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Abstract 

 

Introduction. Type 2 diabetes (T2D) is the most common type of diabetes, and it can cause 

complications such as diabetic kidney disease (DKD), the main cause of end-stage renal disease 

worldwide. There is an urgent need to develop new biomarkers that would improve DKD’s risk 

prediction in patients with T2D. This research aimed at identifying novel epigenetic biomarkers 

associated with future DKD in patients with T2D. Methods. Nested cohort study of 487 newly 

diagnosed individuals with T2D within the ANDIS and ANDIU cohorts, followed-up over a 

period of 11.5 years. Genome-wide DNA methylation analysis was performed in blood samples 

taken at registration in the cohorts, and its association with future DKD was assessed through 

weighted-cox regression models. Results. DNA methylation of 37 CpG sites was found to be 

significantly associated with future DKD in the sample, with an effect size of 5% (q<0.05). The 

HR ranged from 0.0005 (95% CI 0 - 0.07) to 37.05 (95% CI 4.88 - 281.28) per 1% of 

methylation increase. 20 CpG sites (54%) were hypermethylated in patients with diabetes who 

developed DKD, in relation to those who did not develop DKD. Some of these 37 CpG sites 

are annotated to genes with important reported biological processes, such as ADAMTS16, 

involved in regulation of arterial blood pressure; RPH3AL in positive regulation of insulin 

secretion, and EHMT1 in methylation of histones. Discussion. Our study found that DNA 

methylation in blood taken at baseline is associated with future DKD in the study’s population, 

indicating that DNA methylation markers can be potential valuable biomarkers for predicting 

DKD in T2D. Conclusions. To the author’s knowledge, no study has investigated the 

association between DNA methylation and future DKD. There is a need, however, to refine the 

study design and to validate the results in different populations.  
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1. Introduction/Background 

 

Diabetes is a chronic condition characterized by elevated levels of blood glucose due to 

insufficient production of insulin in the pancreas, or the body's inability to use the produced 

insulin effectively (1). According to the International Diabetes Federation, around 537 million 

people have been diagnosed with diabetes globally, and its prevalence is projected to increase 

to 643 million by 2030 (2). The disease has caused 6.7 million deaths, only in the year of 2021, 

and it represents a significant economic burden, corresponding to 9% of health expenditure on 

adults worldwide (2).  

Diabetes can be divided into two main categories, type 1 and type 2 diabetes (T1D and 

T2D, respectively). T1D diabetes is considered an auto-immune disease, in which the body’s 

immune system attacks the insulin producing beta-cells of the pancreas. As a result, the body 

produces very little or no insulin. The causes of this destructive process are not fully understood, 

but a likely explanation is that the combination of genetic susceptibility (conferred by a large 

number of genes) and an environmental trigger such as a viral infection, initiates the 

autoimmune reaction (3). The condition can develop at any age, although T1D occurs most 

frequently in children and young adults (2).  

T2D is the most common type of diabetes, accounting for about 90% of cases (2). T2D is 

a multifactorial condition dependent on both genetic and environmental factors, in which the 

body's cells start being unable to fully respond to insulin, a condition known as insulin 

resistance. As a result, the hormone becomes less effective, eventually leading to an increased 

insulin production. However, over time, the pancreatic beta cells may fail to keep up with the 

demand for insulin, which can result in insufficient insulin production (2). This mixture of 

defective insulin secretion, insulin resistance, added to a state of chronic inflammation, affects 

the ability of the body to reduce the glucose levels in the blood. Chronic hyperglycemia 

damages the blood vessels, which can cause micro- and macrovascular complications, such as 

cardiovascular diseases (CVD), nephropathy, neuropathy, and retinopathy (4). These diabetes-

related complications increase the necessity for medical assistance, reduce quality of life, 

generate stress in families and caregivers, and lead to more hospital admissions, weighting 

heavily in the individual’s health and in the health systems as a whole. Ultimately, the risk for 

premature death in patients with diabetes is higher than the general population, putting diabetes 

between the 10 most common death causes in the world (2). The change towards a more 

unhealthy lifestyle observed in the recent years, followed by a rise in obesity and sedentarism, 
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contributed to the rapid growth of T2D (5), making it one of the most prevalent metabolic 

diseases nowadays.  

Among the most common complications of T2D, occurring in around 40% of patients, is 

diabetic kidney disease (DKD), the main cause of chronic kidney disease (CKD) worldwide 

(6). Moreover, almost 50% of cases of end-stage renal disease (ESRD) occur due to DKD, 

making diabetes the main cause of ESRD globally (7). DKD contributes to high disease burden, 

and significant individual and societal costs. In the last decade of the 20th century, deaths 

attributed to DKD increased by 94%. For patients with diabetes, the majority of the excess risk 

of all-cause and CVD mortality is related to DKD (8). 

Clinically, DKD is characterized by a persistently high urinary albumin over urinary 

creatinine ratio (UACR) and/or a sustained reduction in Estimated Glomerular Filtration Rate 

(eGFR). While a renal biopsy can confirm the diagnosis, it is typically unnecessary unless 

atypical features are present. Laboratories usually report serum creatinine along with eGFR, 

which is calculated through validated formulas, such as MDRD-4 and CKD-EPI, using age, 

sex, serum creatinine and race as parameters (9).  

The risk factors for DKD include hypertension, hyperglycemia, advanced age, male sex, 

race/ethnicity (African American, Hispanic/Latino, American Indian, and Asian 

American/Pacific Islander descents are at a higher risk compared to non-Hispanic White 

people), family history of kidney disease, bad dietary habits, and obesity. Additionally, DKD 

occurs more often in patients who have had diabetes for a prolonged period and have also 

developed other microvascular complications, such as retinopathy (6). The pathophysiology of 

DKD involves several complex mechanisms that ultimately lead to kidney damage. The initial 

step in the development of DKD is maintained hyperglycemia, which causes damage to the 

small blood vessels in the kidneys. This leads to a reduction in blood flow and an increase in 

pressure within the blood vessels. Over time, this increased pressure causes the blood vessels 

to malfunction, allowing protein to escape into the urine, causing albuminuria. As the disease 

progresses, the damage to the blood vessels becomes more severe and the kidneys become less 

able to filter waste products from the blood, leading to an accumulation of waste products in 

the blood stream. Ultimately, diabetic kidney disease can progress to ESRD, which requires 

dialysis or kidney transplantation. The exact mechanisms that lead to ESRD are not fully 

understood, but they likely involve a complex interplay between genetic, environmental, and 

lifestyle factors (6). 

Additionally, systemic hypertension and obesity contribute to glomerular hyperfiltration 

through mechanisms like high transmitted systemic blood pressure and glomerular 
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enlargement. Glomerular hyperfiltration is a well-established consequence of early diabetes, 

occurring in up to 40% of patients with T2D. The normal course of DKD evolves from 

glomerular hyperfiltration, albuminuria, reduction in estimated eGFR, followed by ESRD (6). 

However, it is noteworthy that a significant part of patients does not fall under this classic 

pattern. A study performed in the UK, following patients with T2D, found, for instance, that 

60% of patients with impaired kidney function did not have previous albuminuria, and 40% 

never presented albuminuria during the follow-up (10).  

In individuals with diabetes, prevention of DKD is fundamental to reduce morbidity and 

mortality, including rigid control of glucose, blood pressure, body weight, and attention to the 

use of nephrotoxic medications (11). For that to occur, patients with T2D must be correctly and 

timely diagnosed. But despite the burden T2D presents, approximately 30% of people who have 

the disease are not diagnosed (12). This leads to a lot of patients already having, or being in the 

path to having, comorbidities and complications such as DKD at diagnosis (13). In addition to 

early diabetes diagnosis, the identification of individuals with diabetes at a high risk of 

developing DKD is fundamental for its prevention, and it would represent a step forward 

towards precision medicine. However, there are currently no clinically useful biomarkers which 

could predict DKD ideally already at diabetes diagnosis. Identification of such biomarkers 

would allow for targeted treatments and intensive follow-up for this high-risk population, thus 

preventing DKD and reducing the burden of this complication for patients and society. 

Epigenetic biomarkers may be developed and used for precision medicine (14). 

Epigenetics are changes in the DNA and its structure, that are not changes in the sequence of 

the genome, and which can alter gene expression. These changes can be brought about by 

various external or internal factors such as environment, lifestyle, and aging, and they can be 

passed on through cell division. The most common epigenetic modification is DNA 

methylation, in which methyl groups are added to the cytosine base of DNA. This modification 

typically occurs at CpG sites (CpGs) and is catalyzed by DNA methyltransferases (DNMTs). 

CpGs are regions of DNA where a cytosine nucleotide is followed by a guanine nucleotide, 

connected by a phosphate group, in the DNA sequence. CpGs are often found clustered in 

specific regions of the genome called CpG islands, which are typically located in or near the 

promoter regions of genes. DNA methylation can regulate gene expression by altering 

chromatin structure and inhibiting the binding of transcription factors and other DNA-binding 

proteins to the DNA sequence, ultimately leading to the repression of gene expression (15). 

Figure 1 shows a schematic representation of how DNA methylation works.  
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Blood is a readily accessible and non-invasive source of DNA, making it an attractive 

option for biomarker discovery and validation, including epigenetic biomarkers. Biomarkers 

are measurable indicators or signals of biological processes, disease states, or responses to 

treatments or interventions. They can be molecules, such as proteins or nucleic acids, or 

physical characteristics, such as blood pressure or imaging features. They can be used for a 

variety of purposes, including early disease detection, diagnosis, monitoring disease 

progression, predicting treatment response, and identifying potential therapeutic targets. For 

example, blood glucose levels are a biomarker for diabetes, and eGFR levels are biomarkers 

for DKD (16). Furthermore, it is already shown that DNA methylation is associated with 

different clinical manifestations and phenotypes, supporting its potential use as a biomarker for 

diagnosis and treatment of diseases (17).  

Currently, identification of people with diabetes at a high risk for developing DKD is 

done through a subjective assessment based on traditional risk factors (8). With proper use, 

biomarkers from routine clinical data such as albuminuria and eGFR can modestly predict 

future renal status, but only when the pathophysiological processes have already started, and 

the disease is on its initial stages (16). Many novel biomarkers have been studied in relation to 

their ability to predict the progression of DKD, but most of them have no proven prognostic 

value, and/or are difficult to be measured in a practical clinical setting (18). Additionally, 

current biomarker studies insufficiently evaluate the incremental predictive value over routinely 

available clinical data (16). On a positive note, a study showed that clinical data with known 

risk factors, including age, sex, glycated hemoglobin (HbA1c), eGFR, and albuminuria, 

associated with progression of CKD in patients with T2D with a 0.706 area under the ROC 

curve, and that the addition of a panel of 14 serum protein and metabolite biomarkers increased 

it to 0.868 (19).  

However, even with the inclusion of more biomarkers to prediction models, current risk 

assessment criteria and therapies are not enough to reduce the development and progression of 

DKD (19). For instance, it is known that an adequate glucose control is fundamental for the 

prevention of DKD, along with other microvascular complications. Despite that, it is observed 

that some patients still develop DKD even with good glycemic control, and a significant number 

will not develop it despite having poor glycemic control (20), highlighting the contribution of 

additional factors in the advancement of DKD. Furthermore, traditional risk factors and 

biomarkers may be delayed in identifying the disease onset, since before eGFR reduction and 

albuminuria appear, various cellular and molecular abnormalities already exist (6). It is now 

well known that the initiation and advancement of DKD are the outcome of intricate interplay 
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between genetic and environmental factors. Environmental cues such as diet, exercising, stress, 

environmental toxins, and sleep, may alter intracellular pathways through chromatin modifiers 

and regulate gene expression patterns, resulting in diabetes and its complications (21). As a 

result, there is a pressing need to discover simple, innovative, and accurate methods to detect 

DKD in its early stages, or even before its onset, in order to slow down or halt its progression  

(22), and epigenetic biomarkers are a very promising option for that.  

As a first argument, we have several examples of how epigenetic changes are related to 

the development of T2D. For example, epigenetic differences between tissues from T2D 

patients and controls in different populations have been widely found in the literature (23). 

Moreover, there has been an increasing interest in identifying blood-based epigenetic 

biomarkers for risk assessment in patients with diabetes. For instance, DNA methylation in 

blood has already been associated with future T2D (24), dysregulation in pancreatic islets and 

insulin secretion (25) and response and tolerance to metformin therapy (26).   

On a similar note, several studies have shown the relationship between DNA methylation 

and the development and progression of renal disfunction and kidney disease in the general 

population (27, 28). Human studies and animal models showed an association between DNA 

methylation and kidney function, including assotiation of methylation and renal fibrosis (29), 

inflammatory activity of peripheral immune cells (30), and albuminuria in patients with 

diabetes (31). Moving forward, differences in DNA methylation between CKD patients and 

controls have been found in non T2D patients (32) and in patients with T2D (33). Potential 

epigenetic biomarkers for CKD progression were also found in a study that compared 

methylation levels in patients with diabetes and ESRD and patients with diabetes without 

nephropathy, with the majority of the sample being of patients with T2D (34). Interestingly, a 

study showed difference in methylation between T2D subgroups: severe insulin-deficient 

diabetes (SIDD), severe insulin-resistant diabetes (SIRD), mild obesity-related diabetes 

(MOD), and mild age-related diabetes (MARD), and that subgroup-unique methylation risk 

scores were associated to different risks of DKD, with lower risk of renal disease in the MOD 

subgroup, and increased risk in the SIRD and MARD subgroups (35), evidencing the 

heterogeneity of T2D patients, and the need to find specific biomarkers in order to improve 

treatment and prevention of complications in this population. It is important to highlight, 

however, that the studies done so far have looked at the association of DNA methylation and 

the outcomes at the same point in time, where the disease was already in progress, so no causal 

or prediction value can be drawn from them.  
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In summary, even though research is developing regarding novel biomarkers for 

diagnosis and prognosis of diabetes complications (35) and kidney disease (36), there is an 

urgent need to develop new biomarkers, that, on the top of traditional risk factors, would 

improve DKD’s risk prediction in patients with T2D (37), since it poses a public health 

challenge of global impact, with important comorbidities, reduced life expectancy, and 

increased mortality. 

With that in mind, the overall objective of this research was to identify novel high-quality 

epigenetic biomarkers that can be associated with the development of DKD in patients with 

newly diagnosed T2D, alone and/or in addition to the traditional clinical risk factors.  The study 

hypothesis is that CpGs in blood have different degrees of DNA methylation already at 

diabetes’s diagnosis, comparing T2D patients who developed DKD and those who did not 

develop DKD during 11.5 years of follow-up. The specific aims are to describe a population of 

patients with newly diagnosed T2D who developed and did not develop DKD, and to assess if 

there are differentially methylated CpGs between the two groups at the diagnosis of diabetes 

while evaluating if methylation of these sites is significantly associated with future DKD in the 

study population. 

2. Methods 

 

2.1. Study design and population 

 

This is a nested cohort study of newly diagnosed individuals with T2D within the ANDIS 

(“All New Diabetics in Scania”) and ANDIU cohorts. ANDIS is an ongoing clinical study 

started in 2008 aimed at recruiting all new cases of diabetes in Scania region in Sweden, with 

a total sample of approximately 26962 patients (last update in December 12th, 2022) 

(https://andis.ludc.med.lu.se) (38, 39), whereas ANDIU (“All New Diabetics in Uppsala 

County”) started in 2012, including all newly diagnosed patients with diabetes from the Uppsala 

region (https://www.andiu.se/) (26). There’s no update on the total population of the study, but 

the population of Uppsala County is around 300,000 individuals, with an estimated diabetes 

prevalence of 3.5% and an incidence of 3.8 per 10,000 inhabitants annually. The ANDIU study 

protocol was approved by the Regional Ethics Review Committee in Uppsala, Sweden 

(2011/155). The ANDIS cohort was approved by the Regional Ethical Review Board in Lund 

(numbers 584/2006, 2011/354, 2014/198). Both cohorts were performed according to the 

Declaration of Helsinki, and written informed consent was obtained from all participants. 

https://www.andiu.se/
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Demographic data was collected through questionnaires for all registered patients. Blood 

sample was also collected for all patients, both for clinical analysis and DNA extraction, at the 

moment of registration.  Clinical information was obtained from the patient’s medical records, 

which in ANDIS were connected to the National Diabetes Registry (NDR) and ‘Region Skånes 

Vårddatabas’, or Region Skåne's Healthcare Database, and in ANDIU to the NDR. Information 

about medication came from the drug registry, with data on drug prescriptions and withdraws. 

All patients were followed up until the most recent data from the cohorts’ databases for the 

outcome definition. 

 

2.2. Sample selection  

 

The flow chart of individuals’ selection is shown in Figure 2. The inclusion criteria for 

this study were patients diagnosed with T2D, with DNA methylation data available, and older 

than 46 years old. Patients with no available information about baseline clinical variables, such 

as eGFR, six months before or six months after DNA methylation sample date were excluded 

from the analysis. Cases with onset of DKD before or within baseline were also excluded. 

Patients who developed DKD but had reported acute kidney failure, based on the ICD code 

N17 taken from their medical records, were also excluded. Patients with no follow up of clinical 

variables were excluded as well. At last, all samples who clustered with the wrong sex in the 

quality control step of the DNA methylation analysis were excluded to reduce uncertainty (see 

item 2.3 – DNA methylation analysis). At the end we had a total of 487 patients, putting together 

patients from both ANDIS and ANDIU cohorts, with 88 patients who developed DKD and 399 

patients who did not develop DKD over a follow-up period of 11.5 years.  

 

2.3. Baseline sample characterization and phenotypes 

 

Baseline characterization of the sample was considered at the blood sample collection 

date (DNA methylation measurement), and baseline characteristics were collected within a 

period of one year, either six months before or six months after the blood sample collection 

date (Figure 3). This choice was made due to the fact that patients had their baseline 

measurements taken at different time points, because this information was taken from the 

registries rather than collected as a part of the study. 88% of the sample had all clinical and 

laboratory measurements within this interval, and most of them very close to the baseline, as 
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shown in figure 4. The 12% of the sample with no baseline values within this time period was 

excluded, as explained above. 

Information on age, sex, weight, height, and glycated hemoglobin (HbA1C) 

measurements were taken at the participants’ registration in the cohorts. Body mass index 

(BMI) was calculated from weight and height measurements using standardized protocol. 

Duration of diabetes at baseline was calculated from T2D diagnosis date to DNA methylation 

sample date.  

All eGFR measurements (baseline and follow-up eGFR), were calculated with the MDR-

4 equation using serum creatinine values (40). Baseline eGFR was calculated with serum 

creatinine values measured at registration. Creatinine, urinary creatinine, urinary albumin, 

UACR, triglycerides, total Cholesterol, HDL, and LDL values were taken from the blood test 

with date closest to the DNA methylation sample date. HOMA2-IR for the ANDIU patients 

was taken from the registry, and for the ANDIS patients, was calculated using the HOMA 

model  (41) through the HOMA2 Oxford Calculator (42). 

Data on medication was taken from the national drugs registry. If the patients bought the 

medications at least once within baseline (six months before or six months after DNA 

methylation sample date), we considered that they were using the medication - 

antihypertensives, statins or metformin - at baseline.  

CVD was defined as either having had coronary events (defined by ICD-10 codes I20-, 

I21, I24, and I25) or stroke (defined by ICD-10 codes I60, I61, I63, and I64) before or during 

baseline (up to six months after DNA methylation date).  

 

2.4. Outcome definition and follow-up measurements 

 

During follow up, patients were divided accordingly, as either having developed the 

outcome of the study, which is DKD, and not having developed DKD. DKD was defined by at 

least two measurements of eGFR below 60ml/min/1.73m2 with 90 days or more of interval 

between them, corresponding to patients belonging to the G3a, G3b, G4 and G5 groups in the 

KDIGO classification (43).  

First eGFR below 60 corresponds to the first altered eGFR measurement during follow-

up. Second eGFR below 60 corresponds to the eGFR at the moment the criteria for the disease 

(second measurement of eGFR lower than 60 with more than three months of interval from the 

first altered measurement) is fulfilled. Time to event was calculated only for patients who 

developed DKD, from DNA methylation sample date to the date of the second altered eGFR 
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measure, according to the disease definition previously stated. Total follow up time was 

calculated only for patients who did not develop DKD, from DNA methylation sample date to 

the date of the last blood test in the registry. 

 

2.5. DNA methylation analysis 

 

The Gentra Puregene Blood kit (Qiagen) was used to extract DNA from whole blood, 

following the manufacturer's instructions. Subsequently, the nucleic acid concentration and 

purity were evaluated with a NanoDrop 1000 spectrophotometer (NanoDrop Technologies). 

Bisulfite treatment of either 1000ng or 500ng of genomic DNA was carried out using the EZ 

DNA methylation kit from Zymo Research.  

Genome-wide DNA methylation analysis was then performed for all samples. The 

resulting DNA methylation data was analyzed with the Infinium MethylationEPIC BeadChip 

array which covers 853,307 CpG sites, from which 333,265 are situated in regulatory regions, 

2,880 are non-CpG sites, and 59 are SNP sites. It encompasses 99% of all RefSeq genes and 

96% of CpG islands. Moreover, out of the 439,562 CpGs featured on the 450K Infinium array 

(Illumina), 91% (400,496 CpGs) are also present on the 850K array (44).  

Bisulfite-converted human blood DNA samples were randomized across the chips. The 

DNA was subsequently amplified, fragmented, and hybridized to the BeadChips using the 

Infinium HD assay methylation protocol. After single base extension and staining, the 

BeadChips were imaged with the Illumina iScan. The raw fluorescence intensities from the 

scanned images were extracted using the GenomeStudio methylation module software, which 

provided the raw methylation score for each DNA methylation site. This score is represented 

as a β-value, computed using the following equation: β-value = intensity of the Methylated 

allele (M) / (intensity of the Unmethylated allele (U) + intensity of the Methylated allele (M) 

+100). The β-values range from 0 (completely unmethylated) to 1 (completely methylated). All 

the samples cleared the quality control checks in GenomeStudio, which involved the built-in 

control probes for staining, hybridization, extension, and specificity, and exhibited high-quality 

bisulfite conversion efficiency (intensity signal >4,000). 

DNA methylation data was exported from GenomeStudio to be analyzed by the 

Bioconductor package (45). The first dataset contained 865918 probes, from which 537 probes 

annotated to the Y chromosome, 59 rs-probes, 2932 ch-probes, 42328 cross-reactive probes, 

894 polymorphic probes, 2280 probes based on average detection p-values equal or higher than 

0.01 based on McCartney et al. annotation (46) were filtered out. Dataset contained 816888 
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probes after filtering. β-values were then converted into M-values to eliminate 

heteroscedasticity in the data distribution (47). Quantile normalization to correct for intra-array 

variation and background correction were performed (48). Beta-Mixture Quantile 

normalization method (BMIQ) was used to correct for probe type bias and ComBat was 

performed to correct for batch effect (49, 50). Principal component analysis (PCA) was done 

before and after ComBat, to make sure that between-array batch effects were removed. PCA 

analysis plot and tree diagram of the hierarquical cluster analysis after combat both show the 

487 selected samples clustered by gender, with no sample clustered in the wrong group (Figure 

5). 

Since whole blood contains various cell types, a reference-based method was employed 

to correct for any potential effects of cellular heterogeneity (51). Finally, for easier biological 

interpretation, the M-values were converted back into β-values, which were used to describe 

the data and generate figures. 

 

2.6. Statistical Analysis 

 

The data analyses were done using the R Project for Statistical Computing Software 

version 4.2.1 (2022-06-23, Funny-Looking Kid). At first, descriptive statistics was generated 

to characterize the sample. Normality was tested using the Shapiro-Wilk test. Differences 

between groups were analyzed through the appropriate test, according to the variables' 

distribution.  

An a priori power analysis and sample size calculation was done using the Power and 

Sample size free online calculator (http://powerandsamplesize.com/Calculators/Test-Time-To-

Event-Data/Cox-PH-2-Sided-Equality) through the Cox PH, 2-Sided Equality test to calculate 

the sample size needed to test time-to-event data (52), as done and explained by others (53). 

24% was used as the probability of the disease in the general population, as it was shown in a 

Nature Review paper (54) as the prevalence of CKD in patients with T2D in the European 

population. The proportion of one patient with DKD for each four patients without DKD was 

then estimated (0.25 or 1:4) for the present study.  The goal was an alpha of 0.05, or 5%, and a 

power of 0.8, or 80%. The formula used the standard normal distribution for the population 

variance. For the treatment effect size, we considered a study which proposed two differentially 

expressed genes as biomarkers for the development of DKD (55). The first gene proposed 

(RUNX3) showed a hazard ratio (HR) of 2.5, which was used as a reference for this study. 

Applying all parameters in the calculator, the sample size needed in the present study would be 

http://powerandsamplesize.com/Calculators/Test-Time-To-Event-Data/Cox-PH-2-Sided-Equality
http://powerandsamplesize.com/Calculators/Test-Time-To-Event-Data/Cox-PH-2-Sided-Equality
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at least 208 patients. Since the current sample was 487 patients, we believe that we had enough 

statistical power for our analyses. 

After that, general logistic regression models were done to assess the association between 

each clinical variable (covariate) and the development of DKD (models followed the formula 

DKD ~ phenotype). Then, the Receiver Operator Characteristic Curve (ROC curve) was plotted 

and the area under the curve (AUC) calculated for each association. 

Next step was to assess whether DNA methylation at baseline, the main exposure of the 

study, was associated with the development of DKD. Eight different weighted-cox regression 

models were performed. In a weighted Cox regression, the effect size of a predictor variable on 

the hazard rate (HR) is calculated by considering the distribution of that variable within the 

study population, which is the weighted mean. The weighted mean provides a more accurate 

measure of the predictor variable's effect on the HR, as it calculates an average effect size of 

the predictor variable weighting the effect size based on the proportion of individuals in the 

population who have that particular value of the predictor variable (56). Model 1a was adjusted 

for age, sex, BMI, and baseline eGFR, and model 1b was model 1a adjusted also for cell 

composition using the reference-based method (51). None of the blood cell types were 

associated with the outcome in this analysis, and therefore the following models were not 

adjusted for cell composition. Model 2 included model 1a and diabetes duration at baseline. 

Model 3 build up from model 2, including also HbA1c as a covariate. Model 4 included model 

3 plus UACR. Model 5 was adjusted for use of statins and antihypertensives in addition to the 

covariates of model 3. Model 6 was based on model 3, with the addition of total cholesterol, 

LDL, HDLD, use of antihypertensive medication, and smoking. Finally, model 7 was built from 

model 6, adding also previous CVD event as a covariate. Since smoking information was 

lacking for both cohorts, we used DNA methylation of the CpG site cg05575921 to adjust for 

smoking, since it has been shown that its methylation in whole blood DNA strongly correlates 

with smoking status (AUC of 0.98) (57). 

The models were adjusted for multiple testing by utilizing false discovery rate (FDR) 

analysis (Benjamini-Hochberg), where significance was considered at FDR <5% (q < 0.05). 

Model 1a was used as the reference model. The CpGs were further filtered based on an effect 

size higher than 0.02, or 2%. In the present study, effect size was based on the difference in 

methylation between patients who developed DKD and patients who did not develop DKD. We 

checked the overlap of significant CpGs in Model 1a with the other models using p < 0.05. At 

last, we increased the effect size to 5%, and checked again for overlap with other models. The 

resulting CpGs were then used for further analyses.  
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The ROC curves and AUCs were calculated for each of the final identified CpGs (CpGs 

with a 5% difference in methylation between groups and q<0.05). Additionally, the association 

between DNA methylation levels for each identified CpG site and all the covariates in Model 

1a (Sex, Age, BMI and baseline eGFR) was assessed through generalized multiple linear 

regression models, and the association between DNA methylation levels for each CpG with 

each clinical variable in isolation through Spearman correlation tests for the continuous 

variables (age, BMI and baseline eGFR) and through point-biserial correlation tests for the 

binary variable (sex). 

The “GeneCards – the human gene” database (www.genecards.org) (58) was used to 

search for the genes to which the CpGs of interest were annotated to, in order to better 

understand their biological function. Finally, all beta values, representing the methylation level 

for each patient in each CpG site, were plotted as box plots comparing patients who developed 

and who did not develop DKD.  

Data are presented as mean ± SD or counts and percentages, unless stated otherwise. 

Normalized methylation β-values were used for the Weighted-cox regression models.  

3. Results 

 

The total sample constituted of 487 individuals from the ANDIS and ANDIU cohorts. 

The mean follow-up time was 2380 days for patients who did not develop DKD and time to 

event was 1566.5 days for the patients who developed DKD (Table 1).  

For patients who did not develop DKD, 59.4% were male, mean age was 60.38 years, and 

mean BMI 31.41 kg/m2. Average diabetes duration at baseline was 53.35 days. Mean baseline 

eGFR was 96.79 mL/min/1.73m2. 55.6% of them were using antihypertensive medication, 

43.1% statins, and 84.5% metformin at baseline. 8% had reported cardiovascular event before 

follow-up started (Table 1).  

For patients who developed DKD, 57.9% were male, mean age was 67.69 years, and 

mean BMI 30.49 kg/m2. Average diabetes duration at baseline was 62.98 days. Mean baseline 

eGFR was 80.33 mL/min/1.73m2, and mean first eGFR below 60 and second eGFR below 60 

were 53.5 mL/min/1.73m2 and 51.25 mL/min/1.73m2, respectively. 73.9% of them were using 

antihypertensive medication, 47.7% statins, and 81.8% metformin at baseline. 15.9% had 

reported cardiovascular event before follow-up started (Table 1).  

Patients who developed DKD were significantly older than patients who did not 

developed DKD (p = 7.063e-11), had a higher duration of diabetes at baseline (p = 0.01498), 

http://www.genecards.org/
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higher baseline eGFR (p =2.59e-13), higher creatinine (p = 1.075e-07), made more use of 

antihypertensive medication (p = 0.001679), and had a higher presence of CVD event (p = 

0.02218) at baseline. All the information about clinical and demographical sample 

characterization for both groups is summarized in Table 1. The ROC curves, with the respective 

calculated AUC values for each general logistic regression model for the association between 

each variable and DKD, are shown in figure 6. The only variables with good AUCs were age 

(AUC of 0.72) and baseline eGFR (AUC of 0.74).  

To assess if methylation of CpG sites was associated with future DKD showing a different 

methylation pattern between patients who developed DKD and patients who did not develop 

DKD at diagnosis of T2D, we analyzed DNA methylation from blood of a subset of patients 

from the ANDIS and ANDIU cohorts (n=487). We then performed eight different weighted-

cox regression models. For models 1a, 1b, 2, 3 and 5, all the 487 participants had information 

on the covariates and were included in the analysis. For model 4, 461 participants were included 

due to missing UACR data, in model 6, 476 patients were kept due to missing Total cholesterol, 

HDL and LDL data, and for model 7, 465 had HOMA2-IR information for the analysis. With 

p < 0.05, there were 129,811, 117,598, 131,194, 133,821, 127,661, 136,946, 121,801, and 

129,766 CpGs differentially methylated in Models 1a, 1b, 2, 3, 4, 5, 6 and 7, respectively. For 

q < 0.05, 56,411, 5,086, 56,968, 59,373, 56,144, 57,559, 2,862, and 3,833 differentially 

methylated CpGs were found in Models 1a, 1b, 2, 3, 4, 5, 6 and 7, respectively. All the eight 

models and the respective methylated CpG sites associated with DKD found in the analyses are 

summarized in Table 2. 

Model 1a was defined as the reference model, with 129,811 CpGs associated with DKD 

with p < 0.05. Feature selection was done at first considering a level of significance of q < 0.05, 

after which there were 56411 significant CpGs. After further filtering for an effect size of 2%, 

there were 3,147 significant sites. From these 3,147 sites, the overlap with the other models 

based on p < 0.05 was checked. For model 1b, there was an overlap of 2,975 sites. In models 

2, 3, 4 and 5, all sites overlapped. For model 6, 3,142 sites overlapped, and for model 7, 3,143. 

When increasing the desired effect size to 5% of difference in methylation between groups to 

increase the possible biological function of methylation sites, there were 37 significant sites in 

Model 1a. All 37 sites were present in the other models with p < 0.05. These 37 CpGs were 

then considered our CpGs of interest and were further examined. 

In figure 7, all the 129,811 CpGs significant with p < 0.05 in Model 1a are shown in the 

Volcano and Manhattan plots. The CpGs significant with q < 0.05 appear above the red line, 
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and the 37 CpGs of interest are marked in red. Most of these 37 CpGs were located in the body 

region of the respective annotated gene, and in the shore region of the CpG island (Table 3). 

The lowest HR for DNA methylation was 0.0005 (95% CI 0.00002 - 0.01) per 1% in 

increase of methylation for the CpGs cg08641951, annotated to ADAMTS16. The highest HR 

was 37.05 (95% CI 4.88 - 281.28) per 1% in increase of methylation for the cg12183150 site, 

annotated to AC097713.4 and AC097713.3 (Table 3). 

The most hypermethylated CpG site for patients who did not develop DKD was the 

cg25621215 site (88% methylated), annotated to RP11-445H22.3, and the most 

hypomethylated was the cg08641951 site (24% methylated), annotated to ADAMTS16. For 

patients who developed DKD, the most hypermethylated CpG site was cg01079515 (86% 

methylated), annotated to AC124944.5, and the most hypomethylated was the cg08641951 site 

(19% methylated), same as the non DKD group. 20 of these 37 CpGs (54%) were 

hypermethylated in patients who developed DKD, in relation to the patients who did not 

develop DKD. The biggest difference in methylation was 12.9% of higher methylation in 

patients who developed DKD in the cg11420142 site (annotated to RP11-122C21.1) compared 

to non DKD individuals. The smallest difference was 5.04% of lower methylation in patients 

who developed DKD in the cg11065575 site (annotated to SHISA3) versus those who did not 

develop DKD. The description of these 37 sites is shown in table 3.  

In relation to the association of the DNA methylation of these sites with DKD, all sites 

were significant with q<0.05 for the cox regression Model 1a, adjusted for age, sex, BMI, and 

baseline eGFR, as feature selection indicated. A significant association of age and baseline 

eGFR with the outcome (DKD) was observed in the same model for all the 37 CpGs. No 

significant associations of sex and BMI with DKD were seen. All the results of the weighted 

cox regression model 1a for these 37 CpGs are shown in table 4.  

ROC curves were plotted individually for all the selected 37 CpGs in Model 1a, and the 

AUCs were calculated, as show in figure 8. No CpG in isolation could differentiate between 

patients who developed and patients who did not develop DKD in this sample, since all AUCs 

were below 0.60. To further characterize the 37 CpGs of interest, the associations between DNA 

methylation of these sites and clinical phenotypes were tested through general multiple linear 

regression models for each CpG site, with DNA methylation, represented by the beta values, as 

the dependent variable, and age, sex, BMI and baseline eGFR as independent covariates, and 

through Spearman correlation tests and point-biserial correlation tests, testing the direct 

association of DNA methylation of each CpG site with each variable/phenotype in isolation. 

For the linear regression models, age was significantly correlated with 6 CpGs (cg23480021, p 
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= 0.00129; cg18826637, p <2e-16; cg10187601, p = 0.0141; cg07784975, p = 9.23e-05; 

cg13989295, p = 0.04378; and cg16788857, p = 0.0153). Sex was significantly correlated with 

4 CpGs, (cg11065575, p <2e-16; cg25291037, p = 0.0437; cg18826637, p = 0.0123, and 

cg07784975, p = 1.36e-06). BMI correlated significantly with 6 CpGs (cg00169354, p = 

0.0388; cg26365090, p = 0.0037; cg11420142, p = 0.000598; cg19618634, p = 00693; 

cg11128983, p = 0.028124; and cg07917191, p = 0.0315). At last, Baseline eGFR correlated 

significantly only with 3 CpGs (cg25291037, p = 0.044; cg10187601, p = 0.0287; and 

cg11128983, p = 0.006296). In the point-biserial correlation test for the correlation between 

DNA methylation for each of the 37 CpGs and sex, only three sites were significant 

(cg11065575, p = 2.692e-16; cg25291037, p = 0.02943; and cg07784975, p = 3.287e-07). Only 

one site had a moderate strength of correlation (cg11065575, coefficient = -0.36). In the 

Spearman correlation tests, age was significantly correlated with 9 CpGs, but only showed one 

moderate strength of correlation (cg18826637, p < 2.2e-16, coefficient = -0.42). BMI correlated 

significantly with 5 CpGs, but all the correlations were weak, with the strongest being 

cg11420142 (p = 0.000151, coefficient = -0.17). Baseline eGFR was the phenotype that was 

correlated with the most CpGs, 12 in total. The strength of the correlations was also weak, with 

the strongest being a negative correlation with cg00169354 (p = 0.002194, coefficient = -0.14) 

and a positive correlation with cg04885581 (p = 0.00214, coefficient = 0.14). Table 5 shows 

the summary of these results. 

Furthermore, since these 37 CpGs were annotated to 27 unique genes, a preliminary 

search was performed in the GeneCards database (58) for more information on their biological 

role in the context of T2D and DKD. When looking at the phenotypes associated with these 

genes in previous GWAS studies, RPH3AL was associated with insulin sensitivity 

measurement; ZNF385D with, among other traits, T2D, BMI, and CKD; SHISA3 with T2D, 

creatinine measurement, and eGFR; DZIP1 with eGFR; SLC43A2 with eGFR and UACR; 

TOX2 with eGFR and arterial blood pressure; SKA2 with eGFR, and T2D; PAPL with T2D; 

EHMT1 and SLC9A4 with eGFR and creatinine measurements; and a number of others with 

blood pressure, such as TEC, KCNH6 and FAM13B. Regarding Gene Ontology (GO) for 

biological processes, the ADAMTS16 gene was found to be involved in regulation of systemic 

arterial blood pressure; RPH3AL in positive regulation of insulin secretion, and EHMT1 in 

methylation of histones. The summary of the results of the GeneCards search relevant to the 

present study is shown on table 6. 

Finally, to better visualize the 37 CpGs and understand the previous results, box plots 

were created comparing the methylation level, expressed in beta values, for patients divided 
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into those who developed and who did not develop DKD, as shown in figure 9. The box plots 

show that, for most of the CpGs, the distribution of beta values is quite similar when comparing 

patients who developed DKD and patients who did not develop DKD, even if their means are 

different, which indicates that the methylation levels of these CpGs are not very good to 

discriminate between these groups. Additionally, it is noteworthy that for many of the CpGs, a 

pattern of either low (close to 0%), intermediate (around 50%) or high (higher than 75%) 

methylation levels is evident, with clusters of patients clearly shown with gaps in between them. 

This pattern of distribution of beta values in boxplots indicates the presence of Single 

Nucleotide Polymorphisms (SNPs) (59). SNPs are the most common type of genetic variation 

found in the human genome. They are single nucleotide variations that occur at specific 

locations in the DNA sequence, where one nucleotide is replaced with another (60).  

Only five out of the 37 CpGs do not have SNPs associated with them according to the 

Illumina manifest (cg08641951, cg23480021, cg12183150, cg07784975, and cg25621215) 

(Table 7). From the remaining 32 CpGs, 24 have SNPs at a distance of 10 base pairs or less 

from the probe sequence. Among those 24 CpGs, there are 15 SNPs with minor allele frequency 

higher than 0.05, which is considered frequent (61) (rs45554435, rs4773321, rs10270156, 

rs2021033, rs11700304, rs843071, rs7208505, rs73299210, rs57896542, rs12365323, 

rs5821824, rs57733150, rs59145932, rs35528310, rs59694233) (Table 7). All of these 15 CpGs 

show a SNP pattern in the box plots (figure 9). 

From the 8 CpGs with SNPs at a bigger distance than 10 base pairs from the probe 

sequence, cg11065575, cg00169354, and cg23246911 show a good pattern on the box plots. 

cg11065575 is annotated to the SHISA3 gene, which previous GWAS studies reported having 

SNPs associated to T2D, creatinine measurement, and glomerular filtration rate phenotypes. 

cg23246911 is annotated to the RPH3AL gene, which associates in previous GWAS studies to 

insulin sensitivity measurement and appear in the GO biological processes search as being 

involved in positive regulation of insulin secretion, glucose homeostasis, intracellular protein 

transport, and exocytosis, all important mechanisms involved in the development of DKD 

(Table 6). Only one SNP, rs35528310, reported in the Illumina manifest at one base pair 

distance from the cg14924512 probe with an allele frequency of approximately 6%, appears in 

the phenotypes described by previous GWAS, as showed in the GeneCard search, associated 

with BMI (Table 6). At last, four out of five previously mentioned CpGs which do not have 

SNPs associated with them have a good pattern on their boxplots (cg08641951, cg23480021, 

cg12183150, and cg07784975). The cg08641951 site is annotated to the ADAMTS16, and the 

cg23480021 site to the ZNF385D gene, both relevant genes for DKD pathogenesis, as 
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previously described. The information regarding the CpGs of interest and their associated SNPs 

is shown in table 7. 

4. Discussion 

 

The present study followed 487 recently diagnosed individuals with T2D for 11.5 years, 

which is a longer follow-up time when comparing with prospective cohorts studying patients 

with T2D for clinical outcomes (62, 63, 64). The majority of the individuals were male (59%), 

and patients who developed DKD were on average older than patients who did not develop 

DKD. They also had higher duration of diabetes, higher eGFR and creatinine values, a higher 

use of antihypertensive medication, and a higher presence of CVD event at baseline. The 

findings are in accordance with what is said in the literature about the characteristics of patients 

with DKD (54, 65), which are also related to the risk factors for the disease, as previously 

explained. 

Since DKD is a multifactorial disease and has many risk factors and associated conditions 

which predispose its development, eight different weighted-cox regression models were 

generated, adjusting for different covariates, described above in the methods section. In the end, 

Model 1 a, adjusted for age, sex, BMI and baseline eGFR was considered the model of 

reference, because it contained fewer covariates, and originated similar results compared to the 

other models. This was done to simplify the analysis and not compromise statistical power. The 

rest of the models were also considered for the final selection of the methylation markers, thus 

identifying those methylation sites associated with future DKD independently of known clinical 

risk factors. 

DNA methylation of a large number of CpGs significantly associated with DKD was 

found in this study (129,811 CpGs in our reference model). It is known that the quantity of CpG 

sites that are associated with a specific clinical outcome can vary considerably, usually ranging 

from a few to thousands. This variation is influenced by several factors such as the analysis 

method, level of statistical significance used, and complexity of the disease phenotype (66), but 

the high number of CpGs found shows that most probably DNA methylation plays an important 

role in the development of DKD, worth of further investigation. We then had to narrow down 

the CpGs sites of interest to understand better the biological relevance of the findings, and to 

get to clinically relevant results. Our feature selection to get to the final CpGs in the present 

study included selecting the sites who were significant in the model of reference with q < 0.05, 

but still significant in all the other models with p < 0.05. Besides that, we considered a 
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difference in DNA methylation levels of a at least 5% between the groups. That led us to the 

final 37 CpGs that were studied in depth in the subsequent analyses.  

There has been increasing interest in investigating the role DNA methylation plays in the 

development of T2D complications, including its association with DKD and its features, 

although literature is still scarce in the matter. For instance, a cross-sectional study measured 

UACR of 96 patients with T2D and divided them into two groups: with DKD (n = 69) and 

without DKD (n = 27), based on their albumin excretion. They showed that hypomethylation 

of two target genes, TIMP-2 and AKR1B1, was associated with albuminuria in early DKD (31). 

Another cross-sectional study performed in an East Asian population of 232 T2D patients found 

3 differentially methylated CpGs in COMMD1, TMOD1, and FHOD1, when comparing 87 

DKD patients and 80 non-DKD controls (33). Also, to corroborate the relevance of studying 

DNA methylation and its association with DKD, a meta-analysis identified 32 differentially 

methylated CpGs associated with DKD, but in individuals with T1D (67). However, no study 

has looked at the association of DNA methylation and the future development of DKD in T2D, 

making the prospective nature of our study one of its biggest strengths. Prospective studies 

overall provide stronger evidence for causality and are less prone to bias than cross-sectional 

studies (68). Additionally, it is important to look for biomarkers who could predict the disease 

before its onset, since current research is focused on disease diagnosis, monitoring, and 

prognosis, and only mentioning prediction when it comes to therapeutic response, as this 

literature review from 2023 summarized (69).  

We are aware that the analysis of the AUCs for the association of DNA methylation levels 

of each of the 37 CpGs of interest and DKD showed that DNA methylation had no ability of 

discriminating between the study groups. However, it is important to highlight that it does not 

diminish their potential role as biomarkers for DKD prediction, since even if a single 

methylated CpG site was strongly associated with DKD, there is the possibility that it would be 

a small part of a larger network of epigenetic changes and other molecular mechanisms that 

contribute to the disease (70). These findings could also be due to the heterogeneous 

characteristics of DKD, so it is unlikely that one methylated CpG site alone would be able to 

capture this complexity. On a similar note, a study proposing new biomarkers to improve 

prediction of DKD progression  considered a panel of 14 biomarkers on top of traditional risk 

factors and saw an increase in the AUC from 0.706 (clinical data alone) to 0.868, not showing 

the AUC for the new proposed biomarkers in isolation (19). To exemplify the possible role of 

DNA methylation to predict disease related outcomes in patients with T2D, there is a study 

which showed an association of higher methylation levels of 11 CpGs with a higher risk of not 
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responding to metformin therapy in T2D patients. Methylation risk scores for these 11 CpGs 

differed between the groups with AUCs ranging from 0.80 to 0.98 in replication cohorts (26). 

In this context, the ideal next step for the current project would be to build risk scores 

considering the CpGs found in this study together, them alone and on top of traditional 

biomarkers and clinical variables, which would give a better representation of the practical use 

of DNA methylation in the prediction of DKD.  

Another positive finding was that the GeneCard search for the genes to which they are 

annotated to was very promising, since many of them had been previously related to T2D or 

DKD phenotypes (71, 72, 73, 74, 75, 76, 77). Among the genes found, ADAMTS16, for 

instance, was already shown to be involved in the pathogenesis of CVDs and hypertension (71). 

Despite its role in T2D and DKD not being yet understood, we can see an overlap of 

pathophysiological processes between the development of CVDs and DKD. The RPH3AL gene 

was associated with T2D (72) and methylation of CpGs annotated to this gene in obese people 

was associated with T2D (73). ZNF385D has evidence of association with eGFR and kidney 

failure in the literature (77). TGF-β1 has been linked to the pathogenesis of many forms of 

CKD, including DKD, through renal fibrosis (74, 75). CCR6 receptors play an important role 

in the pro inflammatory state associated with kidney disfunction (76). These results indicate the 

importance of continuing researching the association of DNA methylation and DKD in T2D, 

since many of these genes seem to have a key biological function in these diseases. 

Even though most of the 37 CpGs of interest were shown to be associated to SNPs, we 

saw that 14 of them have a good pattern in the boxplots (Figure 9). The cg08641951 and 

cg23480021 sites, annotated to the ADAMTS16 and to the ZNF385D genes, respectively, two 

genes previously related to DKD development (71, 76), could be interesting candidates to be 

used in methylation risk scores and as biomarkers for the disease prediction. In the possibility 

that the SNPs associated with some CpGs were affecting the difference in DNA methylation 

found between groups, a different feature selection may be done to identify more relevant sites 

which are not driven by genetic alterations and that can reflect the actual relationship between 

DNA methylation and DKD. The final 37 CpGs explored in this work were selected based 

mainly on a higher effect size, or difference in methylation between the groups. Maybe future 

feature selection could focus on a lower, but still relevant, effect size. A possibility is to consider 

2% of difference in methylation between groups, and to focus on higher HRs or q values.  

Another point raised in the beginning of data analysis was the fact that both groups were 

significantly different regarding age. As previously explained, age was included as a covariate 

in the adjustment for confounders in all the regression models, so the main associations between 
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methylation and DKD were found independently of age. It is known that including age as a 

covariate in the regression models is a common strategy to account for its effect, and that 

adjusting for age as a confounder in DNA methylation studies is fundamental due to the fact 

that age is strongly associated with DNA methylation patterns and related to many other factors 

that may influence DNA methylation (78). 

However, age was still significantly associated with the outcome for most of the CpGs, 

including the 37 CpGs of interest, in all models. On the one hand, matching by age on top of 

covariate adjustment can be a useful strategy when the effect of age on the outcome variable is 

not linear and can be difficult to model accurately. By matching participants based on their age, 

the distribution across groups can be balanced, which can help to reduce confounding, and 

provide additional control for the age’s effect. In addition, matching can increase the efficiency 

and precision of a study by reducing the sample variation, and by consequence, the sample size 

required to detect a significant difference between the groups (79). On the other hand, matching 

can also introduce selection bias in our case, because age is associated both with our exposure 

(DNA methylation) and the outcome (DKD), which can result in underestimation of the true 

effect of age. Matching by age can also increase the complexity of the study design and analysis, 

reducing the power of the study if more tests need to be performed. Additionally, it can reduce 

the generalizability and the external validity of the study, as it may not accurately reflect the 

real-world distribution of the matching variable and other confounding variables (68). It was 

decided, for the present study, to not match the sample, but it is something that could be done 

in the future in order to ensure that the results found are truly due to the effect of DNA 

methylation on the development of DKD, and that age is not driving the associations.  

Baseline eGFR was also strongly correlated with future DKD, which was expected, since 

follow-up eGFR was used to define the disease. eGFR, together with albuminuria, is often used 

to diagnose and monitor the progression of DKD. Nevertheless, there is still no single biomarker 

that can definitively predict the appearance and progression of DKD. Clinicians typically use a 

combination of biomarkers, including albuminuria, eGFR, and other markers of kidney injury 

and function, to diagnose and monitor DKD in patients with diabetes (69), but still with only 

moderately good AUCs of around 0.7 (16). 

That being said, eGFR is a measure of kidney function and its decline is a common feature 

of DKD, which already indicates the presence, or at least the beginning, of disease. The strong 

correlation found between baseline eGFR and future DKD in our study could be due to the fact 

that patients who developed DKD were already in the initial stages of the disease, although still 

clinically not diagnosed. The mean baseline eGFR for the diseased group was 80.33 
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mL/min/1.73m2, which corresponds to the G2 group of the KDIGO classification (3), 

significantly lower compared to 96.79 mL/min/1.73m2 for the group who will not develop 

CKD, which corresponds to the G1 KDIGO group. Furthermore, the AUCs for the associations 

of each phenotype in the study and the outcome showed that both age and baseline eGFR were 

the only ones capable of discriminating between patients who developed and who did not 

develop DKD, but only moderately well. There’s still a need for biomarkers which can, alone 

or in groups, detect the disease even earlier, and more accurately predict diagnosis and monitor 

prognosis of DKD. A possible next step would be to set the threshold for the disease at a higher 

eGFR value than the one chosen in the study, which was 60 mL/min/1.73m2. This would make 

possible to detect the disease even earlier, and maybe a stronger association of DKD with DNA 

methylation than with eGFR would be shown. 

When we tested the associations between DNA methylation of these 37 CpGs and the 

clinical phenotypes used for adjustment in the reference model (age, sex, BMI, and baseline 

eGFR), we saw that no variable was associated with all or the majority of the CpGs, and even 

when correlation was present, it was nor strong, with coefficients smaller then 0.5 in both 

directions. This indicates that age and eGFR may be more associated with the outcome (DKD) 

than with the main exposure (DNA methylation), and it helps us to corroborate our adjustments, 

as well as to inform about the importance of considering DNA methylation as a biomarker in 

addition to traditional risk factors, as has been argued from the beginning of this study.  

Advancing on the discussion of this study’s strengths and limitations, it is known that the 

sample size, effect size, level of significance (or alpha level), the variability of the outcome, 

follow-up time, loss to follow-up, confounding factors and type of statistical test can influence 

statistical power in a cohort study (80). Consequently, failure to adjust for confounding factors 

can lead to erroneous conclusions about the true relationship between the exposure and the 

outcome, reducing the validity and reliability of the results, and the overall statistical power 

(81). Yet, adjusting for too many covariates in a Cox regression model can lead to overfitting, 

which can result in biased estimates and loss of predictive power of the model. Overadjustment 

can also lead to loss of statistical power, as the model may be too complex, may result in a 

smaller sample size, and may lead to collinearity, introducing new confounders to the analysis 

(82). That is why the covariates to adjust the reference model in this study were carefully 

selected, and we came down to most relevant ones in the context. This, in addition to 

considerable size of our sample, as indicated in the a priori power calculation performed before 

the study began, indicates that the present study has significant statistical power to corroborate 

the results.   
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Moreover, it was already shown that patients with T2D are very heterogeneous and could 

be divided in four subgroups, and that the risk for different complications vary among those 

subgroups (35). In a similar rationale, it was shown that the eGFR trajectories vary between 

individuals with CKD (83), and between individuals with early DKD, whom present non-linear 

trajectories of eGFR decline during 5 years of follow-up (84), which means that the speed and 

slope of eGFR decline varies greatly among different patients. That said, the accuracy of current 

diagnostic and prognostic biomarkers may be limited to specific follow-up periods and 

particular populations. It would be important then, in the future, to aim at dividing the study 

population and analyzing the predictive value of DNA methylation based on T2D subgroups 

characteristics. Maybe DNA methylation is better at predicting a specific profile of patients, 

and the incorporation of DNA methylation analysis as a precision medicine tool in the 

management of DKD can help to identify high-risk patients and guide personalized treatment 

interventions, improving patient outcomes and reducing the disease burden. 

Before concluding, some other things need to be taken into consideration when 

interpreting the results of the present work. The first is related to inflation, which in DNA 

methylation analysis refers to the overestimation of the significance of methylation differences 

between groups, and can occur due to technical or biological factors that can confound the 

analysis, leading to false-positive findings (85). There was an active effort to limit inflation in 

this study, correcting for batch effects, and for cell-type heterogeneity (86). Even though, the 

intrinsic heterogeneity of DNA methylation, which can vary widely between individuals or 

tissues, can make it challenging to detect subtle methylation differences between groups, 

leading to the overestimation of significance. The large sample size of the present study also 

helps to account for that, and multiple replication cohorts to validate findings across different 

populations would represent a further step to mitigate these and other issues and improve the 

accuracy and reliability of the results presented. Secondly is the fact that the present sample 

included only northern European patients, highlighting the need of external validation of the 

findings, also in populations with different ethnicities and demographic characteristics.  

In summary, despite the fact that recent studies have shown that DNA methylation 

profiles associate with DKD, and can accurately predict the progression of the disease and 

identify patients who are at high risk of ESRD (22), to the knowledge of the author, no study 

so far has investigated the association between DNA methylation and future development of 

DKD in newly-diagnosed individuals with T2D. Our study found that DNA methylation at 

baseline is associated with future DKD in a population of newly diagnosed patients with T2D. 

There is a need, however, to refine the study design, investigating other CpGs of interest, 
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building methylation risk scores, performing prediction analysis, maybe classifying the 

population into subgroups, and validating the results in different populations. Nevertheless, the 

present results indicate that DNA methylation analysis may be a valuable precision medicine 

tool and biomarker in predicting DKD and guiding personalized treatment interventions for 

T2D patients.  

5. Conclusion 

 

This is the first study, to the author’s knowledge, to assess and find associations between 

DNA methylation at baseline and the future development of DKD in newly diagnosed patients 

with T2D in a prospective cohort, indicating that DNA methylation could be a potential 

valuable biomarker to predict DKD at T2D diagnosis and to inform personalized treatment for 

T2D patients. Nonetheless, there is still a need to refine the study design, improve feature 

selection of the CpGs of interest, build risk scores, and validate the results in different 

populations in order to assure accuracy and validity of the results.  
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7. Tables 

 

Table 1. Demographic and clinical characteristics of the sample. Total sample (ANDIU + ANDIS patients) of 487 individuals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Significant p values are shown in bold. P<0.05 show a statistically significance difference between groups. All variables refer to baseline status except of the first and second eGFR 

measurements and time to event for cases and follow-up for controls. 

*Duration of diabetes at baseline: days from the diabetes diagnosis to the DNA methylation sample. ** Second eGFR below 60 is the second altered eGFR measurement with an interval of more 

than 3 months from the first (when we closed the criteria for the disease). ***Antihypertensives, statins and metformin at baseline: yes for all the patients who bought the medications at least 

once within baseline (six months before or six months after DNA methylation sample date. ^ Previous CVD event represents all the patients with reported CVD events before or during baseline, 

up to six months after DNA methylation sample date. SD: Standard deviation 

Phenotype 

Prevalence (%) / Mean (SD) Min. to Max. Missing values 

P value  
Patients who 

did not develop 

DKD (n=399) 

Patients who 

developed 

DKD (n=88) 

Patients who 

did not develop 

DKD (n=399) 

Patients who 

developed 

CKD (n=88) 

Patients who 

did not develop 

DKD (n=399) 

Patients who 

developed 

DKD (n=88) 

Time to event (days) - 1566.5 (830.9) - 281-3581 - 0 - 

Follow-up (days) 2380 (798.9) - 307-4202 - 0 - - 

Sex (male) 237 (59.4%) 51 (57.9%) - - 0 0 0.8036 

Age (years) 60.38 (8.9) 67.69 (8.5) 46-85 46-90 0 0 7.063e-11 

BMI (kg/m2) 31.41 (5.4) 30.49 (4.4) 20.38-50.71 23.12-43.66 0 0 0.1276 

Duration of diabetes at baseline (days)* 52.35 (118.8) 62.98 (93.3) 0-1342 0-519 0 0 0.01498 

HbA1C (mmol/mol) 62.47 (17.6) 60.40 (15.9) 34-144 33.34-107 0 0 0.3922 

 Baseline eGFR (mL/min/1.73m2) 96.79 (20.6) 80.33 (16.4) 60.82-182.47 60.09-  156.65 0 0 2.59e-13 

First eGFR below 60 (mL/min/1.73m2) - 53.5 (6.5) - 28.82 – 59.97 - 0 - 

Second eGFR below 60 

(mL/min/1.73m2)** 
- 51.25 (9.3) - 10.06 -59.93 - 0 - 

Urinary albumin/Urinary creatinine ratio 

(mg/mmol) 
1.8 (5.2) 5.4 (22.2) 0-66 0-182 19 7 0.4242 

Creatinine (mmol/L) 67.87 (13.9) 77.49 (14.6) 33-105 47-112 0 0 1.075e-07 

Urinary Creatinine (mmol/L) 11 (5.4) 9.9 (5.1) 1-30.3 3-31.9 15 6 0.05495 

Urinary Albumin (mg/L) 18.66 (73.9) 37.78 (128.1) 0-1225.9 0-1073.8 13 2 0.584 

HOMA2-IR 3.9 (2.9) 3.6 (1.3) 0.99-47.62 1.1-9.8 11 0 0.8677 

Triglycerides (mmol/L) 2.4 (3.5) 2.1 (1.2) 0.5-56.2 0.56-8.4 13 2 0.993 

Total Cholesterol (mmol/L) 5.3 (1.2) 5.1 (1.3) 2.3-14.7 2.8-9.4 6 1 0.152 

HDL (mmol/L) 1.2 (0.3) 1.1 (0.3) 0.41-2.8 0.39-2.4 6 1 0.3205 

LDL ( mmol/L) 3.4 (1.05) 3.3 (1.1) 0.8-7.6 1.3-7.2 9 1 0.06739 

Antihypertensives at baseline *** 222 (55.6%) 65 (73.9%) - - 0 0 0.001679 

Statins at baseline *** 172 (43.1%) 42 (47.7%) - - 0 0 0.4301 

Metformin at baseline *** 337 (84.5%) 72 (81.8%) - - 0 0 0.5415 

Previous CVD event ^ 32 (8%) 14 (15.9%) - - 0 0 0.02218 
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Table 2. Weighted-cox regression models to assess the relationship between DNA methylation and the development of DKD in 487 type 2 

diabetes patients from the ANDIU and ANDIS cohorts. The table shows the number of CpG sites that are significant for each model, considering 

p and q (FDR adjusted p) values. N indicates the sample size used for each specific model. 

Models (weighted-cox) q<0.05 q<0.1 q<0.15 p<0.05 N 

1a - Surv( Time_to_DKD_Follow_up ,  DKD ) ~  methylation + Age + BMI + 

Baseline_eGFR + Sex 
56,411 71,460 84,952 129,811 487 

1b - Surv( Time_to_DKD_Follow_up ,  DKD ) ~  methylation + Age + BMI + 

Baseline_eGFR + CD8T + CD4T + NK + Bcell + Mono + Sex 
5,086 11,040 19,605 117,598 487 

2 - Surv( Time_to_DKD_Follow_up ,  DKD ) ~  methylation + Age + BMI + 

Baseline_eGFR + Diabetes_duration_at_baseline + Sex 
56,968 72,576 86,315 131,194 487 

3 - Surv( Time_to_DKD_Follow_up ,  DKD ) ~  methylation + Age + BMI + 

Baseline_eGFR + Diabetes_duration_at_baseline + HBA1C + Sex 
59,373 75,444 89,358 133,821 487 

4 - Surv( Time_to_DKD_Follow_up ,  DKD ) ~  methylation + Age + BMI + 

Baseline_eGFR + Diabetes_duration_at_baseline + HBA1C + UACR + Sex 
56,144 70,546 82,925 127,661 461 

5 - Surv( Time_to_DKD_Follow_up ,  DKD ) ~  methylation + Age + BMI + 

Baseline_eGFR + Diabetes_duration_at_baseline + HBA1C + Sex + 

Statins_At_Baseline + Antihypertensive_At_Baseline 

57,559 74,925 90,370 136,946 487 

6 - Surv( Time_to_DKD_Follow_up ,  DKD ) ~  methylation + Age + BMI + 

Baseline_eGFR + Diabetes_duration_at_baseline + HBA1C + 

Total_Cholesterol + LDL + HDL + Sex + Antihypertensive_At_Baseline + 

Smoking (cg05575921) 

2,862 6,794 43,504 121,801 476 

7 - Surv( Time_to_DKD_Follow_up ,  DKD ) ~  methylation + Age + BMI + 

Baseline_eGFR + Diabetes_duration_at_baseline + HBA1C + 

Total_Cholesterol + LDL + HDL + HOMA2IR + Sex + 

Antihypertensive_At_Baseline + CVD_At_Baseline + Smoking (cg05575921) 

3,833 34,008 63,405 129,766 465 

* Model 1b is the model 1a adjusted for cell composition. 
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Table 3.  Description of the identified 37 CpGs with difference in methylation >  5% between patients with T2D who developed DKD and 

patients with T2D who did not develop DKD in a subset of 487 patients from the ANDIS and ANDIU cohorts, with a significance level of q < 

0.05 in Model 1a, adjusted for age, sex, BMI and baseline eGFR, and p < 0.05 in all the other models.  

TargetID CHR 

Gene symbol, 

Illumina standard 

manifest 

Relation to gene 

region, Illumina 

standard manifest 

Relation to 

CpG Island, 

Illumina 

standard 

manifest 

Gene symbol, hg38, 

GENCODE version 12 

Mean 

methylation 

beta values 

(patients who 

did not develop 

DKD, n = 399) 

SD (patients 

who did not 

develop 

DKD) 

Mean 

methylation 

beta values 

(patients who 

developed 

DKD, n= 88) 

SD (patients 

who 

developed 

DKD) 

Difference in 

methylation 

between 

groups 

cg08641951 5 ADAMTS16 Body   0.24 0.08 0.19 0.07 -0.05 

cg11940040 17 RPH3AL Body S_Shore RPH3AL 0.38 0.10 0.33 0.10 -0.05 

cg23480021 3   N_Shore ZNF385D 0.61 0.14 0.66 0.12 0.05 

cg11065575 4 SHISA3 3'UTR S_Shelf SHISA3 0.66 0.09 0.61 0.11 -0.05 

cg25291037 2     0.37 0.20 0.48 0.21 0.11 

cg01079515 3    AC124944.5;AC124944.5 0.79 0.18 0.86 0.12 0.072 

cg05074631 13 DZIP1;DZIP1 TSS1500;TSS1500 S_Shore DZIP1;DZIP1;DZIP1 0.60 0.14 0.54 0.17 -0.06 

cg00169354 20   S_Shelf  0.47 0.14 0.54 0.15 0.07 

cg18826637 2     0.42 0.08 0.36 0.08 -0.06 

cg22297055 17 
SLC43A2;SLC43A2;

SLC43A2 
TSS200;Body;Body N_Shore SLC43A2;SLC43A2 0.47 0.14 0.53 0.16 0.06 

cg17386240 5 TGFBI Body  TGFBI 0.55 0.24 0.64 0.19 0.09 

cg26705599 13   Island  0.53 0.30 0.60 0.27 0.07 

cg12183150 2    AC097713.4;AC097713.3 0.45 0.12 0.50 0.12 0.05 

cg10187601 7 ST7;ST7 Body;Body  ST7 0.71 0.17 0.78 0.13 0.07 

cg07784975 12     0.31 0.08 0.26 0.08 -0.05 

cg10482512 6 CCR6 TSS1500  CCR6 0.41 0.24 0.52 0.24 0.10 

cg26365090 20 
TOX2;TOX2;TOX2;

TOX2 

5'UTR;Body;TSS20

0;5'UTR 
 TOX2;TOX2;TOX2;TOX2;

TOX2 
0.34 0.31 0.25 0.25 -0.08 

cg22273830 17 
SLC43A2;SLC43A2;

SLC43A2 
TSS200;Body;Body N_Shore SLC43A2;SLC43A2 0.40 0.17 0.46 0.18 0.07 

cg11076954 17 SLC43A2 Body N_Shore SLC43A2;SLC43A2 0.40 0.14 0.45 0.15 0.05 

cg11420142 8    RP11-122C21.1 0.42 0.30 0.55 0.28 0.13 
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cg13989295 17 SKA2;SKA2 3'UTR;3'UTR S_Shelf AC099850.1;SKA2;SKA2 0.38 0.29 0.46 0.30 0.08 

cg08230244 5 
FAM13B;FAM13B;

FAM13B 
Body;Body;Body   0.83 0.22 0.77 0.23 -0.06 

cg16788857 3 C3orf59 Body   0.52 0.24 0.46 0.24 -0.07 

cg25621215 20    RP11-445H22.3 0.88 0.13 0.81 0.22 -0.07 

cg26423139 17 
SLC43A2;SLC43A2;

SLC43A2 
TSS200;Body;Body N_Shore SLC43A2;SLC43A2 0.46 0.14 0.52 0.15 0.06 

cg04706137 11    RP11-867G2.8;RP11-

867G2.8 
0.75 0.16 0.69 0.21 -0.06 

cg19618634 17     0.40 0.22 0.47 0.20 0.06 

cg10499451 19 PAPL Body S_Shelf  0.76 0.25 0.71 0.27 -0.05 

cg23246911 17 RPH3AL Body N_Shelf RPH3AL 0.37 0.15 0.32 0.14 -0.05 

cg02427933 20    RP11-445H22.3 0.25 0.21 0.33 0.24 0.08 

cg08586441 4 TEC Body   0.52 0.21 0.58 0.19 0.06 

cg04885581 14 FRMD6 5'UTR N_Shelf FRMD6 0.83 0.10 0.77 0.15 -0.06 

cg12434901 17 KCNH6;KCNH6 Body;Body   0.62 0.28 0.71 0.25 0.09 

cg11128983 5 CPLX2;CPLX2 TSS1500;5'UTR N_Shore 
CPLX2;CPLX2;CPLX2;C

PLX2 
0.66 0.31 0.76 0.26 0.10 

cg07505631 3 CDCP1;CDCP1 Body;Body  CDCP1 0.68 0.26 0.56 0.29 -0.12 

cg14924512 9 EHMT1;EHMT1 Body;Body  EHMT1 0.78 0.23 0.71 0.26 -0.07 

cg07917191 2 SLC9A4 Body   0.82 0.20 0.77 0.24 -0.05 

* CHR: Chromosome. ** SD: standard deviation 
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Table 4. Results for the weighted cox regression model 1a, adjusted for age, sex, BMI, and baseline eGFR of the 37 CpGs with difference in 

methylation >  5% between patients with T2D who developed DKD and patients with T2D who did not develop DKD in a subset of 487 patients 

from the ANDIS and ANDIU cohorts, with a significance level of q < 0.05 in Model 1a, and p < 0.05 in all the other models.  

 Methylation Age BMI Baseline eGFR Sex 

Target ID p-value q-value HR (95% CI) * p-value q-value HR (95% CI) * p-value q-value HR (95% CI) * p-value q-value HR (95% CI) * p-value q-value HR (95% CI) * 

cg08641951 6.0E-06 5.6E-04 0.0005 (0.00002 - 0.01) 1.1E-03 1.1E-03 1.05 (1.02 - 1.09 ) 5.1E-01 5.1E-01 0.98 ( 0.94 - 1.03 ) 6.9E-05 7.0E-05 0.96 ( 0.93 - 0.98 ) 5.0E-01 5.3E-01 1.19 ( 0.72 - 1.98 ) 

cg11940040 3.6E-05 1.6E-03 0.003 (0.0002 - 0.05 ) 2.7E-05 3.1E-04 1.07 ( 1.04 - 1.11 ) 3.6E-01 3.6E-01 0.98 ( 0.93 - 1.02 ) 9.3E-06 3.9E-05 0.95 ( 0.93 - 0.97 ) 2.4E-01 5.1E-01 1.34 ( 0.82 - 2.2 ) 

cg23480021 4.4E-05 1.8E-03 26.32 (5.48 - 126.3) 1.3E-05 3.1E-04 1.07 ( 1.04 - 1.11 ) 1.9E-01 3.1E-01 0.97 ( 0.93 - 1.01 ) 5.1E-05 5.2E-05 0.96 ( 0.94 - 0.98 ) 1.9E-01 5.1E-01 1.39 ( 0.85 - 2.26 ) 

cg11065575 4.7E-05 1.9E-03 0.01 (0.001 - 0.08) 5.6E-05 3.1E-04 1.06 ( 1.03 - 1.1 ) 2.0E-01 3.1E-01 0.97 ( 0.92 - 1.02 ) 6.8E-05 6.9E-05 0.96 ( 0.94 - 0.98 ) 6.6E-01 6.7E-01 0.89 ( 0.53 - 1.5 ) 

cg25291037 5.0E-05 2.0E-03 9.98 (3.28 - 30.34) 2.2E-04 3.1E-04 1.06 ( 1.03 - 1.09 ) 2.2E-01 3.1E-01 0.97 ( 0.93 - 1.02 ) 3.0E-05 3.9E-05 0.95 ( 0.93 - 0.98 ) 2.4E-01 5.1E-01 1.34 ( 0.82 - 2.19 ) 

cg01079515 6.0E-05 2.2E-03 24.8 (5.17 - 118.98) 1.8E-04 3.1E-04 1.07 ( 1.03 - 1.1 ) 1.5E-01 3.1E-01 0.96 ( 0.92 - 1.01 ) 2.3E-05 3.9E-05 0.96 ( 0.93 - 0.98 ) 4.7E-01 5.1E-01 1.2 ( 0.73 - 1.97 ) 

cg05074631 7.0E-05 2.5E-03 0.08 (0.02 - 0.28) 4.5E-04 4.7E-04 1.06 ( 1.02 - 1.09 ) 2.1E-01 3.1E-01 0.97 ( 0.93 - 1.02 ) 1.1E-05 3.9E-05 0.95 ( 0.93 - 0.97 ) 4.4E-01 5.1E-01 1.22 ( 0.74 - 1.99 ) 

cg00169354 1.4E-04 4.1E-03 12.41 (3.4 - 45.32) 2.1E-04 3.1E-04 1.06 ( 1.03 - 1.09 ) 5.1E-01 5.1E-01 0.98 ( 0.94 - 1.03 ) 8.6E-05 8.6E-05 0.96 ( 0.94 - 0.98 ) 3.3E-01 5.1E-01 1.28 ( 0.78 - 2.1 ) 

cg18826637 1.7E-04 4.8E-03 0.003 (0.0002 - 0.07) 7.5E-03 7.5E-03 1.05 ( 1.01 - 1.08 ) 4.1E-01 4.1E-01 0.98 ( 0.94 - 1.03 ) 1.7E-05 3.9E-05 0.95 ( 0.93 - 0.97 ) 6.2E-01 6.3E-01 1.13 ( 0.69 - 1.86 ) 

cg22297055 2.9E-04 7.2E-03 13.5 (3.31 - 55.12) 1.2E-04 3.1E-04 1.06 ( 1.03 - 1.1 ) 2.4E-01 3.1E-01 0.97 ( 0.92 - 1.02 ) 3.6E-05 4.0E-05 0.95 ( 0.93 - 0.98 ) 2.7E-01 5.1E-01 1.32 ( 0.81 - 2.15 ) 

cg17386240 4.1E-04 9.4E-03 8.44 (2.59 - 27.5) 3.3E-05 3.1E-04 1.07 ( 1.04 - 1.1 ) 3.4E-01 3.4E-01 0.98 ( 0.93 - 1.02 ) 4.6E-05 4.8E-05 0.96 ( 0.93 - 0.98 ) 3.8E-01 5.1E-01 1.25 ( 0.77 - 2.03 ) 

cg26705599 4.5E-04 1.0E-02 4.17 (1.88 - 9.26) 6.2E-05 3.1E-04 1.06 ( 1.03 - 1.09 ) 1.8E-01 3.1E-01 0.97 ( 0.92 - 1.02 ) 1.4E-05 3.9E-05 0.95 ( 0.93 - 0.97 ) 2.9E-01 5.1E-01 1.3 ( 0.8 - 2.13 ) 

cg12183150 4.8E-04 1.1E-02 37.05 (4.88 - 281.28) 4.5E-04 4.7E-04 1.06 ( 1.03 - 1.09 ) 1.9E-01 3.1E-01 0.97 ( 0.92 - 1.02 ) 1.8E-05 3.9E-05 0.95 ( 0.93 - 0.97 ) 6.1E-01 6.2E-01 1.14 ( 0.69 - 1.88 ) 

cg10187601 4.9E-04 1.1E-02 25.93 (4.15 - 161.82) 2.6E-05 3.1E-04 1.07 ( 1.04 - 1.11 ) 3.3E-01 3.4E-01 0.98 ( 0.93 - 1.02 ) 3.7E-05 4.1E-05 0.96 ( 0.94 - 0.98 ) 3.5E-01 5.1E-01 1.27 ( 0.77 - 2.09 ) 

cg07784975 5.3E-04 1.2E-02 0.01 (0.0005 - 0.12) 9.8E-04 9.8E-04 1.06 ( 1.02 - 1.09 ) 2.9E-01 3.1E-01 0.97 ( 0.93 - 1.02 ) 4.1E-05 4.4E-05 0.96 ( 0.94 - 0.98 ) 1.5E-01 5.1E-01 1.44 ( 0.87 - 2.38 ) 

cg10482512 7.9E-04 1.6E-02 6.59 (2.19 - 19.8) 1.7E-04 3.1E-04 1.06 ( 1.03 - 1.09 ) 2.5E-01 3.1E-01 0.97 ( 0.93 - 1.02 ) 1.0E-05 3.9E-05 0.95 ( 0.93 - 0.97 ) 4.6E-01 5.1E-01 1.2 ( 0.73 - 1.98 ) 

cg26365090 8.5E-04 1.7E-02 0.2 (0.08 - 0.51) 2.0E-05 3.1E-04 1.07 ( 1.04 - 1.1 ) 2.7E-01 3.1E-01 0.98 ( 0.93 - 1.02 ) 9.5E-06 3.9E-05 0.95 ( 0.93 - 0.97 ) 1.6E-01 5.1E-01 1.43 ( 0.86 - 2.36 ) 

cg22273830 9.3E-04 1.8E-02 7.95 (2.33 - 27.15) 1.0E-04 3.1E-04 1.06 ( 1.03 - 1.1 ) 2.5E-01 3.1E-01 0.97 ( 0.92 - 1.02 ) 3.1E-05 3.9E-05 0.95 ( 0.93 - 0.98 ) 3.0E-01 5.1E-01 1.29 ( 0.79 - 2.1 ) 

cg11076954 1.1E-03 2.1E-02 11.1 (2.61 - 47.19) 9.7E-05 3.1E-04 1.06 ( 1.03 - 1.1 ) 2.5E-01 3.1E-01 0.97 ( 0.93 - 1.02 ) 3.2E-05 3.9E-05 0.96 ( 0.93 - 0.98 ) 3.1E-01 5.1E-01 1.29 ( 0.79 - 2.1 ) 

cg11420142 1.2E-03 2.1E-02 3.61 (1.66 - 7.83) 3.8E-04 4.0E-04 1.06 ( 1.03 - 1.09 ) 4.4E-01 4.4E-01 0.98 ( 0.93 - 1.03 ) 2.7E-05 3.9E-05 0.95 ( 0.93 - 0.98 ) 2.5E-01 5.1E-01 1.35 ( 0.81 - 2.25 ) 

cg13989295 1.2E-03 2.2E-02 4.59 (1.83 - 11.51) 1.3E-05 3.1E-04 1.07 ( 1.04 - 1.11 ) 3.7E-01 3.7E-01 0.98 ( 0.93 - 1.03 ) 9.1E-06 3.9E-05 0.95 ( 0.93 - 0.97 ) 3.6E-01 5.1E-01 1.27 ( 0.76 - 2.09 ) 

cg08230244 1.3E-03 2.3E-02 0.21 (0.08 - 0.55) 1.2E-04 3.1E-04 1.06 ( 1.03 - 1.09 ) 2.4E-01 3.1E-01 0.97 ( 0.93 - 1.02 ) 1.1E-05 3.9E-05 0.95 ( 0.93 - 0.97 ) 3.6E-01 5.1E-01 1.26 ( 0.77 - 2.08 ) 

cg16788857 1.6E-03 2.7E-02 0.19 (0.07 - 0.53) 1.3E-05 3.1E-04 1.07 ( 1.04 - 1.1 ) 3.6E-01 3.7E-01 0.98 ( 0.94 - 1.02 ) 2.1E-05 3.9E-05 0.95 ( 0.93 - 0.97 ) 3.8E-01 5.1E-01 1.25 ( 0.76 - 2.07 ) 
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cg25621215 1.6E-03 2.7E-02 0.15 (0.05 - 0.49) 4.3E-04 4.5E-04 1.06 ( 1.03 - 1.09 ) 3.8E-01 3.8E-01 0.98 ( 0.93 - 1.03 ) 6.6E-05 6.7E-05 0.96 ( 0.93 - 0.98 ) 4.9E-01 5.2E-01 1.19 ( 0.72 - 1.96 ) 

cg26423139 1.6E-03 2.8E-02 11.37 (2.5 - 51.61) 9.1E-05 3.1E-04 1.06 ( 1.03 - 1.1 ) 2.6E-01 3.1E-01 0.97 ( 0.92 - 1.02 ) 3.2E-05 3.9E-05 0.95 ( 0.93 - 0.98 ) 3.3E-01 5.1E-01 1.27 ( 0.78 - 2.08 ) 

cg04706137 2.1E-03 3.4E-02 0.22 (0.08 - 0.57) 2.0E-04 3.1E-04 1.06 ( 1.03 - 1.09 ) 1.9E-01 3.1E-01 0.97 ( 0.92 - 1.02 ) 2.4E-05 3.9E-05 0.95 ( 0.93 - 0.98 ) 3.8E-01 5.1E-01 1.25 ( 0.76 - 2.05 ) 

cg19618634 2.2E-03 3.5E-02 7.12 (2.03 - 25) 5.4E-05 3.1E-04 1.07 ( 1.04 - 1.11 ) 6.2E-01 6.2E-01 0.99 ( 0.94 - 1.04 ) 8.5E-06 3.9E-05 0.95 ( 0.93 - 0.97 ) 3.1E-01 5.1E-01 1.29 ( 0.79 - 2.12 ) 

cg10499451 2.2E-03 3.5E-02 0.27 (0.12 - 0.63) 1.4E-04 3.1E-04 1.06 ( 1.03 - 1.09 ) 2.1E-01 3.1E-01 0.97 ( 0.93 - 1.02 ) 1.3E-05 3.9E-05 0.95 ( 0.93 - 0.97 ) 4.8E-01 5.2E-01 1.2 ( 0.73 - 1.97 ) 

cg23246911 2.2E-03 3.6E-02 0.05 (0.01 - 0.35) 4.1E-05 3.1E-04 1.07 ( 1.04 - 1.11 ) 3.1E-01 3.2E-01 0.98 ( 0.93 - 1.02 ) 2.1E-05 3.9E-05 0.95 ( 0.93 - 0.97 ) 3.4E-01 5.1E-01 1.28 ( 0.77 - 2.11 ) 

cg02427933 2.3E-03 3.6E-02 5.62 (1.85 - 17.03) 1.0E-03 1.0E-03 1.06 ( 1.02 - 1.09 ) 3.8E-01 3.8E-01 0.98 ( 0.93 - 1.03 ) 4.8E-05 4.9E-05 0.95 ( 0.93 - 0.98 ) 5.7E-01 5.9E-01 1.15 ( 0.7 - 1.88 ) 

cg08586441 2.4E-03 3.8E-02 5.55 (1.84 - 16.79) 1.4E-04 3.1E-04 1.06 ( 1.03 - 1.09 ) 2.3E-01 3.1E-01 0.97 ( 0.93 - 1.02 ) 2.0E-05 3.9E-05 0.95 ( 0.93 - 0.97 ) 3.3E-01 5.1E-01 1.28 ( 0.78 - 2.08 ) 

cg04885581 2.8E-03 4.2E-02 0.08 (0.01 - 0.41) 1.3E-04 3.1E-04 1.06 ( 1.03 - 1.09 ) 4.0E-01 4.0E-01 0.98 ( 0.93 - 1.03 ) 3.9E-05 4.2E-05 0.96 ( 0.93 - 0.98 ) 2.1E-01 5.1E-01 1.42 ( 0.83 - 2.43 ) 

cg12434901 3.0E-03 4.5E-02 4.69 (1.69 - 12.99) 8.7E-05 3.1E-04 1.06 ( 1.03 - 1.1 ) 2.5E-01 3.1E-01 0.97 ( 0.93 - 1.02 ) 3.0E-05 3.9E-05 0.95 ( 0.93 - 0.98 ) 3.9E-01 5.1E-01 1.24 ( 0.75 - 2.06 ) 

cg11128983 3.0E-03 4.5E-02 3.75 (1.57 - 8.97) 1.0E-04 3.1E-04 1.06 ( 1.03 - 1.1 ) 1.7E-01 3.1E-01 0.97 ( 0.92 - 1.01 ) 3.7E-05 4.1E-05 0.95 ( 0.93 - 0.98 ) 5.0E-01 5.3E-01 1.19 ( 0.72 - 1.94 ) 

cg07505631 3.1E-03 4.6E-02 0.25 (0.1 - 0.63) 1.1E-04 3.1E-04 1.06 ( 1.03 - 1.09 ) 4.8E-01 4.8E-01 0.98 ( 0.94 - 1.03 ) 1.2E-05 3.9E-05 0.95 ( 0.93 - 0.97 ) 3.2E-01 5.1E-01 1.29 ( 0.78 - 2.12 ) 

cg14924512 3.1E-03 4.6E-02 0.28 (0.12 - 0.65) 1.1E-04 3.1E-04 1.06 ( 1.03 - 1.1 ) 2.8E-01 3.1E-01 0.97 ( 0.93 - 1.02 ) 1.2E-05 3.9E-05 0.95 ( 0.93 - 0.97 ) 2.1E-01 5.1E-01 1.38 ( 0.84 - 2.27 ) 

cg07917191 3.2E-03 4.7E-02 0.23 (0.08 - 0.61) 1.1E-04 3.1E-04 1.06 ( 1.03 - 1.1 ) 3.9E-01 3.9E-01 0.98 ( 0.93 - 1.03 ) 2.0E-05 3.9E-05 0.95 ( 0.93 - 0.97 ) 5.2E-01 5.4E-01 1.18 ( 0.71 - 1.95 ) 

* HR: hazard ratio, calculated based on 1% increase in DNA methylation. CI: confidence interval 
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Table 5. Results from the general linear regression models and the spearmen correlation tests to test the association between DNA methylation of 

each of the finally selected 37 CpGs (with difference in methylation > 5% between patients with T2D who developed DKD and patients with 

T2D who did not develop DKD in a subset of 487 patients from the ANDIS and ANDIU cohorts, with a significance level of q < 0.05 in the cox 

regression Model 1a, and p < 0.05 in all the other models) and age, sex, BMI and baseline eGFR. 

 General linear regression models Spearman rank correlation tests 

 Intercep Age Sex (male) BMI Baseline eGFR Age Sex (male) * BMI Baseline eGFR 

TargetID 
Coeff (± 

SD) 
p-value 

Coeff (± 

SD) 
p-value 

Coeff 

(± SD) 
p-value Coeff (± SD) p-value 

Coeff (± 

SD) 
p-value Coeff p-value Coeff p-value Coeff p-value Coeff p-value 

cg08641951 

0.21 

(0.05) 
2.52e-05 

-0.0003 

(0.0004) 
0.464 

-0.008 

(0.008) 
0.303 

0.0009 

(0.0007) 
0.228 

0.0002 

(0.0002) 
0.181 -0.108 0.01743 -0.046 0.3151 0.07 0.1264 0.087 0.05482 

cg11940040 

0.31 

(0.06) 
7.38e-07 

0.0003 

(0.0006) 
0.586 

0.015 

(0.011) 
0.119 

0.0003 

(0.0009) 
0.735 

0.00008 

(0.0002) 
0.748 0.004 0.9227 0.068 0.131 0.017 0.7086 0.014 0.759 

cg23480021 

0.87 

(0.08) 
< 2e-16 

-0.002 

(0.0007) 
0.00129 

-0.02 

(0.012) 
0.07783 -0.001 (0.001) 0.37405 

-0.0005 

(0.0003) 
0.09100 -0.09 0.04151 -0.07 0.1451 -0.002 0.958 -0.04 0.3833 

cg11065575 

0.76 

(0.05) 
<2e-16 

-0.0003 

(0.0005) 
0.532 

-0.07 

(0.009) 
<2e-16 0.001 (0.0008) 0.906 

0.0003 

(0.0002) 
0.204 -0.02 0.7219 -0.36 

2.692e-

16 
0.02 0.6503 0.04 0.4096 

cg25291037 

0.47 

(0.12) 
9.52e-05 

0.0009 

(0.001) 
0.407 

-0.04 

(0.02) 
0.0437 0.0002 (0.002) 0.9119 

-0.001 

(0.0005) 
0.044 0.07 0.1142 -0.1 0.02943 0.04 0.4133 -0.12 0.00935 

cg01079515 

0.78 

(0.1) 
1.21e-13 

0.0003 

(0.001) 
0.761 

0.02 

(0.02) 
0.212 

-0.0007 

(0.0015) 
0.637 

-0.00001 

(0.0004) 
0.977 0.05 0.2464 0.06 0.2061 -0.05 0.259 -0.04 0.3639 

cg05074631 

0.7 

(0.09) 
6.79e-15 

-0.0005 

(0.0008) 
0.525 

-0.01 

(0.01) 
0.285 -0.001 (0.001) 0.242 

-0.00003 

(0.0003) 
0.915 

0.0000

5 
0.9991 -0.04 0.3465 -0.03 0.4505 0.04 0.3611 

cg00169354 

0.63 

(0.08) 
8.24e-14 

0.00005 

(0.0008 ) 
0.9504 

-0.018 

(0.013) 
0.1829 

-0.0026 

(0.0013) 
0.0388 

-0.00063 

(0.00033

) 

0.0572 0.078 0.08513 -0.057 0.2073 -0.106 0.01912 -0.14 0.002194 

cg18826637 

0.62 

(0.05) 
<2e-16 

-0.004 

(0.0004) 
<2e-16 

-0.02 

(0.007) 
0.0123 

0.0005 

(0.0007) 
0.45 

0.0002 

(0.0002) 
0.1767 -0.42 < 2.2e-16 -0.07 0.1175 0.09 0.04778 0.2 

1.124e-

05 

cg22297055 

0.54 

(0.09) 
1.99e-09 

 0.0001 

(0.0008) 
0.899 

-0.01 

(0.01) 
0.46 

-0.0002 

(0.001) 
0.899 

-0.0005 

(0.0003) 
0.143 0.04 0.4079 -0.04 0.4247 0.04 0.3793 -0.13 0.004802 

cg17386240 

0.77  

(0.14) 
3.63e-08 

-0.0006  

(0.001) 
0.6161 

-0.01 

(0.02) 
0.4802 -0.002 (0.002) 0.396 

-0.001 

(0.0005) 
0.0715 0.02 0.701 -0.03 0.5053 -0.02 0.6222 -0.06 0.1579 

cg26705599 

0.67 

(0.17) 

0.00012

7 

-0.003 

(0.001) 
0.07136 

-0.03 

(0.03) 

0.23192

2 
0.001 (0.002) 0.64805 

0.0007 

(0.0007) 
0.30494 -0.14 0.002625 -0.05 0.3045 0.06 0.1819 0.09 0.04091 

cg12183150 

0.4 

(0.07) 
9.96e-08 

0.0003 

(0.0006) 
0.596 

0.007 

(0.01) 
0.511 0.0008 (0.001) 0.438 

-0.00002 

(0.0003) 
0.942 0.03 0.466 0.02 0.5783 0.02 0.6226 -0.008 0.8651 

cg10187601 
1.1 (0.1) <2e-16 

-0.002 

(0.0009) 
0.0141 

0.006 

(0.01) 
0.7134 -0.002 (0.001) 0.1056 

-0.0009 

(0.0004) 
0.0287 -0.07 0.1256 0.03 0.5255 -0.1 0.02273 -0.08 0.08622 

cg07784975 

0.3 

(0.05) 
6.28e-11 

-0.002 

(0.0004) 
9.23e-05 

0.04 

(0.007) 
1.36e-06 

0.0004(0.0007

) 
0.547 

0.00009 

(0.0002) 
0.636 -0.22 4.748e-07 0.23 

3.287e-

07 
0.04 0.349 0.13 0.003049 

cg10482512 

0.47 

(0.14) 
0.00115 

-0.0005 

(0.001) 
0.71222 

0.01 

(0.02) 
0.55841 

-0.0007 

(0.002) 
0.73233 

-0.0001 

(0.0006) 
0.80611 -0.01 0.8086 0.03 0.5213 0.001 0.9759 -0.004 0.9297 

cg26365090 

0.35 

(0.18) 
0.0450 

0.002 

(0.002) 
0.1548 

0.007 

(0.03) 
0.7962 -0.008 (0.003) 0.0037 

0.0006 

(0.0007) 
0.3894 0.09 0.05341 0.02 0.7217 -0.13 0.005268 -0.02 0.6773 



 41 

cg22273830 

0.48 

(0.1) 
4.58e-06 

-0.0002 

(0.0009) 
0.814 

-0.005 

(0.02) 
0.767 

-0.0008 

(0.001) 
0.954 

-0.0005 

(0.0004) 
0.185 0.008 0.8508 -0.01 0.7499 0.04 0.3359 -0.11 0.01649 

cg11076954 

0.48 

(0.08) 
3.49e-08 

-0.0002 

(0.0007) 
0.807 

-0.009 

(0.01) 
0.509 

-0.0001 

(0.001) 
0.924 

-0.0004 

(0.0003) 
0.192 0.02 0.5704 -0.03 0.4959 0.05 0.2715 -0.12 0.007402 

cg11420142 

0.63 

(0.17) 

0.00037

1 

0.002 

(0.002) 

0.22393

5 

-0.001 

(0.03) 

0.97146

2 
-0.009 (0.003) 

0.00059

8 

-0.0002 

(0.0007) 

0.74685

2 
0.07 0.1059 0.003 0.9371 -0.17 0.000151 -0.04 0.4256 

cg13989295 

0.51 

(0.18) 
0.00365 

-0.003 

(0.002) 
0.04378 

-0.005 

(0.03) 
0.86537 0.001 (0.003) 0.56942 

0.0004 

(0.0007) 
0.5471 -0.11 0.01226 

0.0000

1 
0.9998 0.04 0.4259 0.07 0.1366 

cg08230244 
0.9 (0.1) 8.69e-12 

-0.0001 

(0.001) 
0.899 

-0.02 

(0.02) 
0.449 -0.002 (0.002) 0.344 

-0.00008 

(0.0005) 
0.878 -0.06 0.1969 -0.03 0.4899 -0.07 0.1094 0.05 0.2242 

cg16788857 

0.32 

(0.14) 
0.0255 

0.003 

(0.001) 
0.0153 

0.01 

(0.02) 
0.6553 -0.002 (0.002) 0.3469 

0.0004 

(0.0006) 
0.4709 0.11 0.01665 0.01 0.7566 -0.06 0.1794 0.006 0.9014 

cg25621215 

0.89 

(0.09) 
<2e-16 

-0.0006 

(0.0008) 
0.461 

0.01 

(0.01) 
0.471 -0.002 (0.001) 0.242 

0.0005 

(0.0004) 
0.192 -0.01 0.8017 0.04 0.3569 -0.09 0.05354 0.07 0.1132 

cg26423139 

0.5 

(0.09) 
2.44e-09 

-0.00005 

(0.0008) 
0.948 

0.006 

(0.01) 
0.679 

-0.0003 

(0.001) 
0.803 

-0.0005 

(0.0003) 
0.117 0.02 0.5895 0.02 0.6991 0.02 0.596 -0.12 0.008839 

cg04706137 

0.77 

(0.1)  
1.06e-13 

-0.0007 

(0.0009) 
0.444 

-0.01 

(0.02) 
0.482 0.0005 (0.001) 0.728 

0.0001 

(0.0004) 
0.698 -0.03 0.541 -0.03 0.5172 0.02 0.6152 0.03 0.4497 

cg19618634 

0.66 

(0.13) 
7.01e-07 

-0.001 

(0.001) 
0.40974 

-0.03 

(0.02) 
0.1055 -0.005 (0.002) 0.00693 

0.0003 

(0.0005) 
0.50686 -0.05 0.2481 -0.06 0.1823 -0.11 0.01812 0.05 0.2714 

cg10499451 

0.71 

(0.15) 

 4.56e-

06 

0.0006 

(0.001) 
0.637 

-0.01 

(0.02) 
0.573 0.002 (0.002) 0.42 

-0.0004 

(0.0006) 
0.501 -0.01 0.7941 -0.03 0.4883 0.07 0.1399 -0.007 0.8769 

cg23246911 

0.24 

(0.09) 
0.00919 

0.001 

(0.0008) 
0.19411 

0.008 

(0.01) 
0.57728 0.0007 (0.001) 0.58408 

0.0003 

(0.0003) 
0.39791 0.03 0.5595 0.02 0.6669 0.03 0.566 0.04 0.3985 

cg02427933 
0.3 (0.1) 0.0173 

-0.0002 

(0.001) 
0.8332 

0.004 

(0.02) 
0.8236 

-0.0006 

(0.002) 
0.7624 

-0.0002 

(0.0005) 
0.7397 -0.02 0.6308 0.01 0.7989 -0.04 0.4066 0.006 0.8989 

cg08586441 

0.56 

(0.1) 
5.56e-06 

0.0009 

(0.001) 
0.3966 

-0.03 

(0.02) 
0.0657 -0.001 (0.002) 0.5506 

0.00004 

(0.0005) 
0.9274 0.06 0.2025 -0.09 0.05855 -0.02 0.6848 -0.04 0.3511 

cg04885581 

0.78 

(0.07) 
<2e-16 

-0.001 

(0.0006) 
0.106 

0.02 

(0.01) 
0.112 0.0009 (0.001) 0.357 

0.0004 

(0.0003) 
0.82 -0.15 

0.000772

8 
0.08 0.08267 0.02 0.6858 0.14 0.00214 

cg12434901 

0.66 

(0.16) 
5.6e-05 

0.00008 

(0.001) 
0.954 

0.01 

(0.02) 
0.568 0.0007 (0.002) 0.765 

-0.0008 

(0.0006) 
0.206 -0.04 0.4181 0.02 0.6131 -0.009 0.837 -0.01 0.7313 

cg11128983 

0.62 

(0.18) 

 

0.00048

2 

0.0001 

(0.002) 

0.94034

1 

0.03 

(0.03) 
0.26 0.006 (0.003) 

0.02812

4 

-0.002 

(0.0007) 

0.00629

6 
0.02 0.6021 0.04 0.3845 0.06 0.218 -0.13 0.003743 

cg07505631 
0.7 (0.2) 9.96e-06 

-0.002 

(0.001) 
0.217 

0.02 

(0.02) 
0.515 0.0009 (0.002) 0.702 

0.00008 

(0.0006) 
0.897 -0.12 0.01051 0.03 0.4534 0.001 0.9739 0.04 0.4307 

cg14924512 

0.73 

(0.14) 
2.98e-07 

-0.0004 

(0.001) 
0.717 

0.001 

(0.02) 
0.952 0.0003 (0.002) 0.886 

0.0005 

(0.0005) 
0.336 -0.06 0.1646 0.005 0.9059 0.02 0.7067 0.09 0.03861 

cg07917191 

0.66 

(0.13) 
2.75e-07 

0.0006 

(0.001) 
0.589 

-0.01 

(0.02) 
0.504 0.004 (0.002) 0.0315 

0.0001 

(0.0005) 
0.8327 -0.04 0.3577 -0.04 0.3867 0.08 0.06029 0.02 0.66 

Significant p-values are highlighted in bold                

* Point-biserial correlation test  
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Table 6.  Description of the  27 unique genes annotated to the 37 CpGs  with difference in methylation >  5% between patients with T2D who 

developed DKD and patients with T2D who did not develop DKD in a subset of 487 patients from the ANDIS and ANDIU cohorts, with a 

significance level of q < 0.05 in Model 1a, and p < 0.05 in all the other models, after a preliminary GeneCards search for GWAS phenotypes and 

GO biological processes related to those genes in the context of T2D and DKD.  

  GWAS Phenotype ** Gene Ontology (GO) – Biological Processes 

Differentiall

y methylated 

sites 

Gene symbol Description 
Gene 

Relation 

Mean 

Score 

SNP 

Count 

Studies 

Count 
SNPs Description Evidence Accession Sources 

PubMed 

ID 

cg08641951 ADAMTS16 BMI GWAS 5.10 1 1 rs871122 

Involved in regulation of 

systemic arterial blood 

pressure 

IEA GO:0003073 
NCBI Entrez 

Gene||Ensembl 
  

Involved in extracellular 

matrix organization 
IBA GO:0030198 

NCBI Entrez 

Gene||Ensembl 
21873635 

cg11940040, 

cg23246911 
RPH3AL 

insulin sensitivity measurement, 

response to polyunsaturated fatty 

acid supplementation 

GeneHancer;

GWAS 
5.77 2 1 

rs35621498;r

s55842940 

Involved in positive regulation 

of insulin secretion 
IEA GO:0032024 

NCBI Entrez 

Gene||Ensembl 
  

Involved in glucose 

homeostasis 
IEA GO:0042593 

NCBI Entrez 

Gene||Ensembl 
  

Involved in intracellular 

protein transport 
IEA GO:0006886 

NCBI Entrez 

Gene||Ensembl 
  

Involved in exocytosis IBA, TAS GO:0006887 
NCBI Entrez 

Gene||Ensembl 
21873635 

cg23480021 ZNF385D 

waist-hip ratio GWAS 5.70 1 1 rs1388551           

T2D 
GeneHancer;

GWAS 
10.30 2 2 

rs2688419;rs

6791903 
          

body mass index, 

visceral:subcutaneous adipose 

tissue ratio GeneHancer 7.70 1 1 rs7374732 

          

hip circumference GeneHancer 5.15 1 1 rs749519604           

chronic kidney disease GeneHancer 5.70 1 1 rs9310709           

cg11065575 SHISA3 

T2D GWAS 5.70 1 1 rs17447640 

          creatinine measurement GWAS 8.41 2 2 
rs11722932;r

s74464322 

glomerular filtration rate GWAS 8.70 1 1 rs11722932 

cg25291037 x                      

cg01079515 AC124944.5 *                      

cg05074631 DZIP1 

glomerular filtration rate, cystatin 

C measurement 
GWAS 7.22 1 1 rs12428035       

glomerular filtration rate 
GeneHancer;

GWAS 
8.15 1 1 rs77930391       

cg00169354 x                      

cg18826637 x                      

cg22297055, 

cg22273830, 

cg11076954 

SLC43A2 

BMI-adjusted waist 

circumference 

GeneHancer;

GWAS 
9.05 2 3 

rs58360980;r

s78135061 

Involved in transmembrane 

transport 
IEA GO:0055085 Ensembl   

serum albumin measurement 
GeneHancer;

GWAS 
26.89 4 4 

rs11078596;r

s11078597;rs

4790712;rs62

090014 

Involved in amino acid 

transmembrane transport 
IEA GO:0003333 Ensembl   
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glomerular filtration rate  
GeneHancer;

GWAS 
9.77 2 1 

rs57937546;r

s62088028 

Involved in amino acid 

transport 
TAS GO:0006865 

NCBI Entrez 

Gene||Ensembl 
  

UACR GeneHancer 9.19 1 1 rs11078597 
Involved in neutral amino acid 

transport 
IBA GO:0015804 

NCBI Entrez 

Gene||Ensembl 
21873635 

BMI-adjusted waist-hip ratio GeneHancer 7.52 1 1 rs67735224 
Involved in L-amino acid 

transport 
IEA GO:0015807 

NCBI Entrez 

Gene||Ensembl 
  

blood protein measurement GeneHancer 69.04 4 3 

rs2272011;rs

58697961;rs6

2088172;rs62

090014 

          

waist-hip ratio,  GeneHancer 8.40 1 1 rs11078594           

systolic blood pressure GeneHancer 14.30 1 1 rs8076897           

lipid measurement 

GeneExon;G

eneHancer;G

WAS 

5.70 1 1 rs17027255           

cg17386240 TGFBI blood protein measurement 
GeneHancer;

GWAS 
57.19 5 3 

rs13159365;r

s17689879;rs

248160;rs252

6145;rs75646

3 

Involved in angiogenesis IEP GO:0001525 
NCBI Entrez 

Gene||Ensembl 
11866539 

Involved in cell adhesion IBA, IEA GO:0007155 
NCBI Entrez 

Gene||Ensembl 
21873635 

Involved in cell population 

proliferation 
IEA GO:0008283 

NCBI Entrez 

Gene||Ensembl 
  

Involved in extracellular 

matrix organization 
IBA GO:0030198 

NCBI Entrez 

Gene||Ensembl 
21873635 

cg26705599 x                       

cg12183150 
AC097713.4;A

C097713.3 *   
                    

cg10187601 ST7 

BMI-adjusted waist-hip ratio GWAS 8.65 3 3 

rs38902;rs38

906;rs588684

8 

Involved in extracellular 

matrix organization 
NAS GO:0030198 

NCBI Entrez 

Gene||Ensembl 
16474848 

BMI-adjusted waist-hip ratio, sex 

interaction measurement, age at 

assessment 

GWAS 6.52 1 1 rs38902           

blood protein measurement 

GeneHancer;

GWAS 
22.67 2 2 

rs141636670;

rs1858830 
          

cg07784975 x                       

cg10482512 CCR6 

blood protein measurement 
GeneHancer;

GWAS 
11.22 1 1 rs3093023           

lipid measurement 
GeneHancer;

GWAS 
6.30 

1 1 rs113085122 
          

cg26365090 TOX2 

metabolically healthy obesity GWAS 5.30 1 1 rs6093921           

systolic blood pressure GeneHancer 9.41 4 8 

rs6017279;rs

6017281;rs60

31431;rs6031

435 

          

creatinine measurement, 

glomerular filtration rate GeneHancer 6.52 1 1 rs2235808 
          

mean arterial pressure GeneHancer 8.38 3 3 

rs6017281;rs

6031431;rs60

31435 

          

diastolic blood pressure GeneHancer 9.70 1 1 rs6031431           

cardiovascular disease GeneHancer 10 1 1 rs6031431           

glomerular filtration rate  GeneHancer 11.30 1 1 rs2235808           

cg11420142 

RP11-122C21.0 

*   
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cg13989295 SKA2 

glomerular filtration rate GWAS 5.70 1 1 rs8073316           

type 2 diabetes mellitus GeneHancer 7.61 2 2 
rs1451506;rs

302864 
          

BMI-adjusted waist 

circumference GeneHancer 7.40 1 1 rs5821283 
          

cg08230244 FAM13B 

systolic blood pressure 
GeneExon; 

GWAS 
7.70 1 1 rs33956817           

cardioembolic stroke 
GeneHancer;

GWAS 
25.40 1 1 rs17171711           

lipid measurement GWAS 5 1 1 rs1124472           

cg16788857 C3orf59                       

cg25621215 

RP11-445H22.2 

*   
                    

cg26423139 SLC43A2                       

cg04706137 

RP11-867G2.8 

*   
                    

cg19618634 x                       

cg10499451 PAPL 

T2D GWAS 5.05 1 1 rs472265           

blood protein measurement GeneHancer 36.96 2 2 
rs2229259;rs

4802890 
          

body weight GWAS 9 1 1 rs112691865           

waist circumference GeneHancer 5.15 1 1 rs66959926           

retinal vasculature measurement GeneHancer 12.70 1 1 rs1808382           

cg02427933 

RP11-445H22.2 

*   
                    

cg08586441 TEC systolic blood pressure GWAS 6.05 1 1 rs17471509           

cg04885581 FRMD6 

triglyceride measurement, 

response to diuretic 
GWAS 5.87 1 1 rs2790503           

Ischemic stroke GeneHancer 5.52 1 1 rs139706713           

lipid measurement GeneHancer 5.10 1 1 rs4432175           

cg12434901 KCNH6 

systolic blood pressure GeneHancer 8.5 2 2 
rs4291;rs429

5 

Involved in transmembrane 

transport 
IEA GO:0055085 Ensembl   

diastolic blood pressure GeneHancer 7.40 1 1 rs4295           

lipid measurement 
GeneExon;G

WAS 
5.05 1 1 rs7225568           

cg11128983 CPLX2 
  

          
Involved in regulation of 

exocytosis TAS GO:0017157 

NCBI Entrez 

Gene||Ensembl 15217342 

cg07505631 CDCP1 
blood protein measurement 

GeneHancer;

GWAS 
16.64 3 3 

rs35605067;r

s7621542;rs8

318 

          

urinary metabolite measurement GeneHancer 40.10 1 1 rs17279437           

cg14924512 EHMT1 

BMI GWAS 
8.15 

1 1 rs35528310 
Involved in DNA methylation 

ISS, IBA, 

IBA GO:0006306 

NCBI Entrez 

Gene||Ensembl 
  

systolic blood pressure GeneHancer 8 1 1 rs821317           

blood protein measurement GeneHancer 27.48 7 2 

rs11145940;r

s2071006;rs2

8578007;rs41

309980;rs488

0078;rs78508

44;rs908830 

          

glomerular filtration rate GeneHancer 8.5 2 2 
rs6606564;rs

6606567 
          

creatinine measurement GeneHancer 8.70 1 1 rs6606567           
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cg07917191 SLC9A4 

glomerular filtration rate 
GeneHancer;

GWAS 
12.03 2 3 

rs72995641;r

s77375846 

Involved in transmembrane 

transport 
IEA GO:0055085 Ensembl   

blood protein measurement 
GeneHancer;

GWAS 
139.85 2 2 

rs1420106;rs

4851589 
          

creatinine measurement 

GeneHancer;

GWAS 
14.70 1 1 rs77375846           

* Uncharacterized non-coding RNA genes ** Source: GWAS catalog      
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Table 7.  Description of the SNPs located nearby the 37 CpGs  with difference in methylation >  5% between patients with T2D who developed 

DKD and patients with T2D who did not develop DKD in a subset of 487 patients from the ANDIS and ANDIU cohorts, with a significance 

level of q < 0.05 in Model 1a, and p < 0.05 in all the other models, taken from the Illumina Infinium MethylationEPIC v1.0 B5 Manifest File  

(https://emea.support.illumina.com/downloads/infinium-methylationepic-v1-0-product-files.html).  

Target ID Chromossome 
Gene symbol, Illumina 

standard manifest 

Gene symbol, hg38, 

GENCODE version 12 
SNP ID SNP Distance SNP Minor Allele Frequency 

cg08641951 5 ADAMTS16         

cg11940040 17 RPH3AL RPH3AL rs148422036; rs62053678; rs377214475; rs535875419 51;44;12;10 0.005; 0.05; 0.0006; 0.0006 

cg23480021 3   ZNF385D       

cg11065575 4 SHISA3 SHISA3 rs142050054; rs529887150 20;42 0.0002; 0.0002 

cg25291037 2     rs148598135; rs2315380 48;44 0.002; 0.18 

cg01079515 3   AC124944.5;AC124944.5 rs569207004 1 0.0002 

cg05074631 13 DZIP1;DZIP1 DZIP1;DZIP1;DZIP1 rs3759446 1 0.03 

cg00169354 20     rs527854346 21 0.0002 

cg18826637 2     rs576210844; rs543272142; rs561928581 9;23;51 0.0002; 0.0002; 0.0002 

cg22297055 17 SLC43A2;SLC43A2;SLC43A2 SLC43A2;SLC43A2 

rs562818385; rs531810546; rs548715581; rs568625960; 

rs534392668 24;34;43;47;50 0.0002; 0.0006; 0.0004; 0.000; 0.0002 

cg17386240 5 TGFBI TGFBI rs535789363; rs45554435 37;1 0.003; 0.33 

cg26705599 13     rs575747933; rs4773321 9;1 0.0002; 0.41 

cg12183150 2   AC097713.4;AC097713.3       

cg10187601 7 ST7;ST7 ST7 rs567883351; rs10270156 10;1 0.0002; 0.26 

cg07784975 12           

cg10482512 6 CCR6 CCR6 rs2021033 1 0.24 

cg26365090 20 TOX2;TOX2;TOX2;TOX2 

TOX2;TOX2;TOX2;TOX2

;TOX2 rs11700304; rs532615837; rs552433433; rs559654933 0;4;15;43 0.42; 0.0002; 0.0002; 0.0002 

cg22273830 17 SLC43A2;SLC43A2;SLC43A2 SLC43A2;SLC43A2 

rs562818385; rs531810546; rs548715581; rs568625960; 

rs534392668; rs376438864; rs17626180 1;11;20;24;27;33;51 

0.0002; 0.0006; 0.0004; 0.0002; 0.0002; 

0.0004; 0.33 

cg11076954 17 SLC43A2 SLC43A2;SLC43A2 rs562818385; rs531810546; rs548715581; rs568625960 28;38;47;51 0.0002; 0.0006; 0.0004; 0.0002 

https://emea.support.illumina.com/downloads/infinium-methylationepic-v1-0-product-files.html
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cg11420142 8   RP11-122C21.1 rs538253857; rs547324927; rs843071 41;9;1 0.0004; 0.0002; 0.19 

cg13989295 17 SKA2;SKA2 AC099850.1;SKA2;SKA2 rs7208505 1 0.41 

cg08230244 5 FAM13B;FAM13B;FAM13B   rs17171647; rs564191885; rs73299210 13;2;1 0.21; 0.0002; 0.09 

cg16788857 3 C3orf59   rs569935473; rs542555526; rs57896542 13;12;1 0.0004; 0.003; 0.35 

cg25621215 20   RP11-445H22.3       

cg26423139 17 SLC43A2;SLC43A2;SLC43A2 SLC43A2;SLC43A2 rs562818385; rs531810546 40;50 0.0002; 0.0006 

cg04706137 11   

RP11-867G2.8;RP11-

867G2.8 rs12365323; rs75321423 1;16 0.22; 0.005 

cg19618634 17     rs201226439; rs5821824 2;1 0.0002; 0.40 

cg10499451 19 PAPL   rs57733150; rs544470869; rs562681261; rs533152162 0;13;31;47 0.18; 0.0002; 0.001; 0.0002 

cg23246911 17 RPH3AL RPH3AL rs77845261; rs577284567; rs544356234 46;29;12 0.11; 0.0002; 0.0002 

cg02427933 20   RP11-445H22.3 rs191659354 46 0.0004 

cg08586441 4 TEC   rs140195097; rs191235412; rs184660155; rs2704433; rs3842586 1;11;13;21;39 0.0002; 0.0002; 0.005; 0.09; 0.48 

cg04885581 14 FRMD6 FRMD6 rs73292745; rs577536589; rs113737961; rs562581435 0;22;28;43 0.04; 0.0002; 0.0024; 0.0002 

cg12434901 17 KCNH6;KCNH6   rs4257270; rs192218733 1;44 0.49; 0.0002  

cg11128983 5 CPLX2;CPLX2 

CPLX2;CPLX2;CPLX2;C

PLX2 rs192385285; rs534263655; rs1366116 40;10;2 0.0002; 0.0002; 0.44 

cg07505631 3 CDCP1;CDCP1 CDCP1 rs59145932; rs7612333; rs146318958 0;32;51 0.15; 0.25; 0.0002 

cg14924512 9 EHMT1;EHMT1 EHMT1 rs35528310 1 0.06 

cg07917191 2 SLC9A4   rs59694233 1 0.14 

* SNPs with a distance of less than 10 base pairs from the CpG probe, and with a minor allele frequency of more than 0.05 are highlighted in bold. 
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8. Figures 

 

 

Figure 1. Schematic representation of the DNA methylation process of two CpGs. This figure 

was created using BioRender (https://biorender.com) (87).  

  

https://biorender.com/
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Figure 2. Flow chart for sample selection in the ANDIS (A) and ANDIU (B) cohorts. 
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Figure 3. Baseline definition and characterization of the clinical variables used for the sample 

of a subset of 487 individuals from the ANDIS and ANDIU cohorts. 
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Figure 4. Distance (in days) of the measurement of the eGFR value and the baseline (DNA 

methylation sample date) for a subset of 487 individuals from the ANDIS (A) and ANDIU (B) 

cohorts. eGFR was taken as a reference variable because it was used to define the outcome. It 

was calculated from creatinine values using the MDR-4 study equation. The distance was 

calculated individually for each patient, from the day of the blood test closest to the DNA 

methylation sample date, considered as baseline blood test, to the DNA methylation sample 

date. A negative value indicates that the blood sample was taken before DNA methylation 

sample date, and a positive value, afterwards. 

A 
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Figure 5. Tree diagram of the hierarquical cluster analysis by distance between samples (A) 

and PCA plot (B) from the genome-wide DNA methylation analyses, both performed after 

combat, showing adequate clustering of samples (487 individuals from ANDIS and ANDIU 

cohorts) by sex.  
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Figure 6. ROC curves for the association of each clinical variable at baseline and the outcome 

(DKD development after 11.5 years of follow-up), based on general logistic models in the study 

population composed by 487 individuals from ANDIS and ANDiU cohorts. 
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Figure 7. Volcano and Manhattan plots for the associations between DNA methylation at 

baseline and the development of DKD after 11.5 years of follow-up in the population composed 

by 487 individuals from ANDIS and ANDIU cohorts, adjusted for age, sex, BMI, and baseline 

eGFR, showing 129,811 significant CpG sites with p < 0.05. Red dashed horizontal lines 

indicate methylome-wide significance (q < 0.05), and red dashed vertical lines indicate cutoff 

on effect size (difference in DNA methylation). Above the horizontal red line in the Manhattan 

plot are the 56411 significant CpG sites (FDR < 5%, q < 0.05). To the left of the first vertical 

red line are the CpGs which are hypomethylated in patients who developed DKD in relation to 

patients who did not develop DKD, and to the right of the second vertical red line are the CpGs 

which are hypermethylated in patients who developed DKD in relation to patients who did not 

develop DKD Beta-coefficients in the volcano plot are shown as the difference from patients 

who developed DKD compared to patients who did not develop DKD. The 37 CpGs with effect 

size higher than 5% in both directions and q < 0.05 are identified in red. 
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Figure 8. ROC curves for the association of DNA methylation levels, measured by beta values, 

for each of the 37 CpGs with difference in methylation > 5% between patients with T2D who 

developed DKD and patients with T2D who did not develop DKD, with a significance level of 

q < 0.05 in Model 1a, and p < 0.05 in all the other models, and the outcome (DKD),  in 487 

individuals from the ANDIS and ANDIU cohorts after 11.5 years of follow-up.  
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Figure 9. Box plots for each of the identified 37 CpGs with difference in methylation > 5% 

between patients with T2D who developed DKD and patients with T2D who did not develop 

DKD in a subset of 487 patients from the ANDIS and ANDIU cohorts, with a significance level 

of q < 0.05 in Model 1a, adjusted for age, sex, BMI, and baseline eGFR, and p < 0.05 in all the 

other models.   CpGs that present a SNPs pattern. 

9. Popular Science summary 

 

Diabetes is a global health crisis, with over 537 million people diagnosed worldwide, 

causing 6.7 million deaths in 2021 alone. Type 2 diabetes (T2D) is the most common type and 

can lead to serious complications such as diabetic kidney disease (DKD), the main cause of 

end-stage renal disease globally. DKD is a significant health and economic burden. To improve 

DKD’s prediction in T2D patients, there is a critical need to develop new biomarkers.  
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Our study aimed to identify novel epigenetic biomarkers associated with the development 

of DKD in 487 newly diagnosed T2D patients who were followed up for 11.5 years. Epigenetic 

biomarkers, such as DNA methylation, refer to modifications on DNA molecules that affect 

how genes are expressed, which can be used to predict an individual's risk of developing certain 

diseases.  

Genome-wide DNA methylation analysis, which analyses 850,000 methylation markers, 

was performed for all patients at baseline, and its association with the development of DKD 

was assessed.  

37 differentially methylated CpGs (regions of DNA) significantly associated with the 

development of DKD were found. Hypermethylation in 20 of these CpGs was observed in 

patients who developed DKD. These CpGs are annotated to genes involved in critical biological 

processes, including ADAMTS16, involved in the regulation of systemic arterial blood pressure; 

RPH3AL in positive regulation of insulin secretion, and EHMT1 in DNA methylation.  

The results suggest that DNA methylation can be a potential valuable biomarker in 

predicting DKD for T2D patients. This study is the first to investigate the association between 

DNA methylation and future DKD. While the findings are promising, the study design needs 

to be refined and validated in different populations. The identification of epigenetic biomarkers 

could help to improve the risk prediction of DKD in T2D patients, ultimately leading to earlier 

diagnosis and better management of this debilitating condition. 
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