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Abstract

This thesis explores a statistical framework for analysing LDMX data. It uses pre-built
functions in the ROOT framework to calculate likelihoods and confidence levels (CL).
Data, background and signal were generated in Monte Carlo simulations with a loose veto
on signal in the Hcal with simple systematic uncertainties (for the background and signal)
created by varying this selection. The data sets consisted of a 4000 event background and
25 event signal (a strong signal). Four hypotheses were tested with dark photon masses of
1, 10, 100, and 1000 MeV. The pre-bult functions did not work as intended hence another
method to find CLs values needs to be found. Signs of signals were found in three of four
hypotheses with the most promising being the 1000 MeV followed by the 100 MeV which
where observed to a 95% CL, the 10 MeV was observed to a 68% CL. Lastly, the 1 MeV
signal was not observed at a 68% CL.
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1 Introduction

Our current notion of the particle content of the Universe is incomplete. Only ∼5% of the
energy in the Universe is composed of standard model (SM) matter; the rest is composed
of hypothesised dark matter (∼ 27%) and dark energy (∼ 68%). The Light Dark Matter
eXperiment (LDMX) is an experiment aiming to solve this mystery by finding a potential
dark matter candidate. At the moment, the experiment is still in its design stage and there
is work continuing on all components, physical and theoretical [1]. This report focuses on
a statistical analysis of the expected data. After all, an understanding of how assumptions
and performance estimations affect the overall sensitivity is vital for its ability to detect
the elusive dark matter.

LDMX aims to discover light dark matter, i.e. dark matter particles in the mass range
of MeV to a few GeV. The experiment itself consists of a 4-8 GeV (16 GeV in later itera-
tions) beam of electrons hitting a thin sheet of tungsten with the products of the reaction
being observed by a specialised tracker, electromagnetic calorimeter (Ecal), and hadronic
calorimeter (Hcal). Still, the dark matter particle producing reaction is expected to be ex-
tremely rare, as it should otherwise already have been discovered. Hence the discrimina-
tion and elimination of the background is very important [1]. The dark matter is expected
to be produced in a so-called dark bremsstrahlung (dark braking radiation) reaction which
differs from a normal bremsstrahlung event as either a dark matter particle or a dark pho-
ton is radiated from a standard model (SM) particle. Given this, the experiment relies on
the dark matter being unreactive whilst the standard model particle is detected by the
detectors, thus creating the appearance of missing energy and momentum. Detection of
the dark matter can be thought of in two steps: 1) When totalling the amount of energy
deposited in the detector there should be less energy than expected if there was no dark
matter reaction, this is a promising sign; 2) the unexpected absence of momentum (specif-
ically in the transverse direction), i.e. an apparent violation of momentum conservation.
To conserve momentum there must be a corresponding particle that travels undetected
through the experiment, this particle should be a type of dark matter. The resulting spec-
trum (after background elimination) will show the existence as well as indicate the mass
of the dark mediator [1].

The main issue with this setup is the vast amount of background produced from other pro-
cesses in the tungsten target, the trackers and the calorimeters. Some backgrounds can be
easily eliminated whilst others are more challenging, such as neutral kaon and neutrino-
producing events. The neutrino events, for example, are an irreducible background. For-
tunately, the rate of neutrino reactions is expected to be several orders of magnitudes rarer
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than the dark matter reactions meaning they can be neglected. Unfortunately, the other
backgrounds listed are significant and are expected to have similar or higher frequencies
than the dark matter reaction. This leads to complications, as the experiment aims for zero
background. The kaon background (neutral and charged) is expected to be especially hard
to discriminate. The neutral kaon does not interact in the tracker or Ecal, so the only place
for detection is the Hcal. Moreover, as a neutral kaon can remain intact over the time it
is in the detector it may not decay in said detector at all (though one can still detect it via
other means). A solution to single elements being responsible for the rejection of large
portions of the background has been to require very precise calorimeters as well as excel-
lent tracking capabilities. Still, without a statistical analysis it is unclear how deviations
from the specifications and predictions will impact the performance of the experiment.
Furthermore, since the energy regime is not a thoroughly investigated region, the simula-
tions that have been relied upon to construct the experiment have not been validated by
extensive data [1]. Consequently, there is some uncertainty in the performance of LDMX.
A statistical analysis would allow for quantitative estimate how much signal is needed in
the presence of a background to still discover dark matter for differing mass hypotheses
[1]. This thesis hopes to provide a statistical framework that can provide this quantitative
estimate.

A statistical analysis of LDMX data will entail accounting for statistical as well as sys-
tematic uncertainties. Monte Carlo (MC) simulated data estimating the performance of
LDMX as well as the background production will be used for testing several different pos-
sible cases and checking whether statistically significant results can be extracted (more on
significance in 2.3). Without a statistical analysis, it is impossible to ascertain whether the
results are significant enough to warrant discovery. In particle physics, a so-called 5 sigma
result is required (one false positive in, roughly, 1.7 million results) to claim a discovery.
A statistical analysis is necessary to back up the 5 sigma claim. Consequently, it will be of
vital importance when data starts being analysed. Hence the development of a statistical
framework from which LDMX’s performance can be analysed is important so that it is
known whether the current expected performance is acceptable.
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2 Theory

2.1 LDMX

LDMX has four main components (see Figure 1), namely the tracker (tagging and recoil),
the target, the Ecal, and the Hcal. The tagging tracker is 60 cm long and positioned inside
a 1.5T magnetic field whilst the recoil tracker is 18 cm long and in the fringe of the magnet.
The tagging tracker uses silicon microstrips modules placed every 10 cm to ensure good
momentum resolution. The recoil tracker uses the same modules spaced irregularly to
optimise pattern recognition for low momentum particles whilst keeping good momen-
tum resolution over the entire range. Between the trackers the tungsten target is placed.
The Ecal is required to have radiation hardness, fast readout, plus good energy and spa-
tial resolution. Lastly, the Hcal is a scintillator sampling calorimeter which main function
is to detect neutral hadrons as well as showers escaping the Ecal and minimum ionising
particles [2].

Figure 1: Illustration of the LDMX experiment. Shown is the electron beam incident from
the left travelling trough the tagging tracker onto a thin tungsten target, then passing
through the recoil tracker before reaching the Ecal and Hcal. [1]

2.2 Thermal Relic Dark Matter and Light Dark Matter

The thermal relic dark matter theory supposes that the dark matter arose in the Universe
as a thermal relic of the early Universe, which is thought to have had a very hot and dense
thermal period. The dark matter abundance is then theorised to have stabilised when a
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thermal freeze-out (expansion rate of the Universe overtook the rate of interaction) hap-
pened. This is an attractive model for the origin of dark matter as it is simple. It only
requires that the rate of non-gravitational interaction between dark matter and standard
model matter was larger than the Hubble expansion rate at some point in time. Moreover,
the model is compatible with almost all models that allows for detection[3].

In the context of dark matter mass this gives a mass region spanning from MeV to several
TeV. The upper range from GeV to TeV encompass the Weakly Interacting Massive Parti-
cles and has been the subject of most of dark matter particle research. The other region’s
dark matter candidate – light dark matter – has historically been difficult to investigate
due the backgrounds involved. This is unfortunate as most stable ordinary particles have
masses in this region which may be true for dark matter too. Light dark matter requires
that there exist a light force carrier that can mediate annihilation for the thermal freeze-
out. A minimal model, in this scheme only requires that the dark matter as well as its
force carrier are singlets under the SM in a new U(1) gauge group[3].

2.3 Hypothesis testing

The following sections (section 2.3, 2.4, 2.5, and 2.6) follow the discussion in on statis-
tics in the appendix of [4]. Hypothesis testing is a process of evaluating the validity of
a hypothesis based on an experiment. The idea is that the prediction provided by the
hypothesis is compared to the results of the experiment to see how unlikely the result is,
assuming that the hypothesis is correct. If the result is sufficiently unlikely the hypothesis
is rejected. A common way to quantify how well the results agree with the expected result
is through p-values – p-values are a statement of how likely is it that an at least as extreme
result is obtained. What can be considered extreme depends on the specifics of the exper-
iment. Consider an experiment where testing the saying of dropping buttered toast lands
buttered side down more commonly; in this case the hypothesis is that the number of
drops which lands butter side down should be significantly higher than 50%. Agreement
with the hypothesis would then be a high percentage of butter side down landings, whilst
disagreement would be anything else. This, in terms of p-values, would be a one-sided
probability with the p-value close to one for agreement with the hypothesis and p-values
close to zero for disagreement. Consider the same experiment, but this time not acknowl-
edging the old saying, we hypothesise that the toast should be equally likely to land on
either side. In this case agreement is only found for roughly equal numbers of butter side
up and down landings whilst a large divergence from this in either direction would result
in disagreement. This is a two sided probability as both large and small count of buttered
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side down landings means poor agreement with the hypothesis [4].

The statement "If the result is sufficiently unlikely the hypothesis is rejected" is unac-
ceptably vague to be used in any practical instance. One needs to define exactly what
constitutes as sufficiently unlikely before an experiment is performed as well as defining
what type of p-value test is to be used. The p-value is connected to the integral of an
α-distribution, thereby the number of standard deviations.

Z =


√

2erf−1(1 − 2p) if p is one sided
√

2erf−1(1 − p) if p is two sided,
(1)

where Z is the number of standard deviation and p is the p-value [4].

A common threshold for something to be deemed sufficiently unlikely is that it has to
have a p-value lower than 0.05 (roughly 2 sigma for a two sided test and 1.65 sigma for a
one sided test) with regards to the hypothesis. An alternative way of phrasing it is to say
that a 95% confidence level (CL) is required [4]. Particle physics demands a 5 σ deviation
from the SM (p-value of 6 · 10−7 for a two sided test and 3 · 10−7 for a one sided) to claim
a discovery.

When conducting an experiment a null hypothesis is considered; the SM in particle physics.
This leads to four possible cases: the null hypothesis is true and is not rejected; the null
hypothesis is true but is rejected called a type I error; the null hypothesis is false and is
rejected; and the null hypothesis is false but is not rejected called a type II error (see Fig.
2).
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Figure 2: Illustration of the different possible error that can be committed whilst per-
forming an hypothesis testing. Note that CL are usually concerned with the chance of
committing a Type I error.

The confidence levels described above (in 2.3) correspond to a Type I error with respect
to the SM (if the SM is the null hypothesis), i.e the chance of incorrectly retaining the null
hypothesis. The confidence level is a measure of how many false negatives are accepted.
The other error that can be committed is the Type II error, which describes the risk of in-
correctly not rejecting the null hypothesis.

In general, when conducting an experiment using hypothesis testing two hypotheses are
tested at the same time. Consequently, an experiment can be designed to optimise the
testing of the alternate hypothesis as well as the null hypothesis. That is the same pre-
experiment analysis can be done for the alternate hypothesis to define the region where
the alternate hypothesis is best to be tested. Still the confidence level is defined with re-
spect to the null hypothesis and judgement of the alternate hypothesis is conditional with
respect to it.

In the interest of understanding hypothesis testing as a method of analysis, consider how
it is applied. A confidence level is set and the experiment designed around this value, as
this CL value tends to be rather harsh, in excess a 50% likelihood, this leads to experiments
being optimised for minimising Type I errors and not Type II errors. In other words this
is an inherently conservative method; an established theory is more likely to remain than
an unestablished one. This should be kept in mind when using hypothesis testing.
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2.4 Test Statistics

When conducting an experiment an outcome is obtained, for the purpose of this thesis this
is a histogram with binned events. To interpret this a test statistic is used, in this thesis this
is a probability density function (pdf). This is a function that helps distinguishing the null
and alternate hypotheses from each other and allows for calculation of a p-value. From
this the hypotheses can be either rejected or retained. There are two different kinds of test
statistics: a simple test statistic which has no free parameters and a composite test statistic
which can have free parameters. Of note is that from a composite test statistic confidence
intervals of the different parameters can be obtained. As the composite version is the one
used in this thesis it is the one which is focused on.

To obtain a test statistic the first step is to define the likelihood function, L. This is a func-
tion that gives the probability of a certain outcome given the parameters of the model.
Consider a model where the number of signal and background events are s and b respec-
tively. Then the total number of observed events, λ, is the following:

λ(µ) = sµ + b, (2)

where µ is the signal strength. µ = 0 thus corresponds to a background only hypothesis
whilst µ = 1 to the signal hypothesis. Keep in mind that µ is just a scaling factor and
that µ = 1 (as a result) means that the assumptions made regarding the cross-sections
for interactions were very good. In case of LDMX the signal strength is related to the
cross section of dark bremstrahlung, the probability of the electron interacting with the
target and causing dark bremsstrahlung. As the events are independent of each other and
fluctuating they will conform to a Poisson distribution around an expectation value. In
this case, the likelihood function becomes:

L(n|µ) = P(n|λ(µ)) = eλλn

n!
, (3)

where n is the number of events observed and P is a Poisson distribution. This function
can be used in two ways. Firstly, it can be used to find how likely an outcome is given
a set of parameter values (µ is the only parameter in eq. 3, but the number will be ex-
panded when we introduce nuisance parameters). Secondly, it can be used to find the most
likely values for the parameters, i.e. maximising L with respect to the data. Still, this
is a simplistic model assuming only one background. In a more realistic situation there
will be different backgrounds thus introducing ’free parameters’. The parameter of interest,
the parameter which we want, is µ. The rest of the parameters, whose exact values are
uninteresting are collectively called nuisance parameters. Do note that the only difference
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between the parameter of interest and the nuisance parameters is what we want to measure,
thus the grouping is purview of the aims of the experiment. Furthermore, the nuisance
parameters are not free, they are defined to maximise the likelihood for a given µ. The
nuisance parameters, b, are introduced to account for the different backgrounds changing
the likelihood function to the following:

L(n|µ) −→ L(n|µ, b) = P(n|λ(µ, b)). (4)

Information on b can be obtained via usage of the control region(s) – regions without
any signal. Maximising the likelihood with respect to the data will then give the most
likely values for the nuisance paramenters. The last piece of the likelihood function is a
modelling of the systematic uncertainties of the experiment. Through normalisation this
can be done as a set of Gaussians with mean of zero and a standard deviation of one
(denoted G(0|θ, 1)), thus introducing another set of nuisance parameters θ. This leads to
a new, more realistic likelihood function that accounts for more than just the randomness
of the parameter of interest.

L(n|µ, b,θ) = P(ns|λs(µ, b,θ)) ∏
i
P(ni|λi(µ, b,θ)) ∏

j
G(0|θj, 1), (5)

where n are the observed events in the signal and control regions, i denotes the set of
control regions and j the set of systematic introduced uncertainties. Maximising the likeli-
hood will give the most likely value of the parameter of interest (µ), as well as the optimal
estimators from the nuisance parameters, notated as µ, b and θ. Now consider that there
are several acceptable values given by the CL value – let b̂ and θ̂ be the values that max-
imise the likelihood for a given µ̂ with µ̂ ̸= µ. From this a likelihood ratio, LR, can be
made which is a type of test statistic:

LR =
L(n|µ̂, b̂, θ̂)
L(n|µ, b,θ)

, (6)

This ratio is commonly modified by taking the natural log of it and multiplying it by
negative two to make it more suitable for computers to handle. This transformation makes
no change in the information contained in the expressions. Computation time usually
benefits from this as this transforms a product into a sum and changes the maximisation
to a minimisation is also beneficial as minimisation algorithms are usually more efficient
than maximisation algorithms. This gives the log-likelihood ratio, LLR.
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LLR = −2 log
L(n|µ̂, b̂, θ̂)
L(n|µ, b,θ)

. (7)

Note that in the case of LDMX a positive result with respect to the alternate hypothe-
sis only adds events. This means that the LLR expression by itself does not adequately
describe the situation. Consequently, the test statistic q is defined bellow:

q =

−2 log L(n|µ̂,b̂,θ̂)
L(n|0,b,θ)

, µ < 0

−2 log L(n|µ̂,b̂,θ̂)
L(n|µ,b,θ)

, µ ≥ 0
, (8)

replacing the µ with zero in the case of a negative signal ensures that the test statistics
will never reject the standard model if there is a deficit in events. In regards to LDMX,
the chances of a deficit of events causing an outlier is unlikely if the zero background or
something close to it is achieved. A one sided test statistics can be created by demanding
that q = 0 for either µ < µ or µ > µ, the former being for the upper interval and the latter
being for the lower interval.

2.5 Limits

Consider that an experiment has been conducted with one parameter of interest, µ, and
one nuisance parameter, θ. Maximisation of the likelihood ratio with respect to the data
gives the values of µ and θ, but this does not mean that all other values can be neglected
out of hand. Instead we say that they are excluded at a certain confidence level, i.e. they
are disfavoured by the data. Indeed, at some point the likelihood becomes so small that
it is excluded, but the type of test statistic defined decides what types of limits can be set.
Consider the test statistic q, defined in 2.4, due to it being non-zero for both µ > µ and
µ < µ it can be used to set both an upper and lower limit on the parameter of interest.
This is in contrast to the one sided test statistics which can only set one sided limits. To
set specific limits one relies on p-values which are defined as the integral of a pdf. The
p-value defined by using pdfs is:

p =
∫ ∞

qpoint
f (q|µ)dq, (9)

where p is the p-value, f is the pdf given µ, and qpoint is the value of q in the point of
interest. By requiring a certain p-value, it is possible to find the allowed intervals for an
observable given a dataset. In this way, if p > 0.05 the calculations will give an interval
from which all values not included are excluded at a 95% CL.
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To find the pdf there are two primary methods: the first is to utilise Monte Carlo simu-
lations under the signal hypothesis; the second is to use the Asimov approximation. The
Monte Carlo approach is perfect in the limit of infinite experiments, but has the draw-
back of being computationally intensive. The Asimov approximation on the other hand
is much quicker than using Monte Carlo simulations and is accurate as long as one only
requires a 95% CL.

2.6 CLs method

The CLs method is an extension to the CL formalism, its basic premise being that if the dif-
ference between the theoretical prediction and the data in the control region is significant,
the confidence level of the result in the signal region should be punished. Consider a sig-
nificant downwards fluctuation. Depending on its relative strength to the signal strength,
it will allow the experiment to impose arbitrarily strong limits on the parameter of inter-
est. This is an undesirable property of the CL method, as outliers are guaranteed to occur
eventually. This issue must be addressed as not doing so means that statistical outliers
could work as evidence against new physics. Consequently the CLs method has been de-
veloped to ensure that models are harder to exclude if not significantly different from the
null hypothesis.

To perform the CLs method we first need to obtain the pdfs of the signal + background
hypothesis as well as the background hypothesis. This, as mentioned in section 2.5, can
be done using a large amount of Monte Carlo simulations for µ = 0 and µ = 1. From this,
the p-value for the signal + background hypothesis called CLs+b can be calculated.

CLs+b =
∫ ∞

qpoint
f (q|µ)dq. (10)

The p-value of the background only hypothesis can similarly be defined as 1-CLb.

1 − CLb =
∫ ∞

qpoint
f (q|0)dq. (11)

The idea of CLs is to ensure that the model is not discarded if the result is also extreme
with regards to the background hypothesis. Thereby, CLs+b is normalised to the 1-CLb

value and we define the resulting value as the CLs value:

CLs =
CLs+b

1 − CLb
. (12)

Whilst this value is used in the same way as a p-value to determine significance there
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are several things to note about this quantity that are different than the standard p-value.
Firstly, a CLs value is not a p-value – it is a ratio of p-values, hence its range is not limited
to (0,1] but all positive numbers. Consequently, it is much harder to obtain small CLs,
it will only happen when the signal hypothesis is much less likely than the background
hypothesis. Consider an experiment where there is a large downward fluctuation in the
background so that it cancels the signal. Using a standard p-value the test can reject the
signal hypothesis whilst a CLs test would, in essence, say: the background is unexpected
hence the signal measurement can not be trusted and the signal hypothesis can not be
rejected. The trade off for this extra caution is that the limits set via CLs are weaker than
those of p-values. Lastly it is important to remember that CLs can not reject the back-
ground hypothesis as its validity is implicitly assumed.

3 Method

Firstly, the pdfs of the null and alternate hypotheses were created – as described in section
2.5 – via Monte Carlo simulation using ldmx-sw (see [5] for GitHub). This was done for
both signal and background (see Figure 3 & 4), with dark photon masses assumed to be
1, 10, 100, and 1000 MeV respectively to create four different signal hypotheses. The back-
ground comes from photonuclear reactions taking place in the Ecal which is expected to
be one of the most challenging background forms in the final analysis. When taking data
the observable of interest is pT, the transverse momentum of the electrons from generator
level. In the experiment the momentum is to be obtained from LDMX’s tracker, but this
is not implemented in the simulation. Hence this information is obtained from the out-
going electron four-momentum. LDMX will employ a sequence of vetoes to diminish the
background as much as possible or, eliminate it, but for the purposes of this investigation
much loser requirement where introduced: there can not be more than 200 photoelec-
trons1 detected in the event in a bar in the Hcal. This construction allowed the creation
of toy systematic uncertainties by varying the cut up and down by the arbitrary choice
of 50 photoelectrons. The signal hypotheses where created with a signal strength of one
corresponding to 2 signal events [6].

The processing of the simulated data consists of a series of several automated code anal-
yses (see [7] for codes used). The code is written in C++ in an extensive package called
ROOT [8]. More specifically, RooStats and HistFactory are the main sub packages used,
the specific functions and methods used will be described more in detail when discussing
their use. In broad strokes the analysis is done via four different codes (see [7] for codes):

1this is expected to be of O(10) in the real analysis
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the first creates ROOT workspace and Model configuration; the second a profiled likeli-
hood curve of the parameter of interest; the third a posterior of the parameter of interest;
the fourth code calculated the CLs value as well as plotting the differing hypotheses pre-
diction’s likelihoods to visually show if a hypothesis conforms to the data (see [9] for the
original codes).

After the pdfs of the hypotheses and the histogram of the data were created systematic
uncertainties were included via error propagation (systematic and statistical errors where
added as squares under the square-root) instead of via a Gauss distributions described in
section 2.4. Luminosity error, Lumi error, was also included in the model as it is required
for the analysis functions. This was implemented with as little error as possible (1 mil-
lionth) as the data was created assuming no uncertainty in luminosity. Moreover, as the
functions used for the analysis struggled or crashed when dealing with empty bins with
no error it was ensured that the histogram’s bins had a minimum value of one billionth
with a minimum error of one billionth (See Figure 3). These modified pdfs where then
organised into a model configuration which is a way to store and set data up for the func-
tions and methods used in the analyses. This configuration was then folded into a ROOT
workspace (an environment that contains files and variables global to the workspace)
using RooStats::HistFactory::MakeModelAndMeasurementFast to be imported into the
other files.
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Figure 3: Histograms of background generated without a signal strength. Unmodified
on the left and modified, i.e. no completely empty bins, on the right. X-axis is unevenly
binned pT (transverse momentum).
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Figure 4: Histograms of signal hypotheses with signal strength of 1. In clockwise order: 1,
10, 100, and 1000 MeV hypothesis. X-axis is unevenly binned pT (transverse momentum).

The model configuration was then fed to the RooStats::ProfileLikelihoodCalculator method,
with a specified significance interval. This outputs a plot of the likelihood as a function of
the parameter of interest, the central interval required to achieve the specified confidence
level (significance), and the most likely value of µ [10].

The model configuration was also entered into the RooStats::MCMCCalculator method
which is a Bayesian model to obtain a graph of illustrating the most likely value for the sig-
nal strength by using the posterior distribution of the variable as well as the right handed
interval needed to satisfy a specific confidence level. It works by using the Markov-Chain
Monte Carlo method to find the posterior. This is done via a Metropolis-Hastings algo-
rithm to create a Markov chain which is then used to integrate the likelihood with the
prior distribution of the variable thus obtaining the posterior [11].

To calculate the CLs value of the signal hypothesis with respect to the data, the model
configuration is fed to the method RooStats::AsymptoticCalculator. It conducts hypothe-
sis testing by using the asymptotic profile likelihood formula. It then creates an Asimov
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dataset, where the observed data values equal the expected ones, and uses it to calcu-
late significance [12]. The alternative method, using of RooStats::FrequentistCalculator,
conducts a frequentist analysis [13]. The profile likelihood calculator (PLC) and Bayesian
posterior calculator (BPC) as well as the asymptotic and frequentist methods’ results are
cross checked with each other to ensure that they agree.

4 Results and Discussion

4.1 Signal strength analysis

To see a signal, or signs of it the observed result must be sufficiently different from the
null or background hypothesis. This is done in accordance with hypothesis testing as de-
scribed in section 2.3 and 2.5. Thereby, a confidence level can be constructed by taking
the signal strength’s likelihood distribution via integration as in eq. 9. Doing this with re-
spect to the background only hypothesis allows for the determination of limits at certain
confidence levels (at 68% and 95% in the case of this investigation) for each hypothesis.
This helps determine if signs of a signal can be seen in the signal seeded datasets. The
most likely value of µ, given by the PLC for a given dataset, can then be compared to
these levels. It is also required that the PLC value and BPC interval for the most likely
signal strength are compatible, i.e. the PLC’s value plus minus uncertainty overlaps with
the interval given by the BPC. The error on the signal strength from the PLC is required to
be compatible with the 68% central interval. Lastly, it is required that the observed signal
strength is within the uncertainty of the seeded signal strength as if this is not the case the
analysis has failed as it can not be determined which method is correct.

The datasets used are a series of datasets sampled from distributions of background and
known signal hypothesis as well as signal strength. The datasets, D1-4, were created with
a µ of 12.5 whilst dataset D0 was created with a signal strength of zero hence corresponds
to a background only hypothesis (henceforth the datasets are refered to as D0-4). D1 was
generated with a signal hypothesis of a 1 MeV mediator, D2 with a 10 MeV mediator, D3
with a 100 MeV mediator, and D4 with a 1000 MeV mediator. Bellow is the analysis of a
background only dataset with the signal hypotheses.
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Table 1: Background only dataset, D0, computed with signal hypotheses

Signal hypothesis 1 Mev 10 MeV 100 MeV 1000 MeV
Lumi error 1 ± 10−6 1 ± 7.98 · 10−4 1 ± 7.94 · 10−4 1 ± 7.77 · 10−4

PLC most likely µ
5.67 · 10−12

±72.5
1.54 · 10−9

±5.02
3.29 · 10−7

±1.53
1.27 · 10−10

±4.02 · 10−1

PLC central 68% interval [0, 23.6] [0, 4.88] [0, 1.49] [0, 0.396]
BPC left handed 95% interval [0, 56.9] [0, 24.9] [0, 7.98] [0, 2.40]

Observing in Table 1, it can be noted that the PLC’s intervals reach zero hence they are
effectively identical to a left handed interval in this case. The Lumi error deviation from
1 is next to non existent for all of the hypotheses tested which is as expected. Concerning
the values of µ, it can be seen that the most likely signal strength is very small which is
what was expected as the D0 set is modelled on a background only hypothesis. The error,
on the other hand, is quite significant for 3 out of the 4 hypotheses, larger than µ = 1.
Especially the 1 MeV hypothesis as it has an error of 72.5, which is much larger than both
the 68% and 95% CL which is strange. As for the other hypotheses the uncertainty cor-
responds to the upward range from the most likely value of the 68% CL. The 10 and 100
MeV hypotheses also have significant error on the order of unity with upper limits on
their 68% confidence intervals at 5.02 and 1.53 respectively as well as 24.9 and 7.98 at 95%.
The 1000 MeV hypothesis gave the strongest bounds on the signal strength with it being
closer to zero, its confidence intervals are also the closest to zero with upper bounds at
0.396 (68%) and 2.40 (95%).

The 68% and 95% bounds give an indication of the limits on the sensitivity of this analysis.
The analysis is not sensitive to a 12.5 µ signal in the 1 MeV hypothesis; it is sensitive to
a 68% CL but not a 95% CL in the 10 MeV case; it is sensitive to both the 100 and 1000
MeV hypotheses at the 95% CL. This is to be expected if one looks at the background
distribution (see Figure 4 & 3 in section 3 for signal & background); there is much more
background and error in bins 6 and 7 which is where most of the predicted signal from the
1, 10, 100 Mev hypotheses is. Consequently precision is lost, but the larger the mass the
more signal is expected in the higher pT bins which is why the 10 and 100 MeV hypotheses
far much better than the 1 MeV. The 1000 MeV fares even better as the majority of its signal
is not in the sixth and seventh bins but in the eleventh and twelth bin. Hence there are
limits for how strong an observed signal needs to be incompatible with the background
hypothesis: if it is outside the 68% interval it there is maybe a signal, whilst if it is outside
the 95% interval it is probably a signal. Overall, the tests against the background only
dataset are reasonable and the analysis can proceed.
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Figure 5: D1 analysed with the PLC and the BPC using the 1 MeV hypothesis. Left: Profile
likelihood distribution of the signal strength µ, the blue line. A lower value of the nega-
tive log indicates a more likely value of the signal strength. The green lines indicate the
68% confidence level centred around the most likely signal strength. Right: Normalised
posterior distribution of the signal strength, µ, with respect to its most likely value. The
grey coloured area corresponds to the right handed 95% confidence level.
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Figure 6: D2 analysed with the PLC and the BPC using the 10 MeV hypothesis. Left:
Profile likelihood distribution of the signal strength µ, the blue line. A lower value of
the negative log indicates a more likely value of the signal strength. The green lines in-
dicate the 68% confidence level centred around the most likely signal strength. Right:
Normalised posterior distribution of the signal strength, µ, with respect to its most likely
value. The grey coloured area corresponds to the right handed 95% confidence level.

16



Statistical analysis of LDMX Data FYSK03: Bachelor Thesis

8 10 12 14 16 18 20 22 24
mu

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6(m
u)

λ
- 

lo
g 

0 10 20 30 40 50 60 70 80 90 100
mu

0

0.2

0.4

0.6

0.8

1

P
os

te
rio

r 
fo

r 
pa

ra
m

et
er

 m
u

Figure 7: D3 analysed with the PLC and the BPC using the 100 MeV hypothesis. Left:
Profile likelihood distribution of the signal strength µ, the blue line. A lower value of
the negative log indicates a more likely value of the signal strength. The green lines in-
dicate the 68% confidence level centred around the most likely signal strength. Right:
Normalised posterior distribution of the signal strength, µ, with respect to its most likely
value. The grey coloured area corresponds to the right handed 95% confidence level.
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Figure 8: D4 analysed with the PLC and the BPC using the 1000 MeV hypothesis. Left:
Profile likelihood distribution of the signal strength µ, the blue line. A lower value of
the negative log indicates a more likely value of the signal strength. The green lines in-
dicate the 68% confidence level centred around the most likely signal strength. Right:
Normalised posterior distribution of the signal strength, µ, with respect to its most likely
value. The grey coloured area corresponds to the right handed 95% confidence level.

When observing the posteriors (right graphs) in Figures 5-8 note that the grey area colours
bin by bin and as the bins have a width of two the grey area may be slightly inaccurate.
To compensate for this inaccuracy the grey vertical lines are placed on the edges of the
confidence interval.
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Bellow is the results of analysis on the datasets with a seeded signal.

Table 2: Datasets D1-4 analyses with the signal hypothesis that corresponds to their
seeded signal

Signal hypothesis
D1 dataset
& 1 Mev

D2 dataset
& 10 MeV

D3 dataset
& 100 MeV

D4 dataset
& 1000 MeV

Lumi error 1 ± 10−6 1 ± 7.31 · 10−4 1 ± 6.69 · 10−4 1 ± 5.64 · 10−4

PLC most likely µ 3 ± 73 19 ± 12 13.6 ± 5.5 11 ± 3
BPC most likely µ [4, 6] [18, 20] [12, 14] [12, 14]
PLC central 68% interval [0, 34.5] [8.89, 33.0] [8.74, 19.6] [8.40, 14.2]
BPC right handed 95% interval [2.15, 100] [7.58, 100] [7.27, 100] [7.31, 100]

Observing Table 2 it can be concluded that there is good agreement between the PLC and
the BPC regarding the most likely value of the signal strength, a graphical visualisation
can be seen in Figures 5-8. Continuing with the most likely value of µ from the PLC it
can be seen that all of them are compatible with the seeded value of µ within their uncer-
tainty. Focusing on the uncertainties it can be seen that the precision of the results varies
significantly. The error on the 1 MeV hypothesis, like observed from the background only
test, is especially large and it is not compatible with the central 68% bound, thus the larger
of the two are taken as the uncertainly. The other hypotheses’ uncertainties roughly cor-
respond to the arithmetic mean of the upward and downward swing of the 68% bound
from the most likely value. Still, the uncertainty ranges from more than 70 to 3. This can
be attributed to, as discussed previously, the larger number of events where the signal was
expected (see Figure 4 & 3 in section 3 for signal & background). Simple comparison logic
yields that a signal of 25 events will not be easily distinguished against a background in
the thousands or even hundreds.

Connecting back to the results from the testing against the background only model the
following is found: the 1 MeV hypothesis satisfy neither the 95% nor the 68% bound; the
10 MeV hypothesis does not satisfy the 95% bound, but does satisfy the 68% bound; the
100 and 1000 MeV hypotheses satisfy both the 68% and 95% bounds.

Taking a holistic view of the results, it can be seen that the sensitivity of the experiment
decreases as the expected mass of the dark photon decreases. Consequently, the exper-
iment may be limited in the ability to detect signals in the low mass range, though the
much smaller background is expected in the real experiment due to stronger selection re-
quirements together with a possible increase in statistics may remedy the situation even
with a smaller signal. Conversely, these changes will make the experiment very sensitive
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to any fluctuation in the upper mass range. This is a promising result for the methodology
of LDMX as it seems possible for it to detect the theorised dark matter.

4.2 CLs computations

The two methods used in this thesis for calculating the CLs value of the data with respect
to the different signal hypothesis did not work properly. When testing them against the
the datasets D0-4 both the asymptotic and frequentist calculators gave varying results for
the CLb values when testing different signal hypotheses. This is problematic as the back-
ground p-value (CLb) should be the same for all signal hypothesis tests as the expected
background is the same for each of the signal hypotheses. Furthermore, the two methods
do not agree on CLb and CLs+b (and thus CLs) values, they may vary by several orders of
magnitude. Although the CLs+b value can not be discounted as faulty, it is very possible
that it is also incorrect, considering the other faulty values calculated. It is not possible
to extract useful information from the comparison of the two methods by considering the
trend of the CL values – test all different hypotheses and look at which one is the best for
both – as they do not agree on the ordering of the hypotheses.

The frequentist calculator also has the problem of not always being able to calculate the
CLs value. Instead it would return infinity and nan. It was attempted to address this issue
by drastically increasing the number of Toy MCs used in its calculation by two orders of
magnitude to see it became more reliable, but this was not successful.

It should be considered that the source of the error could be something other than the func-
tions themselves, it could come from the HistFactory::MakeModelAndMeasurementFast,
but this is unlikely as the profile likelihood calculator and Bayesian posterior are seem-
ingly correct. A more likely source of the error would be how the signal hypotheses are
setup to be inputted into the asymptotic and frequentist calculators. This has the logical
advantage over the idea that both the frequentist calculator and asymptotic calculators
are wrong because it constitutes a single point of failure instead of two. It is also possible
that the source of the issue is the small dataset which seems unlikely and would be prob-
lematic for LDMX considering the hope of zero background. There was already an issue
with them not working with empty bins; it is possible that the filling of those bins with a
small value and error did not fix the issue (see the method 3). Still, this is just speculation
as the source of the error is still unknown.
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5 Conclusion and Outlook

To summarise the investigation yielded that there is a significant decrease in sensitivity as
the expected mass of the dark photon decreases. So much so that the analysis conducted
was insensitive to the low mass hypotheses completely to the 1 MeV and partially to the
10 MeV hypothesis. Signs of signals where observed for the higher mass hypotheses.
Overall, there is a trend with higher mass hypotheses being easier to observe due to the
smaller background where they create a signal. Moreover, the results are promising for
the real experiment as it is expected to have a much smaller background.

There are several issues with the method undertaken for this investigation. Firstly, con-
sider the handling of the systematic uncertainties, which where added according to stan-
dard error propagation. The issue with this is that systematic uncertainties may be further
constrained via fitting to a control region as described in section 2.4. Furthermore, this ef-
fect will be amplified further as a more complex model is used with several sources of
systematic uncertainties. Another issue is the lack of a working calculator for CLs values.
The pre-programmed functions do not work as intended (RooStats::AsymptoticCalculator
and RooStats::FrequentistCalculator). As stated before this was under the assumption
that it ordered the likelihoods of the hypotheses correctly to then apply the PLC and
BPC. For the future a working way of calculating CL values with regards to a specific hy-
potheses should be implemented. Possibly a pre-programmed hybrid calculator (RooSt-
ats::HybridCalculator) from ROOT could be used. There is also the issue of adding the
statistics to empty bins. Adding statistics to empty bins introduces unnecessary error
which should fixed in a future analysis. It could also be attempted to automate a search
for a signal in the range 1 MeV to 1000 Mev. That is, making the code calculate the CLs

values for several signal hypotheses within a range and returning the most likely signal
candidate hypothesis as the result.
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