
MASTER’S THESIS 2023

How to develop
business-critical software - a
case study on a small system
Sara Hult

ISSN 1650-2884
LU-CS-EX: 2023-09

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2023-09

How to develop business-critical software -
a case study on a small system

Hur man utvecklar affärskritiska system -
en fallstudie av ett mindre system

Sara Hult

How to develop business-critical software -
a case study on a small system

Sara Hult
sa4617hu-s@lu.se

April 3, 2023

Master’s thesis work carried out at

the Department of Computer Science, Lund University.

Supervisor: Martin Höst, martin.host@cs.lth.se

Examiner: Emma Söderberg, emma.soderberg@cs.lth.se

mailto:sa4617hu-s@lu.se
mailto:martin.host@cs.lth.se
mailto:emma.soderberg@cs.lth.se

Abstract

The term business-critical defines systems and software whose failure may
lead to loss of business or damage to reputation in the market [1]. It can include
the majority of systems and software in a business, yet the term is rarely used
in literature and at companies. This thesis investigates the scope of the term,
how business-critical software is developed, and what experiences can be found
by implementing business-critical software techniques and methods on a small
system at a company in Sweden.

First, a literature study was conducted followed by a case study where three
methods found in the literature study were implemented and examined on a
smaller system. Thoughts and experiences were collected through interviews
with identified stakeholders and a case study protocol.

The result show that there are several methods, techniques, and approaches
for developing business-critical systems and software and that the three methods
implemented to varying extent, all contributed to making the system safer and
more reliable, however, none solved all the issues.

This implies that none of the methods tried are optimal alone and that the
use of several methods might be a good approach for developing business-critical
software.

The findings of this thesis provide insight into various methods and tech-
niques that can be used to develop business-critical software and contributes
with thoughts, experiences and opinions regarding a few of these methods, which
can help others make more informed decisions and develop safer and more reli-
able systems.

Keywords: Business-critical, critical systems, N-version programming, risk analysis, code
analysis

2

Acknowledgements

I would like to thank my supervisor Martin Höst for all the support and guidance in the
process of this thesis. Martin’s knowledge and experience has helped tremendously and his
feedback has been invaluable.

I would also like to thank my supervisors at the case company for their help and support
throughout this thesis. A huge thank you must also be given to the IT-department and other
employees at the case company. They have all been of great support, helped with interviews
and have always been there to answer any questions that have arisen.

3

4

Contents

1 Introduction 7
1.1 Purpose . 7
1.2 Research Questions . 7
1.3 Limitations . 7
1.4 Outline . 8

2 Background and Related Work 9
2.1 Critical systems . 9
2.2 Business-critical . 11

2.2.1 Key areas, keywords, and methods 11
2.2.2 Business vs Safety-critical . 12

2.3 Methods, processes, and techniques . 13
2.3.1 Formal methods . 14
2.3.2 Software Development methods . 14
2.3.3 Programming methods . 16
2.3.4 Architectural methods . 17
2.3.5 Risk management . 17
2.3.6 Verification and Validation . 18
2.3.7 Software/System Reliability . 18
2.3.8 Standards and directives . 19

3 Method 21
3.1 Background research . 21

3.1.1 Literature study . 21
3.1.2 Interviews . 23

3.2 Case study . 24
3.2.1 Case company . 24
3.2.2 The case . 24
3.2.3 Case study plan . 24
3.2.4 Design and planning . 25

5

CONTENTS

3.2.5 Data collection . 26
3.2.6 Case study protocol . 27
3.2.7 Version 1 . 28
3.2.8 Version 2 (Code analysis) . 28
3.2.9 Version 3 (Risk analysis) . 29
3.2.10 Version 4 (Architecture redundancy) 30
3.2.11 Final review . 30
3.2.12 Ethics . 31

4 Result 33
4.1 Background research . 33

4.1.1 Literature Study . 33
4.1.2 Interviews . 33

4.2 Case study . 34
4.2.1 Version 1 . 34
4.2.2 Version 2 (Code analysis) . 36
4.2.3 Version 3 (Risk analysis) . 37
4.2.4 Version 4 (Architecture redundancy) 38
4.2.5 Final review . 40

5 Discussion 43
5.1 Business-critical . 43
5.2 Business- vs safety-critical systems . 44
5.3 Safe or reliable enough . 44
5.4 Method . 45

5.4.1 Literature study . 45
5.4.2 Case study . 46

5.5 Code analysis . 47
5.6 Risk analysis . 48
5.7 Architecture redundancy . 49
5.8 Final review . 51
5.9 Choice of methods . 52

6 Conclusion and Future Work 53

References 55

6

Chapter 1

Introduction

The following chapter gives an introduction to the background of the thesis where the pur-
pose, research questions, limitations, and outline is presented.

1.1 Purpose
The purpose of this thesis is to contribute to literature regarding the term business-critical
and to contribute with experiences of methods that can be used. The aim is to give an
overview of the term and examine how well used and widespread it is, and to examine meth-
ods and techniques for developing business-critical software and systems.

This is done by a literature study followed by a case study were a few of the methods
found, will be implemented and evaluated in a case at a large company in Sweden.

1.2 Research Questions
The two research questions addressed in this report are:

• RQ1: How are business-critical software developed today and which techniques exist
for developing business-critical software?

• RQ2: What experiences can be found by implementing business-critical software meth-
ods at a company?

1.3 Limitations
Due to the wide topic of the thesis, several limitations were set. Limitations for the literature
study consisted of primarily focusing on business- and safety-critical systems and software

7

1. Introduction

and not on security- and mission-critical systems. Security-critical systems were not exam-
ined in depth due to the term not occurring consistently in the literature. Sommerville [2],
for example, a well known author in the area of software engineering, only mention business-
, safety-, and mission-critical systems. Mission-critical systems were also not investigated
thoroughly due to the term considered to be too far away from the scope of business-critical
systems, in opposite to safety-critical systems which often seemed to overlap with business-
critical systems.

For the case study, the methods chosen were limited due to restrictions, set environments,
and tools at the case company. Methods had to function on a small project and only on
a personal, project or architectural level since implementing methods on an organisational
level was not feasible. The focus of the case study was on planning and implementation,
and not initiation and deployment since some of the initiation had already been made and
deployment had been too big a project. Only a few specific languages could be used and the
application could not be web- or cloud-based.

1.4 Outline
This thesis begins with a literature study found in Chapter 2, in form of a chapter of back-
ground and related work regarding the terms business critical and critical systems and soft-
ware. It is followed by Chapter 3 discussing and explaining the method of the study; both
the literature and case study and the result of both studies is found in Chapter 4. Lastly, the
discussion is found in Chapter 5 and the conclusion and related work in Chapter 6.

8

Chapter 2

Background and Related Work

The following chapter introduces the concepts of critical systems, and gives an overview of
its methods and approaches. The term business-critical is further described as well as a few
methods used for developing, analysing, and validating business-critical and critical software
and systems.

Both critical software and systems are examined in the following chapter and throughout
this thesis to gain a wider understanding of the concept of business-critical and other critical
software. System is a term used to describe a whole rather than a collection of parts but
is used in various different ways which may lead to misunderstandings [3]. Software is also
becoming more and more important for systems [4] and both safety- and security critical
software systems are becoming increasingly software intensive [5]. This resulted in using
both terms when searching for literature and interchangeably throughout the thesis.

2.1 Critical systems
Critical systems can be divided into different types; safety-critical, mission-critical, security-
critical, and business-critical [2, 6]. What all critical systems have in common is that their
failure may lead to major consequences such as injuries, damage to the environment, spread
of secret information, loss of business or damage to the reputation on the market. They all
have a high cost attached to a failure and must to a certain degree, be secure and safe for a
failure not to happen.

What the failure can lead to is the main difference between the systems. A safety-critical
system is a system whose failure may result in loss of life, significant property damage or dam-
age to the environment and can be an aircraft- or nuclear plant system. A mission-critical
system’s failure may instead lead to failure of a goal-directed activity and describes systems
such as a navigation system for a spacecraft or a robot [7] while a security-critical system may
lead to loss of sensitive and crucial data by theft or accidental loss [6].

9

2. Background and Related Work

For business-critical systems, a few definitions were found in the literature:

“A business-critical system is a software, or software/hardware, system whose correct
operation is crucial to a business or enterprise.” [8]

“Business critical systems (BCS) are those systems whose failure may lead to loss of
business or damage to reputation in the market.” [1]

“A system whose failure may result in very high costs for the business using that system.
An example of a business-critical system is the customer accounting system in a bank.
Business-critical systems may be affected by security-related failures.” [2]

The similarity between the descriptions is that they all talk about the criticality of the sys-
tem operating in a correct manner. However, the two latter descriptions also mention the
consequences of the system not working properly and what it can lead to. The second defini-
tion was by the author considered to be the most inclusive and distinct defining both loss of
business and damage to reputation in the market and it was therefore the definition chosen
to be used in this thesis.

The term business-critical is by far the least used out of the four terms which can be
viewed in Table 2.1 and Table 2.2. The term with the largest scope of the different critical
system terms is safety-critical which has around 69 600 hits on Google Scholar and 10 888
hits on Scopus. Google Scholar is a search tool for scholarly literature and Scopus is an
abstract and citation database of peer-reviewed literature. The *-notaion means that the
search includes all terms and words that start with the word prior to the symbol, in Table 2.1
both safety-critical system and safety-critical systems will be included in the search.

Table 2.1: Search results for safety/mission/security/business-
critical system*.

System Scopus Google Scholar
Safety-critical system* 10 888 69 600

Mission-critical system* 3 382 15 000
Security-critical system* 885 2 720
Business-critical system* 320 1 600

Table 2.2: Search results for safety/mission/security/business-
critical software.

Software Scopus Google Scholar
Safety-critical software 4 584 17 800

Mission-critical software 1 121 3 660
Security-critical software 465 952
Business-critical software 151 460

10

2.2 Business-critical

2.2 Business-critical
The term business-critical can be applied to various areas such as systems, software, services,
operations, and applications [9, 10, 11, 12] and has been around since the 90’s, e.g., [13]. A
business-critical system can, as the definitions states, be anything from a banking-system to
an e-commerce system and the difference from a safety-critical system is that the latter could
result in loss of life, while a business-critical system could lead to loss of business or damage
the reputation of the business. A very clear and recent example of a business-critical system
and the effects of it not being secure enough, is the IT-attack on the Swedish grocery store
Coop in 2021. The attack lead to Coop’s register system being unusable and the majority of
their stores having to close for a few days [14].

2.2.1 Key areas, keywords, and methods
In this thesis, the terms business-critical systems and software were of primary interest and
were also included in the majority of the searches.

Two main searches, and within those several smaller ones, were conducted to find various
key areas, keywords, and methods within the scope of critical software and systems. One
main search was conducted within the scope of business-critical and one within the scope of
safety-critical. The steps taken to conduct the searches can be seen in Section 3.1.1.

From the search process presented, four tables were created stating various keywords and
methods and their percentage occurrence within the two main searches. Table 2.3 presents
various key areas and keywords in the search for methods and techniques for business-critical
software or systems. Each keyword in the table is presented along with the search term used,
the amount of article (hits) found for the keyword, and the keyword’s percentage occurrence
when compared to the larger main search.

Table 2.4 presents the same result, but for various methods instead of keywords.
Table 2.5 was conducted in the same way as Table 2.3 presenting various keywords, only

changing and searching for safety-critical instead of business-critical.
Searching for safety-critical instead of business-critical was also done to conduct Table 2.6

which contains methods instead of keywords, identical to Table 2.4.
The four tables was an attempt of showing the differences in business- and safety critical

systems and software and what terms, keywords, and methods are most commonly used.
Many articles regarding business-critical systems discuss web-based systems, e.g., [15] and

the term was one of the most recurring ones for business-critical systems. Web-based sys-
tems can be different from developing a traditional IT-system since a web-based system is
primarily an interaction medium where development of new applications include a great deal
of cloning existing components [16]. Since one limitation of this thesis were no web-based
interaction application, these articles were merely considered as inspiration for methods and
to gain understanding of the subject.

Test being one of the keywords in the scope of business-critical systems and software
might not come as a surprise. Developing and keeping a critical system safe tend to include
testing to ensure that it meets specified safety criteria.

Various methods used in the scope of business-critical software and systems were not
commonly used as keywords, which can be seen in Table 2.4 where all methods had a percent-
age occurrence of 2.0 % or lower. The method with the most amount of hits were formal meth-

11

2. Background and Related Work

ods with an occurrence of 2.0 % which were the most reoccurring method for safety-critical
systems as well, see Table 2.6. Formal methods along with other keywords and methods will
be discussed further in the sections below.

Table 2.3: Search results for various keywords in the larger search for
business-critical methods (Scopus).

Keyword Search term Hits %
Test test* 66 19 %
Web web* 64 18 %

Reliability reli* 55 16 %
Risk risk* 50 14 %

Validation vali* 40 11 %
Verification veri* 28 8 %

Legacy legacy 20 6 %
Agile agil* 11 3 %

Table 2.4: Search results for various methods in the larger search for
business-critical methods (Scopus).

Method Search term Hits %
Formal methods {formal methods} 7 2.0 %

Root-cause analysis/diagnosis root-cause* 4 1.1 %
SDLC SDLC 3 0.9 %
UML UML 3 0.9 %

Modelling framework {modelling framework} 2 0.6 %
Validation process {validation process} 1 0.3 %

Model driven {model driven} 5 0.7

2.2.2 Business vs Safety-critical
The main difference between safety-critical and business-critical systems is, as mentioned,
the risk level where the first system can cause consequences on a personal level and the latter
on a business level. However, the actual practical differences might be harder to distinguish,
Piriou et al. discuss that even though the outcome is not the same for the different systems,
they both have a significant impact on assets which make dependability engineering relevant
for both systems [17]. The same authors also talk about the lack of standards for developing
business-critical systems from a blockchain perspective and borrows concepts and tools from
safety-critical systems.

Other resemblances are that both system’s software many times must be in compliance
with some form of regulation or policy [18, 19], that complex software is used in both systems,
and that the systems are seldom subject to heavy changes and may operate over decades with
limited changes [20].

When comparing the tables for the searches for business- and safety-critical systems, the
differences were relatively small and showed that the keywords test and reliability were in

12

2.3 Methods, processes, and techniques

the top three terms for both searches. The keyword web was significantly more occurring
in the search for business-critical keywords (Table 2.3) than in the search for safety-critical
keywords (Table 2.5) while the term risk was about equally common in both searches.

The methods found for both searches had all an occurrence of around 2 % or lower, see
Table 2.4 and 2.6, except for formal methods in the search for safety-critical methods, which
shows some of the difficulties in finding and conducting an overview of methods and tech-
niques for the terms.

Table 2.5: Search results for various keywords in the larger search for
safety-critical methods (Scopus).

Keyword Search term Hits %
Reliability reli* 2 993 27.2 %

Test test* 2 749 25.0 %
Verification veri* 2 202 20.0 %
Validation vali* 1 840 16.7 %

Risk risk* 1 364 12.4 %
Agile agil* 168 1.5 %
Web web* 143 1.3 %

Legacy legacy 93 0.8 %

Table 2.6: Search results for various methods in the larger search for
safety-critical methods (Scopus).

Method Search term Hits %
Formal methods {formal methods} 961 8.7 %

UML UML 232 2.1 %
Model Driven {model driven} 139 1.3 %

Root-cause analysis/diagnosis root-cause* 65 0.6 %
Validation process {validation process} 47 0.4 %

SDLC SDLC 40 0.4 %
Modelling framework {modelling framework} 10 0.1 %

2.3 Methods, processes, and techniques
Several different techniques, methods, processes, models, and analyses exist in the area of
critical systems. This thesis divide and structure the different terms and methods to achieve a
better understanding of how critical systems, and primarily business-critical systems, are and
can be developed. Hereafter, the term methods will be used for various techniques, approaches,
methods, and processes.

Different methods in the scope of critical systems can be used and divided by the point
in time in the process, by different system layers or by various levels such as organisational-,
department-, project- or personal level. One can also divide different methods by its purpose;
analysing, developing or evaluating/validating, and several standards and guidelines exists

13

2. Background and Related Work

for critical systems produced by organisations, institutes, and governments. The layers from
which the division of methods was based on for this thesis, can be seen in Figure 2.1 and is
one layer or point of view one can start from. Other divisions can be done based on people,
processes, and tools or by infrastructure, application, and operation.

The methods found can be seen in Figure 2.2. The figures do by no mean cover the entire
scope of business- and safety-critical systems but is an attempt of an overview of various ways
to plan, develop, maintain, and evaluate these kind of systems. Methods and when, where,
and how they are used in critical systems are many and diverse and there is no universal
software engineering method or process that fits all software systems [2].

PERSONPROJECTORGANISATIONARCHITECTURE

Figure 2.1: The layers from which the division of methods was based.

2.3.1 Formal methods
The development of critical systems are often done with well-tried and trusted techniques [2].
This is due to the risk and cost of failure, and older techniques are often preferred over newer
ones due to their uncertainty and risks. The term formal methods is recurrent in the scope
of critical systems and have been around since the end of the 1980’s [21, 22, 23]. Formal
methods are mathematically-based techniques designed to help development of both soft-
ware and hardware systems [24]. The term originates from that the methods use formulas
which are texts or diagrams made from symbols that are combined according to specific
rules [25]. Formal methods use axiomatic notations, set theory, and first-order logic to de-
scribe and specify a system. They can be applied at different times in the development process
such as for code verification in the implementation stage [26]. Some formal methods are the
B-method, Safety Critical Application Development Environment (SCADE), Z, the Vienna
Development Method (VDM), Temporal Logic of Actions (TLA+), and the Protoype Verifi-
cation System (PVS). The complexity and cost of formal methods are sometimes mentioned
as a reason not to use them in software systems while some state that they give a good return
on investments [27].

2.3.2 Software Development methods
Some recurrent methods for developing critical systems and software are Software Develop-
ment Methods [28], also called Software Development Life Cycle (SDLC) methods [29, 2].
Software Development Methods are primarily divided into two classes; plan-driven and ag-
ile [28] and are divided into several stages e.g. planning, analysis, design, implementation,
and maintenance [30]. What most models have in common are the process activities of spec-
ification, development, validation, and evaluation. The difference is how the processes are
carried out as well as how and when they are used and introduced. Some SDLC methods can
be viewed in Figure 2.2 such as the Waterfall Model, V-Process Model, Iterative/Incremental-
Process Model, eXtreme Programming, and Adaptive Software Development (ASD).

14

2.3 Methods, processes, and techniques

Programming methods
User access and
authentication
Various ways to send
messages
Code editors

PERSON

Pay hackers
Software development
/SDLC methods
Risk management
methods
Self-assessment tools
Formal methods
Testing
Design review
Code inspection and
review

PROJECT

Verify output from
different channels
Different hardware; OS,
processors
Distributed systems
Self-checking systems
Network
Safety Architectural
Patterns
Different
designmethods (OOP
or FP)

ARCHITECTURE

Business policies or
framework
Standards and
directives
Laws

ORGANISATION

N-version programming
Code inspection and
analysis tools
Unit tests

PROGRAMMING METHODS

Waterfall Model
V-Process Model
Iterative/Incremental-
Process Model
eXtreme Programming
Rational Unified Process-
Model (RUP)
Adaptive Software
Development (ASD)
Agile Software Process
(ASP)
Crystal
Dynamite System
Development Methods
(DSDM)
Feature Driven
Development (FDD)
SCRUM
Wisdom

SOFTWARE
DEVELOPMENT/
SDLC METHODS

ETSI
IEEE
NIS directives
ISO
IEC
OWASP

STANDARDS AND
DIRECTIVE

N-version programming
Protected
Single/Homogeous
Dual/Heterogeneous
Channel Pattern
Triple Modular
Redundancy Pattern
Monitor - Actuator
Pattern
Watch Dog Pattern

SAFETY ARCHITECTURAL
PATTERNS

Figure 2.2: An overview of methods divided into architecture, or-
ganisation, project, and personal level.

It should be noted that some existing SDLC methods, such as SCRUM, are not primarily
used for critical systems, as for example the V-Process Model is. SCRUM can be used in
an uncritical system and might not be what one primarily think of for a critical system,
which is the opposite to the V-process or Waterfall Model. Safety-critical systems tend to use
the Waterfall Model due to the enhanced requirement of analysis and documentation before
development [2] as well as the V-model/V-process Model which several standards such as IEC
61508 and IEC 62278 recommend [31, 32].

15

2. Background and Related Work

2.3.3 Programming methods
With the severe effects of failure of a critical system, the quality of the software is of great
value [33] and can be improved by various methods used by the programmer, here named
programming methods.

Improving the quality of the software can be done by reducing the number of faults,
i.e., defects or bugs. However, to what extent minimisation of faults have an effect on the
security of a system is debatable where some authors states that it has an affect while others
are doubtful. It will nonetheless, decrease the probability of a failure to occur which most
likely increases the reliability of the systems and Stefanović et al. mention the quality of the
code as a key factor in any software product [34].

Detecting and identifying weaknesses can be done with the help of unit tests, code in-
spection, code review, or code analysis. The latter can be implemented using static code
analysis (SCA) tools, which analyse the source code without executing it [35] to find bugs,
duplicates, and various security vulnerabilities [36]. It produces reports that identify and
highlights deviation from code standards and is useful for debugging tools and software de-
velopment frameworks. SCA tools can also include the measurement of the complexity of
the code, as for example the cyclomatic complexity which measures the number of linearly
independent paths through the code [37]. When compared to manual code reviews done by
software developers, the resource requirements can be vastly different [38]. Manually review-
ing 1 000 or 1 000 000 lines of code is far more time consuming than letting a SCA tool do
the same.

Unit tests are by many thought of as a standard procedure in modern software engineering
and is widely adopted [39, 40, 41]. It is an approach for testing where smaller sets, or units,
of the code are tested individually and is often measured by its percentage test coverage.
Some standards, such as IEC 61508, directly or indirectly mandate unit testing, but it is a
demanding technique that is both costly and time consuming [42].

N-version programming
N-version or multiversion programming is a technique where two or more versions of a pro-
gram is produced from the same specifications to ensure diversity in the design and for fault
detection [43]. It can be achieved by diversifying the data, the implementations, the pro-
gramming languages or the design [44]. Diversifying the data means that the input is given
in various forms and passed through a rewriting algorithm to produce a set of equal inputs.

Implementation is the most common method for N-version programming and means
that several implementations in the same programming language are made whereas diver-
sifying the programming language is the opposite where one or several programmers write
the program in different languages. Different programming languages have different secu-
rity features and can be prone to different safety issues [45, 46]. Writing in several languages
could therefore help detect those issues and guarantee safer and more reliable code. Lastly,
diversifying the design means that the specifications or the actual design of the program is
made in several editions. Some of the implementations of N-version programming are, and
can be made, on both a personal and an architectural level and the method is therefore stated
at both these levels in Figure 2.2.

N-version programming is a popular technique in, for example, avionics for controlling

16

2.3 Methods, processes, and techniques

and operating aircraft’s [47] but has been criticised by others [48]. The method can have some
limitations due to the possible erroneous outputs caused by the versions being different and
is in general often criticised for its high cost of implementation since it requires extra cost
and hardware for the added redundancy.

2.3.4 Architectural methods
Other ways to improve the security of the code can be done at an architectural level by im-
plementing various techniques for software fault tolerance. These techniques are based on
design redundancy and diversity for the same program and can be achieved by writing differ-
ent versions of the code [49], writing in different programming patterns or by using various
design methods such as object-oriented or functional programming.

Software diversity as well as software verification and validation, see more in Section 2.3.6
regarding the latter, can be used to achieve lower failure rates but can not however, be used
alone to reach the failure rates required in most critical systems and depending on software
solely to ensure the safety of a system should be done with great care [24]. Several safety
architectural patterns can be used, such as the N-version programming pattern, the protected
single channel pattern, and the watch dog pattern [50].

2.3.5 Risk management
It is almost impossible to discuss critical systems without mentioning risk. A risk is an un-
desirable outcome which can cause a loss or an injury [2]. The process of risk management
can be divided into various phases by different authors and Jaafar et al. [51] have made an
evaluation of risk management process models and standards, and concluded that the most
common processes in all risk management processes are: risk management plan, risk identi-
fication, risk assessment/analysis, risk mitigation/treatment/controlling/resolution, and risk
monitoring.

One of the most well known sectioning of the risk process is Boehm’s risk management
steps which can be seen in Figure 2.3 where the first division is by risk assessment and risk
control [52]. Risk assessment and analysis will be described further below while risk control
will be excluded due to the focus in this thesis on development and procedure, and not on
control and maintenance.

Risk assessment risk analysis
Risk assessment is the process of identifying, evaluating, and analysing possible risks and
their effects [53]. There is a great value and importance to risk assessment as Deng, et al. [54]
state; “information security risk assessment is the starting point of and foothold of information security
management” which is agreed by Ying, et al.:s [55] opinion of “risk assessment being the foundation
of all security technology”. Methods and models for designing a risk assessment process vary [56,
57, 55], and can include Protection Detection Response (PDR) Model, Attack tree Analysis
(ATA), and Failure Tree Analysis (FTA).

Risk assessment can, according to Boehm’s model, be further divided into three steps
of identification, analysis, and prioritisation which can be subdivided into several other

17

2. Background and Related Work

RISK
IDENTIFICATION

RISK CONTROL

RISK ANALYSIS

RISK
PRIORITISATION

RISK-MANAGEMENT
PLANNING

RISK RESOLUTION

RISK MONITORING

RISK ASSESSMENT

RISK MANAGEMENT

Figure 2.3: Risk process by Boehm [52].

steps [52], while Jaafar et al. [51] conclude that the process of risk analysis and risk assess-
ment have the same functionality. A risk analysis can be performed by various methods such
as CRAMM, OCTAVE, VECTOR, Bayesian Belief Network (BBN), Artificial Neural Net-
works (ANN), Monte Carlo analysis (MC), risk matrices or the bow-tie model [58, 59, 60, 61],
and are divided into quantitative or qualitative methods[62].

2.3.6 Verification and Validation
Verification and Validation is commonly abbreviated V&V and is the process of checking
and verifying that a system or software meets its requirements and discover errors [63, 64].
It is a process frequently used in critical systems and increase the quality of the software.
Validation includes testing specification or software at the end of development while verifi-
cation evaluates software during the various life-cycle phases to guarantee that the system or
software meets the requirement set in the preceding phase. IEEE has defined a set of verifica-
tion and validation activities in the IEEE Standard for Software Verification and Validation
Plans, which can be divided into life-cycle phases, as done by E.A. Addy [63], and include:
management of, concept phase, requirements phase, design phase, implementation phase,
test phase, installation, and checkout phase, and lastly an operation and maintenance phase.

2.3.7 Software/System Reliability
Software Reliability is one of the main concerns when developing safety-critical software
since a total absence of failure is an impossible goal to aim for [65]. It is therefore necessary
to set, and work for a reasonable level of reliability or failure rate for the system instead of
working for a failure rate of zero. Software reliability is defined as the probability that soft-
ware will not cause the failure of a system for a specified time under specified conditions. The
term is found within the scope of safety-critical systems (SCS) where several software relia-
bility models (SRMs) exist in various categories such as: software reliability growth models,
Bayesian Belief Network, test-based methods, input domain models, early prediction mod-
els, and correlation methods [66]. Bayesian Belief Networks are previously mentioned in

18

2.3 Methods, processes, and techniques

Section 2.3.5 regarding risk and is a recurring framework to use in security-related systems.
There does however, not seem to be a consensus method for estimating software reliabil-
ity and ways to improve and estimate software reliability have been attempted for several
decades [67].

2.3.8 Standards and directives
Several standards and directives have been found in the scope of critical systems. Many re-
searchers, especially in safety-critical systems, mention standards in the aviation industry
such as DO-178B [68]. The International Organisation for Standardisation (ISO), and In-
ternational Electrotechnical Commission (IEC) have several standards related to critical sys-
tems and software, such as IEC 61508, ISO 31000, and ISO 27000 [69, 70, 71]. IEC 61508 is
a safety standard for electrical, electronic, and programmable electronic safety system while
ISO 31000 is a standard intended to help companies and organisations to integrate risk man-
agements [72, 70, 73]. ISO 27000 is a series of standards for information security in a business
context and states terms and definitions where one of its standards, ISO 27001, contains the
more general requirements [74].

19

2. Background and Related Work

20

Chapter 3

Method

The following chapter describes the methods taken to answer the research questions. First,
background research in form of a literature study and interviews were conducted and is pre-
sented in Section 3.1.2 and secondly, a case study was carried out at a large company in Sweden
which is presented in Section 3.2 .

3.1 Background research
3.1.1 Literature study
Three different sources were used to find relevant literature online; Scopus (www.scopus.
com), LUBsearch (https://lubsearch.lub.lu.se/) and Google Scholar (www.scholar.
google.com). Scopus is a database of primarily peer-reviewed literature and acted as the
main search source. The book ’Software Engineering’ by Ian Somerville [2] was also used and
predominantly chapters 9-13 which were thoroughly read.

A systematic literature review was not, and would not have been possible, to conduct
in the given time frame. However, inspiration from methods and the structure was taken
and implemented from Kitchenham’s paper regarding guidelines for a systematic literature
review [75]. The study followed the three main phases of; planning the review, conducting
the review and reporting the review. The planning consisted of identifying the need of a
review and stating the research questions. Conducting the review primarily consisted of
creating a search strategy and iteratively updating it. The search strategy was to some extent
documented, even though digital libraries were primarily used where searches can be hard to
replicate [75].

Searching for literature is usually an iterative process and this process was no exception.
Many different search scopes were examined and refined during the course of conducting
the study. A large search scope was initially used and followed the procedure of using several
AND and OR statements to retrieve relevant literature. As most processes of finding relevant

21

www.scopus.com
www.scopus.com
https://lubsearch.lub.lu.se/
www.scholar.google.com
www.scholar.google.com

3. Method

information, the first few searches were large and broad, from 380 000 to 10 000 articles.
The abstract of the most relevant articles were read, and some articles were skimmed to
get a better understanding of the scope of safe software development and critical systems.
The search was then narrowed down to several smaller searches and different areas such as
business/safety-critical, safe/secure/critical business, critical systems and their techniques,
SCADA systems and formal methods. Some areas were quickly searched and understood,
like what a SCADA system is and if it is relevant to examine for this study, while others
demanded a more thorough review. Some of the most used keywords were; business-critical,
safety-critical, software, development, methods, techniques, critical systems.

As the search narrowed down, the final stage of reporting the review started and both
phases were then carried out simultaneously.

Constructing the Tables
Business-critical systems and software was the main focus when searching for literature in the
area of business-critical systems and those keywords were included when investigating which
methods, techniques, and approaches exist in the field.

One of the main searches for the literature study can be seen below. It was a search
conducted to find key ares, keywords and methods in the scope of business- and safety-critical
systems and software.

TITLE-ABS-KEY((business-critical) AND (techniq* OR method* OR approach*)
AND (system* OR software))

The first part, TITLE-ABS-KEY, defined which parts of the article would be searched
through which was the title (TITLE), the abstract (ABS) and the keywords (KEY). The AND
statements divided the search into different sections and each section could include various
OR statements to search for closely related words such as methods/techniques/approaches.
For example in the search above, both searches including the words business-critical techniques
system and business-critical methods software would be found. The search was conducted on
Scopus and included 362 articles by Fall of 2022.

The abstract of the first approximately 100 articles were skimmed through where various
key areas, keywords, and methods found were written down. One list for key areas and
keywords and one list for methods were conducted. This was done so due to some finds
being clear and stated as methods, and some finds being more of a term or an area seeming
to be important or having a high occurrence in the scope.

The lists were not conduced in a structured way, and the key areas, keywords, and meth-
ods chosen to be written down were chosen based on the author’s knowledge and understand-
ing of the abstract. For example, one abstract stated “Right selection of SDLC-Methodology using
a decision support tool can and will help successful completion of business critical software develop-
ment” [29], from this the author decided to write down SDLC to the list of methods. If an
abstract or potential methods or keywords were not instantly understood, the entire arti-
cle was skimmed to see if the article, keyword or method had any relevance in the scope of
methods for business-critical software or systems.

Once the two lists had been created, each key area, keyword and method were added one
by one to the search string. An example of which can be seen below for the word risk.

22

3.1 Background research

TITLE-ABS-KEY((business-critical) AND (techniq* OR method* OR approach*)
AND (system* OR software) AND (risk*))

Table 2.3 shows the different key areas and keywords found and the percentage occurrence
of the keyword in the main search. The percentage was calculated by dividing the amount
of articles found when including the keyword and when not. For example, the search above
including the term risk found 50 articles, which divided by 362 (the amount of articles in the
main search for business-critical) landed on 14 %. Table 2.4 was conducted in the same way
using the list of methods instead of the list of key areas and keywords. It presents various
methods found and their percentage occurrence in the main search.

The same procedure was then made for the term safety instead of business. The main
search used can be seen below and included 11 016 articles by Fall of 2022.

TITLE-ABS-KEY((safety-critical) AND (techniq* OR method* OR approach*)
AND (system* OR software))

Table 2.5 and 2.6 were conducted in the same way as the prior tables by adding, and
then removing, each keyword and method one at a time to the main search string to see their
occurrence.

3.1.2 Interviews
Three interviews were held to complement the literature search and to gather information
regarding which methods are used in the corporate world and how well-known and used the
term business-critical is. All interviews were held at the case company with two employees
working with IT and development who will be referred to as J1 and J2, and one employee
working with risk management who will be referred to as J3. All three had several years of
work experience within their fields. The interviews and notes were conducted in Swedish.

All interviews held were of the semi-structured nature where questions are planned but
not necessarily asked in a specific order which allows for exploration and improvisation [76].
Semi-structured interviews were chosen to allow for the participants to talk freely and to not
have a specific structure of the interview. The following questions and areas were addressed
during the interviews:

• How do you handle business-critical software or systems?

• What does your risk management process look like?

• How do you handle safety-critical software or systems?

• Difference between business- and safety-critical systems.

• Which methods or techniques do you use to achieve the security level you want?

• How and when have you reached "safe enough"?

• Do you follow any standards, requirements, regulations, directives, frameworks or
laws?

23

3. Method

• Which methods or techniques do you use to make sure the software and code is secure?

It is recommended to record one’s interviews to make sure no information is missed or
misinterpreted, and afterwards transcribing them. The interviews held for this thesis were
not transcribed but notes were taken. All interviewees were told and guaranteed that their
data would be anonymised and only data not sensitive and critical to the case company or
themselves would be used. After the interviews had been held, a revised version of the notes
was sent back to each interviewee for approval if desired. The notes were revised due to
security reasons where sensitive information had been removed and only the revised notes
were used for the study.

3.2 Case study
Software engineering is a multidisciplinary area and is often suitable for a case study re-
search [76]. This case study followed the often used process consisting of the five steps; case
study design, preparation for data collection, collecting evidence, analysis of collected data
and reporting.

3.2.1 Case company
The case study was carried out in the IT-department of a large company in Sweden. The
department works with IT development, infrastructure, support, and administration and all
positions are security rated due to the company’s vital societal function. This meant that more
specific information regarding the implementation of the case study and the case company
as well as some information from the interviews conducted, had to be amended and reviewed
before they could be included in the thesis.

3.2.2 The case
The case from which the case study was based, was a problem brought to the IT-department
by another department at the company that wanted to streamline communication during
critical time and events. The software and hardware were therefore business-critical and had
to be developed accordingly. Some constraints were set on the project due to the infrastruc-
ture at the case company and the security level needed to be reached. Those were that the
program should not be cloud- or web-based and that the operating system used should be
Windows.

The program consisted of a server and two different clients that communicated via a
given protocol. The server and protocol were already given by the case company and the two
clients were written in C# and using Windows Forms. The clients were mostly identical but
written as two different programs and both used the model-view-presenter pattern (MVP).

3.2.3 Case study plan
A case study can be divided as a positivist, critical or interpretive study [77] where this case
study is a positivist case study which relates to the natural science research model in testing

24

3.2 Case study

hypotheses and measuring variables [78]. Case studies in the field of software engineering
tend to be of the positivist type, especially if they in addition are explanatory [76].

In line with the process mentioned earlier, the case study also followed the plan given
by Robson with the stages; objective, the case, theory, research questions, methods and selection
strategy [79].

The objective of a case study describes what to be achieved and can be divided by it be-
ing; exploratory, descriptive, explanatory or improving [76] where this case study was of the
exploratory art where the purpose was to collect experiences, as stated in RQ2 in Section 1.2,
from the implementation of a few methods used in business-critical systems.

The case of the study describes what is studied, which in this case study were three dif-
ferent methods for developing business-critical software.

The theory outlines the frame of reference that for this thesis consists of former theory
regarding risk analysis and management, methods for code and architectural redundancy,
and code analysis.

The research questions states what the author wants to examine and investigate in a case
study (see RQ2).

The methods describes how to collect the data and is further described in Section 3.2.5.
The selection strategy concerns where to seek data and were for this case study, at the case

company and among the author’s own reflections, thoughts, and experiences.

3.2.4 Design and planning
Three different types of methods from the literature study were chosen to be investigated
for the case study. Due to the results from the interviews and the recurrence of the term
risk in the literature study, see Table 2.3 and Table 2.5, a method within the scope of risk
assessment/analysis was chosen. A method for architecture redundancy and code analysis was
also chosen due to, initially perceived, their ease of implementation. Redundancy was also a
recurring term from the interviews hence the choice of a method for architecture redundancy.

Numerous methods were not considered when choosing methods because of the scope
and time limit of the thesis and many were considered but decided not to be used. The SDLC
methods were such methods due to their wide scope and process reaching from planning to
testing and evaluation, and were not selected. Most of the stages of SDLC methods were
already planned to be implemented during the thesis, but not all and perhaps not to the
extent they are intended to be implemented.

The final choices were thus based on time, scope and ease of implementation given the
limitations and frameworks that existed.

An outline of the case study process can be seen in Figure 3.1 and each version is further
described in the following sections. Each version took a different amount of time, and the
number of weeks given is an approximate breakdown of the amount of time spent on each
version and when in time each version was made. The interviews for version 3 were conducted
during week 8, during version 4, as there was no opportunity to conduct the interviews im-
mediately after version 3 was finished. Interviews and writing in the case study protocol
followed each version to gather information and experiences regarding each method.

25

3. Method

N-version
programming

Architecture
redundancy

Writing the code

Interviews

Risk Analysis

Adjusting the code

Interviews

Writing in Case
Study Protocol

Interviews

Writing in Case
Study Protocol

Writing in Case
Study Protocol

Code analysis

Interviews

Writing in Case
Study Protocol

Adjusting the code

Interviews

Writing in Case
Study Protocol

Practical
implementation

Evaluation

Version 1
week 1-4

Version 4
week 6-9

Version 3
 week 6

Version 2
week 4-6

Final review
 week 9

Figure 3.1: An overview of the case study process.

3.2.5 Data collection
Methods for collecting data can be categorised into three methods: direct (e.g. interviews),
indirect (e.g. tool instrumentation) and independent (e.g. documentation analysis) [76] and
for this study, direct data was chosen as method. Direct data were gathered in the form of
interviews with two people from the software development team at the case company to gain

26

3.2 Case study

information, opinions, and experiences regarding the methods selected and implemented.
One of the interviewees had more than 20 years in the field and will be mentioned as I1 and
were also one of the interviewees for the background research. The other had a few years of
work experience in the field and had not been interviewed for the background research, and
will be mentioned as I2.

The overall data collection and research instruments used in the case study consisted of:

• The written code

• Code analysis

• The risk analysis

• Interviews

• Case study protocol

Even though the written code in all four versions, the code analysis, and the risk analysis
were part of the case study as methods to evaluate, they also served as a data collection tools
since data, code, and risks were presented and collected during the implementation of the
methods. One could also go back and view the results of the various methods to make analysis
and reflections.

Data was also collected from the interviews which can be seen in Figure 3.1 and the in-
terviews were, as the previous interviews for the literature study, of the semi-structured type
and contained the following questions:

• How reliable do you consider the code/project to be?

• If you had to rate the reliability on a scale of 1-10, what would it be?

• What vulnerabilities do you see in the code/project? For example; data or thread man-
agement, dependencies, etc.?

• (Between versions:) Has the code/project become more reliable since the previous ver-
sion? Why/why not?

Finally, a case study protocol was used which is describe in the following section.
Triangulation is of great importance when conducting a case study and can be done in

various ways. It can be done so by triangulating on data, amount of observers, methods,
or theory used [76]. For this thesis, triangulation on data was achieved by the amount of
observers, where more than one person at the case company was interviewed. It was also
achieved by the different methods used to collect data, where four different versions were
created and analysed by both the two interviewees and the author whose experiences were
collected via the case study protocol.

3.2.6 Case study protocol
A protocol is useful when performing a case study since it helps with data collection to make
sure no data that is planned to be collected is missed [76]. It also forces the researcher to
concretise ones research which can help all stages of the case study, from designing to data

27

3. Method

collection and reporting. It can also serve as a log or a diary and as a valuable tool for receiving
feedback and critic from others. It is beneficial to consider which strategies and techniques
will be used in the case study a priori, since it forces one to consider what, when, and how
the data should be collected and what relevance each type of data has [80].

A case study protocol was made prior to the implementation based on the outline by Per-
van and Maimbo [80] with the stages of preamble, general, procedure, research instruments
and data analysis guidelines. The main focus of the case study protocol laid on the research
instruments where data to be collected was stated which included: the code analysis tool, the
code itself, the risk analysis, interviews, and a personal diary. The personal diary acted as
tool to include and write down the author’s own thoughts, opinions, and experiences during
the case study and included three questions to be answered at the end of each week:

• What experiences or lessons have been gained this week?

• How secure and dependable is the code? What is good and what could be improved?

• Compare to last week, has the code improved or become more secure? Why/why not?

3.2.7 Version 1
A first version of the program was made and written in C# along with Windows Forms
where firstly a model was written in C# followed by an implementation of the GUI. The
GUI however, raised some problems which mainly had to do with the thread management
in the GUI. This led to some refactoring of the program as well as the introduction of the
model-view-presenter (MVP) pattern. The pattern consist of three parts where the logic is
stored in the model, the graphical interface that the user interacts with is stored in the view,
and the communication between the two is stored in the presenter [81, 82].

When a working version was finished, it was reviewed by the employees at the case com-
pany, I1 and I2, who were further interviewed. The author of the thesis also wrote in the case
study protocol and answered the given questions according to the protocol.

3.2.8 Version 2 (Code analysis)
Given the importance and occurrence of testing and validation, a method for testing the code
was chosen as a method. Due to time constraint, a static code analysis tool was used to eval-
uate and analyse the code since static code analyses are faster than conventional testing [34].
Nikolić et al. [36, 34] have analysed and evaluated three different static code analysis tools
chosen from their previous research where one was initially intended to be used for this case
study. However, due to the complex setup of the tool it was not used but instead another tool
for SCA was used where one can choose various providers to upload ones repositories.

The repository was uploaded to the SCA tool which analysed the source code and identi-
fied issues. The dashboard of the tool displayed four issue and evaluation values: the reposi-
tory’s complexity given by the amount of complex files determined by cyclomatic complexity,
the percentage of issues, the percentage of duplication and the test coverage. The issues per-
centage described and included code style problems, unused code, security issues and error
proneness amongst other metrics and gave the issues a rating between minor, medium, and

28

3.2 Case study

major. Once the upload was completed, the listed issues were reviewed and most were re-
solved according to the suggestions given by the tool.

Once changes had been made accordingly, the repository was reviewed by the two em-
ployees, I1 and I2, who were interviewed and the author took notes and answered the ques-
tions in the case study protocol.

3.2.9 Version 3 (Risk analysis)
A risk analysis was chosen as a method due to its frequency in the literature and in the corpo-
rate world. Risk is one of the key aspects of a critical system since without risk a critical sys-
tem would not exist and therefore, a risk analysis was constructed and implemented. Heavy
and advanced risk analysis methods such as Monte Carlo analysis or Bayesian Belief Network
were not considered an option due to time restrictions and for its complexity. Instead, and
for convenience, the risk analysis process the case company themselves use was chosen and
applied.

The analysis was carried out by the author and one of the managers at the department
of risk and security, and will be described as R1, and included three steps: risk analysis, risk
assessment, and risk management. All three terms are included in Figure 3.2 as headlines, but
where at the case company used as different steps.

The first step, risk analysis, consisted of identifying threats and weaknesses while the
risk assessment part included assessing the risks by making a risk matrix and a subsequent
consequence description. The rows of the risk matrix defined the probability of the risk to
occur, while the columns defined the consequence of the risk. A final risk value could then be
gathered and received a value on a scale of 1 to 25, where 25 was the most probable risk with
the highest consequence. Lastly, action proposals, ownership distributions, and timetables
were conducted for the step of risk management. The process was conducted in person at
the case company and all steps and results were written down in a template provided by the
risk manager. The notes were later analysed and adjustments to the code made accordingly.

RISK
IDENTIFICATION

RISK CONTROL

RISK ANALYSIS

RISK
PRIORITISATION

RISK-MANAGEMENT
PLANNING

RISK RESOLUTION

RISK MONITORING

RISK ASSESSMENT

RISK
MANAGEMENT

Figure 3.2: Risk process by Boehm [52] with the steps used in the
case study highlighted in orange and with a dotted line.

29

3. Method

3.2.10 Version 4 (Architecture redundancy)
The third method chosen was a method for architectural redundancy and consisted of an
implementation of N-version programming where the programming languages were to be
diversified. This was chosen due to its ease of implementation given the framework of the
project as well as the importance of secure and well designed code. Writing in several pro-
gramming languages can help achieve secure and well designed code since, as mentioned in
Section 2.3.3, writing in several languages can help detect issues and guarantee safer and more
reliable code. The two languages chosen for implementing N-version programming were ini-
tially C# and Python but, due to limitations and issues with the framework, neither Python
nor a second programming language beyond C# could be used. Java was also tested but could
not be implemented with the existing program. The difficulties with a second programming
language is further discussed in Section 5.7.

Therefore, a second variant of N-version programming where the implementation was di-
versified was chosen. This was done by having two versions of the model be written by two
different persons from the same specification in the same programming language. The out-
puts from the different versions were verified to be the same before processed by the rest of
the program. One version of the model, model 1, was written by the author of the thesis.
The other model, model 2, was written by an employee at the case company who had not
previously been interviewed or shared information about the research or the thesis and will
be mentioned as M1. M1 had over 25 years of experience in the field of IT.

Only the model, and not the presenter nor the view, was duplicated and their outputs
verified. This was due to the logic being in the model and that it would not have been possible
to test and use two different views.

When the second variant had been integrated into the program, it was reviewed by I1 and
I2 as for the prior versions. Interviews were conducted and the case study protocol updated.

A thought of using a chat bot for duplicating the model arose during the course of im-
plementing N-version programming and was tested for the discussion, when all methods had
been implemented and final interviews had been held.

3.2.11 Final review
Lastly, a final review of the methods and the case study was made by conducting interviews
with I1 and I2, and the author’s final thoughts were written in the case study protocol. The
interviews were carried out in the same way as before and were based on the following ques-
tions:

• Which of the methods do you think contributed the most to the project?

• Which of the methods do you think contributed the least to the project?

• What are you taking with you? Is there any method which you believe you will imple-
ment more or less and have you gained a different view on any of the methods?

• When do you think the program is safe enough, when would you give the program grade
10?

30

3.2 Case study

• Do you have any other comments or opinions on the methods or the concepts of
business-critical and critical systems?

• What is your final grade?

3.2.12 Ethics
Ethics are important to consider when conducting interviews [83] and this case study took
inspiration from the four ethical principles of: ethical considerations, scientific value, con-
fidentiality, and beneficence, documented by Singer and Vinson [84]. This was done by in-
forming all participants of the relevant facts regarding the study before their inclusion as
well as sending back notes taken during the interviews for consent before using any of the
information in the study, if they so desired. The study did have scientific value which Singer
and Vinson states a study should to bring people in to participate and exposing themselves.
Confidentiality is also of great importance and was considered when performing interviews
and managing the subsequent notes. All notes were saved on the author’s computer and
scheduled to be deleted after six months from the date of the interview. The beneficence of
the study is a balance of risks, harms and benefits which was considered to be positive in this
study due to the low level of risks and harms and the benefits it could bring.

In addition, all interviewees as well as the name of the case company were anonymised
and sensitive data excluded. After these actions were taken, no other ethical risks were found
according to the author.

31

3. Method

32

Chapter 4

Result

The following chapter presents the results of the interviews held for the background research
as well as the findings of the case study from the different versions, the final review, the
interviews, and the case study protocol.

4.1 Background research
4.1.1 Literature Study
The result of the literature search can be found in Section 2 and includes various methods,
techniques, processes, and approaches for how to develop critical and business critical soft-
ware as well as describes the terms.

4.1.2 Interviews
The three interviews held at the case company gave input and information regarding how
business-critical software is viewed and developed at the company and worked as a valuable
compliment to the literature study.

The general view of the term business-critical was that the term is somewhat used, but
that it is rather the terms of safety and security that is thought of and in focus. The risk
manager, J3, stated that the management of business risks are not as clear as those of safety
and security, but that the business criticality is important when prioritising projects and that
there exists a connection between safety/security and business since security flaws can have
major financial consequences. J3 also seemed to be more familiar with the term and concept
of critical systems than the two people working with IT, J1 and J2.

J2 stated that they actually work with several business-critical systems after given some
thought on the matter, and that many systems are in fact business-critical. The interviewee
did not however, give much thought or reflect on working with such systems and mentioned

33

4. Result

that one sometimes can be a bit blunted with them stating “In the beginning you are afraid of
everything and of making mistakes but now as time goes you may be more careless”.

All three were asked about various methods, techniques, standards, laws, and frameworks
which they use or follow to make the software or system safe and secure. J3 described that they
try to start and proceed from ISO standards, especially ISO 31000 and ISO 27001, and that a
risk process and NIS directives are used at the company. The risk process is not a stand-alone
process but a support process integrated and used in other processes where various tools and
templates for conducting a risk analysis exist as well as a risk matrix for the risk evaluation.
Checklists for typical risks exist as support, but no process or project is the same and therefore
adaptions of methods and tools need to be made for their different purpose. The interviewee
also mentioned that the rapid digitisation and technology development increases the risks
and the time put on constructing a risk analysis. Security measures may therefore become
insufficient but it is highly likely that managing risks properly will pay off in the long run.

The use and implementation of various steps of the risk process, ISO standards, and NIS
directives could be confirmed by one or both of J1 and J2 and were some of the methods
mentioned when asked which types of methods, techniques or standards they use to create
safer and more reliable systems. Other methods mentioned from J1 and J2 were two-factor
authentication, hyperconverged infrastructure, unit-tests, using backups, physically locked
environments, conducting background checks on personnel, segmented networks, code sign-
ing, redundancy, and having different systems for development, test, and production. J1 also
stated that they get in contact with the department for risk and security to get their help and
input when they believe they have a high risk for a specific project. The department also do
research on new programming languages and tools before they include them in their systems
as a security measure, as stated by J2.

When asked when they consider to have reached safe enough, J2 answered that it is more
of a gut feeling that no more testing can or needs to be done. J3 answered that the con-
clusions from a risk analysis are primarily a recommendation and part of a more extensive
decision basis but that the risk analysis are judged by a manager who approves it, or that the
responsibility lies with other roles in other processes.

4.2 Case study
Below the results of the case study are divided by the four different versions created and
concluded by the final review of the program.

4.2.1 Version 1
The first version of the program was based on the specifications given by the case company
and was written in C# along with Windows Forms as the graphical user interface. It was
solely written by the author of the thesis with occasional help from various people at the IT-
department. The project consisted of one repository containing two different clients with
slightly varying specifications.

34

4.2 Case study

Interviews
The two interviews held raised several concerns regarding the code, both smaller and larger.
When asked how dependable the code was on a scale of 1-10 the answers varied. The more
senior interviewee, I1, rated the code to a 3 much due to the lack of unit tests and exception
handling. Comments were also made on the division of the two clients as they consisted
of primarily identical code and I1 stated that having almost the same application in two
different versions was not reasonable.

The more junior interviewee, I2, gave the same version grade 7 and did not comment the
lack of unit tests or exception handling. I2 commented on possible security and dependability
issues with the program having to do with server problems and issues with dependability
between the clients, and asked how the program would react and respond in those cases.

Both interviewees mentioned hardcoding, and not creating a config-file, as a dependabil-
ity issue. They also both stated that they had too little knowledge about some of the thread
handling to make comments or have an opinion about it but that it might cause problems if
not handled properly. Other comments made where that I1 mentioned that it was somewhat
difficult to assess the reliability and I2 stated that their knowledge regarding the GUI was
not the greatest, but that they most likely would have written a program quite similar.

Case study protocol
Several thoughts, experiences, and comments were written down in the case study protocol
during the course of developing the first version of the program. A comment made early
was regarding having the program to be inside the case company’s own networks and not
accessing the internet and the simplicity, and security, it adds.

A concern was raised regarding the use of open source packages and libraries which were
intended to be, or were, used in the program. The packages and libraries were eventually
presumed to be solid due to their reputation, number of downloads, and status in the field.

Thoughts regarding the GUI also arose and became a recurring theme. The introduction
of the GUI initially made the program not thread safe and significantly lowered the safety
and dependability of the program. It was later resolved which increased the dependability
and also lead to the use of the model-view-presenter pattern. The use of MVP was in the
case study protocol considered to provide a probable increase in safety and reliability due to
the addition of structure, readability, and interchangeability to the code. However, concerns
still remained regarding the thread safety since the program was the first time the author
used C# and Windows Forms and was not considerably confident in the programs thread
management.

On the question whether the code had improved compared to the week prior, the answers
during the weeks of the first version was that it was more or less the same from week to week.
Some issues from the week before could have been resolved but then new ones had arisen
instead. An example of this was between week 2 and 3 where the MVP pattern had been
introduced but thread issues still remained. A thought presented in the protocol was also
that although minor or major issues could have been resolved by the following week, the
author also gained knowledge and experience regarding business-critical software and the
programs and tools used, which might have led to the author being more critical and seeing
more possible security flaws than the week before.

35

4. Result

4.2.2 Version 2 (Code analysis)
The first check of the program using the SCA tool returned a result for three of its four
evaluation values, see Table 4.1. Since no unit tests were conducted and included, the value
for test coverage gave a percentage of zero and will not be discussed further.

The majority of the issues given by the tool were resolved and the changes made to the
program were: breaking out of the recursion and infinite loop as well as updating and re-
moving the unnecessary comments, parenthesis, parameters, and definitions suggested by
the tool. The updated code was once again uploaded to the SCA tool where new evaluation
values were given and these along with the old evaluation values can be seen in Table 4.1.

The final value of the program’s complexity given for the files cyclomatic complexity
landed on 6% which was the same value as the first upload. This was due to the tool not
giving any information as to where the cyclomatic complexity resided and how to minimise
it, and therefore no effort was put to solving it.

The percentage of duplicated files were originally 28 % and decreased to 9% after modifi-
cation had been made according to the comments from the tool. However, this was without
any active actions taken to minimise the duplication since making a generic class instead of
having two versions, was considered to big a project to be carried out in time. The location
of the duplication was also not specified by the tool which did not facilitate a solution to the
issue.

The value for the issue percentage landed at 13% and included minor, medium, and major
issues. Four major issues were given and several medium and minor ones. The major issues
consisted of: changing the visibility from const to readonly for a variable, breaking out of
recursion in a loop, updating a static field from a non-static field, and changing the visibility
of a static variable. The medium and minor issues included removing unnecessary comments,
parenthesis, parameters, and definitions.

The tool also gave a rating of the quality for each file in the repository on a scale of 1-6 and
displayed the issues in the files in a structured manner as well as stating how long it would
approximately take to resolve them.

Table 4.1: The result of the evaluation values given by the SCA tool
before and after issues were resolved.

Evaluation value Before After
Complexity value 6 % 6 %

Duplication 28 % 9 %
Issues 13 % 2 %

Test coverage 0 % 0 %

Interviews
Both interviewees gave the same answers to the first three interview questions after version 2
which were that the reliability, rating, and vulnerabilities were the same as the prior version
and that the differences were minor. I1 mentioned that it was a good thing that the recur-
sion in a loop was broken which increased the dependability rating the interviewee gave the

36

4.2 Case study

project. The same interviewee also mentioned that it was an improvement that some param-
eters had changed from public to private but that I1 was hesitant to the impact changing to
or from static had. I1 also thought that the SCA tool should, but did not, catch and comment
on hardcoded values which was considered almost as bad as not breaking out of recursion.

I1 gave the program grade 4 while I2 gave it grade 7.

Case study protocol
Comments written in the case study protocol addressed that the suggestions and issues given
by the tool were mostly medium or minor and felt somewhat unnecessary, such as removing
comments or unnecessary parenthesis. However, it also stated that it helped the code become
more clean and readable which might have increased the safety and dependability of the code
but how and in what ways was not known. The issues given also reminded of errors received
in code editors such as Visual Studio Code which made the author of the case study protocol
question why an additional tool would be needed. Although the issues resembled each other,
they were not identical and the tool helped to find additional issues.

The case study protocol included comments on the tool’s smooth connection with git and
that each push was automatically forwarded to the tool and reviewed. This made the tool easy
to use in that one quickly and automatically got a review of the latest commit. The tool did
however, not have support for editing and making changes directly in the tool. Instead one
had to go back to one’s own editor to fix the issues. This was stated to be a bit tedious since
one had to find the right file and line for every minor fix and it was particularly enervating
since the repository had a few lines of duplicated code.

The overall evaluation and opinion about the tool was that it did not increase the security
or dependability considerably and that unit tests or a code review might have been better than
using a SCA tool. Comments and issues mentioned from the interviews held after version 1
and version 2 was considered contributing more to the program than the code analysis itself.

It could conclusively be concluded from the protocol that the second version was better
than the first due to the changes made, even though they were relatively few and small.

4.2.3 Version 3 (Risk analysis)
The risk analysis identified three primary risks for the program; risks regarding the person-
nel, instructions, and computer communication. The risk analysis was followed by the risk
assessment which gave varying results, where the risks regarding instructions and computer
communication received a higher value for their probability of occurrence than the risks for
personnel. All three risks had the same high value for consequence which ultimately lead to
the risk value being higher for instructions and computer communication than for personnel.

The risks regarding personnel and instructions were not risks which could be minimised
or resolved by changing anything in the program or the code and thus no changes or measures
were taken due to them. Risks regarding personnel considered sudden illness or deviation
from the workplace which was considered to have a low probability while the risks con-
cerning instructions included vulnerabilities in regards to inaccessible, missing or incorrect
instructions which would lead to erroneous or non-existent management of the system and
had a higher probability.

37

4. Result

The risks concerning computer communication regarded cyber attacks, bugs in the sys-
tem or the human error which would lead to consequences such as the system going down and
that information would not reach those involved. This lead to measures taken such as better
error handling regarding the connection with the server. It included that the program visu-
alised the connection and its status, showed error messages when called for, and reconnected
in a better manner.

Interviews
The results of the interviewees were to a large extent similar. Both interviewees increased the
rating of the program by 1 step compared to the version before, but they still thought that
vulnerabilities remained. Interviewee I2 mentioned that the dependability had increased
now that you get an indication of issues with the connection, which was consistent with the
answer of I1 who said that it is safer now when they know, and get indications of, if things
are alive or not. I2 also brought up that visualisation is good and that one strives for errorless
programs but that simply visualising issues goes a long way.

Final thoughts from I1 was that the interviewee thought that the risk analysis would
include more points and that it would have been a better risk analysis if an employee from
the IT-department, with their experience, had joined in. The grades for version 3 were 5 from
I1 and 8 from I2.

Case study protocol
The case study protocol for the third version stated that the program had improved after the
risk analysis due to the updates made. The risk analysis lead to the author going through
scenarios regarding the consequences of the risks with computer communication, and tried
to find solutions to minimise or completely eliminate those. However, the only solutions
found that were feasible within the time frame and given resources, were solutions regarding
connection and error messages. The protocol stated that a few other potential consequences
were considered but once they were troubleshooted, they were considered already solved.

It was also mentioned in the protocol that although the risk analysis did not result in a
numerous amount of changes, it did bring up risks which the IT-department might not have
thought of, such as the risks with personnel and instructions. Even though those risks did
not lead to actions, it was considered valuable and important to mention and reflect around.
It was reviewed as a good complement to risks already thought of by the IT-department.

Another thought raised was an issue with not knowing if a client had been hacked or not
but were initially thought to be too big a problem to solve in time.

Overall, the risk analysis was considered helpful and increased the dependability making
version 3 better than the previous one.

4.2.4 Version 4 (Architecture redundancy)
The architecture redundancy resulted in two different versions of the model, which both
used the same library and its functionality for the connecting to the server. The models were
around the same size where model 1 consisted of 168 lines of code and model 2 of 204 lines.
Both models met the specifications and worked as intended.

38

4.2 Case study

Some alterations had to be made to the presenter of the program to incorporate the
models as it was not clear from the specifications what format the output would be on. The
output from model 2 was therefore reformatted to match that of model 1 and the outputs
were then compared. If the outputs did not match, the program would not work as intended.

The comparison of the outputs did not apply to a disconnection from the server which
was an intentional decision. If a connection of one of the clients would go down and not the
other, the comparison of the outputs would not work but no warning would be seen. Due to
this, and given the severeness of a disconnection-event, if one of the clients would disconnect
it would be displayed even though the other client would still be connected. However, this
incident never happened during the course of testing and running the program.

It was not only the output from the models which were duplicated, but also a function-
ality of locking the work station for the user. The two models solved this in different ways
where model 1 started a new process disconnected from the program while model 2 kept the
process within the program keeping the control over it.

Interviews

The interviews held yielded some similarities and differences. Both interviewees stated that
the security and dependability had increased, but not by the same amount. They also said that
N-version programming would probably have added more value if the program was bigger
since as it was, the models were fairly small and similar. Interviewee I1 raised the grade by
2 points while I2 kept it the same grade as before. I1’s comment on the grade was that it is
important that the locking of the work station is done in the right way and that the process
is kept internally within the program.

I2 considered the dependability the same as before, as the vulnerabilities from the last
version remained but did consider the double-checking of the model’s output and keeping
the process internal as good contributions even though keeping the process internal was not
so revolutionary that it would raise the grade. The same interviewee also said that the models
felt like two different styles of the same answer and that it does detect anomalies, but that
it would have been more valuable in a larger program. On an added question to I2 regarding
if the person had used N-version programming before, the interviewee answered that they
had not but that one maybe should, however when was unknown. I2 believed that there are
better “sanity checks” such as asking a colleague and having a mini code review than using
N-version programming.

I1 expressed that both models were similar and that it was hard to know what they would
have done differently themself to make the program safer and that the program required more
try/catch-statements and better logging. It was stated that N-version programming did add
value but that it was a small program and it might have been more optimal if the second
model had a superb error handling because then one could have found issues not currently
found due to the similarity of the models. I1 believed that the method was on too small a
scale to show an effect but that it might have had one if N-version programming had been
used for all steps and parts of the project. The interviewee also stated that they believe in
N-version programming since more developers are better than one.

The grades given from both interviewees were grade 7 from interviewee I1 and grade 8
from I2.

39

4. Result

Case study protocol
The case study protocol regarding the fourth version stated thoughts and experiences regard-
ing how troublesome it can be to try to incorporate another persons code to your already
existing program. The author experienced that it took longer and was more difficult than
expected, which by a large part was due to the specifications not being clear enough. The
output of the different models were therefore not in the same format and had to be con-
verted to match each other.

A second thought was how much the method contributed to the project. On one hand
it did, by finding a better and more secure solution to the locking of the work station and
double-checking that the code and connection was reasonably made, but on the other hand
the difference and safety enhancements were not that great. However, it was a good and
comforting check for the author as a student and not very experienced person in the field
yet and to the project, by having a lifeline for making sure that the messages and connection
was working properly. It also gave the author reassurance that model 1 was not way off in its
solution.

The author also thought that it was good and valuable that the solutions for locking the
work station were different because it helped show security flaws with the initial model. This
was however, an issue raised by I1 during the interview after version 1 of the program.

Overall, the author stated that the code for version 4 was better than the code for ver-
sion 3.

4.2.5 Final review
The final review of the methods showed that the interviewees found the code analysis con-
tributing the least to the project which was also seen in the case study protocol. I1 men-
tioned that the code analysis helped find basic issues but did not find hardcoded values while
I2 stated that the code analysis mostly gave syntax errors. The case study protocol described
that programs such as Visual Studio Code already give a great deal of help and error detection
like the ones received from the tool.

The method contributing the most to the project was, according to I1, N-version pro-
gramming which the interviewee believed was a good method but would give more value to
a larger project. I2 also thought N-version programming was a good method to use but was
unsure how much it contributed to this given project. It was more of a “sanity check” which
the interviewee stated might be what N-version programming is, and that Google says the
same thing regardless of who is googling, referring to the use of N-version programming with
two different persons.

“Google says the same thing regardless who is googling.” (I2)

The same interviewee also expressed that it was unfortunate writing in two different pro-
gramming languages could not be done and that it would have been good to see the complex-
ity of the programming languages. I2 also stated that there is a reason for writing different
programs in different languages since various programming languages have their advantages
and that version 4 was the method the interviewee preferred the most out of the four since
it was good for robustness and identifying issues.

40

4.2 Case study

The case study protocol also mentioned that writing in a different programming language
would probably have given more to the program and project and that N-version programming
for this specific case was unnecessary, it might have been enough and more valuable to ask a
colleague for a review. Using a code review was mentioned as a very good method and as a
method that might have contributed more than all three methods combined.

The case study protocol considered the risk analysis as the highest contributor to the
program out of the three methods implemented since it gave a broader view of the problem
and raised issues not thought of before.

On the question what you take with you, I1 answered that they believe building a business-
critical system requires multiple iterations of the code where one gets continuous input and
review. I2 answered that they will not use any of the methods, but that the conversations
about the project and code have contributed a lot. The case study protocol stated that it
can be good to have the methods used in the back of your mind, but that code analysis to
some extent is already built into other tools and that N-version programming is too big a
project and expensive for some situations. The risk analysis on the other hand, could be a
very valuable method if the system is critical enough to require one.

When asked when they think the program is safe enough and would have given it grade
10, I1 replied that one might think they have written a program of grade 10, but then a second
person reviews it and disagrees which is why using N-version programming or a code review
is a good thing. It was further stated that grade 10 does not exist since you yourself have
limitations and that there are always room for improvement. The code might become a 10
but then perhaps the readability is set to a 3 since the program becomes too complicated. I1
concluded by saying that a program is good and decent if you have a grade 8 or 9. I2 answered
on the same question that it is safe enough after thorough testing and test deployment, but
that it is hard to know which time frame to set. The answer applied to both when enough
had been reached and when the program would get grade 10. However, the interviewee then
asked themself a rhetorical question if one ever has a program of grade 10.

Regarding the term business-critical, I2 mentioned that one has to ask a lot more ques-
tions when it is critical and that one wants to know and have control over as much as possible.

The interviewee’s final grade of the program was asked one last time which resulted in I1
giving it grade 6 and I2 grade 8 where I1 stated that there were still improvements needed to
be made. The grades for the different methods and final review can be seen in Figure 4.1. The
case study protocol also stated that the program had improved in safety and dependability
but that issues still remained.

After the final interviews were conducted, the use of an AI based chat bot to duplicate
the model for the N-version programming method was tested. This was done to see potential
similarities and differences both in time and performance, between the model produced by
M1 and by the chat bot. Both models were very similar and connected to the server and
locked the workstation in the same way. The chat bot produced a solution in a few minutes
while M1 did so in a week and a half in parallel with other tasks. M1 stated that if they would
have solely focused on the model, it would have taken M1 one to two days to write the model.

41

4. Result

Version
Version 1 Version 2 Version 3

I1Grade

1

Version 4 Final review

2

3

4

5

7

6

7

8

9

10

7

8 8

5

4

6

7

8

3

I2

Figure 4.1: A diagram of the interviewee’s grading from version 1
until the final review.

42

Chapter 5

Discussion

This chapter discuss the results presented in Chapter 2 and 4. Firstly, terms and findings from
the literature study is discussed followed by the choice of method for both the literature and
case study. Lastly, the three different methods implemented and their results are analysed as
well as the final review and the choice of the methods implemented.

In the following sections, discussion about the validity of the thesis will be incorporated.
The validity states how trustworthy the results are [76] and can be viewed from four different
aspects: construct validity, internal validity, external validity, and reliability [85]. Construct
validity is an aspect of whether the researcher or the case, has a sufficient set of measures and
if the measures represents what was investigated. Internal validity concerns the causality of
the case and its results and if all factors affecting the results have been considered. External
validity regards if the results can be generalised and also apply outside the scope of the given
study. Lastly, reliability concerns whether a later researcher can follow the steps taken to
conduct the case study and get the same results and conclusion.

5.1 Business-critical
The term business-critical can be applied to various areas but appears to be significantly
smaller and less used than the other types of critical systems where safety-critical is the term
primarily mentioned in the literature. This is something which the interviews confirmed
where the employees at the case company stated that they seldom use the term even though
one interviewee, after some thought, realised that they work in several business-critical sys-
tems. Neither the interviews nor the literature study provided any answers to why that is.
It could have to do with several different things such as the term not being as well-known,
that there is no use for it, that most systems are safety- or mission-critical, that all systems
are put under one roof as safety-critical systems or that most business-critical systems are
safety-critical in one way or another.

43

5. Discussion

5.2 Business- vs safety-critical systems
Given the answers from the interviews stating that the terms safety and security are in focus
rather than the term business-critical, a conclusion may be that business-critical systems are
developed in the same way as safety-critical systems. The risk manager’s opinion that there
exists a connection between safety/security and business since security flaws can have a major
financial consequences, contributes to that thesis as well as the major difference in search hits
between business- and safety-critical. On the other hand, one could also draw the conclusion
that business-critical software is developed in the same way as non-critical software since the
term is seldom used according to the interviews and literature.

There are several resemblances between business- and safety-critical systems and software
as mentioned in Section 2.2.2 and some systems may have the consequences of both. How
these then are categorised was not found in the literature and unfortunately not asked in
the interviews. They may then be classified as safety-critical systems as it is the more severe
classification of the two and with more critical consequences but they may also be classified as
both. Classifying a system which has both safety- and business-critical consequences as solely
business-critical seems less likely due to the consequences being less severe. The difference
in severeness and criticality may however also be discussed and depends on the viewer. Some
may say that loosing several trillions of dollars is more severe than a smaller chemical leakage
affecting the surrounding environment for a lesser period of time, or that any loss of life or
property is invaluable and cannot be measured in money.

Given the definitions of the two terms, it could be argued that all safety-critical systems
at a company are business-critical too, since any failure leading to loss of life, significant
property damage or damage to the environment would probably damage the company’s rep-
utation and result in a high cost for the business. However, the other way around does not
have the same implication.

In the literature study, methods for safety- and business-critical systems were investigated
to find as many methods for developing a critical system as possible. Both types of critical sys-
tems were considered to be reasonably similar and since the term safety-critical was exceed-
ingly more widespread than any of the other types of critical systems, the searchers including
the term safety-critical gave a broader basis. The searchers including only the term business-
critical did not contribute to near as many methods found as including safety-critical and
would not have given enough foundation for the thesis to build off. The reason for that
could have to do with the term not being as well-known and widespread and therefore not
used as much, or that systems may be safety- and business-critical but only referred to as
safety-critical. It could also be because there are far fewer business-critical systems than
safety-critical ones, that methods for business-critical systems are very few or them not at all
being the same as the methods used for safety-critical systems.

5.3 Safe or reliable enough
A question that was raised and also asked during the interviews for the literature study was
what is enough?; when is the system safe, dependable or trustworthy enough or can such a
question even be asked. Different answers were given such as it being a gut feeling or that it
is when a higher or more qualified manager accepts the level the program is at. The question

44

5.4 Method

was also found in the case study protocol as a concern and something that had been thought
about. The program did increase in dependability from version 1 to version 4 according to
the interviewees and case study protocol, but when would the program be good enough; was
it when reaching grade 8 or 9 or only when reaching grade 10 and will a program ever reach
the highest grade. These were questions and thoughts also raised by the interviewees during
the final review, who stated that grade 8 or 9 is good and decent but that a program might
never reach grade 10.

Furthermore, it is interesting to consider how one should reach safe enough or the high-
est grade possible. Should one implement as many business-critical methods as possible or
implement one to perfection. The answer to that seems to be that it is an iterative process
and that working and aiming for high security is a continuous and ongoing process.

5.4 Method

5.4.1 Literature study
The literature study focused primarily on business-critical software and systems but included
safety-critical systems and their methods as well. Both mission- and security-critical systems
were left out of the larger search for methods, the reasons for which have been previously
explained. However, mission- and security-critical systems might have been included and in-
vestigated further to perhaps discover more methods relevant for the area of business-critical
systems and to get a better understanding of critical systems, their methods, and how they
can be developed.

Solely examining business-critical systems could have been done for the literature study
which was initially done, but after several days of searching for literature and trying to find
methods it was realised that solely using the term business-critical would not contribute
with sufficient basis for the thesis. The interviews also stated that the term is seldom used
and indicated that people developing these kind of systems do not give much thought to
specific methods they use but rather try to make them as safe and secure as possible. This
made it difficult to pinpoint specific methods strictly linked to business-critical systems but
rather gave information regarding how they try to make systems more secure. However, the
interview question concerning which methods or techniques the interviewees use was asked
in regard to to achieve the security level you want and not in regard to business-critical systems
in specific. This was done so to obtain as many methods as possible from the interviews,
but the question could have been asked in hindsight with regards to business-critical systems
as well. Still, the question asked as it was gave the interviewees more leeway to answer the
question and potentially contributed with more methods. Not asking specifically regarding
business-critical systems could be a threat to construct validity since the measures did not
represent what was investigated.

The method for conducting Table 2.3, Table 2.4, Table 2.5, and Table 2.4 could have been
done in a more structured and methodical way. As it was done, by writing down key areas,
keywords, and methods found based on the author’s own understanding of the abstract and
the relevance of the keywords and methods, is difficult to replicate. If another person would
find keywords and method based on the abstract of the first 100 article’s found by each main
search, the tables would probably be different. If a more senior person or someone with

45

5. Discussion

more knowledge in the field of critical systems were to conduct the same type of tables from
the main searches, he or she could potentially include more or fewer terms, or completely
different ones. This could definitely have been a threat to the reliability of the thesis since
it could be difficult for a later researcher to follow the same steps and get the same result.
However, the key areas, keywords, and methods found were considered by the author to be
relevant to the literature study, but perhaps additional terms could have been found if the
procedure was done in a more methodical way or by a more knowledgeable person.

Some of the methods in the literature study were investigated in more depth than others.
This had to do with the methods occurrence in the literature, the interviews, and dialogues
with supervisors and how modern, well-used, and easily integrated they seemed to be accord-
ing to the author. For example, formal models were described as they appeared frequently
in the literature and N-version programming seemed to be one of the easier methods to im-
plement given the limitations of the project. One might have had a more structured and
consistent plan regarding which methods to investigate to minimise bias, but a sift of meth-
ods had to be made for the literature study to be of reasonable size and the reasons mentioned
above seemed to be a good starting point.

As mentioned earlier, the methods presented in this report in no way cover all methods
and techniques that exist in the scope of business-critical systems and critical systems in gen-
eral, but is an attempt of presenting which techniques exist for developing business-critical
software.

The interviews held for the literature study contributed with a clearer picture of which
methods are used in the corporate world and how the use and image of critical systems and
business-critical is. It would however, been beneficial if more interviews were conducted and
especially with people working at other companies than the case company. It would have
contributed with a broader view of the terms and provided more support to the conclusions
and assumptions made.

5.4.2 Case study
The method and steps taken to conduct the case study were based on convenience and time
where the three methods chosen seemed like a reasonable workload. If there had been more
time and resources for the project, other methods might have been examined and imple-
mented such as SDLC methods and organisational methods for quality assurance, another
safety architectural pattern, paying hackers or unit tests. However, formal methods would
either way not have been implemented due to their complexity and, what it seems from the
interviews and conversations with the supervisor, low usage and anchoring outside of litera-
ture. Not including methods on an organisational level could be a threat to construct validity
for the case study by not including sufficient measures.

Validation and verification were two terms frequently appearing in the literature, pri-
marily for safety-critical systems but the process was not implemented for the case study.
This was due to the fact that V&V concerns the testing and evaluation of specifications and
requirements for the various life-cycle phases, not all of which were included in this project.
It was also considered that testing and evaluation of specifications would to some extent be
included in other methods.

The interviews contributed immensely to the case study and thesis with their input re-
garding business-critical software, the methods used, and the final review. Although the case

46

5.5 Code analysis

study protocol and interviews were in agreement on much, the interviews contributed to
new thoughts and opinions from people not involved in writing the code and with more ex-
perience in the field. For example, the interviewees and the author did not agree on which
method contributed the most to the program and gave varying importance to certain im-
provements in the code. An opinion and thought that also applied to the previous interviews
or the literature study, were that the interviews could have been recorded and transcribed for
better accuracy and allowing the interviewer to be more involved and engaged in the conver-
sations. The interviewer did believe they were involved and engaged, but might have been
more so if they did not have to focus on taking notes simultaneous. This could be a threat to
internal validity since it could have affected the result of the interviews.

Asking the interviewees to grade the program occasionally seemed to be a difficult ques-
tion given that the question is so definitive, one has to answer a specific grade and cannot
be vague. It is also a question not usually asked regarding a program and hence whether it is
a good question to ask is debatable. However, it did pinpoint and confirm the interviewees’
opinions regarding each method and structured the results in a good and comprehensible
way.

Input and comments from the interviews in some ways became a mini code review, which
in itself is a method used for developing critical systems. To not include an additional method
or affect the result of the other methods, input and comments made from the interviews re-
garding the code was not taken into account when the succeeding versions were developed.
However, it can not be guaranteed that the author was not biased by the comments made.
A better approach to reduce any potential impact from the interviews would have been to
have an outside person conducting them or to conduct all interviews once the final version
was done. For the last approach, all versions could then have been finished before the inter-
viewees would start to review the code and get interviewed regarding the different versions
and methods. This was not thought of in advance, hence the procedure turned out as it did.

The overall opinion of the case study protocol were that it was a valuable tool for writing
down and remembering the author’s thoughts, experiences, and opinions. This was shown,
for example, once the notes were compiled and the author believed they remembered their
opinions and experiences but it turned out they did not. It was also a good tool to force the
author to continuously write down and analyse each method and step of the process.

5.5 Code analysis
The result given from the SCA tool after the changes made based on the tool’s own recom-
mendations, were an improvement in duplication from 28 to 9 % and a decrease of issues
from 13 to 2 %. The reduction in duplication was puzzling given that no specific measures
had been taken to reduce it since a total reduction of duplication, i.e. making a generic client
instead of having two versions, was considered to big of a project to be carried out in time.
Minor changes were made to the program but not as major as the reduction seen. It could
have had to do with the removal of miscellaneous program files, a bug in the tool or, which
is less probable, the minor changes made to the program. The issue reduction, on the other
hand, was a result of active actions taken after the tool’s comments and recommendations
and was considered a decent reduction. The last two percent consisted of four varying issues
where two were in a Windows-file not constructed by the author and not considered an issue

47

5. Discussion

needing to be fixed, and the other regarded defining two classes as partial, which was a sug-
gestions given by Visual Studio as well. The class definition was considered minor and since
given by the code editor, it was not considered a major issue and therefore not resolved.

An early analysis made regarding the code analysis, and which was found in the case study
protocol, was that another tool or method would have been preferred over the code analysis.
The SCA tool used gave many but not very relevant error messages and the case study protocol
mentioned that such messages to some extent are already given in code editors. The necessity
of a SCA tool is therefore debatable, but it could have to do with the specific SCA tool used
or the size and complexity of the program. A larger and more complex program might have
benefited more from the tool, but it is purely a guess and a given opinion regarding SCA
tools are that they generate a lot of output so that one feels as though you have received value
for money. The specific tool used could be a threat to the internal validity of the case study
since the result of the tool could primarily be based on the specific tool itself, and the use
of another SCA tool could have led to a different result. This applies to the risk analysis
and N-version programming as well. If a different type of risk analysis or different type of
diversification (for example on programming languages) had been used, the result of those
methods might not have been the same.

Unit tests were mentioned several times throughout the process, both by the interviewees
and in the case study protocol and would according to both have been a better choice of
method than the code analysis. It was sifted out due to time constraints but is one of the
methods the author would have used if redoing the project.

The duplicated lines of code could not be pinpointed but was most likely due to the two
client versions being vastly similar. Since the location of the duplicates could not be seen
and due to the substantial work of making the clients generic, it was decided not to be fixed
or solved even though it was also mentioned by I1 after the first version. It was considered
being to time consuming and not giving enough value to the security of the program for the
time it would take to solve.

5.6 Risk analysis
The risk analysis contributed with the findings of additional risks. Some, which had not and
most probably would not, have been thought of by the author or the interviewees I1 and I2
since some of the risks and their consequences were not mentioned by either one prior to
the risk analysis despite having had two interviews each. The majority of the risks and their
consequences were not issues that could be resolved solely by the code or the program and
the risk analysis can therefore be considered to have contributed more to the project than
to the specific program or code. This also confirms the division and placement in Figure 2.2
where risk management methods are included among the project methods.

The risk analysis could have benefited from having a more senior and experienced per-
son from the field of IT which was confirmed by the comment made by I1 regarding having
a person from the IT-department join in on the risk analysis. Several more risks and conse-
quences would then probably have been discovered as the author had never before conducted
a risk analysis, worked in the specific IT-environment at the case company or developed a
program like the one developed. The risk manager also had limited insight and experience
with the IT-environment and programming in general, and was therefore unable to assist as

48

5.7 Architecture redundancy

much regarding the technical risks as probably needed.
More could have been done to the program because of the risk analysis which could be

a threat to the internal validity since all factors affecting the result might not have been
considered. It could also be a threat to the construct validity since a sufficient set of measures
did not exist. An issue given were bugs in the system which is a rather vague and unspecific
comment and hard to solve since one does not actively leave known bugs in the program.
Bugs found are solved, and bugs not found will be solved once found, it is just a matter of
finding them all. Finding them could have been done by deploying the program in a test
environment before deploying it to its actual and intended environment or by having code
reviews by others. However, the actual deployment was not in the scope of the project and
therefore not thought of. Thoughts and solutions as these were raised in retrospect which
can indicate that the risk analysis could have contributed even more to the project if a more
thorough analysis was made, for example with the help of more senior employees, or more
time had been given to its analysis and management.

The risk analysis was the only method where both interviewee’s raised the grade which
could indicate that the method contributed the most to the program and project, and that it
is a good and solid method to use. However, they both expressed that vulnerabilities remained
after the risk analysis and the changes made due to it were not major. The only change made
because of the risk analysis were a better error handling for the connection which was an
issue which could have been found and solved by another method as well. Hence, the role
and impact of the risk analysis based on the rating is a bit difficult to determine. This can
however, apply for several of the methods and issues resolved. It can be considered that it
is not so much about the particular method used but rather the finding of issues and errors.
The method best for that might vary and in this particular case it was the risk analysis, but it
could be another method as well. It is hard to tell since once a risk or issue was found with the
help of one method, it was resolved and was therefore not found by another method. More
data and studies on the topic are needed to determine which method contributes the most
to making a program as secure and dependable as possible, and it may be that it is different
depending on which system or branch one works in or the level of experience and expertise
the developer has.

5.7 Architecture redundancy
An attempt of writing the primary model in a different programming language was made
both in Java and in Python. However, due to time and framework limitations, only the
model and not the GUI were to be rewritten which lead to problems. The problems arose
due to Windows Forms being written in C# and the use of .NET where the compatibility
and integration with other programming languages were neither good nor simple given the
complexity and limitations of the program. This is can be an issue that occurs quite often,
especially considering that most programs and projects have some form of limitations and
restrictions initially given.

Why diversifying on programming language was chosen in the first place had to do with
the simplicity and convenience of having only one person writing the program. It was then
only one person’s time that needed to be claimed and who had to familiarise themselves with
the problem and program. Writing in a second programming language could also have been

49

5. Discussion

a good way to detect flaws and potential bugs with the solutions of the different languages.
As I2 said during one of the interviews; there is a reason for writing different programs in
different languages since they have their advantages, and it would have been interesting to
examine that further.

The final variant of N-version programming used were diversifying on the implementa-
tion where two versions of the model was written. An initial discovery from the implemen-
tation was that it can be difficult to find a colleague who has time to help writing a version.
The person initially thought of for writing a second version got urgently busy with another
project and could therefore not assist within the time frame. There were several others at
the case company who could help, but it still shows an issue that can arise when needing a
second person to assist in a project. Having a second person writing a version can be a greater
problem if people tend to work alone on projects and are not very familiar with other col-
leagues’ projects, as the time to get started and familiarise yourself with the project will be
longer. However, if a team nearly always work with the same tools, programming languages,
and environments it might not be that difficult to acquaint oneself with a colleague’s project
but if not, the time needed to be spent on the project would increase. Another issue could
be that the project might not be the other person’s main concern and they may not make it
a priority.

A solution to the issues with having more than one person writing a version could be to
use a virtual assistant or an AI based chat bot. This was tested and the solution produced by
the chat bot was extremely similar to the models already produced and it solved the issue with
locking the workstation in the same way as model 2 did. For this case, the chat bot would
have helped in the same ways as having another person writing a version and it would have
been faster and smoother. The chat bot took a few minutes to produce the code compared
to M1, who took a week and a half when doing it in parallel to the person’s other tasks and
without a rush.

However, using a chat bot can be polarised and problematic in some aspects which will
not be discussed in this report, but the use of it for this particular case would have been quite
optimal. No other person would have had to be involved which would have saved time and
resources and the model itself was small and easy enough to implement so that a chat bot
could be used. It might have been more difficult to use a chat bot if one were to diversify an
entire repository with hundred or thousand of lines of code, files, and dependencies.

An interesting find from the result was the difference in grade given by I1 and I2 regarding
version 4, where the first raised the grade by 2 points and the latter not at all. This was
primarily due to the different opinions regarding the impact of the locking of the workstation
which could be explained by their different years of experience or that there are different
views on the importance of keeping the process internal.

A recurring theme and comment made by both interviewees were that N-version pro-
gramming would have contributed more if the program had been bigger since as it was, both
models were small and similar. The more lines of code you write, the higher the probability
of making mistakes or writing error prone code and a larger program would, most likely,
have lead to a bigger difference in the models and potentially more errors, making N-version
programming contributing more than for a smaller program. Despite this, the method found
interesting and valuable bugs and errors in the few lines of code that the models contained.
However, if N-version programming were to be tested on a larger program for the sake of
the method then contributing more, it could have turned out that it did not and then even

50

5.8 Final review

more time and resources would have been put into the method without it contributing to
the desired extent.

In this particular case, the N-version programming felt somewhat unnecessary, which
was confirmed by both interviewees and by the case study protocol where it was stated that
it was a troublesome process to integrate the two versions and that the difference and safety
enhancements were not that great. Although, the case study protocol did contain several
positive comments regarding the method as well. Nevertheless, the author’s overall feeling
regarding the method was that it was not worth the time and energy the method required
for the outcome it produced for this particular case.

5.8 Final review
Both interviewees claimed that N-version programming contributed the most to the pro-
gram, even though only one of them raised the grade after the method. That both thought it
contributed the most could have had to do with N-version programming being the method
contributing to the biggest change in the program in terms of the line of codes being added
or modified, to it finding the most critical issues or that it confirmed that the program was
reasonably written. Why one of them did not raise the grade was due to them not finding
the method contributing enough, but they still valued the method the highest which was a
bit contradicting.

The risk analysis was the only method where both interviewees raised the grade and the
method contributing the most according to the case study protocol. Why the author of the
case study protocol, and not the interviewees, held the risk analysis the highest could have
to do with the author being the only one of the three who attended the risk analysis and
could be a threat to the internal validity. It was also the authors first time conducting a risk
analysis which was not the case for I1 and I2 who had been involved in several risk analysis
before. The author may therefore have placed more emphasis on the method and felt that it
contributed more, while I1 and I2 already had some of the information and knew some of
the risks that usually emerges during a risk analysis.

Which method that in the end were the best one is hard to determine and perhaps one
should not stare blindly at the grades given, the result also stated that both interviewees
occasionally found it difficult to give a grade. It may be better to analyse and base the results
on the interviewees’ comments instead, although the grading followed their comments fairly
well.

The case study protocol expressed that the mini code reviews that came about during the
interviews and which were not taken into account, would probably have given more to the
security and dependability of the project than any of the other methods. This was confirmed
from I2 who expressed that the conversations about the project and code had contributed
a lot and that a code review is better than using N-version programming. There were also
several issues and comments left after the final version from the interviewees which the three
methods implemented did not help resolve. If the research could choose the methods imple-
mented once more, code review would most likely be one of them.

An interesting find was that I1 gave version 4 grade 7, but then lowered the grade to 6
during the final review even though the program had not been changed, see Figure 4.1. This
was one of the reasons for asking the question again when conducting a final review since an

51

5. Discussion

initial thought from the author was that it might be easy to raise the grade for every version,
as something had always been improved, but that the overall grade was not as high when
taking a step back and viewing the program.

5.9 Choice of methods
The use of three methods contributed greatly to the thesis and RQ2. Simply implementing
one method would not have contributed enough to understanding and seeing the advan-
tages, disadvantages, and problems that exists with different methods. Having three differ-
ent methods from three varying levels gave a good view of what one might encounter when
implementing such methods or similar ones. All methods contributed to the program in one
way or another and helped discover different flaws and issues.

The choice of methods was somewhat limited, as it probably is in most cases since many
projects and programs, both those that exist and are being planned, have limitations or frame-
works they must follow. Thus, it might not be up to the software developer or the project
team to decide which methods to use or not. Perhaps the team leader or the board has decided
that only the Waterfall Model should be used, with no or limited room for other methods to
be implemented. This thesis has given the author a lot of freedom to choose which methods
to implement, but there have also been limitations.

It would have been interesting to investigate and implement a method on a project or
organisational level. For example, the V-process or Waterfall model could have been tested
since they are recommended by standards such as IEC 61508 and IEC 62278. Several people
and employees tend to be involved in projects, which may limit the use and possibility of
methods on a personal level, and rather increase the use of methods on a project or organi-
sational level. Hence, testing such methods would have been of interest.

The three methods implemented were fairly simple to implement, however, the risk anal-
ysis was already in place at the company and the N-version programming was implemented
on a small program, both of which probably helped and made the process and execution of
each method easier.

The order in which the methods were implemented may have affected the result and
may also be a threat to the internal and external validity. The result of the case study might
not have been the same if the order of the implementations were different. For example,
switching the order of N-version programming and the risk analysis may have resulted in
N-version programming finding and solving the same issues as the risk analysis did. Then
the use of the risk analysis might have decreased and not been given the same grade. This
example applies to all three methods and may have affected the result and affected whether
the result can be generalised or not.

Whether the result can be generalised or not, i.e, the external validity, is also a concern
when discussing the size of the program which may not be representative of an average pro-
gram at a company. The program developed for this thesis was developed by a student not
very experienced in the field during 9 weeks and will most likely not be near the size and
complexity of most programs or systems developed and implemented at a company.

52

Chapter 6

Conclusion and Future Work

The scope of the term business-critical software is not the largest, nor does it contain a com-
plete manual on how systems and software within the scope could or should be developed.
This thesis have presented and implemented several methods and techniques for how to de-
velop business-critical systems and software and what experiences can be found.

Business-critical software can be developed at different levels and layers, or base on dif-
ferent point of views where various methods, techniques, standards, and directives can be
used, alone or in conjunction.

The experiences drawn from the implementation of the three different methods showed
that each method, to different extent and in different ways, contributed to making the sys-
tem safer or more reliable, however, none of them managed to resolve all security issues found
in version 1. The methods contributing the most were the risk analysis and N-version pro-
gramming, though it should be noted that both the case study protocol and the interviews
highlighted the not used method code review as a good method that could potentially have
contributed to the same extent as the three methods combined.

The findings of this thesis can help businesses and organisations looking to develop business-
critical software as they provide insight into various methods and techniques. The report
contributes to the understanding and selection of appropriate methods and provides valu-
able insights for others to take informed decisions.

Further research can build upon the findings and divisions made in this report to further
investigate the scope of the term business-critical and the methods implemented. Investigat-
ing and implementing more methods and conducting additional interviews touching on the
topics of: how widespread the term business-critical software is, how the term is used, how
critical systems are categorised (if done so at all) and what methods are used at companies,
would be of great value. Finally, it would be interesting to carry out more case studies where
the same or other methods are implemented and evaluated.

53

6. Conclusion and Future Work

54

References

[1] M. R. Mamdikar, V. Kumar, P. Singh, and S. Chandra, “Availability and security analysis
of business-critical systems: A case study of e-commerce business process,” Quality and
Reliability Engineering International, vol. 38, no. 4, pp. 2218–2232, 2022.

[2] I. Sommerville, Software Engineering. 10th Edition. Boston: Pearson Education Limited,
2016.

[3] I. Sommerville, “Systems engineering for software engineers,” Annals of Software Engi-
neering, vol. 6, no. 1-4, pp. 111–129, 1998.

[4] J. Hadderingh, “Software versus systems engineering, is there a difference?,” in INCOSE
International Symposium, vol. 18, pp. 428–435, Wiley Online Library, 2008.

[5] A.-L. Carter, “Safety-critical versus security-critical software,” in 5th IET International
Conference on System Safety 2010, pp. 1–6, IET, 2010.

[6] I. Stoian, E. Stancel, S. Ignat, and S. Balogh, “Federative scada-solution for evolving criti-
cal systems,” Journal of Control Engineering and Applied Informatics, vol. 12, no. 3, pp. 52–58,
2010.

[7] J. C. Knight, “Safety critical systems: challenges and directions,” in Proceedings of the 24th
international conference on software engineering, pp. 547–550, 2002.

[8] J. Augusto, Y. Howard, A. M. Gravell, C. Ferreira, S. Gruner, and M. Leuschel, “Model-
based approaches for validating business critical systems,” in System Testing and Validation
Workshop, pp. 225–233, IEEE Press, 2003.

[9] C. Areias, N. Antunes, and J. C. Cunha, “On applying FMEA to SOAS: A proposal and
open challenges,” in International Workshop on Software Engineering for Resilient Systems,
pp. 86–100, Springer, 2014.

[10] A. Bertolino, G. D. Angelis, and A. Polini, “A QOS test-bed generator for web services,”
in International Conference on Web Engineering, pp. 17–31, Springer, 2007.

55

REFERENCES

[11] T. Lauritsen and T. Stålhane, “Safety methods in software process improvement,” in
European Conference on Software Process Improvement, pp. 95–105, Springer, 2005.

[12] R. M. Savola, H. Pentikäinen, and M. Ouedraogo, “Towards security effectiveness mea-
surement utilizing risk-based security assurance,” in 2010 Information Security for South
Africa, pp. 1–8, IEEE, 2010.

[13] M. v. d. Brand, P. Klint, and C. Verhoef, “Core technologies for system renovation,”
in International Conference on Current Trends in Theory and Practice of Computer Science,
pp. 235–254, Springer, 1996.

[14] J. Toresson, “It-attacken mot coop – detta har hänt.” https://www.svt.se/
nyheter/inrikes/it-attacken-mot-coop-detta-har-hant, 2017-07-14. Ac-
cessed: 2022-11-20.

[15] R. Verma, A. Kaushik, and V. Yadav, “Design of web-based information systems–new
challenges for systems development,”

[16] P. H. Carstensen and L. Vogelsang, “Design of web based information systems-new chal-
lenges for systems development?,” ECIS 2001 Proceedings, p. 8, 2001.

[17] P.-Y. Piriou, O. Boudeville, G. Deleuze, S. Tucci-Piergiovanni, and Ö. Gürcan, “Justify-
ing the dependability and security of business-critical blockchain-based applications,”
in 2021 Third International Conference on Blockchain Computing and Applications (BCCA),
pp. 97–104, IEEE, 2021.

[18] O. Cawley, I. Richardson, X. Wang, and M. Kuhrmann, “A conceptual framework for
lean regulated software development,” in Proceedings of the 2015 International Conference
on Software and System Process, pp. 167–168, 2015.

[19] P. Ochsenschläger and R. Rieke, “Abstraction based verification of a parameterised pol-
icy controlled system,” in International Conference on Mathematical Methods, Models, and
Architectures for Computer Network Security, pp. 228–241, Springer, 2007.

[20] S. Gerasimou, D. Kolovos, R. Paige, and M. Standish, “Technical obsolescence manage-
ment strategies for safety-related software for airborne systems,” in Federation of Inter-
national Conferences on Software Technologies: Applications and Foundations, pp. 385–393,
Springer, 2017.

[21] A. E. Haxthausen, “An introduction to formal methods for the development of safety-
critical applications,” Technical University of Denmark, 2010.

[22] J. Lockhart, C. Purdy, and P. Wilsey, “Formal methods for safety critical system specifi-
cation,” in 2014 57th International Midwest Symposium on Circuits and Systems (MWSCAS),
pp. 201–204, IEEE, 2014.

[23] S. Madan, “Techniques to facilitate development of safety critical software systems,” in
CCECE’97. Canadian Conference on Electrical and Computer Engineering. Engineering Innova-
tion: Voyage of Discovery. Conference Proceedings, vol. 1, pp. 249–252, IEEE, 1997.

56

https://www.svt.se/nyheter/inrikes/it-attacken-mot-coop-detta-har-hant
https://www.svt.se/nyheter/inrikes/it-attacken-mot-coop-detta-har-hant

REFERENCES

[24] J. Bowen, “The ethics of safety-critical systems,” Communications of the ACM, vol. 43,
no. 4, pp. 91–97, 2000.

[25] J. Jacky, The way of Z: practical programming with formal methods. Cambridge University
Press, 1997.

[26] J. Woodcock, P. G. Larsen, J. Bicarregui, and J. Fitzgerald, “Formal methods: Practice
and experience,” ACM computing surveys (CSUR), vol. 41, no. 4, pp. 1–36, 2009.

[27] C. Newcombe, T. Rath, F. Zhang, B. Munteanu, M. Brooker, and M. Deardeuff, “How
amazon web services uses formal methods,” Communications of the ACM, vol. 58, no. 4,
pp. 66–73, 2015.

[28] F. Alaydrus, T. Raharjo, B. Hardian, and A. Prasetyo, “Approaches in determining soft-
ware development methods for organizations: A systematic literature review,” in 2021
IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), pp. 1–6,
IEEE, 2021.

[29] P. M. Khan and M. M. Sufyan Beg, “Extended decision support matrix for selection of
SDLC-models on traditional and agile software development projects,” in 2013 Third
International Conference on Advanced Computing and Communication Technologies (ACCT),
pp. 8–15, IEEE, 2013.

[30] K. S. Church, P. J. Schmidt, and G. Smedley, “Casey’s collections: A strategic decision-
making case using the systems development lifecycle—planning and analysis phases,”
Journal of Emerging Technologies in Accounting Teaching Notes, vol. 13, no. 2, pp. 31–81, 2017.

[31] M. S. Durmuş, İ. Üstoğlu, R. Y. Tsarev, and J. Börcsök, “Enhanced V-model,” Informatica
(Slovenia), vol. 42, no. 4, pp. 577–585, 2018.

[32] X. Ge, R. F. Paige, and J. A. McDermid, “An iterative approach for development of safety-
critical software and safety arguments,” in 2010 Agile Conference, pp. 35–43, IEEE, 2010.

[33] J. A. Børretzen and R. Conradi, “Results and experiences from an empirical study of
fault reports in industrial projects,” in International Conference on Product Focused Software
Process Improvement, pp. 389–394, Springer, 2006.

[34] D. Stefanović, D. Nikolić, D. Dakić, I. Spasojević, and S. Ristić, “Static code analysis
tools: A systematic literature review.,” Annals of DAAAM & Proceedings, vol. 7, no. 1,
2020.

[35] L. M. Rao Velicheti, D. C. Feiock, M. Peiris, R. Raje, and J. H. Hill, “Towards modeling
the behavior of static code analysis tools,” in Proceedings of the 9th Annual Cyber and
Information Security Research Conference, pp. 17–20, 2014.

[36] D. Nikolić, D. Stefanović, D. Dakić, S. Sladojević, and S. Ristić, “Analysis of the tools
for static code analysis,” in 2021 20th International Symposium INFOTEH-JAHORINA (IN-
FOTEH), pp. 1–6, 2021.

[37] C. Ebert, J. Cain, G. Antoniol, S. Counsell, and P. Laplante, “Cyclomatic complexity,”
IEEE Software, vol. 33, no. 6, pp. 27–29, 2016.

57

REFERENCES

[38] B. Chess and J. West, Secure programming with static analysis. Pearson Education, 2007.

[39] M. F. Aniche, G. A. Oliva, and M. A. Gerosa, “What do the asserts in a unit test tell us
about code quality? a study on open source and industrial projects,” in 2013 17th European
Conference on Software Maintenance and Reengineering, pp. 111–120, IEEE, 2013.

[40] K. Buffardi, P. Valdivia, and D. Rogers, “Measuring unit test accuracy,” in Proceedings of
the 50th ACM Technical Symposium on Computer Science Education, SIGCSE ’19, p. 578–584,
Association for Computing Machinery, 2019.

[41] N. Setiani, R. Ferdiana, and R. Hartanto, “Developer’s perspectives on unit test cases
understandability,” in 2021 IEEE 12th International Conference on Software Engineering and
Service Science (ICSESS), pp. 251–255, 2021.

[42] M. Zielinski and R. Groenboom, “Using advanced code analysis for boosting unit test
creation,” in 2021 IEEE International Conference on Software Testing, Verification and Valida-
tion Workshops (ICSTW), pp. 279–283, 2021.

[43] S. Lee, X. Bao, and T. Zhao, “A safety-critical software development strategy based on
theory of diverse design,” in The Proceedings of 2011 9th International Conference on Relia-
bility, Maintainability and Safety, pp. 694–699, IEEE, 2011.

[44] R. Khoury, A. Hamou-Lhadj, M. Couture, and R. Charpentier, “Diversity through n-
version programming: current state, challenges and recommendations,” International
Journal of Information Technology and Computer Science (IJITCS), vol. 4, no. 2, p. 56, 2012.

[45] J. Niño, “An overview of programming language based security,” in Proceedings of the 47th
Annual Southeast Regional Conference, ACM-SE 47, (New York, NY, USA), Association for
Computing Machinery, 2009.

[46] C. Skalka, “Programming languages and systems security,” IEEE Security Privacy, vol. 3,
no. 3, pp. 80–83, 2005.

[47] U. D. Kumar, “Reliability analysis of N-version programming with deadline mechanism,”
International Journal of Quality & Reliability Management, 2000.

[48] T. Harmon and M. R. Lowry, “N-version programming in wcet analysis: Revisiting a
discredited idea,” in Proceedings of the FSE/SDP workshop on Future of software engineering
research, pp. 157–160, 2010.

[49] J. Wu, “Software fault tolerance using hierarchical n-version programming,” in IEEE
Proceedings of the SOUTHEASTCON’91, pp. 243–247, IEEE, 1991.

[50] S. P. Kumar, P. S. Ramaiah, and V. Khanaa, “Architectural patterns to design software
safety based safety-critical systems,” in Proceedings of the 2011 International Conference on
Communication, Computing & Security, pp. 620–623, 2011.

[51] J. Jaafar, U. I. Janjua, and F. W. Lai, “Software effective risk management: An evaluation
of risk management process models and standards,” in Information Science and Applica-
tions, pp. 837–844, Springer, 2015.

58

REFERENCES

[52] B. W. Boehm, “Software risk management: principles and practices,” IEEE Software,
vol. 8, no. 1, pp. 32–41, 1991.

[53] E. Smith and J. Eloff, “A new perspective on risk assessment techniques,” in Proceedings
of the Fifth International Network Conference (INC 2005), pp. 227–234, 2005.

[54] J. Deng, L. Song, and X. Wu, “Information security risk assessment methods for the
transportation industry,” in International Conference on Smart Transportation and City En-
gineering, vol. 12050, pp. 605–611, SPIE, 2021.

[55] Z. Ying, Q. Li, S. Meng, Z. Ni, and Z. Sun, “A survey of information intelligent system
security risk assessment models, standards and methods,” in Cloud Computing, Smart Grid
and Innovative Frontiers in Telecommunications, pp. 603–611, Springer, 2019.

[56] K. Georgieva, A. Farooq, and R. R. Dumke, “Analysis of the risk assessment methods–a
survey,” in International Workshop on Software Measurement, pp. 76–86, Springer, 2009.

[57] S. Ni, Y. Zhuang, J. Gu, and Y. Huo, “A formal model and risk assessment method for
security-critical real-time embedded systems,” Computers & security, vol. 58, pp. 199–215,
2016.

[58] A. Hakemi, S. R. Jeong, I. Ghani, and M. Ghanaatpisheh Sanaei, “Enhancement of vector
method by adapting octave for risk analysis in legacy system migration,” KSII Transac-
tions on Internet and Information Systems (TIIS), vol. 8, no. 6, pp. 2118–2138, 2014.

[59] I. E. Iacob and A. Apostolou, “A quantitative risk analysis framework for bow-tie mod-
els,” in 2015 7th International Conference on Electronics, Computers and Artificial Intelligence
(ECAI), pp. Y–43, IEEE, 2015.

[60] L. Xiaosong, L. Shushi, C. Wenjun, and F. Songjiang, “The application of risk matrix to
software project risk management,” in 2009 International Forum on Information Technology
and Applications, vol. 2, pp. 480–483, IEEE, 2009.

[61] H. Yong, C. Juhua, R. Zhenbang, M. Liu, and X. Kang, “A neural networks approach for
software risk analysis,” in Sixth IEEE International Conference on Data Mining-Workshops
(ICDMW’06), pp. 722–725, IEEE, 2006.

[62] B. Karabacak and I. Sogukpinar, “ISRAM: information security risk analysis method,”
Computers & Security, vol. 24, no. 2, pp. 147–159, 2005.

[63] E. A. Addy, “A framework for performing verification and validation in reusebased soft-
ware engineering,” Annals of Software Engineering, vol. 5, no. 1, pp. 279–292, 1998.

[64] D. R. Wallace and R. U. Fujii, “Software verification and validation: an overview,” Ieee
Software, vol. 6, no. 3, pp. 10–17, 1989.

[65] G. Gallardo, J. May, and J. C. Gallardo, “Assessment of data diversity methods for soft-
ware fault tolerance based on mutation analysis,” in Second Workshop on Mutation Analysis
(Mutation 2006-ISSRE Workshops 2006), p. 6, IEEE, 2006.

59

REFERENCES

[66] P. Kumar, L. K. Singh, and C. Kumar, “Software reliability analysis for safety-critical and
control systems,” Quality and Reliability Engineering International, vol. 36, no. 1, pp. 340–
353, 2020.

[67] Y. Yang, “Test based safety-critical software reliability estimation using bayesian method
and flow network structure,” Proceedings of the Institution of Mechanical Engineers, Part O:
Journal of risk and reliability, vol. 233, no. 5, pp. 847–856, 2019.

[68] B. S. Medikonda and S. R. Panchumarthy, “A framework for software safety in safety-
critical systems,” ACM SIGSOFT Software Engineering Notes, vol. 34, no. 2, pp. 1–9, 2009.

[69] G. Karmakar and Y. Nirgude, “AERB SG D-25 and IEC 60880 for certification of
software in safety systems of indian npp,” in Proceedings of International Conference on
VLSI, Communication, Advanced Devices, Signals & Systems and Networking (VCASAN-2013),
pp. 309–316, Springer, 2013.

[70] C. Lalonde and O. Boiral, “Managing risks through ISO 31000: A critical analysis,” Risk
management, vol. 14, no. 4, pp. 272–300, 2012.

[71] C. Steglich, A. Majdenbaum, S. Marczak, and R. Santos, “A study on organizational it
security in mobile software ecosystems literature,” in 2020 IEEE International Conference
on Software Architecture Companion (ICSA-C), pp. 234–241, IEEE, 2020.

[72] R. Bell, “Introduction & revision of IEC 61508,” Measurement and Control, vol. 42, no. 6,
pp. 174–179, 2009.

[73] C. Smidts and M. Li, Software Engineering Measures for Predicting Software Reliability in
Safety Critical Digital Systems. US Nuclear Regulatory Commission, 2000.

[74] B. Shojaie, H. Federrath, and I. Saberi, “The effects of cultural dimensions on the de-
velopment of an isms based on the iso 27001,” in 2015 10th International Conference on
Availability, Reliability and Security, pp. 159–167, IEEE, 2015.

[75] B. Kitchenham and S. Charters, “Guidelines for performing systematic literature reviews
in software engineering,” tech. rep., Technical report, ver. 2.3 ebse technical report. ebse,
2007.

[76] P. Runeson and M. Höst, “Guidelines for conducting and reporting case study research
in software engineering,” Empirical software engineering, vol. 14, no. 2, pp. 131–164, 2009.

[77] H. K. Klein and M. D. Myers, “A set of principles for conducting and evaluating inter-
pretive field studies in information systems,” MIS quarterly, pp. 67–93, 1999.

[78] A. S. Lee, “A scientific methodology for MIS case studies,” MIS quarterly, pp. 33–50,
1989.

[79] C. Robson, Real world research: A resource for social scientists and practitioner-researchers.
Wiley-Blackwell, 2002.

[80] G. Pervan and H. Maimbo, “Designing a case study protocol for application in is re-
search,” in Proceedings of the ninth pacific asia conference on information systems, pp. 1281–
1292, PACIS, 2005.

60

REFERENCES

[81] M. Alles, D. Crosby, B. Harleton, G. Pattison, C. Erickson, M. Marsiglia, and C. Stienstra,
“Presenter first: Organizing complex gui applications for test-driven development,” in
AGILE 2006 (AGILE’06), pp. 10–pp, IEEE, 2006.

[82] A. Singh and N. Jeyanthi, “Mvp architecture model with single endpoint access for dis-
playing covid 19 patients information dynamically,” in 2020 12th International Confer-
ence on Computational Intelligence and Communication Networks (CICN), pp. 471–476, IEEE,
2020.

[83] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén, Experimen-
tation in software engineering. Springer Science & Business Media, 2012.

[84] J. Singer and N. G. Vinson, “Ethical issues in empirical studies of software engineering,”
IEEE Transactions on Software Engineering, vol. 28, no. 12, pp. 1171–1180, 2002.

[85] R. K. Yin, Case study research: Design and methods, vol. 5. sage, 2009.

61

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2023-03-16

EXAMENSARBETE How to develop business-critical software - a case study on a small system
STUDENT Sara Hult
HANDLEDARE Martin Höst (LTH)
EXAMINATOR Emma Söderberg (LTH)

How to choose the right method for
developing a business-critical system

POPULÄRVETENSKAPLIG SAMMANFATTNING Sara Hult

Methods and techniques for developing business-critical software are many and diverse.
This thesis has carried out a literature study of available approaches and implemented
three of them to obtain and present knowledge and experience about when, how and
why they can or should be used.

The term business-critical systems describes sys-
tems whose failure may lead to loss of business or
damage to reputation in the market. It is easily
overshadowed by the much more well-known term
safety-critical and is far less used and widespread.
Why that is, and how business-critical systems
and software can be developed is examined and
discussed in this Master’s thesis along with a case
study implementing three methods for developing
business-critical software.

Various methods, techniques, laws, and point
of views exists in the area of critical systems and
this thesis has tried to divide the different terms
and methods to achieve a better understanding
of how critical systems, and primarily business-
critical systems, are and can be developed.

Three of the methods found were implemented
on a case at a company in Sweden that develops
business-critical software. The methods were cho-
sen due to convenience, time, and occurrence in
the literature and the interviews conducted. The
methods consisted of a code inspection where a
static code analysis tool was used, the company’s
risk analysis, and a method for architecture redun-
dancy where N-version programming was chosen.

The method for code inspection did not con-
tribute a great deal to the project while the risk

Programming methods
User access and
authentication
Various ways to send
messages

PERSON

Pay hackers
Software development
/SDLC methods
Risk management
methods
Self-assessment tools
Formal methods
Testing
Design review
Code inspection and
review

PROJECT
Verify output from
different channels
Different hardware; OS,
processors
Distributed systems
Self-checking systems
Network
Safety Architectural
Patterns
Different
designmethods (OOP
or FP)

ARCHITECTURE

Business policies or
framework
Standards and
directives
Laws

ORGANISATION

Figure 1: An overview of methods to use in a
business-critical system divided by architecture,
organisation, project, and person.

analysis and N-version programming had a more
clear impact. The results show that none of the
methods implemented solved all the issues found
but they all, to different extent and in different
ways, contributed to making the program safer
and more reliable.

	Introduction
	Purpose
	Research Questions
	Limitations
	Outline

	Background and Related Work
	Critical systems
	Business-critical
	Key areas, keywords, and methods
	Business vs Safety-critical

	Methods, processes, and techniques
	Formal methods
	Software Development methods
	Programming methods
	Architectural methods
	Risk management
	Verification and Validation
	Software/System Reliability
	Standards and directives

	Method
	Background research
	Literature study
	Interviews

	Case study
	Case company
	The case
	Case study plan
	Design and planning
	Data collection
	Case study protocol
	Version 1
	Version 2 (Code analysis)
	Version 3 (Risk analysis)
	Version 4 (Architecture redundancy)
	Final review
	Ethics

	Result
	Background research
	Literature Study
	Interviews

	Case study
	Version 1
	Version 2 (Code analysis)
	Version 3 (Risk analysis)
	Version 4 (Architecture redundancy)
	Final review

	Discussion
	Business-critical
	Business- vs safety-critical systems
	Safe or reliable enough
	Method
	Literature study
	Case study

	Code analysis
	Risk analysis
	Architecture redundancy
	Final review
	Choice of methods

	Conclusion and Future Work
	References

