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Abstract

CT scanning stands as one of the most employed imaging techniques used in
clinical field. In the presence of metal implants in the field of view (FOV),
distortions and noise appear on the 3D image leading to inaccurate bone seg-
mentation, often required for surgery planning or implant design. In this re-
search project, we focused on developing a pipeline to create a rich ground
truth dataset, forming the foundation for training a deep-learning bone seg-
mentation algorithm capable of great results even in the presence of metal
artefacts.

In order to build an extensive artefact-contaminated database, metal-free
datasets were collected and bone delineated using Segment 3DPrint automatic
bone-segmentation tool. Realistic metal implants were then designed in proper
anatomical locations and synthetic artefacts generated using a MATLAB-based
algorithm. The effectiveness of the simulator has been tested on real data using
an anthropomorphic hand phantom with metal implants inserted and scanned
with standard clinical CT parameters.

The simulator has proven to successfully mimic physical phenomena such
as beam hardening, phantom starvation and noise which are the underlying
causes of real metal artefacts. It produces realistic artefacts shapes, even for
complex metal configurations. Additional datasets already exhibiting metal
artefacts were also added to the database. The simulator was used there only
to virtually rescanned those datasets for augmentation reasons.

Finally, a training pipeline was imagined using the artefact simulator in
parallel to the training process. Data can thus be constantly augmented with
new features as the training of the network is running.





Abbreviations

2D 2 Dimensional

3D 3 Dimensional

BHC Beam Hardening Correction

CNN Convolutional Neural Networks

CT Comptuted Tomography

DL Deep learning

FBP Filtered Back Projection

FOV Field of View

FP Forward Projection

HU Hounsfield value

LI Linear Interpolation

MAR Metal Artefact Reduction

MRI Magnetic Resonance Imaging
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1. Introduction

1.1 Context and motivation

Computed tomography (CT) is a 3-dimensional (3D) imaging technique based
on attenuation measurements of X-rays. It is nowadays clinically used to dif-
ferentiate tissue types and contribute both to diagnosis and treatment planning.
However, in the presence of strongly attenuating objects in the field of view
(FOV), major artefacts are created in the reconstructed images [1]. In medical
CT, these artefacts are often caused by metal parts implanted in the patient’s
body which degrade the image quality. As a consequence, the visualisation
of certain structures or tissues can become difficult or even impossible. Metal
artefacts are generally streak shaped and result from a combination of three
main physical phenomena: beam hardening, scatter and noise [2]. For metal
objects close to the tissues of interest, Hounsfield values from the CT recon-
struction can be overly contaminated leading to dark zones interpreted as air
or very bright areas mistakenly seen as metal or bone. This presents a major
issue for the segmentation of specific tissues.

In the medical field, segmentation is defined as the process of identifying
pixels on a medical image (such as CT, Magnetic Resonance Imaging (MRI))
that belong to the same object or structure of interest such as organs or tumors.
Segmentation is a prerequisite for all image quantification. Segmentation has
seen a huge progress with the use of deep-learning (DL) introduced in the
early 2010s and later used in medicine [3]. DL enabled robust semi or fully
automatic segmentation processes that, for some applications, have replaced
fully manual delineations which are often time-consuming and practitioner-
dependant. DL-based segmentation has now been widely used in clinical rou-
tine to facilitate and improve diagnosis and treatment planning but still suffers
from poor results when confronted with metal artefacts. For instance, software
such as Segment 3DPrint offer the possibility for automatic bone segmenta-
tion from CT images and is today clinically used. Segmented bones can then
be used to design cutting guides, implants or plan surgery. However, the DL-
based segmentation tool in Segment 3DPrint was not trained to properly seg-
ment bones when metal artefacts were included in the image volume. Improv-
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ing the segmentation tool to overcome artefacts would save time for clinical
practitioner and was thus the main aim of this thesis.

1.2 Purpose

Many semi or fully automatic segmentation tools, robust to metal artefacts,
are already implemented in the research area [4]. However, to the best of the
author’s knowledge, no similar tool is already widely used in clinical routine.
Consequently, the final purpose of this thesis is to take techniques to make
algorithms less sensitive to metal artefacts into clinical routine. An already
DL-based segmentation tool developed by Medviso and in used in multiple
hospitals was thus improved to handle metal artefacts.

In this perspective, clinical CT scans were collected and multiple synthetic
metal implants were designed for each dataset and used for the generation
of complex and realistic synthetic artefacts. This augmented database was
created in the prospect to use it in the future as a ground truth to train a DL
bone segmentation tool that would be robust to metal artefacts and employed
for clinical application.

1.3 Previous work

Medviso is a Sweden-based company providing image analysis software world-
wide for both research and clinical applications. In the software Segment
3DPrint, multiple DL-based segmentation algorithms are implemented to ex-
tract various structures from images of the patients (bones, vessels, trachea,
lungs, mandible, orbits, fetus and hearts for children with congenital heart dis-
ease) from both CT and MRI images. This thesis primarily focused on the
automatic DL-based bone segmentation for CT images.

The current DL bone-segmentation process uses a 2D-U-net network struc-
ture based on the work of Ronneberger et al in 2015 [5]. U-Net network archi-
tecture is a one of the most implemented DL networks for medical image seg-
mentation [3]. In the absence of metal in the CT scan, the U-Net network ob-
tained good bone-segmentation results (Dice score: 0.96±0.02, Jaccard score:
0.93±0.04). However, it was not trained to handle metal artefacts. Whenever
confronted to artefacts, due to the presence of metal parts in the patient’s body,
regions where mistakenly labelled. Indeed, volumes where Hounsfield val-
ues were higher than normal due to artefacts were labelled as bone. On the
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contrary, regions that were darkened by artefacts were labelled as background.
Such results resulted in time consuming delineations for clinicians.

1.4 Delimitation

The delimitation of this project includes the use of the same architecture and
hyperparameters for the 2D U-Net network. U-Net architecture has proven
successful for segmentation in a vast number of biomedical applications and
is both fast and accurate compared to other networks [3]. Investigating other
networks was thus not in the scope of this thesis.

The network used is a 2D U-net and was originally trained with 20 datasets
and tested with 21 datasets. They were carefully partitioned in order to keep
scans of regions spread in the whole body for both partitions. The age, gender
and scanner used were as diverse as possible, especially for the test datasets to
comply with the U.S. Food and Drug Administration (FDA) requirements. A
similar approach was used to build the ground truth database for the artefact-
robust segmentation tool. However, the number of datasets was doubled to
offer more variety. Further description of the CNN is available in the section
3.5.
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2. Background

2.1 Physic behind CT imaging

CT imaging is based on the measurements of polychromatic X-rays intensities
being attenuated when traveling through matter. Let’s first consider a monoen-
ergetic X-ray passing through an homogeneous object of linear attenuation µ .
Along this path L, the final intensity I of the beam, under ideal conditions (no
beam hardening, noise or scatter), is described by Beer’s law (2.1):

I = I0e�µx (2.1)

with I0 being the initial intensity of the X-ray and x the distance travelled
by the ray along the path L.

For a heterogeneous object, the initial Beer’s law 2.1 becomes:

I = I0e�
R

L µ(x j)dl (2.2)

With j denoting each compound.

For a polychromatic beam, similarly to clinical CT beams, both the inten-
sity of the X-ray and the attenuation coefficients energy-dependency had to be
considered. The previous equation 2.2 becomes:

I =
Z

I0(E)e�
R

L µ(x j,E)dldE (2.3)

Moreover, one assumed that the number of photons reaching the detector
follows a Poisson distribution that can eventually be contaminated by extra
scattered photons [6]. The intensity measurements can thus be modelled as
follows:

Y ⇠ Poisson{I + r} (2.4)

with r accounting for the mean number of background events and read-out
noise variance [7] and assumed to be a non-negative constant [8] [9].

13



In order to get the projection values, the previous equations 2.4 and 2.3 can
be expressed as follows :

P =�ln(
YR

I0(E)dE
) (2.5)

This last equation 2.5 models the physic shaping attenuation coefficient
measurement for polychromatic X-rays.

In conventional CT, attenuated X-rays intensity is measured along multiple
lines Li within a plan in order to later reconstruct an image. The measurement
geometry for CT is fan-beam based with the X-ray tube rotating around the
patient’s body (see Figure 2.1). The projection profiles are then stacked and
stored as a sinograms where angular and radial samplings are used for axis
(see Figure 2.1). This process is called forward projection and constitute the
first step in CT image acquisition.

The data is then filtered. Without filtering, the reconstructed images would
display a significant blurring. This blurring is called ’1/r blurring’ as it de-
creases with the distance r from the center of the FOV. It can be removed with
sharpening (high pass) filters.

Finally, the image is reconstructed using back projection. The full process
is called filtered back projection (FBP) and is clinically the most widely used
reconstruction technique as it is a fast, and straightforward [10]. The mea-
surements of the attenuated rays enables the reconstruction of an attenuation
coefficient map representing the tissues radiated by the X-rays. It is by con-
vention expressed relatively to water and air linear attenuation coefficients as
follows 2.6:

HU = 1000
µ �µwater

µwater �µair
(2.6)

Both FP and FBP processes used for CT image acquisition are described
in the figure 2.1.

2.2 Metal artefacts

Metal objects exhibit great attenuating properties compare to human tissues,
especially soft ones. Therefore, they can generate artefacts due to beam hard-
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Figure 2.1: Overview of a standard CT scanning process from image acquisition
to FBP

ening, scattering and photon starvation phenomena [11].

Beam hardening: Beam hardening occurs when using polychromatic X-
ray beams which is the case for medical CT. Photons with the lowest energies
are more attenuated than high energy photons, especially when dense objects
are in the FOV. Attenuation of low energy photons is mostly caused because
of photoelectric effect.

Photoelectric effect is particularly strong with materials of high atomic
number Z, such as metals, and low energy photons. Indeed, the probability of
this phenomenon to occur is proportional to Z3

E3 with E being the energy of the
photons [12]. The phenomenon is similar to a high pass filter and results in the
mean beam energy to increase. The beam is thus ’hardened’. Locally, it will
be interpreted as if photons travelled through a low-attenuating object which
produces dark streaks in the reconstructed image. Dark streaks are mostly ap-
pearing along the axis of greatest attenuation. It is thus where the object is the
longest in the 2D slice or between two metal objects (see Figure 2.2).

Compton scattering: At high energy, Compton scattering is dominant in
CT as it is only proportional 1

E , and not 1
E3 . Photons are deviated from their

initial trajectory inside the patient’s body. Scattered photons then hit detec-
tors that are not aligned with the central axis of the incident beam. This leads
to false reconstruction and when combined with strong photoelectric effect, it
leads to dark streaks on the reconstructed image as both phenomena lead to
more photons being detected.

Phantom starvation and noise: If a significant part of the photons are ab-
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sorbed because of highly-attenuating objects in the FOV, an insufficient num-
ber of them then reach the detectors leading to higher statistical errors of the
projection data. This phenomenon known as phantom starvation is responsible
for thin dark and bright streaks in the reconstructed image [13] [14].

Figure 2.2: Metal artefacts simulated (Right) from the initial scan (left) with
two virtually added ball-shaped coils.

However, multiple methods were developed to reduce metal artefacts and
are known as MAR methods.

2.3 MAR methods

2.3.1 Hardware-based MAR methods

It is possible to reduce artefacts by changing the scan parameters or hardware
used.

In radiography, the beam can be ’prehardened’ by placing a metal sheet
between the source and the patient which filters low energies. Metal artefacts
can also be reduced by increasing tube voltage. It allows better penetration of
high density objects leading to less photon starvation. However, it increases
the dose received by the patients which can lead to health issues if too high.
Dual energy scanning is also used to reduce metal artefacts. Two different
tube voltages are used to perform the measurements and linear attenuation
coefficients are then compared to reconstruct an image with less artefacts and
more contrast (see Figure 2.3).

Nowadays, many scanners are also equipped with built-in MAR algorithms.
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Figure 2.3: Example image when using dual energy (left) and without (right).

2.3.2 MAR algorithms

MAR algorithms are considered as post-processing techniques and can be clas-
sified into three distinct groups: physical effects correction, interpolation in
projection domain and iterative reconstruction [15]. Physical effect correc-
tions are often based on simple models which correct beam hardening [16]
[17] and photon starvation [18]. However, it can fail to reduce strong artefacts
caused by highly attenuating material such as metal. Interpolation methods are
used to remove metal-affected data and replace the missing information with
interpolation techniques. Linear interpolation (LI) is a common MAR method
but can introduce new artefacts around the metal part. Iterative reconstruction
methods are also used but are very computationally demanding.
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3. Methods

3.1 Pipeline

The general pipeline of this thesis is described in the flowchart below (3.1).
First, 75 CT images were collected and bones delineated. Metal implants were
then designed with realistic clinical shapes and inserted as binary objects into
the metal-free CT volumes similarly to real implants. Synthetic artefacts were
then generated using an in-house developed software written in MATLAB [19]
and inspired from [4]. Then for both metal-free and scans with metal, an arte-
fact mask was created. Datasets were split into training data and test data (see
Tables 7.1 and 7.2) according to a logic described in Section 3.5.

Figure 3.1: Thesis pipeline

3.2 Benefits of the implemented pipeline

The previously described pipeline 3.1 is essentially built around the simulation
of synthetic artefacts. Indeed, training and testing data were mostly generated
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by simulating metal artefacts as only a small number of datasets already con-
tained metal and artefacts. It could have been possible to use solely images
with real metal artefacts but it was less efficient for the following reasons:

- The use of the already implemented DL bone-segmentation tool saved
time when the delineating bones. With real metal artefacts, many hours per
image volume were required to obtain a good delineation as significant man-
ual processing was needed.

- In addition, for datasets exhibiting strong artefacts, manual, delineation
could be very laborious and uncertain, especially for dense artefacts between
two close metal parts. For instance, in the case of a bilateral total hip replace-
ment, the region between the prosthesis is entirely erased by the artefacts in
the reconstructed image.

- Finally, for the U-Net network to be well trained and suited to handle
various bone segmentation with different artefacts and implants, it was impor-
tant to gather in the input data a great amount of medical images with artefacts
of countless types. Collecting medical images with very different scanning
parameters and implants in term of size, shapes, material and placement is
challenging. Generating synthetic artefacts offers unlimited possibilities and
artefacts shapes for a single scan providing us with great possibility for data
augmentation.

3.3 Data collection

A total of 75 anonymised CT volumes were used in this project to create a
rich database that would ensure robustness for the future bone-segmentation
algorithm. Data was gathered from cases referred to creation of anatomical
models at 3D Centre at Skåne University Hospital (SUS) as well as data down-
loaded from publicly available image repositories. CT images were collected
from scanners manufactured by all four main CT scanner vendors (Phillips,
GE, Siemens and Toshiba) resulting in an algorithm that should not be vendor-
specific. The scans were also performed with different scanning parameters
and reconstruction algorithm and a particular focus was put on selecting scans
from different anatomical regions of the body in order to cover most parts of
the body. Moreover, the age, gender and potential fractures and pathologies of
the patients were also considered when selecting the datasets. Age and gender
can affect significantly bone composition as they are for instance both consid-
ered as major non-modifiable factors risks in the development of osteoporosis.
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Osteoporosis being a bone disorder that induces a decrease in bone mass and a
significant deterioration of bone micro-structure which affects how bones are
seen on a CT scan. Patient’s family background, ethnicity, physical activity or
eating habits were not considered even if it could affect bone density with po-
tential remodelling or bone disorders. Finally, scans were also selected taking
into account acquisition dates. As the scanning technology greatly evolved the
last three decades, a wide representation image acquisition technologies was
ensured with the oldest scan obtained in 1990 and the latest in 2022. All scans
details can be found in Tables 7.2 and 7.1 in appendix.

Among the 75 datasets, 19 contained real metal implants. These metal
datasets were mainly used for two reasons. In the training, process, it is valu-
able to have real artefacts in case the simulation of synthetic artefacts would
be slightly biased despite all precautions. For the validation, it is important
to test the automatic DL bone-segmentation on real cases with non-synthetic
artefacts. In the end, the segmentation will be performed on real clinical cases
with real metal artefacts, not synthetic ones.

Synthetic implants were then designed and inserted within each metal-free
datasets to later generate synthetic artefacts.

3.4 Generation of a metal artefact database

3.4.1 Design and placement of the synthetic metal implants

Metal implants are found to be customised and placed in very divers anatom-
ical positions on the patient. They can exhibit very distinct sizes, shapes and
materials [20]. As a consequence, the metal implants inserted in the metal-free
datasets were designed to capture this diversity and ensure a robust training for
the DL network.

A substantial part of the implants were designed directly with the software
Segment 3DPrint version 4.0 R11487 [Medviso, segment.heiberg.se] as it of-
fers easy and powerful tools to generate customised plates, cranial implants,
screws and rods. More complex implants such as hip prosthesis or pacemak-
ers were designed using the industrial CAD software Fusion 360 [Autodesk
Fusion 360 © 2020 Autodesk, Inc, version 2.0.16007 x86_64]. This later
software enables more freedom in the design process. The positioning of the
implants designed with fusion 360 was performed directly on the software.
The bones segmented with Segment 3DPrint were imported, as an STL file,
to fusion 360. The implant was then properly placed in the right anatomical
location relatively to the imported bones. The implant and its coordinates were
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then saved and exported as an STL object. It was then opened with Segment
3DPrint and stored with the other synthetic implants designed locally. For each
case, up to ten different customised implants were designed. The implants cre-
ated are described below relatively to their anatomical position:

Cranial region: The main implants found in the upper part of the skele-
tal system are coiling, cranial and maxillofacial implants and dental filling.
Coilling consist of thin metal threads inserted through the arteries to fill aneurysm.
The final shape resembles a sphere of diameters ranging from a few millime-
ters for small aneurysm to more than 30 mm for the most severe cases [21].
Coiling was thus modelled using ball-shaped designs of corresponding sizes
that were placed in the brain region (see Figure 3.2). A pattern could be added
to the ball to slightly alter the shape and the filling. For Cranial defects, it is
usually a significant part of the skull that is damaged or missing. Mesh or filled
implants are clinically used to cover cranial defects and protect the brain. Den-
tal filling and brackets were also inserted on the teeth when possible. Plates,
screws and rods were also designed.

Figure 3.2: Examples of synthetic head implant designs with cranial implants
(in blue) and coils of various sizes and shapes (in yellow).

Thoracic region: Thorax implants show the most diversity with spine fix-
ation implants, lumbar disk inserted between the vertebrae or complete shoul-
der prosthesis (see Figure 3.3). Plates were also designed and placed on the
backbone, scapulae or coastal region and occasionally pacemakers were also
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positioned in the upper chest region.

Figure 3.3: Example of thoracic implant designs designed with spine fixation (in
blue) and plates (in yellow)

Pelvic region: Many pelvises were also included in CT-scans. Typical
plates were designed with different meshing sizes and positioned on the ilium.
Rods and screws were also added. As lumbar vertebrae are visible on most
pelvic scans, lumbar disks and spine fixations were also designed (see Figure
3.4).

Figure 3.4: Example of pelvic implant designs with lumbar disk (in blue) and
meshed plate (in yellow).

Upper and lower limbs: Upper and lower limbs being anatomically alike,
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they encounter similar types of implants. Screws, bars and plates were thus
placed on the long bones as normally done to heal fractures or provide a scaf-
fold (see Figure 3.5). Joint prostheses (hips, knees, shoulders and wrist mostly)
were also designed.

(a) Knee joint implants (blue) with plates (yel-
low) and rods (red).

(b) Elbow joint implants (blue), plate (pur-
ple), rod and screw (yellow and red)

Figure 3.5: Example of implants designed for the superior and inferior regions.

3.4.2 Materials used for the synthetic implants

Seven types of metals were considered for the implants. Pure titanium, ti-
tanium alloy (Ti–6Al–4V), nitinol (Ni50-Ti50), 304 stainless steel (Fe-Cr18-
Ni8), 316 stainless Steel (Fe-Cr16-Ni10-Mo2), cobalt alloy (Co-Cr30-Mo7-
Ni1-Fe1-Mn1) and pure iron were used. They make up for most of the im-
plants used clinically [20].

As the simulation required the densities of each metal, densities of pure
metals were given in [22] and densities of the alloys were computed. For the
density of the alloys (Dalloy), it was calculated using the density of each of the
individual components i (Di) with their relative mass fraction (Xi). For that,
let’s consider the expression of the density of a material:

Dmat =
mmat

Vmat
(3.1)
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With mmat being the mass of the material (here the alloy) and Vmat its vol-
ume. Then, by taking the inverse of the expression 3.1, one obtains for an alloy
made of two compounds (i 2 [1,2]):

1
Dalloy

=
Valloy

malloy

=
V1

malloy
+

V2

malloy

(3.2)

Using 3.1 in 3.2 to replace Vi gives:

1
Dalloy

=
m1

D1 ·malloy
+

m2

D2 ·malloy

=
X1 ·malloy

D1 ·malloy
+

X2 ·malloy

D2 ·malloy

=
X1

D1
+

X2

D2

(3.3)

Where Xi is the mass fraction of the compound i.

For an alloy containing more than two compounds this formula can be ex-
tended. The densities for all the alloys used in the simulation were thus com-
puted using the expression 3.3 above and listed in the table 3.1. The densities
are then used later in order to generate synthetic artefacts.

3.4.3 Simulation of metal artefacts

Metal artefacts were simulated from the metal-free datasets with metal im-
plants inserted. Metal artefacts generation mimicked a virtual axial scan of the
metal-inserted datasets and was thus performed on the slice level. Each slice
was virtually scanned twice. Once with the metal inserted in order to create
artefacts and one without the metal. This double scanning allowed to properly
extract regions of the scan with significant synthetic artefacts by comparing
both scans. As the virtual scanning process alters the initial image quality and
pixel intensity, poor results were obtained when trying to segment newly cre-
ated artefacts by simply comparing the dataset before and after being virtually
scanned.

For each slice of the volume the scanning process followed the flowchart
3.6 below. The pipeline mainly sticks to the method described in the paper
by Mitsuki Sakamoto et al [4] which was inspired of Zhang et al.’s research
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Table 3.1: Densities of pure metals [22] and metal alloys used for the synthetic
metal implants.

Pure Metals Density [g/cm3]
Aluminum 2,71
Chromium 7,19

Cobalt 8,75
Gold 19,32
Iron 7,85

Manganese 7,44
Molybdenum 10,19

Nickel 8,91
Platinum 21,4

Silver 10,49
Titanium 4,50
Vanadium 5,49

Metal alloy Mixture
Cobalt alloy Co 60 Cr30 Mo7 Ni1 Fe1 Mn1 8,27

Nitinol NI50 Ti50 5,98
Stainless steel 304 Fe74 Cr18 Ni8 7,80
Stainless steel 316 Fe72 Cr16 Ni10 Mo 2 9,61

Titanium alloy Ti90 Al6 V4 4,36

work [15]. Scattering was approximated as a constant scatter level accord-
ing to [23] [24]. Scattering profiles usually contain low frequencies which
explain the constant scattering level approximation. Scattered energy is usu-
ally described relatively to the primary beam energy as a ratio known as the
scatter-to-primary ratio. This ratio was arbitrarily set to 10�5 in the simulation.

In order to simulate polychromatic projections, the previous expression 2.3
was used. It simulates one polychromatic ray passing through an inhomoge-
neous material, in our case the patient’s body. For one to use this formula, one
must know the materials passed through by each X-ray. Consequently, pixels
with bone-like (µb), water-like (µw) and metal-like (µm) attenuation properties
were thresholded in order to segment the pixels into three distinct groups of
known material characteristic. A double threshold technique was thus used
so that pixels Hounsfield values above Tb were segmented as bone tissue pix-
els and pixels with HU values under Tw would be set as water-like tissues. The
structures with HU values between Tb and Tw would be considered as a mixture
of both tissues structures and thus a weighting function is used (3.4)
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Figure 3.6: Overview of the synthetic artefact generation process inspired from
Sakamoto et al [4] and Zhang et al.’s research work [15]. An additional scattering
phenomenon was added after each single monochromatic projections to get more
realistic artefacts. The flowchart above was designed by Sakamoto et al [4].

w (µ) =

8
><

>:

0, µ  Tw

1, µ � Tb
µ�Tw
Tb�Tw

Tw < µ < Tb

(3.4)

With µ being the linear attenuation coefficient measured at the considered
pixel. Then, for each pixel, the segmentation gives:

µb = w (µ)µ (3.5)

µw = (1�w (µ))µ (3.6)

The previous expression 2.3 for a polychromatic ray travelling through an
object made of bone-like tissues ’b’, water-like tissues ’w’, metal ’m’ becomes:

I =
Z

I0(E)e�
R

L µb(xb,E)+µw(xw,E)+µm(xm,E)dldE

=
Z

I0(E)e�µb(xb,E)lb+µw(xw,E)lw+µm(xm,E)lmdE
(3.7)

The spectrum used for the virtual CT-scanner was modelled as combina-
tion of monochromatic X-ray beams with energies uniformly sampled every
1 keV from 1 keV to 140 keV. The spectrum was chosen among one of the
eight spectra generated using an online tool provided by Siemens [25]. Seven
spectra with different tube voltage potentials commonly used for clinical CT
were first generated with tube potentials ranging from 80 kV to 140 kV with a
10 kV increments (see Figure 3.7). An additional spectrum was obtained using
the most common tube potential (120 kV) with a 2.5 mm thick aluminum filter
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as recommended in the Code of Federal Regulations (42 CFR 486.108).

Figure 3.7: Spectra used to generate synthetic metal artefacts and obtained with
Siemens online spectrum generator [25].

Each dataset was scanned using one of the spectra described above and
illustrated in Figure 3.7. The integral from previous Equation 3.7 can thus be
discretised as follows:

I =
Emax

Â
k=1

I0(Ek)e�µb(Ek)lb+µw(Ek)lw+µm(Ek)lm (3.8)

However, the linear attenuation coefficients are not convenient to use as
they are dependent on the density of the material which is not always easy to
assess [©Iowa State University Center for Nondestructive Evaluation (CNDE)].
For every material ’j’, its linear attenuation coefficient can be written as the
product of energy-dependent mass attenuation coefficient ’m j(E)’ (constant
for a material) and the energy-independent density ’r j’(unknown in our case)[8]

µ j(E) = m j(E)r j (3.9)

Let’s consider an arbitrary monochromatic energy E0. Then the previous
equation 3.9 gives:

µ j(E0) = m j(E0)r j () r j =
µ j(E0)

m j(E0)
(3.10)
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With mass attenuation coefficient being strictly positive constants. The
initial equation 3.9 can then be rewritten as:

µ j(E) = m j(E)r j = m j(E)
µ j(E0)

m j(E0)
(3.11)

Adding this relation to Equation 3.8 gives:

I =
120

Â
k=1

I0(Ek)e
�mb(Ek)

µb(E0)
mb(E0)

lb+mw(Ek)
µw(E0)
mw(E0)

lw+mm(Ek)
µm(E0)
mm(E0)

lm (3.12)

The projections values were then computed using Equation 2.5 derived
from Equation 2.4.

Mass attenuation coefficients were obtained from the XCOM database [26]
using the materials formula from table 3.1. Both scattering and photoelectric
absorption effects were taken into account when generating the mass attenu-
ation coefficients listed in the table 7.3. Bone attenuation coefficient values
were based on standard cortical bone composition given in the ICRU report
44 [27]. Water mass attenuation coefficients were simply obtained using the
H2O chemical formula. The monochromatic mass attenuation coefficient were
obtained using the equivalent monochromatic energy of the spectrum 3.2 esti-
mated as the mean energy of the spectrum.

Finally, a water beam-hardening correction method was implemented based
on Herman’s paper [28].

Table 3.2: Equivalent monochromatic energies given for each spectrum dis-
played on the plot 3.7 and generated with Siemens online generator [25].

80 kV 90 kV 100 kV 110 kV 120 kV 130 kV 140 kV 120 kV
2.5mm Al filter

Equivalent
monochromatic

energy [keV]
40.8 43.9 46.7 49.2 51.5 53.7 55.5 57.6

The previous equations enabled to virtually model the attenuation of a sin-
gle polychromatic X-ray along a straight path. To mimic a real beam, multiple
X-rays were then simulated similarly to a conventional CT-scan. The simu-
lator should theoretically rely on a typical fan-beam scanner with one source
and multiple divergent X-rays paths. However, the in-built MATLAB function
fanbeam which mimics fan-beam based FP does not support GPU. To reduce
computation time, the in-built radon function was used instead as it is compat-
ible with GPU. More details about radon and fanbeam projections are given in
the section 3.4.4.
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Once projected and stored as a sinogram, each slice was then reconstructed
using FBP. Here again the iradon function was used instead of ifanbeam for
similar reasons as before. Five different filters (Ram-Lak, Shepp-Logan, Co-
sine, Hamming and Hann) were used interchangeably for the filtering to avoid
potential bias.

3.4.4 Fanbeam and radon projections

In most CT, the projection data from one slice is collected using divergent
beams known as fanbeams [29]. From the unique source S is emitted multiple
divergent X-rays that travel through the studied object before reaching sensors
opposing the source. The source and the sensors are then rotated from a cer-
tain angle q and another projection is performed. The same process is repeated
until the complete profile of the object contained in the slice has been collected.

Radon-based projections are different as data is collected from multiple
parallel beams originating from different sources. For the virtual scanner, each
path or beam is 1 pixel spaced apart in a given direction. Similarly to the fan-
beam configuration, the sensors are placed in opposition to the sources with the
object to scan in the middle. Once again, the sources and sensors are rotated
and more projections are collected. This process is repeated until the object
has been fully scanned within the slice. A half turn would be sufficient here
to obtain the complete profile of the object as the attenuation values would
be similar for a rotation of 180°. Indeed, the sources and sensors would sim-
ply flip positions but the paths would be the same. Both radon and fanbeam
transforms are illustrated in Figure 3.8.

Figure 3.8: Illustrations of both fanbeam (Left) and radon (Right) projection
methods. Illustrations were originally from Naser et al. [29]

The inverse transforms named ifanbeam and iradon enable the opposite
process as they reconstruct images from projections obtained with fan-beam
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and radon.

The fanbeam geometry is mostly used in real CT reconstruction since it
enables a rapid and more efficient collection of projections as only one source
is needed [29], [30]. However, for virtual scanning on MATLAB, these assets
are less relevant. The number of sources that can be a problem for real scans
is not when done virtually. Moreover both radon and iradon built-in functions
support GPU computation contrary to fanbeam and ifanbeam. In terms of re-
construction, very little difference was seen between both geometries when
similar parameters were chosen. A Shepp-Logan phantom, commonly used to
model a human head, was used to validate the previous assumption. The back-
ground of the phantom was set to -1000 which is the usual value for air. Other
portions of the phantom were given HU values close to real soft tissue and
hard tissue [31] with HU values ranging from -200 to 700 HU . The phantom
was then virtually scanned with each method using the same X-ray spectrum.
Scanning parameters for each method were given similar values when possi-
ble. The output images were compared by taking the absolute difference of the
pixel values. Another pair of scans was performed with a metal-like portion
added in the middle of the head. The HU value for the simulated metal was
chosen in line with real clinical metal projections (HUmetal = 8000 HU) [32].
Both comparisons (see Figure 3.10) clearly showed that HU differences are
inferior at 95% to 22 HU. This applies regardless of metal in the FOV.

Figure 3.9: Shepp-Logan phantom used to test both reconstruction methods
(Radon and Fanbeam). A metal-like portion was added (Left) in the middle of
the original phantom geometry (Right).

This difference occurs mainly because of the noisy nature of FBP and the
potential rounding errors. This is exhibited by many bright dots on the sub-
tracted images (see Figure 3.11). However, the strongest differences occur at
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Figure 3.10: Histograms obtained after comparing virtual Shepp Logan phan-
tom reconstruction obtained with both methods (Radon and Fanbeam) with metal
(Up) and without (Down).

the edges of the bone-like tissues. It is likely because this region is at the inter-
section of two kinds of very different tissues. In the end, both methods provide
very similar images with a mean pixel intensity difference inferior to 8 HU).

Finally, in terms of metal artefacts, one can notice that they produce vi-
sually similar artefacts (see Figure 3.12). Even on the subtracted image with
metal, no noticeable difference was observed around the metal. It was mainly
the air region that was a bit noisier compared to the subtracted image without
metal.

Both method speeds were assessed using a 512x512x10 volume made of
repeated Shepp-Logan phantom slices. Very similar arguments were used for
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Figure 3.11: Images obtained after subtracting phantom reconstructions ob-
tained with both methods (Radon and Fanbeam) with metal (Left) and without
(Right).

both methods and similar simulation properties were used. In the end, the
fanbeam method was 35 % faster than the radon one (see Table 3.3). The radon
reconstruction was thus used in this thesis. Since the difference between both
reconstruction techniques was small it was deemed that using radon transforms
would not create bias for the DL network.

Table 3.3: Speed comparison between both radon and fanbeam reconstruction
methods for a volume of 512 x 512 x 10.

Radon speed (s) 1.940 Iradon speed (s) 0.187 Total speed (s) 2.127
Fanbeam speed (s) 2.383 Ifanbeam speed (s) 0.904 Total speed (s) 3.287

3.5 Architecture and training of the U-Net

3.5.1 Architecture of the network

The same U-Net network structure and hyper parameters as in the existing
algorithm [33] were used in this thesis. The U-net is convolutional neural
network frequently used in medical image segmentations.

The input volume is divided into three orthogonal stacks of 2D images.
Each slice is then divided in 128x128 patches used as an input for the U-
Net network. For each orthogonal orientation, one 3D binary segmentation is
output. A single 3D volume is then obtained using voxel-wise voting. The
complete process is illustrated in Figure 3.13. Image adopted from Medviso
in-house regulatory documentation.
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Figure 3.12: Reconstructed images from original Shepp Logan phantom using
Radon (Up) and Fan-beam (Down) in the presence of metal.

3.5.2 Generation of label classes

A total of 3 label classes were generated and input in the training.

Bone: A bone class was generated to cover all pixels in the CT-scans
containing bone. Bone segmentation was performed using the current DL
bone-segmentation tool. For each dataset, careful manual editing was also per-
formed to ensure as accurate segmentation as possible. Data sets with metal
artefacts required significant manual processing. Segmentation was performed
by myself and reviewed by Prof. Einar Heiberg, an experienced observer.

Metal: All the synthetic and real implants were assigned a common la-
bel that could then be used to generate artefacts. The labelling for the real
metal parts was obtained from the CT-images using a threshold technique. The
threshold was chosen so that the metal would be extracted without any bone.
A slight smoothing inferior to 1 mm was applied for a better rendering. For
very dense metals, artefacts were also extracted with the threshold and extra
manual processing was then performed to obtain a proper label for the metal.

Separator: An extra separator class was created by a closing operation of
the bone class subtracted by the bone segmentation. This class can then in a
post-processing step be used to force separation of bones, for instance in joints.

In addition to the first three classes, an artefact-mask containing regions
affected by metal artefacts was created. This mask was essentially used to en-
hance patches selection and favour patches with strong artefacts that could po-
tentially lead to an incorrect segmentation. For the metal-inserted datasets, this
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Figure 3.13: Overview of the bone segmentation algorithm developed by Med-
viso for their Segment 3DPrint software.

class was created by comparing each slice with and without synthetic artefacts.
Indeed, the CT-volume was first virtually scanned once without any metal and
then a second time with the associated metal parts. Doing so, provided bet-
ter results as it ensured that both volumes were very identical in terms of HU
values except for the regions where artefacts were created. Then the absolute
difference between both volumes was computed and a threshold applied. The
threshold was set to 150 HU by visual assessment of the artefacts. Indeed, arte-
facts under 150 HU were not strong enough to eventually cause segmentation
errors. For datasets with real metal, the initial segmentation tool was used in
the slices containing a metal part. The output object was then compared with
the bone label and the difference was kept as to create an artefact mask. Min-
imal manual adjustments were performed to ensure that only artefacts were
taken into account and not potential other artefacts.

3.5.3 Data augmentation

To improve the training, data was augmented as it was known to improve train-
ing performance [34].

First, each metal-free dataset was virtually scanned multiple times using
random combination of the synthetic implants designed beforehand. For each
simulation, simulation parameters (X-ray spectrum, implant material, Poisson
noise, scatter noise and filter) were also modified randomly to generated com-
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pletely different artefacts and thus provide a very rich input for the training
of the DL network. This first augmentation process enabled creating com-
plex and rich training data from each individual dataset. Datasets exhibiting
real metal artefacts were also virtually scanned with the simulator but with
an empty metal-mask. This way, no additional artefacts were created but the
global pixel intensity was still slightly modified depending on the spectrum
and noise level used for the simulation.

Datasets were then randomly rotated in 3D and thereafter 2D augmenta-
tions in patches of slices in all three orthogonal directions were performed.
Patches were affected with geometric transformations (flipping, rotation, scal-
ing, intensity and contrast and mirroring). Table 3.4 described each augmenta-
tion with its corresponding probability.

The data augmentation was changed before each new epoch so that the
same patches would not be used twice which reduces the risk for potential
overfitting.

Table 3.4: Table of the augmentations used with corresponding probability of
occurrence (middle column) and distribution for augmentation parameter.

Augmentation Probability Distribution Unit
Rotation 25 % U(-45, 45) Degrees
Scaling 100 % U(0.6, 1.4) Factor

Translation 25 % U(-64,64) Pixels
Mirroring horisontally 50% - -

Mirroring vertically 50% - -
Transpose 50% - -

White noise 20% U(0, 15%) Of intensity range
Brightness 25 % U(-100, 100) HU
Contrast 25 % U(0.7, 1.3) Factor

Gaussian blurring 25 % {3, 5,7} Filter size in pixels
Rescan dataset with metal 75 % - -

Keep metal shape 75 % - -

Implant material 100 % U(1,7) Density [g/cm3] and
mass attenuation coeffcient [cm2/g]

Poisson Noise 100 % U(11, 14) Factor of 10

Filter option 100 % U(1,5) Filter type: Ram Lak, Shepp-Logan,
Cosine, Hamming, Hann

3.6 Training

Datasets were partitioned into training data and test data (see Figures 7.1 and
7.2). 50 datasets were kept for the training and 25 for the test. Datasets were
carefully sorted in order to keep as much diversity as possible in each partition.
For the training data it is important to train the DL network on very divers
datasets to build up its robustness. The test data was even more crucial as it is
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meticulously inspected by the FDA in order to approve the commercialisation
of the DL network. Significant variety in age, acquisition dates, anatomical
regions scanned, disease and scanner brands was thus crucial for this partition.
Finally, datasets exhibiting knees were kept strictly in the test data in order
to assess the DL network ability to segment bones from unknown anatomical
regions. Once the datasets partitioned, the training process was designed and
optimised.

In order to generate a computationally effective training environment we
developed two independent processes. One process creates augmented training
patches and another process performs the training.

Patches were generated by the function patchgenerator(S) where S is the
argument containing all configurations for the augmentation and training. Each
dataset from the train data folder were augmented continuously. The patches
generated were then saved in the patches folder with the corresponding label
patches. Simultaneously, as soon as 80 000 patches were stored in the patches
folder, one epoch of the training would start on the second process. 80 000
patches were chosen as it seemed to be a good amount of patches when used to
train the previous DL bone-segmentation tool. The patches used in the epoch
were then deleted from the original folder to avoid using them twice. This
bucket-leak system allowed to decrease computational time as the two pro-
cesses could run on different CPU’s and also the training did not have to wait
for augmentation to finish to start next epoch.

3.7 Metal artefacts assessment

In order to assess the synthetic artefacts generated with the previous pipeline
(see Figure 3.6), a phantom experiment was carried out. A anthropomorphic
forearm phantom was used to reproduce human tissues with bone-like struc-
tures. Then, different metal parts with known composition were taped on the
phantom at various locations (see Figure 3.14). A gold ring was placed on
the index, a platinum coil on the metacarpals, two stainless steel plates with
a screw around the wrist and one spanner made of a cobalt alloy on the forearm.

The phantom was then scanned three times using a 120 kV tube voltage, as
commonly done for clinical cases. Two scans with a standard CTDIvol dose
around 4.5 mGy were performed, with and without metal. An extra scan with
metal was done using a high mAs setting to get a very high dose scan.

In order to assess the generated artefacts, three slices from the standard
dose scan displaying metal parts were chosen for thorough analysis. Each slice
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Figure 3.14: Anthropomorphic forearm phantom used for the assessment of the
synthetic metal artefacts. Metal parts (indicated with orange lettering) were taped
to the phantom and can be observed in the standard photo of the phantom (Left)
and on the 2D X-ray image (Right). All three configurations considered in the
analysis are shown on the X-ray image in red.

was selected based on the metal configuration. Metal configurations leading
to complex and strong metal artefacts were chosen. The slices positions are
shown on the 2D X-ray image (see Figure 3.14. A first configuration con-
taining a significant piece of cobalt alloy was chosen. A second configuration
showing multiple pieces of stainless steel and cobalt alloy parts was also re-
tained for analysis. The complexity of the artefacts generated by the interac-
tions between all individual metal parts was essential to simulate in order to
test the synthetic artefacts. Finally, a configuration displaying a very dense
metal was used for comparison as well. The slice contained platinum from
the coils. Matching slices from the scan without metal parts were used for the
simulation of the synthetic artefacts.

However, an additional 2D registration step was needed to ensure a per-
fect superposition of the slices without metal on the slices with metal parts.
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Indeed, the phantom was potentially moved during the scanning process and
the reconstruction field of view was placed manually for each single leading to
slight misalignment (see figure 3.15). Unwanted rotation and translations were
therefore corrected using a rigid registration. For each configuration, the geo-
metric transformations were estimated using the imbuilt MATLAB functions
imregtform. The transformations were then applied to the CT slice without
metal using imwarp.

Figure 3.15: Misaligned slices (Left) registered with rigid transformations. The
aligned slices were then cropped (Right) with dimension 401x401.

Thereafter, scans were cropped (401x401) in order to remove the borders
and keep the metal artefacts and the whole phantom in the image. Metal shapes
were then extracted from the slices with metal parts to generate synthetics arte-
facts on the slices originally not displaying metal. As the HU values of the
metal is very high compared to soft and hard tissues (see Histogram in Figure
3.16) a simple threshold around 3000 HU was used to segment metal from all
three configurations. However, this threshold-based segmentation performed
poorly with gold and platinum metals. It was impossible to obtain a proper
segmentation of the ring as gold creates major artefacts that result in pixel val-
ues over 3071 HU outside of the metal. But the 12 bit reconstruction, common
for many scanners, allows only pixel values ranging from -1024 up to 3071. It
is then impossible to make a distinction between pixels displaying real metal
or just strong artefacts around the metal part as a higher threshold value can
not be chosen to make the distinction. When thresholding the metal, artefacts
were also segmented resulting in a completely inaccurate shape. One attempt
to segment the ring and the coils from the high dose scan with less artefacts
was performed. Still, little improvement has been noticed (see Figure 3.17).
Concerning the coils, it was impossible to separate the threads forming the
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coils. Instead, it was thresholded as one significant piece of platinum.

Figure 3.16: Histogram computed from the first configuration on the CT slice
with metal. A threshold around 3000 HU just before the metal peak was kept to
segment all metal parts from the slice.

Once the metal shapes were extracted, spectrum and metal properties were
chosen according to the experiment settings to generate synthetic artefacts. A
120 kV spectrum filtered with a 2.5 mm aluminum sheet was used for the sim-
ulations. The resulting images were blurred with a Gaussian filter as they were
initially too sharp compared to the real scans displaying metal. A standard de-
viation of 2 was chosen for the filter based on visual inspection.

Following the generation of synthetic artefacts for each three configura-
tions, analysis was performed to compare slices with synthetic and real arte-
facts. First, a visual assessment was carried out to describe the general shape
of the artefacts and their relation to the underlying physical causes. A quan-
titative study followed using all three slices for each configuration (slice with
real artefacts, with synthetic artefacts and without artefacts). The computation
of the metrics is described in the figure 3.18 below.

Ten-pixel wide bands (horizontal and vertical) crossing the center of each
slice were extracted as shown in the first step described in Figure 3.18. Each
band was averaged along its width in order to get general pixel value fluctu-
ation along both perpendicular axes. The averaged fluctuations should reflect
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Figure 3.17: Thresholded metal from the high dose scan with less artefacts.
Both the gold ring and the coils segmentations were inaccurate because of strong
artefacts.

the presence of artefacts (both real and synthetics) in the overall image. An
additional metric for each band was extracted to compare both vertical and
horizontal fluctuations separately. For that, the mean absolute difference was
computed to compare the slice with real metal and both slices before and after
generating synthetic artefacts.
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Figure 3.18: Description of the quantitative analysis process.
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4. Results

In this chapter, qualitative and quantitative evaluation of the synthetic artefacts
is presented.

4.1 Visual assessment of simulated artefacts

Synthetic and real artefacts from all three slices are displayed on the figure 4.1
below:

Both real and simulated artefacts in Figure 4.1 are similar. Thin dark and
bright streaks originating from the metal part made of cobalt alloy are visible
on both types of artefacts and look sensibly similar as direction of the streaks is
sensibly the same. Moreover, wider dark streaks are also visible in directions
where attenuation is the most significant, i.e between the brightest (and thus
most attenuating) parts of the bones and the metal alloy. This phenomenon
resulting from beam hardening is more obvious for configuration b) (slices
in the middle row of Figure 4.1). There, multiple dark streaks connected all
individual metal parts are visible. This shadowing effect is clearly more pre-
dominant in the synthetic artefacts. Instead of stainless steel, titanium that
exhibits weaker attenuation, was simulated and gave better results with softer
artefacts. For the third configuration, this is where the synthetic artefact are
the least similar to the real ones. Noise is significant with sharp thin streaks.
Shadowing induced because of bean hardening is more present in the synthetic
slice. Finally, the white halo emanating from the metal parts is completely
different between the two slices.

Quantitative analysis was also performed on the previously described slices.

4.2 Quantitative evaluation of simulated artefacts

As expected from the visual inspection, for the last configuration, the syn-
thetic artefacts were very different from the real ones. When looking at the
horizontal fluctuations (upper plot from Figure 4.4), the slice before generat-
ing the artefacts and the slice with real artefact are more similar. The thin sharp
streaks from the real artefact slice have probably faded because of the averag-
ing process. In general, the synthetic artefact cast a global shadow over the
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slice resulting in overall lower pixel intensity. This difference was well cap-
tured by the average fluctuation metric (Table 4.1). The horizontal metric is
twice bigger for the slice after generation of artefacts. Such result implies that
the slice before generating the synthetic artefacts experience a pixel intensity
fluctuation closer to the slice with real artefacts.

For the second configuration, the pixel intensity fluctuations (both verti-
cally and horizontally) exhibit very similar evolution between real and syn-
thetic artefacts slices. Globally, the synthetic artefacts seem more substantial.
It is clearly noticeable around peak values both on the horizontal direction (at
the positions 200, 245, 255 ad 310 on the X axis) and vertical view (around
75, 150 and 235 on the Y axis). Here, the metrics from Table 4.1 point in the
same direction with very little absolute difference inferior to 20 HU along the
vertical direction.

Finally, the first configuration with only the cobalt alloy, is the one where
the synthetic artefacts are the closest to the real ones. Despite being slightly
less intense, the evolution of the average pixel intensity along the horizontal
and vertical band follow almost perfectly the ones from the pixels containing
real artefacts. It is important to notice, on the vertical view, how the average
pixel intensity is curved around the region where lays the metal. There, it is
easy to notice that the pixel values saturate at 3071 because of 12 bit recon-
struction, mentioned previously.

Table 4.1: Metrics obtained for all three configurations and band orientations
(horizontal and vertical). The absolute difference was used to compare average
pixel fluctuations.

Band Direction Simulated/Real No metal/Real

Configuration 1 Horizontal 31.6 80.4
Vertical 32.3 318.9

Configuration 2 Horizontal 59.3 71.9
Vertical 19.3 61.0

Configuration 3 Horizontal 61.9 30.6
Vertical 78.7 141.9
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(a) Configuration 1: Cobalt alloy spanner

(b) Configuration 2: Cobalt alloy and Stainless Steel

(c) Configuration 1: Platinum coils

Figure 4.1: For each three configurations are shown the slices showing real
artefacts (Left column), after generating synthetic artefacts (middle column) and
before (Right column).
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Figure 4.2: Average pixel intensity fluctuation recorded in the horizontal 10-
pixel wide band (Up) and vertical (Down) for the first configuration with only
cobalt alloy in the slice.46



Figure 4.3: Average pixel intensity fluctuation recorded in the horizontal 10-
pixel wide band (Up) and vertical (Down) for the second configuration with mul-
tiple stainless steel parts and one cobalt alloy metal.
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Figure 4.4: Average pixel intensity fluctuation recorded in the horizontal 10-
pixel wide band (Up) and vertical (Down) for the third configuration with the
platinum coils.
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5. Discussion

A promising metal artefact simulator was developed capable of reproducing
multiple physical phenomena constituting the core for the generation of metal
artefact. Beam hardening, scatter, Poisson noise and photon starvation were
all represented in the simulated artefacts at various intensities. Globally, beam
hardening seemed to dominate with very dark bands along directions where the
attenuation is the most significant (see Figure 4.1). Moreover, the simulator has
successfully be able to generate artefacts even in complex cases with multiple
metal parts. However, the synthetic artefacts were stronger in configuration c)
also because of the initial metal mask used for the simulation. If it has been
possible to obtain the real shape of the coils (made of multiple threads), the
simulation would have undoubtedly been different. Indeed, it was thresholded
as a solid block of platinum that was used as the metal mask for the simulator
leading to stronger synthetic artefacts. Overall, despite few differences, the
synthetic artefacts seemed useful to create a database with complex and divers
artefacts that could be used to train a U-Net.

5.1 Limitations

Plates placed on the scapulae were particularly interesting as the bone is very
thin in this region leading to poor DL bone-segmentation. Indeed, even with-
out metal artefact, the initial DL bone-segmentation tool failed to properly
segment the scapulae on multiple cases (see Figure 5.1. With metal artefacts,
this phenomenon is even more accentuated (see Figure 5.1) which in the end
requires additional manual processing if this region is of interest.

In addition, the generation of patches and especially the simulation of
metal artefacts is very time-demanding. Indeed, for a dataset of dimension
n3, the current simulation is O(n3) as the simulation is performed twice to ob-
tain the artefact-mask. Implementing a 3D version of the radon and iradon
transform in O(nlog(n)) based on Amir Averbuch and Yoel Shkolnisky’ paper
[35] could decrease simulation time. Moreover, finding another way to obtain
a mask artefact without simulating twice the whole dataset could be advanta-
geous.

It would also be very interesting to change how patches are chosen. So
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Figure 5.1: Example of poor scapulae segmentation (delineated in red) using
the initial DL bone segmentation tool.

far patches generation is based on how much bone or artefact is shown on
the patch. However, to make it better, it could learn from its own mistake by
choosing patches where the previous network wrongly labelled regions. For
each dataset, the last available network would be used to output a segmenta-
tion of the bone and would then be compared to the ground truth segmenta-
tion. A mask would then be created based on differences between those two
segmentations. The mask would then be used to select patches to keep for
the training. Doing so would make the network in a more direct way learn
from its own mistakes as it will get more training on the data where it fails.
However, it happens that within the FOV stand various objects (table, right
or left ruler) with attenuating properties similar to bone. When using the DL
bone-segmentation tool it happens that those objects end up being segmented
as well. A way to overcome this issue, would be to have a second ground truth
segmentation with unwanted objects. Whenever the network would be used
to obtain the mask, the second ground truth would be used to remove these
unwanted objects.

5.2 Future work

Considering the time allocated for this project, it has not been feasible to train
and test the artefact-robust bone-segmentation tool. Comparing the current
DL bone-segmentation tool and one trained using the metal artefact augmenta-
tion presented in this thesis could be of great interest. For datasets with metal
artefacts, both networks should be tested on regions where the artefacts are the
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strongest. In the absence of artefacts, it is also important that the artefact-robust
bone segmentation tool be as accurate as the current one. Finally, depending on
the artefact-robust DL bone-segmentation tool performance, the option to use
3-channel patches should be investigated using the already implemented MAR
techniques (LI and BHC). However, for this network to work on datasets with
real artefacts, it would require the user to first get the shape of all metals in the
scan. Indeed, both LI and BHC require metal projections to reduce artefacts.
A simple user-friendly interface could be added to Segment 3DPrint software
to help the user extract the metal shapes and then run the U-Net network to
segmented the region of the scan selected by the user. However, it has been
observed that for high attenuating metals such as platinum or gold, a simple
thresholding was not sufficient to extract properly the metal shapes because of
strong artefacts. It would thus be interesting to see if the artefact-robust DL
bone-segmentation tool would provide proper segmentation even with incor-
rect metal shapes.

Finally, as the initial goal was to use this new segmentation-tool for clinical
purposes, it should be documented and tested as required by the FDA and CE-
mark requirements. Once this is done, it would then be possible to add it to the
current Segment 3DPrint software and make it available for clinical use.

51



52



6. Conclusion

This study provided a complete pipeline to develop a DL bone-segmentation
tool robust to metal artefacts. The metal artefacts simulator has proven to suc-
cessfully recreate physical phenomena in order to obtain realistic metal arte-
facts shapes and intensities. Once the metal implants added to the dataset, var-
ious synthetic artefacts can be generated automatically. Even if this pipeline
was originally oriented towards bone segmentation, it could be easily modified
to train other types of DL networks or even provide great augmentation possi-
bilities to standard datasets without metal by rescanning it with the simulator.
Noise and other augmentations could be added in a more realistic way and thus
provide richer augmentations and potentially more robust networks.
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Table 7.1: Training data. Anatomy refers to anatomical description and details
regarding subjective image quality, Acq. year refers to year of image acquisition,
Age refers to age of the patient at image acquisition, Scanner is the used scanner,
Res [mm] is the in plane image resolution in mm, Mvox is the number of million
voxels in the data set. U refers to unknown.

# Anatomy and pahtology Acq.
year

Age
(year) Sex Scanner Res

[mm] Mvox

1 Lumbar pelvis, massive
calcification in the aorta U 80 F Siemens 0.69 148

2 Spine, small amount of
contrast agent U 42 F Siemens 0.65 71

3 Spine U 70 M Siemens 0.72 50
4 Spine U 60 F Siemens 0.56 137
5 Skull U 21 M Philips 0.43 106
6 Spine U 52 M Siemens 0.98 19
7 Feet with metal implant U 14 F Siemens 0.26 160
8 Foot U 61 M Siemens 0.78 18
9 Foot U 34 F Siemens 0.53 39
10 En platta U 56 U Toshiba 0.63 33

11 Part of left hand,
ulna & radius U 27 U Philips 0.45 65

12 Part of right hand,
ulna & radius U 19 U Philips 0.40 93

13 Left hand U 70 U Philips 0.28 132
14 Pelvis U 2 F Siemens 0.53 63
15 Pelvis U 4 M Philips 0.33 125

16 Spine sever scoliosis
(upper part) U 11 F Philips 0.49 90

17 Pediatric scoliosis U 6 M Siemens 0.53 84
18 Severe scoliosis U 14 F Toshiba 0.50 241

19 Standard skull,
older subject U 92 F Siemens 0.43 91

20 Spine U 62 F Philips 0.40 173
21 Spine, heavy lung tumour 1992 34 F Siemens 0.55 129
22 Spine, contrast agent 1993 76 F GE 0.53 140
23 Right hand 2021 56 U Toshiba 0.63 33

24 Part of right hand,
ulna & radius 2018 27 U Philips 0.45 65

25 Left Hand 2019 19 U Philips 0.40 82

26

Thoracic, Pelvis and part
of femur, Marfan syndrome,
massive dissected aorta,
artificial valve

2020 48 M Siemens 0.63 295

27 Spine 1990 71 U GE 0.82 120
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# Anatomy and pahtology Acq.
year

Age
(year) Sex Scanner Res

[mm] Mvox

28 Both arms
(elbow to metacarpals) U 14 F Toshiba 0.54 142

29 Part of hands,
ulna and radius U 46 F Toshiba 0.45 70

30
Thorax, Pelvis and
femurs with metal
prosthesis on left hip

U M GE 1.02 233

31 Left hand U 62 F Siemens 0.29 97
32 Right hand U 62 F Siemens 0.29 99
33 Arms U 53 F Siemens 0.74 111

34 Hip and femurs. Metal
hip prosthesis (right hip) U 27 M Philips 0.94 162

35 Left foot with artefacts
from the L bar U 69 F Siemens 0.48 96

36 Mandibula
Brackets U - Philips 0.43 32

37 Feet U 50 M Siemens 0.54 94
38 Mandibula with metal U 52 F Philips 0.39 36
39 Hands and elbows U 16 F Siemens 0.30 781
40 Shoulder U 28 F Siemens 0.20 222
41 Left hand U 61 F Siemens 0.45 107
42 Right hand U 62 F Siemens 0.29 135
43 Left hand U 44 M Siemens 0.24 357
44 Left thorax U 23 M Siemens 0.38 260
45 Right thorax U 23 M Siemens 0.38 260

46 Both arms with metal
plate on the left arm U 35 M Siemens 0.80 125

47 Left foot U 67 F Siemens 0.21 227

48 Feet with tibia and
fibula U F GE 0.98 32

49 Right thorax U 58 M Siemens 0.36 298

50 Upper thorax
with metallic wire U 62 F Siemens 0.98 53
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Table 7.2: Test data. Anatomy refers to anatomical description and details re-
garding subjective image quality, Acq. year refers to year of image acquisition,
Age refers to age of the patient at image acquisition, Scanner is the used scanner,
Res [mm] is the in plane image resolution in mm, Mvox is the number of million
voxels in the data set. U refers to unknown.

# Anatomy and pahtology Acq.
year

Age
(year) Sex Scanner Res

[mm] Mvox

1 Spine U 1 F Philips 0.30 68

2 Hand positioned over the
chest. Sever joint disorder 2021 61 F Siemens 0.52 77

3 Hand data set with ulna
and radius 2020 15 F GE 0.81 61

4 Skull with defect 2018 74 M Philips 0.43 105
5 Skull with defect 2019 32 F Siemens 0.43 97
6 Feet 2020 34 F Siemens 0.48 29

7 Pediatric tumor with
contrast on board left 2020 0.4 F Siemens 0.37 57

8 Semi-thorax (neonate) 2021 0.06 M Siemens 0.27 26
9 Young pelvis female 2020 2 F Philips 0.31 105
10 Young pelvis male 2019 1 M Siemens 0.34 85

11 Knee with contrast on
board left 2017 61 M Siemens 0.79 16

12 Severe scoliosis
(lower part) 2019 11 F Philips 0.49 90

13 Pretty severe scoliosis 2019 14 F Toshiba 0.50 241

14 Ulna and radius hands
and part of spine U 62 M Philips 0.49 80

15 Arm right 2021 58 F Toshiba 0.27 295
16 Mandibula with wires U 50 M GE 0.52 21

17 Pelvis with metal plates
on the right femur U 12 M Philips 0.60 311

18 Pelvis with metal plates
on the right femur (DualCT) U 12 M Philips 0.60 311

19 Part of right hand
with metal plate U 70 F Philips 0.29 113

20 Feet 2018 22 F Siemens 0.61 93
21 Right hand with metal plates 2021 61 F Siemens 0.23 159
22 Feet 2021 49 M Siemens 0.53 99
23 Right hand U 45 M Philips 0.31 130

24 Brackets top and bottom
and many fixations 2022 45 F Siemens 0.34 65

25 Knees 2022 38 F Toshiba 0.73 101
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Table 7.3: Mass attenuation coefficients used for the simulation of metal arte-
facts. SS refers to Stainless steel. Formulas for each material displayed in Table
3.1.

Energy
[keV]

Eau
[cm2/g]

Bone
[cm2/g]

Titanium
[cm2/g]

Iron
[cm2/g]

Nitinol
[cm2/g]

Gold
[cm2/g]

Silver
[cm2/g]

Platinum
[cm2/g]

SS304
[cm2/g]

SS316
[cm2/g]

CobaltAlloy
[cm2/g]

TitaniumAlloy
[cm2/g]

1 4077 3781 5870 9085 7862 4653 7037 4433 8844 8811 8715 5613
2 617,3 586,9 986 1627 1517 1137 1401 1080 1598 1600 1569 1067
3 192,8 295,8 332 557,6 520,9 2049 513,6 1965 547,5 582,1 656,2 361,3
4 82,77 133,1 152 256,7 240 1144 1305 1100 252 268,9 305,5 165,1
5 42,59 191,7 684 139,9 431,5 666 738,8 640,1 137,3 146,8 167,5 630,8
6 24,64 117,1 432 84,84 270,7 425,2 461,1 408,1 164,4 161,3 237,3 414,8
7 15,5 67,61 283 55,56 177,2 289,1 307,3 277,3 118 114,8 176,1 271,8
8 10,4 37,3 306 305,6 125,9 207,2 216,4 198,7 275,3 268,3 287,5 194
9 7,29 26,8 148 225,7 210,1 153,9 157,9 147,6 221,2 220,8 214,1 141,8
10 5,33 19,9 111 170,7 159,8 118,1 119,3 113,2 168 167,7 163,4 106,1
11 4,03 15,2 85 132,3 124,1 92,83 92,13 88,99 130,5 130,3 127,3 81,46
12 3,13 11,9 66,8 104,7 98,23 183,7 72,84 176,4 103,3 103,1 100,8 64,01
13 2,49 9,48 53,5 84,33 79,01 148,4 58,71 142,6 83,11 82,98 81,07 51,26
14 2,02 7,69 43,5 68,94 64,49 168,5 48,1 187,9 67,86 67,77 66,15 41,69
15 1,67 6,33 35,9 57,09 53,34 163,7 39,98 157,8 56,14 56,07 54,7 34,36
16 1,41 5,27 29,9 47,79 44,64 138,9 33,55 133,8 46,98 46,93 45,77 28,64
17 1,2 4,45 25,2 40,41 37,75 119,1 28,46 114,6 39,72 39,68 38,71 24,12
18 1,04 3,79 21,4 34,47 32,22 103 24,39 99,05 33,88 33,85 33,04 20,5
19 0,913 3,26 18,4 29,65 27,72 89,76 21,08 86,3 29,14 29,12 28,43 17,58
20 0,81 2,83 15,9 25,68 24,03 78,81 18,36 75,73 25,25 26,56 29,3 15,18
21 0,725 2,48 13,8 22,4 20,96 69,4 16,08 66,68 22,02 23,33 26,14 13,2
22 0,656 2,18 12,1 19,65 18,39 61,48 14,18 59,06 19,32 20,56 23,26 11,56
23 0,598 1,94 10,6 17,34 16,23 54,77 12,58 52,6 17,05 18,18 20,67 10,18
24 0,549 1,73 9,41 15,38 14,4 49,03 11,22 47,09 15,12 16,14 18,36 9,011
25 0,508 1,56 8,37 13,7 12,83 44,1 10,06 42,35 13,47 14,37 16,33 8,018
26 0,473 1,4 7,48 12,26 11,48 39,84 52,81 38,25 12,05 12,84 14,55 7,167
27 0,443 1,28 6,72 11,02 10,32 36,13 48 34,69 10,83 11,52 13,01 6,434
28 0,418 1,16 6,05 9,942 9,309 32,89 43,76 31,57 9,772 10,38 11,68 5,8
29 0,395 1,07 5,48 9,001 8,429 30,04 40,01 28,83 8,847 9,381 10,53 5,247
30 0,376 0,982 4,97 8,176 7,657 27,52 36,68 26,41 8,036 8,513 9,531 4,764
31 0,358 0,908 4,53 7,451 6,979 25,25 33,7 24,23 7,323 7,753 8,669 4,34
32 0,343 0,842 4,14 6,81 6,38 23,23 31,03 22,3 6,693 7,085 7,919 3,967
33 0,33 0,785 3,79 6,242 5,848 21,44 28,63 20,57 6,135 6,494 7,26 3,636
34 0,318 0,733 3,49 5,737 5,376 19,83 26,47 19,02 5,638 5,97 6,678 3,342
35 0,308 0,688 3,21 5,285 4,954 18,38 24,52 17,63 5,195 5,503 6,161 3,08
36 0,298 0,647 2,97 4,881 4,576 17,08 22,76 16,38 4,798 5,085 5,699 2,846
37 0,289 0,61 2,75 4,518 4,237 15,9 21,16 15,25 4,441 4,71 5,285 2,637
38 0,282 0,577 2,55 4,192 3,932 14,83 19,72 14,23 4,12 4,371 4,911 2,448
39 0,275 0,548 2,37 3,896 3,656 13,86 18,4 13,29 3,83 4,066 4,572 2,278
40 0,268 0,521 2,21 3,629 3,406 12,98 17,19 12,45 3,568 3,789 4,265 2,124
41 0,263 0,496 2,07 3,387 3,18 12,17 16,1 11,67 3,33 3,537 3,984 1,985
42 0,257 0,474 1,94 3,166 2,974 11,43 15,09 10,95 3,113 3,308 3,728 1,859
43 0,252 0,454 1,82 2,965 2,786 10,74 14,17 10,3 2,916 3,098 3,493 1,744
44 0,248 0,436 1,71 2,782 2,615 10,12 13,32 9,698 2,735 2,907 3,278 1,639
45 0,244 0,419 1,61 2,614 2,458 9,542 12,54 9,146 2,57 2,732 3,081 1,543
46 0,24 0,403 1,51 2,46 2,314 9,011 11,82 8,636 2,419 2,571 2,899 1,455
47 0,236 0,389 1,43 2,318 2,182 8,521 11,16 8,166 2,28 2,423 2,733 1,374
48 0,233 0,376 1,35 2,188 2,06 8,068 10,54 7,731 2,152 2,287 2,579 1,3
49 0,23 0,364 1,28 2,068 1,948 7,648 9,97 7,328 2,034 2,161 2,437 1,231
50 0,227 0,352 1,21 1,957 1,844 7,258 9,45 6,954 1,926 2,046 2,306 1,168
51 0,224 0,342 1,15 1,855 1,748 6,893 8,95 6,604 1,825 1,939 2,185 1,11
52 0,222 0,332 1,1 1,76 1,659 6,553 8,5 6,279 1,732 1,839 2,073 1,056
53 0,219 0,323 1,04 1,672 1,577 6,237 8,07 5,976 1,645 1,747 1,969 1,006
54 0,217 0,315 0,995 1,591 1,5 5,942 7,67 5,694 1,565 1,662 1,872 0,9591
55 0,215 0,307 0,95 1,515 1,429 5,667 7,3 5,429 1,49 1,583 1,782 0,9159
56 0,213 0,3 0,908 1,444 1,363 5,409 6,95 5,182 1,421 1,509 1,698 0,8756
57 0,211 0,293 0,869 1,378 1,301 5,167 6,63 4,951 1,356 1,439 1,62 0,8381
58 0,209 0,287 0,832 1,316 1,243 4,941 6,32 4,734 1,296 1,375 1,547 0,8031
59 0,208 0,281 0,798 1,259 1,189 4,729 6,04 4,531 1,239 1,315 1,479 0,7704
60 0,206 0,275 0,766 1,205 1,139 4,529 5,77 4,34 1,186 1,258 1,415 0,7399
61 0,204 0,27 0,736 1,154 1,091 4,34 5,51 4,159 1,136 1,206 1,355 0,7112
62 0,203 0,265 0,708 1,107 1,047 4,162 5,28 3,988 1,09 1,156 1,298 0,6844
63 0,201 0,26 0,682 1,063 1,005 3,995 5,05 3,828 1,046 1,109 1,245 0,6592
64 0,2 0,256 0,657 1,021 0,9663 3,837 4,84 3,677 1,005 1,066 1,196 0,6355
65 0,199 0,252 0,634 0,9816 0,9295 3,688 4,64 3,534 0,9666 1,024 1,149 0,6132
66 0,197 0,248 0,612 0,9446 0,8949 3,547 4,45 3,399 0,9303 0,9857 1,105 0,5923
67 0,196 0,244 0,591 0,9097 0,8623 3,414 4,28 3,271 0,896 0,9491 1,063 0,5725
68 0,195 0,24 0,572 0,8768 0,8315 3,287 4,11 3,15 0,8637 0,9146 1,024 0,5539
69 0,194 0,237 0,554 0,8457 0,8024 3,168 3,95 3,036 0,8332 0,8821 0,987 0,5363
70 0,193 0,234 0,536 0,8164 0,775 3,054 3,8 2,927 0,8044 0,8513 0,952 0,5197
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... ... ... ... ... ... ... ... ... ... ... ... ...
71 0,192 0,231 0,52 0,7886 0,749 2,947 3,66 2,824 0,7771 0,8222 0,9189 0,504
72 0,191 0,228 0,504 0,7623 0,7244 2,844 3,52 2,726 0,7513 0,7946 0,8876 0,4891
73 0,19 0,225 0,489 0,7374 0,7011 2,747 3,39 2,633 0,7269 0,7685 0,8578 0,475
74 0,189 0,222 0,476 0,7138 0,679 2,655 3,27 2,545 0,7037 0,7438 0,8297 0,4616
75 0,188 0,22 0,462 0,6915 0,6581 2,567 3,15 2,461 0,6817 0,7203 0,8029 0,4489
76 0,187 0,217 0,45 0,6702 0,6382 2,483 3,04 2,381 0,6608 0,698 0,7776 0,4369
77 0,186 0,215 0,438 0,65 0,6193 2,403 2,94 2,304 0,641 0,6768 0,7534 0,4254
78 0,185 0,213 0,426 0,6308 0,6013 2,327 2,84 2,231 0,6222 0,6567 0,7305 0,4145
79 0,185 0,211 0,416 0,6126 0,5842 2,255 2,74 9,126 0,6042 0,6376 0,7087 0,4042
80 0,184 0,209 0,405 0,5952 0,5679 2,185 2,65 8,732 0,5872 0,6193 0,6879 0,3943
81 0,183 0,207 0,395 0,5787 0,5524 8,825 2,56 8,376 0,5709 0,6019 0,6681 0,3849
82 0,182 0,205 0,386 0,5629 0,5376 8,552 2,48 8,054 0,5554 0,5854 0,6492 0,3759
83 0,181 0,203 0,377 0,5478 0,5235 8,292 2,4 7,763 0,5406 0,5696 0,6312 0,3674
84 0,181 0,201 0,369 0,5335 0,51 8,042 2,33 7,497 0,5265 0,5545 0,614 0,3592
85 0,18 0,2 0,361 0,5198 0,4971 7,802 2,25 7,254 0,5131 0,5401 0,5976 0,3514
86 0,179 0,198 0,353 0,5067 0,4848 7,573 2,19 7,031 0,5002 0,5264 0,5819 0,3439
87 0,179 0,196 0,345 0,4942 0,4731 7,353 2,12 6,825 0,4879 0,5132 0,5669 0,3368
88 0,178 0,195 0,338 0,4822 0,4618 7,141 2,06 6,634 0,4761 0,5006 0,5526 0,3299
89 0,177 0,194 0,331 0,4707 0,4511 6,938 2 6,456 0,4649 0,4886 0,5388 0,3234
90 0,177 0,192 0,325 0,4597 0,4407 6,744 1,94 6,289 0,4541 0,4771 0,5257 0,3171
91 0,176 0,191 0,318 0,4492 0,4309 6,556 1,88 6,132 0,4438 0,466 0,5131 0,3111
92 0,175 0,189 0,312 0,4391 0,4214 6,377 1,83 5,984 0,4338 0,4554 0,501 0,3053
93 0,175 0,188 0,307 0,4295 0,4123 6,203 1,78 5,843 0,4243 0,4453 0,4894 0,2998
94 0,174 0,187 0,301 0,4202 0,4036 6,037 1,73 5,709 0,4152 0,4355 0,4783 0,2945
95 0,174 0,186 0,296 0,4113 0,3952 5,877 1,68 5,58 0,4065 0,4262 0,4676 0,2894
96 0,173 0,185 0,291 0,4028 0,3872 5,722 1,64 5,455 0,3981 0,4172 0,4574 0,2844
97 0,172 0,183 0,286 0,3945 0,3795 5,573 1,59 5,335 0,39 0,4086 0,4475 0,2797
98 0,172 0,182 0,281 0,3866 0,372 5,43 1,55 5,218 0,3822 0,4003 0,4381 0,2752
99 0,171 0,181 0,277 0,3791 0,3649 5,292 1,51 5,105 0,3748 0,3923 0,429 0,2708
100 0,171 0,18 0,272 0,3717 0,358 5,158 1,47 4,993 0,3676 0,3846 0,4202 0,2666
101 0,17 0,179 0,268 0,3647 0,3514 5,03 1,43 4,884 0,3607 0,3772 0,4118 0,2626
102 0,17 0,178 0,264 0,3579 0,345 4,906 1,4 4,777 0,354 0,3701 0,4036 0,2586
103 0,169 0,177 0,26 0,3514 0,3389 4,786 1,36 4,672 0,3476 0,3633 0,3958 0,2549
104 0,169 0,176 0,256 0,3451 0,333 4,67 1,33 4,569 0,3414 0,3567 0,3883 0,2512
105 0,168 0,176 0,252 0,3391 0,3273 4,558 1,3 4,469 0,3355 0,3503 0,381 0,2477
106 0,168 0,175 0,249 0,3332 0,3218 4,45 1,26 4,37 0,3297 0,3441 0,374 0,2444
107 0,167 0,174 0,246 0,3276 0,3165 4,345 1,23 4,274 0,3242 0,3382 0,3672 0,2411
108 0,167 0,173 0,242 0,3221 0,3113 4,244 1,21 4,18 0,3188 0,3325 0,3607 0,2379
109 0,166 0,172 0,239 0,3169 0,3064 4,146 1,18 4,088 0,3137 0,327 0,3544 0,2349
110 0,166 0,171 0,236 0,3118 0,3016 4,051 1,15 3,998 0,3087 0,3216 0,3483 0,2319
111 0,165 0,171 0,233 0,3069 0,297 3,96 1,12 3,911 0,3038 0,3165 0,3424 0,2291
112 0,165 0,17 0,23 0,3021 0,2925 3,871 1,1 3,825 0,2992 0,3115 0,3367 0,2263
113 0,164 0,169 0,227 0,2975 0,2882 3,785 1,07 3,742 0,2947 0,3067 0,3312 0,2236
114 0,164 0,168 0,225 0,2931 0,284 3,702 1,05 3,66 0,2903 0,302 0,3259 0,221
115 0,164 0,168 0,222 0,2888 0,28 3,621 1,03 3,581 0,2861 0,2975 0,3208 0,2185
116 0,163 0,167 0,22 0,2846 0,2761 3,543 1,01 3,503 0,282 0,2931 0,3158 0,2161
117 0,163 0,166 0,217 0,2806 0,2723 3,467 0,98 3,428 0,278 0,2889 0,311 0,2137
118 0,162 0,166 0,215 0,2767 0,2686 3,393 0,96 3,354 0,2742 0,2848 0,3063 0,2115
119 0,162 0,165 0,212 0,2729 0,2651 3,322 0,94 3,283 0,2705 0,2808 0,3018 0,2092
120 0,1614 0,164 0,2102 0,2693 0,2616 3,252 0,924 3,213 0,2669 0,277 0,2974 0,2071
121 0,1609 0,163 0,208 0,2657 0,2583 3,185 0,9051 3,145 0,2634 0,2733 0,2931 0,205
122 0,1605 0,163 0,2059 0,2623 0,255 3,12 0,8869 3,079 0,26 0,2696 0,289 0,203
123 0,1601 0,162 0,2038 0,2589 0,2519 3,056 0,8692 3,014 0,2567 0,2661 0,285 0,201
124 0,1597 0,162 0,2019 0,2557 0,2488 2,994 0,8521 2,951 0,2535 0,2627 0,2812 0,1991
125 0,1593 0,1614 0,1999 0,2526 0,2459 2,935 0,8354 2,89 0,2504 0,2594 0,2774 0,1972
126 0,1589 0,1609 0,198 0,2495 0,243 2,876 0,8193 2,831 0,2474 0,2562 0,2737 0,1954
127 0,1586 0,1605 0,1962 0,2465 0,2402 2,82 0,8036 2,773 0,2445 0,2531 0,2702 0,1937
128 0,1582 0,1601 0,1944 0,2437 0,2375 2,765 0,7884 2,716 0,2417 0,2501 0,2667 0,1919
129 0,1578 0,1597 0,1927 0,2409 0,2348 2,711 0,7737 2,661 0,2389 0,2471 0,2634 0,1903
130 0,1574 0,1593 0,191 0,2381 0,2323 2,659 0,7593 2,608 0,2362 0,2443 0,2601 0,1886
131 0,157 0,1589 0,1894 0,2355 0,2298 2,608 0,7454 2,556 0,2336 0,2415 0,257 0,1871
132 0,1567 0,1586 0,1878 0,2329 0,2273 2,559 0,7319 2,505 0,2311 0,2388 0,2539 0,1855
133 0,1563 0,1582 0,1862 0,2304 0,225 2,511 0,7188 2,456 0,2286 0,2362 0,2509 0,184
134 0,1559 0,1578 0,1847 0,228 0,2227 2,464 0,706 2,408 0,2262 0,2336 0,248 0,1826
135 0,1556 0,1574 0,1832 0,2256 0,2204 2,419 0,6936 2,362 0,2239 0,2311 0,2452 0,1811
136 0,1552 0,157 0,1818 0,2233 0,2182 2,375 0,6815 2,316 0,2216 0,2287 0,2424 0,1797
137 0,1549 0,1567 0,1804 0,221 0,2161 2,331 0,6698 2,272 0,2194 0,2263 0,2397 0,1784
138 0,1545 0,1563 0,179 0,2188 0,214 2,289 0,6584 2,229 0,2173 0,224 0,2371 0,1771
139 0,1542 0,1559 0,1777 0,2167 0,212 2,248 0,6472 2,187 0,2152 0,2218 0,2346 0,1758
140 0,1538 0,1556 0,1764 0,2146 0,2101 2,209 0,6364 2,147 0,2131 0,2196 0,2321 0,1745
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