
MASTER’S THESIS 2023

Reducing costs of manual regression
testing using prioritisation and
partitioning techniques
Erik Nord, Robin Rasmussen Vinterbladh

ISSN 1650-2884
LU-CS-EX: 2023-06

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY





EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2023-06

Reducing costs of manual regression
testing using prioritisation and

partitioning techniques

Kostnadsreduktion av manuell
regressionstestning genom prioriterings-

och partitioneringstekniker

Erik Nord, Robin Rasmussen Vinterbladh





Reducing costs of manual regression
testing using prioritisation and

partitioning techniques

Erik Nord
tpi13eno@student.lu.se

Robin Rasmussen Vinterbladh
ro3413vi-s@student.lu.se

March 29, 2023

Master’s thesis work carried out at Sony Nordic (Sweden).

Supervisors: Peter Jansson, peter.jansson@sony.com
Per Runeson, per.runeson@cs.lth.se

Examiner: Emelie Engström, emelie.engstrom@cs.lth.se

mailto:tpi13eno@student.lu.se
mailto:ro3413vi-s@student.lu.se
mailto:peter.jansson@sony.com
mailto:per.runeson@cs.lth.se
mailto:emelie.engstrom@cs.lth.se




Abstract

Context: This thesis was conducted alongside a team at Sony suffering from a
classic regression testing problem. Regression test suites grows larger over time
which leads to regression testing as an activity becoming increasingly costly. Au-
tomatic regression testing is cost-effective enough for high testing frequency.
Manual regression testing is expensive, however equally necessary for test cover-
age.

Objective: Our objective is to assist Sony in reducing the costs for regression
testing. Using data sources already available to them, we introduce regression
test selection (RTS) techniques for manual regression test sessions. Data sources
are historic test case performance and traceability between functional require-
ment specifications (FRS) to test cases.

Method: Using design science, we present two RTS techniques for solving the
conceptualised problem: one primary RTS technique selecting a sub-set of the
whole test suite based on historical performance and another complementary
RTS technique based on FRS partitioning. RTS techniques in this thesis were
evaluated with a data simulation over random generated data, a comparative
study using real-world data, and continuous field study evaluating adaptations.

Results: We present a modified history-based RTS technique with extra empha-
sis on amplifying priority when test cases with low fail rates fail. This primary
RTS performed at least as good as other empirically evaluated history-based RTS
techniques. Our complementary FRS partitioning RTS technique consistently
added extra cost to our selection, sometimes with and sometimes without any
additional value.

Conclusions: Empirically evaluated RTS techniques are seldom designed pri-
marily for manual regression testing. Automatic and manual regression testing
differs in the frequency of testing sessions. RTS techniques focused on manual re-
gression testing must take this difference in frequency into account. The added
value from requirements partitioning depends on the completeness and trace-
ability aspects of the underlying FRS, as well as the performance of the primary
RTS technique.

Keywords: regression test selection, regression test prioritisation, design science, histor-
ical data, requirement specification



2



Acknowledgements

We would like to thank Lunds Tekniska Högskola (LTH) for providing us with a supervisor
and examinator. We would also like to thank Sony Nordic, Lund, for providing us with the
opportunity to conduct our thesis work alongside one of their teams.

Specifically, we would like to thank Per Runeson (supervisor, LTH) for continuously pro-
viding us with great wisdom and feedback throughout the entire thesis work. Additionally,
we would like to thank Emelie Engström (examinator, LTH) for helping by giving us early
guidance in finding relevant literature.

Also, we would like to thank Eskil Lundgren (test architect, Sony) for helping us with tech-
nical aspects during our time at Sony. We would also like to thank Peter Jansson (supervisor,
Sony) for his amazing tips on how to create the best milk foam for espresso drinks and for his
continuous feedback on our thesis work as well as being proponent for our project. Finally,
we want to thank the entire team at Sony Nordic, Lund, for their patience with all of our
questions and for providing us with valuable feedback on our work.

3



4



Contents

1 Introduction 7

2 Definitions and Related Work 11
2.1 Regression testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Software requirement specifications . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Regression Test Optimisations . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Test case prioritisation . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 Test case selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Methodology 17
3.1 Problem conceptualisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Solution design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Problem Conceptualisation 21
4.1 Expert Interviews . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1.1 Manual testing process . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.1.2 Test selection strategy . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.1.3 Test cost, importance and scope . . . . . . . . . . . . . . . . . . . . 23
4.1.4 Manual test case definitions and representations . . . . . . . . . . . 23
4.1.5 Testing data overview and metrics . . . . . . . . . . . . . . . . . . 23

4.2 Rules & Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2.1 Technological Rules . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2.2 Design Requirements . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2.3 Proposed Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Solution Design 27
5.1 Preparatory work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 Representing manual test cases . . . . . . . . . . . . . . . . . . . . . . . . . 28

5



CONTENTS

5.3 Representing manual testing data . . . . . . . . . . . . . . . . . . . . . . . 30
5.4 Optimise costs of manual regression testing . . . . . . . . . . . . . . . . . . 32

6 Evaluation 39
6.1 Comparing RTS results by simulation of failure trends . . . . . . . . . . . . 39

6.1.1 Simulation model principles . . . . . . . . . . . . . . . . . . . . . . 40
6.1.2 Simulation model design . . . . . . . . . . . . . . . . . . . . . . . . 41
6.1.3 Evaluation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.2 Combining RTS results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.3 Field study results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7 Discussion 47
7.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.2 Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.2.1 Design decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.2.2 History-based selection technique . . . . . . . . . . . . . . . . . . . 51
7.2.3 Requirement partitioning . . . . . . . . . . . . . . . . . . . . . . . 53

8 Conclusion 55

References 59

Appendix A Raw data for selection algorithm evaluation 65
A.1 Simulated test suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
A.2 Simulated test results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Appendix B Algorithms used in comparison 69

6



Chapter 1

Introduction

Testing is arguably one of the most important activities to increasing product quality in soft-
ware engineering. This is why software development projects often have some form of testing
integrated in their development cycle. Integrating newly developed features or any change to
a feature into a system introduces some risk of unintentionally breaking that system. These
faults are called "regressions" and the effort of detecting them is called regression testing. It
is often the regression testing that takes up the majority of the time spent while testing in a
software development project [21].

If we follow the principle to always maintain our regression test suite to verify new changes
added to a system, we will end up with a regression test suite that continuously grows larger
as the system itself grows larger. Overall, adding new test cases along with features this way
is generally a good thing, because it is a direct strategy to maintain the same test coverage
as the system grows larger in both size and complexity. Naturally, this will increase the time
necessary for regression testing over time and the cost of running regression tests only be-
comes worse once you consider manual regression testing, that is, test cases that have to be
executed by humans rather than by machines in automated testing frameworks. There can
be many reasons to why some test cases cannot be automated. Any complex software project
will likely at some point require manual regression test executions. This leads to manual
regression testing being an incredibly time-consuming, and therefore costly activity.

In this thesis work, the case company seems to suffer the same problems: regression test-
ing costs scaling poorly. During our thesis work, we will tackle the problems of regression
testing costs by introducing regression test selection (RTS) techniques for a team developing
Android TV solutions at Sony in Lund. Our case initiates from a state where the team can
afford daily executions of their automatic regression test suites. However, these test cases are
not sufficient. They also require manual regression testing efforts to fully regression test their
system. They struggle to find the time to execute all manual regression test cases at the same
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1. Introduction

frequency as automatic test cases and instead, they strive to execute all manual regression
test cases at least once every sprint cycle (spanning weeks).

There will always be a trade-off in regression testing between confidence and costs. A select-
all-test-all strategy will naturally maximise confidence in testing outcome, but it will also
maximise the costs. Inversely, select-none-test-none will completely remove confidence in
testing outcome, but it will take zero time. In academia, there are efforts where RTS tech-
niques are presented and empirically tested and applied to industry cases [3, 5, 11, 14]. RTS
techniques seek to select a sub-set of all regression test cases that according to some metric
is deemed likely to identify regressions. Previously performed systematic literature reviews
reveal that prioritisation of the test cases are commonly based on change request content,
recent changes in software requirements specification or historical test performance [1, 6].
More often than not, RTS techniques presented in academia are specifically made with au-
tomatic testing in mind, as noted by Ali et al. [1] in their literature review and the research
gap between automatic RTS and manual RTS techniques is acknowledged in a recent study
by Haas et al. [9].

In our thesis work we strive to improve Sony’s cost-effectiveness by optimising their RTS
from a select-all-test-all strategy to a new technique proposed by us. Hemmati et al. [11]
suggests that adaptations of any RTS technique that is originally designed with automatic
regression tests in mind could realistically be applied to manual regression tests. A test case,
manual or automatic, is at its most primitive definition a verification that any well-defined
input and procedure should always yield a pre-defined expected result. Before we began our
thesis, we have set up research questions that will act as guidelines throughout our work over
what we want to explore from an academic standpoint. All research questions are driven by
the initial context outlined in this introduction, formulated as follows:

RQ1 What are the differences in prioritisation of automatic versus manual regression
tests for the purpose of cost reduction?

RQ2 How does utilising the requirement specification in a selection algorithm for
manual regression tests affect the efficiency?

RQ3 Is our implementation perceived as valuable and useful to the team at Sony?

We propose a new RTS technique that is specifically designed to be used for manual regression
testing. Our proposed RTS technique will use historic regression test data. In conjunction
with our proposed RTS technique, we also propose a new technique called software require-
ment specification partitioning (REQP), intended to complement the output of the initial
selection done by an RTS technique. Our REQP technique utilises and therefore requires
that each test case tracks what functional requirement is verified by the test case. We require
that both manual and automatic test cases have requirements tracking, which allows us to
use failing requirement specification items from automatic regression testing and flag what
manual test cases have a high risk for failure, then add those high risk manual regression test
cases to our selection.
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This thesis is structured in such way where related work and background is presented in
Chapter 2. We present our method in Chapter 3 which consists of three executive and result-
generating phases. Our execution of the three phases are presented in Chapters 4, 5 and 6
respectively. Then we discuss our method, findings and validity in Chapter 7 before conclud-
ing by answering our research questions in Chapter 8.
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Chapter 2

Definitions and Related Work

In this chapter we present previous work that relates to ours. Before we go into details of
related work, we introduce some concepts used in this thesis. In Section 2.1 we introduce our
definition of regression testing and in Section 2.2 we introduce software requirement specifi-
cations and how these specifications relate to regression verification. Finally, general related
literature, related literature in regression test prioritisation (RTP) and related literature in
regression test selection (RTS) is presented in Section 2.3.

2.1 Regression testing
When releasing new versions of a system it is important that the newly added features do not
break any of the previously implemented functionality, and detecting these unintentionally
introduced faults is what regression testing is used for. A regression test case is defined such
that if the test case passes both before and after a change was integrated to the system, we
say that no regressions have been found [8]. Regression testing is all about routinely and
frequently testing the system’s core functionalities to check for regressions, and thus ensuring
that older functionality works even as a system evolves over time. Regression testing can be
either automatic or manual, depending on the system and what kind of functionality that
is being tested. Manual regression test cases tends to be more expensive to execute, both in
terms of time, and therefore cost, but also due to the risk of human errors.

Each test case, manual or automatic, has an input vector, a testing procedure and an expected
outcome associated with it. For a manual test case the input is defined as pre-conditions that
should be fulfilled before the execution of the test case can begin. The procedure is a set of
instructions, often written in natural language, rather than code. It describes the sequence of
actions a tester should take to properly execute the test case. The expected result describes
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2. Definitions and Related Work

what the outcome of the testing should be and any outcome that differs from the expected
result is considered a failure.

2.2 Software requirement specifications
Requirements engineering is a branch in software engineering that describes the process of all
stakeholders agreeing upon what features and aspects should be included into any software
implementation [18]. This is done during planning phases for traditional software develop-
ment methodologies, or early-on in the iteration/sprint for agile development methodolo-
gies. The resulting software requirement specification (SRS) is a document that describes
these agreed upon features and aspects. An SRS represents the basis for agreement between
the stakeholders [26].

There are standards for how an SRS should be expressed and structured. The language should
be on a reasonably technical level where it can be used directly by developers to help them un-
derstand what features was originally asked for by the ordering stakeholders (product owners
or customers). Structurally SRS documents are divided into two main categories: functional
and non-functional requirements [13]. In our work, we will observe and use SRS describing the
software under regression testing, however we will only focus on the functional requirement
specifications (FRS) part.

Ideally the FRS section will contain all functional, feature driven, requirements necessary
for implementing a piece of software. Practically, the FRS is a living document that gets
versioned and changed over time like any other configuration item. In order to produce
these discrete versions with as much quality as possible the FRS itself has to be structured in
a way that enables version control. Which at its most basic level means that every requirement
inside the FRS is identified with unique identifiers, so that they can be referenced by external
tools and by test cases during testing activities.

Identifiers are commonly selected in such way where they have semantic meaning, which ex-
poses the underlying structure among the requirements. Apart from the semantically sensi-
tive identifiers, other quality factors are concerned when specifying functional requirements.
IEEE standard 830-1998 defines these quality factors in detail [12]. Summarised by Lauesen
[18], he describes factors such as completeness, traceability and verifiability among others. These
three quality factors will be most important for this thesis work.

Completeness is achieved when the functional software requirements cover all the project
owner’s or customer’s needs. Traceability describes the possibility to point out what regres-
sion test case is related to what functional requirement in the FRS and vice versa. Ideally every
requirement is verifiable and is verified via one and only one FRS-traced regression test case.
In our work, we assume that any FRS being used in our methods contains requirements that
excel in these three quality aspects.
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2.3 Regression Test Optimisations

2.3 Regression Test Optimisations
Yoo and Harman [28] define three major branches of optimisation techniques for regression
testing, namely: test case prioritisation, selection and minimisation. Test case prioritisation
seeks to prioritise each test case based on certain metrics (e.g. code coverage, historic per-
formance or perceived importance). The result of prioritisation can determine what order
one should execute the test cases in order to achieve optimal results. Test case selection seeks
to select a subset of all test cases to execute. The selection can be based on metrics such as
code coverage, code changes or prioritisation based on any prioritisation technique. By only
executing a subset of all test cases a lot of time can be saved, however you risk missing regres-
sions if the selection criteria fail. Finally, test case minimisation seeks to remove test cases
from the test suite, either because they are redundant or obsolete. Reducing the number of
test cases in the test suite will naturally make it faster to execute them all, and all of these
techniques have been proven to be cost-effective when applied correctly. We will focus on
test case selection and prioritisation in our work since minimisation of the manual test suite
is something that is already done by Sony.

Through our own literature research we have found that literature often assumes automatic
testing. This is further confirmed by Ali et al. [1] in their systematic literature review where
they mention that few papers are specifically on manual testing, and they conclude that more
research should be made on this area. Haas et al. [9] talk about this research gap as well.
One issue they bring up is that it is unclear which automatic optimisation techniques are
applicable to manual testing. A problem in applying automatic optimisation techniques for
manual testing is that some data might be missing, data that is commonly or easily available
for automatic testing might be difficult to gather for manual testing. Another issue with
manual testing is the fact that they are often written in plain text to facilitate execution
of the test case by humans. The problem with this is that test cases written in plain text
often tend to not follow software engineering best practices and therefore introduce test
smells. Hauptmann et al. [10] discuss this in their paper, and they introduce a set of test
smells for natural language test cases. Since changing how manual test cases from the manual
regression test suite are presented to a new format was done during our thesis work, this paper
helped us make design decisions regarding test smells, mostly for "inconsistent wording" and
"ambiguous tests".

2.3.1 Test case prioritisation
Khalilian et al. use historical data for test case prioritisation: how often have a certain test
case failed in the past, when was the test case last executed and so on [14]. The prioritisation
technique made by Khalilian et al. was used in a case study by Engström et al. [5]. While
the practitioners in that case were not satisfied with the specifics of the implementation, the
authors still showed that history-based prioritisation improves the ability to detect faults
early. This relates closely to our work since we can see many similarities between our case
and the case presented by Engström et al., making this highly relevant.

In literature a review made by Ali et al. [1], only a few reviewed papers mention utilisation of
tracking made from software requirements to test cases. They concluded that parts of those
papers are lacking in various aspects. They are either lacking because they do not mention
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2. Definitions and Related Work

how the tracking from requirements to test cases were made or how they can be generated.
Krishnamoorthi et al. propose a change-based prioritisation technique using system require-
ments [16]. They find that by using prioritisation techniques that observe changes in system
requirements, it is possible to achieve a better fault detection rate compared to random exe-
cution order. This is one of the papers critiqued for expressing the necessity of linking system
requirements to source code and/or test cases but does not express how this linking should
be made. Lastly, Lachmann et al. propose a selection technique based on a genetic algorithm
optimised such that all generations selects a subset of test cases that will cover all requirement
specifications [17].

Li and Boehm [19] bring up using a value based method for prioritising test cases. They
claim that traditional testing methodologies usually treat all aspects of software as equally
important. This leads to a purely technical issue leaving the close relationship between testing
and business decisions unlinked and the potential value contribution of testing unexplored.
They propose that rather than only prioritising based on metrics like code coverage or fault
detection ratio prioritisation should also take into account the following aspects:

• Business / mission value: captured by business case analysis with the prioritisation of
success-critical stakeholder value propositions.

• Testing cost: captured by expert estimation or based on historical data or past experi-
ence.

• Defect criticality: captured by measuring the impact of absence of an expected feature,
not achieving a performance requirement or the failure of a test case.

• Defect-proneness: captured by expert estimation based on historical data or past ex-
periences, design or implementation complexity, qualification of the responsive per-
sonnel, code change impact analysis etc.

An important lesson learned in this paper was that the value based prioritisation is not inde-
pendent of other prioritisation techniques, on the contrary, it is meant to supplement them
to add more value to the testing process. This paper is relevant to our case since it has been
noted that some problems with the purely historical selection algorithms are that they some-
times prioritise test cases that are of little importance even though they fail. By adding a
value based prioritisation criteria it might be possible to make up for some drawbacks with
purely history-based selection.

2.3.2 Test case selection
Böhme et al. [4] present a way of using a partition based regression verification method,
where the code is partitioned based on the input, if it reaches the same syntactic changes and
whether it propagates the same differential state to the output. Basically for a certain range
of input values, if the code that is traversed is the same and the output is within a certain
range those inputs can be considered to be one partition of the program. By then testing
one of these inputs and checking that the output is within the expected range before testing
the same input in a different version of the program you can demonstrate the absence of
regressions between the two versions, if the output remains the same [4]. This study made
us think about how we can possibly partition the test cases at Sony in a semantic fashion. It
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led us to start considering utilising the connection between test cases and the requirement
specification to create the "partitions".

For manual verification regression testing Buchgeher et al. [3] present an approach using
version control systems to find what parts of the code have been changed. Then by utilising
data on what code coverage each test case have they can match so that they select and execute
the test cases that specifically target the changed parts of the system. This is important in
the case they are studying since the system is very large and difficult to test automatically
so by only performing a part of the test suite they can save a lot of time and cost [3]. This
paper is related to our case since we both try to deal with manual regression verification, even
though we don’t have access to code coverage, they still bring up a lot of interesting thoughts
and problems they encountered in their implementation which makes it a valuable learning
experience for us, so we can avoid those problems.
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Chapter 3

Methodology

It is not obvious how selection and prioritisation should be made for the best results. En-
gström et al. observe that every project and every team has to come up with what works best
for them [6]. They conclude that there is no ultimate strategy that is strictly better than all
others. We interpret their conclusions to mean that before any optimisations on regression
testing efforts can be done, a good problem conceptualisation at the case level is required in
order to identify as many stakeholder needs as possible. By specifically looking for methods
where a pronounced problem conceptualisation phase is key for success we found that Rune-
son et al. presents Design Science as a paradigm – an abstract framework with emphasis on
problem conceptualisation to create a solution design and then validation of that solution [22]. Of-
fermann et al. presents a concrete example of Design Science as a methodology [20]. Further,
Wohlin et al. present the possibility of Design Science as a paradigm and as a methodology to
coexist [27].

In this chapter, we present our design science adaptation that is based on Offermann’s con-
crete example of Design Science as a methodology. We present descriptions for our methods
used for the three design science phases and in Figure 3.1 we present an overview of our
methodology compared to Offermann’s. All methods used throughout this thesis work are
outlined in this chapter’s sections 3.1 through 3.3.
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3. Methodology

(a) Original method.
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S u m m a r i z e  r e s u l t s

(b) Our method.

Figure 3.1: Design science methodology work flow, extracted from
Wohlin et al. [27] and in turn derived from Offermann et al. [20].
Leftmost graph shows the original method’s structure and the right-
most graph shows the modified method that we will be working
with.

3.1 Problem conceptualisation
The goal of problem conceptualisation is to ensure that a problem that has been identified
is of practical relevance, and to find information regarding possible solutions. Technological
rules specify how to achieve a certain goal by applying a specific intervention in a context,
often formulated as a recommendation of how to use the designed intervention [22]. The
problem conceptualisation phase are driven by research questions that represent theoretical
outcomes of a conducted design study, and this phase will result in formulation of technolog-
ical rules that captures the solution as a whole. In Section 4.2, we formulate two technological
rules and further break them down into three design requirements. Once all design require-
ments are fulfilled, both of our technological rules will be possible to evaluate. This phase
corresponds to the top section of our model presented in Figure 3.1b.

The issue of manual regression testing taking up more and more time had already been iden-
tified at Sony. Given the problem was already identified and verified as a known problem
in our initial related work, we will start our thesis work with the problem conceptualisation
step, and it will consist of further literature reviews and expert interviews.

Relevant literature was researched to see what previous efforts have been made to solve sim-
ilar problems. Literature databases such as Lubsearch was used to find research related to
regression test selection and prioritisation. We searched using keywords, for example: ”man-
ual regression testing, regression test optimisation, -prioritisation, -selection”. Every identified paper
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3.2 Solution design

was then evaluated for relevance based on our intuition, however these relevancy scores were
updated over time (some increased, some decreased) as we learned more about our problem.
We filtered our results based on if they were peer-reviewed or not. From the peer-reviewed
papers that we identified as relevant to our case we found more related literature by looking
at what works were cited in them, and what works referenced them. Moreover, Runeson
(supervisor) and Engström (examiner), who are heavily involved with testing research, were
consulted for relevant literature on the subject.

Two expert interviews were conducted, they provided us with a better understanding of the
problem at hand, in order to potentially make better design decisions for our solution de-
sign. All of our conducted interviews were semi-structured with different key-people cur-
rently working in the team at Sony. By semi-structured we mean that all interviews were in
a casual setting with heavy back-and-forth conversation without a time box. All interviews
were conducted one by one in order to improve our chances of getting individual answerers
from every team members points of view. Topics and questions were the same for all of our
interviews. Interview questions are presented in Section 4.1 together with a summary of all
the interviewee’s answers.

3.2 Solution design
In our solution design phase, which corresponds to the second section of Figure 3.1b, the goal
was to implement a solution that fulfils all identified design requirements established during
the problem conceptualisation phase. We achieved this by working agile, utilising a "kanban
board" to stay organised.

Kanban is a tool commonly used during agile development [23]. Because we wish to keep it
as simple as possible, we used Kanban to break down the problem to smaller tasks that we
could more easily organise and implement. Instead of time-estimation which is a common
practice in agile planning, we focused on our order of implementation. The main focus is to
identify which features could be developed in parallel and which had to be developed in a
sequential order. Our Kanban board was relatively simple, only containing columns: backlog,
in progress, review and done.

Beyond usage of Kanban we also adapted the agile concept of frequent face to face conversa-
tions. Every week we held meetings with the stakeholders from Sony and every other week
we held meetings with stakeholders from both from Sony and LTH. These meetings aimed
to ensure that the work was progressing as intended and that the final product would achieve
the stakeholder’s requirements.

As problems appeared during our solution design, literature was consulted to find inspiration
to solve said problems. Some problems that appeared were not covered in literature. For those
problems, we had to actively make our own design decisions, sometimes based on feedback
from stakeholders, and sometimes we had to come up with our own original solutions. Details
regarding our solution design phase including all major design decisions can be read about
in Chapter 5. Our design decisions are discussed in Chapter 7, and they were the basis for
conclusions made regarding our research questions.
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3. Methodology

3.3 Evaluation
The evaluation phase aims to verify that our solution design actually solved the problem
from our problem conceptualisation. By evaluating qualitative and quantitative data from
our work we could underpin a discussion that ultimately answered our research questions.
This phase corresponds to the third section of Figure 3.1b. Three methods are introduced in
this report and all of them exist to evaluate different aspects of our solution. All their specific
details are presented in Chapter 6, but a brief overview and how they relate to our research
is presented in this section.

We did not have access to a large set of test data at Sony, therefore, we decided to use a data
simulation study with random generated data in order to evaluate the performance of our
solution. Since we are working with manual regression testing, while literature often assumes
automatic regression testing, we identified a need to evaluate the performance of different
RTS techniques in the context of manual testing. To achieve such an evaluative method for
history-based RTS techniques, large amounts of historic data were required. Since we realised
that we do not have much historic test data available to us at the beginning of our thesis
work, this was the direct reason why we decided to use random data. This provided us with
the opportunity to gather data with the aim of answering our research question RQ1.

We needed an evaluative method where we could assess the added value in comparison to
the increased costs of using a complementary RTS technique. One of our goals was to im-
plement a complementary RTS technique utilising traceability between test cases and the
FRS. However, we could not find any cases in literature where this traceability was utilised
in the way we propose. Therefore, we propose a method for comparing costs and values of
using two RTS techniques together by calculating increase in efficiency, cost and the overall
performance for the RTS techniques when utilised together. Evaluating these aspects directly
supported us in finding conclusions for RQ2.

Lastly, we needed some way of evaluating the reception, adaptation and perceived value of
our interventions. Our work implemented new additional steps to be taken for the Sony
team’s manual regression testing efforts. We mentioned perceived added value in RQ3, and
quantifying perception is challenging. Therefore, we made qualitative observations during
the course of our work whilst having minimal explicit interventions. I.e. we do not con-
duct exhaustive questionaries with all team members nor uphold focus groups that explicitly
evaluates our work. This is a method referred to by Storey et al. as a field study [24].
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Chapter 4

Problem Conceptualisation

This chapter presents activities performed during the Problem Conceptualisation phase as
described in Section 3.1. Section 4.1 covers the interviews that were conducted, the questions
that were asked and the answers that were elicited. Based on the information received during
the interviews and during literature research, two technological rules were established and
a number of design requirements that our solution design should satisfy were created from
it. These are presented in Section 4.2, together with initial ideas on how to satisfy each
requirement.

4.1 Expert Interviews
Interviews were planned and conducted to give a better understanding of the current state of
manual testing but also to understand what goals and expectations they have for a potential
solution. Questions and topics were outlined before interviews were held, and they were
designed to elicit as much of the problem context as possible. The interview questions and
topics are presented in Table 4.1 together with the section where the answer to each question
can be found.

Two experts relevant to the problem were interviewed; a scrum master with past heavy in-
volvement on the teams’ testing process and the former test architect. The former test archi-
tect recently left their role as test architect, but because this was one month before interviews
were held, they were still the most knowledgeable person about the historic state of the teams’
testing efforts. All questions or some derivative of the questions adapted by the flow of con-
versation were covered in each interview. Answers to the questions were noted by us authors,
and they are presented as a summary below.
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# Section Question
1 4.1.1 Do you have any set processes and/or rules for how you execute manual

tests right now?
2 4.1.2 Is there any present selection strategy for what tests to select?
3 4.1.3 Do you usually estimate cost in time for the manual tests? And are you

able to hold this budget each sprint?
4 4.1.3 Are all the regression tests equally relevant/important?
5 4.1.3 The tests you have today, do you perceive them as enough?
6 4.1.4 Give us some insights with your current way of representing/defining man-

ual tests.
7 4.1.5 Do you have any input, technical or other, about the idea of using the

specifications-to-test mapping that you already have in testing efforts?
8 4.1.5 Are you happy with how you collect historic manual testing data today?
9 4.1.5 Are you happy with today’s capabilities to overview the testing data (man-

ual or automatic)?
10 4.1.5 Besides for the historic test data, can you think of other metrics that you

find interesting to track for a selection algorithm?

Table 4.1: A table displaying all the questions covered by the semi-
structured interviewing sessions and in what section their answers
are presented.

4.1.1 Manual testing process
Both interviews reveal that there is a set process on how the manual testing was executed.
At the time of interviewing, the process was recently changed, about a few months prior,
and was therefore considered fairly new. During every sprint start a test lead is selected by
the team, their responsibility is to ensure that testing activities are done during the sprint.
It was pointed out in the interviews that being test lead does not mean you perform all
testing activities on your own, rather you are responsible for following up on and delegating
who executes what test cases for that sprint. Before the process changed, testing activities
were done by the same person every sprint, in contrast to the rotating testing responsibility
currently in use. Before testing is done, a version is selected and denoted as the official version
to test. In the interview with the scrum master, it was mentioned that some minor issues
have appeared over time. Debates on how to select versions to test were mentioned as an
existing issue while implying that different team members have conflicting philosophies on
what baseline to test from.

4.1.2 Test selection strategy
When it comes to the current selection strategy of manual testing both interviewees men-
tioned no formal selection strategy. Instead, in every sprint they select all existing test cases
for execution. The scrum master pointed out that in addition to well-defined scripted manual
test executions each sprint there is also time allocated for exploratory testing. What areas of
the system that should be selected for exploratory testing is chosen by expert intuition every
sprint, from that sprint’s test lead, based on what areas they have worked on recently.
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4.1.3 Test cost, importance and scope
No time budget is done on test-by-test basis. Instead, time spent on executing all manual test
cases are recorded for every sprint. Over time, this creates a rough estimation baseline for the
team to aid them in time-budgeting for their next sprint. Both interviewees mentioned that
the current manual test suite is not enough. There are feature gaps in it, that is, features that
are never tested but should be tested, so the addition of more manual tests will be necessary
in the near future. However, the test architect mentioned that a lot of the current manual
test cases should perhaps be revisited to see if they can be replaced with automatic test cases
or removed entirely in the case of duplicates. Both interviewees agreed that manual test cases
have different levels of importance. The scrum master pointed out that certain test cases are
just not allowed to fail, for example if they are connected to parts of the system where they
are legally responsible for the functionality to exist and work as intended. The test architect
noted that a manual, static prioritisation for each test case used to exist in the past. This is
something they aim to re-introduce in the future in order to reflect the fact that some test
cases have higher importance.

4.1.4 Manual test case definitions and representa-
tions

For manual test case definitions, the test architect expressed that the definitions in place
was just enough to enable testers to execute the test cases. He explains that in their current
text-based representation of manual test cases’ optional metadata, such as a brief human-
readable summary of a test case’s purpose can exist. Mandatory data such as the expected
outcomes and testing procedure is also supported. However, no automation for validating
that every test case contains all mandatory data fields was mentioned. The test architect did
comment that such automation of validating mandatory data fields is of interest. Every test
case definition is authored by the developers in plain text documents where testing proce-
dures and expected outcomes have been documented. Concerns and shortcomings about this
text based documentation format was conveyed by both interviewees. Since all manual test
cases are checked in to the code repository, ensuring that test cases are human-readable was
a concern. Human readability would facilitate efficient code reviewing of manual test case
changes. The major concern with the plain text format was the above-mentioned absence of
an automatic verification of metadata. Worries about metadata containing inconsistencies
due to human error such as typos and ambiguous terminology was mentioned. Having the
test case definitions represented in a machine parsable format was discussed as a potential so-
lution during both interviews. The idea was that machine-readable formats can better ensure
that every test case is defined under the same constraints.

4.1.5 Testing data overview and metrics
Both interviewees expressed discontent over how the manual testing data is currently col-
lected and presented since it is done manually, which makes it prone to human errors. This
makes it difficult to properly track and analyse the data. The test architect wants to collect
and present this data similarly to the automatic tests, to facilitate comparisons between them
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and to allow any programs that they use for analysis of automatic data to also be used on the
manual testing data. The scrum master wants more overview of the trends, coverage and
number of test cases that were executed and how many of those that failed. They hope that
by automating the collection of data and presenting it in the same way as the automatic test-
ing data this should be possible. In terms of metrics, both interviewees expressed interest in
utilising the requirements-to-test mapping and historic data in some kind of manual testing
selection algorithm. Moreover, recording some type of causality data between groups of fail-
ing test cases that statistically tend to fail together was suggested as a potentially interesting
metric to use.

4.2 Rules & Requirements
With the results of our expert interviews, two technological rules was formulated, which con-
cluded our problem conceptualisation phase. Based on those rules, three design requirements
was constructed highlighting technical aspects our solution must fulfil before our technolog-
ical rules could be evaluated. In Section 4.2.1 we present our two rules, then in Section 4.2.2,
we present our three requirements. Further, in Section 4.2.3 we present our initial thoughts
on how to approach a solution to these requirements.

4.2.1 Technological Rules
As explained in Section 3.1, technological rules specify how to achieve a certain goal by ap-
plying a specific intervention in a context, and they should ideally be formulated as recom-
mendation of usage [22]. Our rules are presented in Figure 4.1.

TR1 To improve cost-effectiveness of regression testing in the context of manual ex-
ecutions, apply a historic RTS technique.

TR2 To further improve regression test performance from regression test selection,
apply a REQP technique in conjunction to the original RTS technique.

Figure 4.1: Technological rules from our problem conceptualisation
that captures our intended use for techniques designed and pre-
sented in this thesis.

4.2.2 Design Requirements
Breaking down our technological rules into design requirements was done to represent a de-
composition of our conceptualised problem as a whole. The order of our design requirements
is of importance. They are semantically ordered in reversed necessary order of implementa-
tion. That it, in order to fulfil DR1, we should find a solution that satisfy DR2 first. Moreover,
fulfilling DR2 should be trivial if DR3 was achieved. We present our design requirements in
this in Figure 4.2 and then promptly motivate their existence in this section.
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DR1 Optimisation of manual regression testing costs has to be done using data
sources already available to Sony.

DR2 Represent testing data in a coherent format, no matter if the data are from
manual or automatic testing.

DR3 Represent manual test cases in a machine-readable format that is human-
readable and without loosing information from the old test suite.

Figure 4.2: Design Requirements based on our technological rules
from the problem conceptualisation phase.

From our interviews, it was made clear that Sony have the problem of manual regression test-
ing not scaling well from a cost perspective. They expressed gaps in their manual regression
test cases and a desire to add more manual regression test cases into their test suites. Despite
having a select-all-test-all strategy, they expressed that some regression test cases are not as
important as others. Implying that time can probably be saved by somehow prioritising the
most important regression test cases. We see a motive for us to optimise Sony’s time spent
on manual regression testing efforts, which is why we present our first design requirement,
DR1.

Before DR1 can be solved, all data points of interest has to be systematically obtainable. In
our interviews, dissatisfaction of manual regression test data was expressed, mostly because
there was no way to represent manual test data programmatically. This was something they
could only do with automatic regression test data. This problem motivated the formulation
of our second design requirement, DR2.

Even the way manual regression test cases were represented makes them difficult to work
with programmatically. There is no way to guarantee that each manual regression test case
contains all the required components such as expected results, pre-conditions and what func-
tional requirement that it verifies. Both interviewees expressed the necessity of some way to
verify that manual regression test cases were well-defined, which leads us to our third design
requirement, DR3.

4.2.3 Proposed Solution
With our design requirements established we will now present our initial thoughts we have
on how to approach a potential solution for them. Literature research was done continuously
during the whole problem conceptualisation phase. Based on our expert interviews and the
concrete conceptualisation of the problem via the above presented design requirements, we
did further literature research. This time with focus on finding existing technologies and
potential solutions to our design requirements. We finished our conceptualisation by creating
an initial idea of how we should start approaching each component of the problem.

We designed a history-based RTP technique with a cut-off criterion turning it into an RTS
technique, inspired from existing solutions in literature [7, 14, 15] to address DR1. Ljung et al.
show that the historic based RTP techniques tend to perform well in practice [5]. However,
testers’ confidence in the selected test plan proposed by automated tools can be low without
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any case specific adaptations. In order to mitigate potential loss of confidence in our RTS
technique as observed in [5], we complemented our history-based RTS with a second RTS
technique. Because there exist a gap in research regarding RTS techniques based on require-
ments specifications [1, 9], we find motives for designing our second RTS technique such
that it is based on requirement specifications. Sony already have traceability from require-
ment specification to automatic and manual test cases, giving us an exemplary opportunity
to design an RTS with requirement specifications as input data.

Data representations have to be improved. We solidified this in both DR2 and DR3. Our
initial idea to solve DR2 was to create an interactive testing tool that allow us to design
how the output (i.e. manual test data) should be represented. However, before any RTS
implementation or testing tool can be done, the representation of manual regression test
cases needed to be machine-readable, thus satisfying DR3.
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Chapter 5

Solution Design

With a finalised problem conceptualisation phase our solution design phase could begin.
The agile work methodology presented in Section 3.2 was used throughout the design phase.
Before starting on designing a solution to our design requirements, some initial preparatory
work was made to the infrastructure at Sony, enabling us to access data as we pleased. This
preparatory work is presented in Section 5.1.

Because of the semantic order of our design requirements explained in Section 4.2.2, we
present their solutions in reverse order. Meaning, we present our solution design for DR3 in
Section 5.2, our solution that satisfies design requirement DR2 in Section 5.3 and finally our
solution design for DR1 in Section 5.4.

5.1 Preparatory work
Before our thesis work, the testing process was such that all the testing data was saved man-
ually by developers in tables that were later shared by the team. Our interviews showed the
desire among team members to automate the collection and presentation of testing data to
reduce human errors. After interviews were held, we realised that writing all the necessary
software that would automate testing data collection and presentation from scratch was not
necessary. Plenty of assorted testing related tools and platforms were found already written
internally at Sony. Specifically, an old testing platform designed for regression testing of an
older generation product stood out as especially interesting to us.

The old platform was originally designed exclusively for automatic regression testing, but we
figured it could be extended with functionality for manual regression testing to fit our needs.
This old testing platform was used to create raw data files containing passes and fails of test
executions. These raw data files were saved in an open source build and automation server
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(Jenkins) as build artefacts. In essence, the old testing platform contained tools for collecting
test data from and reporting testing data to the Jenkins build server.

Our revision of the testing platform was done to maintain its previous functionality but with
the addition of handling manual test data, albeit for the latest generation of products. We also
introduced means of fetching additional metadata beyond the raw test data from the build
server, which is essential for downloading historic trend data with their versions enabling
trends to be used in a history-based RTS technique.

5.2 Representing manual test cases
In this section we present our approach to solving DR3:

Represent manual test cases in a machine-readable format that is human-readable and
without loosing information from the old test suite.

We started with examining how manual test cases were represented before our solution was
introduced. They were represented in free text using Markdown’s formatting capabilities.
Markdown is a lightweight markup language, a type of markup language that uses a simple
and readable syntax. A markup language differs from "plain text" in that various symbols can
be inserted in the text to control its structure or formatting. For example asterisks (’*’) is used
for italic and bold words: "*this is italic*" while "**this is bold**". Markdown was created
to be human-readable even without any compiling, this is why it’s considered a lightweight
language. The benefit of using Markdown is that it is highly portable, a Markdown file can be
opened and edited with virtually any text editor, since it’s just plain text with some symbols
inserted. It is also platform independent and future-proof since the text you write can be
easily read and used even if for some reason the language were to no longer be supported
[25].

After examining all manual test cases, it became clear that there is a weak underlying struc-
ture to these manual test case representations. By weak we mean that a majority of manual
test case representations followed what looked like a structured template, while others di-
verged from the structure, so not all test case representations conformed to the same rules.
This was identified as the primary reason to why machine-reading of the old Markdown rep-
resentation was hard to achieve.

Another issue with the old Markdown structure was that procedure lists for manual test
cases were previously represented using Markdown’s table syntax. Markdown tables have a
tendency to produce long lines of text in their Markdown files, causing severe wrapping when
code reviewing the plaintext in Sony’s code reviewing tool. Since text wrapping showed to
reduce readability, an active design decision was made to enforce a procedure’s action and
expected outcome to be displayed on separate rows. An example of the old manual test case
representation is displayed in Listing 5.1.
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1 <!-- This is a comment -->
2 # example test title
3

4 requirements : F1_1;F1_2
5

6 valid: TRUE
7

8 | action | expect |
9 |: -|: -|

10 | Do this. | Expect this. |
11 | Then do this more complex task , which require some more words to

describe . | Expect this step to be readable despite having a long
step description . |

12 | Finally do some cleanup . | Expect everything to go well. |

Listing 5.1: Example of how manual test cases were represented using
Markdown. Fields are in free plain text, which is a threat since
if there was a typo in the valid field, say ture instead of true,
it would be hard to notice that typo. Additionally, wrapping of
Markdown tables in plain text when there is a limitation to text
display width was noted as hard to read.

We corrected all diversions from the semi-structured Markdown text files by modifying the
files, making all Markdown represented manual test cases follow a common structure across
the board. This structure contained rules and definitions on what aspects every manual test
case representation have to contain and what type they should be in. For example, every test
case has to have a unique name, which is a string. Every test case has a list of strings that is
functional requirement identifiers and so on. With this new structure, we could re-define all
human-readable Markdown test case representations to a data serialisation language, making
them both human-readable and machine-readable.

YAML was proposed as the new language that could be used to define the manual test cases.
YAML is a human-readable data serialisation language, basically a format for storing data
structures or objects in a human-readable text format that can also be easily read by a com-
puter [2]. In YAML there are three primitive data structures: lists, maps and scalars. The
syntax it uses to represent these data structures are rather minimal in order to be human-
readable. For example, python-like indentation can be used for structure, colons separate
key/value pairs in maps and dashes are used to create lists. The simplicity combined with be-
ing written in plain text and being supported in many programming languages makes YAML
highly portable, it can be edited in basically any text editor and reading or writing to YAML
files is often very easily accomplished in code. An example of how a test case written in
YAML might look is presented in Listing 5.2.
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1 ---
2 # This is a comment
3 name: example test title
4 requirement :
5 - F1_1
6 - F1_2
7 valid: true
8 steps:
9 - action : Do this.

10 expect : Expect this.
11 - action : Then do this more complex task , which require some
12 more words to describe .
13 expect : Expect this step to be readable despite having a long
14 step description .
15 - action : Finally do some cleanup .
16 expect : Expect everything to go well.

Listing 5.2: Example of how a manual test case can be represented in
YAML. It contains fields with different types since name is a string,
valid is a boolean and requirements is a list of strings. Because
types can be serialised in YAML, it is easier to detect the same typo
as explained in Listing 5.1, since ture would not map to a boolean
value. Procedures are broken down into discrete steps, where each
step contains one action, which is an instruction and one expected
outcome for that action.

It was pointed out during our interviews that any method for verifying the contents of a test
case is of interest to the team at Sony. With the introduction of the above presented YAML
format, it became possible to implement such a verification tool. We designed the verification
tool so that it ensured no required field is missing, and no field contains the wrong type of
data. If any error was found by the tool it would give out an error citing what went wrong,
what test case raised the error and where in that test case’s file content the error was raised,
much like how a compiler would do when a syntax error is encountered. Our idea behind
the design was that YAML should allow for an easier reviewing process and since YAML is
a data-serialisation language, ensuring that all test cases conform to a structure should be
trivial using any programming language able to parse text. Code reviews of manual test case
changes should now focus on human aspects such as grammar and ambiguity of wordings
instead of technical aspects.

5.3 Representing manual testing data
The next design goal we had to achieve was DR2:

Represent testing data in a coherent format, no matter if the data are from manual or
automatic testing.

First we looked into how the automatic testing data was being generated and represented.
For automatic testing we have a host machine who sends an input vector to a device under
test (DUT), which performs a testing procedure and then our host machine records expected
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Figure 5.1: Context diagram displaying how an actor (human tester
or host machine) interacts with a DUT during testing activity.

outcomes as either passes or fails based on the feedback from the DUT. This context is visu-
alised in Figure 5.1.

With the old testing platform that we had decided to modernise, the automatic testing data
was saved in raw data files that in turn were saved to Jenkins. We found that the automatic
regression testing data was not generated by the testing platform itself. Rather, this gener-
ation was inherited from Android Open Source Project’s (AOSP) built-in Gradle test job.
That specific test job assumes that there is some DUT connected to the host machine.

If we consider our actor to be a person, a tester, instead of a host machine, and let them
interact with a DUT while following their manual testing procedure. They will then report
on expected outcomes based on the feedback from the DUT, just as in AOSP’s testing context
when the actor was a host machine. We can then see that representations of testing data is
not affected by who or what executes a test case’s procedure as long as each test case is well-
defined and follows the structure of input vector, procedure and expected outcome.

Designing a solution that allows manual regression testing data to be represented in the exact
same way as the automatic regression testing data was decided as a viable implementation
strategy. We made the decision to create a testing tool with the purpose of guiding a tester
during testing procedures. Two assumptions were made: First, the tool should take a list of
test cases as an argument. Second, we assume that DR3 from Section 5.2 is satisfied.

The tool was implemented to work in the following way. All existing test cases were loaded,
then filtered by test cases mentioned in the input arguments. Test cases are then iterated and
procedures, together with expected outcomes, are displayed on screen. A tester performs the
displayed procedures and verifies expected outcomes. Verification of procedure steps was
done with a prompt also displayed by the tool. The tester responds with pass or fail for each
test case and this data was gathered by the tool, then compiled into an output file. When a
test case was marked as failing the tester got a new prompt for adding a comment in plain
text, explaining the reason for failure. Comments were preserved in the output together with
the reported failure. Passes had no comments. See Figure 5.2 for an example of how a test
case presented by our tool might look.

The tool is the only source that provides data to the output file, therefore it was designed in
such way where we can guarantee that manual regression testing data follow the same format
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Figure 5.2: Example of how a test case is presented in the testing
tool. The test case used is the same YAML example test case from
Listing 5.2.

as automatic regression testing data. The final step was to upload the file to Jenkins where
trend lines for each test case is promptly created.

5.4 Optimise costs of manual regression test-
ing

For our final part of the solution design phase we present our design process for a solution
satisfying DR1:

Optimisation of manual regression testing costs has to be done using data sources already
available to Sony.

For this section, it is important to think of a principle where RTP algorithms can be trans-
lated to RTS technique, if we introduce a selection criterion [5]. Any history-based RTP will
order a list of test cases based on priority scores according to their past performance. Apply-
ing a selection criterion to this ordered list, we can create a test plan from that prioritised
list, thus turning our RTP into an RTS. This relationship between RTP algorithms and RTS
techniques is displayed in Figure 5.3.

By keeping our selection simple, i.e. in the style of selecting the top x percent of the pri-
oritised list, our hypothesis is that we will satisfy DR1, if we can find a performant RTP
algorithm.

RTP algorithms have already been explored and many solutions to RTP problems can be
found in literature, as presented in Section 2.3. Our initial intentions were to find an empiri-
cally evaluated RTP algorithms and apply this to a real world case at Sony. An RTP algorithm
proposed by Khalilian et al. in 2012 (Khalilian2012) was found [14]. This RTP algorithm fits
our case well since it uses historic test data to prioritise each test case, which is something
that we can access after DR2 and DR3 are achieved. Moreover, we found Khalilian2012 to
be of interest because of its relative recency, leading us to believe this would work well in a
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Figure 5.3: Block diagram displaying the principles behind RTP,
RTS and how they relate.

modern software development project.

Khalilian2012 was implemented according to their paper [14]. Each test case is given a base
priority. Then based on the test case’s historical performance this priority value is modified
to reflect the chance of finding a regression. In their paper, code coverage data is used to
determine base priority score of test cases, which implies that Khalilian2012 is not a black-
box technique. They address this issue by stating that alternative metrics can be used to
determine the base priority score. A complete overview of this technique is presented in
Appendix B. We decided to use a static priority score given to each test case, since we do not
have access to code coverage metrics.

After implementation, exploratory testing was made where we manually fed inputs to the
RTP algorithm and studied the plausibility of the results. Inputs to a history-based RTP
algorithm consists of a vector of skips, passes or fails, representing the historic trend of a
test case. We observed that when test cases are skipped in succession then prioritised with
Khalilian2012, the slight increase in priority score does not compensate enough to make up
for other factors in the algorithm detailed in B.1. Further, we observed that no matter the or-
dering of input (skips, passes or fails) priority scores approached zero but at differing speeds.
Skips accelerated the slowest towards a zero score, thus retaining higher priority scores. Fails
accelerated slightly slower towards a zero score than passes, yet faster than fails. Passes had
the fastest acceleration towards a zero score. We found no natural or self-explanatory mean-
ing behind priority scores in Khalilian2012. A test case’s priority score was just a purely
arbitrary decimal number intended to be put into relation to other test cases’ score.

All these observed aspects from exploratory testing lead us to decide that Khalilian2012 was
not a good solution to the problem at Sony. As such, we decided to implement two other
RTP algorithms for comparison. Khalilian et al. presented a predecessor of our initially cho-
sen implementation from 2009 (Khalilian2009). This earlier technique was implemented [7].
We also decided to implement Kim and Porter’s RTP algorithm from 2002 (Kim2002), which
is found to be one of the earliest history-based RTP algorithms [15]. The principles behind
these two are essentially the same as for Khalilian2012. There are common equations present
in both Khalilian2012 and Khalilian2009, which are displayed in Figure 5.4. In Khalilian2009
and Kim2002, priority score is dealt to all test cases, and this value fluctuates based on per-
formance of the test case, just like Khalilian2012. We noticed while the principles among
the three were common, all of their implementation details differ. Overviews of each tech-
nique can be found in Appendix B. Both of the additional RTP algorithms were implemented
according to their respective papers.
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f ck =

k−1∑
i=1

fi, fi =

1 if test case revealed faults in session i
0 otherwise

eck =

k−1∑
i=1

ei, ei =

1 if test case was executed in session i
0 otherwise

hk =

0 if test case was executed in session i
hk−1 + 1 otherwise

f rk =
f ck + 1
eck + 1

, 0 < f rk ≤ 1

Figure 5.4: Conventional equations for RTP techniques [14]. Fail
count, f ck is the number of fails for a test case up until test session
k. Execution count, eck is the number of executions done for a test
case up until test session k. Skip count hk is how many consecutive
test sessions a test case has been selected but not executed. Fail rate,
f rk , is the ratio between fails and executions, adjusted such that de-
nominator is never zero.

Again, these RTP algorithms were exploratory tested using manually fed input, exactly as we
did with Khalilian2012. We noted that Kim2002’s and Khalilian2009’s behaviour were more
intuitive than Khalilian2012. Their priorities did not approach zero no matter the input, and
they behaved more like we would expect a history-based RTP algorithm to behave. More pre-
cisely, their priority scores increased on failures and skips but decreased on passes. However,
there were minor things in their implementations that we did not like. More precisely, they
both relied on so-called smoothing constants determined by the developer to work, something
which Khalilian2012 did not have. Our hypothesis is that their performance at any given time
would be determined by how well the developer decides on the values for these smoothing
constants.

Explorations with all three RTP algorithm led us to the decision of designing our own. We
wanted a solution design that had no smoothing constants, similar to Khalilian2012, but
with the intuitive behaviour of Khalilian2009 and Kim2002. In the paper by Khalilian et
al. they mention that the Khalilian2012 technique was based on their earlier Khalilian2009
technique, but with the smoothing constants replaced by calculating the coefficients based on
a feedback loop [14]. In our own implementation we started out from Khalilian2012, but
modified it such that our final solution’s behaviour were more similar to the intuitive be-
haviour of Khalilian2009, without ever re-introducing smoothing constants. The equations
presented in Figure 5.4 were utilised in our modified version.

Modifications made to the algorithm were developed in small iterations over time, where we
performed continuous exploratory testing and regularly received stakeholder feedback. A
request we received from Sony was to have a normalised priority score from "0% important"
to "100% important", if possible without largely affecting the performance. So it was decided
to constrain the priority score as a decimal number between 0 and 1. Our proposed RTP
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5.4 Optimise costs of manual regression testing

technique is presented with equations in Figure 5.5.

Two terms were defined α (alpha) and β (beta). Alpha determines the criticality of skipping
a test case while beta determines how much a priority score should change based on perfor-
mance history. When a test case is skipped its priority score will increase linearly at the rate
of f rk

2 for every successive skip. Skipped test cases with high fail-rates will increase faster
than skipped test cases with lower fail-rates. Notice that for hk = 0, i.e. test case not skipped,
criticality of skipping will be 0. Beta is decided by scaling priority score of a test case from
its previous session with the modifier mk . Essentially, mk has three outcomes, one for passes,
one for fails and one for skips. We let mk be defined using the fail rate, f rk . Because of this
test cases with low fail-rates will have priority scores drastically increase during a sudden
failure (i.e. a regression). On the other hand, test cases with high fail-rates will not increase
in priority as much during failures.

PRk = min((α + β), 1), PR0 = γ, 0 < γ ≤ 1

α = hk
f rk

2
, β = mkPRk−1

mk =


max(1 − f rk, 0.1) + 1 if test case failed in session k − 1
f rk if test case passed in session k − 1
1 otherwise

Figure 5.5: Implementations for our proposed history-based RTP
algorithm. During our thesis, γ = 0.5. The min function in PRk
definition ensures priority scores are bound to our target interval.

Exploratory testing was done on our RTP technique. We observed that it behaved similar to
Khalilian2009 despite not utilising the smoothing constants. However, our RTP technique
is still not empirically evaluated to be comparatively as performant as RTP techniques from
related work. Therefore, a comparison between our RTP technique and the other three tech-
niques mentioned in this section was conducted. The result of our evaluation are presented
in Section 6.1. A cut-off selection criterion where the top percentage among the list of test
cases ordered by priority score was put in place, translating the RTP techniques into RTS
techniques.

As mentioned in Section 4.2.3 we implemented a historic RTS technique in conjunction with
a requirement specification-based RTS technique. Böhme et al. present a testing strategy to
divide feature domains into partitions [4]. In their paper, this partitioning was done using a
white-box technique called static code analysis.

We propose a new black-box technique for dividing feature domains into partitions based on
the structure and relations in a software’s requirement specifications. Under the assumption
that requirements that are close to each other in the FRS are somewhat connected even in
their implementations, we can create partitions based on these relations.

In international standards regarding FRS documents [12, 13], they describe FRS documents
to have underlying semantically meaningful structures, something we took notice of when
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we presented our explanation of FRS in Section 2.2. Because of this underlying structure,
it is possible to generate a tree graph containing all the requirements. Each node in the tree
represents a requirement and their relations are represented by the parent-children relations.
In our new test case representation presented in Section 5.2, we know that each test case has
one or more requirement from the FRS that they validate. Utilising this information, both
automatic regression test cases and manual regression test cases were connected to nodes in
the tree. With information provided by the most recent automatic testing session we can
flag the requirements in the tree that are failing. Then any manual test case that validates a
node in proximity with one of these failing nodes can be selected for execution to test that
partition of the FRS. An example can be seen in Figure 5.6.

A

A1 A2 A3

... A2_1 A2_2 ... . . .

F R S

B

...

Figure 5.6: Visualisation of our definition on requirements that are
in proximity to each other. A2, the red node, represents a require-
ment that is failing. While its siblings and children: A1, A3, A2_1
and A2_2 (green nodes), are considered to be in proximity of the
failing node and are therefore selected.
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5.4 Optimise costs of manual regression testing

As long as we can define our concept of proximity between two requirements we can select
test cases of interest. We made a design decision to implement a naive criterion and select
the siblings and children of the failing node to be part of the partition that we want to verify.
Ultimately this technique aims to complement any other regression test selection technique
by appending all high risk manual test cases to the pre-existing test plan.

In order to evaluate the impact of the requirement partition selection technique an evaluation
was performed. The results of this evaluation is presented in Section 6.2.
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Chapter 6

Evaluation

In this chapter we conclude the design science method by presenting the results of our eval-
uations made throughout the thesis work. Each section presents the evaluation method used
and the results we got from applying these methods on our solution. Section 6.1 presents the
comparative evaluation we performed to analyse the performance of various history-based
RTS techniques in a manual testing context. Section 6.2 presents the value-cost comparison
for using two complimentary RTS techniques together. Finally, Section 6.3 presents the field
study we conducted at Sony during and after our solution design phase.

6.1 Comparing RTS results by simulation of
failure trends

All history-based prioritisation techniques that were studied in related literature had one
thing in common. They are specifically meant for automatic regression testing [7, 14, 15].
In our case, where we have a test suite of only manual regression test cases, we could not
be certain that any of the studied techniques could be directly applied and still perform as
expected. In order to validate our implementation, a method for comparing different history-
based prioritisation techniques over random generated sets of trend data is presented in this
section together with the results we got from applying this method to our proposed solution.
A model operating over random generated data was chosen because currently, we do not have
access to large enough sets of historic manual regression test data.

Principles of this evaluation method are presented in Section 6.1.1. Our model’s specific
design details are presented in Section 6.1.2. Lastly, we present our findings in Section
6.1.3.
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6.1.1 Simulation model principles
The idea of our simulation model is to compare the general behaviour of history-based RTS
techniques. If we allow RTS techniques to prioritise and select test cases based on each in-
dividual test case’s past performance, we can compare the output, that is, the test plans that
were generated by each RTS technique.

Assuming that a test case has a certain probability of failing, we can randomise the result of
executing that test. This randomised result generates a true trend for that test case. The true
trend is a trend consisting only of passes and fails, and is the trend we would get assuming
the test case were to be executed during every testing session.

Any RTS technique is essentially a convoluted boolean function that determines if a test case
should be selected or not. Naturally, it is impossible to know if a test case covers a faulty state
before testing is done. Therefore, we must select the test cases based on information that is
available to us, in this case the past performance (trend) of test cases. By using the trend as
an input to an RTS technique it can decide whether the test case should be executed or not.
A selected test case therefore gets a ’pass’ or ’fail’ added to its trend based on the result in the
true trend for that testing session, while test cases not selected gets a ’skip’ added to its trend.
We call this trend consisting of passes, fails and skips the actual trend, the trend we would get
if we decide to use that specific RTS technique for our testing. An overview of this can be
seen in Figure 6.1.

pr io r i ty  over  th resho ld?

t e s t  c a s e
h i s to r i c  t r end

sk ip  t e s t
n o

lookup
t r u e  t r e n d

y e s

Figure 6.1: Essentially, every RTS technique implements the decision
node in the displayed figure. I.e. via RTP techniques and selection
criterion, some sort of boolean decision can be made regarding if a
test case should be selected or not. Note that the historic trend is the
test cases actual trend.

We imagine the worst case scenario for an RTS technique would be if it never selects test
cases that had resulted in a fail, but always select the test cases that results in pass. This is
bad because then we would never select any test case that is failing, we would never detect any
regression error. Inversely, the perfect scenario would be if an RTS technique always skip test
cases that would pass, and always select test cases that would fail. Because we have defined
the best and worst case scenarios, we can compare the behaviour of different algorithms by
measuring how similar each of them are in relation to these scenarios.
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6.1 Comparing RTS results by simulation of failure trends

6.1.2 Simulation model design
In order to compare different RTS techniques we must have a common set of data to work on.
A test suite was constructed with 36 test cases, each given a failure probability ranging from
0 to 100%. This failure probability reflects the probability for a certain test case to introduce
a regression in our simulation. We introduced more test cases with low failure probability.
This was a design decision that we made based on real test suites, where generally the majority
of test cases would pass. See Appendix A.1 for the complete test suite.

With this test suite we could give each test case a random generated true trend, which is a list
of passes and fails. The true trend of a test case is common among all the RTS techniques that
we are currently comparing. Then, for each RTS technique in our comparison and each test
case in our test suite we simulate the testing sessions as described in Section 6.1.1. This gives
each test case a unique trend, the actual trend, for each RTS that we are comparing.

An example of what our data sets look like can be seen in Figure 6.2. Actual trends and true
trends are the core of what data to analyse in order to draw conclusions on the algorithms
decision-making behaviour, which is crucial for our RQ1.

Actua l  t r end  fo r  RTS t echn ique  3

Actua l  t r end  fo r  RTS t echn ique  2

Actua l  t r end  fo r  RTS t echn ique  1
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Figure 6.2: Example of how data can be represented when compar-
ing three different selection techniques over the same test case. The
true trend is common among them, which creates a baseline for com-
parison. Then, each RTS technique has their own actual trend that
is used for evaluating the performance.

We had to come up with some way of modelling regressions in our simulated trends, rather
than relying on the naive approach of homogeneous randomness. In the practical case we do
not expect test cases to be flaky, i.e. any test case that have a probability of yielding different
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outcomes each time they are re-executed given the same input and procedure. Therefore, we
had to somehow guarantee that the stochastic model used was not homogeneously random.
Considering this threat, we introduced constraints in the simulation model in an attempt
to closer reflect reality. Realistic regressions in a test case’s trend will be more reminiscent
of a mathematical unit step function, where the moment a regression is introduced will be
the point where consecutive passes transitions to consecutive failures. Then, the test case
keeps giving consecutive failures until another change fixes the regression where the trend
will transition back to consecutive passes.

We decided to set regression lengths to three, meaning each time a regression is introduced,
three successive failures will be simulated. However, it is probable for high risk test cases to
have multiple regressions of length three in a row. Think of the fixed regression length as the
time it takes before a regression is fixed. These attributes gave us a stochastic model which
achieved the unit step reminiscent pattern that we wanted.

In our simulation, we also introduced a memory variable X representing maximum size of
the historic data to input for every testing session. Capping input this way creates a ’moving
window’ effect allowing us to simulate extremely long true trends, but our algorithms will
work with local historic data instead of global. In a real world application there might be a
limit to how many sessions of historic data that can be saved. Because we let this window
size be a variable we will be able to test the same true trend data multiple times but with
different memory sizes. We will be able to record data on how the size of the trend line
affects the algorithm’s decision-making behaviour.

Our evaluative simulation model comes with two metrics, both of the type less is better. First
we count the number of misses which is defined as the number of sessions where an algorithm
skipped, but the true trend for that session corresponds to failed. It is a crucial metric to keep
track of since it means that we missed the start of a regression, something we want to avoid
as much as possible. Remember, our regressions are ’fixed on its own’ after a probable three
sessions due to the regression length of three. Any technique that has a decision history
where a test case is skipped over three times in a row might miss a regression as a whole.
We call this a full regression miss, rather than just a miss, as this kind of miss is much more
severe. A full regression miss is the worst case scenario, because the prioritisation technique
will not get the chance to observe these failures, leading to worse estimations of a test case’s
performance.

Examples of both singular misses and full regression misses are presented in Figure 6.2. In
technique 1, we see an example of a singular miss at the beginning of a regression (at session
2). In technique 2, we see an example of no misses whatsoever. Lastly, in technique 3, we see
the worst case scenario, a full regression miss over the whole regression (at sessions 2, 3 and
4). Note how the observed (actual) trend for ’technique 3’ in Figure 6.2 is two passes in a row,
leading to a perfect performant test case. But in reality, we simply lost the three failures due
to poor selections.
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6.1.3 Evaluation results
We decided to compare our algorithm with three other prioritisation algorithms, namely the
two algorithms proposed by Khalilian et al. from 2009 and 2012 [7, 14] and Kim and Porters
prioritisation algorithm from 2002, which was one of the earliest historic based prioritisa-
tion algorithms [15]. The three algorithms are recited in Appendix B, while our algorithm is
presented in Section 5.4.

The smoothing constant in Kim2002 was given α = 0.2, they didn’t present exactly what
value they used in their testing except for that it was close to zero [15]. For Khalilian2009 we
used α = 0.7, β = 0.7 and γ = 0.04 with static priority score PR0 = 0.5. This was the same
values on the smoothing constants as were presented by Engström et al. in their paper where
they implemented this algorithm [5]. The static priority score we used in Khalilian2012 and
our proposed technique were the same as for Khalilian2009.

The averaged results from applying the previously described method on these four RTS tech-
niques is presented in Table 6.1. For the complete results, see Appendix A.2. Three different
seeds were used to randomise the true trends, with a length of 100000 each, where each data
point in the data sets represents a testing session. The simulation was evaluated with four dif-
ferent window sizes; 5, 10, 50 and 100. The cut-off was a constant 60% for all runs. Meaning
we select the top 60% from the list of ordered test cases after RTP.

Algorithm Trend size = 5 Trend size = 10 Trend size = 50 Trend size = 100
M RM M RM M RM M RM

Kim2002 3.779 1.155 3.429 1.053 3.178 0.983 3.034 0.938
Khalilian2009 1.580 0.200 1.619 0.324 1.455 0.222 1.433 0.169
Khalilian2012 2.467 0.031 6.271 1.555 5.656 1.197 5.059 0.804
Our design 1.571 0.036 1.335 0.025 1.026 0.032 0.967 0.022

Table 6.1: Average number of misses (M) and regression misses (RM)
occurred per simulated testing session. Less is better, since best case
scenario described in Section 6.1.1 is achieved when there are no
misses.

Noteworthy from the table, for trend size = 5 we see that our design’s performance is close
to Khalilian2009 in average number of misses (M) and our design’s performance is close to
Khalilian2012 in average number of regression misses (RM). However, we can see that our
design consistently have lower occurrences of both misses and regression misses for trend
sizes greater than five. Kim2002 never has the lowest value for any metric, however at times
its M or RM values are lower than Khalilian2012.

6.2 Combining RTS results
Our final RTS technique consists of two parts, a prioritisation technique and a requirement
partitioning technique. They are presented in Section 5.4. Technically, both the prioritisation
and partitioning techniques can each be seen their own RTS technique. However since we
use them in conjunction with each other, we need a method to evaluate the cost and value
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of combining RTS techniques. Therefore, we propose a method that we use to evaluate the
costs and values of combining two RTS techniques.

Three metrics are introduced, test plan increase (TPI), regression performance improvement (RPI)
and a metric to measure general performance (P). All three metrics will be calculated by
analysing the set of test cases selected (i.e. the test plan) created from each RTS technique,
and then evaluate their union. These two sets and their potential overlap are illustrated in
Figure 6.3.

RTS_1 RTS_2

S

Figure 6.3: Diagram displaying two sets generated from RTS tech-
niques and their potential union. S is the set containing all regres-
sion test cases. RTS1 and RTS2 are both sub-sets of S.

Test plan increase is defined as the relative amount of test cases added to a test plan after ap-
plying both RTS techniques as defined in Equation 6.1. This metric represents the additional
cost (time) we incur when using the two RTS techniques together.

TPI =
|RTS1 ∪ RTS2|

|RTS1|
(6.1)

Regression performance improvement is defined as the relative amount of found failures,
that would not have been found, had we used only one of the RTS techniques. This metric
represents added value we get by combining the two RTS techniques. Assuming that reg(X)
is a function that returns the number of failed test cases, where X is a selection of test cases,
we define RPI in Equation 6.2.

RPI =
reg(RTS1 ∪ RTS2)

reg(RTS1)
(6.2)
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The performance of a selection, X , is evaluated by the metric presented in equation 6.3. P
can only be measured if all test cases are executed, that is, you must select-all-test-all in order
to measure P. Note that X can be the set of test cases selected by one of the RTS techniques
or the union of both.

P(X) =
reg(X)
reg(S) (6.3)

In order to produce our results, we applied the method described from this section to real-
world data. We looked into Sony’s historic manual regression test data and could retroac-
tively re-construct this test data into our new data representation presented in Section 5.3.
Every internally released version had already been manually tested under a select-all-test-
all technique. In our retroactive reconstruction we could apply our history-based RTS and
requirement partitioning RTS for each version delta, creating the test plans illustrated by
Figure 6.3. Some data was lost and could not be re-constructed, but we managed to fully
re-construct six internally released versions, creating five version deltas. For every version
delta, all metrics mentioned in this section was calculated, and they are presented in Table
6.2. Worth noting from Table 6.2, in version delta 3 the requirement partitioning technique
gave added value to the final performance. In the other version deltas it did not add any
extra failing test cases to the test plan. In version delta 1,2,4 and 5 it only gave additional
costs without any real additional value.

Version delta TPI RPI P(prio) P(req) P(prio ∪ req)
1 1.0345 1.0 0.833 0.166 0.833
2 1.1176 1.0 1.0 0.429 1.0
3 1.2941 1.25 0.667 0.5 0.833
4 1.1818 1.0 1.0 0.143 1.0
5 1.1250 1.0 0.933 0.2 0.933

Table 6.2: Table displaying the metric values calculated for five ver-
sion deltas. Each version delta represents newer versions.

6.3 Field study results
Here we present our observations made during the field study described in Section 3.3. The
only structure to our field study is the fact that we take notes of any observations we make.
We actively engaged in conversation with stakeholders of the project and daily attendance at
the Sony office gave us a good understanding of how well adopted and how well received our
interventions were.

By observing process adoption rates and perceived value in our work, it enabled evaluative
discussions regarding our solution’s qualitative performance as a whole. Adoption is observed
as yes or no answer to ’did the team adapt to our process?’. Perceived value is observed via received
feedback, expressions from stakeholders after presenting our work and asking developers
directly about their experiences with the new process.

45



6. Evaluation

The team provided code reviews during our migration from the old system (no tools and
Markdown) to the new systems (rich tools and YAML). They were engaged in the changes,
asked questions and discussed the design. Many developers approved the changes before the
migration was merged to the main branch, indicating satisfaction over these changes.

The project owner ordered a high level presentation of our tools, highlighting the overall new
opportunities the tools bring to product quality. All design requirements were presented and
examples of how to use the tools in practice was explained. Project owner had nothing to
complain about, was excited and saw big potential in how costs can be saved. Not only the
fact that we run less tests per testing session, but he saw cost reductions in the testing tool
presented in Section 5.3, because the tool removed some cognitive load in the workflow of
a tester. Since previously manual regression testing data was compiled manually, doing this
via a tool should make the task more efficient.

After migration from the old system to the new system was made to the main branch, the
system was fully integrated and readily available to the team. They took over development
from that point onwards. The team immediately started to prioritise tasks related to scaling
our project to cover more test suites than just the one we covered in our thesis work. The
team commented on matters such as YAML being at least as intuitive as Markdown when
writing a new test case. We got active comments covering the ease of code review on YAML
versus Markdown. The team expressed satisfaction in the improvement for reviewing manual
test case representations, not only because of the readability of YAML, but also due to the
usefulness of the verification tool.

The scrum master already had self-authored analytical tools to present automatic regression
test data in charts and tables. He was one of the interviewees, and he expressed interest in
the ability to represent manual regression testing data on an equivalent format as automatic
regression testing data. It would then become possible to re-use the tools but input manual
regression test data instead of automatic regression test data. During the course of our field
study, i.e. our time doing our thesis work at the Sony office building, the scrum master did not
explicitly mention that he was able to use the new manual regression test data meaningfully
(nor did he express that any attempts had been made). However, he did express excitement
over the capabilities provided given that there is now coherence between the data sets.

The lead architect was not heavily involved with our design decisions, but from time to time
he gave us valuable inputs on how we can best integrate our tools into their internal ecosystem
of tools. Moreover, he presented ideas of internal future work that can now be made using the
new manual regression test data. Before our work, they manually compiled tables of manual
regression testing data. One task he saw could be solved immediately after our interventions
were to automate the compilation of the exact same table. Since the tables existed primarily
so that any non-technical stakeholder, such as managers and project owners, could get an
overview of regression testing progressions.

Adaptation of tester tool was rather slow in comparison to the manual test case representa-
tions in YAML, but once used initial reports were positive. Some small suggestions in quality
of life improvement of the software were given by the developers, showing that they see a use-
fulness in the tool. They liked that this tool abstracts away the details, now the tester only
have to worry about executing the test cases and reporting the results.
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Chapter 7

Discussion

In our thesis we have conceptualised the regression testing problem of Sony and established
two recommendations for solving it in the form of two technical rules. Using design require-
ments derived from our rules, a solution to the regression testing problem was designed and
evaluated. This structure of problem conceptualisation, solution design and evaluation fits
the paradigm of design science. In this chapter, we first discuss our design science method
as a whole in Section 7.1. In Section 7.2 we progressively orient our discussion to a techni-
cal discussion surrounding our solution design by discussing any design decisions that were
made. Section 7.2 is divided into smaller pieces, each discussing the results from our evalua-
tions.

7.1 Method
Early on, in the planning of this thesis work, we struggled to settle on what research methods
to use for solving problems in industry contexts. Our stakeholders at Sony had a problem
that they would like to see solved, no matter what research findings could be made. For this
to be a proper thesis, we are required to have an academic perspective leading to academic
contributions. After initial research, we found DSM which made us realise that any research
method we were to select and that qualifies as design science would likely help us cover both
academic expectations and industry expectations. The three DSM phases can be used to help
researchers in industry contexts to map industry activities to research activities [22].

Interactions with all stakeholders at Sony helped us create tangible intermediate constructs
and artefacts useful for our report, such as the research questions and design requirements.
Design requirements helped us implement solutions in a way where we always knew that we
are developing towards the same end goal. They also helped us to structure our academic
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work where we could reflect on design decisions in our thesis report. While design require-
ments are guidelines on what interventions to introduce in order to help Sony with their
problem, research questions represent what we want to explore and contribute to academia.
The research questions are based more in the literature study rather than the interviews, and
answers to them were gained largely during the evaluation phase. For example, we decided
to utilise FRS as a data source for a selection technique as a direct response to address the
identified research gap in literature for that area. While the evaluation of combining RTS
techniques provided us with insight for answering our research question.

The method we used when searching for relevant literature worked well overall. It was easy
for us to find literature pertaining to regression testing and optimisation of regression test-
ing. However, because of the large amount of scientific work that have gone into regression
testing there is a lot to process when looking for specific answers. Literature reviews [1, 6]
were key to navigate this vast domain of research. When we found relevant or interesting
resources we noted a relevance score, short summary and their keywords for each of them
in a shared document. Despite this, it was sometimes hard to remember what paper talked
about what areas. We think that this is probably because pretty much all of our research ma-
terial are within the subject regression testing with some specific twist. This made it harder
to specifically remember what each paper said or did not say. Also, many of our summaries
might have been too detailed, making them harder to overview.

We chose to conduct semi-structured interviews over structured interviews because we did
not want to put constraints on ourselves during the elicitation process. Had we enforced
a stricter structure, let us say a questionnaire with well-defined questions, then we feared
that these answers would not contain enough nuance in them or interviews coming across
as interrogative. The semi-structure worked really well for our purposes. Interview subjects
were engaged during all sessions, which helped us to elicit information by asking follow-up
questions that otherwise might have been missed in a stricter structure. All sessions turned
out to be like an intellectual conversation over Sony’s regression testing problem.

Finally, the agile way of working via Kanban with focus on implementation order disregard-
ing time estimation was helpful during the solution design phase. There were always a clear
prioritisation of what task to do next during our whole thesis work. The primary issue with
prioritisation by implementation order rather than a time estimation was feature creeping.
It was easy for us to add more features to our backlog without considering the amount of
time that would be needed to implement all of them. We actively realised this risk of feature
creeping, therefore we took time to go through the backlog and sort out all features that
could be considered as ’extras’. Because of our extra caution, feature creeping did not hurt
our thesis work negatively, but the fact of the matter that there was a risk for not finishing
in time had we filled our backlog carelessly.
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7.2 Execution
This section presents all discussion topics regarding the execution of our solution design
and evaluation phases during our thesis work. Specifically, we will present all discussion
behind our design decisions in 7.2.1. Then, we will present in-depth discussions regarding
our evaluation results divided into our designed history-based RTS technique in Section 7.2.2,
and our exploratory requirement partitioning technique in Section 7.2.3.

7.2.1 Design decisions
Our solution design phase involve making active design decisions. These decisions have to
be made with underlying facts, which are presented in the form of design requirements and
were decided after a proper problem conceptualisation phase. We present three design re-
quirements in Section 4.2.2. Then we present our implementations of those design require-
ments in Chapter 5. In this section, we discuss our reasoning behind all design decisions that
were made in Chapter 5. We also discuss whether our solution design actually satisfies our
design requirements.

YAML was chosen as the data serialisation language to use for representation of manual re-
gression test cases. We were convinced early on that whatever representation we end up
with, it had to be properly machine-readable. However, since developers maintain and exe-
cute these test cases, they had to be human-readable as well. Within AOSP, XML is already
used as a sort of default data serialisation language, implying Sony’s team already had techni-
cal knowledge and experience with XML. It was not a coincidence that even though the team
had experience with XML, they had previously opted for a human-readable format for their
representations, namely Markdown. This indicates that human-readability was an impor-
tant aspect to Sony prior to our thesis work. Because of this, we argue that YAML is a well
motivated selection of a data serialisation language to use in our case. Moreover, the change
request migrating from Markdown to YAML was met with positive reception as noted by
our field study, indicating on work well done.

In the end, we decided that our easiest solution to represent regression testing data equiva-
lently no matter if the data is from manual or automatic executions were to represent them
identically. This design decision was found to be trivial in the context of black-box testing
a DUT, which was presented in Figure 5.1. We quickly realised that the only differences in
this context were the actor and the data collection. In both the manual and automatic case,
we can abstract a testing activity to its fundamentals; an input vector with a testing procedure
yielding pass or failed when compared to expected results. This is why we opted to create an
interactive testing tool, that presents input vector and testing procedures to a manual tester,
then prompts them whether the test case passed or failed. Enabling our testing tool to format
testing data identically to AOSPs, creating equivalent results.

As mentioned in our result Section 5.4 three issues were identified in history-based priori-
tisation from related work. The only algorithm with no smoothing constants, Khalilian2012
had its priority scores approaching zero no matter the input, creating the first issue of zero-
drifting scores. Secondly, smoothing constants was seen as a suboptimal implementation
constraint, so any existing implementation with these constants are discarded. Thirdly, pri-
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ority scores from the three algorithms were unintuitive and did not represent anything, other
than a higher value equals a higher priority.

We noticed how zero-drifting scores could be mitigated for smaller trend sizes, however we
cannot guarantee anything about trend sizes at Sony. We could set an upper limit for the
trend size, but we do not see the need to limit ourselves to using fewer data points than
what is potentially available. Another issue with zero-drifting scores would be that a newly
introduced test case would get a comparatively high priority score for a long time after their
introduction. Any test case that gets added will receive its static priority, which is going
to take some time to catch up with the other test cases. Even if the new test case would
consecutively pass over time, the rest of the test suite containing old test cases would have a
comparatively small priority score because they already had time to drift towards zero. The
zero-drifting also threatens priorities to get rounded off to zero, in which case the algorithm
stops working entirely.

Two of the options that were studied, the algorithm from 2009 by Khalilian et al. and Kim
and Porter’s algorithm from 2002 [7, 15], did not experience the issue of zero-drifting scores.
Instead, they suffer from the suboptimal design decision of including smoothing constants,
which are parameter values set by developers. Software development projects progress over
time and while they progress, different aspects becomes more important while others less
important. For instance, it would be reasonable to assume that early in a project’s life-cycle,
feature implementations are of the essence, but after some time as the code base grows more
complex, more regression testing activities has to be actively made. This raises the doubt that
smoothing constants can be set early on to some values, then stay at those values during the
whole project’s life. They will most likely have to change just as any other software. Therefore,
somebody has to be responsible for the fine-tuning of the smoothing constants based on
their intuitive feeling of where the project is heading next. Because of all this, we argue that
by including smoothing constants in the implementation makes these two algorithms less
maintainable. Khalilian et al. solved this issue in their improved algorithm from 2012 with
feedback loops, trading maintainability for some added design complexity.

The final issue that we identified was that the priority scores did not have any explicit mean-
ing. For Khalilian2012 all test cases would start at their base priority score, then approach
zero at different rates based on their performance. Implying that priority score of a test case
should be lowered the older it gets, which is not necessarily true. Kim2002 and Khalilian2009
had priorities ranging between zero and infinity. A rather extreme example would be a fail-
ing test case that has a low criticality, it would get executed every session with fails until the
developers introduce a fix for the regression. The priority of this test case would continuously
increase towards infinity, making it significantly more important than any other test case. To
combat this problem, our priority scores were constrained between zero and one. This lets
us represent each test case’s importance as a percentage value for the current session, which
gives us the ability to select test cases in intuitive ways. One example could be to select all
test cases with a priority of 0.5 or higher, meaning any test case with an importance of at least
50% to be executed would get selected. Or, we could allow new test cases to be represented
as 100% important to be executed in the next session by forcing their priority score to be
one.

Our chosen selection criterion where we selected the top x percentage of the test suite ordered
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by priority score. We argue that such a cut-off selection gives an even spread of workload each
session. If you select based on all test cases above 0.5 priority, some sessions there will have
more work compared to others, while with a selection of the top 50% you will always get
half the test suite. This makes it easier to estimate how much time is needed to be spent on
testing for each session.

In the second half of Section 5.4, we present an implementation of requirement partitioning
as an RTS technique. Initially, we opted for a naive approach to the problem, focusing on
providing any reasonable selection rather than a good selection. The idea was to then iterate
on our solution design and improve our selection over the course of our thesis. During our
planning phase, requirements specification partitioning were one of the main research points
motivated by the research gap in related work. Because there were no related work to take
inspiration from and because Khalilian2012 did not meet our quality expectations, it created
two challenges for us.

First, we had no strategy on how to evaluate our requirements partitioning RTS technique.
All metrics and evaluation methods presented in Section 6.2 are first defined by us. The
method presented require two primary data sources: Test plans for each version generated
from any other RTS technique and complete regression test data for each version generated
by a select-all-test-all strategy. Test plans were impossible for us to retroactively generate
before our history-based RTS technique was working well. So we could not even begin quan-
tifying the quality of selections made in our requirements partitioning before our simulation
analysis, presented in Section 6.1 was fully completed, leading to our second challenge.

Time-constraints were our second challenge for iterating our requirements partitioning de-
sign. We expected Khalilian2012, an empirically evaluated RTS technique, to work well
enough to satisfy our quality expectations with minor to no adjustments from the implemen-
tation presented in their original paper [14]. It was not the case, during our initial exploratory
testing Khalilian2012 did not do a good job in selecting manual regression test cases. Time
was spent on designing a new history-based RTS technique, which we did not expect during
planning. This meant we had less time than planned to improve on our requirement spec-
ification partitioning technique. The final design proposed in Section 5.4 was not the first
design. We still managed to find time to execute more than one iterative cycles over the de-
sign. In our first design, we opted to select a failing requirement’s node and all its children
recursively, i.e. the whole subtree created by considering the failing requirement’s node as
root. Because this would lead to select-all-test-all test plan should the actual root node be a
failing node, we improved from this first design to the one proposed.

7.2.2 History-based selection technique
In this section we discuss the results presented in Section 6.1. We present our interpretation
of the results from Table 6.1. Moreover, we discuss how trend size affects the results and how
this relates to manual regression testing, before we finish our discussion by presenting why
we think our RTP algorithm performed the way it did.

Overall, our RTP algorithm performs well compared to other empirically evaluated RTP
algorithms. It performs slightly better than Khalilian2009, which was the best performant
among the three empirically evaluated. For smaller trend sizes, like the size five trend we
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presented, Khalilian2012 performed well on regression misses. However, our RTP algorithm
performed the best when measuring individual misses, although only slightly better than
Khalilian2009. Khalilian2009 performed good on the regression miss metric as well, but
not nearly as good as our RTP algorithm or Khalilian2012. Hence, it can be seen that our
technique has utilised ideas and taken inspiration from both of these techniques, getting the
strong points from each.

When trends grow larger (10, 50 or 100) our technique starts to outperform all others. Khalil-
ian2012 quickly gets worse as the trend size increases, even getting outperformed by the old-
est of them all, Kim2002. For individual misses, only Khalilian2009’s performance is close to
ours, while for full regression misses ours clearly outperform the best among the other RTP
algorithms, Khalilian2009.

An important aspect when it comes to trend size is that the larger the trend size, the older
data you get. It is important to remember that we are working with manual regression testing,
so the time between each test session is going to be longer than for automatic regression
testing. In the case of automatic regression testing it is not unusual to run tests every night.
However, for manual regression testing, running them once a week would be considered
a lot. Once or twice a month would be more realistic estimation on how often software
development projects would conduct manual regression testing. In fact, in a survey study
by Haas et al. [9] among 38 respondents suggest that the median number of test cycles that
are executed were as low as 4.5 times per year. This means that a trend size of 10 for an
RTS technique intended for automatic regression testing could use data from the last couple
of weeks, while for an RTS technique intended for manual selection could mean data going
from several months to years.

At some point historic data will also become outdated. Development projects are constantly
changing, and the features that was worked on half a year ago might not see frequent changes
today. So prioritising a test case based on if it failed a relatively long time ago can be highly
inaccurate. On the flip side, using fewer data points for the trend and only using more recent
data can be problematic, since these algorithms need at least a few data points in order to
become accurate. Specifically in our case where we scale the β term depending on the fail
rate. Over time, the fail rate should become more accurate because of the increase in sample
size.

So why is it that our algorithm can outperform the others? We have a few hypotheses regard-
ing this. Firstly, we believe that our utilisation of the fail rate as a variable when calculating
priority scores allows us to control the changes in priority in a more intuitive way. We can
make the priority increase quickly when a regression has been identified, especially for a test
case that rarely fails. Secondly, we place a heavier emphasis on consecutive skips, since we
designed our algorithm specifically for manual testing we could not allow for too many con-
secutive skips to happen. The empirically evaluated algorithms are all designed for automatic
testing, so the criticality of skipping a test case, let’s say five times in a row, is not that high.
In an automatic regression test setting five consecutive skips means maybe one week of not
executing the test case, while for manual testing it could mean maybe 5 months of no execu-
tion. We believe this emphasis where skips are critical is why our algorithm performed very
well when it came to detecting full regression misses.
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7.2.3 Requirement partitioning
We now discuss the results presented in Section 6.2. The discussion is centred around the
value to cost comparison of using the FRS partitioning technique. The two metrics intro-
duced, TPI and RPI , respectively represent cost and value, allowing for a discussion to take
place.

From Table 6.2, we swiftly note that for all sessions, costs were added. This is expected be-
cause our complementing RTS cannot remove any test cases from a test plan, it works addi-
tively. In four out of five sessions combining FRS partitioning did not provide any increase in
value, although it did always discover some failing test cases. The one time when it generated
value was in version delta 3, the same version delta when it also had the highest TPI (test plan
increase). Combined performance of our techniques was generally good, at least 83% of all re-
gressions were discovered. However, it is very clear that our historic prioritisation algorithm
does the majority of the work. Conveniently, the one version delta when the primary RTS did
not perform well was the same singular version delta where our requirements partitioning
generated additional value. This time, increasing the overall performance by 25%. This is the
exact sort of behaviour that we envisioned during our solution design phase. Requirement
partitioning stemmed from the idea to explore if confidence in any RTS technique can be
boosted by using FRS as a data source. The requirement partitioning technique is designed
to act as sort of safety net for when the primary RTS have the occasional bad selection. In-
crease in confidence is rather difficult to quantify. But if this pattern is consistent, where our
requirements partitioning will step up every time our primary RTS performs poorly, it could
likely build confidence among developers over time.

There are multiple factors that affect the performance of requirement partitioning. It has a
strong dependence on the structure of the test suite since it requires automatic test cases to
fail to get an indication of what manual test cases to select. If some part of the system is only
covered by manual test cases, these tests can never get selected since there is no automatic test
case in proximity that could fail. Therefore, we argue that ideally every manual regression
test case should have at least one automatic regression test case in its proximity. Another
issue is that some test cases might verify multiple requirements. If an automatic test fails, all
the requirements that it is verifying will be marked as failing. This can result in a rather large
partition being selected. The requirements that each test case verifies is determined by the
developers, so there is also a risk of human error when constructing the traceability between
requirement and test cases. We argue that a better scenario would be if each test case only
verify one requirement and each requirement is only verified by one test case, creating a one
to one relationship.

Another factor that will affect the performance of requirement partitioning is how one de-
fines the partitions in the FRS. A generous definition will result in more test cases being
selected, increasing cost. A stricter definition will result in less cost but also a lower prob-
ability of it yielding extra value. Exactly how to balance this type of selection is something
we believe can be looked into in future work on this area. We have established a foundation
for the idea of requirement partitioning, but it requires more research and testing for it to
become something generally applicable.
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Chapter 8

Conclusion

In this chapter we answer all research questions presented in Chapter 1 by drawing conclu-
sions based on discussions made in Chapter 7. For the sake of readability, we re-introduce
our research questions before drawing our conclusions.

RQ1 What are the differences in prioritisation of automatic versus manual regression
tests for the purpose of cost reduction?

RQ2 How does utilising the requirement specification in a selection algorithm for
manual regression tests affect the efficiency?

RQ3 Is our implementation perceived as valuable and useful to the team at Sony?

RQ1
Empirically evaluated RTS techniques in published work have a tendency to be designed with
automatic regression testing in mind. We argued that for prioritisation it does not matter
if man or machine executes the testing, as long as the data collected can be used as an input
to an RTS technique. Despite this, we experienced difficulties in successfully applying three
empirically evaluated RTS techniques, all three to be known for automatic RTS. A major
difference between automatic and manual regression testing is the frequency in which test
cases are executed. Any historic test data collected for manual test cases risks becoming
obsolete before the sample sizes grow large as a direct consequence of the low execution
frequency. If those automatic RTS techniques were to be used as manual RTS techniques,
they will therefore have to be re-adjusted in a way where they can perform well under small
sample sizes. After we proposed a new RTS technique specifically designed to quickly amplify
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priority score as soon as regressions were discovered, we managed to outperform all other
RTS techniques evaluated during our thesis. Therefore, we conclude that the test execution
frequency is a crucial difference when comparing between manual and automatic regression
test prioritisation and selection.

RQ2
Partitioning FRS documents is demonstrated as a useful data source for complementary RTS
techniques. Added value from requirements partitioning depends on completeness and trace-
ability aspects of the underlying FRS, as well as the performance of the primary RTS tech-
nique. For our case we can conclude that the FRS partitioning technique always discovered
some failing test cases. However, in four out of five data points these same test cases were also
selected by the primary RTS technique. In one data point it provided an increase in value by
selecting failing test cases that were not discovered by our RTS technique. Overall our efforts
serve as a proof of concept that requirement partitioning could be used in order to boost ef-
ficiency of an RTS technique. However, during our thesis we did not have enough time to
thoroughly explore and improve upon our initial proof of concept. Therefore, we conclude
that while requirements partitioning can affect efficiency positively, our concepts demon-
strated in this thesis has to be applied on future work before we can quantify the potential
efficiency gain.

RQ3
Breaking down what interventions were made during our design science, we have three
things. A new way for the team to represent, trace, validate and version control their man-
ual regression testing, along with RTS tools to support these activities. A new standardised
structure where test data can be collected and analysed, disregarding if their origin is from
automatic regression test cases or manual regression test cases. Lastly, we incorporated a
history-based RTS technique in conjunction with a partition-based RTS technique, which
enables the team to orient their testing activities around cost-optimised test plans. Because
manual regression testing has a low frequency of testing session, adaptation of our RTS tools
will naturally be slow initially. Overall, the reception of our interventions has been posi-
tive and adaptation rates for interventions such as test case representation models were fast.
Therefore, we conclude that overall our interventions in our design science are perceived as
valuable to the team members.

Technological rule
Looking back on our design requirements formulated in Section 4.2.2, we can see that all
of them have been fulfilled. Manual test cases are now represented in YAML making them
machine-readable as well as human-readable. Manual testing data is now presented in the
exact same structure as the automatic data. Finally, we can see an improvement in the cost-
effectiveness of manual testing from using our intervention.

Our design requirements were created with the intent of helping us achieve our technological
rules that act as our general goal for our thesis work. The technological rules are expressed
as a recommendation from us to others in the field who are potentially trying to solve the
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same problem that we have. Given the positive evaluative results discussed and concluded
from our research questions, we conclude our thesis work by re-presenting our technological
rules, but this time as a valid recommendation:

To improve cost-effectiveness of regression testing in the context of manual ex-
ecutions, apply a historic RTS technique.

– and –

To further improve regression test performance from regression test selection,
apply a REQP technique in conjunction to the original RTS technique.

Future work
For the requirement partitioning technique there is a lot of potential future work. It would
be good to apply this technique on different systems with different FRS’s and also to try and
optimise the selection of partitions. Unfortunately we did not have enough time to perform
a more comprehensive evaluation of this technique. However, we consider our work done
here as a first step to bridge the research gap surrounding the utilisation of FRS in regression
test selection and prioritisation.

We would also like to see our prioritisation algorithm more thoroughly evaluated on different
systems, potentially even for automatic regression testing. Especially considering that most
research is on automatic RTP, and we attempted to apply three of these techniques in a
manual context with little success. How to apply a manual RTP technique, and how well it
works, in an automatic setting could be an interesting research topic.
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Appendix A

Raw data for selection algorithm evaluation

This appendix contains the raw data used to produce the results in Section 5.4.

A.1 Simulated test suite
First, the list of all test cases that were used are presented in a condensed way. We only specify
the unique traits of a given test and how many test cases share those traits. In our Discussion
chapter, we motivate why some duplicates are used.
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A. Raw data for selection algorithm evaluation

# of test cases Risk for regression
1 100 %
1 95 %
1 85 %
1 75 %
1 65 %
1 55 %
1 45 %
1 35 %
1 25 %
1 15 %
1 14 %
1 13 %
1 12 %

# of test cases Risk for regression
1 11 %
2 10 %
2 9 %
2 8 %
2 7 %
2 6 %
2 5 %
2 4 %
2 3 %
2 2 %
2 1 %
2 0 %

Table A.1: The raw representation of all test cases and their risk
of introducing a regression used for simulating and evaluating the
performance of selection algorithms.

A.2 Simulated test results
All the simulated test runs made in order to evaluate algorithm performance are presented
in the following tables. Cut-off was at 60% for all runs.
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algo sum reg. miss
KP 345175 105126
K09 158107 20034
K12 249639 3663
Our 156405 3522

algo sum reg. miss
KP 368471 113161
K09 157875 20064
K12 238721 2242
Our 156776 3586

algo sum reg. miss
KP 420108 128098
K09 158004 20023
K12 251796 3511
Our 158045 3696

(a) Three random seeds with trend size 5.

algo sum reg. miss
KP 307280 94038
K09 161524 32268
K12 630861 158588
Our 133083 2540

algo sum reg. miss
KP 366249 112555
K09 162116 32485
K12 627744 152310
Our 133301 2502

algo sum reg. miss
KP 355286 109425
K09 161938 32430
K12 622735 155455
Our 134033 2538

(b) Three random seeds with trend size 10.

algo sum reg. miss
KP 303878 92991
K09 145232 22003
K12 574564 123961
Our 102477 3153

algo sum reg. miss
KP 353134 108966
K09 146012 22259
K12 550163 112574
Our 102333 3166

algo sum reg. miss
KP 296292 93055
K09 145300 22374
K12 571955 122522
Our 103044 3213

(c) Same three random seeds but with trend size 50.

algo sum reg. miss
KP 290410 88849
K09 142720 16804
K12 511530 87275
Our 96444 2143

algo sum reg. miss
KP 353134 108966
K09 143231 16945
K12 490165 63734
Our 96613 2242

algo sum reg. miss
KP 266726 83730
K09 144067 17073
K12 515947 90072
Our 97149 2230

(d) Same three random seeds but with trend size 100.

Table A.2: We selected three different random seeds and four dif-
ferent trend sizes. This created 12 configurations to run.
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Appendix B

Algorithms used in comparison

The following algorithms were used in our comparative evaluation. We include them in our
appendix because our results presented in 6.1 are heavily dependent on these implementa-
tions. Everything presented here Appendix B are work done by others, not the authors for
this master’s thesis.
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PR0 = The percentage of code coverage of the test case with respect to n different coverage criteria / n

PRk =
αhk + βPRk−1

k
, 0 ≤ α, β < 1, k ≥ 1

α =
(
1 −
( f ck + 1
eck + 1

)2)hk

β =
( f ck + 1
eck + 1

)x
, x =

1 if the test case has revealed some faults
2 if the test case has not revealed any fault

f ck =

k−1∑
i=1

fi, fi =

1 if test case has revealed some fault in test session i
0 otherwise

eck =

k−1∑
i=1

ei, ei =

1 if test case has been executed in test session i
0 otherwise

hk =

0 if test case has been executed in test session k-1
hk−1 + 1 otherwise

(B.1)

Figure B.1: Prioritisation algorithm as presented by Khalilian et al.
[14]. Note that this algorithm does not have any smoothing con-
stants, which the following algorithms will have.

PR0 = The percentage of code coverage of the test case
PRk = αhk + βPRk−1 + γHFDEk, 0 ≤ α, β, γ < 1, k ≥ 1

HFDEk =

0 if the test case has not been executed yet
f ck/eck otherwise

f ck =

k−1∑
i=1

fi, fi =

1 if test case has revealed some fault in test session i
0 otherwise

eck =

k−1∑
i=1

ei, ei =

1 if test case has been executed in test session i
0 otherwise

hk =

0 if test case has been executed in test session k-1
hk−1 + 1 otherwise

(B.2)

Figure B.2: Prioritisation algorithm as presented by Khalilian et al.
in [7]. α, β and γ are smoothing constants determined by the devel-
oper, where γ must be smaller than α and β.
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P0 = h1

Pk = αhk + (1 − α)Pk−1, 0 ≤ α ≤ 1, k ≥ 1

h1k =

 1 if test case was executed in the previous test session
0 otherwise

h2k =

 1 if test case failed in the previous test session
0 otherwise

(B.3)

Figure B.3: Prioritisation algorithm as presented by Kim and Porter
in [15]. h1k and h2k are two possible methods for determining the
value of hk that were presented by Kim and Porter. α is a smoothing
constant determined by the developer, smaller α emphasize older
observations and a larger α emphasizes more recent observations.
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Spara tid genom att prioritera urvalet av
tester – jobba smartare, inte hårdare

POPULÄRVETENSKAPLIG SAMMANFATTNING
Erik Nord, Robin Rasmussen Vinterbladh

En betydande del tid av mjukvaruutveckling ägnas åt kvalitetstestning. Ska man vara
säker på att utfört arbete gick rätt till så kommer man aldrig undan denna tidsåt-
gången helt. Vi presenterar därför en smart urvalsprocess som föreslår de viktigaste
kvalitetstesterna. Genom att endast testa detta smarta urvalet så sparar man tid.

Det finns ett vanligt problem inom mjukvarutest-
ning som vi kallar det stora regressionsproblemet.
Under tiden som mjukvara utvecklas sker många
ändringar i programkoden. Varje introducerad än-
dring riskerar att orsaka nya fel i produkten. Fe-
len behöver inte nödvändigtvis visa sig i den in-
troducerade koden, utan det kan även dyka upp
fel i gamla delar av produkten. Detta kallas för
regressionsfel, alltså, ett fel som uppstår som kon-
sekvens av en introducerad ändring. Man kan
skydda sig mot regressionsfel genom att utföra
regressionstester som går tillbaka och testar hela
produkten, både de nyligen introducerade delarna
och de gamla delarna. Man letar efter förän-
dring i produktens beteende och det är de här
förändringar som kallas regressionsfel. Det stora
regressionsproblemet visar sig då varje kodändring
som introduceras också måste introducera ett helt
nytt regressionstest, vilket betyder att tidsåtgån-
gen för regressionstestning blir drastiskt större
över tid.

De flesta tester är helautomatiska vilka snabbt
kan utföras av en dator. Andra tester är manuella
och måste utföras för hand av en utvecklare, vilket
tar markant mycket mer tid än de helautomatiska
testerna. Därför är det de manuella testerna som

bidrar mest till det stora regressionsproblemet.
I vårt arbete har vi designat en urvalsprocess

för manuella tester som väljer högrisktester och de
viktigaste testerna. Först tittar vi på historiskt
utfall för manuella tester och sorterar dem i en
lista efter viktighet. Sedan tittar vi på helau-
tomatiska testresultat och bedömer vilka snarlika
manuella tester som har hög risk att upptäcka fel.
Riskbedömningen blir som ett skyddsnät som fån-
gar upp högrisktester, även om de av "misstag"
aldrig klassades som viktiga i första steget.

M a n u e l l a
t e s t e r

M a n u e l l a
t e s t e r  e f t e r

v ik t ighe t

His tor i sk t  u t fa l l

Au tomat i ska
t e s t e r

M a n u e l l a
t e s t e r  m e d

hög r i sk

Ri skbedömning
m o t  m a n u e l l a

S m a r t  u r v a l
av  manue l l a

t e s t e r

Vi designade urvalslogiken efter att prioritera
tester som haft tendensen att misslyckas. Re-
sultatet visar att vår urvalsprocess är bättre än
andra tidigare välkända urvalsprocesser från lit-
teratur. Vi kom fram till resultatet genom att
räkna antalet "misstag", alltså antalet gånger ett
test inte valdes trots att testet skulle ha påvisat
ett regressionsfel – ifall vi hade valt det.
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