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Abstract

Database management systems (DBMS) are integral tools at the center of many
software applications, which means that these applications are deeply depen-
dent on the correctness of their DBMS. In recent years, graph DBMSs have seen
a significant rise in popularity, but they have not gotten the same amount of aca-
demic attention when it comes to testing as their relational counterparts. The
most popular graph DBMS is called Neo4j and it has its own query language
called Cypher.

In this thesis, we present a tool that generates random semantically correct
Cypher queries. This query generator has a versatile set of use-cases and is built to
be configurable, and in this thesis we have focused on using it for random testing
of the Neo4j DBMS. Random testing of a DBMS means generating random but
correct queries, executing them on the database and then checking whether the
output is incorrect, which can be accomplished in a few different ways.

We found 25 confirmed bugs in Neo4j with our tool which suggests that it
works well for the purpose of random testing of graph DBMSs. 21 of these bugs
are already fixed, which suggests that the tool can find significant errors and not
just irrelevant edge cases.

Keywords: Cypher, query generation, differential testing, property testing, graph database
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Chapter 1

Introduction

Database management systems (DBMS) are tools that are used to efficiently handle data and
they are a core part of most modern software systems. While relational databases are the
most common type, graph databases have been gaining significant popularity in recent years,
with the most widely used graph database, Neo4j, being used by hundreds of Fortune 500
companies [1]. As the name suggests, graph databases represent the data as graphs. Because
of this graph structure, traditional SQL-based query languages can not be used to query the
graph databases, which is why Neo4j have developed their own query language called Cypher.

Bugs in DBMSs pose a serious threat to the applications that they are a part of. Since
databases often act as an integrated part of a larger application, a bug in the DBMS might
cause additional problems in other parts of the application. It is often taken for granted that
the database in question always returns the correct results. This means that a logical bug,
which results in the databases returning an incorrect result, is very hard to catch from a user
point of view. There is also a possibility of the database crashing as a result of a bug. This
too might lead to serious problems for the user, potentially making parts of the application
useless or even crash.

One way of finding bugs in software systems is by using a technique called random testing
(sometimes referred to as fuzz testing) which is an approach where randomly generated input
is used to test properties of software systems. Extensive random testing has been done in order
to improve the stability of compilers [8] and relational databases [9, 10, 4, 11], but finding
logic bugs in property graph databases has not been given the same amount of attention [13].
Even though the random input produced in random tests may seem like nonsense that would
not find any actually meaningful bugs, Marcozzi et al. present the conclusion that bugs found
in random tests are just as relevant as bugs reported by users [8].

There is a variant of random testing called differential testing. The main idea behind
differential testing is to give the same input to different implementations of the same system
and compare the output. If the outputs are not equal, then that indicates that there is a bug in
at least one of the instances. This technique allows you to easily compare correctness between
optimizations and versions for example.
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1. Introduction

As the complexity of a system grows, the need for automated test tools naturally increases.
Having to manually construct test cases is tedious and error-prone. When the potential input
domain is large enough it is practically impossible. This situation is very much applicable to
the Neo4j database. The complexity is constantly increased by new Cypher language features
and internal optimizations. A query generator has the potential to be used in multiple ar-
eas, e.g. testing and benchmarking. Using an automated tool has multiple advantages when
compared to manually writing queries. Using this computer-generated approach allows for
producing both very large queries and also a very large quantity of queries. Having the tool
randomly produce queries might also combine different language features in a way that is not
commonly thought of by developers manually writing test queries.

1.1 Problem statement
The aim of this thesis is to implement a tool for automatically generating syntactically and
semantically valid Cypher queries. Furthermore, effort will be directed at making the tool
configurable, e.g. number of clauses, number of nested expressions, and type of clauses. We
also implemented a test environment to demonstrate how the query generator can be used
for random testing of graph databases.

1.2 Contributions
We have implemented a configurable open-source tool that can generate random Cypher
queries. The tool has been used to improve the viability and robustness of the Neo4j DBMS
and the Cypher query language through random testing. We have set up a property test suite
that generates random but correct queries and feeds them as input to the Neo4j database.
The suite contains two types of tests - non-executing tests and executing tests. The non-
executing tests aim at testing the steps before actually executing the query, such as parsing,
semantic analysis and planning. The execution tests aim at finding bugs when actually exe-
cuting queries and are set up as differential tests.

During the project we found 25 unique bugs in the Neo4j DBMS confirmed by its de-
velopers. These 25 bugs consist of 24 bugs resulting in the DBMS wrongfully crashing (error
bugs) and one bug resulting in an incorrect query result (logical bugs). This strongly suggests
that the use of automated query generation can be highly beneficial.

However, the tool is not limited to Neo4j. The generated queries are fully capable of being
used by any program or DBMS that supports Cypher. As mentioned above, an extensive query
generator can also be useful in other testing scenarios, such as in performance benchmarking.

1.3 Contribution statement
The software presented in this thesis was almost exclusively written using pair programming.
This means that every line of code has been reviewed and considered by both the authors.

The writing process of the thesis was a bit different. One author would write a first draft
of each section, then the other would review and usually edit it. Most sections have had
multiple changes done to them by both authors during the writing process.
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1.4 Outline

1.4 Outline
This thesis is structured such that Chapter 2 contains necessary background information,
primarily on graph databases, the Cypher query language and random testing. The infor-
mation in this chapter aims at aiding the reader in understanding problems, concepts and
discussions in the following chapters.

Chapter 3, describes our specific approach at solving the problem. In this section the
general method is described, as well as certain implementation details concerning both the
query generator and the test suite. This section highlights the main challenges, solutions and
design choices made. This is followed by Chapter 4 which is an evaluation of the project.
This entails experimental setup and results. It also contains a section highlighting a selection
of the bugs found using our tool.

Chapter 5 summarizes related academic work.
Chapter 6 presents a discussion on our project and the test results. This includes a dis-

cussion of the usefulness of the tool and of its modular structure. It also contains an section
on what kinds of bugs we found as well as suggestions on interesting related topics for future
work.

In Chapter 7 we present our conclusions.
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Chapter 2

Background

This first section aims to present relevant Cypher features and concepts that had to be taken
into consideration when implementing the query generator tool. This can be viewed as a
summary of the Neo4j Cypher Manual [2], with added details (that may be lacking in that
manual) coming from our first hand experience with pushing the Cypher language to its
limits during our implementation of the query generator. This section also describes the
relevant concepts of random testing and differential testing.

2.1 Neo4j and property graph databases

Neo4j is a graph database, which means that data is structured and conceptualized as a graph
rather than a set of tables. The base building blocks in graph databases are nodes and relation-
ships. Nodes and relationships can in general be referred to as entities. Nodes are data points
that can exist independently but relationships have to connect two nodes. All relationships
in Neo4j are directed, meaning every relationship has a start node and an end node. Entities
can have types used to categorize them, called labels. A relationship needs to have exactly one
label, but nodes can have zero, one or multiple.

A simple graph can be seen in Figure 2.1. As we can see in the graph, each relationship has
a label, in this case WORKS_FOR, STUDIES_AT or FRIENDS_WITH. The nodes are categorized
by three different labels, Company, Person and University

All entities can store information in the form of properties. Properties are key-value pairs
that are stored in the entities. In the example, the labels and properties of the nodes are
shown in the boxes next to them. In this example there are no properties belonging to the
relationships.

11



2. Background

Alice Bob
FRIENDS_WITH

FRIENDS_WITH

Neo4j

WORKS_FOR

LTH

STUDIES_AT

Label: Person
Properties :
{
 name: Alice
 age: 25
}

Label: Person
Properties :
{
 name: Bob
 age: 30
}

Label: University
Properties :
{
 name: LTH
}

Label: Company
Properties :
{
 name: Neo4j
}

WORKS_FOR

Figure 2.1: This is an example of how a graph can be represented
in Neo4j. The label and properties of each node are shown in the
box next to each node. In this example, no relationships have any
properties, so only their label is written out.

2.2 Cypher
Cypher is the query language used in Neo4j to communicate with the database. Just like
queries in SQL, a query in Cypher is made up of shorter sub-queries called clauses. The
clauses are structured in sequence and each clause passes information to the next. A clause is
expressed with a starting keyword followed by some body of text.

There are also non-functional clauses, such as administration clauses handling user priv-
ileges. Administration clauses are not part of our tool and will therefore not be explained.

2.2.1 Reading clauses
The MATCH clause is used to fetch data from the graph. It is used in the following way:

MATCH (p:Person)-[:WORKS_FOR]->(:Company)
RETURN p

Alice Bob

The part after the MATCH keyword is called a pattern and describes what pattern of enti-
ties to look for in the graph. This style of expressing sub-graphs as patterns is a key feature of
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2.2 Cypher

the Cypher query language. This particular pattern looks for any node p with a Person label
that has a WORKS_FOR relationship to a node with a Company label. Nodes are expressed with
round brackets and relationships are expressed as an arrow between them. The relationship
arrows can have squared brackets containing more specific information inside them. The
colons inside the entities are used to describe node or relationship labels, such as Person,
WORKS_FOR and Company in the example above. The p in the first node is a variable decla-
ration referring to a matching node. This variable is later referenced in the RETURN clause.

A MATCH clause can be followed by a WHERE sub-clause used to filter the result using some
predicate.

MATCH (p:Person)-[:WORKS_FOR]->(:Company)
WHERE p.name = "Alice"

RETURN p

Alice

The dot-syntax in the example above is used to refer to the property name of the node that
the variable p refers to. WHERE sub-clauses can also be expressed within entities in patterns,
meaning the following query is equivalent with the previous one:

MATCH (p:Person WHERE p.name = "Alice")-[:WORKS_FOR]->(:Company)
RETURN p

When trying to express properties that belong to entities in patterns, we can also use the
curly bracket syntax. The following query will produce the same result as above:

MATCH (p:Person {name: "Alice"})-[:WORKS_FOR]->(:Company)
RETURN p

An alternative version of MATCH exists, namely OPTIONAL MATCH. This version allows
users to specify optional parts of a matching pattern. If the OPTIONAL MATCH finds no
match, it will return a result with null in its missing places rather than nothing at all.

2.2.2 Projecting clauses
Projecting clauses are clauses that return an output in the form of a sequence of rows, i.e. as
a column. In fact, all variables in Cypher are treated as columns of values rather than single
values. In the matching clauses above, the variable p might intuitively seem to represent
only one node, but in fact it represents a sequence containing all the nodes in the graph that
matches the pattern criteria. This is why the single variable p returned two nodes in the first
matching query example. Viewed in table form, the output would look like this:

13



2. Background

MATCH (p:Person)-[:WORKS_FOR]->(:Company)
RETURN p

"p"
{"name":"Alice", "age":25}
{"name":"Bob", "age":30}

The three projecting clauses that we will explain are WITH, UNWIND and RETURN.
The WITH clause is used to prepare the output of one clause to be used as the input of

another one. It clears the previous variable scope and only passes on what is explicitly defined
in the WITH clause.

The UNWIND clause is used to convert a list of values to a column of values.
The RETURN clause is a special clause that can only be placed last in the sequence of clauses

in a query. It defines what data a query should return after it’s done executing. The return
clause can be followed by sub-clauses:

• ORDER BY sorts the results according to an expression. This sub-clause can also be
used in a WITH-clause.

• SKIP n throws away the first n values of the results.

• LIMIT n only keeps n values and throws away the rest.

WITH, UNWIND and RETURN can all be used together with the AS sub-clause. The AS sub-
clause allows the user to rename the returning expression and pass that renamed version to
the next clause:

MATCH (p:Person)-[:WORKS_FOR]->(:Company)
WITH p.name AS FirstName

RETURN FirstName

"FirstName"
"Alice"
"Bob"

2.2.3 Writing clauses
There are multiple clauses that write to the database. The CREATE and DELETE clauses mod-
ify the graph by using a pattern. The following query creates a new person Clara that works
for Neo4j:

MATCH (c:Company {name: "Neo4j"})
CREATE (p:Person {name: "Clara"})-[:WORKS_FOR]->(c)

It is not allowed to delete a node with relationships tied to it, since this would cause dan-
gling relationships that are missing a start or end node. To solve this one can start by deleting
all connected relationships or instead use DETACH DELETE which automatically removes any
connected relationships.

14



2.2 Cypher

The SET clause is used to update node labels or entity properties.
The REMOVE clause is used to remove node labels or entity properties.
The FOREACH clause is used to update values based on a List or a column, commonly used

together with the SET clause.
The MERGE clause uses a pattern, but works differently if the pattern exists in the graph

or not. If it exists, it functions as MATCH. If it does not exist, it functions as a CREATE. There
are special sub-clauses ON CREATE and ON MATCH that can be used to take different actions
depending on the MERGE clause:

MATCH (c:Company)
MERGE (p:Person)-[:WORKS_FOR]->(c)
ON MATCH

SET p.newly_hired = false
ON CREATE

SET p.newly_hired = true

2.2.4 Functions
Cypher supports function calls as a way of performing various tasks that can not easily be
expressed with the standard Cypher syntax. Users can define their own functions in Java
code, but we will focus on the predefined functions already provided in the Cypher language.
The syntax for calling functions is very familiar to that of many programming languages:
the function name is followed by comma separated parameters wrapped in round brackets.
Aggregating functions are functions that transform its input by reducing it column-wise. A
good example is the count function:

MATCH (p:Person)
RETURN count(p) AS numberOfPeople

"numberOfPeople"
2

Many more types of functions exist in the Cypher language and in our query generator.
There are for example many predicate functions and mathematical functions.

2.2.5 Other keywords and concepts
In this section, we will highlight some other concepts and keywords in Cypher that have been
proven significant when developing the query generator. There are plenty of other details and
keywords in Cypher that we will not cover in this section. These mostly work as one would
expect, as is the case for boolean operators, mathematical operators, comparison operators,
case expressions, etc.

Cypher supports list comprehension and pattern comprehension as alternative syntax
when defining lists. List comprehension uses another list as the base to iterate over when
creating a new list. Pattern comprehension works the same, but it uses the column result
from a pattern match as its base to iterate over. Lists are expressed with squared brackets.
Below is an example of list comprehension.

15



2. Background

WITH [element IN [1, 2, 3, 6] WHERE element < 4 | element^2] AS powerList
RETURN powerList

"powerList"
[1, 4, 9]

When matching on patterns, it is common to want to search for more complex node and
relationship labels than just a simple single label. For this purpose Cypher supports what is
called label expressions. It allows the user to express desired labels by combining conjunctions,
disjunctions, negations and wildcard symbols (*).

MATCH (personOrCompany:Person|Company)<--(anyNode:*)
RETURN personOrCompany

Alice Bob Neo4j

Another powerful concept is variable length relationships in patterns. These can be used
in pattern matching when we want to find a relationship connection between nodes that do
not have to be of a specific length. An optional minimum length and an optional maximum
length can be specified in the variable length relationship. Variable length relationships are
only allowed in MATCH clauses and not in writing clauses, since they are ambiguous in what
patterns they refer to.

MATCH (p:Person)-[*2..3]->(nodeThatIsTwoOrThreeRelationshipsAway)
RETURN nodeThatIsTwoOrThreeRelationshipsAway

LTHNeo4j

2.3 Query processing
The road from receiving a query to producing a result is long and involves several steps.
Before executing, actions are taken to transform the query string to an actual executable
plan. Looking at Neo4j specifically, these actions can be further divided into three distinct
steps - namely parsing, semantic analysis and planning.

The role of parsing is to transform the query string to an Abstract Syntax Tree (AST). The
AST acts as a tree representation of the query. Below is a simplified example of a query and
a corresponding AST.
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2.4 Random Testing

MATCH p = (n:Person)
WHERE 1 == 2

RETURN 1

Match

Pattern Where

Query

Result

Integer

1Variable

p

NodePattern

Label

Person

Variable

n

Equals

Integer

1

Integer

2

The next step, semantic analysis, verifies that variables and types are used correctly. This
step also involves rewriting the AST to conform to a normalized structure, i.e. naming anony-
mous variables, expanding aliases and simplifying expressions.

The last step is to produce an actual execution plan of the query. There are two parts
to this. First a logical plan is created. There are usually multiple working alternatives and
producing the best one is no trivial task. To pick the best logical plan, the cost of each plan
has to be calculated. However, this approach is too slow and instead an approximate cost
based on graph statistics is used. The aim is to produce a working plan in a reasonable time.

Lastly, the logical plan is transformed into a physical plan. Since Neo4j offers multiple
runtimes, this step involves taking the currently used runtime into consideration. Using
one of the enterprise runtimes parallel or pipelined results in a very different physical plan
compared to using the free open-source runtime staged.

2.4 Random Testing
Testing a program by providing random input and evaluating the result is called random
testing. This technique is widely used in a variety of fields, such as compiler testing [8].
Using a program to generate test input greatly improves the number of tests compared to
manually writing each input. Manually writing test input also risks not testing less obvious
cases. The randomness hopes to mitigate this risk.

There are, however, different levels of randomness. On one end of the spectrum the input
is a stream of completely random bits, on the other end the generated input is strongly guided
by a model, i.e. a set of rules.

The terms used in the domain of random testing are applied quite broadly, making them
quite hard to define. However, most seem to agree that the term fuzz testing describes a
black-box technique with more or less completely random input. This technique is mostly
used for simple stress testing of a program to see if it crashes when fed irregular input [6].
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2. Background

In other contexts, the term fuzz testing is used more synonymous with random testing.
In this sense the term is used more freely to describe any test systems with random input,
including those techniques that use a more guided input set [12]. These types of techniques
with guided random input are sometimes referred to as gray-box fuzzing.

Another related term is property testing, which refers to generating random input ac-
cording to a set of rules in order to test whether a system actually adheres to those rules
or not. One can argue that this is a type of model-guided gray-box fuzz testing, but it is
sometimes considered completely separate from fuzz testing.

Regardless of any strict definitions of these terms, from the perspective of this thesis,
both well-guided and more erratic random testing has their benefits.

2.4.1 Error bugs and logical bugs
Since one aspect of our tool is to generate syntactically and semantically correct queries, it is
very much guided by a model describing the syntax and semantics of the Cypher language.
However, within this model, there is room for tweaking the randomness by configuring the
tool. For example, if the user is only interested in queries using a certain type of Cypher
clause, all other clauses can be turned off.

The possibility to tweak the tool to produce more or less bizarre queries is helpful when
focusing on finding different types of bugs. In this thesis we distinguish between what is
called error bugs and logical bugs. An error bug means that the program crashes when it is
being fed a valid input. A logical bug, however, means that the returned value is incorrect.

Differential testing is a method for determining if the returned value is in fact incorrect.
The basic idea is to feed the same input to multiple instances of a program that is expected
to behave identically and compare the output. If the output differs one of the instances must
behave wrongly. For example, different versions of the same DBMS can be fed the same input
and expect to return the same output. It’s also possible to compare different optimization set-
tings of a DBMS against each other or to compare completely different DBMSs that support
the same query language.

Since differential testing relies on difference in output, non-empty results are preferred.
For this reason it might be useful to dial down the complexity and length of the generated
queries since this is more likely to hit data in the graph. On the contrary, when looking for
error bugs the more complex query the better.

2.5 ScalaCheck
A central and influential tool in the world of property testing is called QuickCheck [5]. It
is designed to perform randomly generated property-based testing of programs. The user
specifies what properties to test by defining them as Haskell functions. In our project we use
a tool called ScalaCheck [3] which is inspired by QuickCheck, but written for Scala and Java.

In ScalaCheck there is a concept called generators that are used to generate random test
input data. Technically speaking, a generator of type Gen[T] produces a value of type T when
it is being evaluated. We can consider an example with a boolean generator returning true
or false:
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2.5 ScalaCheck

val generator : Gen[ Boolean ] = booleanGenerator ()
val trueOrFalse : Boolean = generator . evaluate ()

The same generator can be evaluated multiple times and will then (most likely) produce
different results. A powerful aspect of this generator concept is that it is possible to create
custom generators. This opens up the possibility to invoke custom behavior with generators,
such as returning true with a 90% chance instead of 50% in the example above. Custom gen-
erators also allow us to create generators for specific classes and objects, not only for primitive
types. Custom generators are often implemented as functions with the for-yield syntax
that return a Gen object. The boolean generator in the previous example can be implemented
like this:
def booleanGenerator (): Gen[ Boolean ] = for {

result <- oneOf(true , false )
} yield result

There are some very useful functions in the ScalaCheck library that can be used when
defining custom generators. The function oneOf, as used in the example above, picks an
option from a collection of choices. There is another function, called frequency, that works
like oneOf, but it uses weights when randomly picking an option. A Boolean generator that
returns true with a chance of 90% would look like this:
def booleanGenerator (): Gen[ Boolean ] = for {

result <- frequency (9 -> true , 1 -> false )
} yield result

There is also a function option that produces a Scala Option object of its input, either
producing None or, more likely, the input wrapped in a Some object when evaluated. It can
be implemented like this:
def optionGenerator [T]( input: T): Gen[ Option [T]] = for {

result <- frequency (1 -> None , 9 -> Some(input ))
} yield result
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Chapter 3

Approach

This chapter describes a selection of the most central concepts and design choices in our
project. First the implemented test suite is explained. The different types of test are de-
scribed, as well as what each specific test aims at. The next section describes the actual query
generator used by the tests. This part goes into great detail about the use of ScalaCheck gen-
erators and aims at describing challenges and solutions. This includes the use of a Context,
which role is partly to keep track of what variables are in scope in any given situation.

3.1 Using the query generator for testing
In order to test the Neo4j DBMS, we implemented a test suite with our query generator. The
suite consists of different types of tests - targeting different parts of the system. The pre-
execution tests target error bugs in parsing, semantic analysis and planning of a query. The
execution tests target error bugs in the actual execution of queries. Lastly, the differential
tests target logical bugs in various scenarios.

3.1.1 Pre-execution testing
Pre-execution testing focuses on the internal processes before executing a query, i.e. parsing,
semantic analysis and planning the execution. For this reason the queries in this test are not
actually executed. Avoiding execution of queries has multiple benefits. Since more complex
queries tend to have longer execution times, this naturally puts a limit on the generated
queries complexity. Avoiding execution therefore allows us to generate and test very much
more complex queries. The complexity can easily be configured by for example increasing
the number of clauses and maximum expression depth. Any query that produces a crash is
flagged as a potential bug and examined. Since the chosen runtime affects the execution plan,
each runtime - Staged, Pipelined and Parallel - is tested separately.
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3.1.2 Execution testing
Another test is set up to specifically test the execution of queries. This allows for catching
bugs that produce crashes in the execution phase. Compared to the pre-execution test, the
complexity of the queries generated for this test is greatly decreased. Since executing very
complex queries risks taking a huge amount of time, this trade off between complexity and
execution time is needed.

3.1.3 Differential Testing
In contrast to the previous tests, which aim at detecting wrongful crashes, the differential
tests aim at detecting logical bugs. As previously mentioned, this is done by feeding the same
query to multiple equivalent databases, with some internal differences, and comparing the
result. An outline of the algorithm can be found in Algorithm 1. In this specific example,
the algorithm is performing differential testing by running the same query with different
runtime settings on the same database instance. However, the same basic algorithm can also
be used to describe other variations of differential tests.

Algorithm 1 An outline of the random differential testing algo-
rithm, using two different runtime settings.

Require: GDB: A Neo4j Graph Database instance
Require: Nq: The number of queries to generate
Require: runtime1: A Neo4j runtime setting
Require: runtime2: A different Neo4j runtime setting

for i in Nq do
query ← GenerateQuery( )
result1←GDB.ExecuteWithRollback(query, runtime1)
result2←GDB.ExecuteWithRollback(query, runtime2)
if result1 crashed or result2 crashed then

LogError(query, result1, result2) ▷ Queries should be semantically valid
else if result1 ̸= result2 then

LogResultDiff(query, result1, result2)
end if

end for

Runtime Environments
One differential test makes use of the different runtime environments available in the Neo4j
DBMS - slotted, pipelined and parallel. Slotted is free, open-source and generally slower than the
other fast, but complex, enterprise versions. However, all runtimes are, of course, supposed
to produce the same results.

The parallel runtime environment currently does not support queries that write to the
underlying database. Therefore, to avoid missing potential bugs in the other runtime envi-
ronments two different tests are set up. One test uses Parallel and Slotted, but is configured
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to not generate queries with writing-clauses. The other test uses Slotted and Pipelined and
is freely generating all types of clauses.

Optimization
Another type of differential testing involves toggling optimizations. One such optimization
is to disable eagerness. Disabling eagerness essentially gives the planner more freedom in re-
arranging the order of operations. This, like many optimizations, increases the complexity
and can therefore be error-prone. Similarly to the tests above, a query is fed to two databases
- one with eagerness enabled, one with eagerness disabled. If the results differ it is flagged as
a potential bug and investigated.

3.2 Query generator
In order to perform the random testing described in the previous section, a tool to gener-
ate random queries is needed. A central part of our query generating approach is that we
first generate a correct Cypher AST and then convert that AST to a query in string form.
This allows us to conceptualize the query in the same way as the Neo4j compiler does when
interpreting it, by literally using the same Java classes.

A more detailed outline of how the query generation is structured in our random testing
can be seen in Algorithm 2. As can be seen, the AST generator is created based on a graph
schema and a specified configuration object. The graph schema contains information from
the actual graph that the query is to execute on, such as which labels and properties exist. The
generator can then be used to produce random ASTs, which is converted to a query. These
concepts are explained in more detail in the following sections.

3.2.1 Build AST with ScalaCheck
The main tool we use to randomly generate ASTs are custom ScalaCheck generators. Es-
sentially, each node type in a Cypher AST corresponds to its own generator function, i.e. a
function that produces a generator of that node object. A generator function can call other
generator functions in order to generate the required sub-trees. These nested generator func-
tion calls continue until reaching a generator function that produces a node without further
calls. This can be thought of as reaching a leaf in the tree. A leaf can typically be a string lit-
eral or a variable reference. When we want to generate a query AST, we call the top generator
function producing a generator for the root of the AST. This generator is used to produce
actual Cypher ASTs.

Since what is allowed to be generated in a given moment is dependent on what has been
generated before, a crucial feature of our tool is the possibility to pass information between
generators. For example, a generator is not allowed to reference a variable that has not
yet been declared. All necessary information is contained in what we call Context. The
Context is described in further detail in section 3.2.2.

An example of how a typical generator function in the query generator looks can be found
in Listing 3.1. This particular function’s responsibility is to randomly generate a Match node
in the AST and, consequently, all its necessary sub-trees. It achieves this by returning a
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Algorithm 2 An outline of the random differential testing algo-
rithm, using two different runtime settings. This version goes into
more detail about the query generation process than Algorithm 1.
Line 1, 2, 4 and 5 are replacing the previous GenerateQuery func-
tion call.

Require: GDB: A Neo4j Graph Database instance
Require: Nq: The number of queries to generate
Require: runtime1: A Neo4j runtime setting
Require: runtime2: A different Neo4j runtime setting
Require: Con f ig: An AST Generator Configuration object

GraphSchema← LoadGraphSchema(GDB)
ASTGenerator ← CreateASTGenerator(Con f ig, GraphSchema)
for i in Nq do

AST ← ASTGenerator.Evaluate( )
query ← RenderAsQueryString(AST )
result1←GDB.ExecuteWithRollback(query, runtime1)
result2←GDB.ExecuteWithRollback(query, runtime2)
if result1 crashed or result2 crashed then

LogError(query, result1, result2)
else if result1 ̸= result2 then

LogResultDiff(query, result1, result2)
end if

end for
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generator of a Match-object, which is the same Java object actually used in the AST of the
Cypher compiler when it is parsing a query.

Since a Match clause is allowed to declare and reference variables it is necessary to both
receive a Context object as input and to return a new, possibly modified, Context for the
next clause. This Match object requires a boolean to describe whether it is a so-called optional
match or not, a Pattern node representing the match pattern and optionally a Where node
containing a predicate.

The optional variable is a boolean and its generator function simply returns true or false
with equal probability. This is one of the predefined generators in ScalaCheck. The pattern
generator function is responsible for generating a match pattern. This function needs to take
the Context as input and return a new Context since it can declare and refer to variables.
The where generator function needs to take the modified Context as input since we want
it to be able to refer to variables defined in the pattern. The where generator function is
not allowed to declare new variables, which is why it does not return a new Context. The
Context from the pattern generator function is returned by the match generator function.
The option generator function produces a generator of a Scala Option of a given generator.
Originally, this means is that the where generator function is returned with a 90% probability
and a None object is returned with a 10% probability. However, in an attempt to increase the
variety of the queries we changed the option generator probabilities to 50/50. This has the
effect that half of the generated MATCH clauses will have WHERE sub-clauses.

def match( context : Context ): Gen [( Match , Context )] = for {
optional <- boolean ()
(pattern , newContext ) <- pattern ( context )
where <- option (where( newContext ))

} yield (Match(optional , pattern , where), newContext )

Listing 3.1: An example of an AST node generator function in the
AST generator displayed in Scala code. This particular one is used to
generate the AST nodes that represent MATCH clauses. The function
has been slightly modified in order to be more readable.

3.2.2 Context
The domain of valid clauses and expressions is restricted and dependent on what clauses
and expressions have been generated before. One example of this is the fact that previously
declared variables should be available to the following clause. For this reason the query gen-
eration makes use of a so-called Context object to structure and update this information.
We implemented the Context as an immutable data storage, which means that every time
we want to change the Context, we create a new updated instance as exemplified in Section
3.2.1. This is a vital design decision since it allows us to easily keep track of how the Context
is morphed and distributed throughout the generator functions.

Variables
Keeping track of available variables constitutes one of the main challenges when generating
queries. When using variables in a query, two main problems present themselves. First, avoid
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referencing undeclared variables or variables whose value is of an incompatible type. Second,
avoid declaring a variable name that already exists.

To solve these problems the context holds all relevant information regarding variables.
This object is passed to each generator that might need to declare or reference a variable.
The Context object can be thought of as a set of tuples (Name, Type). When a variable
is declared, its name and type are simply added to the set. When a generator tries to use a
variable reference it checks the set to find available variables of the requested type.

To clear the name space, all variables in the Context are simply deleted. As described
in Section 2.2.2, WITH and RETURN are two such clauses. The code snippet below illustrates
what variables are in the Context after each clause of the query.

MATCH (p:Person) {(p, Node)}
MATCH (c:Company) {(p, Node), (c, Node)}
WITH 123 AS myNumber {(myNumber, Integer)}
RETURN myNumber + 2 AS result {(result, Integer)}

In the query above the node variables declared in the MATCH clauses are added to the
Context. The WITH clause, however, clears the Context and declares a new variable of the
type Integer, called myNumber. The RETURN clause generated an addition expression, which
takes two numbers. The first one is a variable reference, but the second one is simply an
integer literal. To use the variable the clause first asked the Context for a variable of the
type Integer. Since a variable of that type existed in the context, i.e. myNumber, the request
succeeds and the variable is used.

However, if the Context did not contain a variable of the requested type a new Integer-
expression would simply be generated. The above example also demonstrates that the return
type of the addition expression myNumber + 2 is Integer. We know the return type of all
generated expressions since the expressions are generated based on a type from the start.
Generating expressions are explained in detail in section 3.2.3.

Removing variables from the Context is usually quite straightforward. In the case of the
WITH clause above, the generator function simply discards the old Context and creates a new
one with the new variables. A unique problem arises when we introduce modifying clauses,
such as DELETE. Consider the following query:

MATCH (p:Person {name: "Alice"})
DELETE p
RETURN p.property

^

The node p is deleted, but the variable is still in scope from the perspective of the Cypher
compiler. This means that the variable has to stay in our Context scope, since it would be
semantically incorrect to overwrite it, but we also have to avoid using it, since using it is no
longer meaningful. To solve this, we implemented a way to block variables in the Context
from being used, without deleting them from the variable declaration scope.

Another layer of complexity is added when we consider the fact that when using DELETE
and in particular DETACH DELETE, we run a high risk of deleting parts of the graph that is
referenced in other variables than the one we are deleting. Consider the following example:
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MATCH (p:Person)
MATCH (p2:Person {name: "Alice"})-[r]->()
DETACH DELETE p
RETURN p2.property, r

^ ^

In this example, both p2 and the relationship r are deleted, even though they are not
mentioned in the DETACH DELETE clause. The solution for this is to block all relationships
in the Context if any relationship is deleted and to block all relationships and all nodes in
the Context if a node is deleted using DETACH DELETE. This might seem limiting, but it is
a statically safe operation that we can do without having to actually evaluate each DELETE
clause on the graph, which would be unreasonably complex.

Expression Depth
Nested expressions greatly improves the coverage since many expression combinations will
be generated. However, allowing expressions to generate more expressions in their sub-trees
leads to a potential problem of near endless recursion. This is solved by having a variable
in the context signaling the current expression depth. Every time an expression is to be
generated, the current expression depth is compared to the configured maximum expression
depth. If the maximum depth is reached a literal of the given type is created, allowing no
further recursion. Otherwise the current expression depth variable is increased and a normal
expression is generated without further constraints.

Context Mode
Another feature of the Context is a variable used to describe if what is currently being gen-
erated adheres to certain extra rules regarding the syntax. For example, a CREATE clause does
not allow undirected relationships or variable length relationships. Using a Context vari-
able to signal these certain modes allows for flexible generator functions, more easily read
code and avoids a lot of code duplication. The snippet below is used to illustrate the extra
restriction put on patterns in CREATE, compared to MATCH.

MATCH (n)-[r]-(m) Legal
MATCH (n)-[r*]-(m) Legal
CREATE (n)-[r]->(m) Legal
CREATE (n)-[r]-(m) Illegal
CREATE (n)-[r*]->(m) Illegal

Order of clauses
It is not the case that all clauses are allowed to be followed by every other clause type. More
specifically, a reading clause - such as MATCH, is not allowed to follow directly after a writing
clause - such as CREATE. For this reason the Context contains a flag describing whether the
previous clause was a writing clause. If so, this restricts what type of clause is allowed to be
generated. This flag is enough to avoid generating any illegal order of clauses.
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3.2.3 Generating Expressions
Generating expressions with correct types is a key part of our tool. To solve this, a top-level
generator function expression is always used when generating expressions. This function
takes a Cypher type as input, and generates an expression that evaluates to this type. Looking
more closely, the expression function calls the generator whose role is to generate expres-
sions of the given type. This generator, in turn, contains many more generators, each of
which returns the given type. Going deeper down this generator-tree we eventually reach a
leaf generator returning an AST-node. This simplified structure can be seen in figure 3.1.

def expression ( exprType : CypherType , context : Context ):
Gen [( Expression )] = {
if ( context . exprDepth > MAX_EXPR_DEPTH )

literal ( exprType )
else

context . exprDepth += 1
exprType match {

case CTInteger => intExpression ( context )
case CTString => stringExpression ( context )
...

}
}

def intExpression ( context : Context ): Gen[ Expression ] = oneOf(
additionExpression ( context ),
variableReference ( context ),
functionInvokation ( context ),
...

)

def additionExpression ( context : Context ): Gen[ Expression ] = for {
leftExpression <- expression (CTInteger , context )
rightExpression <- expression (CTInteger , context )

} yield AdditionExpression ( leftExpression , rightExpression )

Listing 3.2: A simplification of the general structure when gener-
ating expressions. The functions has been modified in order to be
more readable.

As can be seen in figure 3.1, this structure makes it convenient and reliable to guarantee
type safety. This structure also makes it easy for expressions to generate more expressions.
This can be seen in additionExpression. Allowing for nested expressions like (1+(2+3)).

3.2.4 Fallback generators
As mentioned before, our tool generally makes decisions from a top-down perspective in the
tree. For example if an expression is needed, it first makes a decision on what type it should
return and then generates the expression accordingly. This has the benefit of not having to
evaluate expressions to know their types and it also avoids complicated rewrites of the tree
based on those types. It does however sometimes lead to situations where the generator func-
tions find themselves going down routes that are not always possible to conclude. An example
could look like this: We need a string, so we generate a string expression, which generates a
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variable reference but there are no string variables declared yet. We solve this problem not by
regenerating the entire expression but by using fallback generators. Whenever a generator
has a chance to fail like this, we structure the generator function to wrap its return value
in a Scala Option object that allows the function to return None if it failed. We can then
manually set up conditions to trigger fallback generators to replace any failing generators
and only regenerate what is absolutely necessary. In our example above, we could generate a
string literal instead of the variable reference, since we know about the desired type.

3.2.5 Graph schema
In order to generate more meaningful and complex queries that to a greater extent references
actual data in the graph a graph schema is used. The generator can use this schema to access
information about the actual graph its generating queries for.

The graph schema is created by deriving some static information about the graph. The
stored information includes all the existing node and relationship labels and all the prop-
erty names and their types. We also store a lookup table from every label to all properties
found on any entity with that label in the graph. This information allows us to perform quite
sophisticated cross-referencing when we want to pick properties in MATCH patterns, for ex-
ample. Consider the following example where we are generating a pattern and have decided
to include a property in the node:

MATCH (p:Person|Company { })
^

Here, we can look up all node properties that can belong to either Person or Company.
One of the available properties are picked at random and the property type is used to generate
the right-hand side expression based on that type:

MATCH (p:Person|Company {age: 2 * 15})

In a similar vein, this information is used to reference properties of variables based on a
type. In the following example we know that is is safe to pick age property of p1 when we
need to generate an integer expression as part of the addition.

MATCH (p1:Person)
RETURN 1 + p1.age

^

3.2.6 Configuration
In order to diversify the use cases of the query generator, it has support for configuring dif-
ferent parameters that guide how the generated queries will look like. For example, if the
generated queries are used on the parallel runtime, the tool can easily be configured to not
generate any writing clauses. This is done by tweaking the frequency weights used in gener-
ator functions.

This is implemented by storing all the frequencies in a configuration class, where most
frequencies have a default value of 1. This means that the query generator can be conveniently
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tweaked on a case-by-case basis by providing the generator a configuration instance. For
example, to disable LIMIT clauses, the user would change the weight from its initial value 1
to 0:

ASTGeneratorConfig config = new ASTGeneratorConfig()
config.limit = 0
ASTGenerator generator = new ASTGenerator(config)

A similar configuration can be made in a special test-case where the query generator
should not generate any MATCH clauses:

config.match = 0

Or if a use-case would want more variable references:

config.variableRef = 10

Other than modifying frequency weights, the configuration can also be used to determine
the number of clauses in a query and the max expression depth. The configuration class is
also extended to several different predefined default configurations based on common use
cases. For example, if we would like to run queries in the parallel runtime we can use the
predefined ParallelConfig instead of setting multiple parameters manually.

3.2.7 Static limitations
There are some parts of the Cypher language that have been proven to be problematic for the
purpose of using the query generator for random testing. For example, the LIMIT clause is
used to cut the output to a certain number of results. If there is no explicit and valid ordering
to this result, then the Cypher implementation will not guarantee which parts of the results
are cut out and which are preserved. What this means in practice is that the result is not
deterministic and that it therefore can not be used for differential testing since two different
outputs can both be correct. The same problem exists with the SKIP clause.

To solve problems like this, we have used the configuration object to limit the generated
queries to only cover a meaningful sub-set of the Cypher language. One of these constraints
is to never generate LIMIT or SKIP clauses in differential testing, they are simply too dis-
advantageous to be worth having in the generator. This works well with our Configuration
object structure, since it allows us to enforce this static limitation only where it is required,
so non-differential tests can produce queries containing LIMIT and SKIP.

Similar decisions have been made about less clear cut parts of the language, such as with
the DELETE clause. If a DELETE is to be used without its DETACH prefix, it has to target a
node without any relationships. To avoid this problem we have decided to always perform
DETACH DELETE instead. This is a typical situation where we decided to limit some part of
the generator in order to prioritize other aspects of the project.
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Evaluation

This chapter describes how we evaluated the query generator tool and the bugs found by using
it. The first section presents how the tests are executed using rollback and how the results
are compared in differential testing. The second section presents and categorizes the found
bugs. The third section presents a selection of highlighted bugs along with short descriptions
of their significance.

4.1 Experimental setup
In this section we will go over some important details about how we set up and used the
query generator for random testing.

4.1.1 Updating queries with rollback
The fact that we wanted to include updating clauses such as WRITE or DELETE when testing
did present some quite tricky problems. Simply executing the queries on the same database
instance risks that some query creates thousands of entities or deletes the entire graph. This
would make running tests very impractical for several reasons. For one the execution time
could vary greatly which could be impractical. The greater problem is that the query re-
sults would not be identical every time a query is executed, so reproducing bugs could be
impossible since the database state would not be saved.

The solution for this was to roll back the changes made for every query that was executed.
We used Neo4j’s transaction API to first start a transaction, then execute the query, evaluate
the results and then roll back the changes made before closing the transaction. This means
that the database state was reset after every query executed, which allowed us to use updating
clauses in our query generator for our random tests.
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4.1.2 Comparing outputs and error handling
When running differential tests, we want to compare two outputs that are supposed to be
the same, but these comparisons present a problem. The default comparison function for
comparing nodes from the graph is to compare their id, a number assigned to each node
when created. The problem with this is that our query generator contains writing clauses,
but there is no guarantee that the ids are assigned in a predictable order. This means that
if two nodes are created in the same query on an empty graph, we can not know which node
would get id 0 and which one would get id 1. When comparing the output from such a
query on two different Neo4j implementations, we might correctly get the same node in the
two results, but with different id numbers, which would mean that we incorrectly would
judge them as not the same. This problem is solved by overwriting the comparison function
for nodes so that they compare their label and all their properties instead of comparing their
id numbers. This solution does run the risk of our comparison function identifying two
different nodes with identical labels and properties as the same, but we consider this trade-
off to be reasonable since the incorrect id comparisons were quite common, while we believe
that incorrect property comparisons should be very rare.

4.1.3 Performing the tests
While developing the query generator, we needed a way to test if it was functioning prop-
erly and produced semantically valid queries in the way we intended. We solved this by
implementing a test suite early in the development process and let the tests function in both
directions between the query generator and Neo4j. That is, we executed a lot of randomly
generated queries on a Neo4j instance and when we encountered an error we would examine
the query and the error and identify if the problem was originating from a wrongfully gener-
ated query or from a bug in the DBMS. In order to identify a problem like this, typically we
would have to reduce the queries in order to get rid of irrelevant parts. This was done man-
ually by removing parts of the query one step at a time and checking if the error would still
occur between the changes. This workflow resulted in us finding the first bugs quite early in
the development process and that we continuously found bugs throughout the project as we
expanded the query generator and kept testing it.

When we implemented the first test suite, we opted for an execution test and a simple
differential test that would not compare the outputs but only the output sizes. The reasoning
behind this was that we wanted to focus on the query generator first as it was the main part
of our project. The differential tests got more sophisticated later in the process. This perhaps
had the unintended consequence that we ran more and better execution tests than differential
tests early in the process.

4.2 Results
The semantically correct random query generator is a versatile tool, and as we have argued in
our previous sections, it has use cases outside the realm of random testing. It will be available
in the public Neo4j open source repository and can rightfully be viewed as a result in itself.
However, this section mainly focuses on the results from using it in random testing.
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The random testing can most effectively be judged by the bugs it found. These bugs are
presented in Table 4.1 and 4.2. During our 15 weeks of project development time, we found a
total of 25 confirmed unique bugs, where 21 of these were fixed within that same time span.
The vast majority of the bugs were what we categorize as error bugs, only one logic bug was
found because of conflicting outputs. Most bugs, around 50%, were found in the planning
part of the query processing stack.

Description E/L Error Location Fixed
IN in list Error Parsing ✓
WITH list MERGE Error Parsing ✓
true = NOT false Error Parsing -
EXISTS scope Error Semantic analysis ✓
nested EXISTS XOR Error Semantic analysis ✓
WHERE exists() Error Semantic analysis ✓
CREATE list compr Error Semantic analysis ✓
list compr scope Error Semantic analysis ✓
EXISTS scope Error Semantic analysis ✓
property EXISTS label Error Semantic analysis -
CREATE list index EXISTS Error Planning ✓
variable length rel WHERE Error Planning ✓
MERGE SET EXISTS Error Planning ✓
MERGE CREATE EXISTS Error Planning ✓
MATCH EXISTS MATCH Error Planning ✓
variable length rel DISTINCT Error Planning ✓
CREATE list index EXISTS Error Planning ✓
EXISTS <> EXISTS Error Planning ✓
MATCH SET DELETE Error Planning ✓
FOREACH SET Logic Planning ✓
aggregating function EXISTS Error Planning ✓
WITH * WHERE Error Planning -
deleted ref Error Planning Blocked
MERGE var-lenght rel Error Runtime ✓
MATCH UNWIND MATCH Error Runtime ✓

Table 4.1: This table presents all the individual unique bugs we
found during our project. The columns show whether it was a logic
or an error bug, where in the query processing stack the bug oc-
curred and whether it was fixed during our project time or not. The
blocked bug was blocked because it highlighted a part of the Cypher
language that as of now is undefined.
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Found Fixed
Parsing 3 2
Semantic analysis 7 6
Planning 13 11
Runtime 2 2
Error bugs 24 20
Logic bugs 1 1
Total bugs 25 21

Table 4.2: This table shows the number of bugs found and the num-
ber of bugs that were fixed during the project. All the fixed bugs
are also counted in the Found column. It presents them both in
the Error/ Logic bugs categorizations and in the bug types from the
Cypher compiler stack. All these presented bugs were confirmed as
bugs by the Cypher team at Neo4j.

4.3 Highlighted Bugs
This section presents a selection of reported bugs found by the tool. The goal of this selection
is to highlight both the simplicity and the variety of the bugs found. The generated queries
that originally triggered the bugs are usually quite long and complex. The queries shown
below have been manually simplified and shortened as much as possible to only contain what
is necessary to trigger the bug. The queries are presented exactly as they were reported to the
Neo4j developers.

The following very short query produced a parsing error:

MATCH ()
WHERE true = NOT false

RETURN 1

Worth noticing is that very slight modifications of the same query did not produce an er-
ror. For example, replacing = with AND or changing the WHERE condition to NOT false = true
executes without error.

Like above, this query is also very simple and produces an error in the planning stage:

WITH *
WHERE true AND true

RETURN 1

The simplicity suggests that it is quite likely to affect users, i.e. it is no strange corner-case
that is unlikely to occur in a real situation. This particular query is just one example of
multiple queries triggering the same bug. This adds to the likelihood of users being affected
by it.

The following is an example that involves a relatively new Cypher language feature called
variable length relationships:

MATCH ()-[*]-(n)
WHERE false

RETURN 1
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Apart from showing the range of language features triggering bugs, this particular bug is
selected to illustrate the need for rigorous testing of new features. However, creating adequate
tests can be both hard and time consuming, showing the value of automated query generation.

The following query found a parsing bug that was introduced on a newer version of the
Neo4j DBMS:

MATCH ()
RETURN [true IN [true], false]

This particular query executes without error on an older version of the DBMS. This means
that somewhere along the way the implementation changed and introduced a bug. This is
another example of the value of using automated tests. It is not only handy when implement-
ing new features, but also when trying to change or improve the implementation of previous
features.

This query only triggered an error on one particular runtime setting:

MERGE ()-[r:L]-()
ON CREATE SET r.prop = 1

This shows the variety of bugs found and highlights the versatility of the query generating
tool.

The following query produces a logical bug:

MATCH (n:User)-[]->(:Movie)
FOREACH ( i IN [1] | SET n:User:Movie )
RETURN 1

This query returned completely different results depending on if eagerness was enabled or
disabled. This type of bug can be very hard to find since they do not cause an error. In the
worst scenarios these bugs can linger for a very long time before being caught, if ever.
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Chapter 5

Related work

This chapter summaries two papers exploring related topic. Some similarities and differences
are briefly highlighted.

5.1 GDSmith: Detecting Bugs in Graph
Database Engines

Lin et al. present a tool for testing graph DBMSs, called GDSmith, and describe it as "the
first black-box approach for testing graph database engines" [7]. They accomplish this by having
a query generator that generates Cypher queries and executes them on three different open
source graph DBMSs, including Neo4j Community Edition. Just as in our project, they look
for both error bugs and logic bugs through random testing and differential testing. They
chose Cypher rather than Gremlin as their query language of choice, since it is supported by
ten graph DBMSs and there are translation tools from Cypher to Gremlin. Gremlin is another
graph query language with a more functional approach to it’s syntax. They performed dif-
ferential testing both as cross-DBMS (comparing completely different DBMS, such as Neo4j
and RedisGraph) and cross-version (comparing the same DBMS but different versions). Ac-
cording to their results, these methods seem to be equally efficient at finding logic bugs.

There are many similarities between GDSmith and our project, but there exists quite a
few differences as well. Instead of running their queries on existing databases, they randomly
generate their data. GDSmith also generates queries with a two-step approach. First they
generate what they call a skeleton, which defines the clause and sub-clause ordering but skips
generating expressions and variables. Then they fill in each gap in the skeleton query one by
one by generating expressions and variables. This way, they can first focus on the clause-
syntax when generating the skeleton, and then focus on upholding variable scope correctness
and type safety during the second phase. Much like our implementation, they regenerate sub-
trees (expressions) when they try to fetch a variable of a certain type, but can’t find any and
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use a max-depth for expressions. They mention that they aim for optimal query sizes (number
of clauses and max expression depth) that are long enough to not be trivial but short enough
to hit data. To increase the data hit rate they present a quite novel query mutation strategy.
The concept is that they save the generated queries that hit data and then alter them slightly
hoping that the altered versions also will hit data. Much like our implementation, they have
a similar Context object that they pass around in their query generation to keep track of
variables. The query generator in GDSmith does not produce any writing clauses.

In their testing, they found 27 bugs across the three graph DBMSs, 14 of which were con-
firmed by the developers. 15 of the reported bugs were related to Neo4j, 6 being confirmed.
In contrast to our result, two thirds of all the bugs that the GDSmith team found were logical
bugs. Their tool is not openly available.

5.2 Finding bugs in Gremlin-based graph
database systems via Randomized
differential testing

Zheng et al. present an approach for finding logic bugs in graph databases that support
the Gremlin query language [13]. Similar to our project, the goal is to find bugs through
differential testing. They randomly generate syntactically correct queries and execute them
on different database instances containing the same graphs and compare the results. Like
GDSmith, they performed cross-DBMS differential testing and randomly generated their
test data. This means that the generated queries start with updating clauses to add the test
data, then continue with the actual query. They manually reduce their complex queries when
finding a difference, and then investigate to see where the bug originates from and whether
it is a new unique bug or one previously found. This is very similar to how we approached
sorting through potential bugs.

Gremlin is a graph querying language built by Apache TinkerPop designed to traverse
graphs using syntax similar to how data flows in functional programming languages. The rea-
son they chose this as their query language is that it has broad cross-DBMS support. However,
they did run into some issues connected to different DBMSs supporting different subsets of
the Gremlin language. They bring up the lack of a SQL-like graph database standard as their
reason for using Gremlin, but with the current development of GQL being closely tied to
Neo4j, Cypher might be the best option in this regard in the future.

Due to the functional nature of the Gremlin query language, they had to be careful with
the types being piped in between parts of the query. This is similar to how we had to type
check the use of variables in our generator. They achieved this by building a static model of
how a sequence in a query is allowed to be built, and then generated the queries by following
the rules of that model. This is quite similar to our generator function approach, all though
implemented a bit differently. They do not include updating queries in their testing, they
only use them to initiate the randomly generated graphs. Just like GDSmith, they also use
a query generating approach where they first generate the basic structure of the query and
then fill in the gaps.

Using their described approach they found 18 bugs, where three of them were related
to Neo4j. Even though their set goal was to find logic bugs, the vast majority of their bugs
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5.2 Finding bugs in Gremlin-based graph
database systems via Randomized

differential testing

seem to be what we define as error bugs. This distribution is more similar to our results than
GDSmith. The tool that they developed to implement their graph database testing approach,
Grand, is available as open source software on their github 1.

1https://github.com/tcse-iscas/Grand
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Chapter 6

Discussion

This chapter discusses the query generating tool as well as random testing and our results.
It starts by discussing the value of a query generating tool and the implementation and is
followed by a discussion around random testing and our results.

6.1 Usefulness
The amount of confirmed bugs strongly suggest that query generation combined with testing
can be highly useful. However, one of the primary strengths of the query generation tool
is its broad applicability. In this project we have mainly been focusing on applying it to
various types of testing, but it is in no way limited to this. On the contrary the design of the
tool makes it easy to both extend and configure for specific needs. For example, it could be
valuable for aiding a test-first workflow when developing new language features. This new
language feature can easily be implemented in the query generator and used to test the new
feature before publishing it. Allowing easy use of such an approach can possibly eliminate the
amount of bugs hiding in newly released versions. The same approach is of course possible if
one is changing the implementation of a certain feature.

The flexibility of the tool also makes it useful in completely different scenarios, such as
benchmarking. If a specific part of the language is less covered in benchmarking, the tool can
easily be tweaked to generate random queries of that requested type. The configurability can
also be used to avoid catching the same known bugs over and over again. If a certain bug is
not interesting, perhaps because it is currently being fixed, the tool can be tweaked to avoid
generating queries that trigger this particular bug.

A threat to keep in mind when discussing the usefulness of our tool and test suite involve
false positives. If too much time is needed to sift through false positives the practical use is
greatly decreased. If a query triggers an error, there exists a possibility of the query being
wrong and the error actually being correct. This comes down to the correctness of the query
generating tool. For this reason, queries are flagged as potential bugs and need to always
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be manually confirmed. The risk of the query generator being faulty can be mitigated by
constantly updating and correcting the tool whenever an issue is found. This way the tool
keeps getting better and more accurate.

Another case of false positives involve known limitations of the query generating tool.
Because of the way the tool works, it never actually evaluates expressions. This makes it
impossible for the tool to avoid generating queries with expressions that, when evaluated,
result in illegally large numbers. These queries will rightfully cause an error when executing.
It is possible to mitigate these types of errors to some extent by configuring the tool, but
they are hard to completely eliminate without losing much of the tool’s expressiveness. If too
much time is needed to sift through false positives the practical use is greatly decreased.

6.2 Generating Cypher ASTs and modularity
The decision to build the query generator around Cypher ASTs has both benefits and draw-
backs. The biggest gain from this is the extraordinary modularity of the system that comes
from building it as generator functions of AST node types. If a new feature is to be intro-
duced, all one has to do is define a new generator function for that AST node type and make
sure it follows the structure of the other generator functions (such as correct Context han-
dling). After this, it’s very simple to introduce the new generator wherever it would fit as a
sub-tree to existing node types in the AST. This ease of expansion is in our opinion key for
the query generator to be useful and effective in the long term.

The fact that the AST built by the query generator uses the same classes as the Cypher
compiler has the benefit that many Neo4j developers will have an easier time understanding
and expanding the query generator since the AST node classes will be familiar to them. A
potential drawback of this setup is that the query generator is now dependent on the AST
node classes. If the structure of future versions of the Cypher AST changes, chances are that
the query generator would have to be changed as well in order to function, which is not ideal.
This could have the unintended effect that the developers need to continuously update the
query generator as the Cypher compiler is updated. But if not, the query generator could
just be tied to a Neo4j version in order to not require it to receive updates to function. It
would also be possible to package the AST generator together with its dependencies from
the Cypher compiler in order to allow it to function as a stand-alone program.

6.3 Practical value of random testing
A potential risk of using randomly generated queries for finding bugs, as in this project, is
to only find bugs of little practical importance. The reason being that the randomly gener-
ated queries generally do not resemble user queries very well. However, our results stand in
contrast to this and bugs from similar random testing have been concluded to actually be as
important as user found bugs [8].

There are two reasons to suggest that this risk might not be a problem with our specific
project. First, visually examining the bug-triggering queries shows that many of them are
simple and look very reasonable. In addition to this, the main argument is that the Neo4j
developers deem the reported bugs to be of such importance that most have already been
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prioritized and fixed, as seen in Table 4.2. This would not be the case if they saw little practical
use in fixing the discovered bugs.

6.4 Bug distribution
As shown in table 4.2, a very large majority of the found bugs are error bugs. This is specially
interesting in comparison to GDSmith, which found a majority of logical bugs. It’s hard to
determine what the reason for this is, but we suspect a few contributing factors. One such
factor is simply the fact that we’ve run more tests aimed at error bugs. As described above,
this has to do with the fact that our differential tests were not fully developed until relatively
late in the project.

Another possible factor for these very different results lies in what was actually tested
in the differential tests. In differential testing, it seems plausible that the greater the dif-
ference between the instances being compared, the greater the chance of getting different
results. GDSmith performs cross-DBMS and cross-version differential testing, while we per-
form cross-runtime and cross-optimization differential testing. That is, GDSmith uses com-
pletely different DBMSs and versions while we focus on changes in settings on a single DBMS
and version. Therefore it seems quite clear that the difference between the tested instances in
GDSmith is greater than in our tests. This is a possible explanation for the different results,
given that the assumption that greater difference means greater chance of different results
holds true.

6.5 Non-empty results as a metric
A popular metric for evaluating a query generator when used for differential testing is non-
empty returns. For example, GDSmith describes non-empty results as one of the primary
challenges with random testing. It is also used as one of the key metrics for evaluating their
tool [7]. The reasoning for using this metric is quite straightforward - empty results will never
differ, which makes differential testing less effective.

However, we have chosen to not put much emphasis on this metric. It is important to
remember that this metric is basically only interesting in differential testing. Many of the
bugs found by our tests are error bugs. Finding such bugs do not benefit from the query
generator aiming at non-empty returns, possibly quite the contrary.

We reason that it is actually a disadvantage to aim for non-empty results in many situ-
ations. Our tool can easily be modified and configured to only produce non-empty results.
Always returning nodes and relationships matching a known pattern is simple. However,
doing so would greatly decrease the expressiveness and language coverage of the generated
queries. Therefore, losing variety is our main concern in focusing too much on non-empty
returns.

Of course, producing only empty results makes differential testing useless, but , as sug-
gested, focusing too much on non-empty results risks making the queries trivial and similar.
Therefore, we have mainly been focusing on solutions that aim at increasing non-empty re-
sults without compromising language coverage and complexity. One such solution is making
use of a graph schema when selecting labels. Instead of randomly picking a label name, that
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would most certainly result in no nodes or relationships matching that label, we pick a label
that we know exists in the graph. This increases the chance of a non-empty result without
losing complexity.

Finding the best sweet spot can be tricky and might depend on the graph. The config-
urability of the tool allows for tweaking the queries more or less towards non-empty results
if needed.

6.6 Future Work
As presented in Section 4.3, the bugs we have found can often be expressed as very short
queries, but we would often run quite large queries in order to cover as many scenarios as
possible. This puts users of the test suite in a position where they manually have to reduce
large queries in order to find the buggy part of the query. This process of manually distilling
buggy parts of a query is often time consuming and repetitive, which indicates that it would
be a good idea to automate the process. There is functionality in ScalaCheck called shrinking
built for this purpose, i.e. automated test input minimization. Users can define their own
shrinking methods that describe how the input data could be minimized and then ScalaCheck
would automatically try and find the smallest input data that still triggers the error. Defining
shrinking methods that automatically reduce the queries in this way would be a great way to
improve the usefulness of the random testing tool. It would have the potential to significantly
cut down on the most time consuming part of using the random testing suite.

Another potential improvement to our test suite would be to focus more on the differen-
tial testing. Since GDSmith presented way more logical bugs than us, it would be interesting
to implement some of their ideas into our project. The query mutation is one such interesting
concept, but it does not seem to be a widely used or tested technique as we have not found
any other paper discussing the idea. Expanding our test suite to include other types of dif-
ferential testing, such as cross-version or cross-DBMS, also has the potential to significantly
improve the effectiveness of the differential testing. This is based on the idea mentioned
above that we could reasonably assume that the bigger the difference between the tested in-
stances, the bigger the chance of exposing an error. The downside of using more deviating
implementations would be that while both might support the same query language, the sup-
ported syntax would in practice never overlap completely. This means that we would have to
figure out a specific subset of the query language supported by both instances, for all pairs of
instances that we would want to compare, which would not be an easy task. The upside in a
scenario like this would be that when such a subset is defined, it would be very convenient to
configure our query generator to express that sub-set. The tools configurability allows that
specific language sub-set to be used only in that specific differential test, without reducing
the capabilities of the query generator in general.
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Chapter 7

Conclusions

In this project we have created an open-source tool for generating semantically valid Cypher
queries. It uses a Context object that is being passed around during the query generation
that allows it to correctly handle variables and other semantic details. The query generator
covers a large part of the Cypher language syntax and is highly configurable to suit many
situations. It is also implemented in a way that makes it easy to extend for future use with
future versions of Cypher.

Furthermore, we have successfully used the tool for random testing of the Neo4j DBMS.
This is partly done using differential testing of different runtime and optimization settings.
During the project we found a total of 25 unique and confirmed bugs in multiple different
parts of the Neo4j DBMS, i.e. related to parsing, semantic analysis, planning and runtime.
The fact that the vast majority, 84%, of these bugs have already been fixed by the Neo4j devel-
opers indicates that these were meaningful errors in the Neo4j DBMS. 24 of the discovered
bugs are error bugs and one is a logic bug. One possible reason for this quite surprising tilt
against error bugs is the lack of cross-DBMS and cross-version testing performed in similar
projects. However, the tool is perfectly suitable for this type of testing as well and it would
be very interesting to see future work addressing this.
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Hitta buggar i grafdatabaser med
slumpmässiga men korrekta frågor

POPULÄRVETENSKAPLIG SAMMANFATTNING Adam Forsberg, Andreas Lepik

I takt med att användningen av grafdatabaser i moderna applikationer ökar blir det allt
viktigare att de fungerar korrekt. Vi presenterar ett program som använder generering
av semantiskt korrekta Cypher frågor för att hitta buggar i Neo4js grafdatabas.

Grafdatabaser är en typ av databas som ökat
i popularitet på senare år. Till skillnad från
relationsdatabaser representerar dessa data som
grafer med noder och relationer. Dessa graf-
databaser använder sig ofta av specialiserade
språk för att kommunicera med databasen. Neo4j
är marknadsledande inom grafdatabaser och
har dessutom skapat och utvecklat frågespråket
Cypher som används av flera andra grafdatabaser.
Ett enkelt exempel på hur en grafdatabas och en
Cypher-fråga kan se ut visas nedan.

Alice Bob
FRIENDS_WITH

FRIENDS_WITH

Neo4j

WORKS_FOR

LTH

STUDIES_AT
WORKS_FOR

MATCH (p:Person)-[:WORKS_FOR]->(:Company)
RETURN p

I vårt examensarbete har vi skapat ett verktyg
för att slumpmässigt generera den här typen av
korrekta Cypher frågor. Detta kräver att verk-

tyget, förutom korrekt syntax, är medvetet om
tillgängliga variabler och liknande semantisk in-
formation.

Verktyget är byggt för att vara väldigt konfig-
urerbart. Detta innebär att användare har möj-
lighet att styra slumpmässigheten och öka eller
minska sannolikheten att olika delar av språket
förekommer i de genererade frågorna. Detta
bidrar till verktyget har många potentiella an-
vändningsområden.

I projektet har vi använt verktyget för test-
ning av Neo4js grafdatabas. Detta har gjort
genom att bl.a. skicka samma fråga till två ek-
vivalenta, men något olika, implementationer av
Neo4js grafdatabas. Om resultaten skiljer sig har
en bugg påträffats. Testningen resulterade i 25
unika bekräftade buggar inom flera områden. 21
av dessa buggar har redan åtgärdats, vilket anty-
der att buggarna bedömts vara meningsfulla.

En viktig egenskap hos verktyget är att det inte
är begränsat till Neo4j, utan kan användas av alla
databaser och applikationer som stödjer Cypher.
Tack vare detta tillsammans med verktygets kon-
figurerbarhet och våra resultat hoppas vi att verk-
tyget kommer fortsätta användas och utvecklas
framöver.
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