeros(len(z))
164 for i in range(len(bounds) -1):
165 # Mask to select the points in the current

layer
166 mask = (z >= bounds[i]) & (z < bounds[i+1])
167 ev_arr[mask]=Ev[i] #NEW
168

169 # Calculate the conduction band wavefunction
for the current layer

170 psiC_arr[mask] = psi_Cfunc(AB[0], AB[1],
lambd[i], bounds[i], z[mask])

171

172 # Update the coefficients for the next layer
173 AB = M[i] @ AB
174

175 # Calculate the derivative of the conduction
band wavefunction

176 del_arr = derivative_arr(q, psiC_arr)
177

178 # Calculate the valence band wavefunction for
each point in the z-direction

179 for x in range(len(z)):
180 psiV_arr[x] = psiV_func(E, ev_arr[x],

del_arr[x])
181 #psiV_arr.append(psiV_func(E, ev_arr[x],

del_arr[x]))
182

183 # Convert the list of valence band wavefunction
values to a numpy array

27

184 #psiV_arr = np.array(psiV_arr , dtype=np.
complex128)

185

186 # Normalize the wavefunctions
187 norm_const = sum((abs(psiC_arr)**2 + abs(

psiV_arr)**2)*dz)
188 psiC_arr , psiV_arr = psiC_arr/np.sqrt(norm_const

), psiV_arr/np.sqrt(norm_const)
189

190 # Return the normalised conduction and valence
wave -functions array

191 return np.array ([psiC_arr , psiV_arr])
192

193

194 def Total_Bloch(v):
195 Bloch_arr = np.zeros((Nq, 2, Nz), dtype = np.

complex128) #initialize array to hold the
Bloch wavefunctions for all q NEW

196

197 for f in range(Nq):# loop over all q-values and
calculate the Bloch wavefunctions for a given
band v

198 Bloch_arr[f,:] = calculate_Bloch(f,v)
199

200 return Bloch_arr
201

202 def BlochPhase(arr):
203 Xarr = np.zeros(Nq , dtype=np.complex128)
204 arr1 = np.exp(-1j*np.outer(q, z))
205 Harr = arr*np.expand_dims(arr1 , axis =1)
206 delarr = (np.roll(arr , -1, axis =0)*np.

expand_dims(np.exp(-1j*np.outer(np.roll(q,
-1), z)), axis =1)

207 - np.roll(arr , 1, axis =0)*np.
expand_dims(np.exp(-1j*np.outer(np.
roll(q, 1), z)), axis =1))*Nq*d/(4*
np.pi)

208 delarr [0,:,:] = ((arr[1,:,:]*np.exp(-1j*q[1]*z))
209 - (arr[-1,:,:]* np.exp(-1j

*(q[-1] - (2*np.pi/d))*

28

z)))*Nq*d/2/np.pi
210 delarr [-1,:,:] = (arr[0,:,:]*np.exp(-1j*(q

[0]+(2* np.pi/d))*z[:])
211 -arr[-2,:,:]*np.exp(-1j*q

[-2]*z[:]))*Nq*d/2/np.
pi

212

213

214

215 Xarr = 1j*dz*np.sum(np.sum(np.conjugate(Harr)*
delarr , axis =1), axis =1)

216 xv = (np.sum(Xarr , axis =0))/Nq
217 sX = Xarr - xv
218 sX = np.roll(sX , int(Nq/2))
219 phase = np.cumsum(sX)*2*np.pi/(Nq*d)
220

221 return np.roll(phase , -int(Nq/2))
222

223

224 def fullbloch(n, v):
225 arr = Total_Bloch(v)
226 zmax = np.linspace(-n*d, (n+1)*d, (2*n+1)*Nz ,

endpoint=False) #NEW
227 factor = np.arange(-n, n+1)
228 factor = np.outer(q, factor)
229 factor = np.exp(factor *1j*d)
230 factor = np.repeat(factor , Nz, axis =1)
231 factor = np.expand_dims(factor , axis =1)
232

233 arr = np.tile(arr , (1, 1, 2*n+1))
234 full_bloch = arr * factor
235 return full_bloch
236 #%%
237

238 def expectationvaluez(n, v):
239 FullBloch = fullbloch(n, v)
240 Bloch =Total_Bloch(v)
241 zmax = np.linspace(-n*d, (n+1)*d, (2*n+1)*Nz ,

endpoint=False)
242 phase = BlochPhase(Bloch)

29

243 phasearr = np.tile(np.exp(1j*phase), (Nz*(2*n+1)
, 1)).transpose ()

244 FullBloch *= np.expand_dims(phasearr , axis =1)
245

246

247 wannier_func = (np.sum(FullBloch , axis =0))/Nq
248 absWannier = abs(wannier_func [0]) **2+ abs(

wannier_func [1]) **2
249

250 #norm=sum(absWannier)*dz
251 ez =sum(absWannier*zmax)*dz
252

253 return ez
254

255 for i in range(Nr):
256 print(expectationvaluez (3, i))
257

258 def wannier(v):
259 arr = Total_Bloch(v)
260 phase = BlochPhase(arr)
261 phase = np.exp(1j*phase)
262 arr *= phase[:, np.newaxis , np.newaxis]
263 wannier = (np.sum(arr , axis =0))/Nq
264

265 return wannier
266

267 def fullwannier(n, v):
268 fullarr = fullbloch(n, v)
269 arr = Total_Bloch(v)
270 phase = BlochPhase(arr)
271 phase = np.exp(1j*phase)
272 fullarr *= phase[:, np.newaxis , np.newaxis]
273 fullwannier = (np.sum(fullarr , axis =0))/Nq
274

275 return fullwannier

30

	Introduction
	Operation Principles of QCLs
	Electron Extraction Methods
	Electron Injection Methods

	Basis States
	Two Band Kane Model
	Bloch States
	Wannier States

	Implementation of Localised Wannier Functions
	Method
	Special Techniques

	Simulated QCL Structures
	Under Zero Bias
	Under Bias

	Conclusion and Outlook
	Appendix

