
MASTER’S THESIS 2023

Evaluation of Spot as an
instrument to provide
autonomous data collection
Amanda Zarkout, Johan Lindberg

ISSN 1650-2884

LU-CS-EX: 2023-21

DEPARTMENT OF COMPUTER SCIENCE

LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2023-21

Evaluation of Spot as an instrument to
provide autonomous data collection

Utvärdering av Spot som ett instrument för
autonom datainsamling

Amanda Zarkout, Johan Lindberg

Evaluation of Spot as an instrument to
provide autonomous data collection

(Performing object detection using YOLO and ROS at

construction sites)

Amanda Zarkout

am5425za-s@student.lu.se

Johan Lindberg

jo4875li-s@student.lu.se

June 19, 2023

Master’s thesis work carried out at

the Department of Computer Science, Lund University.

Supervisors: Volker Krueger, volker.krueger@cs.lth.se
Mathias Haage, mathias.haage@cognibotics.com

Examiner: Elin Anna Topp, elin_anna.topp@cs.lth.se

mailto:am5425za-s@student.lu.se
mailto:jo4875li-s@student.lu.se
mailto:volker.krueger@cs.lth.se
mailto:mathias.haage@cs.lth.se
mailto:elin_anna.topp@cs.lth.se

Abstract

The construction industry is one of the least digitized in the world. In this the-
sis, a method for automatic digitization using autonomous unmanned ground
vehicles (UGVs) is utilized for frequent data gathering. A problem is han-
dling the amount of data such a method produces. This thesis investigates
the use of machine learning techniques in order to automate the analysis of
gathered data. Techniques are chosen to be possible to perform online on the
UGV as an onboard semantic service but also for offline data analysis.

The UGV used in this thesis was Spot from Boston Dynamics. During
the thesis data was collected by Spot on a weekly basis on a construction
site project at Vipan in Lund. Two program plugins for Spot were devel-
oped, allowing for data gathering and data analysis using Spot on construc-
tion sites. To enable the automatic interpretation of gathered information, the
availability of Swedish construction site datasets was explored. It was found
that very little such material is publicly available. The performance of two
public datasets was therefore explored, as well as a pre-study on a collection
of new datasets. A method of using small annotated datasets for the analysis
of specific tasks was evaluated in the thesis.

Improved digitization on construction sites results in more efficient feed-
back for day-to-day progression. Some tasks at construction sites that today
are performed by workers can be risky, repetitive, dirty, and involve heavy
lifting. Using tools such as robots to automate these tasks not only makes
construction sites more efficient but also creates a safer work environment.

Keywords: Boston Dynamics Spot, construction robotics, machine learning, inspec-
tion

2

Acknowledgements

Our gratitude goes to all the people involved in this master’s thesis who made it possible.
First off would we like to thank Mathias Haage (Cognibotics) and Volker Kruger (Dept.
Computer Science, LTH) for their valuable support as supervisors during this time. Sec-
ondly, would we like to express a big thank you to Ola Nilsson (Cognibotics) for giving
us inputs and leads on valuable information about the robot. Jarkko Erikshammar (Dept.
Industrial and Environmental Construction, LTU) and Lars Stehn (Professor and Head of
Subject, LTU) for their helpful knowledge about construction sites. Lastly, a big thank
you to our examiner Elin Anna Topp (Dept. Computer Science, LTH) that was available
for advice during this master’s thesis.

3

4

Contents

1 Introduction 9
1.1 Motivation and background . 9
1.2 Purpose . 9

1.2.1 Research questions . 10
1.3 Limitations . 10
1.4 Method and outline . 11
1.5 Related work . 11

2 Background 13
2.1 Spot - An introduction . 13

2.1.1 Payload configuration . 14
2.1.2 Cameras . 16
2.1.3 Software Development Kit . 16
2.1.4 Communication with Spot . 17

2.2 Software . 17
2.2.1 OpenCV . 17
2.2.2 ROS . 18
2.2.3 Docker . 19
2.2.4 Flask . 20

2.3 Convolutional Neural Network . 20
2.3.1 Faster RCNN: Towards Real-Time Object Detection 22
2.3.2 YOLO: Unified Real-Time Object Detection 23

2.4 Datasets . 26
2.4.1 MSCOCO . 26
2.4.2 SODA . 27

2.5 GPU Accelerated computing . 28
2.6 Performance measurements . 29

3 Method 31
3.1 ROS packages . 32

5

CONTENTS

3.2 Docker . 33
3.3 The selected YOLOv7 network . 35

3.3.1 Selection of Datasets . 36
3.3.2 Annotate data . 37
3.3.3 Training . 40
3.3.4 Test . 40

4 Experiments and Results 43
4.1 Autowalk missions . 43
4.2 Frame rate experiments . 43
4.3 Data collection at Vipan . 44

4.3.1 Building a dataset . 46
4.4 Offline detection . 46
4.5 Performance of YOLOv7 . 47

4.5.1 Training . 47
4.5.2 Test . 50

4.6 Construction datasets . 57

5 Discussion 59
5.1 Autonomous data collection using Spot 59
5.2 YOLOv7 on Spot data: A Model Evaluation 60
5.3 Construction datasets . 61
5.4 Drawbacks . 62

6 Conclusion 63
6.1 Answering research questions . 63
6.2 Future Research . 65

References 67

Appendix A Explanation on flags 73
A.1 Flags in train.py and test.py . 73
A.2 Flag options to Docker . 74

Appendix B Python code 75
B.1 detect_ros.py . 75
B.2 get_image_stream.py . 80

Appendix C Training results of networks 85
C.1 SODA . 85
C.2 Vipan dataset . 86

Appendix D Software deployment 87
D.1 Commands for deploying software . 87

Appendix E Commands for YOLO 89
E.1 Training and testing YOLO . 89

6

CONTENTS

Appendix F Lessons learned 91
F.1 Experiences and thoughs . 91

Abbreviations
AP Average Precision
mAP mean Average Precision
YOLO You Only Look Once
HTML HyperText Markup Language
RGB Red Green Blue
OS Operating System
SDK Software Development Kit
ROS Robot Operating System
BIM Building Information Model

List of Terms
RPC protocol stands for Remote Procedure Call and is a software communication proto-
col. It can be used to construct distributed client-server based applications.

WSL Windows Subsystem for Linux is a feature in Windows that lets you run a Linux
distribution in addition to Windows desktop. One advantage over other virtual machines
is that WSL can access files in windows.

Overfitting is the behavior of when a machine learning model shows great results on
the data it is trained on but fails to perform at a nearly equal level on new data.

Supervised learning is a machine learning method that indicates that a network trains
on data and learns from its pattern.

7

CONTENTS

8

Chapter 1
Introduction

1.1 Motivation and background
Construction projects are prone to errors that quickly add up to large unnecessary costs
and project delays. An example of these errors can be misplaced tools, materials, and
instruments or even doors and windows built in the wrong place. In 2018 the Swedish au-
thority Boverket conducted a study, requested by the Swedish government, that mapped
these errors. The yearly costs were estimated to be in the range of 80 - 110 billion Swedish
kronor [3], more available information for project steering and overview of the workplace
could reduce some of these costs. Nowadays, construction site projects are inspected man-
ually by humans who regularly walk around the site and inspect it, then brief the workers.
This regular maintenance can introduce human errors and result in more workload. By
instead using Spot, a mobile quadruped robot, these inspections could be made more sys-
tematic and autonomous and therefore be made more often. These regular inspections by
Spot could hopefully detect errors sooner, thereby removing the fault handling costs and
making the working process more efficient.

1.2 Purpose
There are plenty of advantages when making data gathering during inspection autonomous.
Autonomous inspections enable workers to focus on other tasks instead of manually in-
specting the area, making their work more efficient and reducing human error. Detecting
errors sooner by replacing these manual inspections with more frequent autonomous in-
spections can result in cost savings and improved productivity at the construction site.

9

1. Introduction

In hazardous environments, this could also improve worker safety. For clarification,
the information provided by the more frequent autonomous inspections could help work-
ers avoid places where loose objects are placed or move loosely placed objects to a less
crowded area [25].

The purpose of this master thesis is to evaluate how well Spot as an instrument can be
used when gathering data autonomously, as well as how image data gathered by Spot on
construction sites can be used in computer vision functionalities such as object detection.
This report also investigates publicly available datasets, including construction site im-
ages, to determine the mean Average Precision (mAP) for a trained model. The real-time
aspect is discussed but not investigated any further (not included in the conclusion).

1.2.1 Research questions
Based on Section 1.2, the following research questions have been formulated, in order to
fulfill the purpose.

• What is the best practice to use a neural network such as You Only Look Once
(YOLO) on Spot?

• Can any relevant object for construction work be detected on the Swedish construc-
tion site called Vipan when using a YOLO network trained on Microsoft Common
Objects in Context (MSCOCO) data?

• What publicly available datasets are suitable for training a YOLO network and an-
alyzing image data from the Swedish construction site called Vipan?

• What is the mean Average Precision (mAP) of a YOLO network trained on data
taken from a construction environment?

• What is required for a dataset when detecting relevant objects at the construction
site Vipan?

1.3 Limitations
The initial scope was to decide on the relevant objects to detect and find an appropri-
ate training dataset suitable for construction sites. A decided object detection network is
used and trained with the chosen appropriate datasets. This study does not contain other
methods to improve the mAP for a YOLO network such as fine-tuning hyper-parameters
during training or applying other image processing methods. Worth emphasizing is that
the collection of data is limited to a specific and smaller construction site area in Sweden
and thereby is the performance of the trained model in a global aspect not investigated in
this thesis.

10

1.4 Method and outline

1.4 Method and outline
This section describes every chapter in short. Please note that the work made during this
master’s thesis has overall been experimental.

Chapter 2 introduces the robot named Spot from Boston Dynamic and other relevant
information such as an overview of the software utilized, the selected YOLO network, and
the publicly available datasets used to train the network. The chapter ends with the rele-
vant background about metrics which is used to compare and evaluate the trained models
of our chosen network.

In Chapter 3, the method and implementation of our solution are described. This
section starts with the ROS implementation followed by the selected network (YOLOv7).
The chapter also presents important aspects when training and testing three different mod-
els of YOLOv7.

Experiments and results during this master’s thesis are given in Chapter 4. This sec-
tion describes how Spot’s autowalk missions worked, as well as a frame rate experiment
for Spot’s hand camera. The performance score in the form of the mAP is presented for
the three models, both during training and testing.

The final implementation is then presented and the research questions are discussed.
The mAP scores are analyzed here for the three models.

Finally, a conclusion is made of this thesis where the research questions are answered
and future work is discussed.

1.5 Related work
Some related works in the field of construction have been found in this thesis and by
investing in modern technologies such as robotics, Drone Technologies (DI), the Inter-
net of Things (IoT), and artificial intelligence (AI), construction companies can improve
productivity and safety while reducing costs. Furthermore, several datasets have been de-
veloped and used to train AI models that can detect various objects on construction sites.
In the academic world there has also been some research including construction site ap-
plications.

In the master’s thesis "Building dense reconstructions with SLAM and Spot" [23] the
writer explored dense recognition to reduce errors on construction sites with the help of
the exact same model of Spot. This thesis included helpful information about the robot’s
different hardware parts and an insight into the working process at construction sites.

In another master’s thesis "Construction Supervision with Augmented Reality" [12]
the writer used partly the mobile robot Spot from Boston Dynamics for supervision tasks
at construction sites with simulations in Gazebo. Gazebo is software that provides a plat-

11

1. Introduction

form for simulating and testing robots in a virtual environment.

In the article "SODA: A large-scale open site object detection dataset for deep learning
in construction" [9] the authors describe their building of a comprehensive image dataset
for a construction site. The category selection for this dataset includes 15 selected objects
and it gave us valuable information about our algorithm selection.

The article "Development of an Image Data Set of Construction Machines for Deep
Learning Object Detection" [44] is an article describing a case study on developing a
dataset valuable for construction sites. The dataset is called ACID and is focused on 12
different types of construction machines. To demonstrate the datasets functionality the
authors trained four object detection models on the developed dataset and tested the mod-
els performance. The article also includes the methodology for collecting and curating a
dataset for deep learning applications.

In the paper "Fast Personal Protective Equipment Detection for Real Construction
Sites Using Deep Learning Approaches" [42] published in 2021 the authors dedicated a
high-quality dataset to detect Personal Protective Equipment PPE for the goal to improve
safety at construction sites. This open-source dataset includes images of six objects to
detect. These objects are helmets (in four colors), persons, and vests. This paper also
focuses on training and analyzing different models of YOLO with the constructed dataset
they called CHV (Color Helmet and Vest).

"Internet of Things (IoT) based Smart Helmet for Construction" [25] is an article
describing a helmet that is used to provide safety, management, and efficiency at a con-
struction site. Two sensors are enabled on this smart helmet, one GPS sensor and another
for gas and smoke detection. Real-time signals are constantly sent from these sensors
wireless to a single computer.

In the study "Applications of Drone Technology in Construction Industry: A Study
2012-2021 " by Gayatri Mahajan [21] the author gives a comprehensive background of
the use of drones in the construction industry. For example are drones used for optimiza-
tion and safety improvements. Both the evolution of drone technology and its adoption
in the construction industry such as its advantages and disadvantages are explained. The
impact when applying drone technology in the construction industry is also treated.

12

Chapter 2

Background

2.1 Spot - An introduction

Spot is a robot by Boston Dynamics. It uses five projected stereo cameras around its body
and three integrated sensors in the mounted arm, a Time-of-Flight camera, an inertial
measurement unit and a 4k RGB camera. Communication can be handled with both WiFi
and Ethernet, allowing to collect data off and on the field. The robot has a maximal speed
of 1.6 m/s. Different movement modes such as crawl, sit and walk, both in stairs and
on other terrains can be adjusted on the tablet when controlling it manually. The robot
is able to avoid obstacles in all modes automatically. Autowalk missions can be set by
putting fiducials, nodes which will help the robot locate its position, it will then sense its
way by using the depth information from the Lidar or the stereo cameras. These autowalk
missions are saved as maps on the tablet and can be replayed on demand. Spot has a
lithium-ion battery that is latched underneath its four legs. A fully charged battery lasts
for about 90 minutes under normal operation and 180 minutes when the robot sits down
[35]. It takes approximately two hours to fully charge the battery. In this master’s thesis a
specific model of Spot was used called Explorer.

13

2. Background

(a) Spot from the side. (b) Spot’s front side

(c) One stereo camera
from Spot’s side.

(d) Power and motor
button.

Figure 2.1: Figures of Spot and its hardware features.

2.1.1 Payload configuration

Payloads such as the Spot Arm and an industrial PC called Spot CORE can be mounted
to better fit the customers’ needs. In addition to these two payloads, a Velodyne VLP-16
LiDAR is mounted on top of the Spot CORE. Also for extra data collection, an iPhone
13 Pro is mounted on top of the Lidar, see Figure 2.2b. Detailed descriptions of the
used payloads are given below. The total weight of payloads must not exceed 14kg. The
robot has two DB12 payload ports on its back that supply power, communication, time-
synchronization, and safety system integration.

14

2.1 Spot - An introduction

(a) DB12 port on Spot. (b) Payloads on Spot.

(c) Hand camera. (d) Front cameras.

Figure 2.2: Spots cameras, payloads and port.

Spot CORE Spot CORE is a small PC used for additional computing capability, data
interfaces, and network [36]. The hardware consists of an i5 Intel

®
8th gen with 16GB

of RAM and a 512GB SSD. The operating system installed is Ubuntu 18.04 LTS 64-bit.
The CORE has an auto power setting which is turned on when the blue colored button on
the robot’s rear side is pressed, see Figure 2.2d. Boston Dynamics offers 3 types of Spot
CORES, Spot CORE(the one used in this master thesis), Spot CORE AI, and Spot CORE
I/O. Spot CORE comes with a Cockpit installation, and a web-based graphical interface
for servers. Cockpit makes interacting with the CORE more intuitive by providing easily
accessible information on the CPU usage, network setup, and an overview of docker im-
ages and containers, see Figure 2.3.

15

2. Background

Figure 2.3: Interface for Docker in Cockpit

Spot Arm An arm with a gripper is applied to Spot. Inside the gripper Spot’s three
integrated sensors are placed, see Figure 2.2c). The arm has six degrees of freedom and
the upper half of the gripper can be opened 90°. This lets Spot perform tasks such as
opening doors and extending the reach of the robot. It also contains the only built-in color
camera.

2.1.2 Cameras
Multiple cameras are available both internally and externally.

Stereo Cameras Five stereo cameras are built into the body where every stereo camera
includes a "fisheye" camera and a depth camera. These cameras have a relatively short
baseline and are useful for depth computation. As they only capture grayscale images
they are not used in this master thesis apart from early testing.

Hand sensors The Spot hand is equipped with three sensors, an 4K RGB Max camera
field of view (FOV), an Inertial Measurement Unit (IMU) and a Time of Flight-camera
(ToF) [6].

IPhone camera An iPhone 13 Pro can be mounted on top of the LiDAR for extra data
collection, see Figure 2.2b. The camera can record in 25-60 frames per second in both
HD and 4K. In this thesis, the iPhone is set to 30 frames per second and HD. This frame
rate was set due to the frame rate experiment that is presented in Section 4.

2.1.3 Software Development Kit
Boston Dynamics provides a Software Development Kit (SDK) to make it easier to de-
velop applications and software for running directly on Spot. It is available as a Python
API, the software used in this thesis relies on SDK version 3.2. The API is divided into

16

2.2 Software

three main parts; core, robot, and autonomy [7]. Core handles low-level functions such
as authentication which is needed to access higher-level functions. The robot part of the
SDK handles for example data acquisition and basic control of the motors. The image
sources are used to capture multiple images which are accessed through Spot with a sin-
gle RPC(Remote Procedure Call) request [37]. The autonomy part handles higher-level
calls like choreography and has not been explored in this thesis. The choreography SDK
contains an API protocol and a Python client library to communicate with Spot. This in-
cludes functions like automatic docking and programmable dance routines. The interested
reader is referred to [10].

2.1.4 Communication with Spot
A network connection is needed for communicating with Spot. This can be done by an
Ethernet cable in the RJ-45 port or through the onboard WiFi access point. The Spot
CORE is connected to Spot’s network through the DB-12 payload connection. Network
ports from Spot are forwarded to the Spot CORE, see Figure 2.4.

Figure 2.4: Some of the forwarded network ports from Spot to its
payloads, Figure taken from [33]

2.2 Software
Python 3.8 was used in this master’s thesis as it is the latest version supported by Boston
Dynamics Python client library [34].

2.2.1 OpenCV
OpenCV is a large open source computer vision library with over 2500 optimized algo-
rithms [4]. These algorithms range from simple ones like rotating images to more com-
plicated ones such as corner detectors and encoders. The used Python interface OpenCV
uses its own image object that stores pixel information in a format of the type numpy
array [15]. OpenCV enables various types of data structured matrices. A colored image
uses three 8-bit unsigned values per pixel to describe the color channels, red, green, and
blue. OpenCV uses the color order BGR (Blue Green Red). The namespace cv is used
to define the classes and functions in the OpenCV library. Examples of those functions
are the blur() function and a Gaussian filter function. Video analysis is also a great area
of use. Operations on a video such as writing, viewing, and reading are possible as well
as extracting individual frames [4]. The specific version used for OpenCV in this master
thesis is 4.6.0.

17

2. Background

2.2.2 ROS
ROS 1 is used with the distribution Noetic Ninjemys. The Robot Operating System or
ROS is, although its name, not really an operating system in the traditional sense but
rather a communications layer above the host operating system [26]. ROS is designed
with a peer-to-peer topology to avoid the necessity of a central data server which can
be problematic in systems with multiple hosts. This topology is made possible with the
lookup mechanism called master which lets different processes find each other at runtime.
These processes are in ROS called nodes and are basically software modules that perform
computations. Nodes in turn can communicate by publishing and subscribing to top-
ics where messages are sent. Messages are strictly typed data structures where standard
primitive types such as integers and booleans are supported, as well as arrays.

ROS bridge to OpenCV

Figure 2.5: Connection between
OpenCV and ROS [22].

ROS uses its own message for-
mat to send image data in top-
ics. This data type is not al-
ways practical in applications us-
ing the computer vision library
OpenCV as these are not compat-
ible. ROS does provide an inter-
face between ROS and OpenCV
called CVBridge, this makes it
easy to convert back and forth
from ROS image messages to
OpenCV images [22], see Figure
2.5.

Rosbags

The ROS package rosbag can be used with simple command-line instructions to collect
data published in active ROS topics. From these rosbags the data can be extracted for later
use [39]. Useful commands can be to compress/decompress bagfiles and encrypt/decrypt
them. The key commands used in this master thesis are:

• rosbag record -a Record a bag file by subscribing to a specified topic. The flag -a
means that all topics are being recorded.

• rosbag play <bag name>.bag Play back the contents of one or more bag files in a
time-synchronized fashion.

• rosbag info Summarize the contents of one or more bag files. Below in Figure 2.6
is an example of what this can look like.

18

2.2 Software

Figure 2.6: An example output when using the command rosbag
info. The recorded topics are listed at the bottom.

2.2.3 Docker
Docker is an open-source project for packaging software into isolated containers. Un-
like many other virtual machines Docker, shares the Linux kernel with the host machine.
Docker must therefore be based on a Linux system or subsystem such as Windows Sub-
system for Linux. The four major parts of the docker used in this project are files, images,
containers, and volumes. The Dockerfile provides simple instructions that define how the
image should be built. These instructions are written in a syntax very similar to shell
scripts in a Linux environment. This makes them relatively easy for users to both read
and write [2]. Images in Docker are built on top of base images available on Docker hub,
a website similar to GitHub. Conveniently, many ROS distributions are available as base
images. Instructions are then given in the Dockerfile to install and set up all necessary
software as well as how to copy the local directories needed for the project [43]. With the
Dockerfile ready a simple command builds the image that then can start a container on
the local machine or be zipped and transferred to a different host. This ability to test and
later transfer makes it possible to develop on a separate machine before deployment to
the intended machine [2]. Network ports can be forwarded from the host to the container,
this lets the container communicate via the network. Files created in a Docker container
are normally only available inside that container. By using Docker volumes it is possible
to save data to a directory that is shared by the container and the host’s file system [8].

19

2. Background

2.2.4 Flask

Flask is an easy-to-use framework for developing web applications. A Flask app is started
in a Python script and web browsers can then send requests. These requests can in turn
activate methods within Python [13]. Web applications can be rendered using HTML
from which one can send requests to the server by pressing buttons. Flask comes with a
built-in server, this is not suitable for production but small-scale projects can use it to host
the Flask app.

2.3 Convolutional Neural Network

CNN or Convolutional Neural Networks is a supervised deep learning algorithm. A su-
pervised learning technique uses labeled input data and output data. The convolutional
neural network is then trained on a labeled dataset (see Section 2.4 for the definition of a
dataset). Based on the characteristics of new data, the CNN model will be able to classify
similar data after training. An example of supervised learning can be training a CNN that
after training is capable to classify objects in images into different categories, such as a
dog or a cat. The architecture of a typical neural network is inspired by our human brain
cells called neurons [29]. The network has a collection of these artificial neurons, also
called units, see Figure 2.7. These neurons in deep neural networks such as CNN:s are
often structured and combined in an input layer, an output layer, and some hidden layers,
see Figure 2.8.

Figure 2.7: Architecture of a general unit. Highlighting input
values (x0, x1, ..., xn), bias (b), weights (w), weighted sum(

∑
), ac-

tivation function (
∫

), and output signal (y). Observe that a neuron
can have multiple output values pointed to other neurons.

20

2.3 Convolutional Neural Network

Figure 2.8: A deep neural network(Sarker, Iqbal H. p.6, Figure
5b) [30]).

A general CNN model can be split into 4 parts (these 4 parts refer to the hidden layers
of the deep learning model, see Figure 2.7), convolutional layers, pooling layers, activa-
tion function, and fully connected layers, see Figure 2.8 for an overview.

Convolutional layer is used to recognize features in an image. Different filters, in-
cluding weights, are used in the different layers with convolutional operations to create a
so-called feature map that reflects where in the image there is an activation of local fea-
tures.

Pooling layer or sub-sampling layer, is used to reduce the number of trainable param-
eters, which in turn reduces the computation amount by the neural network to process.
Pooling also preserves spatial invariance. Max-pooling is one example of a pooling tech-
nique where the output will be downsampled, see Figure 2.9.

Activation function decides whether a neuron’s input is essential or not and thereby
activates it. Worth mentioning is that these neurons in the hidden layers are locally con-
nected, meaning it only takes a patch of the image and looks at it. Examples of some
of these functions are Sigmoid and Rectified Linear Unit (ReLU). ReLU introduces non-
linearity into the system and makes it more efficient under training.

Fully connected layer can be used for different tasks. For example, a fully connected
layer can combine these features created by the previous layers and prepares the CNN for
classification tasks [16]. The neurons in a fully connected layer are connected to all the
other neurons in both the previous layer and the next layer.

In the subject of using object detection, this structure of the network dramatically
reduces parameter space and optimizes the training process. Today CNNs are used in
many computer vision applications such as image classification, object detection, etc.
Implementations of CNN into network architectures have been widely used [16]. For
example, the YOLO network is built with convolutional layers, see Figure 2.11.

21

2. Background

Figure 2.9: Example of the input and the resulting output using
max-pooling in 2D. The operation provides a 2x2 filter with a
stride of 2 where the stride size is how many steps the filters will
shift over the input.

Figure 2.10: Here is a picture of YOLOv1(Redmond et al., p.3,
Figure 3 [27])

2.3.1 Faster RCNN: Towards Real-Time Object Detec-
tion

Faster RCNN (Region-based Convolutional Neural Network) was a candidate when se-
lecting an appropriate object detection model. This network is an extension of the first
RCNN and can be used to perform object detection tasks. The article "Faster-RCNN:
Towards Real-Time Object Detection with Region Proposal Networks" [31] describes the
two-stage object detection model. The two-stages first begin with a Region Proposal Net-
work, RPN, that proposes relevant regions in an image likely to include any object to
detect. The second stage takes the information from the RPN stage and as a result, gives
the necessary information to detect objects. This artificial neural network is known for its
high accuracy in object detection tasks but has the disadvantage of being slower than for
example YOLOv7 (see Section 2.3.2).

22

2.3 Convolutional Neural Network

2.3.2 YOLO: Unified Real-Time Object Detection
From the objective of this master’s thesis, a subgoal has been to perform real-time object
detection using different trained models on the robot’s portable PC (Personal Computer).
The YOLO (You Only Look Once) model, known for its exceptional performance in real-
time object detection, has been a big part of this study. This network is designed to quickly
identify objects in an image and is a so-called single-stage object detector [32]. Object
detection models with two stages, such as Faster R-CNN, are also available but only near
real-time functionality (The interested reader is referred to this article [31] to know more
about Faster R-CNN). A first-stage object detector, such as YOLO, is designed to predict
all objects in one evaluation [27]. YOLO is bad at predicting objects in new environments
since the data the network trains on is hard to make general. The model also makes more
localization errors (compared to Fast R-CNN) but is less likely to predict false positives in
the background. The model reasons globally about the images when making predictions,
meaning it looks at the whole image at test time. The approach for detecting objects can
be divided into 3 steps [27]:

1. Resize
2. Run convolutional network
3. Non-max suppression

To explain the steps above, the system starts with a re-scale of the images with a di-
mension of 428x428. The next step is to run the image through a convolutional network
once before making non-max suppression to erase the multiple bounding boxes detected
by the network. See the subsection below to know more about non-max suppression.

YOLO has a big family of object detection models. The model used in this master’s
thesis is YOLOv7 with the architecture of the tiny variant. The tiny variant has 6.1 million
parameters and uses leaky ReLU as the activation function while the other variants of
YOLOv7 use SiLU as the activation function [41]. As a result of fewer layers, the tiny
model predicts faster but is less accurate.

Figure 2.11: Timeline of YOLO versions. Observe that YOLO
version 8 was released later in this master’s thesis (Terven and
Cordova-Esparaza., p.2, Figure 1 [38]).

23

2. Background

Bounding boxes

The model uses a technique of dividing the image into grid cells to predict the bounding
boxes. A demonstration of this technique is interpreted in Figure 2.12 where an example
image is partitioned into a 4x4 grid. Observe that the grid size can be set by the developer
and is not fixed. A grid cell is responsible for detecting and locating the object contained
within it. For clarification, objects are contained in a grid cell if their centers are placed in
that grid cell. The model detects an object with the help of bounding boxes and one grid
cell can predict multiple bounding boxes. A bounding box is a colored box in the image
enclosing the object. Figure 2.13 shows an example of bounding boxes. Each bounding
box has five parameters and additional class probabilities which are provided as a vector
for the model. These vectors have the same appearance as the vector given in Figure
2.12. The first five parameters include the box coordinates of its center in (x, y), the width
w of the box, the height h of the box, and at last the confidence score. The confidence
score is a score that tells us the accuracy of that specific class in combination with the
accuracy that the box contains any object at all. Formally this score can be expressed
with Equation 2.1 taken from the original article [27]. During test time the model makes
use of Equation 2.2 where Pr(Classi|Ob ject) are the conditional class probabilities [27].
Multiplying the conditional class probabilities with Equation 2.1 results in a right hand
side of class-specific confidence scores calculated for a grid cell regardless of the number
of predicted bounding boxes. Observe that in Equation 2.2 is the Intersection Over Union
method is applied (IOU truth

pred) when making these calculations. This method is described
in more detail in Section 2.3.2. The resulting vector will have the same appearance as in
Figure 2.12.

Pr(Ob ject) ∗ IOU truth
pred (2.1)

Pr(Classi|Ob ject) ∗ Pr(Ob ject) ∗ IOU truth
pred=Pr(Classi) ∗ IOU truth

pred (2.2)

Figure 2.12: Example of one vector for a grid cell. One grid cell
can have multiple bounding boxes with calculated bounding box
specifications and confidence score. The class-specific confidence
scores are the same for all alternative boxes.

24

2.3 Convolutional Neural Network

Non-max Suppression

As discussed in the earlier section this algorithm can predict multiple bounding boxes
created for one object and non-max suppression solves this problem by leaving the most
appropriate and accurate bounding box as a result. The technique is the final step of the
YOLO algorithm and involves filtering out the redundant bounding boxes in two steps.
The non-max suppression method is applied for each category (or class) specified by the
developer.

1. First, it discards all the bounding boxes with a confidence score lower than a spe-
cific threshold.

2. While there are any remaining boxes around an object, the algorithm will pick the
box with the largest confidence score and set it as a prediction (also called the ground
truth). The IoU (Intersection over Union) method is then applied which is a similarity
measurement to compare 2 shapes against each other, in our case two bounding boxes.
The IoU method is calculated by taking the intersection area I over the union area U, see
Equation 2.3 [28]. The equation can also be explained as taking the overlap between two
bounding boxes A and B (corresponding to letters A and B in Equation 2.3 where one of
these two letters is the ground truth box) and dividing it by the total area of them both
together. A high IoU value implies that 2 boxes overlap more than a lower IoU value.
If the IoU for a specific box goes over a certain threshold, the technique will suppress
that box. After several iterative rounds of comparison and rejection, ideally, only one
bounding box will remain for an object. An example of the result can be seen in Figure
2.13. A threshold of the overlap is decided manually by the developer. A higher threshold
will result in more accurate detection because the predicted bounding box will have a
larger area of intersection with the ground truth box.

Figure 2.13: Example of the result using non-max suppression
when detecting a car [?].

25

2. Background

Figure 2.14: Illustration of the IoU which refers to Equation 2.3.
The blue area in the numerator is the area of overlap while in the
denominator, the gray area is the area of union.

IoU=
Area of Overlap
Area of Union

=
|A ∪ B|
|A ∩ B|

=
|I|
|U |

(2.3)

2.4 Datasets
Datasets are a collection of images provided for some machine learning models to learn
from. A dataset is split into three parts; a training set, a validation set, and a test set.
The training and validation parts can be used during the training of a deep learning model
such as the YOLOv7 network. The test set is later used for testing the model with its
already provided weights. A network model such as YOLOv7 can either be used in a pre-
trained state or trained on a suitable dataset. A pre-trained state means that the weights are
already provided and are used for the network to detect (see Section 2.3 for a definition
of weights). A short summary of the datasets used in this thesis is given below.

2.4.1 MSCOCO
MSCOCO stands for Microsoft Common Objects in Context and is a dataset including
80 object types and 2,5 million labeled instances in 328K images. These images contain

26

2.4 Datasets

everyday scenes of objects in a natural context and focus on segmenting individual object
instances [20]. A per-instance segmentation technique was used to more accurately locate
objects in the images. Below, the reader can find some of the annotated images in this
dataset 2.15. Details can be found in [20].

Figure 2.15: Here is a picture of some of the classes in the dataset
taken from [20].

2.4.2 SODA

SODA, or Site Object Detection dAtaset, is a dataset containing images taken from con-
struction sites in Guangzhoy, China [9]. The set includes just under 20000 images and
around 286000 annotated objects. The objects are annotated using bounding boxes and
the dataset is fully prepared to be used when training a YOLO network. Fifteen different
objects are used as classes, examples of them can be seen in Figure 2.16. SODA is divided
into 4 categories and 15 labels visible in Table 2.1.

27

2. Background

Figure 2.16: Examples of the classes included in SODA [9].

Table 2.1: Table of the four categories and 15 objects in SODA.

Category Labels

Worker person west helmet
Material brick wood board rebar scaffold
Machine handcart cutter ebox hopper hook

Environment fence slogan

2.5 GPU Accelerated computing

Since the beginning of the 21th century GPU accelerated computing has been made more
and more accessible through software environments such as NVIDIA’s CUDA. The big
advantage of performing computations on a GPU rather than a CPU is the ability to par-
allelize the tasks [24]. Even though the family of YOLO networks is designed to run on
GPUs, attempts have been made to create versions that function with CPUs. Both possi-
bilities will be explored in this thesis and will be referred to as online (on the robot) and
offline (on a separate computer with a GPU).

28

2.6 Performance measurements

2.6 Performance measurements

Table 2.2: Table of the terms used in the formulas below.

Term Explanation

TP - true positives, meaning the quantity of correctly classified data
FP - false positives, meaning the quantity of wrongly classified data
TN - true negatives, meaning the quantity of the correctly classified non-data
FN - false negatives, meaning the quantity of wrongly classified non-data

To understand how good predictions an artificial neural network is achieving some per-
formance measurements will be applied. Some terms used in the formulas are explained
in Table 2.2.

Precision is the accuracy of the positive predictions [14]. The positive predictions are
the data with one specific label (class). An example can be looking at the classification
of predicted dogs when the dataset includes all kinds of animals (cats, dogs and hamsters
etc.). The formula can be expressed by:

precision=
T P

T P+FP
(2.4)

Recall (also called sensitivity) is instead, explaining with the same example as above,
out of all dog truths how many the classifier got right. The formula is:

recall=
T P

T P+FN
(2.5)

f1-score is a combination of precision and recall (also called the harmonic mean). It
gives more weight to low values and measures the balance between precision and recall.
The formula is:

f 1 − score=
2

1
precision+

1
recall

=
T P

T P FN+FP
2

(2.6)

Observe that a high f1-score is given when precision and recall are similar in value to each
other.

AP (Average Precision) is basically the area under the precision-recall curve (preci-
sion on the y-axis and recall on the x-axis.). This performance score is calculated class-
wise.

29

2. Background

mAP (mean Average Precision) takes the mean of all classes average precision. Some
commonly used expression is mAP@0.5 and mAP@05-0.95. It indicates the decided
IoU-threshold explained in Section 2.3.2.

Confusion matrices are used to illustrate how many predicted items or classes were
correctly and incorrectly predicted in the form of a table. Figure 4.4 shows an example
of how such a table could appear. The vertical axis presents what the model predicts
and the horizontal the actual true classes. Observe that the confusion matrices in Section
4 are normalized and are given in percent ranging between [0-1] with 1 as 100%. The
confusion matrices given in the result of this master’s thesis have an extra column and
row with background- False Negatives and False Positives which shows the performance
of background objects in images both missed by the network and wrongly classified as
them.

30

Chapter 3

Method

This chapter describes the developed software and how the different tools are used. In
Figure 3.1 the general structure is shown.

Figure 3.1: Structure of implemented software on Spot

31

3. Method

3.1 ROS packages
Three ROS packages were developed, the Data collection package records image data
from Spot’s gripper camera and stores it in a rosbag. The Offline-YOLO package per-
forms object detection on recorded data without needing access to Spot. The final Pack-
age, Online-YOLO, is deployed onto Spot CORE and performs live object detection. All
python scripts mentioned in this section are included in Appendix A.2. The software is
available upon request.

Data collection The package contains the Spot SDK, Flask app, and a ROS node
called get_image_stream.py. This node creates a bosdyn client, robot, and image client
through the SDK. Authentication credentials are passed in as arguments in the ROS
launch file. Images from the hand color camera are then queried at a rate of 30 hertz
and bridged from cv2 images to ROS image messages and finally published in the topic
/spot_hand_rgb. The ROS structure is shown in Figure 3.2.

Figure 3.2: Graph of the ROS nodes and topics in the Data col-
lection package

Offline-YOLO The purpose of this package is to perform detection on a separate com-
puter. This is needed partly because the image data from the iPhone is not in any way
connected to ROS. But it also allows data gathered by the gripper camera to be processed
with a faster frame rate of 30 fps thanks to GPU-accelerated computers.

As there is no video feed from the robot in this case the data needs to be published by
other methods. For data gathered using the Data collection package this is done by simply
playing the rosbag. Video files from the iPhone require an additional python script. We
called this script pub_video.py, it uses the OpenCV function VideoCapture to read the
video file frame by frame. Each frame is then published in the ROS topic /spot_hand_rgb.

The YOLO network node is based on a git project [11] where most changes were
made in the launch file that starts the YOLO script (detect_ros.py). This node sub-
scribes to /spot_hand_rgb and performs the detection according to the theory in Section
2.3. Images with added bounding boxes are then published in a new topic called /y-
olov7/yolov7/visualization.

32

3.2 Docker

To view or save the new images two additional Python scripts were written, one which
displays images (show.py), and another that saves them to an mp4 file (save.py). Both of
these scripts subscribe to the topic published by YOLO.

Online-YOLO The final package is made to be deployed on Spot CORE and performs
the detection live. It is a combination of the first two packages. Images are queried from
the SDK and published as in the Data collection package, the YOLO node described in
the Offline-YOLO package performs the detection. This results in two topics where image
messages are being published, both are recorded in a rosbag, see Figure 3.3.

Figure 3.3: Graph of ROS nodes and topics in the online package

3.2 Docker
Docker was used to develop and test the software on a separate machine as deploying to
Spot after each change would be very time-consuming. The Docker images were built
using a ROS-noetic base image that includes Ubuntu 20.04 as well as instructions on
how the ROS workspace should be setup. The image also comes with Python 3.8.10
installed, onto which all necessary Python packages, including Spot SDK, were installed
using pip. Observe that the Python library in the SDK is used to collect sensor data from
Spot. A network port was exposed to make communication with the Flask app possible.
A Python script that starts the Flask app and hosts it through the built in server was set as
the standard command.

As both the Data collection and Online-YOLO package are to be deployed onto the
Spot CORE, Docker images are built for each package. The specific commands used to
deploy the software can be found in Appendix D.

33

3. Method

Human machine interface - Flask app

A Flask app was included in each docker container to simplify the control when using
software on the robot. Making the app accessible to other devices on the network requires
a public IP address. As the Flask app is hosted inside the docker container which does not
have its own public IP, network ports were forwarded, see Table D.1. Shortcuts to these
IP addresses are saved on the tablet to make them easily accessible.

Data collection The Data collection app shown in Figure 3.4 has two pages with one
button on each page. Clicking the green Start button launches get_image_stream.py and
creates a rosbag that records data from all Ros topics. Clicking the red stop button will kill
and save the Rosbag using the current time as name and store it in the Docker volume, it
also kills the data collection. By clicking the button on one page the other page is loaded,
this makes it possible to record multiple Rosbags.

Online-YOLO This Flask app functions mostly in the same way as the first. When
pressing Start Rosbag in Figure 3.5a data collection, the YOLO node and a Rosbag are
started and data is recorded. Stop in Figure 3.5b saves the Rosbag and the home page
is loaded. Detect Photo button takes one photo and uses Yolo to detect objects and then
shows the result directly in the Flask app, see Figure 3.6.

Figure 3.4: Flask app in the Data collection container

34

3.3 The selected YOLOv7 network

(a) Home
page with
the two
options

(b) Button
to stop the
recording

Figure 3.5: Flask app in the Online-YOLO container

Figure 3.6: A photo taken by Spot’s hand camera, viewed on the
Flask app.

3.3 The selected YOLOv7 network
As informed in the background was YOLO the most appropriate decision for this master’s
thesis. This is because the real-time performance was an aim of this study and therefore
was speed essential before accuracy. The Faster RCNN network did have greater detec-
tion accuracy compared to the YOLO network but lacked in speed instead. The chosen

35

3. Method

version 7 of YOLO was decided because it was the version with the highest accuracy and
speed according to its article [41].

All training and offline testing of YOLO was done on a desktop PC with an NVIDIA
GeForce RTX 3070 graphic card.

3.3.1 Selection of Datasets

As mentioned in Section 2.4, the two publicly available datasets used are MSCOCO and
SODA. MSCOCO is a staple in object detection and is often used to test these kind of
neural networks. As MSCOCO does not include many classes found on construction
sites we needed to find a more suitable dataset. When searching for such datasets the
requirements were:

• Objects must be labeled with bounding boxes in such a way that a YOLO network
can be trained

• The majority of images must come from construction sites

• The annotated objects should be found at Vipan

Google was used with the search terms "construction site dataset", "yolo dataset con-
struction site" and "yolo dataset construction material". The different datasets are shown
in Table 3.1. All these datasets fulfill the first two requirements. After studying the cat-
egories and images in the datasets it was clear that SODA included the most objects that
could be found at Vipan. Additionally it was of special interest to detect material at the
construction site according to experts in the field from LTU.

Table 3.1: Construction datasets annotated for YOLO

Dataset Categories Images Classes

SODA [9] Worker, Material, Machine and Environment 19846 15
CHV [42] Color helmet and Vest 1330 6
ACID [44] Large Construction Machines, Vehicles 10000 10
MOCS [45] Large Construction Machines, Vehicles 41668 13

To be able to test the SODA dataset on images from Vipan, a custom dataset needed
to be annotated. This same dataset was also used to train a YOLO network that was
evaluated.

36

3.3 The selected YOLOv7 network

3.3.2 Annotate data

Figure 3.7: Example images of the test data at Vipan.

To annotate data, 148 pictures were selected from four rosbags and two iPhone videos
which were extracted into images. Further annotation of 50 images was provided for test-
ing the networks against each other (Vipan and SODA weighted networks). The extracted
iPhone pictures were in JPG format and the rosbags were extracted in PNG format. Worth

37

3. Method

mentioning is that both the rosbags and iPhone videos were selected on different weeks
and thereby in various stages of the project at the construction site building. A drawback
that comes from taking all data from a small area such as Vipan is that the variation in
the scenery is reduced. This leads to a not so general network that will not perform well
on data taken at a different site. To increase the general performance of the network, im-
ages were selected with variations in the following areas; content, time period, angles of
objects, and lighting conditions. For a more generalized dataset, this list of rules could
include different phases of construction, image sources, and time of day. See Figure 3.7
for example images of these. The program used to annotate was a git repository and can
be found here [17]. See Figure 3.9 for an example of how the boxes were drawn.

The rules for annotating the data are mostly taken from the SODA article [9]:

• The boxes were drawn so that they enclose the whole object. An example can be
found in the upper left three smaller pictures in Figure 3.8.

• Objects that are not visible or covered with at least 50% on the images were not
annotated. An example of this kind of scenario can be found in Figure 3.8 to the
right. The boxes that are red are not supposed to be annotated but the blue one is
correctly annotated.

• Objects that are too blurry are not included as an annotation. The reason that the
blurry images are excluded depends on the difficulty to annotate objects but also on
the training effect of the deep learning model.

• Objects of the same class that are put in the same area but separated in for example
boxes are not annotated as one object. See the example in Figure 3.8 in the two left
images.

38

3.3 The selected YOLOv7 network

Figure 3.8: Example of annotation standard taken from SODA
article (Duan et al., p.7, Figure 7) [9].

Figure 3.9: Example of the labelImg program. The text files
created after every box were chosen in YOLO and the classes
were fixed in a specific order.

39

3. Method

3.3.3 Training

Two networks were trained during this master’s thesis, the first using a dataset called
SODA and a second on a custom dataset. Both used the tiny model of YOLO as this per-
forms better on CPUs. Table 4.4 and 4.5 were given after running train.py, the commands
can be found in Appendix E.

Custom dataset was later used for training after providing annotations to test the
SODA network on our own data at Vipan. The difference is the changed batch size (look-
ing at the amount of data of 148 versus the SODA dataset of around 20 000 images).

When training the custom dataset 148 images were annotated and divided into 123
training images and 25 validation images. Below is the division of the annotated cate-
gories.

Table 3.2: Table of the division of labels in validation data.

Class Labels

All 49
Person 4
Helmet 4

Vest 4
Scaffold 0
Fence 0
Board 18
Wood 4
Rebar 3
Ebox 3

Hopper 5
Brick 4

Handcart 0
Hook 0

Slogan 0
Cutter 0

3.3.4 Test

Testing both the SODA dataset and custom dataset was done with test.py from the git
repository [11]. These tests were done on 50 different annotated images from Vipan.
Observe that the mAP results are dependent on the IOU threshold which is set to 0.65.
From test.py were Table 4.6 and 4.7 provided and given in Section 4.

Test results with data only taken from the construction site at Vipan. See Table 3.3 for
the division of labels in the test data.

40

3.3 The selected YOLOv7 network

Table 3.3: Table of the division of labels in test data.

Class Labels

All 131
Person 23
Helmet 18

Vest 22
Scaffold 3
Fence 5
Board 19
Wood 14
Rebar 8
Ebox 3

Hopper 8
Brick 5

Handcart 3
Hook 0

Slogan 0
Cutter 0

41

3. Method

42

Chapter 4
Experiments and Results

4.1 Autowalk missions
As described in Sect. 2.1 the autowalk missions are recorded and saved as maps on Spot.
A hardware limit restricted the use of the arm during autowalk missions for the Explorer
model of Spot. This restriction included the image data stream from the RGB camera.
Due to this, all data gathered was done during the manual control of Spot.

4.2 Frame rate experiments
In early tests, it was noticed that the frame rate fluctuated when the recording was done
at too high a rate. It was necessary to find a reliable frame rate that produced the same
frame rate set in Python. This was tested by creating three Docker images with the Data
collection package inside. Rosbags were then recorded and the frame rate was calculated
by dividing the number of frames by the duration. Table 4.1 shows the result. Further-
more, the decided frame rate was set to 30 frames per second (fps) in all future Docker
images.

Table 4.1: Tested frame rates and resulting fps

Set fps Duration (s) Frames Resulting Fps

15 216 3249 15.0
30 85 2563 30.2
45 176 6501 36.9

Further tests were done to ensure that the robot’s movement and actions did not impact
the fps. Rosbags were recorded using the Docker image set to 30 fps.

43

4. Experiments and Results

Table 4.2: Resulting frame rates when Spot performs different
actions

State Duration (s) Frames Resulting Fps

Motor off 54 1614 29.9
Stand 40.8 1218 29.9

Walk around 32.6 967 29.7
Arm manipulation 116 3462 29.8

Table 4.3 shows four additional frame rates. The first and second are calculated di-
rectly from rosbags recorded using the Online-YOLO package. The online detection on
Spot’s CPU managed to perform inference at around six fps. After looking at the recorded
videos and with the speed that Spot moves, it is doubtful that objects are missed. A bigger
problem is the actual detection of objects, this will be discussed further in later sections.
While YOLO is running on Spot the image capture rate was lowered by a small amount.
Test three and four were made with GPU acceleration on a separate desktop. All four tests
were done using the YOLOv7 model trained on the SODA dataset.

Table 4.3: Table of experiments both offline and online using
YOLO. YOLO with GPU is done offline and YOLO on Spot and
data capture is done online.

Situation Duration (s) Frames Resulting Fps

YOLO on Spot 680 4304 6.33
Data capture during YOLO 680 18927 27.8

YOLO on GPU (rosbag) 74 2222 30.0
YOLO on GPU (iPhone) 362 10861 30.0

4.3 Data collection at Vipan

Some examples of the collected data can be seen in Figure 4.1 and Figure 4.2. Due to the
shakiness in the arm and iPhone on Spot when moving, some images were blurry. During
the manual data collection Spot moved in different angles to get different perspectives (or
varied data) of the relevant objects at the construction site.

44

4.3 Data collection at Vipan

Figure 4.1: Images taken by the RGB camera in the gripper on
Spot.

Figure 4.2: Images taken by the iPhone mounted on Spot.

45

4. Experiments and Results

4.3.1 Building a dataset
In total, just under 200 images were annotated. All images were collected passively and
did not add any extra working hours. Due to the small variance in images at Vipan it was
difficult to find a wide range of different scenes. This led to around eight hours of work
in finding somewhat unique images. Annotating objects also took around eight hours.

4.4 Offline detection
The offline detection and initial tests were done with the third package covered in Section
3.1. MP4 files recorded with an iPhone were used as initial tests for the YOLO network.
With a GPU this detection was performed without any problems at a speed of 30 fps.
As the network at this point is trained using MSCOCO the objects detected included for
example people, chairs, tables and potted plants, see Figure 4.3 below.

Figure 4.3: Screenshot from the first video with detected objects.

46

4.5 Performance of YOLOv7

4.5 Performance of YOLOv7

As stated in Section 3.3.3, two neural networks were trained, one utilizing the SODA
dataset and the other using the custom dataset (the custom dataset includes data from
Vipan). Additionally, another model was initialized with pre-trained weights of MSCOCO.
In Section 4.5.1 the training outcomes are presented followed by the testing results in
Section 4.5.2. Metrics such as precision, recall, and mAP were utilized to evaluate the
performance of the models. Additionally, confusion matrices were used as a performance
measurement. These confusion matrices have normalized values ranging between zero
and one. The values in the confusion matrices will be interpreted as percentages where
one cell value in the matrix represents the percentage of an instance classified as a partic-
ular class when viewed from the y-axis.

4.5.1 Training

In the subsections below the confusion matrices and tables obtained after training a YOLOv7
model on two datasets, the SODA dataset and the Vipan dataset are presented. It begins
with the confusion matrix generated by training the model on SODA and then moves on
to the interpretation of the customized dataset, Vipan. Each model was trained for 300
epochs where an epoch is referred to as a complete iteration of the complete training data.

YOLOv7 Model Trained with the SODA Dataset

The confusion matrix is visible in Figure 4.4 and the results presented in this matrix are
highly promising. The high percentage values observed along the diagonal, ranging be-
tween 70-90%, indicate that the model performs well in accurately predicting true objects.
The hook detection stands out as a particularly strong example of this with a remarkable
98% in identifying the true hooks in the images. In nearly all the classes, both the false
negative (FN) and false positive (FP) values for the background are low. Having a small
amount of FN and FP is positive because that indicates a low rate of wrongly classified
objects, meaning that the model in a small amount missed classes to detect and also did
not detect anything else that was not that class.

The results from Table 4.4 state that the YOLOv7 model achieved an overall preci-
sion of 58.2%, recall of 70.3%, a mAP@.5 of 63.3% and a mAP@.5:.95 of 35.2%. The
object/class hook dominated all metrics for its competitive classes. The lowest precision
value lies at 36.2% and belonged to the brick class. The fence class has the lowest recall
value at 48.6%.

47

4. Experiments and Results

Figure 4.4: The resulting confusion matrix after training the net-
work with the SODA dataset. Observe that the background FN
and FP are included here.

Table 4.4: Result of the training data for the model trained with
the SODA dataset.

Class Precision Recall mAP@.5 mAP@.5:.95

all 0.582 0.703 0.633 0.352
hook 0.866 0.936 0.932 0.555

person 0.671 0.708 0.693 0.33
helmet 0.668 0.535 0.57 0.235

vest 0.645 0.636 0.647 0.312
scaffold 0.53 0.787 0.681 0.423
fence 0.483 0.486 0.447 0.224
slogan 0.535 0.591 0.548 0.267
board 0.616 0.826 0.745 0.477
cutter 0.48 0.671 0.517 0.273
wood 0.526 0.804 0.699 0.412
rebar 0.629 0.666 0.7 0.492
ebox 0.513 0.693 0.559 0.238

hopper 0.503 0.805 0.671 0.431
brick 0.362 0.582 0.415 0.252

handcart 0.696 0.815 0.672 0.355

48

4.5 Performance of YOLOv7

YOLOv7 Model Trained with the Vipan Dataset

The confusion matrix is visible in Figure 4.5. Compared to the model trained on the
SODA dataset this one is not equally promising. Although it has very encouraging ac-
curacy for objects such as brick, board, vest, helmet, and person, it fails to detect certain
classes that are never visible, such as scaffold, fence, and slogan. The background false
negative (FN) is also calculated very high for the wood (75%) and rebar (100%) which
indicates that the model is bad at predicting these classes.

The results from Table 4.5 indicate that the YOLOv7 model achieved an overall pre-
cision of 49.5%, recall of 63.6%, a mAP@.5 of 64.1% and a mAP@.5:.95 of 27.5%. The
object/class person and helmet took the lead in the precision score meanwhile the recall
was better for the classes ebox (referring to an electrical box) and vests. The rebar got
zero percent of all the metrics. Observe that not all 15 classes of SODA are visible in the
table and that depends on the training set not including every class.

Figure 4.5: The resulting confusion matrix of a network trained
on the Vipan dataset with the SODA classes. Observe that the
background FN and FP is included here.

49

4. Experiments and Results

Table 4.5: Result of the training data for the model trained on the
Vipan dataset.

Class Precision Recall mAP@.5 mAP@.5:.95

all 0.495 0.636 0.641 0.275
person 1 0.75 0.995 0.335
helmet 1 0.702 0.995 0.414

vest 0.773 1 0.995 0.64
board 0.37 0.722 0.41 0.0939
wood 0.213 0.25 0.25 0.148
rebar 0 0 0 0
ebox 0.332 1 0.641 0.236

hopper 0.459 0.8 0.834 0.389
brick 0.306 0.5 0.649 0.219

4.5.2 Test
The three different trained models of YOLOv7 were tested on data collected at Vipan. The
test data is the same for all the models to get the best comparison between them. In the
YOLOv7 model trained with Vipan data, the training and test data were quite equal due
to the limited area at the construction site. Both confusion matrices and tables including
metrics are included in this section.

YOLOv7 Model Pre-trained with the MSCOCO Dataset

The YOLOv7 model pre-trained on MSCOCO was not used much in this master’s the-
sis but was explored with data from Vipan. Persons and bottles were the most common
objects detected by the pre-trained network, however, laptops also occasionally appeared.
See Figure 4.6 for example.

50

4.5 Performance of YOLOv7

Figure 4.6: Example of a YOLOv7 model detecting objects in an
image from Vipan.

YOLOv7 Model Trained with the SODA Dataset

The confusion matrix is presented in Figure 4.9. Observe the high score of background
FN of the classes board, wood, rebar, ebox, hopper, brick, and handcart, which mean
that the model missed detecting these true objects in the test images. Also, one more
thing to keep in mind is that scaffold, fence, slogan, and cutter do not have any values.
The reason for this behavior is likely due to the fact that some classes in the test data have
not been annotated at all or in a very small amount, which partly explains the difference
in performance for testing and training. The model’s predictions for the classes person,
helmet, and vest show high percentages around 90%. These high percentage values in
the diagonal (for the classes person, helmet, and vest) indicate that the model is good at
detecting these classes. Observe that the person class has high background false positive
(FP) and that indicates that the model wrongly detects persons in a large amount. An
example of an FP of the category person is visible in Figure 4.7. In some scenarios, a
vest can make the network predict a person even if there is not one there. As many of the
persons in SODA have vests on them this results in a bias against persons without vests on.

Figure 4.8 shows when the model is detecting two unseen images. The first image
(Figure 4.8a) displays the detection of boards, which is correctly identified with boxes
that are accurately placed, although the confidence score of the detected box in the mid-
dle is lower. In the second image (Figure 4.8b) the model detects both persons, helmets,
and vests but fails to recognize the handcart. The not detected handcart can be explained
by the article on the SODA dataset showing that it is one of the classes with a low occur-
rence rate when producing the dataset (meaning there are not many images of a handcart
in this dataset) [9].

The results from Table 4.6 indicate that the YOLOv7 model achieved an overall pre-
cision of 77.6%, recall of 22.8%, a mAP@.5 of 26.4% and a mAP@.5:.95 of 13.8%.

51

4. Experiments and Results

Having a high precision and a low recall usually indicates that the model is predicting
correctly but in a small proportion of the positive outcomes (positive outcomes are all the
annotated objects in the images of the test data). This behavior was also noticed when
observing the video material during this thesis. The classes that have all the metrics in the
table set to zero are scaffold and ebox and that explains the zero value of truth positives
(TP).

Figure 4.7: Example of an detection on Spot with the YOLOv7
model trained with the SODA dataset. The model fails to detect a
person and detects a board with a vest as a person instead.

(a) Image with the
detected categories
board and wood

(b) Image with the
detected categories
helmet, vest, person
and handcart

Figure 4.8: Two example images when the network detects.

52

4.5 Performance of YOLOv7

Figure 4.9: The resulting confusion matrix tested on Vipan data.
This result is from the YOLOv7 model trained with the SODA
dataset.

Table 4.6: Result of the test data. This result is from the YOLOv7
model trained on the SODA dataset.

Class Precision Recall mAP@.5 mAP@.5:.95

all 0.776 0.228 0.264 0.138
person 0.905 0.826 0.926 0.468
helmet 0.83 0.889 0.841 0.359

vest 1 0.863 0.981 0.648
scaffold 0 0 0 0
fence 1 0 0 0
board 0.575 0.158 0.192 0.101
wood 1 0 0.0984 0.0504
rebar 1 0 0.125 0.025
ebox 0 0 0 0

hopper 1 0 0 0
brick 1 0 0 0

handcart 1 0 0 0

YOLOv7 Model Trained with the Vipan Dataset

When evaluating the confusion matrix in Figure 4.12 these are high values at the diagonal
for person, helmet, and vest. High values of background false negatives (FN) are seen vis-

53

4. Experiments and Results

ible in the matrix for scaffold and fence. Good performance is to be seen for the classes
board, wood, hopper, and brick where the normalized value lies within 50-60% at the di-
agonal (which means that the predicted objects are actually the true objects). Classes such
as hook, slogan, cutter have no visibility in the confusion matrix due to no annotations at
all in the test and the training data.

The images in Figure 4.11 are exactly the same as in Figure 4.8. Figure 4.11a shows
an example of when the model detects multiple bounding boxes around one board. Ob-
serve that in the left-hand side corner of Figure 4.11b the model is detecting a board where
it is not any object but at the same time handles to detect persons, helmets, and vests with
appropriate bounding boxes. It was expected that the handcart was not detected in Fig-
ure 4.11b due to the training set including a few handcart labels, which also explains the
100% FN for the handcart in the confusion matrix in Figure 4.12.

In Table 4.7 the performance measurements are visible and the model achieved an
overall precision score of 52.2%, a recall score of 43.9%, a mAP score of 29.3% at an
IoU threshold of 0.5, and a mAP score of 10.1% at IoU thresholds between 0.5 to 0.95.
Observe that scaffold, fence, and handcart have a precision of one and a recall of zero.
The highest precision value of all classes is the person class and the class vest has the
highest recall score.

In Figures 4.8 and 4.11 the model trained on SODA and our dataset have performed
inference on the same images. This shows that the model trained on Vipan data can dis-
tinguish between the two quite similar classes board and wood, while the model trained
on SODA does not.

While given the model trained on Vipan data, it is not unexpected that it performed
better on the test data based on the mAP@.5 score. An important notice is that the test
data come from the exact same environment as the data that were used to train the model.
Even though the overall mAP@.5 score in Table 4.6 and 4.7 are quite similar the perfor-
mance on the material classes is higher in our dataset. The large difference in training and
testing scores indicates that the model (trained on data at Vipan) is somewhat overfitting.

54

4.5 Performance of YOLOv7

(a) Image
labeled before
training

(b) Image with
detected
bounding boxes

Figure 4.10: Overview of the sensor system as worn by the sub-
jects.

(a) Image with cate-
gories board and wood

(b) Image with the cate-
gories helmet, vest, per-
son and handcart

Figure 4.11: Two example images when the network detects.

55

4. Experiments and Results

Figure 4.12: The resulting confusion matrix of a network trained
on the custom dataset and tested on the custom dataset from
Vipan.

Table 4.7: Result of the test data at Vipan. This result is from the
YOLOv7 model trained with the Vipan dataset.

Class Precision Recall mAP@.5 mAP@.5:.95

all 0.522 0.439 0.293 0.101
person 0.558 0.769 0.678 0.246
helmet 0.491 0.804 0.596 0.204

vest 0.434 0.955 0.753 0.375
scaffold 1 0 0 0
fence 1 0 0 0
board 0.102 0.895 0.206 0.0578
wood 0.146 0.286 0.158 0.0506
rebar 1 0 0 0
ebox 0.06 0.333 0.335 0.0335

hopper 0.348 0.625 0.429 0.196
brick 0.12 0.6 0.36 0.0535

handcart 1 0 0 0

56

4.6 Construction datasets

4.6 Construction datasets
Looking at the construction site datasets in Table 3.1 they mostly focus on large machines
and vehicles. Only SODA includes any type of material, it does however mostly contain
images from outdoors. Using Spot for data collection is most likely to be done in indoor
environments as other means of collection are more suited outdoors. This shows the need
for a dataset specialized in material from indoor environments. Making a custom dataset
can be costly, we invested 16 hours in creating our small set, and creating SODA took
around 1860 working hours. It does however have the advantage of full control over im-
ages, objects, and size. This control makes it possible to customize the dataset to better
suit the construction project.

57

4. Experiments and Results

58

Chapter 5

Discussion

5.1 Autonomous data collection using Spot

The compatibility issue with the arm and autowalk limits the way Spot can be used to
collect data today (Section 4.1). The limitation is set by Boston Dynamics on the version
of Spot used in this thesis. This can be solved in a few different ways. There is a more
powerful model of Spot, called Enterprise, that does not restrict the use of the arm dur-
ing autowalks. Data collection can also be done with another camera source that is not
dependent on the arm. For example, the newer models of Spot are equipped with RGB
cameras around its body.

Spot in combination with ROS has the large advantage that messages sent are easily
time synced with messages from other ROS packages, for example geolocation. This
would allow adding the detected objects in a 3D environment and comparing them to a
project plan.

Spot with the Online-YOLO package achieved a frame rate of six fps (see Table 4.3).
When comparing to another research using object detection and YOLO with CPU they
accomplished 7.7 fps (with another CPU) [40]. Comparing the 7.7 fps from the article
with the six fps achieved in this master’s thesis their results are close to each other. Lastly,
it is worth implying that the connection between fps and real-time can vary depending on
the application’s characteristics, meaning that real-time is decided depending on the de-
tecting objects [19]. For example, having an application that has the goal of detecting
materials at a construction site that is standing still requires fewer fps than an application
that wants to detect falling objects fast. On the other hand, a higher fps results in more
collected data, which can be valuable as well.

59

5. Discussion

5.2 YOLOv7 on Spot data: A Model Evalua-
tion

Three models were tested on the data collected at Vipan and the significant results that
were given in Section 4.5 are discussed.

Model trained with the MSCOCO dataset

The model pre-trained on the MSCOCO dataset was tested on Vipan data as mentioned in
Section 4.5.2. As a result, most of the 80 classes are not visible at all on the construction
site. Objects such as materials and machines on a construction site are not included in
the MSCOCO dataset and thereby the behavior is expected. The only somewhat relevant
class detected by MSCOCO at Vipan was persons. It is possible that MSCOCO would be
more suited for outdoor construction sites as it can detect cars and trucks.

Model trained with the SODA dataset

The classes that gave very bad results, such as board, wood, rebar, ebox (electrical box),
hopper, brick, and handcart can be explained partly by looking at Figure 5.1. In SODA,
for instance, the handcart has bigger wheels than the ones in Sweden and the ebox has
yellow color and a different shape.

Another point is the reliability of this test data captured at the construction site Vipan,
mostly because this test data at Vipan is too small in comparison to the SODA dataset and
does not have a variety of classes included. This is partly explained by looking at Table
3.3, some of the classes are labeled three times or not at all. Therefore it would be of
interest to expand this dataset even more and with a better variation. The low number of
labels in the test data can therefore explain why some classes have a precision of one and
a recall of zero. The precision of one describes that these classes have a low rate of FP.
But on the other hand, a recall of zero indicates a high rate of FN.

Comparing Figure 5.1 with Figure 3.7 some observations can be made. The images
in the SODA dataset have the majority of images taken outside and at bigger construction
site projects with different equipment (drones, camera images taken by humans, etc.).
The test data includes one specific project which results in a not so general test of how
the SODA network actually works on a variety of construction site projects in Sweden.
Maybe the SODA network would perform better at another construction site project in a
different environment.

60

5.3 Construction datasets

Figure 5.1: Example images included in the SODA dataset.

Model trained with the Vipan dataset
A reason for the network not predicting well can lie in the smaller size of this dataset.
The data collected is not general and accurate according to SODAs categories and it is
collected in a short period of time in a small area. It would therefore be of more interest
to test this network in another construction site project in Sweden to check its generality.

Although the model trained with the Vipan dataset is far from perfect, some obser-
vations have been made for potential improvements. For example, looking at the images
in Figure 4.10b (especially the upper image), the model is detecting the ebox class two
times at one object. This is depending on the IoU threshold, explained in Section 2.3.2.
Lowering the IoU threshold can thereby solve the multiple box issue. Notice that lower-
ing the IoU will result in the network suppressing boxes of multiple objects of the same
class near each other.

5.3 Construction datasets
Deciding the number of images in a dataset (the size) depends on the scenario (for ex-
ample what kind of environment the object detection will occur and also the number of
categories to annotate). Therefore, when developing a custom dataset, studying other
successful datasets is to be considered. As mentioned in Section 2.4.2, the SODA dataset
includes around 20000 images and 1000 annotations for each category (15 labels). The

61

5. Discussion

article about another dataset with the headline "ImageNet: A Large-Scale Hierarchical
Image Database" [5] aimed an average of 600 images per category in their dataset (the
visually decided objects to detect). Moreover, deciding the size of the dataset thereby
depends not only on the number of images in the dataset but also on the number of anno-
tations in combination with how many classes there are decided to detect. In other words,
the dataset is sufficient in terms of the quantity and quality of the data.

There is a lot of complexity when building a customized dataset and there are a lot of
techniques out there such as data augmentation. Image data augmentation saves person-
hours when building a dataset in the sense that it increases the diversity and the quantity
of a dataset. MSCOCO, for instance, was built using segmentation techniques [20].

5.4 Drawbacks
The decision to use YOLOv7 on Spot’s portable PC was made without knowing that it
just included a CPU. This discovery was made too late in this master’s thesis and could
have influenced the decision of the selected version of YOLO. Thereby Spot CORE AI
(mentioned in Section 2.1.1) would be of relevance when implementing real-time object
detection. Spot CORE AI includes a GPU and would improve the frames per second. An
experiment showing frames per second using YOLO with both a GPU and a CPU is made
in the following article [40].

62

Chapter 6

Conclusion

This chapter aims to answer the five research questions of this thesis, and thereby, fulfill
the purpose of evaluating how well Spot can be used when gathering data autonomously
as well as how image data from Spot can be used in computer vision functionalities. The
questions are answered with support and arguments from the results and analysis that
were conducted throughout this research project.

6.1 Answering research questions
With the two software modules developed for this thesis, Spot can perform autonomous
data collection as well as object detection. Docker has proven to be required when imple-
menting new software on Spot, and Robot Operating System was a handy way of solving
the communication and data storage. While Flask was not directly required, it helped in
creating an interface for human robot interaction. Based on the drop in frame rate when
running YOLO directly on the Spot CORE it can be concluded that it should only be done
on demand, and not as a continuous execution. Hence the first research question has been
answered.

The MSCOCO dataset was not used much in this master thesis due to the lack of
detection of objects on Vipan. The YOLOv7 model pre-trained on MSCOCO data was
detecting some objects at Vipan such as laptop, person, and bottle. This is very few
compared to its 80 classes. The only relevant detection for construction work is persons,
which is not enough to make it viable. Thereby the research question of whether a model
trained on MSCOCO data can detect any relevant objects on a Swedish construction site
is answered.

The third research question was about finding any publicly available datasets that
would be suitable for training a YOLO network on the Swedish construction site called

63

6. Conclusion

Vipan. Different publicly available datasets were investigated and the decision ended up
using the SODA dataset to train a YOLOv7 network. A lot of materials were identified
at the construction site at Vipan and the relevance of detecting materials at a construction
site was discussed during a meeting with persons specialized in the area. Three other
discovered datasets presented in Section 3.3.1 were relevant to construction sites, but they
did not compete with the SODA dataset, which had the most identified objects at Vipan.
At Vipan, some of the classes were present in the CHV dataset, including yellow helmets
and vests, but not any other objects. The CHV dataset is therefore incomplete due to the
absence of materials. There were two other datasets mentioned in Table 3.1 (ACID and
MOCS) that included large construction machines that were not used in an indoor envi-
ronment at Vipan, so they were not selected as a suitable dataset.

Two models of YOLOv7 were trained on data taken from a construction environ-
ment, one with the SODA dataset and the other including images from Vipan. The SODA
dataset was best suited for the indoor environment at Vipan and many of the objects were
included in the SODA classes. Objects such as vests, helmets, and boards were detected
from the test data. As a large number of images in SODA are taken outside, it is not best
suited for the indoor environments tested in this thesis. This led to a mAP@.5 of 0.264
and a mAP@.5:.95 of 0.138 for the YOLOv7 model trained on SODA data and tested with
images captured at Vipan. These mAP results are too low and thereby a more specialized
network is needed for the construction site at Vipan. Keep in mind that the mAP takes
the mean of all classes so if one should just investigate the classes it performed well such
as person, helmet, and vest the mAP would have been much higher. As mentioned in the
results it would be of interest to test SODA with expanded test data from Swedish con-
struction sites. For example, images taken outdoors and with greater variance will lead
to a more reliable mAP to calculate the performance of a YOLOv7 model trained on the
SODA dataset. The second model with data taken from a construction environment is the
customized model (trained on Vipan data). This model performed better than the network
trained on the SODA dataset when looking at the mAP scores. When tested on data from
Vipan the resulting mAP scores landed in a mAP.5 of 0.293 and in a mAP.5:.95 of 0.101.
As mentioned in the results this is not a perfect indicator of the suitability of the network,
the similarity of train and test data leads to a very specialized model that probably would
not perform as well on another construction site. However, the intent was not to create a
perfect dataset and model, but rather investigate the workload and process needed in the
future. While looking at the positive side, increasing the quantity and quality of the image
data in the customized dataset could improve the mAP scores. To summarize, the mAP
given above answers the fourth research question.

When answering what is required for a dataset in the scenario of this work some things
are noted (research question 5). Firstly, building a custom dataset that could detect any
objects from Vipan took 16 invested hours to complete. A larger variance in the image
data and more people involved would result in a decent network. Images collected in var-
ious contexts under specific conditions, different materials, and different manufacturers’
equipment contribute to a great deal of variance in the data. Professional competence
is needed to correctly annotate and analyze the objects in the images taken from a con-
struction site. Optimization in the form of fine-tuning hyperparameters could make our

64

6.2 Future Research

network even better but this was as mentioned in Section 1.3 not included in this master’s
thesis. These adjustments could produce a network with higher accuracy and result in
a more systematic and autonomous way of performing inspections on construction sites.
Another aspect is that YOLOv7 has a complex architecture that shows great performance
in the form of high accuracy. But this comes with a trade-off because a complex model
can also be too complex for its data which can result in overfitting [1]. Including more
data for the model to train on can prevent overfitting and this can be done by either col-
lecting new data or using data augmentation.

Finally, we believe that Spot is an excellent addition to the data collection toolbox
at construction sites. With the possibility of performing object detection online to avoid
getting caught behind obstacles, it has the advantage of needing less human interaction
than other robots. Its arm allows for a wide range of camera angles which is important
when creating a varied dataset.

6.2 Future Research
A number of ideas for future research emerged during this master’s thesis.

• Image processing technology and machine analysis. This includes using Spot to
compare two images from the same position at different times to notice changes.

• Forming datasets for different phases during a building process. Example of this
could be to dive into a more thorough detection of the material type by creating a
more specialized dataset.

• Comparison against a building plan. Using Spot to detect faults in construction, for
example counting the number of drilled holes.

• Evaluating different machine learning techniques. This could include evaluating
offline solutions and comparing them to other networks

• A goal for Spot could be to tag the objects that cause the previously mentioned
errors, map them by geolocation software (An example of geolocation software can
be this master’s thesis [23]). This data can later be used in a Building Information
Model (BIM) service (for example in a 3D digital representation of a building or
other build site plans) [21].

65

6. Conclusion

66

References

[1] Khaled Alomar, Halil Ibrahim Aysel, and Xiaohao Cai. Data Augmentation in Clas-
sification and Segmentation: A Survey and New Strategies. Journal of Imaging,
46(9):1–26, 2022.

[2] Carl Boettiger. An introduction to Docker for reproducible research. ACM SIGOPS
Operating Systems Review, 49(1):71–79, 2015.

[3] Boverket. Kartläggning av fel, brister och skador inom byggsektorn, 2018. https:
//www.boverket.se/globalassets/publikationer/dokument/2018/
kartlaggning-av-fel-brister-och-skador-inom-byggsektorn.pdf.
[Accessed: 28-Oct-2022].

[4] Ivan Culjak, David Abram, Tomislav Pribanic, Hrvoje Dzapo, and Mario Cifrek.
A brief introduction to OpenCV. In 2012 proceedings of the 35th international
convention MIPRO, pages 1725–1730. IEEE, 2012.

[5] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet:
A Large-Scale Hierarchical Image Database. Dept. of Computer Science, Princeton
University, USA, pages 1–8, 2009.

[6] Boston Dynamic Docs. Arm and Gripper Specification. https://dev.
bostondynamics.com/docs/concepts/arm/arm_specification. [Accessed:
18-Oct-2022].

[7] Boston Dynamic Docs. SDK Concepts. https://dev.bostondynamics.com/
docs/concepts/readme. [Accessed: 10-Nov-2022].

[8] Docker docs. Volume. https://docs.docker.com/storage/volumes/ .[Ac-
cessed: 07-Nov-2022], 2022.

[9] Rui Duan, Hui Deng, Mao Tian, Yichuan Deng, and Jiarui Lin. SODA: A large-scale
open site object detection dataset for deep learning in construction. Automation in
Construction, 142:1–18, 2022.

67

https://www.boverket.se/globalassets/publikationer/dokument/2018/kartlaggning-av-fel-brister-och-skador-inom-byggsektorn.pdf
https://www.boverket.se/globalassets/publikationer/dokument/2018/kartlaggning-av-fel-brister-och-skador-inom-byggsektorn.pdf
https://www.boverket.se/globalassets/publikationer/dokument/2018/kartlaggning-av-fel-brister-och-skador-inom-byggsektorn.pdf
https://dev.bostondynamics.com/docs/concepts/arm/arm_specification
https://dev.bostondynamics.com/docs/concepts/arm/arm_specification
https://dev.bostondynamics.com/docs/concepts/readme
https://dev.bostondynamics.com/docs/concepts/readme
https://docs.docker.com/storage/volumes/

REFERENCES

[10] Boston Dynamics. SPOT CHOREOGRAPHY SDK. https://dev.
bostondynamics.com/docs/concepts/choreography/readme?highlight=
choreography. [Accessed: 11-Oct-2022].

[11] Lukas Ewecker. yolov7-ros, 2022. https://github.com/lukazso/
yolov7-ros. [Accessed: 20-Oct-2022].

[12] Pablo Fernández Fernández. Construction Supervision with Augmented Real-
ity. 2022. https://lup.lub.lu.se/student-papers/search/publication/
9075076. [Accessed: 15-Apr-2023].

[13] Miguel Grinberg. Flask web development: developing web applications with python.
" O’Reilly Media, Inc.", 2018.

[14] Aurélien Géron. Hands-On Machine Learning with Scikit-Learn, Keras Tensor-
Flow. " O’Reilly Media, Inc.", 2019.

[15] Raphael Holzer. Introduction - Capture a Video. https://opencv-tutorial.
readthedocs.io/en/latest/intro/intro.html#capture-live-video.
[Accessed: 10-Nov-2022].

[16] Sakshi Indolia, Anil Kumar Goswamib, S. P. Mishrab, and Pooja Asopa. Concep-
tual Understanding of Convolutional Neural Network - A Deep Learning Approach.
Procedia Computer Science, 132:679–678, 2018.

[17] LabelImg. labelImg, 2018. https://github.com/heartexlabs/labelImg.
[Accessed: 14-Dec-2022].

[18] Lambda. Lambda Stack is all the AI software you need, and it’s always up to
date. https://lambdalabs.com/lambda-stack-deep-learning-software.
[Accessed: 13-Dec-2022].

[19] Jeonghun Lee and Kwang-il Hwang. YOLO with adaptive frame control for
real-time object detection applications. Multimedia Tools and Applications,
81(5):36375–36396, 2021.

[20] Tsung Yi Lin, James Hays, Michael Maire, Pietro Perona, Serge Belongie, Deva
Ramanan, Lubomir Bourdev, C. Lawrence Zitnick, Ross Girshick, and Piotr Dollár.
Microsoft COCO: Common Objects in Context. CoRR, pages 1–15, 2014. https:
//arxiv.org/abs/1405.0312. [Accessed: 10-Oct-2022].

[21] Gayatri Mahajan. Applications of Drone Technology in Construction Industry: A
Study 2012-2021. International Journal of Engineering and Advanced Technology,
11(1):1–17, 2021.

[22] Patrick Mihelich and James Bowman. Cvbridge-ros wiki. http://wiki. ros.
org/cv_bridge.[Accessed: 20-Oct-2022].

[23] Ola Nilsson. Building dense reconstructions with SLAM and spot. 2022.
https://lup.lub.lu.se/student-papers/search/publication/9079252.
[Accessed: 10-Dec-2022].

68

https://dev.bostondynamics.com/docs/concepts/choreography/readme?highlight=choreography
https://dev.bostondynamics.com/docs/concepts/choreography/readme?highlight=choreography
https://dev.bostondynamics.com/docs/concepts/choreography/readme?highlight=choreography
https://github.com/lukazso/yolov7-ros
https://github.com/lukazso/yolov7-ros
https://lup.lub.lu.se/student-papers/search/publication/9075076
https://lup.lub.lu.se/student-papers/search/publication/9075076
 https://opencv-tutorial.readthedocs.io/en/latest/intro/intro.html#capture-live-video
 https://opencv-tutorial.readthedocs.io/en/latest/intro/intro.html#capture-live-video
https://github.com/heartexlabs/labelImg
 https://lambdalabs.com/lambda-stack-deep-learning-software
https://arxiv.org/abs/1405.0312
https://arxiv.org/abs/1405.0312
https://lup.lub.lu.se/student-papers/search/publication/9079252

REFERENCES

[24] John D Owens, Mike Houston, David Luebke, Simon Green, John E Stone, and
James C Phillips. GPU computing. Proceedings of the IEEE, 96(5):879–899, 2008.

[25] Yaman Hooda Preeti Kuhar, Kaushal Sharma and Neeraj Kumar Verma. Internet of
Things (IoT) based Smart Helmet for Construction. Journal of Physics: Conference
Series, 1950(1):1–9, 2021.

[26] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,
Rob Wheeler, Andrew Y Ng, et al. Ros: an open-source robot operating system. In
ICRA workshop on open source software, volume 3, page 5. Kobe, Japan, 2009.

[27] Joseph Redmond, Santosh Divvala, Ross Girchick, and Ali Farhadi. You Only Look
Once: Unified Real-Time Object Detection. In 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 779–788, 2016.

[28] Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak, Amir Sadeghian, Ian Reid, and
Silvio Savarese. Generalized Intersection over Union. June 2019.

[29] Stuart Russel and Peter Norvig. Artificial Intelligence: A Modern Approach Third
E. Pearson Education Limited.

[30] Iqbal H. Sarker. Deep Learning: A Comprehensive Overview on Techniques, Tax-
onomy, Applications and Research Directions. SN Computer Science, 142:104499,
2021.

[31] Ross Girshick Shaoqing Ren, Kaiming He and Jian Sun. Faster R-CNN: Towards
Real-Time Object Detection with Regional Proposal Network. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 39(6):1137–1149, 2017.

[32] Petru Soviany and Radu Tudor Ionescu. Optimizing the Trade-off between Single-
Stage and Two-Stage Deep Object Detectors using Image Difficulty Prediction. In
2018 20th International Symposium on Symbolic and Numeric Algorithms for Sci-
entific Computing (SYNASC), pages 209–214, 2018.

[33] Boston Dynamic Support. Payload device network configu-
ration. https://support.bostondynamics.com/s/article/
Payload-device-network-configuration. [Accessed: 12-Dec-2022].

[34] Boston Dynamic Support. Python Library. https://dev.bostondynamics.com/
docs/python/readme. [Accessed: 10-Nov-2022].

[35] Boston Dynamic Support. Spot battery and charging sys-
tem. https://support.bostondynamics.com/s/article/
Introduction-to-the-Spot-battery-and-charger. [Accessed: 14-Nov-
2022].

[36] Boston Dynamic Support. Spot CORE payload reference. https://support.
bostondynamics.com/s/article/Spot-CORE-payload-reference#
AboutSpotCORE. [Accessed: 14-Nov-2022].

69

https://support.bostondynamics.com/s/article/Payload-device-network-configuration
https://support.bostondynamics.com/s/article/Payload-device-network-configuration
https://dev.bostondynamics.com/docs/python/readme
https://dev.bostondynamics.com/docs/python/readme
https://support.bostondynamics.com/s/article/Introduction-to-the-Spot-battery-and-charger
https://support.bostondynamics.com/s/article/Introduction-to-the-Spot-battery-and-charger
https://support.bostondynamics.com/s/article/Spot-CORE-payload-reference#AboutSpotCORE
https://support.bostondynamics.com/s/article/Spot-CORE-payload-reference#AboutSpotCORE
https://support.bostondynamics.com/s/article/Spot-CORE-payload-reference#AboutSpotCORE

REFERENCES

[37] Boston Dynamic Support. Understanding Spot Programming. https:
//dev.bostondynamics.com/docs/python/understanding_spot_
programming#services-and-authentication. [Accessed: 10-Nov-2022].

[38] Juan R Terven and Diana M. Cordova-Esparaza. A Comprehensive Review of Yolo:
From Yolov1 and Beyond. page 2, 2023. https://arxiv.org/abs/2304.00501.
[Accessed: 7-Jun-2023].

[39] Dirk Thomas, Tim Field, Jeremy Leibs, and James Bowman. Rosbag-ros wiki.
http://wiki.ros.org/rosbag. [Accessed: 20-Oct-2022], 2014.

[40] Md Bahar Ullah. CPU Based YOLO: A Real Time Object Detection Algorithm. In
2020 IEEE Region 10 Symposium (TENSYMP), pages 552–555, 2020.

[41] Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark-Liao. YOLOv7:
Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors,
2022. https://arxiv.org/abs/2207.02696.[Accessed: 10-Apr-2023].

[42] Zijian Wang, Yimin Wu, Lichao Yang, Arjun Thirunavukarasu, Colin Evison, and
Yifan Zhao. Fast Personal Protective Equipment Detection for Real Construction
Sites Using Deep Learning Approaches. Sensors, 21(10), 2021. https://www.
mdpi.com/1424-8220/21/10/3478.

[43] Ruffin White and Henrik Christensen. ROS and Docker. In Robot Operating System
(ROS), pages 285–307. Springer, 2017.

[44] Bo Xiao and Shih-Chung Kang. Development of an Image Data Set of Con-
struction Machines for Deep Learning Object Detection. Journal of Computing
in Civil Engineering, 35(2):05020005, 2021. https://www.researchgate.
net/publication/349695505_Development_of_an_Image_Data_Set_
of_Construction_Machines_for_Deep_Learning_Object_Detection.
[Accessed: 20-Mar-2023].

[45] An Xuehui, Zhou Li, Liu Zuguang, Wang Chengzhi, Li Pengfei, and Li Zhiwei.
Dataset and benchmark for detecting moving objects in construction sites. Automa-
tion in Construction, 122(8):103482, 2021.

70

 https://dev.bostondynamics.com/docs/python/understanding_spot_programming#services-and-authentication
 https://dev.bostondynamics.com/docs/python/understanding_spot_programming#services-and-authentication
 https://dev.bostondynamics.com/docs/python/understanding_spot_programming#services-and-authentication
https://arxiv.org/abs/2304.00501
http://wiki.ros.org/rosbag
https://arxiv.org/abs/2207.02696
https://www.mdpi.com/1424-8220/21/10/3478
https://www.mdpi.com/1424-8220/21/10/3478
https://www.researchgate.net/publication/349695505_Development_of_an_Image_Data_Set_of_Construction_Machines_for_Deep_Learning_Object_Detection
https://www.researchgate.net/publication/349695505_Development_of_an_Image_Data_Set_of_Construction_Machines_for_Deep_Learning_Object_Detection
https://www.researchgate.net/publication/349695505_Development_of_an_Image_Data_Set_of_Construction_Machines_for_Deep_Learning_Object_Detection

Appendices

71

Appendix A
Explanation on flags

A.1 Flags in train.py and test.py
• - -workers how many working processes will put data into the RAM simultane-

ously.

• - -device here one sets the GPU number (ID) for training.

• - -batch-size the batch size is the number of samples the network will pass at one
time.

• - -data path to the custom config file.

• - -img image size which the model will train on. By default is it set to 640

• - -cfg path to the configuration file which one provides on its own specifying the
labels and the splitting of the training, test and validation data.

• - -weights - path to pre-trained weights.

• - -name provide a name to the subdirectory folder inside the runs directory folder
in which all the training, validation, and test result are saved.

• - -hyp the path to the chosen YOLOv7 model which is defined in a YAML file with
included parameters and hyperparameters.

• - -epochs is the number of epochs the network will train for.

• - -conf the object confidence threshold.

• - -iou the IOU threshold for Non-Max-Supression.

• - -task the task which will be performed.

73

A. Explanation on flags

A.2 Flag options to Docker
These flag options were used to build the image.

• - -network=host Set the networking mode for the RUN instruction during build

• - -rm Saves space by removing intermediate containers after a successful build

• -t <image_name:tag> Add a tag to the image for clarity

The following flags was used when running Docker run

• -p<hosts_public_ip>:<port_on_host>:<port_exposed_in_file>Used to forward
an open port for connection with the flask app

• -v <path_to_folder_in/host>:<path/to/folder/in/container> Mounts a volume
that makes a folder on the host accessible from within the container, used to save
rosbags locally.

• -it Creates an interactive bash shell in the container, used so far for testing purposes

• - -name <name_of_container> Assigns a name to the container

• <image_name:tag> Name and tag of the image from which to start the container

74

Appendix B

Python code

B.1 detect_ros.py

1 #!/usr/bin/python3
2 import torch
3 from models.experimental import attempt_load
4 from utils.general import non_max_suppression
5 from utils.ros import create_detection_msg
6 from visualizer import draw_detections
7

8 import os
9 from typing import Tuple, Union, List

10

11

12 import cv2
13 from torchvision.transforms import ToTensor
14 import numpy as np
15 import rospy
16

17 from vision_msgs.msg import Detection2DArray , Detection2D ,
BoundingBox2D

18 from sensor_msgs.msg import Image
19 from cv_bridge import CvBridge
20

21

22 def parse_classes_file(path):
23 classes = []
24 with open(path, "r") as f:
25 for line in f:
26 line = line.replace("\n", "")
27 classes.append(line)
28 return classes
29

75

B. Python code

30

31 def rescale(ori_shape: Tuple[int, int], boxes: Union[torch.Tensor, np.
ndarray],

32 target_shape: Tuple[int, int]):
33 """Rescale the output to the original image shape
34 :param ori_shape: original width and height [width, height].
35 :param boxes: original bounding boxes as a torch.Tensor or np.array

or shape
36 [num_boxes , >=4], where the first 4 entries of each element

have to be
37 [x1, y1, x2, y2].
38 :param target_shape: target width and height [width, height].
39 """
40 xscale = target_shape[1] / ori_shape[1]
41 yscale = target_shape[0] / ori_shape[0]
42

43 boxes[:, [0, 2]] *= xscale
44 boxes[:, [1, 3]] *= yscale
45

46 return boxes
47

48

49 class YoloV7:
50 def __init__(self, weights, conf_thresh: float = 0.5, iou_thresh:

float = 0.45,
51 device: str = "cuda"):
52 self.conf_thresh = conf_thresh
53 self.iou_thresh = iou_thresh
54 self.device = device
55 self.model = attempt_load(weights, map_location=device)
56

57 @torch.no_grad()
58 def inference(self, img: torch.Tensor):
59 """
60 :param img: tensor [c, h, w]
61 :returns: tensor of shape [num_boxes , 6], where each item is

represented as
62 [x1, y1, x2, y2, confidence , class_id]
63 """
64 img = img.unsqueeze(0)
65 pred_results = self.model(img)[0]
66 detections = non_max_suppression(
67 pred_results , conf_thres=self.conf_thresh , iou_thres=self.

iou_thresh
68)
69 if detections:
70 detections = detections[0]
71 return detections
72

73

74 class Yolov7Publisher:
75 def __init__(self, img_topic: str, weights: str, conf_thresh: float

= 0.5,
76 iou_thresh: float = 0.45, pub_topic: str = "

yolov7_detections",
77 device: str = "cuda",

76

B.1 detect_ros.py

78 img_size: Union[Tuple[int, int], None] = (640, 640),
79 queue_size: int = 1, visualize: bool = True,
80 class_labels: Union[List, None] = None):
81 """
82 :param img_topic: name of the image topic to listen to
83 :param weights: path/to/yolo_weights.pt
84 :param conf_thresh: confidence threshold
85 :param iou_thresh: intersection over union threshold
86 :param pub_topic: name of the output topic (will be published

under the
87 namespace '/yolov7')
88 :param device: device to do inference on (e.g., 'cuda' or 'cpu

')
89 :param queue_size: queue size for publishers
90 :visualize: flag to enable publishing the detections visualized

in the image
91 :param img_size: (height, width) to which the img is resized

before being
92 fed into the yolo network. Final output coordinates will be

rescaled to
93 the original img size.
94 :param class_labels: List of length num_classes , containing the

class
95 labels. The i-th element in this list corresponds to the i-

th
96 class id. Only for viszalization. If it is None, then no

class
97 labels are visualized.
98 """
99 self.img_size = img_size

100 self.device = device
101 self.class_labels = class_labels
102

103 vis_topic = pub_topic + "visualization" if pub_topic.endswith("
/") else \

104 pub_topic + "/visualization"
105 self.visualization_publisher = rospy.Publisher(
106 vis_topic , Image, queue_size=queue_size
107) if visualize else None
108

109 self.bridge = CvBridge()
110

111 self.tensorize = ToTensor()
112 self.model = YoloV7(
113 weights=weights, conf_thresh=conf_thresh , iou_thresh=

iou_thresh ,
114 device=device
115)
116 self.img_subscriber = rospy.Subscriber(
117 '/spot_hand_rgb', Image, self.process_img_msg
118)
119 self.detection_publisher = rospy.Publisher(
120 pub_topic , Detection2DArray , queue_size=queue_size
121)
122 rospy.loginfo("YOLOv7 initialization complete. Ready to start

inference")

77

B. Python code

123

124 def process_img_msg(self, img_msg: Image):
125 """ callback function for subscriber """
126 np_img_orig = self.bridge.imgmsg_to_cv2(
127 img_msg, desired_encoding='passthrough'
128)
129

130 # handle possible different img formats
131 if len(np_img_orig.shape) == 2:
132 np_img_orig = np.stack([np_img_orig] * 3, axis=2)
133

134 h_orig, w_orig, c = np_img_orig.shape
135 if c == 1:
136 np_img_orig = np.concatenate([np_img_orig] * 3, axis=2)
137 c = 3
138

139 # automatically resize the image to the next smaller possible
size

140 w_scaled , h_scaled = self.img_size
141

142 # w_scaled = w_orig - (w_orig % 8)
143 np_img_resized = cv2.resize(np_img_orig , (w_scaled , h_scaled))
144 # conversion to torch tensor (copied from original yolov7 repo)
145 img = np_img_resized.transpose((2, 0, 1))[::-1] # HWC to CHW,

BGR to RGB
146 img = torch.from_numpy(np.ascontiguousarray(img))
147 img = img.float() # uint8 to fp16/32
148 img /= 255 # 0 - 255 to 0.0 - 1.
149 img = img.to(self.device)
150

151 # inference & rescaling the output to original img size
152 detections = self.model.inference(img)
153 #pred_results = self.model(img)[0]
154 detections[:, :4] = rescale(
155 [h_scaled , w_scaled], detections[:, :4], [h_orig, w_orig])
156 detections[:, :4] = detections[:, :4].round()
157

158

159 # publishing
160 detection_msg = create_detection_msg(img_msg, detections)
161 self.detection_publisher.publish(detection_msg)
162

163 # visualizing if required
164 if self.visualization_publisher:
165 bboxes = [[int(x1), int(y1), int(x2), int(y2)]
166 for x1, y1, x2, y2 in detections[:, :4].tolist()]
167 classes = [int(c) for c in detections[:, 5].tolist()]
168 class_prob = [float(p) for p in detections[:,4].tolist()]
169 vis_img = draw_detections(np_img_orig , bboxes, classes,

class_prob ,
170 self.class_labels)
171

172

173 #vis_msg = self.bridge.cv2_to_imgmsg(vis_img)
174 #self.visualization_publisher.publish(vis_msg)
175 cv2.namedWindow("Detected", cv2.WND_PROP_FULLSCREEN)

78

B.1 detect_ros.py

176 cv2.setWindowProperty("Detected",cv2.WND_PROP_FULLSCREEN ,cv2.
WINDOW_FULLSCREEN)

177 cv2.imshow("Detected", vis_img)
178 cv2.waitKey(1)
179

180 if __name__ == "__main__":
181 rospy.init_node("yolov7_node")
182

183 ns = rospy.get_name() + "/"
184

185 weights_path = rospy.get_param(ns + "weights_path")
186 classes_path = rospy.get_param(ns + "classes_path")
187 img_topic = rospy.get_param(ns + "img_topic")
188 out_topic = rospy.get_param(ns + "out_topic")
189 conf_thresh = rospy.get_param(ns + "conf_thresh")
190 iou_thresh = rospy.get_param(ns + "iou_thresh")
191 queue_size = rospy.get_param(ns + "queue_size")
192 img_size = rospy.get_param(ns + "img_size")
193 visualize = rospy.get_param(ns + "visualize")
194 device = rospy.get_param(ns + "device")
195

196

197 # some sanity checks
198 if not os.path.isfile(weights_path):
199 raise FileExistsError(f"Weights not found ({weights_path}).")
200

201 if classes_path:
202 if not os.path.isfile(classes_path):
203 raise FileExistsError(f"Classes file not found ({

classes_path}).")
204 classes = parse_classes_file(classes_path)
205 else:
206 rospy.loginfo("No class file provided. Class labels will not be

visualized.")
207 classes = None
208

209 if not ("cuda" in device or "cpu" in device):
210 raise ValueError("Check your device.")
211

212

213 publisher = Yolov7Publisher(
214 img_topic=img_topic ,
215 pub_topic=out_topic ,
216 weights=weights_path ,
217 device=device,
218 visualize=visualize ,
219 conf_thresh=conf_thresh ,
220 iou_thresh=iou_thresh ,
221 img_size=(img_size , img_size),
222 queue_size=queue_size ,
223 class_labels=classes
224)
225

226 rospy.spin()

79

B. Python code

B.2 get_image_stream.py

1 #!/usr/bin/python3
2

3 # Copyright (c) 2022 Boston Dynamics, Inc. All rights reserved.
4 #
5 # Downloading , reproducing , distributing or otherwise using the SDK

Software
6 # is subject to the terms and conditions of the Boston Dynamics

Software
7 # Development Kit License (20191101-BDSDK-SL).
8

9

10 import argparse
11 import sys
12

13 import cv2
14 import numpy as np
15 from scipy import ndimage
16 import rospy
17 from cv_bridge import CvBridge , CvBridgeError
18 from sensor_msgs.msg import Image as Image
19

20 import bosdyn.client
21 import bosdyn.client.util
22 from bosdyn.api import image_pb2
23 from bosdyn.client.image import ImageClient , build_image_request
24

25

26 class CameraNode:
27

28 arg_defaults = {
29 'username': 'null',
30 'password': 'null',
31 'hostname': 'null',
32 'camera': 'null' ,
33 'pixel-format': 'null'}
34

35 def __init__(self) -> None:
36 pass
37

38

39 def setArgs(self,args):
40 '''
41 Sets arguments for authentication with spot-sdk
42 @param args: dictionary of string values 'username' 'password'

'hostname'
43 '''
44 self.arg_defaults.update(args)
45

46 def getArgs(self):
47 '''
48 @return: Dictionary of arguments
49 '''
50 return self.arg_defaults

80

B.2 get_image_stream.py

51

52 def extractData(self, image_responses):
53 cv_visual = cv2.imdecode(np.frombuffer(image_responses[0].show.

image.data, dtype=np.uint8), -1)
54 return cv_visual
55

56 def pixel_format_type_strings(self):
57 names = image_pb2.Image.PixelFormat.keys()
58 return names[1:]
59

60 def pixel_format_string_to_enum(self, enum_string):
61 return dict(image_pb2.Image.PixelFormat.items()).get(

enum_string)
62

63

64 def authenticate(self):
65

66 argv = ['--camera', self.arg_defaults['camera'],
67 '--pixel-format', self.arg_defaults['pixel-format'],
68 '--username',self.arg_defaults['username'],
69 '--password',self.arg_defaults['password'],
70 self.arg_defaults['hostname']]
71

72 parser = argparse.ArgumentParser()
73 bosdyn.client.util.add_common_arguments(parser)
74 parser.add_argument('--camera', help='Camera to cature images

from',
75 default='hand_color_image')
76 parser.add_argument(
77 '--pixel-format', choices=self.pixel_format_type_strings(),
78 help='Requested pixel format of image. If supplied, will be

used for all sources.')
79

80 options = parser.parse_args(argv)
81

82 sdk = bosdyn.client.create_standard_sdk('hand_image')
83 robot = sdk.create_robot(options.hostname)
84 robot.authenticate(options.username, options.password)
85 robot.sync_with_directory()
86 robot.time_sync.wait_for_sync()
87 image_client = robot.ensure_client(ImageClient.

default_service_name)
88

89 return image_client , options
90

91 def initializeNode(self):
92

93 rospy.init_node("hand_camera", anonymous = True)
94 hand_pub = rospy.Publisher("/spot_hand_rgb", Image, queue_size

=1)
95 return hand_pub
96

97

98 def run(self):
99 # Get parameters from launch file

100

81

B. Python code

101 arg_defaults = {
102 'hostname': rospy.get_param('hand_image/hostname'),
103 'camera': rospy.get_param('hand_image/camera'),
104 'pixel-format': rospy.get_param('hand_image/pixel-format'),
105 'username': rospy.get_param('hand_image/username'),
106 'password': rospy.get_param('hand_image/password')}
107

108

109 cam.setArgs(arg_defaults)
110 image_client , options = cam.authenticate()
111 sources = [options.camera]
112

113 hand_pub = cam.initializeNode()
114 rate = rospy.Rate(30) # Set recording framerate
115

116 bridge = CvBridge()
117

118 while not rospy.is_shutdown():
119 image_responses = image_client.get_image_from_sources(

sources)
120

121 for image in image_responses:
122 num_bytes = 1 # Assume a default of 1 byte encodings.
123 if image.shot.image.pixel_format == image_pb2.Image.

PIXEL_FORMAT_DEPTH_U16:
124 dtype = np.uint16
125 extension = ".png"
126 else:
127 if image.shot.image.pixel_format == image_pb2.Image

.PIXEL_FORMAT_RGB_U8:
128 num_bytes = 3
129 elif image.shot.image.pixel_format == image_pb2.

Image.PIXEL_FORMAT_RGBA_U8:
130 num_bytes = 4
131 elif image.shot.image.pixel_format == image_pb2.

Image.PIXEL_FORMAT_GREYSCALE_U8:
132 num_bytes = 1
133 elif image.shot.image.pixel_format == image_pb2.

Image.PIXEL_FORMAT_GREYSCALE_U16:
134 num_bytes = 2
135 dtype = np.uint8
136 extension = ".jpg"
137

138 img = np.frombuffer(image.shot.image.data, dtype=dtype)
139 if image.shot.image.format == image_pb2.Image.

FORMAT_RAW:
140 try:
141 # Attempt to reshape array into a RGB rows X

cols shape.
142 img = img.reshape((image.shot.image.rows, image

.shot.image.cols, num_bytes))
143 except ValueError:
144 # Unable to reshape the image data, trying a

regular decode.
145 img = cv2.imdecode(img, -1)
146 else:

82

B.2 get_image_stream.py

147 img = cv2.imdecode(img, -1)
148

149 imgmsg = bridge.cv2_to_imgmsg(img, encoding="
passthrough")

150 hand_pub.publish(imgmsg)
151 rate.sleep()
152

153

154 if __name__ == "__main__":
155 cam = CameraNode()
156 cam.run()

83

B. Python code

84

Appendix C

Training results of networks

C.1 SODA

Figure C.1: Performance measurements as precision, recall, and
mAP:s under training. The x-axis shows the progress after every
epoch, it is 300 epochs in total.

85

C. Training results of networks

C.2 Vipan dataset

Figure C.2: Performance measurements as precision, recall, and
mAP:s under training. The x-axis shows the progress after every
epoch, it is 300 epochs in total.

86

Appendix D
Software deployment

D.1 Commands for deploying software
$ docker build --network=host --rm -t <image_name:tag> .

The docker image is saved to a tar archive with the command below. Before moving the
tar file it needs to be executable.

$ docker save <image_name:tag> > <image_name>.tar

The image is loaded on Spot CORE with the command below.

$ docker load --input <image_name>.tar

To run the Docker container for the first time the following command is used:

$ docker run -p 192.168.50.5:x:y
-v /home/spot/Documents/johanamanda/Rosbags:/saved_bags
-it --name <container_name> <image_name:tag>

The option -p connects port x on the Spot CORE with port y in the Docker container,
full configuration of ports is shown in Table D.1. A Docker volume is defined by -v, this
makes it possible to save rosbags directly to Spot COREs file system. See Appendix A.2
for explanation of all flags. When the container has been started once, it can easily be
restarted through the Cockpit GUI.

Table D.1: Network port forwarding for the two Docker contain-
ers

Package Spot IP CORE IP Container port

Data Collection 192.168.80.3:20443 192.168.50.5:443 5000
Online-YOLO 192.168.80.3:20080 192.168.50.5:80 5001

87

D. Software deployment

88

Appendix E
Commands for YOLO

E.1 Training and testing YOLO
Training SODA dataset

$ python train.py --epochs 300 --workers 8 --device 0
--batch-size 32 --data data/soda.yaml --img 640 640
--cfg cfg/training/yolov7-tiny.yaml --weights ‘’
--name yolov7_tiny --hyp data/hyp.scratch.tiny.yaml

Training Custom dataset

$ python train.py --epochs 300 --workers 8 --device 0
--batch-size 32 --data data/vipan.yaml --img 640 640
--cfg cfg/training/yolov7-tiny.yaml --weights ‘’
--name yolov7_vipan --hyp data/hyp.scratch.tiny.yaml

Testing SODA dataset

$ python test.py --data data/<name_of_dataset>.yaml --img 640
--batch <batch_size> --conf 0.001 --iou 0.65
--device 0 --task=test --weights <name_of_weights>.pt
--name soda_test_out_data

89

E. Commands for YOLO

90

Appendix F
Lessons learned

F.1 Experiences and thoughs
The outcomes of this master’s thesis have provided a valuable understanding of the subject
matter. These discoveries may be useful for the development of future research.

• When collecting the necessary software packages for the deep learning GPU envi-
ronment it can be a struggle to install the right versions due to strict dependencies.
Example of these kind of packages are Keras, Tensorflow and Pytorch. This prob-
lem can easily be solved with lambda stack which always keeps the necessary AI
Software updated [18]. The installation is easily done in the terminal with one
command line.

• When collecting data that is intended to be used in training object detection net-
works some important points have been noted. Take clear photographs, stop and
let the camera auto focus if needed, from different angles and change the lighting if
possible. If multiple cameras will be used with the completed network, make sure
to include images from the whole range of perspectives. Using multiple types of
cameras will also make the network more robust in the sense of camera parameters.

Thanks to its arm, Spot is capable of taking photos from many more perspectives
than robots with cameras at a fixed height.

• Having multiple people check the data will be needed when producing a larger
dataset, as the method of annotating images can impact the quality a lot.

91

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2023-01-16

EXAMENSARBETE Evaluation of Spot as an instrument to provide autonomous data collection
Performing object detection using YOLO and ROS at construction sites
STUDENTER Amanda Zarkout, Johan Lindberg
HANDLEDARE Mathias Haage (LTH), Volker Kruger (LTH)
EXAMINATOR Elin Anna Topp (LTH)

Utvärdering av Spot som ett instrument för
autonom datainsamling

POPULÄRVETENSKAPLIG SAMMANFATTNING Amanda Zarkout, Johan Lindberg

I detta arbete genomförs en förstudie med hjälp av roboten Spot från Boston Dynamics. Upp-
giften är autonom insamling av bildmaterial från en byggarbetsplats och att automatiskt tolka
insamlat material med hjälp av maskininlärning. Genom att nyttja robotik för insamling kan kon-
troller genomföras ofta och kan leda till lägre kostnader för korrigering av fel genom snabbare
upptäckt.

Byggindustrin är en av de minst digitaliserade i dagens
moderna samhälle där misstag bidrar till höga kostnader. År
2018 uppskattade Svenska myndigheten Boverket att dessa
ligger mellan 80 och 110 miljarder kronor per år. I en bransch
med så små marginaler finns det gott om möjligheter för
ny teknik att mitigera fel och därmed bidra till minskade
kostnader.

Ett stort område, och det som fokuserats på i denna
rapport, är det kontinuerliga inspektionsarbetet. Detta är
viktigt för att under arbetets gång kunna upptäcka fel så
tidigt som möjligt medan de är lätta och billiga att rätta till.
Olika tekniska hjälpmedel för att automatisera detta finns
i form av till exempel drönare och hjälmar med monterade
kameror på. Syftet med denna rapport är att utvärdera
hur maskininlärning kan användas för att analysera data
insamlat av den fyrbenta robothunden Spot. Tack vare sina
ben samt den befintliga navigeringsmjukvaran kan Spot ta sig
fram på byggarbetsplatser där små hinder ofta förekommer.
Spots datainsamling är dock ett problem i dagsläget och ny
mjukvara har därför utvecklats i detta arbete.

Alla applikationer har skrivits med hjälp av roboto-
perativsystemet ROS, detta hjälper till med mycket av
kommunikationen samt lagring av data. Testdata i form av
videor har, under hösten 2022, samlats in på en byggarbets-
plats i Lund. För att tolka den data som samlats har artificiell
intelligens (AI) använts, i form av det neurala nätverket
You Only Look Once (YOLO). YOLO kan användas för
att behandla datan i efterhand genom automatisk tolkning
som annars genomförs av människor. Men det går även att
göra identifieringen direkt på Spots inbyggda dator, detta
låter Spot hantera ännu svårare situationer genom att kunna
skilja på olika typer av objekt som står i dess väg.

Likt mycket annan AI så krävs det en stor mängd data
för att träna upp det neurala nätverket. Datan måste inne-

hålla de objekten man är intresserad av att identifiera. Det
visade sig finnas relativt få relevanta publika dataset, men
ett kinesiskt dataset vid namn SODA hittades och undersök-
tes. Det fungerade inte tillräckligt bra, då bilderna skiljde sig
för mycket från den svenska miljön. Därför undersöktes även
arbetsbördan samt prestandan på ett neuralt nätverk vilket
tränades på den insamlade datan från Lund.

Figur 1: Identifierade objekt i en bild tagen av Spot

Dessa två neurala nätverk testades på samma data och re-
sultatet anger hur bra de är på att identifiera objekt, främst
byggmaterial och människor. Bägge testerna resulterade i
strax under 30% träffsäkerhet, det neurala nätverket som trä-
nades på SODA gav bättre på människor medans det egna
nätverket presterade bättre på material. Detta tyder på att
en större mängd träningsdata är viktig. Ett större dataset bör
byggas upp innan metoden provad i detta arbeta kan nyttjas.
Spot har dock visat sig vara ett lovande tillskott till verktygs-
lådan för autonom datainsamling.

	Introduction
	Motivation and background
	Purpose
	Research questions

	Limitations
	Method and outline
	Related work

	Background
	Spot - An introduction
	Payload configuration
	Cameras
	Software Development Kit
	Communication with Spot

	Software
	OpenCV
	ROS
	Docker
	Flask

	Convolutional Neural Network
	Faster RCNN: Towards Real-Time Object Detection
	YOLO: Unified Real-Time Object Detection

	Datasets
	MSCOCO
	SODA

	GPU Accelerated computing
	Performance measurements

	Method
	ROS packages
	Docker
	The selected YOLOv7 network
	Selection of Datasets
	Annotate data
	Training
	Test

	Experiments and Results
	Autowalk missions
	Frame rate experiments
	Data collection at Vipan
	Building a dataset

	Offline detection
	Performance of YOLOv7
	Training
	Test

	Construction datasets

	Discussion
	Autonomous data collection using Spot
	YOLOv7 on Spot data: A Model Evaluation
	Construction datasets
	Drawbacks

	Conclusion
	Answering research questions
	Future Research

	References
	Appendix Explanation on flags
	Flags in train.py and test.py
	Flag options to Docker

	Appendix Python code
	detect_ros.py
	get_image_stream.py

	Appendix Training results of networks
	SODA
	Vipan dataset

	Appendix Software deployment
	Commands for deploying software

	Appendix Commands for YOLO
	Training and testing YOLO

	Appendix Lessons learned
	Experiences and thoughs

	Tom sida

