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Abstract

In recent years, with the development of server hardware and network perfor-
mance, there has been an increasing acceptance of virtualization technology in
the market. Among them, desktop virtualization has also become increasingly
popular among enterprise and institutional customers, giving rise to many com-
mercial products and vendors offering desktop-as-a-service (DaaS), with Yark
Network being one of them. However, the virtual machine (VM) technology
typically used in these products has certain performance bottlenecks and cannot
meet the growing needs of customers. This project attempts to introduce con-
tainer technology into the DaaS product to solve the problems of virtual machine
technology.

We first built a minimal prototype of DaaS using virtual machine technology
and container technology respectively and repeatedly, then collect and evaluate
their performance metrics. After that, to explore the high availability of both
technologies, we built minimal clusters for both implementations and simulated
the downtime of a node in the cluster and observed the behavior of the cluster
to see if it could recover itself.

The results of the experiments show that the container-based DaaS outper-
forms the conventional VM-based DaaS in terms of responsiveness and com-
bined resource usage as the number of virtual desktop instances increases. In the
high availability test, both technologies can achieve the expected self-recovery
function, with the recovery speed of container technology being a bit faster than
that of VM technology.

This project concludes that container-based DaaS can replace current VM-
based DaaS in specific scenarios like pure Linux desktop environments and auto-
mated testing of desktop software. However, this technology currently has some
limitations and can not satisfy some demands, such as no support for Microsoft
Windows, inability to transfer sound, and poor graphical user experience.

Keywords: DaaS, Virtual Desktop, High Availability, Container, VM, Kubernetes
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Chapter 1

Introduction

The popularity of virtualization has been growing over the past few years [23]. There are many
adoptions of virtualization technology, one of which is desktop virtualization. Desktop as a
Service (DaaS) is a service based on desktop virtualization. Many organizations and com-
panies use DaaS to provide virtual desktop services. Users may reach internal systems from
anywhere with their own devices or devices that are not as powerful as their workstations
in the office. The only requirement is a device connected to the Internet with a lightweight
client application of the DaaS installed. In the meantime, the company now needs fewer
physical computers on-site, like tower personal computers (PCs) or laptops, which helps re-
duce the overall hardware cost and the maintenance efforts from the IT support department.

We must consider various factors to deliver a DaaS with a good user experience. Users
might have diverse focuses on the requirements of DaaS, such as response time for an appli-
cation, connection convenience, or graphics quality. The DaaS provided by Yark Network
allows a user to connect to a remote desktop via a given link in a web browser. Users can start
or shut down a remote desktop by themselves when logged into the DaaS. The company has
been using Virtual Machine (VM) as the virtualization technology. In other words, each desk-
top instance that a user connects to serves as a VM. However, booting up a desktop instance
in a VM may take minutes to initialize the working environment. As a VM runs a complete
operating system inside, shutting down a desktop instance might sometimes take longer than
one minute. The server that hosts the VMs also quickly becomes overloaded if many users are
connected to their desktop instances in a short time. Thus Yark Network would like to turn
to another virtualization technology - Container technology. In this report, we will imple-
ment DaaS prototypes based on both VM and Container technologies. Then we compare the
two virtualization technologies regarding time consumption when starting/shutting down
desktop instances and their resource usage.

Apart from responsiveness, another factor affecting user experience is availability. For a
user to be able to connect to a desktop at any time, a DaaS must be highly available. That
means we aim to reduce the probability of work interruptions and data loss. In the mean-
time, we may want to shorten the time the DaaS takes to recover from failures. To avoid
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1. Introduction

human intervention and make self-healing faster, we would like to introduce cluster systems
and observe how they improve the availability of a DaaS based on different virtualization
technologies.

1.1 Research Questions
This report aims to answer the following questions:

• What is the impact on the response time and resource usage of Container-based DaaS
compared to the VM-based DaaS? This question will compare the response time of
starting and shutting down an instance, disk read/write rate, memory usage, load av-
erage, and disk space usage between VM-based and Container-based DaaS.

• What is the impact on the availability of DaaS when the VM-based and Container-
based prototypes are extended to clusters? This question aims to observe whether a
remote desktop instance will automatically recover after the cluster member it was
running on goes down.

1.2 Contribution
The contributions of this master thesis are:

• to provide a prototyped implementation of DaaS powered by containers instead of
VMs

• to give a better understanding of the different response times and resource consump-
tion patterns of Container-based DaaS compared to VM-based DaaS

• to illustrate how cluster systems ensure the high availability of desktop instances in
DaaS

1.3 Approach
This section describes how we organize and carry out the work. We first looked at the existing
VM-based DaaS by Yark Network to understand how it works. The second step was to look
into the literature to learn more about Container technology and Container orchestration
systems and how to implement DaaS using them. We also checked if Container-based DaaS
exists on the market but found that most products are still VM-based. Furthermore, most of
the existing DaaS products are commercial, meaning they are proprietary and closed-source.
Customizing or integrating those products into the current systems, such as the user authen-
tication service, could be complicated. Therefore we started to design and implement the
prototype built with Containers. When choosing the concrete container and orchestration
technology, Yark Network decided to introduce Docker and Kubernetes to benefit from their
active communities to lower the risk and reduce development efforts.
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1.4 Overview

The company has an existing VM-based DaaS in production. However, that system is
highly integrated and consists of many components that are unrelated to the focus of this re-
port, such as a user authentication service, a VM scheduling service and a distributed filesys-
tem. In the meantime, the unrelated components also consume system resources and may
impact the metrics we are going to collect. To make the comparison to the new Container-
based prototype simpler, we realized that we had to simplify the current VM-based DaaS
to make the analysis equivalent and efficient. Therefore we created a minimal VM-based
prototype.

After we finished the analysis of the metrics data, we extended our VM-based prototype
to a VM cluster. Similarly, a Kubernetes cluster for the Container-based prototype was estab-
lished. Then we observe whether and how high availability is achieved for a desktop instance
when the cluster member node where it lived on went down.

1.4 Overview
This report consists of seven chapters. Chapter 1 is the introduction chapter. It describes the
research questions and gives an overview of the project. Chapter 2 and Chapter 3 introduce
the relevant work and background to help understand how this project carries out. We then
describe the design and the implementations of experiments in Chapter 4 and present their
results in Chapter 5. Chapter 6 gathers the discussions around the experimentation results.
Limitations are also mentioned in this chapter. Chapter 7 is the conclusion of the project,
where we also answer all the research questions and describe future work.
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Chapter 2

Related Work

Different operating systems or hypervisors may have an impact on the final performance of
desktop instances. A hypervisor is a software layer that enables multiple virtual machines
to share the same physical hardware. In this section, we would like to present previous
work related to remote desktops, including performance evaluation with a different OS –
Microsoft Windows, and different hypervisors – XenServer and Hyper-V. We also present
research showing how DaaS is built on another open-source virtualization platform – Open-
Stack, and how a DaaS solution can be profitable as a product. These works have inspired us
to investigate metrics that might be interesting for this project and highlighted the potential
usefulness of the DaaS System we are analyzing.

2.1 Performance Evaluation
Similar research questions regarding Microsoft Windows have answers in the paper "Perfor-
mance evaluation of virtual desktop operating systems in Virtual Desktop Infrastructure."
Nakhai et al. used Microsoft Remote Desktop Virtualization Host (RDVH) to implement a
Microsoft Virtual Desktop Infrastructure (VDI) in 2017 [37]. They implemented two Win-
dows versions, Windows 8.1 Enterprise (32-bit) and Windows 10 Enterprise (32-bit), with
Hyper-V as the hypervisor. The implementations showed the difference in performance in
RAM utilization, CPU response time, and application response time based on different work-
loads. Their results show that according to their testing software Login VSI, Windows 8.1
Enterprise (32-bit) has less RAM utilization, and lower CPU and application response time
than Windows 10 Enterprise (32-bit).

Different hypervisors may lead to performance deviations in desktop virtualization.
Ðorđević et al. dug into the disk read/write performance of two hypervisors: XenServer
and Microsoft Hyper-V. They used HD TUNE PRO in their work "Comparing Hypervi-
sor Virtualization Performance with the Example of Citrix Hypervisor (XenServer) and Mi-
crosoft Hyper-V"[52] for evaluation. Their results showed that if the Guest OS is Windows,
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2. Related Work

Hyper-V had a significantly higher performance than XenServer on disk read/write, espe-
cially for large data transfers.

These studies have motivated this project to investigate which metrics as interesting pa-
rameters for evaluating a desktop service in a virtualized environment.

2.2 DaaS with OpenStack
OpenStack is an open-source Virtual Infrastructure Manager (VIM), a software tool that
enables the management and monitoring of virtual machines. Celesti et al. built a DaaS
prototype with OpenStack in the paper "Improving desktop as a Service in OpenStack" [5].
Apart from performance evaluation, they included a few different approaches to support
audio redirection for DaaS. What they measured was the application response time of re-
mote video updates and remote audio playback. The experiment showed that the joint effort
of the Guacamole proxy and the RDP protocol produces the best performance. This study
highlights the option for delivering DaaS with VIM. Additionally, it also underscores the
importance of considering usability in future DaaS implementations.

2.3 A Profitable Hybrid DaaS Solution
Google first introduced the word Cloud Computing in 2006. Since then, a few big play-
ers, including Amazon, Google, Microsoft, and IBM, have entered the market and brought
Cloud Computing to the role of the foundation of many Pay-As-You-Go (PAYG) services. A
study by Dhall and Tan [12] highlights the potential profitability of DaaS as a product and
its successful implementations in the market, and it also provides meaningful insight into
the future of DaaS. The findings of this study provide impetus for further inquiry into the
efficacy of Desktop as a Service (DaaS) as a viable and profitable product. The study found
that DaaS has been a well-received product among Small Medium Business (SMB) customers
across industry verticals with compliant regulations. SMBs have been looking forward to
moving away from in-house IT to the IT-as-a-service model because the latter provides agile
scalability with the PAYG model. Also, DaaS is a successful offer for government customers
like the German Ministry of Justice [11]. Many DaaS vendors exist in the market, including
Microsoft, Amazon, Citrix, VMWare, Google, HPE, etc. Managed Service Providers then
bring the services from those vendors to their customers with various customized require-
ments. In the meantime, the underlying solutions from these vendors are all based on Virtual
Machine technology.
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Chapter 3

Background

In this chapter, we introduce the background related to the report. Firstly, we present what
DaaS is and what values DaaS can bring. Secondly, we explain how VM and Container tech-
nologies contribute to the implementation of DaaS. After that, we discuss what High Avail-
ability (HA) is and how we achieve HA in DaaS based on the two technologies.

3.1 Desktop as a Service
A typical scenario of using computers in a company is to distribute tower PCs or laptops to
employees who need access to the company’s internal systems for work [13]. These personal
computers for work are generally dedicated to one person only. The company is responsible
for maintaining them, and such work includes installing the operating system before the
handover, replacing defective hardware, and taking the machines to its users in person. When
an employee leaves the company, the pre-owned PC or laptop must be re-initialized, and the
computer needs to be physically collected, cleaned, and stored safely. Much work deserves a
dedicated person to a team of several professional system administrators.

Those machines are usually high in price while poor in portability, especially the ones
with high performance. Since they are powerful yet expensive, sharing them with other em-
ployees would be more cost-effective. Moreover, it is common for some companies to send
employees with computers to factories or their customers’ locations to work on-site for a
certain period. Therefore, the traditional approach mentioned is either incapable or incon-
venient.

Desktop as a Service (DaaS) delivers a virtual desktop experience to its end users at a
lower maintenance and hardware cost. The virtual desktop is a virtual representation of the
traditional desktop that contains a collection of applications for work installed on the desk-
top. In such a way, the company’s IT department can focus on maintaining virtual desktop
instances instead of personal computers, for example, monitoring the usage of the virtual
desktop instances to take appropriate actions to optimize the performance, keeping the ap-
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3. Background

plications running inside up-to-date, and so on. The machines that host the virtual desktop
instances are high-performance servers with optimized hardware that are better at multi-
tasking. Those servers run multiple desktop instances simultaneously to share computing
and storage resources. Users can access the same virtual desktop from different devices, from
a smartphone/tablet to a laptop, either on-site or remotely [47][7].

3.2 Protocols
We need a protocol for communication between users and the virtual desktop instances.
There are a variety of candidate remote desktop protocols depending on client/server plat-
forms. Virtual Network Computing (VNC) is the protocol we use in this thesis for our pro-
totypes.

VNC is a protocol developed by The Olivetti & Oracle Research Laboratory [42]. The
protocol shares computer desktops over the internet [44] based on the Remote Frame Buffer
protocol (RFB), a protocol for remote access to graphical user interfaces. VNC serves as a
Client-Server Model. A VNC client interacts with the keyboard and mouse of a local com-
puter, and the RFB protocol transmits the local events, such as keystrokes, mouse moves and
clicks, to the other end – a VNC server, and fetches what shows on the server’s screen back
to the client.

In some cases, it is impossible or undesirable to install a VNC client software addition-
ally depending on clients’ local regulations. However, a remote desktop instance can still be
accessible with the help of noVNC [38]. noVNC is an open-source project created by Joel
Martin. Apart from speaking the same RFB protocol in the background to a VNC server
as a standard VNC client, it exposes an HTTP interface and wraps the raw RFB traffic in-
side a WebSocket connection. noVNC also contains several compatibility components for
cross-browser support. Therefore, any device with a modern web browser can access the vir-
tual desktop instance remotely. noVNC has been popular during the past few years. Many
cloud-computing projects like OpenStack and OpenNebula employ noVNC to provide web
consoles to their users. Proxmox VE also lists noVNC as one of the options to access its VMs
on its WebUI.

3.3 Virtual Machine Technology
DaaS can be implemented in different solutions based on various technologies. We will cover
two of them in this report, and one of the two is Virtual Machine (VM) technology.

One of the characteristics of the Virtual Desktop Infrastructure (VDI) solution is that
the operating system (OS) lives within a Virtual Machine (VM) on a server. Instead of di-
rectly living on the underlying hardware, they are referred to as Guest OS and separated by
a virtualization layer. Figure 3.1 shows the difference between a physical machine and a VM.

The virtualization layer illustrated here is a hypervisor. A hypervisor is one of the two
main components of constructing virtualization. It works as the virtualization layer between
the hardware and VMs. With a hypervisor, the OS and the applications running on it can be
abstracted from the hardware in VMs. Therefore, installing more than one OS on a machine
becomes possible. Multiple VMs can live on the same server, and their OSes can differ from
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3.3 Virtual Machine Technology

Figure 3.1: The comparison in architecture between a physical ma-
chine and a virtualization host machine.

each other and the hypervisor.
The other component is the Connection Broker, which does the communication jobs

such as managing the lifecycle of VMs, user authentication, and the communication between
the hypervisor and higher-level systems closer to the end-users.

3.3.1 Virtualized Infrastructure Manager
To make the experience of managing VMs more pleasant and effective, many vendors offer
Virtualized Infrastructure Manager (VIM) built upon hypervisors and connection brokers
to enable virtualization servers with a user-friendly interface. An administrator can create,
manage, and destroy VMs on a unified platform without knowing the details of the underly-
ing virtualization platform.

The VIM platform that this thesis uses is Proxmox Virtual Environment (Proxmox VE, or
PVE)[18]. It is an open-source server virtualization management platform that uses QEMU-
KVM as its hypervisor. The platform also offers a homemade connection broker. Users can
utilize command-line (CLI) tools to interact with the services. Proxmox VE also provides a
Web-based Graphical UI (Web UI, GUI) for users who prefer a visual interface among the
user tools. Both the CLI and the Web UI are built upon the same connection broker.

QEMU-KVM
Both QEMU [41] and KVM [33] are hypervisors. However, they have different characteristics.

QEMU can do virtualization independently without the help of KVM. It can even em-
ulate platforms different from the host’s architecture with binary-code translation, such as
virtualizing an ARM machine on a server powered by an x86 CPU. In the meantime, it can
emulate hardware devices like hard disks, network cards, and many others. However, its
performance is limited since QEMU is fully software-based and runs in the user space.

KVM is a kernel module that runs in the kernel space. It solves the performance issues
of QEMU with its implementation of hardware virtualization (Intel VT-x and AMD-V) that
eliminates the requirement of binary-code translation. KVM does not virtualize hardware
devices as QEMU does.

QEMU-KVM [19] is a combined virtualization solution. QEMU emulates hardware de-
vices without binary code translation anymore, and KVM virtualizes CPU and memory.
KVM provides a device interface (/dev/kvm) that allows other applications to interact with
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3. Background

the virtualized hardware. QEMU makes use of the interface to collaborate with KVM. In such
a way, QEMU-KVM takes care of the communication between the VM and the underlying
KVM layer to provide a fully functional virtualized environment.

3.4 Container Technology
VDI is a solution for virtual desktop instances with hardware-level virtualization. Alterna-
tively, virtualization can be implemented on the operating system level as well, with the help
of Container technology. Each container contains a fully functional virtual desktop instance
in this implementation.

A Container is a set of one or more processes isolated from the rest of the OS and other
containers for running a specific workload. All the files required by running them are in-
cluded in a single Container image. Unlike VM, a Container shares the kernel of the OS in
which it runs instead of running its separate kernel. Figure 3.2 shows how container deploy-
ment differs from virtual deployment [15][8].

3.4.1 Container Characteristics
The main characteristic is that container-based deployments share the same OS kernel, while
the VM deployments have separate OS kernels within each VM. In this way, a Container im-
age only requires the supportive files, such as executable binaries and the dependent libraries,
for the processes to run, which makes it simpler and more lightweight than a VM image. Con-
tainers are stateless. A running Container will not write anything to the image it runs from in
its lifecycle, while VM usually will. Container images do not consist of environment-aware
configurations. That means the same image is portable and consistent among all the run-
ning environments, including but not limited to local development, testing, and production.
System administrators only need to maintain one single image per workload type. When
running a new Container from its image, specific configurations are passed in via environ-
ment variables or in a mounted volume with configuration files or secrets. Furthermore, new
images can be derived from the same existing image programmatically, meaning creating a
batch of similar images for slightly different purposes becomes convenient and reproducible
[15][8].

3.4.2 Container Runtime
Similar to VIM, Containers need an umbrella in the OS to provide the running environment
and manage their lifecycles. Since a Container does not run its own separated OS kernel, the
runtime also has to take care of the virtualized representation of many system resources, such
as filesystem, devices, mounts, network, and the communication between containers and the
host system. To ensure the interoperability of Container technologies, Open Container Ini-
tiative (OCI) [25] defined standardized specifications around Container Image, Distribution,
and Runtime.

Docker Engine, which is often simply referred to as Docker, is one of the major contrib-
utors to OCI. It can be installed on all the mainstream Linux distributions like Debian. In
this thesis, we use Docker as the Container Runtime. Docker provides a server daemon that
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3.5 High Availability and Clusters

Figure 3.2: The comparison between the architectures of VM (left)
and Container-based (right) virtualizations.

runs like a VIM and a command-line client to communicate with the daemon. In addition
to starting and stopping containers, the client also has a bunch of subcommands to satisfy
tasks like building new images and managing the container network.

The storage of Docker is powered by an overlay filesystem (OverlayFS) [4], which consists
of stacked layers of files and directories. In an OverlayFS, there is always a lower directory
and an upper directory, while the user sees a merged directory combined with the two. If a file
exists in both the lower and the upper directories, the upper wins. In practice, an OverlayFS
can have more than two layers. For instance in Docker, a running container has an overlay
for its runtime storage on top of the Docker image, while the image itself can be built in
multi-layer overlays [24]. With OverlayFS, different containers starting from the same image
can share the image as the lower layer without an additional copy, and similarly, different
images may save disk space by sharing their layers in common.

3.5 High Availability and Clusters
Building a perfect program that always executes expectedly without any problem is almost
impossible. Various factors, including hardware issues, network partitioning, and external
changes, could lead to downtimes in a running system. High availability has to be guaranteed
for production services like DaaS. That is, the system should work continuously without
significant interruptions when there is a power outage, network partition or disk corruption.
When such issues happen, the cluster should be able to self-heal without human intervention
[16]. We may utilize cluster solutions to avoid a single point of failure (SPOF) for systems
like DaaS to achieve this goal.
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3.5.1 Proxmox VE Cluster
Many companies provide High Availability for their VM-related products, such as VMWare
vSphere, Citrix XenServer, and Microsoft Hyper-V. These products are all deployed as clus-
ters to achieve HA. In the meantime, Proxmox VE, the VIM we use in this report, can also
scale to a clustered deployment with a built-in tool called Proxmox VM Cluster Manager
(pvecm).

Like other VM HA products, a PVE cluster requires a group of physical servers and a
shared storage pool. Each server in the cluster is called a node and born equal. All the clus-
ter nodes can act as master candidates, VM hosts, and storage pool members. A particular
filesystem pmxcfs, powered by corosync, is employed to distribute the cluster configuration to
all the nodes and ensure eventual consistency.

At least three nodes are needed to join a PVE cluster to achieve a reliable quorum. When
a quorum is met, cluster operations can be executed on any node, and they will take effect
the same way through pmxcfs, no matter whether the operations come from the Web User-
Interface (WebUI) or the Command Line (CLI).

The shared storage pool shipped with PVE is Ceph [6]. Ceph is an open-source software-
defined storage platform that delivers object, block, and file storage in a single, unified sys-
tem. Ceph replicates data for two or more copies and distributes them in chunks (Placement
Groups, PG) across the nodes to make it fault-tolerant. In a PVE cluster, Ceph’s block storage
(Rados Block Device, RBD) is used to store VM disk images. When one of the PVE nodes
is unavailable, other nodes can still access the disk images of the VMs on the failed node,
making it possible to start the affected VMs elsewhere. A basic structure of a PVE cluster is
given in the figure 3.3.

Figure 3.3: The architecture of a PVE Cluster
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3.5.2 Kubernetes
In this thesis, an open-source container orchestration system, Kubernetes, will be used to
manage our virtual desktop instances running in containers. Kubernetes deploys as clusters
[29]. Each Kubernetes cluster mainly contains two roles - Control Plane Nodes (formerly
known as Master Nodes) and Worker Nodes. Since Container is OS-level virtualization, the
machines in a Kubernetes cluster do not have to be physical. Figure 3.4 shows the architecture
of a Kubernetes cluster. The Control Plane Nodes maintain the metadata of the cluster and
does the scheduling of workloads, while the Worker Nodes are responsible for running the
workloads.

Kubernetes does not build application-level services on its own, and Containers are not
run by Kubernetes directly. There are three components in every node - Kubelet, Kube-proxy,
and last but not least, Container runtime, which is the service that manages the lifecycle of
the actual containers directly. Kubernetes supports any container runtime that implements
the Container Runtime Interface (CRI) [28], for example, Docker.

Figure 3.4: The architecture of a Kubernetes Cluster

3.6 Summary
Desktop as a Service (DaaS) is a cloud-based service that enables remote access to virtual-
ized desktop environments. This service allows users to access their applications, files, and
settings from any device and location. Virtual Network Computing (VNC) is one of the
protocols that can be used to establish communication between the client device and the
remote virtualized desktop. Virtualization technologies for DaaS can be further divided into
virtual machine (VM) technology and container technology. VM technology employs hard-
ware virtualization to create a fully virtualized environment for each desktop instance, while
container technology utilizes a shared operating system kernel and isolates desktop instances
within containers. One of the widely adopted container technology is Docker. Furthermore,
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there are also commercially available Virtual Infrastructure Manager (VIM) platforms, such
as Proxmox VE (PVE), that can be utilized to manage VM resources. PVE also offers Prox-
mox VE Cluster as its cluster solution, and Kubernetes can be utilized as a cluster solution
for Container, which is used to achieve high availability of DaaS.
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Chapter 4

Implementation

This chapter presents what prototypes are needed and how they were designed and imple-
mented for experimentation. We first describe the design, including the tools and platforms
used to build prototypes. Then the implementation for each prototype is elaborated in detail
in the next sections.

4.1 Design
The prototypes consist of two types: essential and cluster-based. For each type, there is a
respective solution for VM and Container. The essential type is to compare the response
times and resource usage. The cluster-based type, extended from the essential one, is to
observe the high availability behavior.

Our essential prototypes used Proxmox VE for the VM technology. For the Container
case, we turned to Docker. Both prototypes were installed on the same physical machine to
avoid any difference in influencing factors. The hardware specifications of this machine are
in Appendix A.

The cluster-based prototypes were built on top of the essential ones. That means Proxmox
VE would scale out to be a Proxmox VE Cluster, while Docker containers would be onboard
to Kubernetes.

The desktop instances had the same software packages installed in all the prototypes.
For simplicity and to minimize the side-effect to the measurements, we only included the
following components that build up our virtual remote desktop:

• Desktop environment Xfce4 [50], a desktop environment for Unix and Unix-like plat-
forms. We chose it because it is lightweight while with minimal functions as a desktop
environment, such as GUI, a menu bar, and a resource manager.

• VNC-Server, a service to provide a VNC system through which users can connect to
and remotely control the remote desktop instance.
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• noVNC - HTML5 VNC client, a service to speak to the local VNC-Server, in the RFB
protocol and then translate to the HTTP protocol for end-users to access the desktop
instance via a Web browser.

• Chromium and Mozilla Firefox, desktop applications to demonstrate the virtual desk-
top is working.

4.1.1 Tool Selection
Proxmox VE is complete and open-source as a VIM product by Proxmox Server Solutions GmbH.
In addition to its diversified API and CLI resources, developers can modify its source code
to adapt to the requirements (be aware that Proxmox VE’s source code is under AGPL). As
a commercial product, all feature sets, including the Cluster feature for high availability,
are available at no additional license cost. At the same time, paid licenses lead to a better-
maintained software repository and higher-level support services. Without buying a license,
it is yet possible to seek help and support in the Proxmox Support Forum.

No commercial company is backing Kubernetes, but Cloud Native Computing Foundation
(CNCF), whose parent organization is Linux Foundation. The source code of Kubernetes is
licensed under a more relaxed license Apache License 2.0. There is no centralized support
forum for Kubernetes, but Kubernetes is so popular that many learning resources and online
communities exist, plus it has quite complete official documentation [31].

4.2 The Essential Prototypes
This section describes how the essential prototypes were implemented.

4.2.1 VM implementation
The most popular service package of the company’s existing VM-based DaaS has a single
virtual CPU core, 1 GiB of RAM and 10 GiB of disk space, so in our simplified prototype,
we also take this package set and assign such resources to each VM. An ISO file provided by
Ubuntu [45] was used to install the OS of the first created VM. This ISO file is a minimal
CD image that only contains the core software packages of a Ubuntu OS. We injected the
image into the first VM’s virtual CD drive on the freshly built Proxmox VE server, and then
we installed Ubuntu on the VM with it.

An internal IP address was assigned to this VM so the VM could be connected from the
Proxmox VE server. The software packages mentioned in the Design section were installed
in the VM, which built a template VM image. With this template image, we can derive new
VMs by copying the image file and modifying their internal IP addresses to avoid conflicts,
so that a testing bed of identical VMs with functional networking is prepared.

4.2.2 Container implementation
We installed Docker Engine [14] on the same machine without any obstacles since Proxmox
VE is based on Debian. When the docker daemon was up and running, the command-line tool
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"docker" was used to interact with the Docker Engine to manage our docker image and desk-
top instances in containers. An image maintained by ConSol [10] was used for the Container
implementation. This image contains the same components as the VM implementation listed
in the Design section.

4.3 Cluster-based Prototypes
This section contains the cluster-based prototypes implemented on top of the essential ones.

4.3.1 Proxmox VE Cluster setup
We set up a three-node minimal Proxmox VE (PVE) Cluster [21] on the WebUI. Each node
in a PVE Cluster has a vote, and votes are used to elect a master node among them when a
cluster is established or when the number of nodes alive changes in a cluster, for example,
when a new node joins or the connection to one of the nodes is lost.

The first step was to install Proxmox VE on all three physical machines [20]. During the
installation, we added the IP addresses of all three nodes to their /etc/hosts files to help them
find each other by host names. After that, we created a cluster in the Datacenter - Cluster
section on the WebUI of one node and generated a Join Information, which is an encoded
string containing the metadata of the cluster. The metadata consists of the IP address, the
fingerprint of the first node in the cluster, the cluster name, and the config version. Then the
two remaining nodes were joined to the cluster with that Join Information, on the same web
page.

4.3.2 Kubernetes setup
Our Kubernetes cluster consisted of two control plane nodes and two worker nodes, each of
which had one virtual CPU, 1 GiB RAM, and a 10 GiB virtual disk, just like the VM essential
prototype. The cluster had four nodes because two of them were Control Plane nodes, while
we needed two more worker nodes to demonstrate the high availability feature.

We used Kubespray [32], a toolset based on Ansible [3], to initialize the Kubernetes cluster.
Firstly, the kubespray project was downloaded to the local computer. Then we duplicated
the sample inventory and modified the ansible_host IP addresses with ours in the kubespray
folder. One last step was to adjust the groups kube_control_plane to include node1 and node2 and
kube_node to include node3 and node4 as worker nodes. Then we ran ansible-playbook against
the cluster playbook to provision a new Kubernetes cluster.

When the Kubernetes cluster was ready, we could start to use a command-line tool kubectl
to interact with the cluster. To manage the workloads on Kubernetes, in our case, desktop
instances, we composed a YAML (.yaml, .yml) definition file [51] to describe the desired states
of the components and then used kubectl to apply them to the cluster.

The YAML definition of each desktop instance had three parts:

• Deployment defined what container image to use, which ports to listen on, and how
many containers per desktop instance should be alive. If the number of living contain-
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ers is lower than defined, Kubernetes will schedule a new one on the other nodes to
satisfy the number again.

• Service linked one of the container’s ports to a named service port. Among all the open
ports in the desktop instance, only the noVNC port was specified here because it was
the port to provide the actual desktop service.

• Ingress exposed the named port mentioned above to the public. Otherwise, the noVNC
Service would be only accessible inside the cluster with an internal Cluster-IP address.
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Chapter 5

Experiment

This chapter presents the experimentation. Firstly, we discuss what metrics we would like
to collect. Next, we introduce how we collected the metrics. Then we describe how we per-
formed the experiments. At the end of this chapter, we show the results of the experiments.

5.1 Metrics to Collect
There are four metrics that we were going to collect:

• Response Time, the time elapsed from the start of a desktop instance to the moment
when it is ready to accept incoming connections from end-users and the time elapsed
from sending the stop/shutdown command to a running desktop instance until it fully
stops.

• Disk Read/Write Rate, the throughput of disk reads/writes per second measured on
the host machine.

• Memory Usage, the amount of main memory used on the host machine in total.

• Load Average, the loadavg data fetched from the /proc/loadavg file [34] provided by the
Linux kernel on the host machine. The first three numbers in this file are load figures
marking a running Linux machine’s CPU and IO pressure, averaged over one, five and
fifteen minutes. They are also known as short-term, mid-term, and long-term load
averages.

These metrics can be categorized into two types: non-infrastructural and infrastruc-
tural. Infrastructural metrics are related to the server’s physical hardware and network that
can be collected by monitoring systems. The first one, Response Time, is the only non-
infrastructural metric here because it does not reflect the running status of the physical ma-
chine, but rather how the desktop instances perform as user applications. The remaining
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three are infrastructural metrics that are the raw numbers to show how the physical machine
performs. These two types of metrics offer two aspects for evaluating the prototypes, and
we collected them in different approaches. Additionally, we will also take a look at the disk
space usage of the two virtualization technologies.

5.2 Methods to Collect Metrics
Collecting infrastructure metrics is the focus of many monitoring systems. However, non-
infrastructural metrics have to be collected according to their characteristics.

5.2.1 Non-Infrastructural Metric
The scripts we used to start/shut down desktop instances on the physical machine were also
responsible for collecting the only non-infrastructural metric – Response Time. We measured
it directly in the scripts that conducted the experiments and generated a log file for each
round of the experiments.

The log files were in CSV format and consisted of four columns: type (docker or VM),
event (start or stop), ID (container or VM ID), and time elapsed for the event from start to
finish. The CSV format could be used by gnuplot as data sources directly for visualization and
analysis later.

5.2.2 Infrastructural Metrics
The remaining metrics, Load Average, Memory Usage, and Disk Read/Write Rate, belong to
infrastructure metrics. The tool we used for collecting those metrics was collectd [9].

collectd runs as a daemon to collect infrastructural and application performance metrics
periodically and then store them in a local database or pipe them to another service. In our
setup, we ran collectd on the same physical machine where we performed the experiments.
Then we configured collectd to send the metrics data it collected to a dedicated machine only
for storing monitoring data, which also ran collectd to save the values. The metrics data were
written into Round-Robin Database (RRD) files [39] on that machine. We did not write
RRD files locally because the constant writes would interfere with the disk-related metrics
we collected. When we finished all the experiments, we extracted the RRD files to get raw
numbers to feed them into CSV files so that gnuplot could use them for plotting.

The columns of the CSV files extracted from RRD were as follows:

• Disk Read/Write Rate: seconds since the beginning of the round, UNIX timestamp,
read bytes per second, written bytes per second

• Memory Usage: seconds since the beginning of the round, UNIX timestamp, used
memory in bytes

• Load Average: seconds since the beginning of the round, UNIX timestamp, short-term,
mid-term, and long-term load average values
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The first two columns of those three metrics were identical, as shown above. The first
column’s values would be used for the X-axis. The second column, UNIX timestamp, made it
easier to cross-validate the raw values in RRDs if we realized the plots looked in a different
shape or pattern that is unlike others. The remaining columns were for the Y-axis.

5.3 Experiments
In this section, we will explain how the experiments are performed to collect metric values
and observe the HA behaviors of the two cluster solutions.

5.3.1 Metric Collection
To collect sufficient metric data in an automated manner, we carried out a pressure test by
running the experiments ten times. Each time, we had ten rounds of tests starting with one
desktop instance and adding one concurrent instance in the next round. We implemented
the logic above with shell scripts for both VM-based and Container-based prototypes.

In each round, we tried to repeat the starting and shutdown actions ten times to avoid
possible edge cases and to make sure the results were qualified to match a stable pattern. We
also scheduled five-minute breaks between the rounds and between the starting and stopping
actions in the same round to avoid the impacts from the previous run or action. One reason
was that the Load Average’s mid-term metric was calculated based on the loads in the past
five minutes. The interval between starting and shutting down the desktop instances also
ensured that the desktop services had sufficient time to be completely ready. Except for the
breaks above, we also dropped the system cache forcefully between the starting and stopping
actions. This helped to exclude the possibility that an earlier test round affects a later round
as the disk images cached in memory could skip further disk reads.

5.3.2 HA Observation
To test the HA of the VM prototype, we employed the PVE Cluster we set up in the previous
chapter. We reused the same VM disk image created in the non-cluster VM experiment.
For automatic VM migration to work, we had to create shared storage among the nodes.
Without the shared storage, if one node was down, the source of the VM disk image would
be unavailable immediately, and the VM migration was impossible due to the lack of disk
image. We chose the built-in Ceph storage. Each node contributed one dedicated drive as
OSD to the Ceph cluster. For VM disk images, we created a pool called "VM" with min_size=2
to ensure each disk image was stored for at least two copies on two different nodes, so that
they could be accessible when one node went down.

Kubernetes was used to test the HA of the Container prototype. One thing to mention
is that when preparing the YAML file to deploy our desktop instance to Kubernetes, we had
to add a particular block of tolerations [30] to the deployment configuration. The tolerations
is a set of conditions that the Kubernetes scheduler can tolerate for a certain time before it
decides to take an action defined in the corresponding effect field.

Kubernetes adds two tolerations automatically for nodes – node.kubernetes.io/unreachable
and node.kubernetes.io/not-ready with effect: NoExecute and tolerationSeconds: 300. That means
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if a node becomes unreachable or not ready to schedule workloads on, Kubernetes will still
wait 300 seconds before the pod on that node is evicted and migrated to another node. We
changed tolerationSeconds to one second in Listing 5.1 to accelerate the failover process.
tolerations :
- key: "node. kubernetes .io/not - ready "

operator : " Exists "
effect : " NoExecute "
tolerationSeconds : 1

- key: "node. kubernetes .io/ unreachable "
operator : " Exists "
effect : " NoExecute "
tolerationSeconds : 1

Listing 5.1: The configuration for tolerations in the HA experiment.

5.4 Results
This section presents the results of the experiments. Due to the large amounts of results, we
will only introduce significant ones here. The results for every single case in detail are listed
in Appendix B. The metrics of one, five, seven, and ten appear to be more representative and
will get further described in the following subsections.

5.4.1 Response Time
Since all experiments were repeated ten times, we used the median and standard deviation
values as the final result in this report. A detailed table with response times from each round
can be found in Appendix B. Table 5.1 shows that it takes significantly longer for the VM
to start and shut down regardless of the number of desktop instances. Response Time gets
longer as the number of concurrent desktop instances increases, especially the starting action
of the VMs. We also noticed from the standard deviation that the Response Time of the VM
implementation is less stable than that of the Docker implementation.

5.4.2 Resource Consumption
This section summarizes the results of Disk Read/Write Rate, Memory Usage, and Load Av-
erage in the form of figures. Each figure contains all the results from the ten repetitions of
the experiments to observe if the results fall apart.

Disk Read/Write Rate
Figures 5.1 to 5.4 illustrate how Disk Read/Write Rate performs in the first round of the
experiments when starting or stopping ten instances concurrently, for both Docker- and
VM-based prototypes. Docker’s disk read/write rates can reach higher peaks than VM. For
example, the high peak of Docker is outstanding when shutting down the desktop instances,
as the value can reach almost 60 MB/s in figure 5.2. However, the duration of the peak is
significantly shorter than the VM-based prototype, as it takes much less time for the Docker-
based prototype to complete the stopping action.
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Start(s)
Desktop
Instances VM Docker

1 16.23 ± 0.46 2.94 ± 0.24
2 20.59 ± 1.36 3.45 ± 0.18
3 24.20 ± 1.18 3.65 ± 0.18
4 28.80 ± 1.36 4.00 ± 0.12
5 33.96 ± 2.77 4.17 ± 0.51
6 38.91 ± 3.21 4.50 ± 0.39
7 43.15 ± 4.30 4.69 ± 0.48
8 48.55 ± 4.39 5.57 ± 0.53
9 52.44 ± 4.17 5.76 ± 0.58
10 58.58 ± 5.52 5.94 ± 0.70

Stop(s)
Desktop
Instances VM Docker

1 4.77 ±0.41 1.97 ± 0.05
2 5.58 ± 0.53 2.14 ± 0.08
3 6.19 ± 0.19 2.20 ± 0.09
4 6.70 ± 0.20 2.33 ± 0.16
5 7.36 ± 0.22 2.40 ± 0.19
6 7.98 ± 0.51 2.50 ± 0.28
7 8.42 ± 0.32 2.60 ± 0.32
8 9.66 ± 1.34 2.79 ± 0.36
9 10.10 ± 0.64 2.97 ± 0.48
10 11.10 ± 0.54 2.95 ± 0.45

Table 5.1: Table of start and shutdown time in seconds for both pro-
totypes. The median and standard deviation are given.

Furthermore, Figures 5.5 to 5.12 show the ten rounds of experiments in complete for
starting/stopping one, five, seven and ten desktop instances simultaneously. In these figures,
VM lasts longer on the X-axis because this prototype is slower, as indicated by their Response
Time. The peaks in the figures show high Disk Read/Write Rates when the desktop instances
in VM/Docker are starting or shutting down. The spaces between the peaks are the five-
minute breaks in between. In the VM figures, the higher peaks occur when desktop instances
are starting, and a lower peak follows each higher peak because the instances are shutting
down. The same pattern persists in all ten repetitions. Nevertheless, this pattern is not as
clear for the Docker figures. Disk Read/Write Rate behaves similarly in both actions.

Digging deeper, the read rates of the VM-based prototype become significantly higher as
the number of instances increases, while the Docker-based prototype stays roughly the same.
As for the write rates, the Docker-based prototype does not perform as stable as its read rates,
but it is still much lower than the write rates of the VM-based prototype.

Memory Usage
Figures 5.13-5.16 show a thorough investigation of Memory Usage. Since we ran all the tests
on the same machine, the memory usage is identical for both prototypes when idle. Both
prototypes behave quite stably during all ten rounds. In the meantime, desktop instances
in VMs consume much more memory than that in Containers. Even when ten instances are
started simultaneously in containers, the value does not get higher than three GiB while VMs
are already approaching eight GiB.

Load Average
The Load Average here refers to the Linux system Load Average [34]. The Load Average
results during the experiments are shown in Figures 5.17-5.20. These figures illustrate that
the peaks become higher as the number of desktop instances increases. One thing to men-
tion here is that when plotting the metrics, we intentionally dropped the long-term load
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Figure 5.1: Disk
Read Rate of start-
ing ten desktop
instances

Figure 5.2: Disk
Read Rate of stop-
ping ten desktop
instances

Figure 5.3: Disk
Write Rate of start-
ing ten desktop
instances

Figure 5.4: Disk
Write Rate of stop-
ping ten desktop
instances
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Figure 5.5: Disk
Read Rate for one
desktop instance
starting and stop-
ping ten rounds

Figure 5.6: Disk
Read Rate for five
desktop instances
starting and stop-
ping ten rounds

Figure 5.7: Disk
Read Rate for seven
desktop instances
starting and stop-
ping ten rounds

Figure 5.8: Disk
Read Rate for ten
desktop instances
starting and stop-
ping ten rounds
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Figure 5.9: Disk
Write Rate for one
desktop instance
starting and stop-
ping ten rounds

Figure 5.10: Disk
Write Rate for five
desktop instances
starting and stop-
ping ten rounds

Figure 5.11: Disk
Write Rate for seven
desktop instances
starting and stop-
ping ten rounds

Figure 5.12: Disk
Write Rate for ten
desktop instances
starting and stop-
ping ten rounds
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Figure 5.13: Memory
Usage for one desk-
top instance start-
ing and stopping ten
rounds

Figure 5.14: Memory
Usage for five desk-
top instances start-
ing and stopping ten
rounds

Figure 5.15: Mem-
ory Usage for seven
desktop instances
starting and stop-
ping ten rounds

Figure 5.16: Mem-
ory Usage for ten
desktop instances
starting and stop-
ping ten rounds
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average because we had five-minute breaks between the start/shutdown actions and another
five-minute interval before triggering every next round. The long-term fifteen-minute load
average could not reflect the metric well.

Figure 5.17 shows that although the Docker prototype’s loads are more stable, both Docker
and VM prototypes share the exact peak value of around one. However, the situation changes
dramatically when the number of instances reaches five, seven, and ten, as shown in Figures
5.18, 5.19 and 5.20. Due to much more intensive disk utilization, the Load Averages of the
VMs go far beyond the containers, whose highest peak value is barely above three, and they
can always produce outstanding peaks in every round including both starting and shutdowns.
In contrast, for the container-based prototype, where disk utilization is more relaxed, increas-
ing the number of desktop instances to five, seven, and ten may not even cause the startup
actions in each round to spike noticeably, not to mention shutdowns, so the average load
spikes exhibit some randomness.

Figure 5.21 shows how the load average can behave in a given round by zooming in on one
of the rounds when launching ten desktop instances. A high peak occurs when the instances
get started, and the Load Average slowly decreases over time. When shutting down the in-
stances, a smaller peak appeared at second 375 for the VM prototype and at second 317 for
the Docker prototype on the x-axis, and it too decreased over time. VM and Docker behave
similarly on Load Average, while Docker shows significantly lower values.

Storage
In the previous chapter, VM- and Container-based systems have shown very different archi-
tectural characteristics, leading to their difference in disk storage. Table 5.2 shows the disk
storage of each prototype used for various numbers of instances. While the number of in-
stances increases, the image size and the growth of the Docker prototype are significantly
lower compared to the VM prototype, as only the upper part in the overlay of the whole disk
usage increases slightly.

Docker VM
Desktop
instances

Image (GiB) Overlay (MiB) Image (GiB)

1 1.182 0.249 4.3
2 1.182 0.459 8.6
3 1.182 0.622 12.9
4 1.182 0.921 17.2
5 1.182 1.180 21.5
6 1.182 1.404 25.8
7 1.182 1.66 30.1
8 1.182 1.871 34.4
9 1.182 2.129 38.7
10 1.182 2.377 43.0

Table 5.2: This is a table of disk space usage of Docker and VM. Only
the unit of the overlay is MiB, while all the rest is GiB.

32



5.4 Results

Figure 5.17: Load
Average for one
desktop instance
starting and stop-
ping ten rounds

Figure 5.18: Load
Average for five
desktop instances
starting and stop-
ping ten rounds

Figure 5.19: Load
Average for seven
desktop instances
starting and stop-
ping ten rounds

Figure 5.20: Load
Average for ten
desktop instances
starting and stop-
ping ten rounds
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Figure 5.21: Load Average for VM and Docker in one round of start-
ing and stopping ten desktop instances.

5.4.3 High Availability Test
In this section, we do not collect any new metrics. Instead, we only describe the high avail-
ability behaviors of the extended implementations of VM and Container in clusters on a PVE
Cluster and a Kubernetes cluster.

PVE cluster

In the PVE Cluster, when the node that our test desktop instance was running on went
down, the desktop instance became inaccessible immediately. When it was in use, connected
via noVNC, the running applications would no longer respond to user operations like mouse
clicks or keyboard inputs.

The cluster soon detected the node was down and automatically tried to start the un-
available desktop instance in VM to another one that was still up.

From the perspective of a user, while a missing VM was starting on another node, a load-
ing spinner soon showed up on the noVNC web page and eventually raised a "connection
timeout" error if the user tried to reconnect or refresh the noVNC page during this time.
When the network stack was up in the newly started VM while the noVNC service was not
ready, the user would see a "connection refused" error instead. Soon after the error, another
refresh of the page brought back the desktop screen in the web browser.

In our experiment, we carried out the HA experiments ten times to collect the time
consumption of the failovers. It took 134.50±4.35 seconds for our PVE Cluster to detect the
node failure and bring the desktop instance until its noVNC service back online on another
node alive. This value represents the median and standard deviation.

34



5.4 Results

Kubernetes
We also carried out a failover test in the Kubernetes cluster. As mentioned in the previous
chapter, we applied the YAML file to deploy a desktop instance to the cluster and could see
that the instance was living on one of the worker nodes – node4:

$ kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE
desktop -6 bdf96c5b9 - qblfl 1/1 Running 0 17s 10.233.105.7 node4

Listing 5.2: The status of running pods when there was one living
desktop.

Then we shut down node4, and kubectl get nodes showed that the node was in the NotReady
state:
$ kubectl get nodes
NAME STATUS ROLES AGE VERSION
node1 Ready control -plane , master 9d v1 .21.3
node2 Ready control -plane , master 9d v1 .21.3
node3 Ready <none > 9d v1 .21.3
node4 NotReady <none > 9d v1 .21.3

Listing 5.3: The status of all nodes when one node was shut down.

In the meantime, the Control Plane detected the number of living instances of the de-
ployment desktop (0) was below the desired value (1) and started to spin it up on the remaining
node node3, meaning a failover was done.
$ kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE
desktop -6 bdf96c5b9 - hbcfz 0/1 ContainerCreating 0 4s <none > node3
desktop -6 bdf96c5b9 - qblfl 1/1 Terminating 0 3m13s 10.233.105.7 node4

Listing 5.4: The status of the desktop pods after the node it was
scheduled was shut down.

On the client-side, a user would see a different error compared to the PVE Cluster im-
plementation. When node4 went down, the user would see the loading spinner and a frozen
desktop as well. Nevertheless, when the user refreshed the page in the web browser, a "503
Service Temporarily Unavailable" error appeared instead of the "connection refused" error we
witnessed in the PVE Cluster implementation. The reason is that the noVNC service in our
Kubernetes Cluster was behind Ingress, which would not be down due to a node failure be-
cause it had its own HA mechanism in Kubernetes. When the service behind Ingress became
unavailable, the 503 error would always show up. When the desktop service recovered in a
container running on node3, the 503 error would disappear.

Upon conducting ten repeated experiments, it was determined that the availability of the
desktop instance was restored within a median time frame of 45.0 seconds, with a standard
deviation of 4.0 seconds. The desktop screen was back in the web browser after another
refresh on the web page, but the service was running on a different node.
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Chapter 6

Discussion

This chapter discusses the results from the previous chapter, including infrastructural and
non-infrastructural metrics. Then we compare PVE Cluster and Kubernetes for high avail-
ability purposes, generally first and then specifically for DaaS. We also mention some existing
commercial DaaS products on the market in this part. In the end, we also elaborate on limi-
tations and possible pitfalls that could potentially have been solved or done better.

6.1 Evaluation on Metrics
As collected in the previous chapter, we discuss the two types of metrics here, including non-
infrastructural and infrastructural metrics. Response Time is the only non-infrastructural
metric, while infrastructural metrics consist of Disk Read/Write Rates, Memory usage, Load
Average, and Disk Space usage.

6.1.1 Response Time
Chapter 5 shows desktop instances powered by containers are significantly faster than those
in VMs on starting up and shutting down. The feature of the Container technology that
it can reuse the kernel of its host has strongly influenced this result, while each VM has to
boot up its own kernel and OS. The difference in response times becomes more prominent
as the number of instances increases. Despite this increase in response time, the standard
deviation remains relatively small in comparison, indicating a stable service provided by both
technologies.

After conducting failover tests in both prototypes, it was determined that Proxmox VE
Cluster had a median recovery time of more than two minutes while Kubernetes had a median
recovery time of less than one minute. However, according to our results, the median startup
time of one desktop takes only 16 and 3 seconds for VM and Docker. In the case of Kubernetes,
an adjustable variable, node-monitor-grace-period, allows a node to be unresponsive before a

37



6. Discussion

failover begins. The default value of this variable is 40 seconds, resulting in a failover finished
between 43 and 54 seconds. A detailed timetable of all ten rounds can be found in Appendix
B. In the case of the Proxmox VE Cluster, we were unable to discover which variables were
affecting the basis of the recovery time, which was always longer than two minutes. However,
we found a statement on their Wiki page that the error detection and failover typically take
about 2 minutes [21].

6.1.2 Infrastructural Metrics
The results are similar among Disk Read/Write Rate, Load Average and Disk Space usage.
The Container prototype is more resource-efficient than the VM prototype. When hosting
the same number of desktop instances, containers bring lower pressure on disk drives and
CPUs than VMs. With the current physical machines, we can host more desktops if we switch
the underlying technology from VM to Container. This advantage is especially significant
regarding Disk Space usage. As shown in Table 5.2, the Container prototype naturally uses
less disk space because all the desktop instances reuse the same image as the base. While the
desktop instances are running, the additional usage is from their overlays. As for the VM
prototype, its base image already consumes much more disk space. Although we could trim
the unused components and packages to generate a slimmer base image for desktop instances,
the image has to contain at least the files required to boot a Linux system, such as initramfs
and the kernel. We know that COW (Copy-On-Write), supported by Qemu/KVM, and the
disk image format qcow2, can achieve a similar result to the overlay filesystem Docker benefits
from, but PVE does not support this feature yet. Nevertheless, even though PVE might add
this feature someday, it still does not help much because of the size of Linux system files.

6.2 Evaluation on Cluster Solutions for High
Availability

We also compared two cluster solutions extended from the VM- and Container-based proto-
types in the previous chapter – PVE Cluster and Kubernetes. They are not the only choices
for DaaS with High Availability. There are also existing options from both commercial com-
panies and the open-source community.

6.2.1 PVE cluster vs. Kubernetes
In a PVE cluster, the minimum number of nodes is three to achieve a reliable quorum. One
node in the cluster plays an equivalent role to another. A PVE cluster does not have a differen-
tiation between the Control Plane and the Worker node as in Kubernetes. Also, in practice,
control plane nodes will not run any workloads other than the core Kubernetes services that
back the cluster. Furthermore, to ensure the control plane is not a single point of failure, one
Kubernetes cluster should have at least two control plane nodes, and so do the worker nodes
– that sums up to the minimum number of nodes in a Kubernetes cluster – four.

We are not saying four is worse than three. The difference comes from the system designs
of the two solutions. It is usually not a concern in a production environment either because
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it does not matter whether a large cluster already consisting of many more machines has one
more node or one fewer node. Also, control plane nodes do not have to be as powerful as the
worker nodes; they can even be cloud servers or VMs guarded by more robust solutions with
high availability too.

Regarding the complexity of using Proxmox VE Cluster and Kubernetes for DaaS, PVE
has a powerful WebUI that has implemented the most common maintenance tasks. One can
create a cluster, add or remove a node, or quickly set up shared storage on the WebUI. Its
API and CLI are also intuitive to use. In Kubernetes, these maintenance tasks have to carry
out differently. Setting up and modifying the cluster requires Kubespray that involves knowl-
edge about Ansible, and deploying desktop instances needs to compose a YAML file. There
are many more technical concepts and architectural expertise to learn to drive a Kubernetes
cluster smoothly. The learning curve, therefore, becomes steeper. On the other hand, Kuber-
netes is highly customizable and powerful for integrating with other systems and automation.
Scaling out for Kubernetes is more cost-effective and better supports servers with diverse
hardware specifications.

There are quite a few features of Kubernetes that suit DaaS well. Probes and Deployment
contribute to high availability, and Ingress takes care of load balancing and TLS termination.
As a result, we do not have to develop and maintain these critical supportive components in
DaaS from scratch.

6.2.2 Existing Cluster Solutions for DaaS
In the early phase of our project, we comprehensively examined existing tools and solutions
for DaaS together with engineers from Yark Network. One notable example is the Horizon
platform by VMWare [46], which has been widely adopted by DaaS providers catering to
both large and small enterprises. However, the existing products are proprietary and can be
complex to integrate into the current system in Yark Network, which does not have Active
Directory or Smart Card Authentication support [48]. Therefore, we opted to retain the
extant VIM solution, Proxmox VE, in conjunction with its associated cluster solution, PVE
Cluster. In addition, Horizon is still powered by VM technology, while Container is what
we are heading for. OpenStack is another choice that is even more powerful and convenient
if the organization needs other capabilities the OpenStack components [40] can provide,
for example, the AWS S3-compatible Object Store, Swift. OpenStack also has a component
to manage containers – Zun. However, Kubernetes has become more actively developed and
widely adopted in the past few years, while Zun has not been recognized much. As of January
2023, the keyword "Kubernetes" has about 142 million results on Google, while "openstack
zun" has 0.34 million only. On GitHub, the Kubernetes project [1] has 95.1k stars, while Zun
[2] has 81 stars only.

6.3 Limitations
Due to the limited knowledge and resources, it is inevitable for this report to have remaining
unsolved problems and possible pitfalls. We strived to sort them out or address them such
as dropping the system cache to collect actual disk read rate, but there the following ones
remain.
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6.3.1 Occasional Blockage During Experimentation
In the early phase of the experimentation, we noticed that the scripts in section 5.3.1 we
used to repeatedly start/stop desktop instances got stuck when starting many instances in
VMs. To debug and verify our constantly optimized experimental scripts, we executed them
a dozen or more times, meaning over two thousand rounds of starting/shutdowns in total,
but the issue was observed only twice. One of the two was when we were starting six desktop
instances, while the other case happened on seven. When such an issue happened, we had
to terminate the script and kill the hanging VMs to continue. Regarding the root cause, we
have not found it yet. However, it is necessary to point out that our experiments were in an
uncommon situation where up to ten desktop instances started and stopped concurrently on
a single node, bringing race-condition and high pressure to the server. This extreme scenario
will not happen in a clustered DaaS in production. The company will not allow so many
users to start or stop desktop instances in a very short moment without a queuing system or
a scheduler. The capacity of the DaaS will also be scaled up to meet the increase in its number
of users. This issue did not hit the Container prototype, though. Furthermore, if this were
to occur in Kubernetes, the scheduler could automatically restart a stuck instance when the
liveness and readiness probes [27] are defined.

6.3.2 Accuracy in Metric Collection
Regarding the accuracy of the metrics we collected, we have seen that in the VM case, the
first several desktop instances have larger disk images than the remaining ones. The reason is
that those VMs were started more times than the rest; therefore, more logs were written into
their virtual disks. We should have considered this in the experiments and devised a better
way to avoid it, for example, to always start with copying from the template image before
each round. However, the mitigation can significantly impact the overall complexity of the
experiment design, and each round may take much longer to finish.

In terms of Load Average, the peaks caused by starting and stopping desktop instances
are not as apparent as other metrics, especially in the Container prototype. One thing to
point out here is that in our experiments, since the interval between two rounds was five
minutes, we ditched the Load Average of fifteen minutes. Unlike the other real-time metrics,
the peaks in the results we collected were already average and flattened, therefore abrupt
changes in a short time might be simply missing.

Some system services and operations of the operating system itself may also interfere with
the accuracy of the final results when performing the experiments. For example, since PVE
runs on top of Debian Linux, a cron job is there to update the apt cache periodically. This
cron job could have brought additional disk reads/writes to the experiment. This type of
influential factor may also explain the abnormal spikes in the Disk Read/Write Rate results.
Let’s take Figure B.1b as an example. The VM prototype had two spikes that went beyond the
maximal value of the y-axis, even in the first two rounds. In the same figure, the Container
prototype showed an abrupt spike in the middle, while it constantly had low and stable disk
writes other than that. Similar issues happened to Figure B.1d and more.

We used to store the metric values on the same server where the experiments ran, which
resulted in constant disk writes, so we changed collectd to send those values to a different
machine. We managed to exclude as many influence facts as possible, but there were still
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some issues we could not fully address or could not fully avoid. Supportive PVE daemons to
make the platform fully functional were among them [22].

Additionally, we could have repeated the experiments that we did to collect the metrics
for more times, because ten times might be insuffient to ensure the data accuracy as high as
possible.

6.3.3 Unable to change the minimal failover time in
PVE Cluster

As observed in the PVE Cluster HA experiment, the failover of a desktop instance always
took more than two minutes. This is also confirmed by documentation [21] on the wiki page
of Proxmox VE mentioned earlier in this chapter. We wanted to change this value to verify
if it was the case or change it to 40 seconds to match the equivalent setting in Kubernetes.
However, digging into both documentation and historical posts in the user community, we
failed to discover where and how to change it. We also posted a question in the ProxMox
Forum, but to date, no response has been received.

6.3.4 Lack of Metrics Collection in the Clustered De-
ployments

It would be interesting to see the response times and the infrastructural metrics in the two
HA solutions in clusters. However, we did not conduct the data collection again as we did
in the non-cluster comparison.
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Chapter 7

Conclusion

This thesis compares DaaS prototypes implemented with VM and Container as the under-
lying technologies. The comparison parameters are Response Time and infrastructural met-
rics, including Disk Read/Write Rate, Memory Usage, Load Average, and Disk Space Usage.
The VM prototype runs on a Virtual Infrastructure Manager (VIM) platform Proxmox VE
(PVE). The Container prototype implemented with Docker runs on the same machine. One
to ten desktop instances were started and stopped concurrently by scripts with five-minute
intervals between every start or stop action. These experiments were repeated ten times for
each number of instances to eliminate measurement errors. The timestamps of those actions
were logged within the scripts to log files for Response Time calculation. At the same time,
the infrastructural metrics were recorded by a monitoring system collectd in a format named
Round Robin Database (RRD).

The high availability (HA) solutions based on clusters built with the two technologies
were also tested and observed. PVE cluster for VM, and Kubernetes for Container, were
employed to reveal how high availability of DaaS performs by the two technologies. In both
clusters, one of the worker nodes was shut down to simulate a common node failure. Both
cluster solutions did their work well to achieve HA. The desktop instances that ran on the
failed node recovered automatically on another worker node that was still alive.

7.1 Answers to Research Questions
RQ1: What are the impacts on the response time and resource usage of container-based
DaaS compared to the VM-based DaaS?

Compared to the VM-based prototype, we found that the desktop instances provided by
the Container prototype responded faster on both starting and shutting down actions. The
more instances we tested in parallel, the larger the deviation we observed in Response Time.
The Container-based DaaS also beat the VM-based DaaS in resource usage. According to
our monitoring data, the former had a lower Load Average, less Memory Usage, and much
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less Disk Space Usage. Regarding Disk Read/Write Rate, although the Container-based pro-
totype did not necessarily infer lower utilization of disk IO, the reads and writes on the disk
drives were more stable and lasted shorter, as the starting and shutting down actions fin-
ished earlier than the VM-based prototype. As a result, the Container technology reduces
the pressure on disk drives.

RQ2: What is the impact on the availability of DaaS when the VM-based and Container-
based prototypes are extended to clusters?

Clustering brings high availability to both VM and Container technologies. On the one
hand, PVE Cluster with shared storage may achieve similar high availability as Kubernetes.
When a VM-based desktop instance became unreachable due to a node failure, it was soon
detected and recovered automatically to another healthy node in the PVE cluster. However,
Kubernetes is better at this. A failover could take approximately one-third of the PVE clus-
ter’s time – the latter took over one minute in our experiment. In addition, Kubernetes has
more built-in components that could help in the DaaS scenario. For example, Probes better
maintain the availability of desktop instances, and Ingress can take care of load balancing
and TLS termination for the exposed noVNC service. Although Kubernetes has more fea-
tures and advantages, it is more difficult to learn its concepts and maintain its setup, which
might result in higher human resource costs in the end. PVE Cluster has a user-friendly Web
UI and is more straightforward to interact with. What is more, Kubernetes cannot support
Microsoft Windows instances yet, which could be a deal-breaker for some customers that
rely on Windows-only software.

7.2 Future work
Due to the COVID-19 pandemic, many companies encourage employees to work from home.
Some companies even allow employees to work from home for an indefinite time. It is an
opportunity for us to explore the possibility of DaaS. However, as more and more companies
start to adopt DaaS, a gap in the DaaS we have at hand is the absence of Microsoft Windows
(MS Windows). MS Windows is a popular desktop operating system; though the number
of Windows users in companies has reduced over the last decade, over 70% of the global
market still holds Windows as the OS for their PC [43]. The current prototypes we implement
in this report are not compatible with MS Windows yet. Even though Microsoft has been
working on Windows Container, it is not available for desktop environments but primarily
for server applications without a graphical user interface (GUI). Moreover, those Windows
Containers have to run on the same Windows Server version except Windows Server 2022
and Windows 11 [36] because they run on top of the same kernel of the host system [35]. We
can try to support Windows applications with solutions like Wine [49] in our DaaS for now
as a workaround. Still, in the meantime, we should keep our eyes open to the updates of the
Windows Container to keep up with its development. We can also provide Container images
with alternative software running in Linux for particular applications wherever possible.

The user experience of DaaS is not only limited to startup/shutdown time but also related
to the desktop’s responsiveness and functionalities. Responsiveness here refers to whether
user interactions and the video refresh are smooth. As mentioned by A. Celesti et al. in their
work [5], RDP performs the best, while noVNC is the worst. As for functionalities, neither of
our DaaS implementations supports all the common features a desktop user might want. For
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example, VNC/noVNC has no native audio redirection, and our current version of noVNC
does not even support a clipboard. Newer versions of noVNC support it, but it is still not as
convenient as the native copy-and-paste experience. In the future, we might provide more
connection protocol options such as RDP for end-users to deliver a better desktop experience.

The lower startup/shutdown time of Container-based DaaS can be helpful to desktop
software development as well. In particular, end-to-end testing is a scenario where Response
Time plays an important role. Imagine a new desktop software release that requires end-to-
end testing on a matrix of desktop environments. Not only different operating systems (OS)
like MS Windows and Linux but also different versions of the OSes are involved. MS Win-
dows alone has a lot of versions, such as Windows 7, Windows 10, and the Windows Server
family. Moreover, Linux has many distributions like Ubuntu, Debian, Fedora, CentOS, etc.
End-to-end testing on such a matrix could take a long time when running on a VM-based
DaaS because the startup/shutdown actions are already quite time-consuming. Also, thanks
to the OverlayFS [4], deriving docker images from the same base image for similar testing
environments can be done with less time, disk space, and human effort. In the meantime,
maintaining many docker images for different OSes could also be challenging. We might
want to figure out a solution to build the docker images and keep all of them up-to-date in
an automated way.

The test machines we used in this report are all equipped with Hard Disk Drives (HDDs),
while Solid State Drives (SSDs) have become increasingly popular over the past years. SSDs
can be much faster than HDDs in both sequential and random access workloads [26], and
SSD’s price per TiB has been approaching HDDs. Floyer [17] estimated that in the year 2026,
SSD would be cheaper than HDD. Since SSDs will still be more expensive than HDDs for the
time being, another interim option is hybrid storage. Hybrid storage is built with HDDs for
infrequently accessed data (Cold Files) and SSDs for frequently accessed data like VM/Con-
tainer images (Hot Files). With a higher price-performance ratio, hybrid storage might be a
favorable solution for now.
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Appendix A

Hardware Specification

This appendix presents the hardware specification of the physical machine on which proto-
types implemented with Docker and VM are running.

• CPU: Intel E5-1620 v2 @ 3.70 GHz (4 cores, 8 threads)

• RAM: 64 GiB

• HDD: 2 TiB x4 (Software RAID10)

• NIC: Intel I350 Gigabit Ethernet @ 1Gbps
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A. Hardware Specification
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Appendix B

Experimental Results

This appendix contains the results of all the experiments that have been performed, including
some of the figures already mentioned in Chapter 5. Firstly, four tables of response time are
given, where values are in milliseconds. Then the infrastructural metrics and HA failover
time are shown. The infrastructural results are presented in the following order:

• Disk Read Rate (Figure B.1)

• Disk Write Rate (Figure B.2)

• Memory Usage (Figure B.3)

• Load Average (Figure B.4)

Each subfigure represents the result of ten consecutive rounds. We plot the figures in this
way to better visualize the stability of the two prototypes. In all figures, the x-axis is the time
in seconds and the y-axis represents the resulting value. We would like to point out here that
the maximal values in the y-axis may vary among figures for clarity.
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B. Experimental Results

B.1 Response time

Number instances (Docker Start)
Round 1 2 3 4 5 6 7 8 9 10
1 2908 3484 3696 3807 4074 5634 5306 5696 6149 5956
2 2983 3441 3706 4616 5006 4239 5687 5747 5909 6402
3 2931 3648 3648 4151 5141 5008 5518 5895 5977 6150
4 2945 3327 3375 3850 3933 4538 5620 5716 5902 6193
5 2917 3466 3524 4833 5706 4546 4722 5965 6022 6066
6 3673 3380 3645 4021 4769 4405 5584 5803 5810 6142
7 2937 3401 3968 7758 4271 4646 5438 5742 5899 7355
8 3084 3525 3682 3998 5112 4529 4714 5765 5958 5924
9 2798 3264 3594 4817 3937 4361 5364 5764 6526 6398
10 3104 3903 3974 3928 4284 4266 5322 6034 5716 6305

Table B.1: The time in milliseconds that a certain amount of Docker-
based desktop instances took to boot up.

Number instances (Docker Shutdown)
Round 1 2 3 4 5 6 7 8 9 10
1 1977 2248 2328 2553 2543 2712 2932 2951 3302 3559
2 2068 2154 2203 2486 2566 2802 2911 3219 3504 3411
3 1910 2185 2337 2354 2627 2571 2973 3172 3418 3417
4 1925 2009 2245 2428 2550 2708 2759 3507 3268 3552
5 1973 2096 2390 2476 2563 2784 2880 3125 3438 3506
6 1915 2193 2318 2434 2424 3279 2826 3074 3248 3401
7 1957 2065 2177 2372 2622 2759 3365 3397 4180 3620
8 1984 2167 2261 2497 2543 2728 2876 3200 3343 3502
9 1950 2177 2300 2476 2631 2833 2873 3179 3497 3476
10 1975 2223 2240 2394 2592 2692 3087 3115 3314 3484

Table B.2: The time in milliseconds that a certain amount of Docker-
based desktop instances took to shut down.
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B.1 Response time

Number instances (VM Start)
Round 1 2 3 4 5 6 7 8 9 10
1 16108 25485 28054 30757 41561 45079 49238 53233 56660 64200
2 15808 20026 24325 29859 34461 42179 47567 60143 57179 63604
3 16916 20997 24299 30907 37962 41775 47598 51470 54850 64800
4 15882 21109 25248 29224 35367 41778 45399 52330 56588 63400
5 16158 22858 23175 31456 36163 42480 44587 54116 56660 63805
6 16309 21092 25652 28664 35455 40625 48171 52605 56051 62651
7 16683 20491 24819 30447 35420 42430 46573 52236 58685 61768
8 16150 22003 25181 28804 37846 42510 48436 53290 58551 62052
9 17025 20784 24317 30085 37221 41702 49006 50651 56949 62948
10 16962 20018 26142 29786 36363 41651 45701 51830 56721 63410

Table B.3: The time in milliseconds that a certain amount of VM-
based desktop instances took to boot up.

Number instances (VM Shutdown)
Round 1 2 3 4 5 6 7 8 9 10
1 5665 5811 6508 7089 7378 8703 9417 10000 12169 11786
2 4406 7260 6301 6964 7437 9583 8481 9389 10696 11480
3 5269 5632 6017 6485 7714 8124 8521 9309 10533 12055
4 4616 5320 6132 6693 7209 7958 8601 10114 10869 11493
5 4681 5543 6175 6509 7369 7825 8734 9714 10023 11090
6 4803 5458 6175 6694 7387 8074 8620 9987 10731 11594
7 4633 5388 6175 6745 7429 7738 8725 9867 10104 11702
8 5471 5658 6219 6868 7834 8193 8807 10326 10822 11411
9 4727 5681 6647 6858 7050 7975 8804 14156 10936 11405
10 4816 5566 6428 6552 7541 8080 8422 9820 10936 12666

Table B.4: The time in milliseconds that a certain amount of VM-
based desktop instances took to shut down.

57



B. Experimental Results

B.2 Disk Read/Write Rate

(a) Figure of one desk-
top instance

(b) Figure of two desk-
top instances

(c) Figure of three
desktop instances

(d) Figure of four
desktop instances

(e) Figure of five desk-
top instances

(f) Figure of six desk-
top instances
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B.2 Disk Read/Write Rate

(g) Figure of seven
desktop instances

(h) Figure of eight
desktop instances

(i) Figure of nine desk-
top instances

(j) Figure of ten desk-
top instances

Figure B.1: Disk Read rate of ten consecutive samples in one plot
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B. Experimental Results

(a) Figure of one desk-
top instance

(b) Figure of two desk-
top instances

(c) Figure of three
desktop instances

(d) Figure of four
desktop instances

(e) Figure of five desk-
top instances

(f) Figure of six desk-
top instances
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B.2 Disk Read/Write Rate

(g) Figure of seven
desktop instances

(h) Figure of eight
desktop instances

(i) Figure of nine desk-
top instances

(j) Figure of ten desk-
top instances

Figure B.2: Disk write rate of ten consecutive samples in one plot
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B. Experimental Results

B.3 Memory Usage

(a) Figure of one desk-
top instance

(b) Figure of two desk-
top instances

(c) Figure of three
desktop instances

(d) Figure of four
desktop instances

(e) Figure of five desk-
top instances

(f) Figure of six desk-
top instances
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B.3 Memory Usage

(g) Figure of seven
desktop instances

(h) Figure of eight
desktop instances

(i) Figure of nine desk-
top instances

(j) Figure of ten desk-
top instances

Figure B.3: Memory of ten consecutive samples in one plot
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B. Experimental Results

B.4 Load Average

(a) Figure of one desk-
top instance

(b) Figure of two desk-
top instances

(c) Figure of three
desktop instances

(d) Figure of four
desktop instances

(e) Figure of five desk-
top instances

(f) Figure of six desk-
top instances
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B.4 Load Average

(g) Figure of seven
desktop instances

(h) Figure of eight
desktop instances

(i) Figure of nine desk-
top instances

(j) Figure of ten desk-
top instances

Figure B.4: Load average of ten consecutive samples in one plot
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B. Experimental Results

B.5 HA Failover Time

HA Failover Time (s)
Proxmox VE

Cluster Kubernetes

1 133 43
2 144 47
3 134 41
4 134 44
5 135 45
6 145 49
7 136 51
8 134 45
9 135 54
10 134 44

Table B.5: The time in seconds that the failover of a desktop instance
takes in both prototypes.
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Virtualization has become increasingly popular these years, among which Virtual Desk-
top has been outstanding and widely accepted. This thesis explores the possibility of
using Container for Desktop-as-a-Service (DaaS) by comparing the performance and
high availability solutions between Container and Virtual Machine (VM) technologies.

Improved hardware performance and decreasing
costs have led to the rapid spread of virtualization
technologies, especially Virtual Desktops. DaaS
provides a total solution for virtual desktops tar-
geting enterprise and institution customers. On-
line virtual desktops can be useful when users need
to work from home or onsite, but are not com-
fortable carrying or moving the high-performance
workstations in the office. DaaS is also conducive
to centralized configuration and management, sav-
ing maintenance costs on physical devices.

Most of the existing DaaS solutions on the mar-
ket are based on VM technology. It has good ver-
satility but oftentimes performance bottlenecks or
are not easily customizable to quickly meet the
growing demands of users. Those conventional
VM solutions suffer from slow boot/shutdown and
high resource usage because each virtual desktop
instance must run in a virtual machine, and each
VM essentially runs a full operating system (OS)
including its own kernel.

DaaS powered by containers can overcome these
problems. Container technology is not complete
virtualization; each running container can share
the kernel that the host is running and does not
need to boot its own OS and kernel. Therefore it
is excellent for both boot/shutdown time and the

usage of resources like CPU, RAM, and disk.
For cluster high availability (HA) of DaaS, con-

tainer technology can use Kubernetes, which has
been popular and mature lately. It is free and
open source, well documented, and has a good
popular user base. Our experimental results show
that a failover in the Container and Kubernetes
implementation is also faster than the Proxmox
VE Cluster based on the VM technology.
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