
MASTER’S THESIS 2023

Intelligent Robotic Systems for
Quality Control
Marcus Nagy, Martin Lyrå

ISSN 1650-2884
2023-19

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

2023-19

Intelligent Robotic Systems for Quality
Control

Smarta Robotsystem för Kvalitetskontroll

Marcus Nagy, Martin Lyrå

Intelligent Robotic Systems for Quality
Control

(A Study on a Pick Skill for a Collaborative Robot)

Marcus Nagy
ma8828na-s@student.lu.se

Martin Lyrå
ma4542ro-s@student.lu.se

June 12, 2023

Master’s thesis work carried out at Tetra Pak International S.A..

Supervisor: Volker Krüger, volker.krueger@cs.lth.se

Examiner: Jacek Malec, jacek.malec@cs.lth.se

mailto:ma8828na-s@student.lu.se
mailto:ma4542ro-s@student.lu.se
mailto:volker.krueger@cs.lth.se
mailto:jacek.malec@cs.lth.se

Abstract

This thesis investigates the application of a picking skill for intelligent robotic
systems with the intention of quality control. Picking an object is a skill cru-
cial for quality control yet non-trivial in robotics, requiring both sensing and
actuation. Using ArUco markers, we established a baseline for accurate pose
estimation.

This study emphasizes the necessity of a robust hand-eye calibration for pre-
cision in vision-based tasks.

The proposed picking skill, leveraging fiducial markers like adequately sized
ArUco, demonstrated substantial efficacy and potential for enhanced reliability
and versatility with suggested improvements. This allowed successful picking of
variously sized and oriented containers.

Keywords: MSc, Intelligent Robotics, Skill, ROS, SkiROS, ArUco, Picking

2

Acknowledgements

We would first and foremost like to thank our supervisor Volker Krueger for the continuous
support and guidance throughout the thesis work.

Secondly we would like to thank Jacek Malec for taking on the task of being the examiner.
Finally we would like to thank all the people working at Robotics and Semantic Systems LTH

for all the help, especially Marcus Klang for git and technical aid, Matthias Mayr for supplying
with implementation of the actuation part, Simon Kristoffersson Lind for continuous help
with the use of SkiROS. Not to mention the co-authored implementation of ArUco marker
detection and camera calibration between us and the other thesis project during a hackathon
consisting of Josefin Gustafsson and Pontus Rosqvist.

From Tetra Pak, we extend our heartfelt thanks to Daniel Cederström. His support
throughout our thesis work and his crucial role as a mediator between us and Tetra Pak
are deeply appreciated.

3

4

Contents

1 Introduction 7
1.1 Intelligent Robotics for Quality Control 8
1.2 Problem statement . 8
1.3 Research Questions . 9
1.4 Research Plan . 9
1.5 Related Work . 10
1.6 Contribution . 10

2 Theory 13
2.1 Transformations in Coordinate Systems . 14
2.2 ArUco . 15
2.3 Pose estimation . 15
2.4 Camera calibration . 16
2.5 Hand-Eye Calibration . 17
2.6 MoveIt . 19
2.7 Cartesian Impedance Controller . 19
2.8 Ontology . 20

2.8.1 Behaviour Trees . 21
2.9 SkiROS Skill-based Platform . 22

3 Approach 23
3.1 Implementation . 24

3.1.1 ArUco Markers . 24
3.1.2 SkiROS - skills for ROS . 26
3.1.3 Knowledge . 27
3.1.4 Hand-eye calibration skill . 27
3.1.5 Design of Picking Skill . 28

3.2 Evaluation Procedure . 28
3.2.1 Hand-Eye Calibration Evaluation 28
3.2.2 ArUco Pose Estimation Evaluation 29

5

CONTENTS

3.2.3 Pick Skill Evaluation . 29

4 Experimental Setup 31
4.1 The robot’s workspace . 32
4.2 Physical evaluation . 32

5 Results 33
5.1 Hand-Eye Calibration . 34
5.2 ArUco Marker Pose Estimation . 36
5.3 Implementation and Performance Analysis of the Pick Skill 37

5.3.1 Baseline - Tall package standing up 38
5.3.2 Tall package, lying down, 0 degree turn 39
5.3.3 Tall package lying down, 90 degree turn 39
5.3.4 Tall package lying down, 180 degree turn 40
5.3.5 Tall package, lying down, top-left corner position 40
5.3.6 Tall package, lying down, top-right corner position 41
5.3.7 Tall package, lying down, bottom-right corner position 41
5.3.8 Tall package, lying down, bottom-left corner position 42
5.3.9 Juice package, standing . 42
5.3.10 ArUco-marker size & picking performance correlation 43

6 Discussion 45
6.1 Analysis of Hand-Eye Calibration Outcomes 46
6.2 Evaluation of ArUco Marker Pose Estimation Results 46
6.3 Analysis of Picking Evaluation Results . 47
6.4 Future Work . 49
6.5 Controller-Arm Connection Issue . 50

7 Conclusion 51

6

Chapter 1

Introduction

Tetra Pak delivers a wide variety of solutions for both production and packaging of liquids
into containers of different volumes. The material for the containers as such are delivered on
rolls which are later cut, folded and glued together, as well as printed on.

The containers are designed to meet the needs and expectations of modern consumers
while also addressing environmental concerns. They can be conveniently compressed and
folded, making them easy to recycle and requiring less space. To maintain these standards,
the containers undergo regular quality control assessments. Factors such as proper folding,
print quality, and appropriate glue usage are evaluated to ensure that the containers are sym-
metrical, easy to open, and disposable.

The machinery needs occasional oversight, service checks, and upkeep to guarantee qual-
ity standards. At present, all procedures from container quality control to machinery super-
vision are performed by humans. However, there’s a growing interest in utilizing automation
and intelligent systems like robots for these tasks.

The aim of this thesis is to enhance quality control in container inspection by incorporat-
ing intelligent robotics. Our initial focus is on designing a reliable robotic pick skill, which
will be essential for selecting individual sample containers for subsequent quality control
analysis.

7

1. Introduction

1.1 Intelligent Robotics for Quality Control
There has been an acceleration of converting traditional industrial processes into more safe
and efficient environments as part of the Industry 4.0 paradigm [19]. This has resulted in the
sudden acceleration for industries that want to fill in the absence of automation and the use
of intelligent systems.

The quality control of products often relies on manual labor, involving human interven-
tion that can be susceptible to errors [33, 23].

Automation has proven to be a viable option for quality control and process inspections
over the past two decades [12]. Not only can it reduce errors prone to human intervention,
but it can also decrease labor costs [12]. Furthermore, automation can potentially increase
production rates [12, 23, 33].

1.2 Problem statement
The aim of this project is to implement an intelligent robotic system to automate the process
of picking boxes from a production line. The challenge involves designing a collaborative
robot capable of safely navigating an environment shared with human workers and picking
boxes from a conveyor belt. The boxes vary in size and shape, requiring the robot’s picking
mechanism to be highly flexible and adaptable. As a limitation, we will evaluate our picking
mechanism solely on stationary boxes.

The scope of this project is to look into the components of box picking by an intelligent
robot and discuss these briefly:

• Perception: An intelligent robot must be capable of ’recognizing’ objects or locations.
This involves not only object detection, but also overcoming challenges like camera
calibration and hand-eye calibration, as well as estimating object pose.

• Knowledge: An intelligent robot must comprehend what objects are and where spe-
cific locations lie. This refers to a robust understanding of the world, an essential
component of intelligent robotic tasks.

• Actuation: This covers aspects related to the execution of the pick skill. This includes
maneuvering the robot arms through a series of movements that allow for object de-
tection, approach, secure grasping, and finally, returning to the point of origin.

We look at how a skill should be designed with these three components in mind, and identify
challenges associated with the task. To streamline the project, we have decided to perform
the picking process when the box is stationary and placed on a table. We will initiate the
project by using ArUco markers for pose-estimation [36]. Recognized as a standard type of
fiducial markers, these are reference points located on objects or locations, characterized by
patterns that can be easily computed and detected in an image.

In short, the main objectives of the task are:

• Detect location and pose.

• Pick an object.

8

1.3 Research Questions

• Develop strategies to accommodate variations in box dimensions and configurations.

With a literature study, we look into what others have accomplished in the field, how
they applied intelligent robotics to industry, and how classic Industry 3.0 robotics have been
enhanced.

1.3 Research Questions
We can now summarize the discussion above to these following research questions:

1. How can a robot skill be designed to reliably pick up a variety of Tetra Pak boxes
repeatedly?

In particular:

2. How do we get the orientation of the target object based on ArUco markers? How
does the orientation affect the picking?

3. What design considerations should be taken into account to ensure that the skill allows
for subsequent inspection of picked items?

4. In order to pick up multiple Tetra Pak boxes of different dimensions, where and how
do we implement the necessary knowledge?

1.4 Research Plan
In order to develop an effective intelligent autonomous system for quality control, the re-
search plan will encompass four key stages that address object detection and pose estima-
tion, calibration processes, picking strategies, and system evaluation and optimization. These
stages can be summarized as follows:

• Investigate detection and pose estimation techniques: To effectively analyze the qual-
ity of objects, it is essential to accurately detect and estimate their pose. The initial
stage of this research will focus on identifying suitable methods for achieving this,
with an emphasis on building a baseline model using fiducial markers. This baseline
will serve as a benchmark for comparison as we explore alternative approaches.

• Address camera and hand-eye calibration prerequisites: To ensure precise pose esti-
mation of the objects, it is necessary to consider the camera and hand-eye calibration
processes. These steps are crucial prerequisites for enabling the subsequent picking
phase of the project.

• Develop a robust picking strategy: The next step in the research plan involves devis-
ing a method for grasping objects irrespective of their shape or initial orientation. A
reliable picking strategy is required to facilitate the inspection and assessment of the
objects.

9

1. Introduction

• Evaluate and optimize the overall system: The final stage of the research plan involves
conducting a thorough evaluation of the proposed intelligent autonomous system for
quality control. This will include assessing the performance of the detection, pose
estimation, calibration, and picking components, as well as optimizing the system to
ensure optimal performance. The results of these evaluations will provide valuable
insights into the effectiveness and potential applications of the developed system in
real-world quality control scenarios.

1.5 Related Work
The oyster-mushroom picking robot by Y. Qian et.al. [30], with real-time detection and
localisation using machine learning serves as an insight into the design of a picker robot.

A recent work, engineering an automatic tomato-plant planter, by I. Yang et.al [37], forms
the basis for a solution using ArUco for pose estimation. The introduction to ArUco markers
in Section 2.2 is based on the article from 2013 [7].

The collaborative robot ’Flippy2’ developed by Miso Robotics has begun to be widely used
by three major fast food chains in the United States as a means to provide better safety and
quality, and its purpose is to meet the demand for automated goods in the industry [4, 18].
"Flippy2" relies on ArUco markers for estimating pose and identifying what goes where, as
well as associating cooking timers with markers[4].

An abstract proof-of-concept project in actuation, which explicitly used ArUco to esti-
mate the pose of marked objects for picking [13], serves as the primary foundation for the
basic steps of picking as a skill.

Pose estimation in the field of bin picking has been explored using various methods. One
recent approach suggests utilizing 3D matching [11], while another proposes using 6D poses
extracted from RGB-D inputs [2]. Other techniques that have been previously employed
include 2D matching with 3D object recognition by searching for maximum similarity, using
a laser scanner system to determine pose by detecting horizontal and vertical lines, utilizing
simulation to learn grasping poses that can later be transferred to the robot’s end effector,
and leveraging deep machine learning for object detection. Additionally, some researchers
have utilized 3D point-cloud data and 3D CAD models [11]. Although there are state-of-
the-art commercial systems available, such as FANUC’s 3D Area Sensor [6] and Pick-itTM
Robotic Picking [29], these solutions can be quite costly and complex to implement.

1.6 Contribution
The insights derived from our research aim to significantly contribute to the field of intelli-
gent robotics, particularly in terms of a pick skill for quality control. Our primary contribu-
tions include:

1. Developing a robust robotic skill capable of reliably picking up a diverse range of Tetra
Pak boxes repeatedly.

2. Establishing a methodology to determine the orientation of a target object using ArUco
markers, and understanding the impact of this orientation on the picking process.

10

1.6 Contribution

3. Identifying key design considerations that ensure the developed skill facilitates subse-
quent inspection of picked items.

4. Proposing strategies for equipping the robot with the necessary knowledge to handle
Tetra Pak boxes of varying dimensions.

These contributions are designed to advance our understanding and utilization of robotics
in quality control and inspection processes.

11

1. Introduction

12

Chapter 2

Theory

To address the research questions outlined in 1.3, we delve into the theory and background
of several essential areas. In the realm of robotics, the comprehension of transformation
between different frames or coordinate systems is essential. We first explore this concept.

Next, we focus on object detection, a task that can be achieved through a variety of meth-
ods, one of which includes the use of ArUco markers. Despite the susceptibility of advanced
detection methods to environmental factors like lighting and reflection, we can employ ro-
bust coordinates of markers, such as ArUco, to estimate the object’s pose [26].

Once the desired object’s pose is computed, any picking skill requiring an object’s pose
can execute the vision-based task. Ensuring that the pose estimation is precise and consistent
is critical, leading us to examine calibration as our third focus area. We will start with camera
calibration and proceed to hand-eye calibration.

In conjunction with these aspects, actuation plays a significant role in system operation.
Manipulating the robot arm requires appropriate control, tailored to the intended working
environment. To reduce the risk of material damage or personal injury, we incorporate a com-
pliant controller, enhancing the robot arm’s responsiveness to external forces. The strategies
involve position-based negative feedback or impedance control, with the latter being our
preference for compliant control.

Lastly, we delve into ontology, behavior trees and SkiROS, studying its practical appli-
cation in picking containers of various sizes.

13

2. Theory

2.1 Transformations in Coordinate Systems
In three-dimensional space, any point p ∈ R3 can be characterized from various frames of
reference. These frames provide unique coordinate systems that a robot can leverage for nav-
igation. A point’s location within these systems isn’t strictly tied to specific values. Instead,
it can also be interpreted relative to a predefined coordinate within a given frame [21, 14].
As exemplified in Figure 2.1, a point is defined in frame A and the same point is illustrated
in reference to frame B.

Figure 2.1: Illustration of point in frame A and its representation in
frame B.

Figure 2.1 showcases a point p1 in frame A, represented by coordinates (x1, y1, z1). The
same point is expressed as p2 in frame B, with different coordinates (x2, y2, z2). It’s crucial
to understand that p1 and p2 are the same point p referenced in different frames, A and
B. Transitioning from one frame to another involves capturing the translation tA

A→B, which
determines the placement of point p when transitioning from frame A to frame B. Simi-
larly, the rotation from frame A to B is recorded as RA

A→B, where each column represents the
orientation for the x, y, and z axes.

To calculate the coordinates of point p when transitioning from frame B to A, one can
employ the following formula:

p1 = RA
A→B p2 + tA

A→B (2.1)

This can also be represented as a matrix equation (refer to Eq. 2.2):[
p⊤1
1

]
=

[
RA

A→B tA
A→B

0 1

] [
p⊤2
1

]
(2.2)

14

2.2 ArUco

The rotation and translation together constitute a transformation TA→B. Hence, it is not
necessary to describe each point in every frame. It is sufficient to understand the point’s
relation to a specific frame and how this frame relates to all other frames.

A transformation matrix is utilized to map the points from the source coordinate sys-
tem to the target coordinate system. The general structure of a transformation matrix for
converting coordinates from one system to another can be represented as:

TA→B =

r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1

 (2.3)

Here, the elements in Eq.(2.3) ri j form the rotation matrix, which accounts for the orienta-
tion change between the two coordinate systems, and tx, ty, and tz represent the translation
components, which describe the displacement between the systems. However, the rotation
matrix in the Robot Operating System (ROS) is typically represented as a quaternion due
to its compact and reliable nature [17]. The quaternion, denoted as Q, consists of four com-
ponents: x, y, z, and w [17]. This representation necessitates the conversion between the
rotation matrix R and quaternion Q, and vice versa [1].

2.2 ArUco
An ArUco marker is a square binary fiducial marker, patterns used as reference points to be
seen in an image. Like other fiducial markers, they are used for identification and pose esti-
mation. The markers come in sets of predefined dictionaries; each contains a unique integer
for the patterns. The integer is known as the identifier, or ID, which has a corresponding
pattern. ArUco was proposed and launched in 2014 as an initiative to create fiducial markers
capable of producing unique patterns that could not be mistaken for others [7]. This earned
ArUco a reputation for reliability compared to other options available at the time.

The development of ArUco also included the release of an open-source library, free for
everyone to use [7], allowing everyone to immediately pick up and use ArUco for pose estima-
tion [37]. ArUco’s identification, via the pattern’s associated integer ID, and its robustness
in pose estimation makes it relevant for our work. Details will be elaborated later on in
methodology.

2.3 Pose estimation
Pose estimation serves several distinct, yet functionally related applications, each with goals
revolving around different poses. These applications include estimating the trajectory be-
tween two known poses, determining the joint-states of a pose to meet specific requirements,
and identifying the global location of objects perceived by a robot. While these applications
have distinct objectives, they often employ the same mathematical solvers due to their shared
functionalities.

The first forms the backbone of robot actuation and where the solvers calculate an opti-
mal trajectory from one pose to the end pose [10]. Some solvers account for the robot’s spatial
awareness for obstacles, some do not and only find the most straightforward path.

15

2. Theory

The second one is often called inverse kinematics and is one of the major everyday problems
with robots, since almost all tasks have variable locations that change over time. This task
requires more computing since the inverse kinematics involve inverses of matrices and several
accounts of matrix multiplication, and the degrees of freedom depends on how many joints
the robot limb has.

The third is less associated with actuation but more with computer vision, another im-
portant topic in robotics. We wish the robot to have a way to see and locate an object, the
so-called object localization. Once we find the coordinates of an object, the depth image of
the same image is used to calculate the world frame of the object that contains the position
and orientation. As mentioned in 1.2 the way an object can be localised can be accomplished
in different ways where ArUco marker is a simple way for computer vision to localise the
object or a location an ArUco marker is placed on.

2.4 Camera calibration
Camera calibration is the process of determining the parameters that influence how the cam-
era projects the real world onto the image plane. These parameters include the image center,
focal length, and lens distortion. Obtaining these values allows for the alignment of the im-
age space coordinates with the real-world coordinates as seen by the camera. Furthermore,
it enables the estimation of real-world coordinates from points within two or more images.
Consequently, calibration is a critical step in computer vision and image processing, partic-
ularly when determining the location of an object is necessary.

Computing the calibration yields the camera matrix K. Each point in the image corre-
sponds to two equations (one for x and one for y), necessitating at least four known points to
compute K. Checkerboards are a common example of objects with known dimensions and
properties, making the calibration process straightforward [25]. K is defined as:

K =

 fx 0 cx
0 fy cy
0 0 1

 (2.4)

In the K matrix, fx and fy represent the camera’s focal lengths, while cx and cy denote the
optical coordinates of the camera’s center [25]. These variables are also referred to as intrinsic
parameters of the camera. To transform a 3D point’s coordinates into the image coordinate
system, extrinsic parameters are also required [25]. The intrinsic parameters are unique to
each camera but can change over time [15]. The intrinsic parameters usually come as factory
settings that can easily be recovered but are not necessarily accurate, on the other end the
distortion coefficient are not provided and have to be calculated [25].

To correct the distortion introduced by the camera’s lens, it is necessary to use a known
object with well-defined points, such as the aforementioned checkerboard. Knowing the
points’ coordinates in both the real world and the image enables the computation of the
distortion coefficients, which are defined as [15]:r11 r12 r13 t1

r21 r22 r23 t2
r31 r32 r33 t3

 (2.5)

16

2.5 Hand-Eye Calibration

To obtain accurate coefficients, a minimum of 10 test patterns (images) is typically required,
although using more could potentially yield better results [25]. However, beyond a certain
point, additional images do not significantly improve the results . Some cameras come with
on-chip calibration that uses depth sensors to determine if degradation has occurred. An-
other approach to verify camera integrity involves comparing the on-chip calibration results
with those obtained using an external reference, such as a checkerboard pattern [9]. Re-
calibration is generally unnecessary unless the camera has been subjected to physical shocks,
such as high vibrations, knocks, or drops [9].

The intrinsic and extrinsic matrices together constitute the projection matrix. Typically,
the projection matrix is used as follows:

ImagePoint = K ×

r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3

 ×

X
Y
Z
1

 (2.6)

In the last equation, X , Y , and Z represent the real-world coordinates of a 3D point in the
object’s coordinate system. By applying the projection matrix to these coordinates, the corre-
sponding image point in the image plane can be determined, enabling the transformation of
real-world coordinates into image coordinates.

2.5 Hand-Eye Calibration

To get the unknown transform between the "eye" (camera) and the "hand" (gripper) of the
robot there are two ways of viewing the problem, either the camera is in a fixed observing
position or it is connected with the gripper, the end effector [15], shown in Figure 2.2.

17

2. Theory

Figure 2.2: This image demonstrates the computation of the trans-
formation TW→C through Hand-Eye calibration. It is calculated us-
ing the transformation’s TR→OTO→C and TR→W . These transforma-
tions are fundamental to ensuring accurate robotic perception and
actuation.

The matrix equation typically used to address the problem in Figure 2.2 is represented as
TR→W X = TR→OTO→C , which is commonly referred to as the AX = Y B problem. Obtain-
ing the transformation matrix is a non-trivial task and is accomplished through the process
known as Hand-Eye Calibration.

Hand-eye calibration is a crucial step in determining the relationship between an object’s
location in the robot’s coordinate system and the transformations between them [15]. The
kinematic chain and joint settings can be computed from the Unified Robot Description Format
(URDF) [20]. In Figure 2.2, the camera is denoted as C, the robot wrist as W, the object as
O, and the robot base as R. The goal is to obtain the transformation TW→C , which requires
solving the following equation:

TR→W X = TR→OTO→C (2.7)

This corresponds to the problem shown below:(
RTR→W RX RTR→W tX + tTR→W

0 1

)
=

(
RTR→ORTO→C RTR→O tTO→C + tTR→O

0 1

)
(2.8)

In this equation, all components are known except for the transform X . Solving Eq. (2.8)
involves capturing multiple images to determine the object’s pose within the camera’s frame,
with a minimum of two distinct positions. Ideally, each position should be significantly
different from the others [35]. Alternatively, the Y component can be estimated as part of
the AX = Y B problem, as described in Continuous Hand-Eye Calibration Using 3D Points [8].
Generally, estimating the Y component is avoided due to its cumbersome nature. However, it
carries the added benefit of continuous calibration during the execution of other tasks. For
instance, should the camera become displaced suddenly during execution, the continuous

18

2.6 MoveIt

estimation of the Y component and consequent error reduction would allow for adaptability
to the abruptly changed environment.

2.6 MoveIt
MoveIt Motion Planning Framework is the default motion planning software bundled with of-
ficial ROS distributions. Its features are not just limited to motion planning but cover the
following aspects [31]:

• Gripper manipulation

• Inverse kinematics

• Control theory actuation

• Collision checking

• Graphical user interface

• Deep integration with ROS

However, we will not be using MoveIt for our project, for performance and reliability
reasons; instead, we will be using the motion planner mentioned in the forthcoming section.
MoveIt serves as a fallback and reference if the previously mentioned method fails, and it is
also used to fetch joint configuration data.

2.7 Cartesian Impedance Controller
Controlling the motion of a robotic system demands a strategic approach, particularly in the
manipulation of robotic arms. At one end of the control strategy spectrum is the position-
based negative feedback control. This approach is often rigid, with a high gain on small errors,
leading to less flexibility in responding to environmental variations [5]. On the other end of
the spectrum, compliant control strategies, such as model-based control with torque control,
offer a more flexible alternative.

A Cartesian impedance controller belongs to the latter category, employing a control
strategy designed to regulate motion in Cartesian space in response to applied forces and
torques [22]. This type of controller is designed to establish a specific dynamic relationship
between the motion of the robot and external forces [27]. In the context of a Cartesian
impedance controller, this relationship is described in terms of the end-effector’s coordinates,
which depict its motion [27].

Unlike controllers that adhere to a pre-defined path, a Cartesian impedance controller
reacts to external forces. For instance, if the robot arm encounters an obstacle or experiences
any external forces, the controller can adjust the arm’s position and orientation to compen-
sate for these environmental variations. This makes the Cartesian impedance controller ideal
for scenarios requiring delicate touch or interaction with uncertain environments. A prime
example is a picking task involving objects of unknown size or shape. Its utility extends
to collaborative robots operating in close cooperation with humans, where adaptability and
safety are crucial [22].

19

2. Theory

2.8 Ontology
An ontology describes the knowledge domain of a robot. Basically, the knowledge domain is a
database of graphs, relations, data models, and other technical schematics and properties of
the data about the world [32, 34, 24].

Ontology enables robotics to abstract both hardware and software specifics when it comes
to behaviors, actions, and skills. The goal is to make these elements independent of partic-
ular hardware and software details, relying instead on what a robot anticipates from itself,
its environment, and other areas of interest. This abstraction falls within the domain of on-
tology. By doing so, ontology facilitates the development of features akin to mnemonics,
cognitive abilities, and spatial awareness, which might otherwise be constrained by finite
state machines and the constant need for bespoke solutions to unique problems [16].

Figure 2.3: A sketch illustrating a knowledge domain modelled
around an example; a soda bottle.

See the figure 2.3 illustrating an example of the responsibilities of ontology and world
model. To left, the domain of the knowledge describing what can be known. To right, an
instance of the knowledge complete with physical relationships and values assigned to at-
tributes. In short; world model is "what do we know?", compare to ontology’s "what can we
know?".

There are various different schematics and plain-text languages that describe the robot’s
knowledge of the world. The ontology used in this work are written in Description Logic
(DL), a first-order logic specialisation for the ease writing descriptions and proprieties of the
data models.

20

2.8 Ontology

2.8.1 Behaviour Trees
The Behaviour Tree (BT) is a directed acyclic graph structure commonly used to model the
behavior of intelligent systems. Each node in the tree represents either an action or a specific
behavior that can be exhibited. The BT allows for both modularity and reactivity of the
system [3]. Originally used in computer game development, the BT was designed to control
non-player units with a structure that allowed for efficient reuse of code [3].

In formal terms, the internal nodes of a BT are referred to as control flow nodes, while the
leaf nodes are called execution nodes [3]. Each time step of execution is referred to as a tick, and
ticks can have a specific frequency. An execution node can communicate one of three notions
to its parent node: running (if the execution is ongoing), success (if the goal has been achieved),
or failure [3]. The control flow nodes include sequence, fallback, parallel, and decorator, as shown
in Table 2.1. The BT has been widely adopted in the field of robotics and AI as an alternative
representation to finite state machines, as it has proven to be an effective tool for designing
and implementing complex behaviors [3].

Node Type Symbol Succeeds Fails Running

Fallback ? ∃c ∈ C, S(c) = true ∀c ∈ C, F(c) = true ∃c ∈ C,R(c) = true
Sequence → ∀c ∈ C, S(c) = true ∃c ∈ C, F(c) = true ∃c ∈ C,R(c) = true

Parallel ⇒
|{c ∈ C, S(c) = true}| ≥ |M |,M ⊆ C |{c ∈ C, F(c) = true}| > |C| − |M | else

Action text Upon Completion If impossible to complete During completion

Condition text If true If false Never
Decorator ♢ Custom Custom Custom

Table 2.1: The different node types for a Behaviour Tree. C stand
for the set of children to a parent, functions (S)uccess : c 7→ bool,
(F)ail : c 7→ bool and (R)unning : c 7→ bool.

?

→

Ghost Close ?

→

Ghost Scared Chase Ghost

Avoid Ghost

Eat Pills

Figure 2.4: Behavior tree modeling a simple game of Pac-Man.

Figure 2.4 illustrates the utilization of some of the most prevalent node types in behaviour
trees, as outlined in Table 2.1. This figure presents a simplified version of the well-known

21

2. Theory

game, Pac-Man, demonstrating the use of fallback, sequence, condition, and action nodes
within its design.

2.9 SkiROS Skill-based Platform
The SkiROS framework, thoroughly integrated with ROS, is designed to manage robot be-
haviors through modular blocks, similar to behavior trees—an abstract model for executing
tasks based on various conditions [34]. This tool is especially advantageous in environments
with a substantial initial understanding, but it may encounter difficulties in unforeseen sce-
narios.

In such situations, SkiROS’s flexibility allows the robot to adapt. However, certain chal-
lenges may arise, such as difficulties in managing complex, dynamic environments or inte-
grating with other robotics software platforms. Specific attention and strategies are required
to handle these circumstances effectively.

SkiROS encompasses several notable features:

• World model: This is a structure depicted as a resource description framework (RDF)
database, a standard model for data interchange on the Web. It stores valuable envi-
ronmental information that the robot can leverage [34].

• Robot behavior designer: SkiROS facilitates the design of behavior through Python
code, allowing the robot to respond to changes during execution [34].

• Skill system: This system aids in organizing coded behaviors, promoting modularity
and reusability. The behavior trees within SkiROS are assembled into units, called
skills, consisting of one or multiple nodes. Each skill carries pre- and post-conditions
that verify execution status at any given moment [34].

The implementation of skills can be structured into Python packages, which can be de-
ployed and imported in other robots, functioning similarly to plugins.

A skill in SkiROS is classified as either a primitive skill—an atomic unit implementing code
that affects the world model, or a compound skill—a composite modeling complex behaviors by
combining primitive skills [34]. The capability to categorize skills as primitive or compound
allows for greater adaptability and efficiency in coding and executing tasks.

Each skill in SkiROS includes a skill description detailing parameters (inputs and out-
puts of the skill, with the ability to apply conditions), pre-conditions (conditions required be-
fore execution), hold-conditions (conditions required during execution), and post-conditions
(conditions required after execution). These elements provide a robust structure that guides
the development and deployment of skills, ensuring a thorough validation process for suc-
cessful task completion.

22

Chapter 3

Approach

Constructing a skill for picking up a Tetra Pak container seems intuitively simple when think-
ing from a human perspective, but when it comes to intelligent robotic systems, there are a
few things to consider, three of which are sensing, actuation, and coordinate transfers.

For sensing, there are several options available, such as using fiducial markers or em-
ploying pure object detection techniques. The latter is often associated with deep learning
methodologies that utilize bounding boxes, segmentation, and other tools. As outlined in
Section 2.2, we propose the use of ArUco markers as a foundational element for our ap-
proach. In order to have a functioning sensing for the system it has to be ensured that the
sensing is accurate. This requires two essential but different calibrations, camera calibration
as described in 2.4 and Hand-Eye calibration in 2.5.

The implementation of the skill is described in Section 3.1. We explain the use of ArUco
markers, how the skill makes use of the framework provided by SkiROS, and the overall skill
design. Answering the following; what features are needed for the skill; what knowledge does
the robot need; what does it expect from the environment.

23

3. Approach

3.1 Implementation
Overall, the robot, referred to as Heron, operates with a computer that runs the Noetic release
of ROS 1 on Ubuntu 20.04. All the software code discussed in this thesis is implemented
using Python 3. Major libraries include OpenCV for image processing and librealsense
for supporting the Intel RealSense color depth camera used in this work. For defining the
robot’s actions as skills we used SkiROS, a framework for implementing Ontology and Skills
concepts in ROS [32].

OpenCV plays a pivotal role in the acquisition and localization of objects, and it is par-
ticularly valuable for both camera and hand-eye calibration tasks; in this work, we will focus
on ArUco markers and also on checkerboards for the calibration step.

3.1.1 ArUco Markers

ArUco markers are considerably simple, but reliable to use, and all the necessary functionality
required to detect them for many systems is available out of the box. It will be considered
the baseline method of computer vision - for object detection and localisation. The primary
purposes of the ArUco markers will be following:

• Identification of a package type

• Calculation of a transformation that translates the ArUco marker’s position to the
geometric center of the object.

Figure 3.1: Transformation Tree.

24

3.1 Implementation

(a) Tetra Brik 1000ml
container.

(b) Tetra Brik 250ml
container.

Figure 3.2: Figure 3.1 illustrates the tree structure of the transforms
and their organization. Subfigures 3.2a and 3.2b depict Tetra Brik
containers of 1000ml and 250ml, respectively, each featuring an
ArUco marker in the bottom left corner.

For each of unique type or size of package, we assign an unique integer to the combination of
type and size of package. Print out the associated marker pattern and then glue the marker to
the bottom-left corner of a package, see Figure 3.2. The idea is that a package could be picked
up in different orientations and to solve this, a unique marker will be placed on each side
of the package as shown in the Figure 3.3, the tree structure in the world model will look as
shown by Figure 3.1.

Figure 3.3: Displaying the placement of markers and their coordi-
nate system.

Each ArUco marker encodes information about the transformation TO→A, which repre-
sents the transformation from the ArUco marker to the geometric center of the object, as
illustrated in Figure 3.4.

25

3. Approach

Figure 3.4: Transform from ArUco marker to object geometrical
center, and complete simplified transform cycle.

This enables the construction of a complete kinematic chain from the object’s geometric
center to the robot frame, as shown in Eq. (3.1). Consequently, the robot can successfully
pick up the object.

TO→ATA→CTC→WTW→R = TO→R (3.1)

On the software side, the detection of the ArUco markers will be implemented using the
OpenCV ArUco library. This functionality will be encapsulated within a SkiROS skill, and
the picking skill will be integrated as a subsequent step

3.1.2 SkiROS - skills for ROS
Due to the complexity of the challenges of picking skills, it is necessary for them to be intel-
ligent and flexible to the circumstances. We can design the solution as a reusable skill that
can be applied to any robot. By leveraging the SkiROS framework [34] for implementing the
necessary functions, actions, and knowledge, we can create a skill that is transferable between
different types of robots. Following knowledge is needed for the picking skill:

• Types of Packages

– Dimensions
– ArUco Marker(s)

* ID value
* Location on package
* Orientation
* Dictionary used
* Approach Pose
* Grasp Pose

• Instances of above packages

26

3.1 Implementation

3.1.3 Knowledge
There are two types of knowledge to be covered here:

• Declarative knowledge are the kind of knowledge that cannot be extracted or deduced
from the live environment and must be defined first.

• Procedural knowledge covers the kind that the robot can deduce by itself from a live
environment. Common example being the position-orientation poses of arbitrary ob-
jects.

Declarative knowledge will primarily consist of ArUco markers and specification about
package types. An ArUco marker in the declarative knowledge contains information such as
BaseFrameID which points to an object, pose which is physically measured by how it relates to
the object, the marker’s size and length. An object is declared to have a BaseFrameID which in
our case is called workstation, a pose, and a list of ArUco markers. The BaseFrameID specifies
the frame in which the object is defined. This, in turn, influences the object’s position and
orientation in relation to the BaseFrame.

The knowledge is written to a database file in a plain-text format called Turtle, short for
Terse TDF Triple Language, a whole file is called a ’scene’ in Skiros. This format allows the
user to pick different files to save, load, or reload the world model and its description to a
file, directly editable by a human.

3.1.4 Hand-eye calibration skill
The hand-eye calibration process involves the following components:

• An ArUco marker detector and estimator.

• A pose generator that produces stochastic points on a sphere surrounding a reference
point.

• A ’Look-at’ alignment mechanism that computes and rotates the random pose to face
the reference point.

• OpenCV’s hand-eye calibration module which utilizes Park’s method [28], executed
on N unique points.

The calibration process begins by running the marker detector to locate and store the
reference point’s position. Following this, the pose generator creates a new pose and utilizes
the ’Look-at’ alignment mechanism to orient the camera towards the reference point. Once
the robotic arm has maneuvered its end-effector to the intended location, it waits until its
velocity reaches zero, then captures an image and estimates a marker position.

If the estimated marker is both valid and distinct from previously recorded markers, it is
saved in a buffer. This sequence of steps repeats until N points have been recorded. Following
this, the camera transform can be calculated using OpenCV’s hand-eye calibration module.

27

3. Approach

3.1.5 Design of Picking Skill
In the process of designing a picking skill, we realized that traditional methods such as hard-
coded paths and finite-state machines prove to be inadequate. Therefore, we leveraged ad-
vancements in technology such as the Cartesian controller. Moreover, we found implement-
ing ontology to be particularly beneficial as it enabled us to develop our desired functional-
ities as robot skills.

The design process involves several considerations which form the description of the skill:

• Declarative knowledge, what kind of knowledge do we have to declare first?

• Procedural knowledge, what kind of knowledge can the robot figure out on its own?

• What does the robot need for this skill? E.g. does it have a gripper?

The fundamental concept of the design involves the robot’s end effector, equipped with a
vision system, first moving to a predetermined detector pose. This pose initially provides a
rough approximation of the object’s location, prompting the system to re-estimate the ob-
ject’s actual pose. It’s crucial to carefully define the detector pose. Despite its initial lack
of precision, it should be positioned so the marker remains detectable, thereby ensuring the
successful execution of the pick-and-place operation.

3.2 Evaluation Procedure
We designed an automated evaluation procedure for hand-eye calibration, ArUco marker
pose estimation, and picking. Our goal was to minimize human interaction and manual
intervention during these processes.

3.2.1 Hand-Eye Calibration Evaluation
The evaluation of hand-eye calibration proceeded as follows:

1. Position the robot’s arm in a lookout pose, either automatically or manually.

2. Place an object, such as an ArUco marker, whose pose can be estimated.

3. Reposition the arm to a location on a sphere of fixed radius from the object, ensuring
a random orientation while maintaining focus on the object.

4. Estimate and record the pose of the object.

5. Repeat steps 3 and 4 for N iterations.

This procedure was performed twice: initially without hand-eye calibration, and then re-
peated after hand-eye calibration.

28

3.2 Evaluation Procedure

3.2.2 ArUco Pose Estimation Evaluation
To evaluate ArUco marker pose estimation, we adapted parts of the hand-eye calibration
evaluation procedure. The steps are as follows:

1. Position the robot’s arm in a lookout pose, either automatically or manually.

2. Place an object marked with an ArUco marker.

3. Reposition the arm to a location on a sphere of fixed radius from the object, ensuring
a random orientation while maintaining focus on the marker.

4. Estimate and record the pose of the ArUco marker.

5. Repeat steps 3 and 4 for N iterations.

Although the size of the ArUco marker varied between trials, the distance from which the
pose was estimated remained constant.

3.2.3 Pick Skill Evaluation
The pick skill was evaluated using the following procedure:

1. Position the robot’s arm in a lookout pose, either automatically or manually.

2. Place an object, such as an ArUco marker, whose pose can be estimated.

3. Start a timer.

4. Estimate the pose of the object.

5. Initiate the pick skill, completing all steps up to and including grasping, then returning
to the lookout pose.

6. Stop the timer and record the time, then reset the timer for the next step.

7. Initiate the placement sequence, returning the object to its original position and re-
turning the arm to the lookout pose.

8. Stop the timer and record the duration of the skills.

9. Repeat steps 3 to 8 for N iterations.

The lookout pose was determined based on the orientation of the object, whether standing
vertically or lying horizontally. This procedure was repeated for different types of packages
and orientations.

29

3. Approach

30

Chapter 4

Experimental Setup

The experimental setup comprises the following components:

• ArUco markers

• Tetra Pak containers

• Environment description

• Heron robot

• Intel® RealSense™ D400 camera

• UR5e collaborative robot arm

• MiR100 mobile base

• WSG-50 Gripper

ArUco markers serve the dual purpose of camera calibration and pose estimation for
Tetra Pak containers. The environment is described through a knowledge-base or world
model. The Heron robot is a composite of various robotic actuators, including the UR5e
robotic arm, MiR100 base, and WSG-50 Gripper. The Intel® RealSense™ D400 camera is
mounted on a 3D-printed fixture between the end effector link and the end effector.

31

4. Experimental Setup

4.1 The robot’s workspace
The workspace includes four different Tetra Pak Aseptic samples, two of them have a 20mm
ArUco marker pasted to the bottom left corner of the package, and on the other two the
larger container has a 70mm marker and the smaller 35mm. The marker IDs are unique to
the package’s dimensions. When the packages are put in a testing environment, they are
either laid on their side or standing.

The reasoning behind the sizing of the ArUco markers was twofold, we aimed to evaluate
the impact of using a single marker in various sizes, while simultaneously ensuring that the
containers weren’t excessively cluttered with ArUco markers.

4.2 Physical evaluation
We evaluate our thesis work by conducting experiments directly on the robot in a physical
setting.

Initially, we intended to conduct a quantitative analysis using the Robot Operating Sys-
tem’s (ROS) simulation environment, specifically Gazebo simulator. However, we discovered
that the simulator was unable to meet our testing requirements in the following aspects:

• Cartesian Trajectory control did not work in simulation, since it is the fastest actu-
ation controller and our skills require it, it was not an option to change to another
one. The scope of addressing this issue was estimated to be too late and not within the
scope of this project.

• Generation of ArUco markers on objects within the simulation was not easily doable.
Not being able to test our fiducial markers in the simulated environment prevents test-
ing this project’s focal features. To integrate the models into Gazebo, they would need
to be scanned and added. However, even if ArUco markers are available in Gazebo,
they couldn’t be attached directly to an object. Instead, they would need to be statically
placed on the object’s surface.

32

Chapter 5

Results

To validate the skill’s reliability, we initially assessed the hand-eye calibration aspect and
compared the outcomes with and without it. All results following hand-eye calibration were
evaluated post a proper calibration. To evaluate the ArUco marker pose estimation, we con-
ducted continuous pose estimations at a 45cm height, generating 20 poses in a sphere around
a reference point. For the picking skill, we established a baseline by repeatedly picking the
object from a single orientation and position. Subsequently, we investigated the influence of
object orientation and position on the skill’s reliability and performance.

33

5. Results

5.1 Hand-Eye Calibration

(a) Pose estimates with-
out hand-eye calibra-
tion.

(b) Pose estimates with
hand-eye calibration.

Figure 5.1: Three-dimensional visualization of 6D pose estima-
tion incorporating hand-eye calibration versus the uncalibrated ap-
proach.

The outcomes of hand-eye calibration demonstrate enhanced and more dependable pose es-
timations following the calibration procedure, as depicted in Figure 5.1. In the absence of
hand-eye calibration, the consistency of pose estimation is low.

Figure 5.2: Dispersion of Translation without hand-eye calibration.

Figure 5.3: Dispersion of Translation with hand-eye calibration.

As illustrated in Figure 5.2, 5.3, the employment of hand-eye calibration leads to the
concentration of x, y, and z coordinates around their respective means, consequently reducing

34

5.1 Hand-Eye Calibration

the dispersion of the distributions. It can be noted that the variances are much higher without
proper calibration.

Figure 5.4: Dispersion of Euler angles without hand-eye calibration.

Figure 5.5: Dispersion of Euler angles with hand-eye calibration.

Similar to the translation illustrated in Figure 5.2, 5.3, the Gaussian distributions in Fig-
ure 5.4 and 5.5 display the dispersion of Euler angles with and without hand-eye calibration,
respectively. These figures reveal that incorporating hand-eye calibration leads to a sub-
stantial improvement in consistency, as evidenced by the stable angular values maintained
throughout the process.

Translation No Hand-Eye calibration Hand-Eye calibration
σ (m) σ (m)

x 0.076 0.009
y 0.076 0.004
z 0.019 0.002

Table 5.1: Standard deviation values (σ) for translations along the
x, y, and z axes in meters, comparing results with and without hand-
eye calibration implementation.

Quaternions No Hand-Eye calibration Hand-Eye calibration
σ σ

x 0.117 0.010
y 0.074 0.015
z 0.589 0.014
w 0.108 0.012

Table 5.2: Standard deviation values (σ) for quaternion components
(x, y, z and w), comparing results with and without hand-eye cali-
bration implementation.

35

5. Results

The variances for both translation and rotation, as presented in Tables 5.1 and 5.2, demon-
strate a significant reduction in the dispersion of the standard deviation, indicating improved
consistency and precision in pose estimation.

5.2 ArUco Marker Pose Estimation

(a) Pose estimation of a
Tetra Brik 1000ml with
20mm ArUco marker. ´´

(b) Pose estimation of
a Tetra Brik 250ml with
20mm ArUco marker.

(c) Pose estimation of a
Tetra Brik 1000ml with
70mm ArUco marker.

(d) Pose estimation of
a Tetra Brik 200ml with
35mm ArUco marker.

Figure 5.6: Three-dimensional visualization illustrating the varied
outcomes of pose estimation on Tetra Briks of distinct sizes, employ-
ing ArUco markers of varying dimensions.

The pose estimation employing ArUco markers reveals the necessity for substantial marker
size to achieve precise estimation during detection, ensuring a valid pose for object picking.
The size of the ArUco marker is directly proportional to the distance from which it can be be
detected with low error. Note that these measurement were done post hand-eye calibration.

36

5.3 Implementation and Performance Analysis of the Pick Skill

Thus, while the hand-eye calibration underpins the system’s general accuracy, the specific
pose estimation is primarily determined by the ArUco marker’s size and distance from the
detector (camera).

Translations 20mm ArUco (1000ml) 20mm ArUco (250ml) 35mm ArUco (200ml) 70mm ArUco (1000ml)
σ σ σ σ

x 0.1165 0.0340 0.0041 0.0090
y 0.0949 0.0536 0.0102 0.0045
z 0.0317 0.0267 0.0125 0.0026

Quaternions
x 0.1428 0.1223 0.0731 0.0103
y 0.1407 0.1497 0.1307 0.0151
z 0.7195 0.6186 0.0129 0.0137
w 0.3241 0.2124 0.0189 0.0123

Table 5.3: Standard deviation values (σ) for translations (x, y, z) in
meters and quaternion components (w, x, y, z) in pose estimation of
different-sized containers marked with ArUco of varying sizes. The
table compares results for a 1000ml container marked with 20mm
and 70mm ArUco, a 250ml container marked with 20mm ArUco,
and a 200ml container marked with 35mm ArUco.

5.3 Implementation and Performance Anal-
ysis of the Pick Skill

Figure 5.7: Skill implementation of the pick skill.

Figure 5.7 presents the behavior tree for the pick skill (referred to as a SkillBase in SkiROS),
which comprises a series of actions, interspersed with condition checks for velocity and pose
estimation.

• GoToLinear: This skill is tasked with planning and moving the end effector in com-
pliant mode to a predetermined location in Cartesian space.

• WaitForVelocity: This skill ensures all the joints maintain a velocity under a certain
threshold.

37

5. Results

• SwitchController: This skill facilitates the transition between compliant and
joint_config modes.

• ArUcoPoseEstimation: This skill captures a series of images at a predetermined
frequency and computes the average estimation of the marker’s pose.

• MMActuateGripper: This skill actuates the gripper, moving its tips to a certain offset
from the gripper’s center point.

• WmMoveObject: This skill ensures that the pose of the picked object is updated in
relation to the gripper after pick up.

Each skill mentioned above plays a vital role in the successful completion of a picking se-
quence. We bundle these skills together to streamline the action sequence. It’s crucial to
understand that multiple sub-skills operate concurrently within each primary skill. For in-
stance, while executing the WaitForVelocity skill, the system continually monitors joint
velocities until they reach a specific threshold. This uses the foundational primitive skill,
Wait, to perform the waiting. Though not explicitly illustrated here, these sub-skills signifi-
cantly influence the successful execution of the main skill.

5.3.1 Baseline - Tall package standing up

(a) (b) (c)

Figure 5.8: Plots for 50 points measured for the baseline; package
standing up with marker side facing the robot. (a) Position. (b) Box
plot. (c) Stacked histogram.

The Figures 5.8b and 5.8c show the result of 50 different measured points. These are the
baseline result which we will compare with to other variations of other picking evaluations.

Each point has 5 timestamps; start, picked, lookout, placed, finished. Pick is the time
taken between start and lookout, place being the time between lookout and finished stamps.
A point that has all the five stamps present is considered a successful point, a failure otherwise.

38

5.3 Implementation and Performance Analysis of the Pick Skill

5.3.2 Tall package, lying down, 0 degree turn

(a) (b) (c)

Figure 5.9: Plots for 20 points measured when the package is lying
down, with marker end forward to robot. (a) Position. (b) Box plot.
(c) Stacked histogram.

5.3.3 Tall package lying down, 90 degree turn

(a) (b) (c)

Figure 5.10: Plots for 20 points measured when the package is lying
down at 90deg angle away from the robot. (a) Position. (b) Box plot.
(c) Stacked histogram.

39

5. Results

5.3.4 Tall package lying down, 180 degree turn

(a) (b) (c)

Figure 5.11: Plots for 20 points measured when the package is lying
down at 180deg angle away from the robot. (a) Position. (b) Box
plot. (c) Stacked histogram.

5.3.5 Tall package, lying down, top-left corner posi-
tion

(a) (b) (c)

Figure 5.12: Plots for 10 points measured when the package was on
the top-left position of the square. (a) Position. (b) Box plot. (c)
Stacked histogram.

40

5.3 Implementation and Performance Analysis of the Pick Skill

5.3.6 Tall package, lying down, top-right corner po-
sition

(a) (b) (c)

Figure 5.13: Plots for 10 points measured when the package was on
the top-right position of the square. (a) Position. (b) Box plot. (c)
Stacked histogram.

5.3.7 Tall package, lying down, bottom-right corner
position

(a) (b) (c)

Figure 5.14: Plots for 10 points measured when the package was on
the bottom-right position of the square. (a) Position. (b) Box plot.
(c) Stacked histogram.

41

5. Results

5.3.8 Tall package, lying down, bottom-left corner
position

(a) (b) (c)

Figure 5.15: Plots for 10 points measured when the package was on
the bottom-left position of the square. (a) Position. (b) Box plot. (c)
Stacked histogram.

5.3.9 Juice package, standing

(a) Box plot (b) Stacked histogram

Figure 5.16: Plots for 20 points measured when the juice package
was standing vertically.

42

5.3 Implementation and Performance Analysis of the Pick Skill

5.3.10 ArUco-marker size & picking performance cor-
relation

Description Marker Size # Points # Successful (%) µ σ

Tall, lying 70mm 20 20 (100.0%) 29.29sec 5.90sec
Juice, lying 35mm 20 20 (100.0%) 27.35sec 3.17sec
Stout, lying 20mm 15 5 (33.3%) 26.89sec 5.09sec

Table 5.4: Overview of picking evaluation with focus on the cor-
relation between the size of ArUco marker’s size and picking per-
formance. Distance between camera and object during the initial
lookout pose is approximately 60cm in all tests.

43

5. Results

44

Chapter 6

Discussion

During the evaluation, we found some major challenges that impacted the reliability and
accuracy of our purposed system:

• The use of small-sized ArUco markers led to inaccurate pose estimations, a significant
factor contributing to incorrect orientation detection.

• The actuation driver called MoveIt wasn’t robust enough to fulfill the ’random look-
at’ step of an evaluation task. The robot becomes stuck in a loop and requires the
evaluation task to be restarted.

• The Cartesian trajectory generator and controller, which serve as a rapid and com-
pliant control mode alternative to MoveIt. This controller exhibited a tendency to
become trapped in loops and displayed comparatively lower accuracy than the slower
yet more precise joint-config controller. To address this issue, implementing safety
measures to prevent the driver from entering a loop was necessary.

• Heron encountered a range of technical complications, which subsequently affected
the robot’s performance capabilities and resilience to latency, as well as other unde-
sirable behaviors instigated by these problems. A recurring issue involved the robot’s
arm driver, which periodically lost connection to the hardware, leading to disruptions
in actuation. This connection is essential for relaying commands to the arm, and a dis-
connection therefore renders the arm immobile until the connection is reestablished.
We unfortunately did not possess the necessary technical expertise to diagnose and
tackle the root causes of this problem. Furthermore, we observed that the arm’s per-
formance declined as the battery charge neared depletion. This was likely due to the
robot’s power consumption exceeding the recharge rate, thereby causing the battery to
drain faster than it could be replenished, even when the robot was actively operating.

45

6. Discussion

6.1 Analysis of Hand-Eye Calibration Out-
comes

As demonstrated in Figures (5.1, 5.3, 5.5), hand-eye calibration is a crucial step for ensuring
accurate and reliable pose estimation in precision-oriented vision-based tasks.

While generating different observation poses for the target, we discovered that poses 180
degrees apart did not contribute valuable data to the final computation. To address this, we
discarded observation poses similar to previous ones and restricted the range of angles used
by the skill.

Moreover, for optimal hand-eye calibration, a reasonably sized ArUco marker was neces-
sary to ensure accurate pose estimation. This, in turn, contributed to the overall quality and
effectiveness of the calibration process.

The resulting skill demonstrated high effectiveness and reliability, provided the previ-
ously mentioned controller issues and other difficulties with the robot were absent. It’s worth
noting that during the evaluation, we didn’t account for the number of unique poses required
or the total execution time of the skill. Incorporating these metrics could have added depth
to our overall analysis of the skill’s performance.

6.2 Evaluation of ArUco Marker Pose Esti-
mation Results

The utilization of ArUco markers for pose estimation proves to be an effective method, yield-
ing satisfactory results while presenting certain advantages and disadvantages.

The primary challenges of using ArUco markers include:

• Marker Size Dependency: The size of the ArUco marker plays a critical role in its
detectability, particularly for vision-based tasks. The choice of marker size influences
the distance at which the marker can be effectively detected and consequently, be useful
for pose estimation. This is especially crucial when the task requires early detection or
estimating the pose from a significant distance, such as in pick-and-place operations.

• Attachment Requirements: Utilizing ArUco markers necessitates their attachment to
the object of interest, which may not always be feasible or convenient depending on
the specific application or environment.

However, the advantages of employing ArUco markers are compelling:

• Ease of Use: ArUco markers are user-friendly, supported by well-tested and reliable
libraries that simplify their implementation.

• High Precision: When applied appropriately, such as ensuring sufficient marker size,
ArUco markers can yield highly accurate pose estimation results.

• Cost-Effectiveness: ArUco markers present a cost-effective solution for pose estima-
tion, given their ease of production and implementation.

46

6.3 Analysis of Picking Evaluation Results

• Adaptability: The potential to use markers of varying sizes caters to a wide range of
requirements, making ArUco markers an adaptable solution for diverse scenarios.

• Real-time Capability: The simple structure of ArUco markers facilitates rapid detec-
tion, making them suitable for real-time applications where swift execution is paramount.

In summary, despite some limitations, the benefits of ArUco markers make them a worth-
while tool for pose estimation tasks.

In reference to Table 5.3 and Figure 5.6a, it is evident that the pose estimation results us-
ing a 20mm marker were not optimal when applied to the larger container. However, a better
outcome was achieved with the same-sized marker on a smaller container. These containers
significantly differ in size and color as depicted in Figure 3.2, with the larger being a 1000ml
brown container and the smaller being a 250ml white container. The underlying reasons
for this performance discrepancy remain speculative and could potentially be attributed to
differences in color and reflective properties of the containers.

On the other hand, the use of a 70mm marker, as demonstrated in Figure 5.6c, validates
the effectiveness of ArUco markers in pose estimation tasks. However, the application of a
35mm marker presented in Figure 5.6d shows a higher dispersion, particularly in rotation.
While the translations along the x, y, z axes and the standard deviation values for this marker
size, as detailed in Table 5.3, seem promising, the rotation estimation was less satisfactory.

6.3 Analysis of Picking Evaluation Results
All the Figures of the evaluation results (from Figure 5.8 to 5.11) show that the duration of
the picking has a fairly consistent mean of ≈ 25 seconds, while the times for placing has a
mean of ≈ 20 seconds. But they also show a large amount of variation and outliers, those are
noted to be product of the robot’s technical difficulties.

As evident from Table 5.4, the size of the ArUco marker does not significantly impact
the time taken for the pick and place operation. However, it does play a pivotal role in the
successful execution of these operations. As discussed in Section 5.2, the use of smaller mark-
ers initially led to poor pose estimation. This issue was effectively addressed by introducing
a detector pose for the object.

47

6. Discussion

(a) Baseline (b) Lying, 0 degree turn

(c) Lying, 90 degree
turn

(d) Lying, 180 degree
turn

Figure 6.1: Box-plots for all picking evaluation tests, the data ad-
justed to remove outliers based on µ ± σ, to approximate the same
result if the technical difficulties were not present. Compared to the
actual results on the right side of each plot.

In Figure 6.1, we present the results adjusted using only data from instances where the
robot performed as expected. This adjustment involved considering only attempts that fell
within the range of x ∈ [µ − σ, µ + σ], x∀X, where µ and σ represent the mean and stan-
dard deviation, respectively. The revised results thus approximate the outcomes we might
expect if evaluations were conducted without any technical difficulties and that all points
were successful.

A comparative analysis of figures in 6.1 demonstrates that a significant portion of the
observed variation can be attributed to the outliers present in the actual data. These outliers
correspond to instances of technical difficulties resulting in suboptimal performance.

The robot’s performance was most consistent in the scenario depicted in Figure 6.1b.
However, the scenarios presented in Figures 6.1c and 6.1d exhibit extended whiskers, indica-
tive of the challenges encountered. These situations necessitated the rotation of the robotic
arm’s wrist and a secondary pose estimate of the package when the hand was approaching the
target, potentially contributing to the increased variability.

In the baseline vertical picking scenario (Figure 6.1a), the average performance was com-
parable to that of Figure 6.1b. This scenario involved the package standing upright, thereby
necessitating more rotations and consequently increasing the complexity of the task. Never-

48

6.4 Future Work

theless, the three scenarios involving rotations did not exhibit a linear relationship between
time variation and complexity.

A second potential contributing factor to the longer whiskers observed in the box plots
of Figure 6.1, seen in all cases except for the baseline, could be attributed to variations in
the number of sampled data points. While Figure 6.1a is based on 50 data points, only 20
data points were sampled for Figures 6.1c and 6.1d. While this discrepancy might potentially
introduce a sample size bias, the choice was made due to the assumption that lying down at
different angles essentially share the same rotation point - the package’s geometrical centre.
Hence, by collecting all data points for the ’lying down’ position, we would have a total of
60 data points.

Despite facing various challenges, our data indicates a high success rate for the imple-
mented picking skill across all aspects, including object orientation and position. Consider-
ing the limitations and challenges encountered during the evaluation phase, we are confident
that the picking skill, facilitated by the use of the ArUco marker, has demonstrated satisfac-
tory performance. This success suggests that our approach is robust and resilient, even under
demanding circumstances, reaffirming the viability of our design and its potential for further
development and refinement.

6.4 Future Work
In the course of our project’s evaluation and further work, we identified several areas for
potential enhancement and proposed modifications to our design or implementation. Due
to the project’s scope and time constraints, we were unable to pursue these changes. However,
our recommendation on future work are as follow:

• Develop a skill to determine the most suitable side of the package for the robot to
approach, particularly when two sides are visible.

• Consider storing the arbitrary offset value, which enhances the gripper’s pinching force
for a more secure grasp, in the package world model. This should be individually tai-
lored to each specific type.

• Explore the use of different types of grippers. While the WSG-50 Gripper is sufficient,
it often exerts too much force on the containers, causing deformation. An alternative,
such as a vacuum gripper, might provide a more delicate grasp.

• Enhance operational speed by conducting detection and pose estimation processes in
parallel. This could significantly reduce the overall time required for each pick and
place operation.

• Investigate the feasibility of applying the developed skills to moving objects on a con-
veyor belt, and identify the necessary adaptations or enhancements required to facili-
tate this.

These suggestions could potentially improve the performance of the robot and provide a
more effective and efficient solution for object detection and manipulation.

49

6. Discussion

6.5 Controller-Arm Connection Issue
A crucial aspect requiring attention and improvement is the controller’s robustness, a quality
integral to the functionality of a robot. We discussed earlier that the controller ceases to
operate effectively when the arm driver in the computer loses its connection to the arm,
rendering the controller unable to transmit commands. Upon reestablishing connection with
the arm driver, the controller does not attempt to reestablish its own connection, operating
under the presumption of a sustained connection. This leads to a discrepancy in the perceived
and actual position of the arm: the controller may perceive the arm as having reached its
intended position, when in reality, it remains at the location where the connection was lost.

Addressing this reconnection issue led to the discovery of a side effect - an offset in the
arm’s position that accumulates each time the arm disconnects from the computer. Although
seemingly unaffected, the controller’s performance deteriorates over time due to this offset.
It increasingly struggles to guide the arm to its target position, as the offset precludes the
arm from falling within the error margins set by the user and the controller.

We have thus far identified two temporary workarounds:

• Complete restart of the ROS software on the computer, although this approach does
result in some downtime as we wait for the software to ready itself for use.

• Complete restart of the robot unit, a more time-consuming process that necessitates
a substantial waiting period.

The root cause of this issue - whether it lies within the controller or the arm - remains
uncertain due to our limited knowledge in this area. We therefore recommend a thorough
technical investigation into the arm to gain a more comprehensive understanding of the prob-
lem.

50

Chapter 7

Conclusion

According to the results detailed in Section 5.1, the implementation of hand-eye calibration
significantly improved the accuracy of our pose estimation compared to manual measure-
ments. Without this calibration, achieving consistent and repeated object pickups would
have been unachievable.

Our final implementation demonstrates the possibility of creating a pick skill that is not
only efficient and reliable, but also versatile, capable of handling objects of various sizes and
orientations. While the results were affected by certain systemic issues during evaluation, the
skill successfully utilized a world model to accumulate knowledge about the objects it could
pick and the methods to do so.

ArUco markers fulfilled the pose estimation requirements necessary to execute object
pickups. However, they introduced additional constraints such as requiring sufficiently large
markers and the need for attaching them to the objects. Thus, future work could explore
alternative or complementary methods to ArUco markers to mitigate these constraints while
maintaining pose estimation performance.

51

7. Conclusion

52

References

[1] J.M Baker. Maths - transformations using quaternions. http://www.
euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/
transforms/index.htm, Accessed 07 Jun 2023.

[2] Kai Chen, Rui Cao, Stephen James, Yichuan Li, Yun-Hui Liu, Pieter Abbeel,
and Qi Dou. Sim-to-real 6d object pose estimation via iterative self-training
for robotic bin picking. https://ludwig.lub.lu.se/login?url=https:
//search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=
edsarx&AN=edsarx.2204.07049&site=eds-live&scope=site, Accessed 09
June 2023.

[3] Michele Colledanchise and Petter Ögren. Behavior trees in robotics and ai: An intro-
duction. https://doi.org/10.1201/9780429489105, 2017.

[4] Thomas H. Davenport and Steven M. Miller. Fast food hamburger outlets: Flippy -
robotic assistants for fast food preparation. In Working with AI: Real Stories of Human-
Machine Collaboration, pages 147–150, 2022.

[5] Alexander Fabisch. A comparison of policy search in joint space and cartesian space for
refinement of skills. http://arxiv.org/abs/1904.06765, Accessed 23 May 2023.

[6] FANUC. 3d area sensor. https://www.fanuc.eu/ch/en/robots/options/
3d-area-sensor, Accessed 18 March 2023.

[7] S. Garrido-Jurado, R. Muñoz-Salinas, F.J. Madrid-Cuevas, and M.J. Marín-Jiménez. Au-
tomatic generation and detection of highly reliable fiducial markers under occlusion.
Pattern Recognition, 47(6):2280 – 2292, 2014.

[8] Bjarne Großmann and Volker Krüger. Continuous hand-eye calibration using 3d points.
https://doi.org/10.48550/arXiv.2004.12611, 2020.

[9] A. Grunnet-Jepsen, J. Sweetser, T. Khuong, S. Dorodnicov, D. Tong,
O. Mulla, H. Eliyahu, and E. Raikhel. Intel® realsense™ self-calibration for

53

http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/transforms/index.htm
http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/transforms/index.htm
http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/transforms/index.htm
https://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=edsarx&AN=edsarx.2204.07049&site=eds-live&scope=site
https://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=edsarx&AN=edsarx.2204.07049&site=eds-live&scope=site
https://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=edsarx&AN=edsarx.2204.07049&site=eds-live&scope=site
https://doi.org/10.1201/9780429489105
http://arxiv.org/abs/1904.06765
https://www.fanuc.eu/ch/en/robots/options/3d-area-sensor
https://www.fanuc.eu/ch/en/robots/options/3d-area-sensor
https://doi.org/10.48550/arXiv.2004.12611

REFERENCES

d400 series depth cameras. https://dev.intelrealsense.com/docs/
self-calibration-for-depth-cameras, Accessed 06 Jun 2023.

[10] Dan Halperin, Oren Salzman, and Micha Sharir. Algorithmic motion planning. In
Jacob E. Goodman, Joseph O’Rourke, and Csaba Tóth, editors, Handbook of Discrete and
Computational Geometry, page 1311–1342. CRC Press LLC, third edition, 2017.

[11] Le Duc Hanh and Khuong Thanh Hieu. 3d matching by combining cad model and
computer vision for autonomous bin picking. International Journal on Interactive Design
and Manufacturing (IJIDeM), 15(2-3):239–247, 2021.

[12] Tushar Jadhav, Manisha Jadhav, Abhijit Chitre, and Ajit Patil. Development of vision
based test jig and mechanism for automatic inspection and sorting of industrial objects.
In 2022 6th International Conference On Computing, Communication, Control And Automation
(ICCUBEA), pages 1–5, Aug 2022.

[13] Sree S.S. Katta, J. Adnan, S. Chaudhary, S. Dutta Roy, Chetan Arora, S. K. Saha, and
Magid E. Pose estimation of 5-dof manipulator using on-body markers. In 2021 21st
International Conference on Control, Automation and Systems (ICCAS), pages 897–902, 2021.

[14] Jeff Knisley. Coordinate transformation. https://math.etsu.edu/multicalc/
prealpha/chap3/chap3-1/printversion.pdf, Accessed 09 June 2023.

[15] Volker Krüger. Calibration: For intelligent autonomous systems. EDAP20 Lecture
slides, 2020.

[16] Volker Krüger. Actuation 2: Manipulation and robot skills. EDAP20 Lecture slides,
2022.

[17] Jack B. Kuipers. Quaternions and rotation sequences : a primer with applications to orbits,
aerospace, and virtual reality. Princeton University Press, 1999.

[18] Phil Lavelle and Sandra Stojanovic. Robots are making french fries
faster, better than humans. https://www.reuters.com/technology/
want-fries-with-that-robot-makes-french-fries-faster-better-than-humans-do-2022-10-04/,
Accessed 02 February 2023.

[19] Eva Maia, Sinan Wannous, Tiago Dias, Isabel Praça, and Ana Faria. Holistic security
and safety for factories of the future. Sensors (14248220), 22(24):9915, 2022.

[20] The MathWorks. Urdf primer. https://www.mathworks.com/help/sm/ug/
urdf-model-import.html#responsive_offcanvas, Accessed 22 May 2023.

[21] Wojciech Matusik. Coordinates and transformations. https://
ocw.mit.edu/courses/6-837-computer-graphics-fall-2012/
5cbb1bf32a92fad91e8ad6c37a473240_MIT6_837F12_Lec03.pdf, Accessed
09 June 2023.

[22] Matthias Mayr and Julian M. Salt-Ducaju. A c++ implementation of a cartesian
impedance controller for robotic manipulators. https://arxiv.org/abs/2212.
11215, Accessed 09 June 2023.

54

https://dev.intelrealsense.com/docs/self-calibration-for-depth-cameras
https://dev.intelrealsense.com/docs/self-calibration-for-depth-cameras
https://math.etsu.edu/multicalc/prealpha/chap3/chap3-1/printversion.pdf
https://math.etsu.edu/multicalc/prealpha/chap3/chap3-1/printversion.pdf
https://www.reuters.com/technology/want-fries-with-that-robot-makes-french-fries-faster-better-than-humans-do-2022-10-04/
https://www.reuters.com/technology/want-fries-with-that-robot-makes-french-fries-faster-better-than-humans-do-2022-10-04/
https://www.mathworks.com/help/sm/ug/urdf-model-import.html#responsive_offcanvas
https://www.mathworks.com/help/sm/ug/urdf-model-import.html#responsive_offcanvas
https://ocw.mit.edu/courses/6-837-computer-graphics-fall-2012/5cbb1bf32a92fad91e8ad6c37a473240_MIT6_837F12_Lec03.pdf
https://ocw.mit.edu/courses/6-837-computer-graphics-fall-2012/5cbb1bf32a92fad91e8ad6c37a473240_MIT6_837F12_Lec03.pdf
https://ocw.mit.edu/courses/6-837-computer-graphics-fall-2012/5cbb1bf32a92fad91e8ad6c37a473240_MIT6_837F12_Lec03.pdf
https://arxiv.org/abs/2212.11215
https://arxiv.org/abs/2212.11215

REFERENCES

[23] Nobuyuki Nakatani, Yuhki Shiraishi, and Fumiaki Takeda. Development of oval-shaped
agricultural product inspection and sorting system with simultaneous six-angle photo-
graph taking. In 2011 Fourth International Conference on Modeling, Simulation and Applied
Optimization, pages 1–6, April 2011.

[24] Alberto Olivares-Alarcos, Daniel Beßler, Alaa Khamis, Paulo Goncalves, Maki Habib,
Julita Bermejo, Marcos Barreto, Mohammed Diab, Jan Rosell, João Quintas, Joanna
Olszewska, Hirenkumar Nakawala, Edison Pignaton, Amelie Gyrard, Stefano Borgo,
Guillem Alenyà, Michael Beetz, and Howard Li. A review and comparison of ontology-
based approaches to robot autonomy. The Knowledge Engineering Review, 34:e29, 2019.

[25] OpenCV. Camera calibration. https://docs.opencv.org/4.x/dc/dbb/
tutorial_py_calibration.html, Accessed 02 February 2023.

[26] OpenCV. Detection of aruco markers. "https://docs.opencv.org/4.x/d5/dae/
tutorial_aruco_detection.html", Accessed 02 February 2023.

[27] Christian Ott. Cartesian Impedance Control: The Rigid Body Case, pages 29–44. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2008.

[28] F.C. Park and B.J. Martin. Robot sensor calibration: solving ax=xb on the euclidean
group. IEEE Transactions on Robotics and Automation, 10(5):717–721, 1994.

[29] Pick-it. Pick-ittm robotic picking. https://www.pickit3d.com/, Accessed 18
March 2023.

[30] Yang Qian, Rong Jiacheng, Wang Pengbo, Yang Zhan, and Geng Changxing. Real-time
detection and localization using ssd method for oyster mushroom picking robot. In 2020
IEEE International Conference on Real-time Computing and Robotics (RCAR), pages 158–163,
Sep. 2020.

[31] PickNik Robotics. Moveit motion planning framework. https://moveit.ros.org/,
Accessed 25 May 2023.

[32] Francesco Rovida, Matthew Crosby, Dirk Holz, Athanasios S. Polydoros, Bjarne Groß-
mann, Ronald P. A. Petrick, and Volker Krüger. SkiROS—A Skill-Based Robot Control
Platform on Top of ROS, pages 121–160. Springer International Publishing, Cham, 2017.

[33] Aashay Sathe and Anjali Deshpande. Automated visual quality inspection and sort-
ing. In 2017 International Conference on Advances in Computing, Communication and Control
(ICAC3), pages 1–6, Dec 2017.

[34] RVMI Lab Aalborg university. Skill-based robot control platform for ros v2.0 (skiros2).
https://github.com/RVMI/skiros2, Accessed 8 May 2023.

[35] Technical university of munich. Hand-eye calibration. https://campar.in.tum.
de/Chair/HandEyeCalibration, Accessed 7 May 2023.

[36] Open Source Computer Vision. Aruco marker detection (aruco module). https://
docs.opencv.org/4.x/d9/d6d/tutorial_table_of_content_aruco.html,
Accessed 22 May 2023.

55

https://docs.opencv.org/4.x/dc/dbb/tutorial_py_calibration.html
https://docs.opencv.org/4.x/dc/dbb/tutorial_py_calibration.html
"https://docs.opencv.org/4.x/d5/dae/tutorial_aruco_detection.html"
"https://docs.opencv.org/4.x/d5/dae/tutorial_aruco_detection.html"
https://www.pickit3d.com/
https://moveit.ros.org/
https://github.com/RVMI/skiros2
https://campar.in.tum.de/Chair/HandEyeCalibration
https://campar.in.tum.de/Chair/HandEyeCalibration
https://docs.opencv.org/4.x/d9/d6d/tutorial_table_of_content_aruco.html
https://docs.opencv.org/4.x/d9/d6d/tutorial_table_of_content_aruco.html

REFERENCES

[37] I Yung, Yamuna Maccarana, Gabriele Maroni, and Fabio Previdi. Partially structured
robotic picking for automation of tomato transplantation. In 2019 IEEE International
Conference on Mechatronics (ICM), volume 1, pages 640–645, March 2019.

56

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2023-06-02

EXAMENSARBETE Intelligent Robotic Systems for Quality Control
A Study on a Pick Skill for a Collaborative Robot
STUDENTER Marcus Nagy, Martin Lyrå
HANDLEDARE Volker Krueger (LTH)
EXAMINATOR Jacek Malec (LTH)

Flexibel plockarrobot: Plocka vad från
var som helst

POPULÄRVETENSKAPLIG SAMMANFATTNING Marcus Nagy, Martin Lyrå

Kvalitetskontroll är ett uppdrag som utförs för hand av personer, där sker ett vilje
för att kunna automatisera denna process. Detta arbete utforskar på möjligheten att
använda så kallade collaborative robots till hitta paket samt plocka upp dem som en
del av automatiseringen.

Tetra Pak är en av världens ledande producen-
ter av förpackningslösningar för flytande vätskor
avsedda för konsumenter. Det pappersmaterial
som används för förpackningarna levereras på
stora rullar som sedan trimmas, viks och limmas
ihop i en systematisk process.

Förpackningarna som kommer ut ur maskiner-
iet förväntas uppfylla vissa standarder, både gäl-
lande utseende och mindre synliga aspekter, som
att innehållet är korrekt.

Industrins utveckling rör sig mot mer automa-
tisering, även känt som "Industry 4.0", vilket har
lett till en explosionsartad utveckling inom om-
rådet. För att kunna bedöma förpackningarnas
kvalitet och automatisera denna process, finns det
vissa delmål som måste uppnås. Bland dessa är
förmågan att identifiera och plocka upp förpack-
ningarna avgörande för att i slutändan kunna göra
någon form av kvalitetsbedömning.

Identifieringen av förpackningarna bygger på
ArUco-markörer, som är välkända för att fungera
bra för lokalisering. Men för att kunna få tillför-
litliga uppskattningar krävs det bland annat att
både kameran och avståndet mellan kamera och
gripdon är kalibrerade.

Vi kunde konstatera att ArUco-markörerna
fungerar tillräckligt bra för att användas som

lokalisering för denna typ av uppgift, men de har
vissa negativa aspekter som kanske inte är ön-
skvärda. Resultaten visade också att utan korrekt
kalibrering är det omöjligt att utföra någon typ
av uppgift som kräver precision. Vi har kunnat
visa att det är möjligt att implementera en funk-
tion som tillåter en robot att upprepade gånger
plocka upp förpackningar av olika storlekar och i
olika orienteringar genom att modellera den kun-
skap som behövs av roboten för att realisera detta.

