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Abstract

In this thesis we present a Borel–Cantelli lemma for dynamical systems
such that the dynamics driving the system varies with time. These results
are largely based on a decomposition of transfer operators produced by
Rychlik. Some limitations on the structure of sequences that is necessary
for the results is given some discussion. Two examples of systems that
could be considered are presented, one of which is accompanied by a
method by Liverani for bounding rates of decay.



Popular scientific summary

The function is one of the most fundamental, and recognizable, objects of
study in mathematics. Being as widespread as they are the amount of questions
that one could ask about their behaviour seems endless. If one has a function
f , such that the output y = f(x) is a valid input to the function one could
examine what happens if one applies the funciton to its output, over and over
again.

In the study of discrete dynamical systems questions of this sort are con-
sidered. What one can say about the evolution of the system varies drastically
depending on what function is used. For instance one can find functions where
the iterates approach a single point, no matter where one starts. On the other
hand, one can also find functions where, even for points that are initially very
close to one another, behaviour can vary wildly.

This thesis handles systems that fall into the second category. For these
types of systems it is difficult to make statements for the iterates starting at
some specific point. Instead one can try to find properties that are fulfilled very
commonly. The property that is examined here is the so called Borel–Cantelli
property, which can be understood as finding conditions such that one can say
something about the value of

f(. . . f︸ ︷︷ ︸
n times

(x) . . . ),

for infinitely many different values of n and for basically any initial point x.
Some known results of this type are presented, as well as a new result where,

instead of a single function used when iterating, functions from a given family
are used instead. Some adjacent previous results are also mentioned, as they
are useful when examining the conditions that are necessary for the new result
to be valid.
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1 Introduction

The Borel–Cantelli lemma in probablity theory gives a condition that allows one
to say if events from a given sequence are rare, in the sense that only a finite
number of these events occur, or common. One can also pose a similar question
for a dynamical system, namely if a member of a sequence of sets will be visited
at some specific iteration an infinite number of times, and if this is a property
that is fulfilled for almost the whole domain of the system.

There exists results which ensure that this property is fulfilled for some
dynamical systems and sequences of sets. The results presented here will prove
a sufficient condition for some dynamical systems that are not based on iterating
one single map but instead the map that is used changes after some number of
iterations. To produce these results the primary tool that is used will be the
Perron–Frobenius operator, more specifically a decomposition of this operator
that is presented by Rychlik in [9]. A result by Liverani in [7] is also presented,
and used in order to bound coefficients, which are needed to check the conditions.

2 Ergodic systems and Borel–Cantelli lemmas

Before going into the details of the tools and main results of this thesis we will
here give a brief introduction to ergodic theory, as well as to Borel–Cantelli
lemmas which will be the primary focus.

While it is necessary to have some knowledge of measure theory when dis-
cussing ergodic thoery, as the results are based on this framework, we assume
that the reader is already familiar with this in order to be able to stay on topic.
For the remainder of this project λ will be used to denote the Lebesgue mea-
sure. More detailed explainations of the following concepts and examples from
ergodic theory could most likely be found in some introductory textbook on the
subject, for example [10].

In ergodic theory the subject of study is some measure space (X,S, µ) and
a µ-measurable map T : X → X, that is measure-preseving with respect to µ,
which is defined as the following.

Definition 2.1. A map T : X → X is called measure-preserving with respect
to a measure µ if for any measurable set E

µ(T−1(E)) = µ(E).

With this condition fulfilled we can alternatively say that µ is T -invariant.

Here S is a (σ-)algebra on X. More information on this structure and the
connection to measurability can be found in the textbook mentioned above. As
a first example we can consider the following.

Example 2.2 (The Doubling Map). For ([0, 1],B([0, 1]), λ, T ) with

T (x) = 2x mod 1 =

{
2x forx ∈ [0, 1

2 )

2x− 1 forx ∈ [ 12 , 1]
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where mod 1 means that only fractional part is considered. Then for any mea-
surable set E

T−1(E) =
1

2
(E) ∪

(
1

2
(E) +

1

2

)
and so the Lebesgue measure is invariant with respect to T .

Let us also consider a case that is slightly more complicated.

Example 2.3 (Gauss map). Here take T : [0, 1) → [0, 1) with

T (x) =

{
1
x mod 1 forx ∈ (0, 1)

0 forx = 0
,

and instead of λ as measure take

µ =
1

ln 2

1

1 + x
λ.

We wish to show that T is invariant with respect to ([0, 1),B([0, 1)), µ). It is
sufficient to show that T is measure preserving for sets on the form

E = [0, a).

Then for any a ∈ (0, 1), the measure of E is µ(E) = 1
ln(2)

∫ a

0
1

1+xdλ(x) =
ln(1+a)
ln(2) . Each set ( 1

n+a ,
1
n ] maps to E, and without much additional work one

can conclude that the preimage of E is

T−1(E) =

∞⋃
n=1

(
1

n+ a
,
1

n
],

the measure of which is

µ(T−1(E)) =
1

ln(2)

∞∑
n=1

µ((
1

n+ a
,
1

n
])

=
1

ln(2)

∞∑
n=1

ln

(
1 + 1

n

1 + 1
n+a

)

=
1

ln(2)

∞∑
n=1

(ln(n+ 1)− ln(n) + ln(n+ a)− ln(n+ 1 + a))

=
1

ln(2)
lim

n→∞
(ln

(
n+ 1

n+ 1 + a

)
+ ln(1 + a)) =

ln(1 + a)

ln(2)

meaning that µ is T -invariant.

This map is of interest as it relates to continued fraction expressions. Any
irrational x ∈ (0, 1) will have an infinite continued fraction expression

x =
1

U0 +
1

U1+
1

...
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and applying by applying the Gauss map to this x gives

T (x) =
1

U1 +
1

U2+
1

...

.

Thus, with this perspective the Gauss map can be seen as a shift in the continued
fraction expression. Additionally, one can identify k:th coefficient Uk of this
expansion for some x by finding the interval ( 1

n+1 ,
1
n ) that contains T

k(x).

Definition 2.4. A probability space (X,S, µ) along with a µ-presering trans-
form T : X → X is called ergodic if all strictly invariant sets A of T , meaning
A = T−1(A) fulfill either µ(A) = 1 or µ(Ac) = 1.

Theorem 2.1 (Birkhoff Ergodic Theorem). Let (X,S, µ) be a probablity space
with µ-preserving transform T . If T is ergodic then for any integrable function
f : X → R

lim
n→∞

1

n

n−1∑
i=0

f(T i(x)) =

∫
f(x)dµ(x).

2.1 On Borel–Cantelli Lemmas

Let us start by stating the original formulation of the Borel–Cantelli lemma.

Lemma 2.2. For a probablity space (Ω, C, P ) and sequence of C-measurable
events {Ek} in Ω. If

∑∞
k=1 P (Ek) < ∞ then

P (lim supEk) = P

( ∞⋂
n=1

∞⋃
k=n

Ek

)
= 0.

If instead
∑∞

k=1 P (Ek) = ∞ and all Ek are independent then

P (lim supEk) = P

( ∞⋂
n=1

∞⋃
k=n

Ek

)
= 1.

While expressed in this manner it may seem a touch cryptic though it has
a rather intuitive interpretation, being that in the first case it is true with
probability 1 that only a finite number of the events Ek will occur, and similarly
for the second that with probability 1 infinitely many for the events Ek will
occur.

A similar idea can be introduced when discussing dynamical systems, where
one can talk of Borel–Cantelli sequences as well as strong Borel–Cantelli se-
quences. In this case we for some probability space (X,S, µ) with µ-preserving
maps T then we say that a sequence of sets {An}∞n=0 with

Sn =
∑n−1

i=0 µ(Ai) → ∞ is a Borel–Cantelli sequence if

n−1∑
i=0

1Ai ◦ T i(x) = En(x) → ∞ µ-a.e.
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and a sequence is called a strong Borel–Cantelli sequence if

En(x)

Sn
→ 1 µ-a.e.

and so in this case En(x) asymptotically grows like Sn, giving a quantitative
estimate on how often Tn(x) ∈ An occurs. Even more generally one can take

a sequence of measurable functions fk(x) and instead letting Sn =
∑n−1

i=0

∫
fdµ

and En(x) =
∑n−1

i=0 fi(T
i(x)) and again considering the limit above. Worth

mentioning here is that for any ergodic T a constant sequence will be a strong
Borel–Cantelli sequence as a direct consequence of Birkhoffs ergodic theorem,
as it says that

lim
n→∞

En(x) = lim
n→∞

nµ(A) = lim
n→∞

Sn.

It is known, from [8], that for the Gauss map any sequence of intervals of non-
summable measure are strong Borel–Cantelli sequences. This then means, with
µ being the previously introduced measure which is invariant with respect to the
Gauss map, that the continued fraction expansion of µ-a.e. x will have Uk ≥ k
for infinitely many k. This follows as the sequence {An}∞n=1 =

{(
0, 1

n

)}∞
n=1

fulfills
N∑

n=1

µ

(
(0,

1

n
)

)
>

1

2 ln(2)

N∑
n=1

1

n
→ ∞

meaning the sequence {An} is Borel–Cantelli, which is an equivalent formulation
of the desired property.

While it will not be of major necessity for the main results here let us also
introduce the following result of Sprindžuk.

Lemma 2.3 ([11]). Let (X,S, µ) be a measure space, let fk(x) for k ∈ N+ be a
sequence of nonnegative µ-measurable functions, let rk, ϕk be sequences of real
numbers such that 0 ≤ rk ≤ ϕk ≤ M Suppose that

∫  ∑
n<k≤m

fk(x)−
∑

n<k≤m

rk

2

dµ ≤ C
∑

n<k≤m

ϕk

for any integers n < m. Then

n∑
k=1

fk(x) =

n∑
k=1

rk +O
(
Φ

1
2 (n) ln

3
2+ε(Φ(n))

)
with Φ(n) =

∑n
k=1 ϕk.

This theorem serves as a powerful tool, which will most likely be encountered
if one looks into some of the existing literature, as it gives a condition that
directly implies that a sequence is strongly Borel–Cantelli.
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3 Variation and the transfer operator

We begin by introducing the notion of the variation of a function as defined in
[9].

Definition 3.1. The variation of a function f : X → R on some subset C is
given by

VarC f = sup

{
k∑

i=1

|f(xi)− f(xi−1)|

}
,

where the supremum is take over sequences (x0, x1, . . . , xk) with all xi ∈ C
fulfilling xi ≤ xi+1. Here Var f means VarX f .

With the variation defined one can also defined the function space BV as
defined by Rychlik as

BV = {f ∈ L∞ and f has version with bounded variation},

which can be shown to be a Banach-space with norm

∥f∥BV = max
(
∥f∥1, inf{Var f̃} where f̃ is a version of f

)
,

where being a version here means that f = f̃ except for on some set of Lebesgue
measure 0.

3.1 Approximations from variation

We here introduce two approximations that one can obtain using variation. The
following lemmas will all assume that f : X → R is µ-measurable and µ(X) = 1.
We start with a upper bound.

Lemma 3.1. Let f : X → R ∈ BV , then

∥f∥∞ ≤ |f(x)|+Var f ∀x ∈ X.

Proof. Assume the contrary. If there exists some x∗ ∈ X such that |f(x∗)| =
∥f∥∞ then we have

∃x ∈ X such that |f(x∗)| − |f(x)| > Var(f)

But this is obviously a contradiction by the reverse triangle inequality and
the fact that Var(f) ≥ |f(x) − f(y)| for all x and y. If there is no such point
x∗ instead consider a sequence of points {xn} such that |f(xn)| → ∥f∥∞. Then
similarly

∃x ∈ X such that lim
n→∞

|f(xn)| − |f(x)| > Var(f)

but this is again clearly a contradiction.
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Similarly the variation of a function can be used to bound integrals from
below by the following.

Lemma 3.2. Let f : X → R ∈ BV , then

inf
X

f ≥ f(x)−Var f ∀x ∈ X.

Proof. Identical to proof for Lemma 3.1

For the cases that will be encountered working with the mean value of f will
be preferrable to working with f directly though this is no problem due to the
following lemma.

Lemma 3.3. Let f : X → R ∈ BV , then there exists x1, x2 such that

f(x1) ≤
∫
X

fdµ.

f(x2) ≥
∫
X

fdµ.

Proof. We only prove the first inequality. If this is false for all x

f(x) >

∫
fdµ ⇒

∫
fdµ > µ(X)

∫
fdµ.

Obviously a contradiction. The second inequality is proven in an identical man-
ner.

3.2 Decomposition of Perron–Frobenius Operator

Before introducing the main tool that will be utilized we introduce the class
of maps that is to be considered. The considered maps T are defined on (0, 1)
such that T ′ exists on a countable set of open disjoin intervals (ai, bi) fulfilling
∪i(ai, bi) = [0, 1]. It will be assumed that ∥ 1

T ′ ∥∞ < 1 as well as Var 1
T ′ < ∞.

The formulation of these conditions is similar to those in [6]. Let (A) denote
these conditions.

The Perron–Frobenius operator, sometimes also called a transfer operator,
P corresponding to some map T fulfilling (A) is defined as

P (f)(x) =
∑

y=T−1(x)

{
f(y)

|T ′(y)| WhereT ′(y) is defined

0 Otherwise
,

for f ∈ L1. This operator has the following properties.

1. P (f ◦ T · g) = f · P (g)

2.
∫
X
P (f)dλ =

∫
fdλ,
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as well as P being linear.
Rychlik shows in [9] that in this case P can be decomposed as

P =
∑
i

eiQi +R

where e and Q are eigenvalues and projections onto eigenspaces to P respectivly,
all ei lie on the unit circle, and R as an operator BV → BV is a contraction

such that infN ∥RN∥
1
N

BV ≤ r < 1. Considered here will only be the case of a
single eigenvalue e1 = 1, for which we have

Q(f) =

∫
fdλ · h

with h ∈ BV fulfilling h ≥ 0 and
∫
X
hdλ = 1. Further more QR = RQ = 0.

Note that as both P and Q are linear operators this must also be true for R. An
equivalent and slightly more wieldy form of the bound on R expressed above,
which will be the prefered form going forward, is

∥RN (f)∥BV ≤ M · rN∥f∥BV (1)

for some positive M and 0 < r < 1. We also note the that∫
R(f)dλ = 0 ∀f ∈ BV.

Proof. Combining the fact that P preserves the integral with respect to the
Lebesgue measure of f and

∫
hdλ = 1∫

fdλ =

∫
P (f)dλ =

∫
fdλ ·

∫
hdλ+

∫
R(f)dλ

⇒
∫

R(f)dλ = 0.

As a final note we bring up a theorem and corresponding proof by Kim to
exemplify the usefulness of this decomposition when examining Borel–Cantelli
properties.

Theorem 3.4. [6] Let T be a interval map fulfilling (A). Assume that T has
uniquely invariant measure which is absolutely continuous with respect to the
Lebesgue measure µ = hdλ and h is bounded away from 0. If fn is a sequence
of nonnegative functions with

∑
µ(fn) = ∞ and ∥fn∥BV < M then for a.e. x

lim
N→∞

∑N
n=1 f ◦ Tn(x)∑N

n=1 µ(fn)
= 1

7



Proof. For a sequence fk fulfilling the conditions above then for j > i∣∣∣∣ ∫ fj ◦ T j · fi ◦ T idµ−
∫

fjdµ ·
∫

fidµ

∣∣∣∣
=

∣∣∣∣∫ fj ◦ T j−i · fidµ−
∫

fjdµ ·
∫

fidµ

∣∣∣∣
=

∣∣∣∣∫ fj

(
P j−i(fih)−

∫
fihdλh

)
dλ

∣∣∣∣
≤ CMrj−i

∫
|fj |dλ

≤ DMrj−i

∫
|fj |dµ,

giving an exponetial decay of correlations. With this

∫  ∑
n<k≤m

fk ◦ T k(x)−
∑

n<k≤m

µ(fk)

2

dµ

=
∑

n<i,j≤m

∫
fi ◦ T i(x)fj ◦ T j(x)− µ(fi)µ(fj)dµ

≤ (M + 2MD
r

1− r
)
∑

n<i<m

µ(fi).

Applying Lemma 2.3 with rk = ϕk = µ(fk) finishes the proof.

4 The considered problem

With this established we can consider the general formulation of the problem
that will be considered. We will now instead consider a family of interval maps

Ti : X → X for i ∈ I,

where all Ti fulfill the conditions (A) described previously. As is natural we let
Pi be the transfer operator corresponding to Ti. For a given sequence {ik}∞k=1

the corresponding system will under iteration act as

x → Ti1(x) → Ti2 ◦ Ti1(x),

and so on. That is to say that the element of the sequence at index k defines
the map that is applied at iteration k.

The reason that one could wish to study a system of this type could for
example be to model behaviour where some perturbation leads to dynamics
that change over time. Thus studying systems as described above could be used
to identify structure that would be necessary for the system to be well behaved.
Another situation where one could imagine encountering a situation like this
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would be to have a dynamical system that is dependent on some input which
could be controlled, where this formulation would be connected to how one can
find properties that are fulfilled by certain sequence.

As compared to systems that are traditionally considered when examining
Borel–Cantelli properties there is no obvious choice of invariant measure that
would be natural to use. From Rychliks results it is known that for the separate
maps Ti fulfilling (A) there is an invariant measure µi, but since these are
generally different this is not of assistance. We choose to use the Lebesgue
measure λ when examining the iterates of the map above.

The sets that will be considered are going to be of the form

En = T−1
i1

◦ T−1
i2

◦ · · · ◦ T−1
in

(An)

where An are intervals such that
∑∞

n=1 λ(An) = ∞. This formulation is helpful
as it means that x ∈ En ⇐⇒ Tin ◦ · · · ◦ Ti1(x) ∈ An, and so lim supEn is the
set such that the n:th iterate of x lies in An for infinitely many n. Since it is
the measure of this set lim supEn we are interested in this is natural.

Using this formulation one can simplify the measure of En to

λ(En) =

∫
X

1En
(x)dλ

=

∫
X

1T−1
i1

◦···◦T−1
in

(An)
(x)dλ

=

∫
X

1T−1
i2

◦···◦T−1
in

(An)
◦ T1(x)dλ

=

∫
X

1An
◦ Tin ◦ · · · ◦ Ti1(x)dλ,

from which the Perron-Frobenius operator can be used in order to simplify
expressions of this sort further.

4.1 Imposed restrictions

In addition to conditions (A) that are imposed on the individual maps some
restricitons are also made on the collection of maps Ti for i ∈ I that is used.
We will require that there exist uniform bounds for Mi and ri in (1). In addition
to this we require that for all Qi the corresponding functions hi are uniformly
bounded away from zero by some 1 ≥ γ > 0. A final restricton is that there
is a uniform bound for ∥hi∥BV . A collection Ti such that this is true is said
to fulfill (B). We let M ≥ supi Mi, 1 > r ≥ supi ri and hmax > ∥hi∥BV

denote these uniform bounds if (B) is fulfilled. Additionally introduce ∆max ≥
supi̸=j ∥hi − hj∥BV , which will always exist by the triangle inequality.

Example 4.1. As an example of a collection of maps, closely related to the
Gauss map discussed previously, that could be considered take

TN (x) =
N

x
mod 1.
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These maps are monotone on each interval that they are continuous, and differ-
entiable everywhere except for the points x = n

N for all n ≥ N , as is required.
We now need to check that all maps that are considered fulfill (A). We have∥∥∥∥ 1

T ′
N

∥∥∥∥
∞

=
1

N

fulfilling the condition on the derivative as long, as N = 1 is excluded. For
the variation the calculation is rather simple as T ′

N = −Nx−2 everywhere it is
defined giving

Var
1

T ′
N

= Var
1

N
x2 =

1

N
,

and so all TN with N ≥ 2 fulfill (A) as is desired. If we consider a finite family
of these maps then the final condition that is needed is that all hN are bounded
away from zero by some γ. Luckily, this is indeed the case as the densities for
the invariant measures are

hN (x) =
1

ln(N + 1)− ln(N)

1

N + x

as presented [5], for example. With this hN (x) ≥ 1
(ln(N+1)−ln(N))

1
N+1 and ex-

amining the denominator

∂(ln(N + 1)− ln(N))(N + 1)

∂N
= ln(1 +

1

N
)− 1

N
< 0

meaning the minimum value of hN is increasing in N this collection of maps
has γ ≥ 1

3 ln(1+ 1
2 )
.

And so taking a finite family of these TN with all N ≥ 2 will satisfy (B). In
order to have a infinite family it would require confirming existence of uniform
bounds on r and M for (1) and a bound on ∥hN∥BV . The latter is in this case
rather simple ∥hN∥1 = 1 always and the variation is strictly decreasing in N .
Finding bounds on the coefficients in (1) on the other hand is something that
rather difficult, unforunately. A brief discussion related to this is postponed
until later.

Again this system of Gauss maps has a connection to continued fraction. If
one instead considers a continued fraction expression, but with numerator N
instead of 1, this gives for TN

x =
N

U0 +
N

U1+
N

...

→ TN (x) =
N

U1 +
N

U2+
N

...

.

Then TN acts as a shift when considering these expansions, just as when N = 1.
So one could then study a dynamical system taking compositions on different
TNi in order to find properties of continues fraction expressions where the chosen
numerators are not constant but instead vary. If any such system where TNi
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is used at iteration i would fulfill a Borel–Cantelli lemma then one has similar
results as for the case when N ≡ 1. Since TNi ◦ · · · ◦ TN1(x) ∈ ( Ni

K+1 ,
Ni

K ),
for some integer K ≥ Ni means that the ith coefficient Ui, of the continued
fraction expansion of x with numerators defined by {Ni}, is larger than K.
Then with An = [0, 1

n ), one could say that Ui > Ni · i occurs for inifinitely many
i. Unfortunately the results that will be obtained are not quite as general as
this, as some requirements on the structure of {Ni} and {An} will be imposed.

Another assumption will be that the sequence {ik} is constructed of blocks
of length l ≤ ln where all i in a block are the same,

i1 = i2 = · · · = il1 il1+1 = il1+2 = · · · = il1+l2 ,

and so on. Though similar results may be possible to produce without an
assumption like this it will be exemplified later why some assumption of this
sort is necessary when using Rychliks decomposition of the transfer operator.

As was also noted in the example for requirements set on I, all except one
is fulfilled if the family is assumed to be finite. For this case the only condition
that remains to be checked is that all functions hi are bounded away from zero.

The requirement of long sequences of the same transfer operators is a tech-
nical requirement in order to get convergence when using the inequality (1)
exemplified by the following. If no requirement is set on the length of blocks
one will have to handle bounds like

∥Rim ◦Rim−1
◦ . . . Ri1(f)∥BV ≤ Mmrm∥Rim−1

◦ · · · ◦Ri1(f)∥BV

≤ (Mr)m∥f∥BV .

From this we can see that if Mr > 1 this bound will grow expontentially
and prove unusable for the results that are desired. With the requirement that
each map is used in blocks of length lm > l these bounds will instead become

∥Rlm
im

◦Rlm−1

im−1
◦ . . . Rl1

i1
(f)∥BV ≤ Mmrlmm ∥Rlm−1

im−1
◦ · · · ◦Rl1

i1
(f)∥BV

≤ (Mrl)m∥f∥BV ,

meaning for any uniform bounds M and r there exists a minimum block size
such that compositons of Ri of this sort can be bounded by an exponentially
decreasing funciton, with rate of decay depending on this block size.

4.2 Other assumptions producing sufficient conditions for
B.C-lemmas

For clarity we make sure to note that this does not imply that long block lengths
would be a necessity in order to obtain analagous results with other or poten-
tially no conditions on the structure of the sequence. For example take maps

11



of the type considered by Rychlik but with the additional restriction that they
only have a finite number of intervals of monotonicity. For these Ti we have

Ti : [0, 1] → [0, 1] i ∈ I,
∥∥∥∥ 1

T ′
i

∥∥∥∥
∞

< 1, Var

(
1

T ′
i

)
< ∞.

Now one can consider a composition of these maps such that

T = Tin ◦ · · · ◦ Ti1 ,

corresponding to periodic sequences. Then we have

T ′ = T ′
i1 ·

n∏
k=2

T ′
ik
◦ Tik−1

◦ · · · ◦ Ti1 ,

where it is rather straight forward to see that∥∥∥∥ 1

T ′

∥∥∥∥
∞

≤
n∏

k=1

∥∥∥∥ 1

T ′
ik

∥∥∥∥
∞

< 1.

Left is to verify that Var
(

1
T ′

)
< ∞. The first thing to note for f, g ∈ BV

and g with finite intervals of monotonicity

Var(f ◦ g) ≤ nmon Var(f)

where nmon is the number of intervals of monotonicity for g. This can be seen
by examining the variation of f ◦ g over some interval of monotonicity of g, say
(a, b). If it is the case that g((a, b)) = (0, 1), then

Var(f) = Var(a,b)(f ◦ g),

and if on the other hand some interval of monotonicity does not span the entire
interval, so g((a, b)) = (c, d) instead, it will be that case that

Var(a,b)(f ◦ g) = Var(c,d)(f) ≤ Var(f).

Summing over all intervals of monotonicity of g then gives

Var(f ◦ g) = Var(f)nmon.

By repeating this argument this can then be generalized to

Var(f ◦ gm ◦ · · · ◦ g1) ≤ Var(f)

m∏
k=1

nmonk
,

which when combined with

Var(fg) ≤ ∥g∥∞ Var f + ∥f∥∞ Var g

12



can be used in order to establish the bound

Var

(
1

T ′

)
≤

m∑
k=1

Var

(
1

T ′
k

) k−1∏
j=1

nmonj
,

meaning T is a uniformly expanding map whose with inverse derivative of
bounded variation. So in this specific case the problem can be handled as if
only a single map is considered and perticularly if one is able to find a lower
bound for the invariant density of this map it would be possible to apply the
result of Kim for this map.

5 Main results

We are now ready to state the main result.

Theorem 5.1. Let Ti ∈ I be a family of maps each fulfilling condition (A)
individually and (B) as a collection. Then for l that fulfills Mrl < 1 and

Mrl

1− (Mrl)
<

γ

∆max

and maps Ti appear in blocks of length l ≤ ln < ∞ for all n ∈ N then for any
sequence of intervals {An} such that

∑∞
n=1 λ(A

∑n
k=1 lk) = ∞ is a Borel–Cantelli

sequence.

It is worth noting here that the divergence required of the measures sub-
sequence of {An} is implied by the divergence of the measures of the entire
sequence, if we also assume that there is some uniform upper bound on lk and
that λ(An) is decreasing.

As a point of comparison take Proposition 5.2 in [1]. This states that Ran-
dom Dynamical Systems fulfill a Strong Borel–Cantelli property for almost every
sequence of maps Ti and initial argument x. The difference between these re-
sults is that in the theorem presented here one is able to draw conclusions about
behaviour of specific sequences, though it comes with the downside of requiring
specific structure for these sequences.

To prove the desired result we will use two known results. The first of which
being the following lemma.

Lemma 5.2 (Chung–Erdős inequality [2]). If {En}Nn=1 is a sequence of sets in

a probability space X with µ
(⋃N

n=1 En

)
> 0 then

µ(

N⋃
n=1

En) ≥

(∑N
n=1 µ(En)

)2
2
∑

1≤n<m≤M µ(En ∩ Em) +
∑N

n=1 µ(En)
.

As well as the following theorem.
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Theorem 5.3 (Lebesgues density theorem [3]). Let E be a Lebesgue measure-
able subset of Rd then λ-almost every point of E is a point of density of E, and
λ-almost every point of Ec is a point of dispersion of E.

That x is a point of density of E means

lim
r→0

λ(E ∩Br(x))

λ(Br(x))
= 1,

and similariy x being a point of dispersion means

lim
r→0

λ(E ∩Br(x))

λ(Br(x))
= 0.

With these two results as motivation, the first step is to find appropriate
upper and lower bounds for λ(I∩En), as well as a lower bound on λ(I∩En∩Em)
for arbitrary intervals I.

We note here that while the full sequence of En will generally be on the form

En = T−l1
i1

◦ · · · ◦ T−lm
im

◦ T−k
im+1

(An)

where
∑m

i=1 li + k = n it will be sufficient to consider only the elements that
end consecutive applications of the same map under the assumptions set up in
theorem 5.1, as if this subsequence is Borel–Cantelli this will be the case for the
complete sequence too. Thus we introduce{

A∗
n = A∑n

k=1 lk

E∗
n = T−l1

i1
◦ · · · ◦ T−ln

in
(A∗

n)

which will be used when the following bounds are being constructed. The fact
that it is sufficient to consider a subsequence is due to lim supE∗

n being a subset
of lim supEn and so λ(lim supE∗

n) = 1 implies λ(lim supEn) = 1.
We note here that the result can also be formulated by allowing A∗

n be any
element is atleast l iterations in the nth block. The proof essentially stays iden-
tical, and the required restriction on the diverging sum of measures is slightly
less restrictive.

5.1 Evaluating composition of Transfer-Operators

Before finding the necessary bounds needed it is worthwhile to take a quick
detour in order to establish how composition of transfer operators works for
their decomposition. Starting with the simplest case of the composition of two
transfer operators as an illustative example for f ∈ BV

P l2
2 ◦ P l1

1 (f) = P l2
2

(∫
fdλh1 +Rl1

1 (f)

)
= Q2

(∫
fdλh1 +Rl1

1 (f)

)
+Rl2

2

(∫
fdλh1 +Rl1

1 (f)

)
.
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We know that Qi acts as a projection onto hi. Introducing ∆1,2 = h1 − h2

and using the fact that
∫
hidλ = 1 and

∫
Ri(f)dλ = 0 for all i means that the

first term becomes

Q2

(∫
fdλ · (h2 +∆1,2) +Rl1

1 (f)

)
=

∫
fdλ · h2.

As we also know that operators Ri and Qi fulfill Ri(Qi) = 0 this means the
second term can be simplified as

Rl2
2

(∫
fdλ · h1 +Rl1

1 (f)

)
= Rl2

2 (

∫
fdλ ·∆1,2 +Rl1

1 (f)).

In order to keep the following expressions a more compact we introduce

ρ̂mn (f) = Rlm
m ◦ · · · ◦Rln

n (f).

With this in mind it would be useful if one could make similar simplifications
for longer compositions of these For longers compositions of transfer operators
we introduce the following lemma.

Lemma 5.4. With Pi being transfer operators corresponding to Ti such that
both (A) and (B) are fulfilled. Then for f ∈ BV

P lm
m ◦ · · · ◦ P l1

1 (f) =

∫
fdλ

(
hm +

m∑
n=2

ρ̂mn (∆n−1,n)

)
+ ρ̂m1 (f).

Proof. The base N = 2 has been shown above and its validity for N = 1 is a
direct consequence of the decomposition of the transfer operator. So now we
examine

P k
m+1

(∫
fdλ

(
hm +

m∑
n=2

ρ̂mn (∆n−1,n)

)
+ ρ̂m1 (f)

)

= Qm+1

(∫
fdλ(hm+1 +∆m,m+1)

)
+Rk

m+1(

∫
fdλ(hm+1 +∆m,m+1 +

m∑
n=2

ρ̂mn (∆n−1,n)) + ρ̂m1 (f)).

Again using the same properties used for finding the expression for the base
case is further simplified to∫

fdλ

(
hm+1 +Rk

m+1(∆m,m+1 +

m∑
n=2

ρ̂mn (∆n−1,n))

)
+Rk

m+1(ρ̂
m
1 (f))

and with k = lm+1∫
fdλ

(
hm+1 +

m+1∑
n=2

ρ̂m+1
n (∆n−1,n)

)
+ ρ̂m+1

1 (f).
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5.2 Lower bound for λ(E∗
n ∩ I)

From the definitions of E∗
n means that the measure first can be rewritten as

λ(E∗
n ∩ I) =

∫
1E∗

n
· 1Idλ =

∫
1A∗

n
◦ T ln

in
◦ · · · ◦ T l1

i1
(x) · 1I(x)dλ.

By applying the composed operators P ln
in

◦ · · · ◦ P l1
i1

to the integrand we have

λ(E∗
n ∩ I) =

∫
1A∗

n
· P ln

in
◦ · · · ◦ P l1

i1
(1I)dλ

=

∫
1A∗

n

(
λ(I)hn + λ(I)

n∑
k=2

ρ̂nk (∆k−1,k) + ρ̂n1 (1I)

)
dλ

≥ γλ(I)

∫
1A∗

n
dλ−

∫
1A∗

n
dλ

·Var

(
ρ̂n1 (1I) + λ(I)

n∑
k=2

ρ̂nk (∆k−1,k)

)

≥ λ(A∗
n)

(
λ(I)γ −

∥∥∥∥∥λ(I)
n∑

k=2

ρ̂nk (∆k−1,k) + ρ̂n1 (1A∗
n
)

∥∥∥∥∥
BV

)
.

Where the first inequality is due to fact that we have a uniform lower bound
hi > γ,

∫
Ri(f)dλ = 0 for all f ∈ BV and Lemma 3.2.

Finally using the bound (1) and the triangle inequality gives

λ(E∗
n ∩ I) ≥ λ(A∗

n)

(
λ(I)

(
γ −∆max

n−1∑
k=1

(Mrl)k

)
− ∥1I∥BV (Mrl)n

)
.

While this bound is generally true, it is not of any use unless the bounding
coefficient is greater than 0. Now under the assumptions on Mrl in Theorem
5.1 the limit of the geometric sum can be taken, resulting in

λ(E∗
n ∩ I) ≥ λ(A∗

n)

(
λ(I)

(
γ − Mrl∥∆max∥BV

1−Mrl

)
− ∥1I∥BV (Mrl)n

)
≥ λ(A∗

n)
(
λ(I)ε− (Mrl)n2

)
,

(2)

for some ε > 0. This bound means that as long as n is chosen large enough this
will always yield a bound that is strictly greater than zero as is desired. If one
could find a tighter bound than that which is used here it may be possible to
weaken the restriction set on Mrl, allowing the result to be applied to a larger
set of sequences.
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5.3 Upper bounds for λ(E∗
n ∩ I) and λ(E∗

n ∩ E∗
m ∩ I)

Starting exactly the same way as when constructing the lower bounds gives

λ(E∗
n ∩ I) =

∫
1A∗

n
· P ln

in
◦ · · · ◦ P l1

i1
(1I)dλ

=

∫
1A∗

n

(
λ(I)

(
hn +

n∑
k=2

ρ̂nk (∆k−1,k)

)
+ ρ̂n

1
(1I)

)
dλ

≤ λ(A∗
n)

(
λ(I) + Var(λ(I)(hn +

n∑
k=2

ρ̂nk (∆k−1,k)) + ρ̂n1 (1I))

)

≤ λ(A∗
n)

(
λ(I)(1 + ∥hmax∥BV

+ ∥∆max∥BV

n−1∑
k=1

(Mrl)k) + (Mrl)n2

)
≤ λ(A∗

n)
(
λ(I)(1 + ∥hmax∥BV + γ − ε) + (Mrl)n2

)
.

Here the first inequality follows by using lemma 3.1 and the fact that all hi have
meanvalue 1. A result which then for m > n can be extended to include the
intersection between En, Em and an arbitrary interval I.

λ(E∗
n ∩ E∗

m ∩ I)

=

∫
1A∗

n
◦ T ln

in
◦ . . . T l1

i1
(x)

· 1A∗
m
◦ T lm

im
◦ · · · ◦ T ln+1

in+1
◦ T ln

in
◦ . . . T l1

i1
(x) · 1I(x)dλ

=

∫
1A∗

n
(x) · 1A∗

m
◦ T lm

im
◦ · · · ◦ T ln+1

in+1
(x) · P ln

in
◦ · · · ◦ P l1

i1
(1I)dλ

≤

(
λ(I)(1 + ∥hmax∥BV + ∥∆max∥BV

n−1∑
k=1

(Mrl)k)

+ (Mrl)n∥1I∥BV

)
·
∫

P lm
im

◦ · · · ◦ P ln+1

in+1
(1A∗

n
) · 1A∗

m
dλ

≤ λ(A∗
m)

(
λ(I)(1 + ∥hmax∥BV + ∥∆max∥BV

n−1∑
k=1

(Mrl)k) + (Mrl)n2

)

·

(
λ(A∗

n)(1 + ∥hmax∥BV + ∥∆max∥BV

m−(n+1)∑
k=1

(Mrl)k) + (Mrl)m−n2

)
.
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5.4 Full measure for E∗ = lim supE∗
n

All necessary inequalities needed to use the Chung–Erdős inequality have now
been established, though for readability introduce

C =1 + ∥hmax∥BV + γ − ε

S1 =
∑

N0≤n<m≤M0

λ(A∗
n)λ(A

∗
m)

S2 =
∑

N0≤n<m≤M0

(Mrl)m−nλ(A∗
m)

S3 =

M0∑
n=N0

λ(A∗
n),

with ε being the same as that used in (2). Inserting all the bounds that have
been found results in

λ

(
M0⋃

n=N0

(E∗
n ∩ I)

)
≥ (λ(I)ε− 2(Mrl)N0)2S2

3

(λ(I)C + 2(Mrl)N0)
(
2CS1 + 4S2 + S3)

=
(λ(I)ε− 2(Mrl)N0)2

(λ(I)C + 2(Mrl)N0)
(
2C S1

S2
3
+ 4S2

S2
3
+ 1

S3

) ,

where N0 is chosen large enough such that (Mrl)N0 < λ(I) ε4 .
Now we want to find bounds for the fractions in the denominator. We begin

with S2

S2
3
. The sum S2 can be approximated as

S2 =

M0∑
m=N0+1

λ(Am)

m−1∑
i=1

(Mrl)i ≤ (Mrl)

1−Mrl
S3.

Hence S2

S2
3
≤ Mrl

(1−Mrl)S3
. For S1

S2
3
rewriting S2

3 as

S2
3 = 2

∑
N0≤n<m≤M0

λ(An)λ(Am) +

M0∑
n=N0

λ(An)
2

≥ 2
∑

N0≤n<m≤M0

λ(An)λ(Am) ⇒ S1

S2
3

≤ 1

2

gives the bound

λ

(
M0⋃

n=N0

E∗
n

)
≥

(λ(I) ε2 )
2

λ(I)
(
C + ε

2

) (
C + 1

S3

(
4Mrl

1−Mrl
+ 1
)) .
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Now using the fact that S3 is divergent we can let M0 go to infinity, denoting
the limit as

k =
(λ(I) ε2 )

2

λ(I)
(
C + ε

2

)
C
.

Thus, for any small enough δ > 0 we can find M0 such that

(λ(I) ε2 )
2

λ(I)
(
C + ε

2

) (
C + 1

S3

(
Mrl

1−Mrl
+ 1
)) >

(λ(I) ε2 )
2

λ(I)
(
C + ε

2

)
C

− δ.

We then set M0 as the smallest value such that the inequality above is
fulfilled with δ = k

2 . Thus for a given I some N0 and a corresponding M0 can
be found such that

λ
(⋃M0

n=N0
(E∗

n ∩ I)
)

λ(I)
≥ ε2

4
(
C + ε

2

)
C

> 0.

For any I we can find a sequence of {Ni} such that N0 fulfills the condition
set previously and Ni+1−1 fulfills the condition on M0 described above relative
to Ni. Since all Ni > N0 so the condition on the lower boundary will always be
fulfilled meaning we for our sequence have

λ
(⋃Ni+1−1

n=Ni
(E∗

n ∩ I)
)

λ(I)
≥ ε2

4
(
C + ε

2

)
C

> 0.

With B∗
m =

⋃∞
l=m

(⋃Nl+1−1
n=Nl

E∗
n ∩ I

)
we have that

λ(B∗
m) ≥ ε2

4
(
C + ε

2

)
C
λ(I),

and by extension

λ(E∗ ∩ I)

λ(I)
=

λ(lim supE∗
n ∩ I)

λ(I)
= λ

( ∞⋂
m=1

Bm

)
1

λ(I)
≥ ε2

4
(
C + ε

2

)
C
.

This then means that E∗ has non-zero density over all intervals of (0, 1).
Now see this consider In = B(x, rn) where {rn} is a sequence approaching zero.
Thus for any x

lim
n→∞

λ(E∗ ∩ In)

λ(In)
≥ ε2

4
(
C + ε

2

)
C
.

But by Theorem 5.3 we know that λ-almost every x∗ ∈ Ec

lim
r→0

λ(E∗ ∩Br(x
∗))

Br(x∗)
= 0

and since no x∗ exist such that this is true λ(E∗c) = 0 thus λ(E∗) = 1 and the
desired result has been shown.
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5.5 Construction of bounds on r and M

In order to attain bounds on l such that we can ensure that this length of blocks
is sufficient, as well as ensuring that infinite families have uniform bounds for
ri and Mi it is of importance to be able to find estimates for these.

In [7] Liverani presents a method that allows for finding numerical approx-
imations for these constants for some maps similar to those that have been
considered previously, though specifically finite partitions are considered as well
as T being assumed to be twice continuously differentiable inside each interval
in the partition. The bound that is established gives expressions for constants Λ
and b, as well as a decreasing sequence Kn, such that for g ∈ BV with

∫
gdλ = 1

and for f ∈ L1∣∣∣∣∫ g · f ◦ Tndλ−
∫

f · hdλ
∣∣∣∣ ≤ΛnKn (1 + bVar(g)) ∥f∥1

≤2Kn ·max(1, b)∥g∥BV ∥f∥1.

Since all that is required for the results of theorem 5.1 are bounds for Mrn

for n > l one could take M = 2Kl ·max(b, 1) and r = Λ, which can give lower
bounds for l, as compared to M = 2K1 · max(b, 1) which would be necessary
in order to assure that the bound is valid for any n. Additionally, the bounds
that are produced here are continuous with respect to the C2 topology, which
means that for some T one could find a neighbourhood of functions such that
only a small change in l is necessary for all functions in this neighbourhood. We
illustrate how these bounds can be construction with an example.

Example 5.1. Here we consider the map T : [0, 1) → [0, 1)

T (x) = 3x mod 1

which is twice continuously differentiable except for outside the partition P0 =
{(0, 1

3 ), (
1
3 ,

2
3 ), (

2
3 , 1)} The first two values that are needed can be found rather

straight forward{
λ = inf |T ′| = 3

A = supx∈[0,1]
|T ′′(x)|
|T ′(x)| + 2 supI∈P0

supx∈I |T ′(x)|
|I| = 2.

Additionally we introduce a that is required to fulfill a > A
1−2λ−1 = 6. We let

Pn denote the partition such that Tn+1 is monotone and differentiable on each
element in this set. For this map we have

Pn =

{(
k

3n+1
,
k + 1

3n+1

)
| k = 0, 1 . . . 3n+1

}
and need n0 such that the partition fulfills minI∈Pn |I| ≤ 1

2a meaning n0 = 2
could give a valid bound. N(n0) being the number of iterates of T needed such
that TN(n0)(I) = [0, 1) for all I ∈ Pn0

which without much trouble can be seen
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to be 3. With a = 6.75, then σ = (2λ−1)N(2) + 1−(2λ−1)N(n0)

1−2λ−1 Aa−1 ≤ 25
27 we

introduce
∆ ≤ 2 ln

(
(1 + aσ) 2 · 33

)
,

resulting in the following bounds for the necessary constants
Λ = tanh

(
∆
4

)(3−1) ≤ 0.998

Kn = e∆Λn−3

Λ−3∆

b = (a− A
1−2λ−1 ) = 0.75.

The smallest possible l that may be valid must always fulfill Mrl < 1, and so
we can compare these bounds for the choice for M1 = 2K1 and M2 = 2Kl, with
r = Λ for both situations. For this we introduce the Lambert W function, being
increasing for x > 0 and fulfilling W (x)eW (x) = x, for further details see, for
instance, [4]. These smallest l then can be bounded by

l1 > − ln(2∆e∆Λ−3

∆Λ) ln(Λ)−1 ≈ 7550,

and

∆Λl2−3e∆Λ(l2−3) ≤ 1

2
⇒ ∆Λl2−3 < W

(
1

2

)
⇒ l2 > ln

(
W

(
1

2

)
∆−1

)
ln(Λ)−1 + 3 ≈ 1800.

From this example we see that the bounds that this method produces approx-
imations for M and r and so this can be used in order so bound the necessary
block length l. These bounds are still rather far away from the results that
would be desired, that being Mr < 1. If this is fulfilled for some family, such
that ∆max can be made arbitrarily small, then a blocksize of l = 1 would be
possible and so any sequence of maps would fulfill the Borel–Cantelli property
for intervals. Still this is rather far away from the bounds constructed here.

6 Future work

With the established condition found it is natural to ask if one could weaken this
condition further. Ultimately the question would be if any sequence of functions
Ti of the type considered here always fulfills the Borel–Cantelli property or if it
is possible to construct a sequence for which this would fail to hold. Another
direction that is of relevance for these results would be of finding additional
methods of estimating the bounds for ∥Rn(f)∥BV as good bounds on these are
necessary in order to find sequences fulfilling the conditions in Theorem 5.1.
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