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Abstract

In modern software development engineers are not expected to write software
in isolation, but through open sourced software components and libraries reuse
and refine work that has come before. With the vast quantity of open source
libraries it is more important than ever to easily be able to find the right library
for a specific need. This thesis introduces the idea of creating repository em-
beddings, representing functionality contained within an open source library,
through clustering of embeddings created from source code functions found in
open source software repositories.

By embedding a natural language query to the vector space of the repository
embeddings, we are able to recommend software repositories based on multiple
functionalities provided by the repository in an efficient way.

To evaluate the approach we conducted a user study to gather annotated
data on the relevance of open source repositories for given search queries. The
user study resulted in almost 50 annotated queries and 500 annotated reposi-
tories. When this annotated dataset was used to evaluate the recommendation
models it was found that using function embeddings directly was in general the
best performing approach, but that clustering embeddings were not far behind.
It was also found that the best approach was to combine function and cluster
embeddings.

We conclude that using function embeddings can help in recommending rel-
evant software repositories, and further that using clustering can improve these
recommendations. We also found that using clustering embeddings can be a
way of increasing the scalability of functionality search compared to using func-
tion embeddings. Finally we found that separation of clusters correlates with
relevance of recommendations when using clustering algorithms for the task of
functionality search.

Overall the results indicate that the idea has potential for both increased
relevance and scalability, but more data is needed and there is much potential
for improvements in future works that could make this system viable for real
world usage.

Keywords: Semantic Functionality Search, Clustering, Recommendation Systems
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Chapter 1

Introduction

1.1 Motivation
As software engineers we are expected not just to write software, but to reuse and extend
other developers’ software. Open source software is often distributed in the form of a soft-
ware repository, a collection of source code and metadata files that describes the software
component.

There are many good reasons to reuse code published as open source; it saves time when
building software, improves quality and reduces work needed for maintenance [13]. In ad-
dition to this, as the quantity and quality of open source software increases, the probability
that a good quality open source software component exists that suits a problem being solved
by a software engineer increases.

1.2 Problem statement
The software engineer has a problem however, how does she find this open source software
component? It is available to her, residing in a software repository available freely on the
internet. But so are a million other repositories, making it hard to find the one that solves
her problem, i.e. is relevant to this specific developer. This is what we will refer to as the
problem of relevant software discoverability.

So far regular search engines, a type of information retrieval system, have been used to
find this relevant software. And while they are helpful they usually only take into account the
metadata of software repositories, such as author added labels or short descriptions, which
doesn’t necessarily reflect the actual source code contents of the software repository. As the
description can either be false or completely missing. Regular search over source files might
work, but the software engineer in search of a solution to a specific problem may well indeed
not have a single clue what the code would look like in the first place.

9



1. Introduction

Currently solutions exist that can match and return functions from source files, by de-
scribing the desired functionality of the function. But such solutions are not taking into
account the higher abstraction of open source repositories, which is the most common way
of distribution today. Also, returning only a function instead of a ready to use repository
may encourage users to copy-paste results, missing one great feature of using open source
software, namely that you do not need to maintain all of the code yourself.

Which begs the question if it is possible to produce a system which not only can return
specific relevant functions but also taking into account the utility of the repository in which
the function resides. Returning relevant code functionality at a repository level to the end
user.

Indeed, researchers have been trying to create such a system for at least two decades [21].

1.3 Approach
What we envision for the future of open source search is a system that can return to its user
software repositories dedicated to some functionality relevant to solve a specific problem.
The system we envision would be able to take as input a description in English, or any other
natural language, and based on the functionality, or semantic intent, of the description re-
turn to its user multiple alternatives of matching software repositories [20]. Using a natural
language query to describe the functionality is a natural extension to what users today are
already comfortable with, from the use of more general search systems like Google and Bing.

Firstly, a system of this kind would need to be able to capture the semantic intent behind
text written in a natural language. Fortunately, there have been many advances in machine
learning models for natural language processing, the research area concerned with making
natural language machine understandable, over the last decade that enable powerful semantic
parsing of natural language. One of these advances are large language models, statistical
models consisting of many layers of neurons which are able to quite accurately interpret the
semantics of natural human language, capturing more complex parts of the language such as
semantic intent [10].

Secondly, proper recommendation of source code for a given natural language query re-
quires that we can represent the functionality described by the source code as well. We are
fortunate that the last decade’s advances in language models have proven successful for this
problem as well. Today’s large language model can not only be trained to interpret the se-
mantics of written human natural language, but also written source code in programming
languages.

So far, what we have described is what is required by systems that are already in place
today, these systems are able to match between representations in natural language and pro-
gramming language. Making it possible to describe a desired functionality and recommend
a code-snippet, a short piece of code in the form of a function, that solves the given task.
However, as mentioned before, our software engineer might be more interested in finding
a software repository that contains the code-snippet or function as before but in addition
a whole set of functions that work together to handle more complex tasks, referred to as a
library or software component. This task is the aim of this thesis. Since we are looking at
components or libraries to reuse, not singular functions, we want to be able to search for a
more abstract level of functionality or semantic intent. A component or library usually con-
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1.4 Research Questions

sists of a lot of source code, covering many different semantic intentions. One example would
be the popular Python package “pandas”, a library for data analysis [15]. While this library
of course includes algorithms for statistical analysis, it also has functionality for reading and
writing to various file formats and interacting with memory efficiently.

Thirdly, a system such as the one we envision would require an efficient way of represent-
ing all of the functionality contained in an open source software repository. To illustrate the
problem let’s look at the example above once more. “pandas” contains thousands of functions
in its library, each one contributing to the component as a whole. While pandas contain many
functions concerned with outputting things in a nice format, it would not be called a format-
ting component, as those functionalities are only there to enable other parts of its system, let’s
say. So individual functions might not be the best way to represent a library. Our idea is that
while individual functionalities might not say very much about a library’s intended use case,
grouping of such functionalities might. If we could group together functionalities within the
component that are similar to each other the intent of the component might emerge more
accurately and efficiently. Grouping together things in such a way is referred to as clustering.
To bring the idea back to our example of “pandas”, the clusters that emerge could hypothet-
ically represent something like “statistical analysis”, “file handling”, “memory optimization”
which are more closely related to what the library declares in its description.

In this thesis we will research if we are able to utilize clustering to categorize groups of
functions with similar semantic intent inside of open source software repositories to then
recommend relevant repositories using natural language search queries.

A search engine that provides relevant recommendations for software components has
the potential to greatly help in code reuse, because it greatly simplifies the process of finding
the right software to reuse, i.e. increasing relevant software discoverability. This has many
benefits for the industry. The most obvious benefit is that less time needs to be used for writ-
ing source code, but also that less time is needed to evaluate source code that can potentially
be reused. Another benefit of reusing software components is that less time is needed for
maintenance. Finally, less source code and software means that it is easier to ensure security.
In addition to reducing the time and effort spent by security analysts and cost of security
vulnerabilities being used maliciously, more reliable open source software can help adoption
which further reduces code duplication in the industry. Overall, such a search engine could
have a great positive impact on the industry as a whole.

1.4 Research Questions
To measure the effectiveness of our approach we have set up a number of research ques-
tions. However before presenting them some brief clarifications are in order. Our thesis is
concerned with embeddings, a form of numerical representation of the semantic intent of
natural language or the functionality of a code function. It is also concerned with cluster-
ing, which is another word for grouping together similar objects. In this thesis our aim is to
cluster, or group together, similar function embeddings.

• RQ1: To what degree can we utilize embeddings to find functionality in software repos-
itories?

11



1. Introduction

• RQ2: To what extent can aggregations of embeddings improve the quality of search
results of functionalities within software repositories?

• RQ3: To what degree can aggregations of embeddings increase scalability of function-
ality search of software repositories?

When aggregating information, which in this thesis is done by clustering the data,
many different forms of clusters can emerge. At which point it is relevant to look at the
quality of different clustering techniques. Separation is one such way of determining
the quality of resulting clusters.

• RQ4: To what extent does higher quality separation of clusters of functionality within
a software repository relate to relevant functionality search results using our approach?

1.5 Scope
We restrict our investigation to code snippets from one programming language, a single lan-
guage model for producing embeddings, a set of three aggregation methods and a single
dataset for repositories and functions. The choices are explained further in the following
sections.

1.5.1 Programming Language
In the study we limit ourselves to one programming language, Python. This is both due to
time constraints and because we need to test our search engine on subjects familiar with the
language. Due to the latter of these Python fits well because developers at Debricked and
many students at LTH use Python and have knowledge about its ecosystem.

1.5.2 Language Model
We limit ourselves to a pre-trained language model, UniXCoder [9], that we do not train
further for our specific task due to time constraints. This is partly because we do not believe
we would be able to improve upon the state of the art in embedding creation over the course
of a thesis project. It is also partly due to our focus being on utilising the language model for
a specific task, rather than improving a language model’s performance on a task it’s already
tested for.

1.5.3 Clustering Algorithms
We limit ourselves to a set of two popular unsupervised clustering algorithms. K-Means
clustering and Ward clustering. There exists a vast number of clustering algorithms, but due
to the scope of this thesis testing them all would not be possible.

In addition to this we compare with grouping together functions based on their position
in the repository file tree.

12



1.5 Scope

1.5.4 Dataset
We limit the data used for testing the model to the data available from CodeSearchNet [11].
The reason for this is that the data is well analyzed by multiple papers, already clean enough
to not require further parsing, and contains a large amount of useful Python open source
projects hosted on one of the most popular version control system hosting platform today;
GitHub, hosting over 330 million software repositories [1]. We believe that this makes the
dataset quite representative of Python open source projects in general.
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Chapter 2

Related Work

In this chapter we want to give a tribute to the works that have made this thesis possible.
First, the paper “CodeSearchNet Challenge Evaluating the State of Semantic Code Search” [11]

has been instrumental to this thesis as it provided insight and inspiration into the field of
code related retrieval tasks. It also provided a large dataset, which without this thesis would
possibly have taken a much different turn.

Second, the paper “Sosed: a tool for finding similar software projects” [7] acts as a fore-
bearer to what this thesis tries to accomplish. It presents search among software repositories
in much the same manner as this thesis, with the use of code embeddings.

2.1 CodeSearchNet
The paper “CodeSearchNet Challenge Evaluating the State of Semantic Code Search” [11],
was an effort to further research in the area of Semantic Code Search. The research conducted
by this project included the task of “retrieving relevant code given a natural language query”,
which is closely related to what this thesis objectives.

In the paper the authors presented a challenge to achieve an as high score as possible
for Normalized Discounted Cumulative Gain [12], a popular metric for recommendation
systems, for a set of natural language queries and source code snippets.

The authors also released a large dataset of doc-string and source code pairs to train
models for the task.

2.1.1 Similarities
What makes this paper similar to our thesis is its goals and procedures.

We both share the same goal of finding better systems of high quality code retrieval.
They focus on code-snippet retrieval while we focus on software repository retrieval. The
user interface to the user of such a system is also very much alike, querying a dataset with a
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2. Related Work

natural language query and returning matching code with the described functionality from
the query.

We also utilize the very same data set that was presented by the CodeSearchNet challenge
in our research and use the same search metric to evaluate our model.

2.1.2 Differences
The main difference to this thesis is the abstraction level of the code retrieval task. Our
investigation changes the task retrieval of code-snippets to software repositories, and how
many such code-snippet embeddings can work together to form an embedded representation
of software repositories. One can think of it as going up one abstraction level of retrieval of
code functionality.

2.1.3 Results
CodeSearchNet was a challenge and thus provided results both in the initial paper and on a
leaderboard. The best normalized discounted cumulative gain score presented in the paper
was 0.45 for Python, and the best score for Python on the leaderboard was 0.47 [2].

2.2 Sosed
The paper “Sosed: a tool for finding similar software projects” [7], from JetBrains research
studied how clustering embeddings could help find similar software repositories.

The paper introduces a model which takes as input a software repository, extracts tokens
of the source code if the programming language is supported, creates embeddings and com-
putes cluster distribution to then match the repository to the one with the closest cluster
distribution in the search dataset.

2.2.1 Similarities
The project is similar to ours in that it utilizes source code embedding to categorize parts
of software repositories. It also recommends other software repositories based on matching
embeddings from the input.

2.2.2 Differences
Our main differentiator from “Sosed” is that instead of taking a software repository as input
for similar repository recommendations, we want to take as input a query in natural language
and recommend relevant repositories. While we use a similar approach to categorize software
repositories and what they semantically do, our end goal is quite different.
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Chapter 3

Background

In this chapter we will introduce the various concepts that the thesis builds upon.
As a starting point we will introduce the reader to the field of Linguistics, the study

of human languages. As the thesis is concerned with the analysis and retrieval of textual
information in human languages, a good understanding of human languages is a cornerstone
to understanding how all other parts of the thesis are connected.

In the second section we will give an overview of the field Natural Language Processing,
the art of machine processing of textual information. We start off by introducing the con-
cept of an embedding. The questions that we set up for this thesis are all revolving around
functionality embeddings, and therefore a thorough understanding of what exactly function
embeddings are is essential for the understanding of this thesis. We then follow by introduc-
ing the various techniques that allow us to create embeddings from both code and English
text.

In the third section of this chapter we introduce the reader to Information Retrieval, as
this thesis is concerned with creating a system for retrieval of functionality within software
repositories the reader must understand what exactly constitutes a good information retrieval
system.

In the final section we introduce the concept of clustering, along with the clustering tech-
niques which were used in our work and how they work. As many of our initial questions
to this research project were concerned with if aggregations of function embeddings could
produce better information retrieval systems, and to that extent this section is vital to how
these aggregations are made.

3.1 Linguistics
Linguistics is the study of human languages.

Linguistics has historically been divided into levels, all building on each other to create
meaning. The first level of a language is phonetics, or sounds. The second level is mor-
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phology, how sounds are combined into words. The third is syntax, how words are formed
together to create sentences. The fourth is semantics, how meaning is derived from the words
and sentences. The fifth and final level is pragmatics, how meaning is derived not only from
the sentence itself but also from its context [17].

In our thesis the branch of semantics is of special interest, although strictly speaking it
builds on the lower levels of linguistics in the context of human speech, we are more con-
cerned with methods of finding the meaning of sentences than correctly representing pho-
netics, morphology and syntax within sentences.

3.1.1 Semantics & Meaning
Semantics is concerned with deriving “meaning” out of words and sentences. “Meaning”
in this context should be interpreted as a form of conceptualization or reference, conveying
ideas through language as well as relations between ideas. In the English language for example,
the word "dog" is a reference to a type of animal.

In the task laid out by this thesis, “meaning” refers to the functionality of a code snippet,
i.e. what task a certain piece of code can accomplish.

Semantics can be very hard to capture, much harder than syntax in a language. One reason
is because there exist sentences that may be syntactically correct, but hold no meaningful
information or the meaning has been lost.

From the perspective of a programmer, this is perhaps more easily understood as writing
programs that are syntactically correct but produce no meaningful results. For example, the
sentence Colorless green ideas sleep furiously [8] is syntactically correct, yet it holds no meaning
to us.

3.1.2 Ambiguity
Understanding human languages might seem like a simple problem, but it is easily forgotten
that the learning process often takes decades to develop fully for most humans, so to teach
a computer to understand human languages may feel like a daunting task. One reason for
this is ambiguity, where a word or sentence has multiple meanings. The word “bank”, for
example, may mean both an economic institution and the side of a river [6].

This is also true for sentences, such as the sentence We saw her duck [17]. Depending on
its context, the word “duck” could mean either the bird belonging to a woman or the motion
of the woman avoiding something.

3.1.3 Programming languages
Programming languages can be much different from naturally spoken languages. Program-
ming languages are formal languages, there is a notion of correctness of the language. Pro-
gramming languages are usually subject to much stricter constraints than naturally spoken
languages, this is to reduce ambiguity in the language to make it easier to automatically pro-
cess by computers. The constraints that are put on the language when writing code can be
well handled by a computer program called the compiler, which translates between the pro-
gramming language and byte-code that can be run on the system.
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Much work has been done in the processing of programming languages this way, and we
can build on a large body of work when analyzing programming languages. However we are
interested in conveying meaning in the form of a natural language query and receiving match-
ing snippets of programming languages. How can we go from something that is ambiguous
to something that is much stricter?

3.2 Natural Language Processing
Natural language processing or NLP, a sub-field of both linguistics and computer science,
aims to create models of human languages to make them machine understandable, making
it possible for machines to understand textual information, i.e. map words and sentences to
ideas as well as relations between ideas [17].

3.2.1 Embeddings
A common approach in Natural Language Processing is to represent textual information as
numerical vectors, which allows mathematical transformation of the textual data. There are
many types of such vectors that we will refer to as embeddings. For example there exists both
character and word embeddings, with different aims in their scope of capturing relationships
within the textual data.

The goal of a word embedding for example, could be to represent words that have closely
related meaning closer together in the vector space. One property of numerical vectors is that
they are additive, combining two vectors will yield another vector with a different meaning.
For example, taking the vector representation of Paris, the capital city of France, minus the
vector representation of France plus the vector representation of Poland might yield the vec-
tor representation of Warzaw, the capital city of Poland. In this example, the information or
meaning contained in the vector Paris-France, would be something like “Capital City”. After
adding the vector representation of Poland what we end up with is a vector representation
containing the information of “Capital city of Poland” i.e. “Warzaw” [16].

In regard to this thesis, the embeddings that we are interested in are such that they capture
important syntactic and semantic relationships between words or sentences[16]. To answer
the questions posed by this thesis, we are interested in mapping the textual information
contained in a code-snippet to an embedding which we refer to as a “function embedding”.
Ideally the embedding of such a code-snippet represents the functionality provided by the
code.

Word embeddings by themselves will still contain all the ambiguity of the language they
are built from, for instance the word “bank” from our previous example can still hold multiple
meanings. To handle the problem of ambiguity a common approach is to gather additional
information from the word surroundings in the embedding stage. As vectors are additive, we
can add information from the word embeddings surrounding the word to gain more clarity
in its meaning. For example, if we wish to embed the word “bank” in the sentence “he went
to the bank, to collect his monthly salary”, we could take the embedding from the word bank
and add weighted vectors of the contextual words “he”, “went”, “to”, “the”, “to”, “collect”,
“his”, “monthly”, “salary” to the embedding to give it some context, nudging the vector in the
direction of a hypothetical embedding describing “financial institution”.
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This approach to embed words from their context can be done statically, taking a non-
changing window size to embed words by their immediate surroundings.

3.2.2 Cosine Similarity
Representing textual information in the form of embeddings allows us to build upon a large
corpora of research in the field of linear algebra. In the context of this thesis, we are for
example interested in analyzing how closely connected two different functions are in what
functionality they contain. The idea being that if functionality is mapped to different parts
of some vector space, one could map embeddings of English language to the same vector
space and retrieve the closest function embeddings to the English embedding and hopefully
retrieve functionality that match its English description.

Ideally if we compared three embeddings, two of which describe the same functionality
but in different styles of programming and the third some completely different functionality,
the two embeddings describing the same functionality would be closer together in vector
space compared to any pair including the third embedding. But how can we measure such a
similarity between embeddings?

A common technique in Natural Language Processing is using “Cosine similarity” which
is one way of comparing similarity between vectors by taking the cosine value of the angle
between the two vectors [14]. There are many other techniques to compare vectors, such as
considering the magnitude of the vectors compared and not just the angle between them.
However following the UniXCoder [9], which in an example of fine-tuning the model for
code search utilize the “cosine similarity” for comparison between embeddings, we decided
on limiting our research to the use of “cosine similarity” for determining the distance between
a pair of vectors.

The cosine value can be found using the dot product between two vectors using the fol-
lowing formula:

cos(θ) =
A · B
∥A∥∥B∥

=

n∑
i=1

AiBi√
n∑

i=1
A2

i

√
n∑

i=1
B2

i

3.2.3 Abstract syntax tree
An abstract syntax tree (AST) in computer science is an abstract representation of the syntax
in a piece of text from a formal language such as programming languages. It is mainly used
in the compilation stage as a way to analyze the code structure to make sure that it adheres
to the structural requirements set by the compiler.

It is said to be abstract as not all details of the syntax is part of it, instead, each node in
the tree represents a construct, often a data type or an operation requiring a particular set of
data types, of the programming language.
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3.2.4 UniXCoder

UniXCoder is a pre-trained multi-modal language model for programming language and nat-
ural language [9].

Pre-trained models in the field of machine learning, is referring to when a model has
already been trained on a large dataset as to give a starting point before directing the model
to a specific task, removing the need to retrain a model for specific tasks. In Natural Language
Processing it is common to use what we refer to as language models, usually giant neural
network architectures which are trained on large datasets of textual data where its task is to
predict continuation of a sentence.

Multi-modal in this context means that the model takes its inputs from multiple input
sources, in the case of UniXCoder it takes a pair of textual data in the form of both a comment
and a flattened abstract syntax tree of the code function.

UniXCoder is based on a specific such neural network architecture referred to as a trans-
former, introduced in the canonical paper “Attention is all you need” [22]. The architecture
allows for efficient encoding of word embeddings from training. The architecture takes a se-
quence of textual embeddings, commonly referred to as tokens, and is trained in such a way
as to learn the pairwise importance of relations between tokens in the sequence. This allows
for a better encoding of tokens, as the context of each token can be embedded in an efficient
way.

To make the Abstract Syntax Tree (AST) representation of the code compatible with
the Transformer architecture UniXCoder introduces a one-to-one mapping function that
takes an Abstract Syntax Tree and transforms it to a sequence, while still keeping all of the
structural information intact. Pseudo-code for the mapping function is provided in figure 3.1.
The function, f , works recursively, starting with the root of the tree. If a node has no children
the name of the AST-node is returned. Whenever an AST-node has children, f surrounds
the child with the tags containing the name of the node

< name, le f t > f (childi) f (child j)... < name, right >

.

UniXCoder is trained to be able to operate in three different modes, encoder-only, decoder-
only and encoder-decoder. For the purposes of this thesis we are only interested in the en-
coder option, which allows us to use UniXCoder as a mapping function from a piece of textual
information, a comment or a code-snippet, into an embedding in vector space.

Encoding-only mode is achieved by training the UniXCoder in a Masked Language Mod-
eling setting, where a small set of tokens in a sequence are masked i.e. replaced by random
tokens, where the training goal of the model is to predict what the original tokens were before
masking. This allows the model to efficiently infer the masked tokens based on the seman-
tic and syntactic information in the comment-AST pair. With the encoding mode enabled
UniXCoder outputs an embedding, from the context of an entire code function or natural
language string, a numerical vector of size 768. An overview of the model architecture of
UniXCoder in encoder-only mode is provided in figure 3.2.
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Figure 3.1: pseudo-code for the AST to flattened-AST transfor-
mation. Image taken from UniXcoder: Unified Cross-Modal Pre-
training for Code Representation [9]

3.3 Clustering
Clustering is a form of grouping together of data points in such a way that those belonging to
a group, referred to as a cluster, are more similar to each other than to those in other groups.
Clustering can either be done using either a top-down or bottom-up approach. Top-down
in clustering is where you begin with randomly selecting which cluster a number of points
belong to, and over time using an algorithm fitting more accurate clusters by displacing
points from one cluster to the other. A bottom-up approach means that each point starts
out as its own cluster, and over time clusters are merged based on their position relative to
one another.

Clustering is often done in an unsupervised or semi-supervised manner. Unsupervised
means that there are no previously human-labeled data points. With respect to clustering,
unsupervised clustering means that the methods used for clustering build only from the in-
herent structure of the data without any supervision from human input. In other words
there is no ground truth to which clusters should emerge before seeing how the data is struc-
tured [14]. Semi-supervised with respect to clustering is when some of the features of the
clusters is determined beforehand, in many algorithms it is common to determine the num-
ber of clusters that should emerge for example.

Many of the questions we posed for this thesis relate to aggregations of function embed-
dings, and clustering is one such method to aggregate information. In the context of this
thesis, the way we aggregate embeddings from a cluster or group is by taking the mean value
of all embeddings belonging to the cluster.

In the following sections we will present the techniques that we used in this thesis in clus-
tering of function embeddings. We present two common techniques with k-means, which
is a semi-supervised top-down algorithm, and ward which is another semi-supervised but
bottom-up algorithm. In this thesis we chose the two to be able to compare the results be-
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Figure 3.2: UniXCoder architecture and encoder-only mode. Image
taken from UniXcoder: Unified Cross-Modal Pre-training for Code
Representation [9]

tween a top-down and a bottom-up approach.

3.3.1 k-means
K-means clustering is a technique for dividing a vector-space of n embeddings into k clusters.

The method is initialized with k initial cluster-centers, then the method iterates the fol-
lowing steps until it either converges or is stopped. Convergence is met when none of the
assigned vectors change cluster k from one iteration to another [14].

- step zero: k randomly selected points in the vector space are chosen as the starting
clusters. These points will be referred to as cluster centroids.

iterate until convergence:
- step one: cluster assignment each embedding in the vector space is assigned to it’s closest

cluster based on a distance metric, where we used the euclidean distance.

S(t)
i =

{
xp :
∥∥∥xp − m(t)

i

∥∥∥2 ≤ ∥∥∥∥xp − m(t)
j

∥∥∥∥2 ∀ j, 1 ≤ j ≤ k
}
,

Here, t denotes the iteration number. S(t) denotes the set of k clusters at iteration t. xp
denotes a single data point. mi m j denotes two different clusters centroids.

- step two: recalculation of cluster centroids each cluster centroid is recalculated to be
the mean of the embeddings assigned to it.

m(t+1)
i =

1∣∣∣S(t)
i

∣∣∣ ∑
x j∈S(t)

i

x j

Here, mt+1
i denotes the cluster centroid of cluster i in the next iteration t+1. S(t)

i denotes
the cluster i at the current iteration step t.
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3.3.2 Ward
Ward’s clustering algorithm is an agglomerative hierarchical clustering algorithm, that is a
bottom up approach to finding clusters in the data, each observation starts out a a singleton
cluster and after each iteration it merges the two clusters that have the smallest increase in
the total within-cluster variance, also called inertia, until there exists k clusters, specified by
the user [23].

In each iteration, two clusters are merged under the constraint

di, j = d({Xi}, {X j}) = ∥Xi − X j∥
2.

That is, the clusters Xi, X j are merged into Xi j if Xi, X j minimize the sum of the squared
difference between all pairwise clusters.

3.4 Clustering Metrics
To compare different clustering methods and to evaluate how good a clustering is we need
metrics. A commonly used metric for evaluating clustering is the Silhouette Score, which is
described in detail below.

3.4.1 Silhouette Score
The Silhouette Score is a measure of how well-separated the clusters in a clustering algorithm
are. It was introduced in the paper “Silhouettes: a Graphical Aid to the Interpretation and
Validation of Cluster Analysis” [18] and is a measure of both tightness and separation of a
cluster in comparison to all other data points.

It ranges from -1 to 1, with a value of 1 indicating that the samples in a cluster are com-
pletely separate from the samples in other clusters, and a value of -1 indicating that the sam-
ples in a cluster are more similar to the samples in other clusters than they are to the samples
in their own cluster. A value of 0 indicates that the samples in a cluster are not well-separated
from the samples in other clusters [18].

For a point i in a cluster CI the mean distance between i and all other points in the cluster
is calculated as follows:

a(i) =
1

|CI | − 1

∑
i∈CI ,i ̸= j

d(i, j) (3.1)

Here d(i, j) denotes the distance between a point i and a point j both belonging to a
cluster.

This can be interpreted as how well the point fits in its assigned cluster.
The mean dissimilarity between a point i and some cluster CJ as the distance between

the point and all points in CJ where J ̸= I , and to find the least dissimilar cluster to the
point i using the min operator:

b(i) = min
J ̸=I

1
CJ

∑
j∈CJ

d(i, j) (3.2)
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The cluster with the least mean dissimilarity for a point i is said to be its neighboring
cluster.

Finally, the silhouette score is defined as

s(i) =
b(i) − a(i)

max{a(i), b(i)}
, if |CI | > 1 (3.3)

and

s(i) = 0, if |CI | = 1 (3.4)

Which will always be a value between −1 and 1, which can be interpreted as how well
the given point fits in its cluster.

To determine how good the clustering of a dataset is we can calculate the mean silhouette
score for points in the dataset.

3.5 Information Retrieval
Information retrieval, or IR, is the scientific field of search for information. This could be
searching in documents, databases, videos or any other source of information.

An information retrieval system is a software system that provides access to whatever
data or information a user is searching for.

The process of information retrieval starts with a query into the information retrieval
system. A query is a statement of information needs, for example a string in a search en-
gine like Google (https:www.google.com). An important thing to note is that a query does
not correspond to a unique object in the information source, but may instead match many
different objects to varying degrees of relevance.

Information retrieval systems usually compute some kind of score of how well each object
in the source matches the query, which leads to a ranking of the information objects. The
objects with the highest score are presented to the user [14].

One common way to rank to match information in a collection to a given query is to use
a vector space model. This model will be discussed further in the next subsection.

3.5.1 Vector Space Search
Vector space search is a sub field of information retrieval for textual information. Using the
vector space model, each object in the collection is represented by a vector. The vector space
model was first introduced in the SMART document retrieval system [19].

To match a query to the best match in the collection, it is first vectorized with the same
model used to vectorize the objects in the collection. The distance between the query vector
and the object vectors can then be calculated to find the most similar vectors and thus the
best matches. In practice, the angle between vectors using cosine similarity is often used to
measure similarity between vectors [14].
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3.5.2 Recommendation Metric
To evaluate how well an information retrieval system works, some metric for determining
how relevant the recommended search items actually are is needed. There exist many metrics
for evaluating search relevance, but we elected to use the same metric as CodeSearchNet,
Normalized Discounted Cumulative Gain, as much of our work is built on that paper [11].

Normalized Discounted Cumulative Gain
Normalized discounted cumulative gain (NDCG) is a common metric for evaluating infor-
mation retrieval systems [14]. The metric uses relevance of retrieved items and its rank to
give the recommendations for a query a score.

The first part of calculating the NDCG is to calculate the discounted gain of a recom-
mended item at a given rank:

DG(r) =
R(r)

log2(r + 1)
(3.5)

where r is the rank of the recommended item and R(r) is the relevance of the item at rank
r.

The "discount" part of discounted gain makes a relevant item appearing at a lower rank,
or earlier in the search results, more valuable than an equally relevant item appearing at a
higher rank.

It is also common to transform the score to further emphasize the difference between
high and low relevance items using the following formulae:

DGemph(r) =
2R(r) − 1

log2(r + 1)
(3.6)

For the "cumulative" part of NDCG we just sum the discounted gain values for all items
recommended by the model:

DCG =
k∑

r=1

DG(r) (3.7)

where k is the number of recommended items for the query.
A problem with the discounted cumulative gain for measuring recommendations is that

the score for one query can be much higher than one for another simply because of the an-
notations for the different queries. To remove this fallacy NDCG introduces normalization
by dividing the computed DCG score by the ideal DCG score for the given query:

NDCG =
DCG
IDCG

(3.8)

where IDCG is the ideal discounted cumulative gain.
IDCG is calculated in the same way as DCG but instead of using recommendations from

a evaluated model the recommendations are replaced by sorting the dataset on annotated
relevance to achieve maximum possible DCG from the annotated dataset.
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NDCG can be a useful metric of recommendations, but does have a problem in that poor
recommendations can result in a high score if no good recommendations are annotated for
the dataset used in evaluation, i.e. if all annotated items are of the lowest possible score
then any possible combination of recommendation would achieve maximum NDCG. An-
other problem with the metric is that an evaluated model can return relevant items that are
not annotated, which would result in a bad score for a result that is actually good.
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Chapter 4

Approach

In this chapter we will present each step that was necessary for us to answer the research
questions laid for this thesis. As this thesis is concerned with properties of information re-
trieval systems, a minimal such system had to be constructed and tested. An outline of this
system’s architecture will be described in this chapter.

In the first section we present the dataset that we used in the thesis. To validate the
results of our recommendation system or search engine, we needed a dataset containing code
functions as well as metadata with attributes such as which open source repository it belonged
to and a matching url for further inspection. Especially important to this thesis was that the
dataset was of sufficient size and diversity in functionality.

In the second section we present the inner workings of the recommendation system. How
embeddings and clusters were produced and how embeddings were compared in relation to
a natural language query to the system to give a ranked list of recommendations to the user
of the recommendation system.

In the third section we present our approach of evaluating a recommendation system or
search engine, using a user study. We present how the user study was set up, how we chose
the participants and a detailed explanation of the survey. The conduction of the user study
was vital to answer all of our research questions, and indeed without it this thesis would not
have been made possible.

We end this chapter with how we conducted the evaluation of our recommendation sys-
tem. Evaluating both the results from the user study as well as statistical properties related
to our dataset and methods of clustering.

4.1 Dataset
In this thesis we used parts of an open dataset provided by CodeSearchNet [11]. The original
dataset is built up of six programming languages containing, most relevant to this thesis code
functions and docstring, a short comment on the intended utility of a function, along with
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various metadata.
The six programming languages in the dataset are JavaScript, Java, Go, PHP, Python and

Ruby.
For the purposes of our thesis we restricted ourselves to only base our experiments on the

programming language Python and hence the rest of the dataset was omitted in this thesis.

Number of functions 503502
Number of repositories 12482

Table 4.1: CodeSearchNet Python dataset in numbers.

4.1.1 Search Dataset Summary
The CodeSearchNet dataset for Python consists of repositories publicly available on GitHub,
that are not forks, are used by at least one other repository and is licensed to allow redistri-
bution. The following is the methodology that the authors of CodeSearchNet used to create
this smaller Python dataset [11]. The functions and respective docstrings were extracted using
TreeSitter. Functions without docstrings were removed, functions where the docstring was
shorter than three tokens were removed, functions shorter than three lines were removed,
functions with “test” were removed, standard extension methods and constructors were re-
moved and finally duplicates were removed. The resulting dataset consisted of 503502 func-
tions, belonging to 12482 repositories.

4.1.2 Selected Parts of Dataset
From the dataset we used the data fields “repo”, “url” and “code”. The “code” field held the
source code block of the function, the “repo” field held the name of the repository and the
“url” field held a GitHub url to point to the specific rows where the function source code
was found in the repository of a specific version. Notice that since the “url” field held the
exact information to find the rows for the function in a specific file it also included the entire
file path to the function, from the top-level directory of the repository. We used the “code”
to generate our function embeddings and “repo” to split the functions into their respective
repositories.

4.2 Repository Search
In order to build a recommendation system or search engine, we need a way to distinguish
two repositories apart and then rank them according to the input query which means we also
have to be able to make comparisons between natural language and collections of code blocks
which is our representation of a software repository.

Central to this thesis is the idea to build upon embeddings of both the natural language
query and embeddings of the code blocks. With an embedding representation of both code
functions and natural language queries we have a common vector space in which we can
compare the two based on their semantic intent.
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The next step is to group all of the function embeddings that belong to a certain repos-
itory and aggregate them either by conventional methods or by using clustering. The end
result of such an aggregation is what we call repository embeddings. If multiple clusters
emerge from a repository we imagine that they have gathered together, from single func-
tion embeddings, some semantic intent that is important for representing the end use of a
repository.

Finally these repository embeddings can be compared to an embedding of a natural lan-
guage query, and ranked by their distance to it, resulting in a ranked list of recommended
repositories to the user of our search engine.

Each of these steps can be done beforehand, making searching efficient as only the embed-
ding of the query has to be determined while searching. Starting from the dataset containing
the code functions in plain text, we embedded each code function to an embedding and
added it as a new column in the dataset. From here, we aggregated information using meth-
ods of clustering and added them as new columns to the dataset, each aggregation method
was assigned its own column so that we could differentiate the results between aggregation
methods.

4.2.1 Repository Embeddings
To embed the code block for each entry in the dataset we used an open source encoder-
decoder model, UniXCoder [9]. The model API, application programming interface, has a
particularly well suited mode of operation that allows us to map a block of text, in our case
the code function, to an embedding, a numerical vector of size 768. The model is also able
to utilize the docstring to improve the embeddings of functions, however since we wanted
to find out how well this approach would work on source code in general, even where docu-
mentation is missing, we elected to not use this feature.

Once using the system the user would enter a query for a functionality in a repository, in
natural language. This natural language query, in plain text, would also be embedded using
the same API.

4.2.2 Determining aggregations
The two algorithms that we used for clustering embeddings in a repository, k-means clus-
tering and Ward clustering, required a target number of clusters to be set. However, since
different repositories contained many different numbers of function embeddings and more
importantly contained different numbers of separable “functionalities” the best number of
clusters could not be known beforehand.

To tackle this problem, the approach that we used was to specify a numeric range of pos-
sible different “functionalities” in a package and then cluster the package multiple times. We
then estimated the best clustering for each package by the Silhouette Score of each clustering.
For the clustering evaluation we used the silhouette score functionality from sklearn metrics
package [3].

For aggregation methods that did not utilize clustering, namely folder aggregation and
repository mean aggregation this method was redundant, as the number of clusters or aggre-
gations was determined without specifying a certain number of clusters beforehand.
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4.2.3 Mean aggregation method
Our first approach to a repository embedding was what we called the mean embedding. The
mean embedding of a package was calculated as the element wise vector mean of all the
embeddings contained in the repository.

Our intuition behind this approach was that if a package provided some “functionality”
that abstract notion of a “functionality” would necessarily be built up from the functions
in the package and by taking the element wise vector mean of all embeddings we would
take all of the functionality provided by the package into account when expressed as a single
embedding for the package.

4.2.4 k-means aggregation method
In this approach we used the k-means algorithm for clustering the embeddings contained
in a single repository. We used the k-means algorithm provided by the sklearn clustering
package [4].

The k-means clustering algorithm requires that you specify the number of clusters that
you want to divide the dataset into. This meant that we had to estimate a range that the
set of embeddings in the package could be clustered into. This range, denoted r, determined
from the number of functions, denoted n, in the package was calculated from

r = [2,max(min(int(
√

n), 15), 2)]

As mentioned before, we had to cluster k-means multiple times to find the optimal num-
ber of cluster as determined by the Silhouette Score. This range was just to limit the number
of clusterings we did for a single repository to at maximum 15 and at least 2.

In the end we combined the embeddings in each cluster by taking the element-wise vector
mean of all embeddings belonging to the cluster. The cluster embeddings were then appended
to the dataset as a new data field so that each code-docstring pair in the dataset now also held
the information of which cluster it belonged to.

4.2.5 Ward aggregation method
We used the Ward clustering algorithm from sklearn [5], [23]. The parameter n_clusters was
set in a similar way to that for k-means, with the range

r = [2,max(min(int(
√

n), 20), 2)]

Afterwards, the embeddings assigned to a specific cluster were aggregated into a single
embedding by the mean approach, taking the element-wise vector mean of all embeddings in
the cluster and added to the dataset in the same way as in the k-means aggregation method.

4.2.6 Repository File Structure Aggregation
For this aggregation method we changed our approach, instead of finding clusters in repos-
itories by purely numerical methods, we tried to capture if developers of open source were
better than numerical methods to group together functionality in the repository.
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In this aggregation method we classified the functionality in a repository by the lowest
level directory that a function belonged to. It is very common for developers to divide the
repository into directories containing functionality commonly used together.

After grouping together function embeddings that were found to belong to the same
directory, the mean embedding was calculated among the embedded functions and appended
to the dataset for the entries in the given cluster.

Here we decided to go for the lowest level directory name in classifying as it seemed to
give a similar number of clusters as the other aggregation methods.

4.3 User Study
In this section we will describe how we conducted the survey, who participated in the study,
how data was collected and how we improved the process over iterations. The user study was
done during the second half of May 2022.

4.3.1 User Study Setup
For the user study we built an interactive script that let users enter a natural language query
to find matching software repositories.

The subjects were first tasked with searching for some functionality that they sought to
use and the script would return the highest ranked matches in our dataset of Python reposito-
ries using one of our models. The subjects’ second task was to annotate the recommendations
they received by the script by their relevance to the query. These annotations were explained
by the authors to be one of the number 0, 1, 2 or 3. The number corresponded to a description
of relevance presented in Table 4.2.

These descriptions were explained by the author before the survey and were available in
the survey which can be seen in Appendix A. The collected relevance annotations were what
we later used to calculate NDCG for our different models.

4.3.2 Participants
The participants of the user study were people who we contacted directly, either through our
own network at LTH or through Debricked. They were asked to participate in evaluating
a search engine for open source software repositories in Python. The participants were ei-
ther professional software developers or students of either Computer Science or Engineering
Physics with a focus on software development, machine learning or statistics.

All participants were familiar with Python and had used open source Python software and
libraries, but it was not the main programming language used by every participant. Before the
survey they knew that the underlying model for recommendations was using functionality
search and that this was for our thesis on the subject. They did not know what model they
were evaluating and they were not told in what way the annotations would be used to evaluate
the model.

Because the data was anonymous we do not have numbers on how many participants there
were in total or which queries were annotated by which participant, but from checking logs
of who were contacted and notes from the time there were between 15 and 20 participants.
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Ranking Description
0 Totally irrelevant; I would never want to

see this for the given query.
1 Weak match; Not exactly what I am look-

ing for but there are some useful ele-
ments/pointers to things that I would use
and can form the basis for a new query or
exploration towards solving my query.

2 Strong match; This does more or less what
I was looking for. I could use it as the
functionality exists in the package, but
the package as a whole does not seem like
a perfect fit or the functionality is not
generically useful but bound to another
specific use case.

3 Exact match; This seems exactly what I
was looking for. I would use this package
to solve my query (perhaps just exploring
a few other options before committing).

Table 4.2: Description of the different relevance scores for recom-
mendations, slightly modified from the relevance score descriptions
used in CodeSearchNet [11].

The annotations were not equally split between participants, some only annotated one while
others annotated multiple queries.

4.3.3 Survey
The study was first created in a “jupyter notebook”, an interactive Python program, where the
objective of the survey and all of the instructions was provided to the subject of the survey.

Before the survey was given to the participant we did an initial setup to select the model.
The participant was then presented with the survey showing an input box where she could
input a natural language query describing the functionality that they looked for in an open
source repository. Images of the survey are available in Appendix A

Our system would upon pressing the “search” button query the selected model and re-
turn the ten best matching open source repositories for the subject to annotate. Beside the
recommended repositories the three best matching functions were also presented to help the
participant begin exploring the relevance of the repository.

The script running in the background of the notebook content presented to the subject
would then automatically store all of the matched repositories together with the score that
the subject provided for each result for later model evaluation. In addition to the relevance
scores we presented earlier the relevance score could take a fifth value; −1, meaning the
repository was not annotated for the query. This meant that we could later analyze how
many surveys were partially annotated and to what degree. The information was saved as a
separate csv file for each survey session. In total we collected 64 surveys including the pilot
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study. However some were only partially filled in and our annotated dataset only amounted
to 49 unique queries, where queries from the pilot study were only included if they had been
annotated again after the pilot study.

Later in the study surveys were conducted using a simple website instead, to enable easier
sharing of the survey remotely and with subjects outside of the company. The basic function-
ality and information presented was identical for this version of the survey, and this version
can also be found in Appendix A.

Over time we changed the aggregation method for the repository embeddings used in
the survey so that we later could compare the aggregation methods against each other. In the
beginning the aggregation method was more or less random but towards the end we started to
more actively select aggregation methods so that we would get a more balanced distribution
of conducted surveys among the different aggregation methods, i.e. we wanted about an equal
amount of annotations for each model.

4.3.4 Iterations
The survey went through two iterations, not counting the change in interface from “jupyter
notebook” to HTML website.

In the first iteration we returned three recommendations to each subject, as we first
thought that overloading the subject with results would take too much time and make for
fewer total surveys produced.

However, after a few sessions using this survey we realized that since NDCG requires mul-
tiple annotated recommendations for each query we should probably have more annotations
per query to increase the probability of annotated repositories ending up as top recommen-
dations for all models. With this realization we changed the number of recommendations
from 3 to 10. The first iteration can be seen as a pilot study we used to evaluate the survey
setup and most queries annotated by participants during this pilot study was attempted again
in the real study. All participants of the pilot study also participated in the second iteration
of the survey, but not all participants of the second iteration also participated in the first.

The first, pilot, iteration resulted in 60 annotations while the second resulted in 440
annotations for a total of 500 annotated repositories. This said, there was a lot of overlap
between the queries and repositories of the iterations so in effect only the 440 annotations
from the second iteration of the study were used.

4.4 Evaluation
To determine the best approach of producing functionality embeddings, we used two meth-
ods of evaluation, an internal statistical evaluation and a user study.

4.4.1 Internal Statistical Evaluation
Our first evaluation of the models was a statistical evaluation. For each software repository
we built datasets of repository embeddings and cluster embeddings and evaluated the results
using the metric Silhouette Score. To compute this metric we again used the sklearn met-
rics package, which we also used when creating the clusters [3]. Silhouette score for each
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model was needed to be able to analyze the connection between the separation of clusters
and relevance metrics to answer RQ4.

4.4.2 User Study Evaluation
Finally, after gathering the user study data to an annotated dataset, we evaluated our different
models’ ability to recommend relevant repositories using the dataset.

We calculated NDCG for each of our models by querying each model with each of the
annotated queries and then computing the NDCG for the recommendations. The mean of
the NDCG for the queries was the evaluated model’s final NDCG.

Each model was also evaluated on how well it compressed the search space, as we go from
a number of functions to a handful of repository embedding we effectively lower the number
of comparisons that is needed for each search in the system. In theory this will lead to faster
search times for a given query.
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Chapter 5

Results

In this chapter we will present the results of the work done in this thesis.
In the first section we present the results of the user study that was conducted for this

thesis. Conducting a user study was a way for us to produce meaningful measures of how
useful such a system could be to real end users. Here we present raw statistics of the resulting
dataset that was built up from the annotated results of our participants.

Following our user study results we analyze the dataset containing our repository embed-
dings. We provide the reader with detailed information about how silhouette scores varied
between clustering methods as well as how different methods of clustering lead to differences
in numbers of clusters over the dataset. This section gives us particularly useful information
in our aims of answering RQ2.

In the third section we analyze the results of the user study in detail, and use the annotated
data to evaluate and compare our methods. We then explore altered results with the ambition
of removing bias from our survey results. Of special interest in this section is Table 5.5 in
answering RQ3 as well as Table 5.4 in answering RQ2.

We end this chapter with giving an overview where our system failed to produce any
relevant information. The examples in this section are to be contrasted with the one given in
the first section to show that not all results were satisfactory to our participants, and to be
used as a basis for how our system can be improved, more on which will follow in the next
chapter.

5.1 Survey
In this section we will go over the results from the user study. We present the dataset that
was created from the annotated recommendations from our participants’ usage of the search
engine as well as give the reader some examples of particularly well performing queries.
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5.1.1 Survey Data
The collected survey data is a number of csv files containing queries, repositories, the position
our chosen model gave the repository and finally the score given by the human subject to that
repository for the search query. In the survey data the “OPTICS” model is mentioned for
collecting annotations, first in Table 5.1. OPTICS is a clustering model that we tried during
the user study to collect annotations, with the goal of also comparing it to the other models.
We realized however that we might not have used it correctly and as such did not want to
include it in the comparisons, however as this should have no effect in using the annotations
from sessions with this aggregation model we decided to still keep them in the annotated
evaluation datasets.

Model Annotated Repositories Annotated Queries
Annotated queries using Ward 132 23
Annotated queries using k-means 120 12
Annotated queries using Folder 98 13
Annotated queries using OPTICS 150 15

Table 5.1: Distribution of annotated queries and repositories for the
different aggregation models.

A discrepancy can be seen in Table 5.1 where Ward has many more annotated queries
despite not having many more repositories. This is because a few of the earlier survey sessions
ended without all repositories being annotated.

Figure 5.1: Distribution of relevance scores in general and for first
rank for the clean dataset.

In Figure 5.1 an overview of the annotated data can be seen. An interesting note is that
there are fewer annotations with higher relevance scores, as opposed to the annotated dataset
in CodeSearchNet which was more balanced.

Finally, because we found some issues with the annotated dataset we created a subset
which we call the “clean” dataset where we removed these issues. The way we decided which
queries to keep was through the following criteria; there should be at least 10 annotated
repositories for the query and the query should not be a duplicate. The first criteria was
needed because of queries that were only annotated in the pilot study where 3 repositories
were recommended and where a survey was given up halfway through. The second criteria
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was needed because it happened a few times that participants saved a completed a survey but
realized they did a mistake, and then re-annotated the same query once more. We call the
complete annotated dataset “raw”, because we did not edit anything.

Model Annotated Repositories
Annotated queries using Ward 88
Annotated queries using k-means 90
Annotated queries using Folder 73
Annotated queries using OPTICS 110

Table 5.2: Distribution of annotated repositories for the different
aggregation models in the clean dataset.

Figure 5.2: Distribution of relevance scores in general and for first
rank for the clean dataset.

A summary of the distribution of relevance scores in the clean dataset is presented in
Figure 5.2, and the distribution of annotated repositories by aggregation models is presented
in Table 5.2. Notable in both these tables is that the distribution is quite similar, but less
skewed towards zeroes. The clean dataset is still comparably balanced between the different
aggregation models, so it should not benefit any specific model.

5.2 Clustering Metrics Overview
To answer RQ4 of whether separated clusters correlated with relevant recommendations we
needed to calculate how separated our clusters were. For all clustering algorithms the goal
was to maximize Silhouette Score, while if possible also maximizing number of clusters, i.e. if
k-means creates clusters with two different values for n but they both achieved the same Sil-
houette Score, the clustering with the larger n value would be preferred. The only exception
was “folder” where the folder structure of the repository was used instead of unsupervised
clustering. The mean number of clusters and mean number of clusters of repositories with
more than two functions for each clustering algorithm is presented in Table 5.3. For a better
understanding of the Silhouette Score we present the distribution of Silhouette Score be-
tween clusters in Figures 5.3, 5.4 & 5.5, this shows that most clusters have a Silhouette Score
close to the mean and that there are very few extreme outliers.
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Model \Metric Mean Clusters (Total) Mean Clusters (> 2 functions)
k-means 3.05 8.75
Ward 2.34 13.3
folder 2.34 14.1

Table 5.3: Mean number of clusters for the different clustering meth-
ods tested in the study.

Interesting to note is that there is no model that produces more than 2 clusters for a
majority of repositories, which is seen in the column named “% > 2 clusters” in Table 5.3.
Also bear in mind that cluster number for k-means and Ward was artificially capped due to
computation constraints, so the numbers in Table 5.3 should not be read as general for the
clustering algorithms on this dataset but rather as data on the clusters we worked with.

Figure 5.3: Folder Silhouette Score distribution.

Figure 5.4: k-means Silhouette Score distribution.

The distributions in Figure 5.3, Figure Figure 5.5 and Figure Figure 5.4 shows that the
Silhouette Scores for neither of the clusterings have many outliers. The Silhouette Scores
indicate that the clusterings for “Folder” are not very separate, since the score is very close to
0. The scores for k-means and Ward are slightly higher, but still not close to 1. This indicates
that the clusters are not very well separated, but that the separation is better for Ward and
best for k-means.
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Figure 5.5: Ward Silhouette Score distribution.

5.3 Recommendation Metric Comparison
To answer RQ1 and find out if clustering of function embeddings could be used for func-
tionality search of software repositories, we measured the NDCG of the different models to
compare them to a baseline of just searching using the function embeddings. In Table 5.4 the
models respective NDCG score, the relevance of recommendations, are compared. We chose
to set the k value, number of recommendations returned for a query, to 10 because this is a
common number of recommendations and specifically what was used in CodeSearchNet and
our survey. Since we also wanted to look at scalability of the models to answer RQ3 the same
values are presented in Table 5.5, but where NDCG scores are divided by space utilization to
also factor this in to the comparison.

After compiling all results from running the NDCG evaluation script with each model
on the collected survey data, we created tables for comparison between the different ap-
proaches. The compiled data is separated into three groups. In the first one we present the
results on information retrieval and search space utilization for aggregation methods alone.
In the second one we present the results of information retrieval when pairing our aggrega-
tion methods with function embeddings, contextualizing the function embeddings. In the
third one we present the results of information retrieval when contextualizing the function
embeddings with multiple aggregation methods.

5.3.1 Aggregation
In Table 5.4 the NDCG results of all different aggregation models are presented.

In Table 5.4 the highest NDCG scores, 0.63 and 0.57, is for just using function embed-
ding. The score indicates that the model often recommended repositories with high relevance
from the annotated ones for a given query and that it ordered them quite close to their or-
der of relevance, although not perfectly. The results also indicate that k-means does give
recommendations almost as relevant, that Ward is just slightly worse and that Folder is rec-
ommending less relevant repositories than either of the clustering algorithms. Overall these
NDCG scores indicate that either aggregation model is able to recommend mostly relevant
repositories given that the annotated dataset is accurate.

In Figure 5.6 the different size of the search space, or number of vectors to search through
for a query, is shown as a percentage of the full dataset which included over 500000 functions.
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Aggregation
NDCGdataset Raw Clean

Embedding 0.63 0.57
Repository Mean 0.46 0.37
Folder 0.48 0.41
k-means 0.55 0.52
Ward 0.55 0.49

Table 5.4: NDCG scores for different aggregation methods. Baseline
scores are above dotted line and best non-baseline scores are in bold
font.

Figure 5.6: Search space of the different aggregation methods com-
pared as a percent of the full embedded dataset.

Interesting points in this comparison is that Folder and k-means have quite similar search
space utilization and that both use less than half of the search space compared to Ward. This
showcases that the difference is substantial and could potentially affect both speed of search
and memory consumption for an embedding search model. For Table 5.5 the NDCG scores
from Table 5.4 are divided by the percentages in Figure 5.6 to make a comparison which takes
both recommendation relevance and scalability into account.

When scalability or dataset size is taken into account, as is shown in Table 5.5, using the
repository mean as an aggregation method outperforms all other methods, but both Folder
and k-means are also an order of magnitude better than using functions embeddings as search
space.

5.3.2 Weighing Embeddings & Aggregation
The scores received when using a mix of cluster embedding and function embedding are seen
in Table 5.6. We tested a 50/50 mix between function and cluster embedding because to our
knowledge there is no specific reason to try another division first. That said, it could be that
something like 10/90 or 70/30 would be better, but that is left for future study since we are
just interested in finding out whether the cluster embedding could improve upon only using
function embeddings.
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Aggregation

NDCG
SearchSpace dataset Raw Clean

Embedding 0.63 0.57
Repository Mean 16.4 13.2
Folder 11.7 10.0
k-means 9.6 9.1
Ward 4.6 4.1

Table 5.5: NDCG scores divided by Search Space Utilization as a
combined score. Baseline scores are above the dotted line and best
non-baseline scores are in bold font.

Aggregation
NDCGdataset Raw Clean

Embedding 0.63 0.57
Folder 0.7 0.65
k-means 0.73 0.66
Ward 0.67 0.63

Table 5.6: NDCG scores for the models, where models are 50/50
between model and function embedding. Baseline scores are above
dotted line and best non-baseline scores are in bold font.

As is seen in Table 5.6 combining cluster and function embedding does improve upon
using only function embeddings regardless of clustering used.

5.3.3 Reducing Bias
Due to the possibility of annotations collected with a specific model biasing the result of
calculating NDCG for that same model we elected to also run the NDCG evaluation for the
models while filtering out the annotations provided when using the model for surveys.

In Appendix B we present some data on our attempt to reduce bias. The results indicate
that our methods of reducing bias does lower the overall NDCG of the evaluated models,
meaning that recommendation relevance is probably lower than Table 5.4 indicates, but that
the comparative scores are to a large degree not affected, e.g. k-means is still the best per-
forming aggregation model for recommendation relevance and still compares well to using
function embeddings directly. For a comparative view of how the methods of reducing bias
affects the results see Table B.7 in Appendix B.2.

5.4 Correlation Between Clustering and Rec-
ommendations

To answer RQ4 and determine whether using better clustering, measured by Silhouette
Score, would lead to better search results, measured by NDCG, the correlation between these
metrics for our study is presented in this section.
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The measurements of correlation between Silhouette Score and NDCG are based on the
same values presented in Table 5.4 as well as Figure 5.3, Figure 5.5 and Figure 5.4. The results
of calculating the correlation between Silhouette Score and NDCG are presented in Table 5.7.
These values were calculated using the function “corrcoeff” in the “pandas” Python framework
which calculates the Pearson correlation coefficient.

Dataset Correlation
Clean 0.94
Raw 0.98

Table 5.7: Correlation coefficients for the correlation between Sil-
houette Score and NDCG.

The correlation coefficients in Table 5.7 seem to indicate a correlation between Silhouette
Score and NDCG. Note that the coefficients in Table 5.7 are based on a small number of data
points.

5.5 Where the method fails
Going through the results we were able to group together similar cases where our method
failed to deliver desirable results. The most common of these failures by the model were
queries which included more than one specific functionality. Table B.3 presents a few exam-
ples of this. These failures can be used to get an insight on the limitations of this approach
and help answer RQ2 on the degree of which using aggregation methods for functionality
search is viable.

We also found that the model particularly struggled with uncommon words. A notable
query which included what the authors deemed an uncommon keyword and which resulted
in poor quality recommendations is “elo rating python”, which achieved the low score of 0.5
out of a possible 31.8. We believe this may be due to the language model not understanding
the word “elo” and that it highlights a shortcoming of the approach, namely that there is a
possibility that the embedding model has not seen specific words often enough to properly
place text including them correctly in its vector space.
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Conclusion

In the first part of the conclusion we aim to answer our research questions from our results as
best as we can. We argue that embeddings is a viable way of finding relevant software repos-
itories from a natural language query and that aggregating data into repository embeddings
can in fact lead to better performance than the naive approach of using only embeddings,
and that aggregating has the additional benefit of scaling better. We also find that separation
between clusters and relevant recommendations seem correlated.

Following our research question we continue the discussion around several key topics
related to this thesis, such as limitations, ethics and how our results compare to CodeSearch-
Net.

In the third section we present some potential threats to validity to this thesis, especially
with regards to our mistakes in human evaluation. With all user studies there is always a risk
of biasing the participants, and in hindsight many things could have been done to minimize
such bias. We also touch on our selection of clustering algorithms and end this section with a
discussion on how the scope of our thesis limits the potential generalized benefit of the work.

We end this chapter by presenting ideas of future work related to this thesis and some
final words.

6.1 Answers to Research Questions

6.1.1 RQ1
Just as earlier research suggested, we found that utilizing source code embeddings in the
domain of semantic search does work, and that it can be utilized with promising results even
on the abstraction level of repositories.

The exact degree is harder to tell, but it does seem like using function embeddings does
provide mostly relevant searches while there are still many highly ranked recommendations
that are also irrelevant to the query. A good indication of this is Table B.1 where we can
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see that multiple queries got very relevant recommendations from the tested models. It is
harder to use NDCG to evaluate absolute performance rather than comparative, but looking
at Table 5.4 and Table 5.6 as well as the bias adjusted Table B.6 we can see that for using only
embedding all NDCG values are at least 0.40, which does indicate high relevance.

We did observe various problems with the approach, but these issues could potentially be
solved by using functionality search on top of more common recommendation systems, such
as keyword search combined with different filtering constraints like popularity and usage
statistics. The biggest problem is visible in Table B.3 where we can see poor relevance results
found during our human evaluation. What these seem to indicate is that this model cannot
handle multiple separable functionalities, e.g. a query describing both read and write func-
tionality will not receive very relevant results. This will be further discussed in section 6.2.

6.1.2 RQ2
The answer to RQ2 on to what extent aggregations of function embeddings can be used to
find relevant repositories we look at how the aggregation methods compared to directly using
function embeddings and the achieved NDCG when combining the methods.

Using only aggregation methods on their own does not really compare favourably to using
function embeddings directly. But that said, both of the tested clustering algorithms tested
as aggregation models achieved mostly scores similar to function embeddings, differing at
most 0.14 which is seen in Table B.5 on the raw dataset between function embedding and the
Ward clustering algorithm.

Where the aggregation methods compare well to just using function embeddings was
when used together with the specific function embedding. Using aggregation in combina-
tion with function embedding achieved the highest NDCG scores we found, 0.73 for a 50/50
combination with k-means. This indicates that aggregation can improve relevance in search
recommendations when compared to just using function embeddings directly.

Overall we conclude that aggregation methods can be helpful for the task of finding rel-
evant repositories and to a greater extent can be used to improve upon using only function
embeddings.

6.1.3 RQ3
While utilizing function embeddings directly does provide more accurate results, the most
accurate being a combination of cluster embedding and function embedding in our research,
it does come with the cost of a less scalable model. As seen in Figure 5.6 the space require-
ments are 6 to almost 25 times as high for storing all function embeddings compared to
storing only the aggregated embedding. Another scalability benefit of using the clustering
model is that we can decide on a maximum number of clusters to divide a repository into.

We do believe that scalability is an important factor for this problem, as the number of
open source software repositories is great and since this number is ever growing, as of writing
these words GitHub is hosting over 330 million repositories and if the same ratio between
repositories and and functions as seen in Table 4.1 holds true that would translate to over
12 billion functions. Therefore, a model which is able to scale is probably preferable in this
domain. Finding a clustering method that provides accurate categorization which helps in the
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domain of functionality search is therefore still of importance, even though purely searching
for functions might be more accurate.

The most scalable model is as discussed before to simply take the function embedding
mean of the software repository, but it is also worth to note that both k-means and Ward are
space efficient and get much higher NDCG scores.

6.1.4 RQ4
From our very limited set of aggregation models and data points the general trend seems to be
that Silhouette Score and NDCG are correlated. In Table 5.7 the computed correlation coef-
ficients are 0.94 and 0.98. As a first trial this does seem to indicate that there is a correlation,
but due to only trying 3 different aggregation models with different Silhouette Scores this is
far from conclusive. Further work is needed to decide if this is really the case. If we assume
that the result is reliable then the answer to RQ4 would be that there is a strong relation-
ship between aggregation models achieving clear separation and being able to recommend
relevant repositories.

6.2 Discussion
We have researched whether unsupervised clustering and other aggregations methods can
be used to improve information retrieval and scalability for functionality search of software
component search.

Introducing a combination of aggregated embeddings and the functionality embedding
or using the aggregated embeddings alone, can both increase the accuracy of search results
and improve scalability of a recommendation system respectively.

6.2.1 Limitations of the clustering approach
There are of course many limitations of the clustering approach for functionality search,
one large one being the dependence on good function embeddings. The performance of this
model cannot be good if the function embeddings do not accurately match their function’s
semantics.

Another limitation that we found while analyzing the data was that the model seems to
struggle when multiple functionalities are mentioned in the same query, such as the example
of “read and write metadata from image files” which can be seen in Table B.3. Here we believe
the model recommends irrelevant repositories because there are individual embeddings for
functions that either read or write image metadata, but not individual functions that do both.
This then means that we might recommend repositories which read image metadata or that
creates images and thus writes image metadata, but are unlikely to recommend a repository
that edits image metadata.

6.2.2 Ethics
In this study we have not been particularly concerned with ethics, but potential concerns are
mainly with bias and fairness.
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If a software component search engine using clustering of function embeddings would
be popularized it could be biased towards certain programming languages and programming
styles. Since we want function embeddings that are not biased towards language or style, but
rather embeddings that only represent the semantic intent of the functions, this should not
be a problem. It is still worth consideration since the underlying language model used for
embeddings could be biased in such a way.

Another concern is that, if popular enough, it could potentially impact how developers
write software. This would be similar to how websites operate today, where the content needs
to be written in such a way as to be given a high recommendation in Google’s search algo-
rithm, so called “search engine optimization”. An example would be if components started
to include functionality for a specific popular task simply to end up recommended for more
queries.

6.2.3 Comparison to CodeSearchNet
While CodeSearchNet and our works differ in what is being recommended it is still inter-
esting to see what other NDCG scores are considered valuable in the field of functionality
search. The highest score achieved on the CodeSearchNet leaderboard was 0.47 for Python.
While it might seem that our model generally performed better than this, there are a few
things to keep in mind. CodeSearchNet had a much larger annotated dataset, 2089 annota-
tions for Python, and that dataset differed from ours in one key aspect; the annotations were
not collected by participants who tried a search and annotated probable relevant candidates
but instead annotated functions from a small dataset that had no reason to be either rele-
vant or irrelevant, and the participants neither expected relevant or irrelevant results. This
probably reduced their bias towards too high NDCG scores and is something we discuss in
threats to the validity of our work.

6.3 Threats to Validity
There are multiple threats to the validity of the results and conclusions in this thesis, mainly
due to the nature of surveys and human evaluation being a difficult way to acquire unbiased
data.

6.3.1 Search Dataset
For the search dataset we utilized the same one used by CodeSearchNet functionality search
for the Python programming language. This was the dataset where tests, short functions
and functions without docstrings were filtered out. However, CodeSearchNet also provided
another dataset with all functions which was about four times larger and could have been
combined with the function-docstring dataset for even more functions. Since we did not use
the docstrings anyway we could have utilized this larger dataset which may have provided
better data for clustering due to having more functions per repository on average. It could
also be that utilizing this larger dataset would have resulted in worse performance due to
having more functions with less information and more noise in general. In either way more
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data would have enabled more accurate results, and in hindsight we should have used the
larger dataset.

6.3.2 Mistakes in human evaluation
One mistake during human evaluation or surveying was some ambiguity in how subjects were
to evaluate the results. The results were explained to be an as good match for the query as
possible, e.g. the repository should be related to the functionality described in the query and
solve the problem facing the subject. Some subjects believed that a repository simply having
a function matching the intent of the query was enough to warrant a high score in evaluation
- which is a failure of the authors for not providing less ambiguous instructions. The result
of this mistake might be a bias towards the models using function embeddings which should
be kept in mind when looking at Table 5.6. But this can also have introduced a positive bias
overall, meaning we might be seeing higher NDCG scores than deserved for all models.

Another mistake made during the user study was that results were presented in the order
they were recommended by our model. This introduced a bias in our subject that the earlier a
repository appeared in the list of results the more relevant a recommendation it “should” be.
This was not mitigated in any other way than that we told the subjects not to care about the
order. An approach that reduces this bias would have been to always randomize the order,
but that is unfortunately not something that was done for the survey data collected in this
study. This is probably introducing a positive bias for all models resulting in higher than
deserved NDCG scores.

Another problem in the evaluation was the number of results. Although not confirmed it
could be the case that less time was devoted to evaluating recommendations appearing later
in the list of results, simply due to the fact that subjects got tired of evaluating after analyzing
a couple of repositories. This bias towards time spent on higher ranked recommendations
could also have been mitigated by randomizing the order of recommendations presented to
subjects or by having fewer recommendations to rank per query/survey session.

Finally we found that collecting our annotated dataset in surveys using our different
models was probably the wrong approach and that either just using function embeddings
during the surveys to not bias between the aggregation models. Even better would be doing
as CodeSearchNet did for the dataset and giving the human evaluators the task of annotating
a number of items for a query without having the subject come up with the query and selecting
the items for annotation without the models we later want to evaluate, e.g. selecting a random
set from the search data set. Since the participants would then not be expecting especially
relevant results this would probably affect bias towards higher relevance scores. Since our
participants knew us, wanted us to succeed and knew they tested our models, they might
have scored the relevance of the recommendations higher than deserved and thus our NDCG
scores are probably higher than they should have been. Using this approach for annotation
collection would have the added benefit of enabling us more control in balancing the data
set. There would not be specific queries with bias towards a specific model. This is something
we tried to adjust for in Table B.5, but of course this also reduced the size of the already small
data set which makes the results less reliable and is thus not an ideal solution.

While the scores our models achieved in this study are probably higher than deserved
due to our biases we still believe the comparison between models, especially when looking at
Table B.7 where we present different approaches for reducing bias, should be somewhat reli-
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able. This means that although we might not be able to claim in absolute terms to what extent
the models produce relevant recommendations, we can say that using clustering algorithms
compares well to just using function embeddings directly.

6.3.3 Clustering Algorithms
We evaluated just two clustering algorithms as aggregations in this thesis. The number of
data points is thus very low. For the answering RQ2 this is probably not a big problem as we
don’t need to evaluate a large number of clustering algorithms to test if the idea of using them
for functionality search is plausible. It is however a problem when trying to see if Silhouette
Score can be used to select clusterings for functionality search by measuring its correlation
with NDCG. In hindsight we should have saved the discarded clusterings with lower Silhou-
ette Scores for the chosen algorithms as well to have more data points when calculating the
correlation. Another problem with the clustering algorithms is that they achieved quite low
Silhouette Scores in general, meaning that they were not able to find clear clusters or classes
of function embeddings and that there is some uncertainty on whether the embeddings were
placed in the “correct” cluster. This could indicate that the underlying embeddings were not
well-suited for unsupervised clustering. However, since the search relevance results generally
seem positive this probably does not invalidate the hypothesis that clusterings can be useful
for functionality search for repositories.

6.3.4 Scope
There are also some threats to the validity of this work in the form of the scope of the thesis.
Due to focusing on just one programming language, Python, we cannot say whether this is
applicable to other languages as well, and if not then the research might not be very valuable.
The same goes for users. Maybe the participants in our user study differs a lot from the av-
erage software developer and scored the recommendations higher or lower than the industry
average. This could also be the case for our repositories. Maybe something inherent to our
small dataset of repositories led to the results. One example would be if the authors of the
repositories were better than average at writing comprehensive code, which might lead to
more accurate embeddings and thus higher than expected relevance score for our models.

6.4 Future Work
Our study looked at a few ideas to utilize function embeddings generated from large language
models to help in software component recommendations for search queries. There are many
more ideas to explore in this area and many ways to extend the methods described in this
thesis. Some future work we thought about while writing this is presented below.

6.4.1 Program Language Semantics
Using program language semantics has a lot of potential to improve the accuracy of our model.
Mainly because program language semantics could be utilized to find the most important
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functionality in a given repository, which could be used to find what different functionalities
a repository actually contains. An example would be that most large repositories contain lots
of helper functions, tests and utilities which are not really part of the repository’s domain.
This is something that tools in the program language semantics area can solve and help our
repository recommendation.

One example of program language semantics helping filter out functions that are not
useful for repository functionality is simply not including tests, which is what was done in
the dataset we used from CodeSearchNet. Tests may hold important information about how
the functions are used and what they are supposed to do however. Maybe instead of discarding
the tests completely they could have been used to find which functions were most important
in the repository and more importantly how the functions are used. If this could be used
to further enrich function embeddings, for example so that functions with similar tests are
closer together and vice versa, it could probably help in the separation of clusters and in other
words make it easier to find different functionality inside of the repository. This is probably
the most promising thing to test next as it would be quite easy to get the data and connect
tests to their tested function, although not trivial, and we believe tests can potentially say a
lot about the semantics of a function.

Another example is using the program’s call graph to remove helper functions which are
never directly executed by a user of the repository and thus does not represent user function-
ality in a repository. There are two problems with using call graphs for this however. The
first problem is that call graphs are rarely exact, as we usually cannot perfectly determine out-
comes of a program without executing it. This is not a huge problem as we can still probably
filter out a great portion of non-user functionality despite not having exact call graphs. The
second problem is easier to solve, but still needs to be mentioned. To create the call graph
we require the full program source code and structure, not just functions in a vacuum. Thus
a new dataset would be needed or one would have to use public repositories directly. In the
same way as tests can help in finding similar functions and separating less similar ones, we
believe the call graph for a function can say a lot about the semantics of the function.

One last example is only looking at public functions, as the private functions are proba-
bly not intended for an end user of a repository and should therefore not contribute to the
functionalities of a repository.

6.4.2 Embeddings
One way to improve the accuracy of our model is to improve the accuracy of the underlying
embeddings. Using embeddings that more accurately represents the semantic functionality
of the source code and text that describes it, should translate to more relevant recommen-
dations. We could potentially try using a different vendor or project that is the current or
future state of the art, instead of Microsoft’s UnixCoder, which should improve the relevance
of our models as well.

6.4.3 Clustering on the full dataset
A possible improvement could be to create clusters on the entire dataset instead of per repos-
itory. That is, using unsupervised clustering to find all functionality categories in all repos-
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itories. We could then label each repository by which functionality clusters it has functions
in, and use that information to recommend relevant software repositories.

This approach could potentially be more powerful, especially for smaller repositories
where we could only find one cluster which is essentially equivalent to the mean embedding
of that repository. Instead of recommending a repository like that by its mean, it would
instead be recommended based on what functionality cluster it fit inside of.

The problem with this approach is that for multiple smaller repositories which would be
categories in the same functionality cluster we would not, by using only this model, be able
to differentiate between them. This could of course be solved by utilizing another data point
such as the mean embedding of the repository, best function match, metadata or something
entirely different.

It would be interesting to study how utilizing this approach would compare to the one
we researched in this thesis.

6.4.4 Evaluation
During the course of the user study, and while evaluating our results, we learned a lot from
the mistakes we made and came to many conclusions on how we could have improved this
process. Some of these ideas will be discussed here.

The first thing we would change for the user study would be to not collect the annotations
through the models we wanted to evaluate, but rather emulate the process in CodeSearch-
Net and randomly show participants a query and a repository and have them evaluate the
relevance. This would reduce many of the biases we potentially had in our results.

Another improvement of the study could be to have a smaller test-dataset where we have
good meta information, such as features and functionality, which could be used specifically
for evaluation. This would reduce the number of unclear repository recommendations and
improve reliability of the results.

Finally a large improvement would be the number of participants and total number of
annotations. Increasing the number of sessions from 50 to 100 or even a 1000 would increase
the reliability of the results a lot and would hopefully increase the difference between the
approaches and allow us to be more certain about our conclusions. If we were to conduct the
study again we would want to increase the pool of participants and set aside more time for
the data collection since surveys are quite time consuming.

6.5 Final Words
Overall, we find the results of using clustering algorithms to separate and search for func-
tionality in open source software repositories promising, but further study is required and
many questions remain. If we were to implement this kind of search model today, we would
use the k-means clustering algorithm because it performed very well with regards to NDCG,
is space efficient and is a clustering algorithm that is generally resource efficient in terms of
computation.

There are both many ways to improve upon our study due to shortcomings and mistakes,
and ways to take our models further with new approaches. With these improvements we
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believe clustering of source code functionality embeddings can potentially be a powerful and
scalable way to help find relevant open source software repositories.
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Appendix A

Visual of Survey used in study

A.1 Jupyter Notebook

Figure A.1: Beginning of Survey in Jupyter notebook form, where
subject is given necessary information to begin the evaluation.

A.2 HTML Website
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A. Visual of Survey used in study

Figure A.2: How the subject where visually presented the results of
their search query.

Figure A.3: Beginning of Survey in website form, where subject is
given necessary information to begin the evaluation.

Figure A.4: How the subject where visually presented the results of
their search query in the HTML Dash website survey.
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Appendix B

Additional Results

B.0.1 Queries with best results
The best results using relevant recommendations in the top 3 ranks, i.e recommendations
evaluated as a 3 as top results, can be seen in Table B.1.

Query [ Model ]
Position

1st 2nd 3rd

“encode string with utf-8” [ Ward ] 3 3 3
“Create unicode animations in a terminal” [ KMeans ] 3 3 1
“create simple line plot” [ Ward ] 3 2 3
“create contextual embeddings from strings” [ Ward ] 3 2 3
“setup a web server” [ folder ] 2 3 2
“sent email to users based on their profile” [ Ward ] 2 3 2
“compress file to common formats” [ Ward ] 2 2 3
“find dependency relations in pip project” [ folder ] 2 2 3

Table B.1: User study queries resulting in recommendations receiv-
ing high relevance scores in survey, with the scores for the first three
positions in recommendation displayed.

Note that the examples in Table B.1 is not an exhaustive list of queries receiving top
valuations but rather selected for having a sum of over 6 for relevance score in top three
recommendations. The results in Table B.1 use a 50/50 mix between aggregation and function
embedding.

In Table B.2 notice that we chose to use DCG for the comparison of these results instead
of NDCG, and that a perfect score for DCG would be that 10 relevant repositories annotated
as 3s were recommended resulting in a DCG score of 31.8.
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Query Model DCG
“encode string with utf-8” Ward 15.3
“Create unicode animations in a terminal” KMeans 14.4
“create simple line plot” Ward 18.7
“create contextual embeddings from strings” Ward 23.4
“setup a web server” folder 16.0
“sent email to users based on their profile” Ward 12.2
“compress file to common formats” Ward 9.35
“find dependency relations in pip project” folder 10.6

Table B.2: User study queries resulting in high DCG.

B.1 Multiple Functionality Failures

Query Functionalities Model DCG
“convert xslx to csv” read xslx then write csv KMeans 4.73
“authenticate and save
oauth token google”

authenticate token, save to-
ken

Ward 4.72

“cyclic complexity code
analysis for python”

cyclic complexity, code
analysis, python

Ward 4.34

“read and write metadata
from image files”

read image metadata, write
image metadata

KMeans 2.61

Table B.3: Examples of queries that included multiple functionali-
ties and showed low performance.

During the study it was also found that using a query with multiple functionalities re-
sulted in less accurate results. A few examples of queries describing multiple functionalities
and which achieved a DCG score lower than 5 can be found in Table B.3.

B.2 Reducing Bias

Model Annotated Queries Raw Annotated Queries Clean
Ward 37 26
KMeans 40 26
Folder 47 31

Table B.4: Number of annotated queries for evaluation when filter-
ing ones only annotated by evaluated model.

In Table B.6 the NDCG scores when not ignoring not annotated repositories for the
queries are presented. These values were calculated in an attempt to reduce the bias since
this will have the same result as all non annotated repositories being annotated as a 0 which
is the worst possible score.
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Aggregation
NDCGdataset Raw Clean

Embedding 0.63 0.57
Repository Mean 0.46 0.37
Folder 0.48 0.41
KMeans 0.57 0.48
Ward 0.49 0.49

Table B.5: NDCG scores for different aggregation methods and k-
values where the evaluated models own annotated queries are fil-
tered. Baseline scores are above dotted line and best non-baseline
scores are in bold font.

Aggregation
NDCGdataset Raw Clean

Embedding 0.61 0.54
Repository Mean 0.37 0.30
Folder 0.39 0.33
KMeans 0.51 0.52
Ward 0.45 0.49

Table B.6: NDCG scores for different aggregation methods and k-
values where the NDCG algorithm counts non-annotated results as
worst possible matches. Baseline scores are above dotted line and
best non-baseline scores are in bold font.

For easier comparison between tables 5.4, B.6 and B.5 we created Table B.7. From these
values it looks like the scores in Table 5.4 may exaggerate the effectiveness of the methods,
but the general comparative scores between models remain and thus the dataset should only
minimally be biased towards specific aggregations.

Aggregation
Table Raw Clean

5.4 B.5 B.6 5.4 B.5 B.6
Embedding 0.63 0.63 0.61 0.57 0.57 0.54
Repository Mean 0.46 0.46 0.37 0.37 0.37 0.30
Folder 0.48 0.48 0.39 0.41 0.41 0.33
KMeans 0.55 0.57 0.51 0.52 0.48 0.52
Ward 0.55 0.49 0.45 0.49 0.49 0.49

Table B.7: Comparison between NDCG values from tables 5.4, B.6
and B.5.
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Rekommendation av relevant
programvara med hjälp av semantisk
funktionalitetssök

POPULÄRVETENSKAPLIG SAMMANFATTNING Filip Hedén, Nils Barr Zeilon

Semantisk funktionalitetssökning har redan visat framgång vid rekommendation av
relevanta kodstycken som mjukvaruingenjörer kan återanvända. Med detta arbete
introducerar vi kombinationer av vektorer för att utvidga användningsområdet till
rekommendationer av samlingar av öppen källkod eller mjukvarukomponenter.

Som mjukvaruutvecklare förväntas vi inte län-
gre bara skriva kod, utan också återanvända och
bygga vidare på andra utvecklares programvara.
Återanvändandet av kod har blivit möjlig tack
vare fritt tillgänglig kod som publiceras på in-
ternet, så kallad öppen källkod. Öppen källkod
distribueras ofta i form av ett “repository”, eller
arkiv, en samling filer med kod som beskriver pro-
gramvaran. Med tillväxten av öppen källkod som
är tillgänglig vill vi enkelt hitta relevant program-
vara för våra specifika behov, ofta genom en sök-
motor.

I vårt examensarbete har vi utvecklat en sådan
sökmotor med hjälp av semantisk funktionssökn-
ing. Semantisk funktionalitetssökning fångar vik-
tig semantik, eller betydelse, i kod och samlar in-
formationen i numeriska vektorer, eller listor av
siffror. Användare av vår sökmotor kan sedan söka
efter någon funktionalitet eller ett användingsom-
råde, och vårt system kan rekommendera det bäst
passande arkivet till användarens behov.

Vårt arbete jämför rekommendation av arkiv
genom användning av enskilda vektorer mot an-
vändningen av vad vi kallar för arkiv-vektorer,

vilka är kombinationer av grupper av liknande
vektorer i ett arkiv och tillsammans representerar
viss kodfunktionalitet. Vi utvärderade vår metod
med en användarstudie där erfarna programmer-
are kunde rangordna relevansen av de arkiv som
vår sökmotor rekommenderade.

Från den användarstudien kan vi konstatera att
de mest relevanta rekommendationerna uppnåd-
des genom att rekommendera de bäst matchande
arkiv med en kombination av kod-vektorer och
kombinationer av kod-vektorer.

Genom att endast använda kombinationer av
vektorer så rekommenderades arkiv med något
mindre relevanta rekommendationer. Men då
sökutrymmet blir mindre när kombinerade vek-
torer används förbättras också skalbarheten för
rekommendationssystemet. Detta på grund av att
systemet inte behöver jämföra förfrågan mot ett
lika stort antal vektorer för att kunna avgöra den
bästa matchen.

Sammanfattningsvis visar våra resultat att
genom att använda kombinationer av vektorer kan
vi antingen öka relevansen för rekommenderade
arkiv eller öka skalbarheten för sökmotorn.
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