
MASTER’S THESIS 2023

SOQ: A Novel Lock-Free
Queue with Variable-Size
Storage in Fixed-Sized Blocks
Marcus Begic

ISSN 1650-2884
LU-CS-EX: 2023-03

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2023-03

SOQ: A Novel Lock-Free Queue with
Variable-Size Storage in Fixed-Sized Blocks

Marcus Begic

SOQ: A Novel Lock-Free Queue with
Variable-Size Storage in Fixed-Sized Blocks

(SOQ: En ny låsfri kö som kan dynamiskt lagra objekt av

varierande storlek i statiska minnesblock.)

Marcus Begic
ma6373be-s@student.lth.se

February 18, 2023

Master’s thesis work carried out at

Huawei Research Center, Edinburgh.

Supervisors: Nikos Ntarmos, nikos.ntarmos@huawei.com
Jonas Skeppstedt, jonas.skeppstedt@cs.lth.se

Examiner: Per Andersson, per.andersson@cs.lth.se

mailto:ma6373be-s@student.lth.se
mailto:nikos.ntarmos@huawei.com
mailto:jonas.skeppstedt@cs.lth.se
mailto:per.andersson@cs.lth.se

Abstract

Databases concurrently store many versions of the same data in a growing ver-
sion chain. A version chain can be represented as a concurrent FIFO queue of
versions. In order to save memory when storing versions in the queue, one can
place the restriction of every memory allocation being of the same size. These
fixed-sized memory blocks avoid fragmentation in the memory of the system, as
they can be stored consecutively. By also ensuring lock-freedom of the queue,
we get a way to store versions concurrently, efficiently, while also saving lots of
memory. This thesis introduces the first such data structure, known as Spillover
Queue. It extends an earlier lock-free queue algorithm and introduces some ideas
that allows us to, for example, enqueue multiple nodes concurrently without
blocking.

Keywords: Concurrent Data Structures, Lock-Free, Version Chains, MVCC

2

Acknowledgements

I want to thank my supervisor Dr. Nikos Ntarmos for taking me on and giving me a fas-
cinating problem to work on. Nikos is never afraid to discuss difficult problems in detail
with a hands-on approach that only exists in people who are both great engineers and great
managers. I would also like to thank him for helping me keep my composure during stressful
times.

I would like to thank my supervisor in Lund, Dr. Jonas Skeppstedt, whose coursework and
teaching over the years have taken me from learning fundamentally about data structures and
algorithms, all the way up to the lock-free queues that this work is based on. Jonas’s courses
were always challenging and fun, and his passion for computer science rubs off on many
students, including me.

Lastly, I would like to thank my Huawei co-workers, who are real experts in their field
and would constantly take the time to teach me about database systems, concurrency, and
most importantly, greek culture.

3

4

Contents

1 Introduction 7

2 Background 9
2.1 Concurrent Programming . 9
2.2 Database Systems and Concurrency . 13

2.2.1 Transactions and Concurrency Control 13
2.2.2 Small Memory Environments . 14

2.3 Related Work . 15
2.3.1 MS Queue . 15
2.3.2 Improvents to MSQ . 17

3 Problem Statement 19
3.1 Database X . 19
3.2 Goal . 20

4 Design And Race Conditions 21
4.1 FIFO Queue Data Structure . 21
4.2 Overall Design . 21

4.2.1 Naming Convention . 21
4.2.2 Variable-Sized Blocks and Variable-Sized Chunks 22
4.2.3 Fixed-Sized Blocks and Fixed-Sized Chunks 23
4.2.4 Variable-Sized Chunks With Fixed-Size Blocks with Fragments . . 24
4.2.5 Fixed-Sized Blocks and Variable-Sized Chunks with Spillover . . . 25

4.3 Potential Race Conditions . 26
4.3.1 Race Condition 1 . 26
4.3.2 Race Condition 2 . 28

5 Spillover Queue 31
5.1 Pointer Packing . 31

5.1.1 NextCursor . 31

5

CONTENTS

5.2 The GuessQueue . 33
5.3 Reserve Algorithm . 34

5.3.1 Phases of Reserve . 34
5.3.2 Implementation Details . 44

5.4 Get and Put . 48
5.4.1 Memory Layout . 48
5.4.2 Get and Put Implementation . 48
5.4.3 Minor Optimizations . 49

6 Evaluation 51
6.1 Results . 52
6.2 Discussion . 54

7 Conclusion 57
7.1 Implementing a SOQ . 57
7.2 Future Work . 58
7.3 Final Words . 59

6

Chapter 1

Introduction

High-performance databases often require sophisticated concurrent data structures for stor-
age of data. Some databases require the same high level of parallelism and performance but
without the availability of mutexes. In these cases, efficient lock-free data structures are in
high demand. A limitation not often put on highly-concurrent systems is that of memory.
Memory restrictions force engineers need careful with how memory is used and require an
understanding of underlying architectural principles. When such memory requirements are
combined with concurrency and performance, lock-free data structures can become even
trickier to create.

Databases control concurrency by storing many versions of their data at the same time,
these versions are stored in a version chain that grows concurrently on one end as new ver-
sions are added in a FIFO queue pattern. This thesis introduces Spillover Queue, a lock-free
Queue made to store versions of any size. It does this concurrently while only being able to
allocate fixed-sized blocks of memory. This allows it to reduce fragmentation in the memory
of the system as these blocks are all stored consecutively in memory. Spillover Queue achieves
this by introducing some novel concepts and abstractions which extend the classic lock-free
Micheal&Scott Queue [1].

Specifically, Spillover Queue manages to efficiently and concurrently store versions while
the design obeys the following requirements:

• It needs to store versions of any size.

• Only memory blocks of fixed size can be allocated.

• Memory blocks have to be used in their entirety.

• The data structure needs to be lock-free.

Being able to store any size in fixed-sized memory blocks means that the queue might
want to spillover data from one block to another. This data might even spillover and span

7

1. Introduction

many blocks. This means Spillover Queue needs to solve some sub-problems like how a
thread should enqueue many nodes continuously after each other without blocking other
threads. As well as the problem of describing and managing how much memory is used up in
a block. These problems are trivially solved with mutexes but can be very difficult to do in a
lock-free manner. Spillover Queue shows that it’s possible to do all this with only lock-free
atomic operations, resulting in a new data structure that is both memory-conservative and
efficient.

The first chapter gives an overall background to this thesis. The background includes
a section about multi-core programming in general and then it discusses the background
knowledge required to understand the database system that Spillover Queue is a part of,
finally it explains some related works. The next chapter more carefully describes the goal
and the requirements of the data structure and this thesis, which then allows us to, in the
following chapter, justify the final design of Spillover Queue while looking at some unsuitable
potential designs. We then give an overview of the algorithm along with some interesting
aspects of it, and finally, we present and discuss the results in the Analysis and Conclusion
chapters.

8

Chapter 2

Background

Here we describe the background knowledge required to understand the novel contribution
of the thesis. The background first touches on concurrent programming in a broad sense and
then goes into certain primitives and concurrency ideas pertaining to specifically lock-free
data structures. Further, we explain the background required to understand the database sys-
tem that Spillover Queue contributes to, and finally, it describes the algorithms that Spillover
Queue is based on in detail in the Related Works section.

2.1 Concurrent Programming

A concurrent program is one in which several computations occur asynchronously to each
other. Researchers have been intensively studying concurrent programs for decades since
Djisktra introduced the mutual exclusion problem[2]. Since then the industry has caught
up and concurrency is a part of nearly every system and supported on nearly every machine.
Thus, processors today often have multiple cores each of which can support at least one thread
of parallel execution. These threads share a memory which they can read and write from, al-
lowing them to collaborate over the same space which can improve the performance of a
program. In an ideal concurrent program, each thread works on its own sub-part of the data
entirely sequentially, such a program would be exactly like a single-threaded sequential one.
However, in most cases, concurrent programs require some sort of collaboration and synchro-
nization to be correct and efficient. This frequently happens over shared data structures also
known as concurrent data structures. It is often hard to reason about concurrent programs
for this reason because it’s not enough to consider the sequential ordering of operations one
thread might have, but also all the potential inter-leavings of reads and writes that multiple
threads can have on the shared memory.

9

2. Background

Multi-core Architecture
Within a processor, each core has its own registers and cache. These are not shared between
threads, but memory is. Therefore it is important that what is written to the caches is coher-
ent between all cores. Otherwise, a cache could update its own local copy of a variable while
every other core sees an older version, this is known as the cache coherency problem. Mod-
ern CPUs avoid this using a hardware-implemented cache coherence algorithm which will
invalidate out-of-date memory in other cores’ caches when one core updates its own version
[3]. Cache invalidation can cost some CPU cycles because of this, so to write optimized code
one should avoid it. When using registers however, a multicore programmer doesn’t have the
cache coherency protocol to ensure that all cores see the same version, so an issue can arise
when one thread has stored a variable in it’s register it doesn’t see other threads updates to
it.

Memory Hierarchy
Threads will share the same view of virtual memory. Virtual memory is an abstraction where
memory seems to be completely contiguous in its layout to threads and processes. However,
on the kernel level, the memory could physically be in various parts of the disk or in RAM.
The Operating System ensures that a process and its threads see contiguous memory by main-
taining a mapping of these virtual addresses to the physical addresses. This mapping points
to actual physically contiguous blocks of memory called pages. A page fault occurs when the
process requests data that belongs to a page that isn’t currently in RAM, this means the ker-
nel needs to fetch it from disk, which can cost thousands of cycles[3]. Caches also experience
a less costly but equally important problem, when a processor can’t find certain data in its
cache, it needs to fetch it from memory, this is known as a cache miss. To avoid page faults
and cache misses, locality should be considered. Spatial locality is operations using data con-
secutively, where that data can be found consecutively in memory. Processors like locality on
the cache-line level and operating systems like locality on the page level. When a processor
fetches a cache-line from main memory, it stores the adjacent data in the cache as well, so if
the next access is to an adjacent element, one cache miss can be saved. The same thing is true
within virtual memory and paging where it is even more important as page faults are even
more costly. Therefore, when designing performant data structures it is important to con-
sider the locality of the data. A ground rule is to avoid pointer dereferences were possible,
as these can point to virtually anywhere on the heap often generating a cache miss during
which the processor is idling for hundreds of cycles, or even a page fault.

Blocking vs. Non-Blocking Data Structures
A concurrent data structure can either be blocking or non-blocking. The most common
methods of synchronization are usually blocking, eg. mutexes and semaphores which prevent
a thread from accessing a shared state. This insures safety by mutual exclusion. Blocking data
structures include operations that can force one thread to wait for an operation by another
thread to complete, This can introduce a plethora of problems, including deadlock, livelock,
and priority inversion. A non-blocking algorithm is one where one thread cannot prevent the
execution of another, they can either be wait-free or lock-free. Lock-freedom is the guarantee
that at any given time the program as a whole, or at least one thread, is making progress

10

2.1 Concurrent Programming

[4]. Wait-freedom is a stronger guarantee where at any given time every thread is making
progress. Non-blocking algorithms have the additional benefit of being able to avoid the
use of mutex locks which have further downsides in often require involving the kernel with
expensive system calls. Non-blocking data structures are often used in performance-critical
bottlenecks of systems with high concurrency, but due to the fact that they only rely on
atomic instructions, they are often much more difficult to implement.

Atomic Instructions
Atomic instructions are low-level computer programming operations that are indivisible.
This means that they are executed as a single unit and cannot be interrupted or broken down
into smaller pieces. Atomic instructions are used to ensure the consistency and integrity
of data by preventing other threads from accessing or modifying that data while the atomic
instruction is being executed. This is critical in situations where multiple threads may be try-
ing to access the same memory location at the same time, as it ensures that the shared data
remains consistent and correct. Atomic variables are commonly used in concurrent program-
ming to ensure the correct operation of shared data structures, and in lock-free systems, they
are the only synchronization tool at a programmer’s disposal.

Internally, they are typically implemented using special hardware support, such as atomic
registers, to ensure that they can be executed quickly and efficiently. These instructions
utilize the cache coherency protocol to ensure that CPU cores and threads maintain exclusive
access to reads and updates of atomic variables. They are however not completely cost-less,
an atomic operation often requires invalidating the caches of other cores, which again costs
cycles [5].

Compare And Swap
Many lock-free data structures use the atomic low-level synchronization primitive compare_and_swap
also known as CAS. Fundamentally, a CAS will write to a (shared) memory location, if the
location has the expected value. A general pattern is as follows: a thread observes a shared
state, performs some computation under the assumption that the state hasn’t changed, and
uses CAS to update said shared state atomically if and only if it hasn’t changed. A CAS will
fail when the shared memory location has changed. Take the pseudo-code in Algorithm 1 for
example.

Algorithm 1 Compare And Swap
1: function CAS(p: shared data, old, new)
2: if p = old then
3: p← new
4: return true
5:
6: return f alse

Here the pointer p is some shared state, when p was read the value at p was old, some
computation happened and if the value at p is still old then update the p with new, else return
false.

A CAS fails and returns false if p does not point to the same old location. This is why a
lot of CAS-based lock-free algorithms require that the CAS is executed within a loop. Es-

11

2. Background

sentially CAS failure occurs when multiple threads all try to change the same single point
of contention. One can therefore improve the performance of a lock-free CAS-based algo-
rithm by trying to reduce the contention at these points. As we will see this is what many
optimizations of CAS-based algorithms do.

CAS is supported on the hardware level by most architectures, this is why it can ensure
atomicity and be efficient. Single-worded CAS or ’unary CAS’, is commonly supported on
most architectures, ARM, x86, and POWER, etc. ’Single-worded’ comes from the fact that
the parameters are size 1 word or 8 bytes (32 bits). This means 8 bytes can be compared and
updated atomically. There are more powerful but much less supported ’exotic’ CAS opera-
tions. One exotic is double-worded CAS known as DCAS or CAS2, this can load values into
two word-sized parameters atomically, compare them and update them atomically. These
two words don’t have to be contiguous in memory, they can be two separate pointers stored
in different locations for example. DCAS is very useful as there are simple algorithms to im-
plement eg. lock-free deques[6]. However, DCAS is not supported by any of the mainstream
architectures.

A less powerful exotic is double-width CAS or 128-bit CAS known as DWCAS. This
is essentially unary CAS but on a 128-bit target rather than the standard 64-bit, where the
128 bits are contiguous in memory. So N-word CAS can be seen as doing multiple CAS’
atomically, so being able to store values at multiple different locations, while DWCAS can
be seen as CAS on a larger target. DWCAS is slightly more commonly supported, availability
on an x86 system can be checked by looking for the operation denoted CMPXCHG16B or cx16
in /proc/cpuinfo.

ABA Problem
A common and dangerous problem that concurrent programs can have is known as the ABA
problem. ABA problems are very prevalent in CAS-based lock-free algorithms. They occur
due to a fundamental limitation in CAS, just because p still points to the same address as
it was when it was read, doesn’t mean the data structure hasn’t changed at all. The pointer
p might have been updated to something new and then updated back to the same address,
between the first read of p and the CAS.

For example, in a CAS loop, a lock-free algorithm might determine whether the top of
a lock-free stack hasn’t changed by seeing that the pointer to the top element points to the
same address as it was at the start of the function. This is done by a CAS on the top of the
stack. However, one thread might have accessed the stack between the two reads, popped a
node from the top of the stack, allocated a new one, and pushed it on the stack. There is a
chance that this new node is stored in the same location as the previous one. In this case,
the CAS would be successful even though the data structure has clearly changed. In fact, due
to MRU (Most Recently Used) memory allocation algorithms, it is common for allocators to
reuse memory locations, which makes the ABA problem even more prominent. ABA often
leads to dangerous, extremely hard-to-find bugs.

Luckily, there are several techniques for dealing with the ABA problem, the most com-
mon one is the counter approach where every atomic pointer is updated along with an atomic
counter, only if both are the same. In the stack example, the CAS would fail because the first
time the top is referenced the pointer is p counter is of value eg. 1, and the second time in
the CAS the pointer is still p but the counter is >1. This technique however requires the

12

2.2 Database Systems and Concurrency

use of some exotic CAS because both the counter and the pointer need to be compared and
updated atomically, seeing as the pointer is 64 bits, unary CAS is not sufficient.

2.2 Database Systems and Concurrency
One massive research area and use-case of concurrency is in systems, operating systems,
databases, and distributed systems all massively rely on concurrency and multicore program-
ming. Databases especially deal with massive concurrency. Multiple clients will most likely
access the same database at the same time, and since this workload can increase exponentially
with more clients and accesses, a database becomes a very concurrent structure and often an
important bottleneck in designing large-scale systems.

2.2.1 Transactions and Concurrency Control
In databases, a singular unit of computational work is known as a transaction. A transac-
tion can contain multiple operations, for example, it could read the balance from one user’s
account bank account, check if the result is greater than some value, and if so, deduct the
account and add the amount to another user’s account. If everything contained in a transac-
tion occurs and is reflected in the state of the database, the transaction is committed. One key
property of transactions is that they must be atomic, meaning that either the database must
reflect that the entire transaction has been committed or none of it (meaning the transaction
is aborted). Otherwise, an intermediary and incorrect state could be seen, if a reader saw the
state after the deduction of the first account but before the addition to the other, it could
appear as though the money had disappeared.

MVCC and Version Chains

To ensure readers always see a database in a valid state, Multiversion Concurrency Control
(MVCC) is often used. MVCC does this by keeping many copies of the data. A reader
will always see valid version of the data known as a snapshot, which is a valid state at some
point in time[7]. A writer trying to modify the data would modify its own version and only
make it visible to readers once it’s committed. Thus, in MVCC, a transaction is not visible
until it has been committed at which point it is considered to be a new version. Internally,
the versions are just copies of the rows of the database as they were after the transaction was
committed. These versions need to be stored to ensure readers a valid state to read from.
They are stored consecutively in what’s known as a version chain. Version chains grow in one
direction as transactions with new versions are committed and get granted a timestamp in
ascending order. The timestamp can be used by the system to determine if a version is out-
dated, this means no readers will attempt to read the data again, and the version can be safely
removed. Since transactions are committed concurrently, and readers read the version chain
concurrently, the version chain becomes a highly concurrent data structure.

13

2. Background

2.2.2 Small Memory Environments
Known databases are often large systems built for powerful machines with large memory and
disk, eg. PostgreSQL, Neo4j, and MongoDB. However, all systems with interactions in the
forms of reads and writes to data in memory, need some form of interface and management
in the shape of a database. These systems range from data-center infrastructure to small
OS’ running on mobile devices. The requirements, access patterns, and loads vary greatly
between these systems. A data center is often distributed, using machines with 16 cores and
multiple instances of the database for redundancy, while on a mobile device, the system could
have a small chip and a couple of gigabytes of memory while still requiring high performance.
The methodologies in building these databases vary greatly, when building a general-purpose
large database that will run on a powerful machine, a programmer probably doesn’t have to
concern themselves with running out of memory and can spawn a large number of threads.
However, when building a database that runs in a small embedded device, memory becomes
a high priority. The most common trade-off in building high-performance systems is the
time-memory trade-off, for more performance programmers need to use more memory and
vice-versa. Small memory databases have to be very frugal with their memory and still deliver
high performance. This means concern for how much memory algorithms allocate, how data
is stored and laid out, the underlying architecture, awareness of page sizes and cache-lines,
etc.

Memory Fragmentation
Within computer memory, a storage problem known as fragmentation often arises. This is any
situation where the capacity or performance or both of storage is reduced due to the layout
of contiguous blocks of memory not completely taking up the available space in memory,
leaving unused gaps or fragments. In the beginning of the runtime of a program, memory
is long and contiguous, over time however blocks of memory are used and freed of varying
sizes, leaving less usable fragments. There are two kinds of fragmentation in general, internal
and external fragmentation.

External fragmentation occurs when what is originally long and contiguous memory, is
broken up into smaller blocks as it is used and freed. This results in free space being available
but unusable due to it being divided into pieces individually too small to satisfy the demand.

Internal fragmentation occurs when the granularity of memory allocations is greater than
the size a program wants to use. If a program wants to use 1000 bytes it will request a whole
page but the page size is 4096 bytes, so 3096 will be left unused.

Memory Pools
There exist special memory allocators to reduce fragmentation. These allocators, known as
memory pools, pre-allocate a set of fixed-sized contiguous memory blocks. While a standard
dynamic memory allocator like malloc can allocate any variable size blocks upon request
of the program, a memory pool allocator on the other hand can only allocate blocks of a sin-
gle size. This places restrictions on the programmer but is otherwise an example of both the
performance and memory-use of a program being improved. Performance is improved be-
cause a memory pool allocator knows the Blocksize in advance, and thus knows that every
allocation will be of this size. This allows it to pre-allocate blocks of Blocksize and when the

14

2.3 Related Work

program then requests a block, a reference to a pre-allocated block can be handed out quickly.
Meanwhile, malloc needs to use advanced algorithms to find available space upon request.
Memory usage is improved because when blocks are all of the same sizes, they can be packed
consecutively in memory, leaving no gaps in between. This perfectly uses available memory
removing any fragmentation.

2.3 Related Work
Here we first describe the M&S Queue and its background at a high level, Spillover Queue
is heavily based on the enqueue method, so we explain that in greater detail.

2.3.1 MS Queue
One of the most fundamental data structures is the linked-list implemented FIFO queue.
Researchers have known of non-blocking implementations of this structure since Maged M.
Micheal et al. [1] introduced their classic lock-free M&S Queue (MSQ) in 1996. MSQ uses
a CAS-loop-based algorithm where they borrow a synchronization technique from the lock-
free Treiber stack [8], namely, concurrent assistance. If a thread views the shared queue in an
in-between state (another thread has modified the queue but isn’t finished), the thread will
assist the other working thread by correcting the queue. This is a big strength of lock-free
data structures, if the queue were blocking on the other hand, the thread would instead idly
wait for the others to finish.

MS Enqueue
Enqueues are done at the Tail of the Queue. The algorithm starts by reading the current Tail
of the Queue, both the Tail pointer and the Head pointer are atomic pointers. So a thread
will atomically load the Tail pointer and receive a regular pointer to the Tail node, which it
saves a local copy of as seen on line 6 in Algorithm 2. The next fields in each node are also
atomic pointers, the Tail’s next pointer is also read and saved on line 7.

In this thesis, we refer to the thread saving a view of the data structure at a point-in-time
in this way, as the snapshot. The algorithm then simply tries to execute its next steps in linking
a node assuming that the snapshot doesn’t change.

It uses CAS to ensure that an actual update to the data structure only occurs if and only
if the snapshot has not changed (so the Tail hasn’t moved or the next field is still null). The
algorithm ensures in line 8. that the Tail in the shared atomic variable is the same as at the
snapshot, if not it means that another thread has moved the Tail and there’s a more updated
version of the data structure to see, so it loops again and retries. The same goes for the next
field being null.

Once the Tail is consistent (at least momentarily) with the snapshot, line 9 will check
whether the next field of the Tail is still null, if not it attempts to correct the data structure
by updating the Tail to the Tail->next.

This is the concurrent assistance in MSQ, when thread T1 wants to append its node it
first attempts to update the next field of the current Tail, and then it tries to advance the Tail
pointer to its node, see the two steps in 2.1. If another thread T2 enters trying to enqueue

15

2. Background

its own node in between these two steps, it will observe in line 9. that the next field isn’t
null, someone has appended a node but not had time to move the Tail pointer yet. It knows
where T1 wanted to move the Tail pointer, it’s the node that just got appended by T1, the
node linked to the Tail node, Tail->next, so T2 can then comfortably attempt to swing
the Tail pointer to Tail->next with its own CAS on line 14. Whether this CAS fails or
not, doesn’t change the continued behavior of the algorithm because if it failed that means
the Tail was moved by another thread already (maybe T1 just managed to move it itself). So
some thread has succeeded in correcting the data structure, so T2 will loop and try again. A
thread that links its own new node does so by modifying this next field with a CAS on line
10. This CAS ensures that the next field is still null and that no other node was linked. Once
it has successfully linked its own new node, the loop can be exited and a single CAS to update
the Tail is attempted on line 14, again only a single CAS because another thread might have
assisted in moving it.

nextnextnext

A B C null

head tail

Step 1.
CAS current tail.next
from null to new node D.

next

D
nextnextnext

A B C

head tail

null

next

D
nextnextnext

A B C

head tail

null

Step 2.
Advance tail pointer to
new node D with CAS.

Figure 2.1: Two main steps of M&S Enqueue

Algorithm 2 Enqueue in MSQ

1: function enqueue(Q: pointer to queue t, value: data type)
2: node = new_node() ▷ Allocate a new node
3: node->value = value ▷ Copy enqueued value into node
4: node->next.ptr = NULL ▷ Set next pointer of node
5: loop
6: tail = Q–>Tail ▷ Read Tail.ptr and Tail.count together
7: next = tail–>next ▷ Read next ptr and count fields together
8: if tail == Q–>Tail then
9: if next== NULL then

10: if CAS(&tail->next, next, new_node) then ▷ Attempt to link new_node
11: break ▷ new_node has been attached to Tail.
12: else
13: CAS(Q–>Tail, tail, next) ▷ Try to swing Tail
14: CAS(Q–>Tail, tail, next) ▷ Try to swing Tail

16

2.3 Related Work

2.3.2 Improvents to MSQ
Here we discuss some further industry-leading lock-free queues and explain the techniques
that were made to improve their performance.

Nir’s Queue
In 2004 Nir Shavit et al. [4] introduced a lock-free queue which turned the linked list into
a doubly-linked list. This allowed any enqueueing thread to optimistically just perform a
single CAS rather than in a loop as in MSQ. Other threads would then use the prev pointers
to correct the data structure. They managed to consistently outperform MSQ for higher
processor core counts by 50%. This confirmed that the real bottleneck in MSQ is CAS failures
due to contention. More threads trying to CAS on the same atomic variable results in more
CAS failures which greatly reduces performance.

LCRQ
Later in 2013, Adam Morrison and Yehuda Afek vastly outperformed competing lock-free
queues with the introduction of LCRQ[9]. LCRQ is essentially an MSQ where each node is
a circular array with the elements in the queue, rather than each node containing an element
directly. If the circular array happened to fill up entirely, a new one would be appended using
a modified version of the MSQ algorithm. This improved locality, two consecutive elements
in the queue were likely to be consecutive in memory. It also vastly reduced the number of
calls to malloc, since now, new heap allocated memory was only requested every time a cir-
cular array filled up, rather than once per element in a traditional MSQ. Using another atomic
primitive, namely, fetch-and-add or F&A, they managed to reduce contention drastically
by creating contended F&A objects that spread threads among elements in the queue. This
allowed threads to enqueue and dequeue elements in parallel as they would be more likely to
not contend for the same element and same atomic variable. The reason this turned out to
be a very efficient approach is due to the fact that F&A is a wait-free operation so it always
succeeds, although it is far weaker than CAS as all it does is fetch the current value of a vari-
able and increment it by some value. These ideas allowed LCRQ to outperform competing
data structures by roughly 2× at all thread counts.

FAA-Queue
Researchers at Rice University extended the ideas of LCRQ by creating the wait-free FAA-
Queue[10]. Before FAA-Queue it was widely believed that ensuring the guarantee of wait-
freedom was too computationally expensive to challenge lock-free data structures in perfor-
mance, however, FAA-Queue managed to outperform LCRQ by allowing threads to attempt
a ’fast path’ enqueue where they could fail, until a certain number of attempts had been made,
or their ’patience’ ran out, at which point they would go for a more expensive enqueue where
they were guaranteed to succeed. FAA-Queue and some of its derivatives remain industry-
leading at the time of writing this thesis.

17

2. Background

18

Chapter 3

Problem Statement

This section describes the context and goal of this thesis. We outline the system, Database X,
that Spillover Queue (SOQ) is a component of. We then describe the goal and the require-
ments included in the goal.

3.1 Database X
Database X (DBX), is a highly performant in-memory database system. DBX requires both
high performance and a small memory footprint to ensure that it can run efficiently on weak
hardware with small memory. DBX is concurrent in many parts its internals, it supports
transactions and uses MVCC as its concurrency control mechanism. It’s also meant to run in
an environment lacking the luxury of a proper Operating System, so it has its own internal
execution and thread management. This means it doesn’t have access to any mutex locks that
the Operating System would normally provide.

The Memory Pool Allocator
DBX also has a memory pool allocator to avoid fragmentation and improve performance. This
allocator is instantiated with a Blocksize parameter, and can only allocate blocks of this size.
In DBX, the memory is small enough to be fully addressable with 32 bits, rather than the
more standard 64 bits. This allocator ensures that pointers are 32-bits long, which also saves
space when storing them. It’s also lock-free.

19

3. Problem Statement

3.2 Goal
The goal of this thesis is to create a concurrent data structure to store the version chain used
in DBX in its MVCC concurrency control mechanism. The data structure should be oblivious
to the content of these versions, thus we can simply view versions as raw continuous data. As
mentioned, transactions are committed concurrently and therefore versions need to be stored
in the data structure concurrently. Further, the following requirements must be fulfilled.

Requirements
• Storage The data structure needs to physically contain the data of these versions, it

needs to act as storage. It’s not sufficient for the data structure to contain references
or pointers to data elsewhere, such indirection would require more memory (storing
one pointer per version) as well as reduce locality.

• Variable-Sized Input. Since a version is essentially a version of a row in DBX, and
rows can be arbitrarily long, the versions can be arbitrarily large. A transaction updat-
ing multiple rows can even create one big version. This means that the input data or
’payload’ the structure stores can be of entirely variable size.

• Fixed-Sized Allocation. The structure needs to use the memory pool allocator for its
performance and memory efficiency, for this reason, all allocations it makes have to be
of fixed-size, namely the Blocksize .

• No Internal Fragmentation. When the data structure gets a block from the allocator,
it needs to use the block in its entirety, not leaving any gaps or internal fragments. The
strict memory requirements of the system do not allow for such wasted space.

• Lock-freedom. Lock-freedom is required for performance purposes but since as the
database doesn’t have mutex locks, it also needs to be lock-free out of necessity.

• ARM Architecture. Like other smaller embedded systems, DBX runs on ARM and so
any low-level instructions used need to be supported by ARM.

Scaling and Performance
Most lock-free data structures are created with the goal of linear scaling in mind. Linear
scaling is the desired causation between the number of cores and performance improvement.
Data structure designers hope to see a linear relationship between how many cores the sys-
tem has and an increase in the throughput of the data structure. Academics will often run
experiments on machines with 32+ cores. Linear scaling is a goal of this thesis as well but
not a requirement. DBX only has 2 cores and 3.5 threads at its disposal, scaling at extremely
high core counts will not benefit the system, therefore other requirements are prioritized.
However, every update to the database is a transaction that has a new version and every time
data is read from the database a version is read. This means that the version chain is involved
in some way in all queries to the database, therefore this data structure is not allowed to be
a bottleneck as it would reduce the performance of the entire system.

20

Chapter 4

Design

4.1 FIFO Queue Data Structure
The most important decision in the design process is to decide which fundamental data struc-
ture is suitable for the requirements and in the context of the system. This can be realized
when considering the version chain. To save memory, outdated versions stored in the struc-
ture need to be removed as they become too old. This is done via a single-threaded garbage
collector that implements some logic to realize when the timestamp of a version is too old,
it can then free the memory and proceed to the next version. From this we can deduce that
the fundamental data structure is a FIFO Queue, the first versions to enter the queue are
more likely to be old, so the garbage collector can investigate the Head of the queue and pop
outdated versions. The garbage collector is the only consumer of the queue, but there are
multiple concurrent producers, this is threads that have committed a transaction that has
created new version of a row and would like to store them. These versions are enqueued at
the Tail of the queue and need to do so concurrently.

4.2 Overall Design
In this section, we outline some potential designs and describe how they relate to the require-
ments. We use this to justify the final design of Spillover Queue.

4.2.1 Naming Convention
We consider a block of raw memory continuous memory on the heap to be called a Block,
they are of size Blocksize . A part of a Block storing some contiguous data is called a Chunk.
In the case of DBX, each version stored in the Queue would be a Chunk of the same size.

21

4. Design And Race Conditions

4.2.2 Variable-Sized Blocks and Variable-Sized Chunks
Consider a Queue that uses an out-of-the-box dynamic memory allocator like malloc, in
this case, the data structure receives a Chunk to be stored of any size and can just allocate
this size exactly for the Chunk and place it in the Queue. This is a simple way to achieve
the requirement of variable-sized Chunks and can be implemented like a traditional MSQ
quite simply, where each node is a Chunk. In this design, there is no need to distinguish
Blocks and Chunks as one Block is one Chunk. Figure 4.1 shows an example of this design.
However, this violates fixed-size Blocks requirement, and the memory pool allocator can’t be
used, which means the system will experience memory fragmentation. It also requires one
call to the malloc per Chunk, which may reduce performance when many small Chunks are
enqueued.

Chunk/Block

Head

Tail

Figure 4.1

22

4.2 Overall Design

4.2.3 Fixed-Sized Blocks and Fixed-Sized Chunks
If the requirement of variable-size Chunks was relaxed, a design much like the one used by
LCRQ[9] could have been implemented. which can be seen in Figure 4.2. A certain number
of Chunks would always fit in a Block of fixed-size, completely utilizing the available space,
as well as providing good locality and fewer allocations. However, Chunks can be of any size,
so this design is not sufficient for DBX either.

Block

Head

Tail

Chunk

Figure 4.2

23

4. Design And Race Conditions

4.2.4 Variable-Sized Chunks With Fixed-Size Blocks
with Fragments

Many initial ideas revolved around, if a thread wants to enqueue a Chunk that does not fit
in the previous Block, it should allocate a new Block that it enqueues and stores its Chunk
in. This solution, as seen in 4.3, is better than the previous two as Blocks can be of fixed size
and Chunks can be of variable size. The locality and number of allocations are also good.
However, this solution suffers from internal fragmentation, as ’does not fit’ leaves fragments
in the Blocks that the strict memory requirements won’t allow.

Head

Tail

Block

ChunkFragmentation

Figure 4.3

24

4.2 Overall Design

4.2.5 Fixed-Sized Blocks and Variable-Sized Chunks
with Spillover

In this design, we allow Chunks that can’t fit in the Block to spillover and continue on a
consecutive Block. They can then be reconstructed when they are retrieved.

This layout combines all the benefits of the designs. The Blocks are fixed-sized so the
highly efficient memory pool allocator can be used to pack all the Blocks in memory but
it can still store variable-sized Chunks that the system requires. The spillover uses all the
available space, avoiding fragmentation. This design, suitably named Spillover Queue (SOQ)
fits all the requirements and is therefore what we created in this thesis.

Head

Tail

Chunk that overspills

Block

Chunk

Figure 4.4: The Design of Spillover Queue

Chunksize > Blocksize

The Blocksize is chosen on instantiation of the data structure and is fixed, but Chunks can
still be of any size, including larger than the Blocksize . This means that, as seen in Figure 4.4, a
Chunk might stretch over multiple Blocks and also spillover. This means that an enqueueing
thread needs to concurrently link multiple consecutive Blocks to the Queue (and due to the
lock-freedom) without blocking other threads that may be trying to enqueue concurrently.
This is a non-trivial sub-problem of SOQ that other lock-free Queues do not solve.

General Methods and Abstractions
When a thread wants to store a Chunk of sizeChunksize in the Queue, it calls theReserve(Chunksize
) method. This is the method that will concurrently reserve space of sizeChunksize in the Queue
for the Chunk, it can be seen as the SOQ equivalent of the Enqueue method in MSQ. This
method returns a handle to the reservation known as a ChunkIndex which can be seen as a
reference to that Chunk. The calling thread doesn’t know whether Chunk has spilledover or
not or even, where it’s stored in the Queue. This is why ChunkIndex can then be used to
interact with the reserved space, it can be used to place the actual Chunk data in the space
and retrieve it again when needed.

25

4. Design And Race Conditions

4.3 Potential Race Conditions
Creating a lock-free version of the SOQ design is a difficult problem due to the vast number
of states that need to be considered and that can change from when a thread first saw or took
a snapshot of the Queue to the point that it updates or commits to the Queue. The Block could
have been filled up as another Chunk was committed by another thread, the Tail could have
moved, another Block could have been linked etc. This leads to an exceptional number of race
conditions that SOQ needs to handle in order to be correct. Two example race conditions
of a naive implementation of SOQ are illustrated below. However, there are many other
variations and subtitles and even combinations of these race conditions.

4.3.1 Race Condition 1

T1:

Block Size

T2:

Head

Tail

Figure 4.5: Thread T1 wants to reserve space for a Chunk around
2.5× Blocksize and thread T2 concurrently wants to reserve some size
eg. 0.8× Blocksize .

T1:

T2:

Figure 4.6: T1 begins by filling up the Tail Block by reserving the
free space. It has now reduced the amount it still needs to reserve by
the free space.

26

4.3 Potential Race Conditions

T1:

T2:

Figure 4.7: It still hasn’t reserved its full Chunksize so it continues by
allocating a new Block and linking it to the Queue.

T1:

T2:

Figure 4.8: At this point it’s possible that T2 starts reserving, T2 sees
the Tail Block and even sees that there are no more Blocks linked
after. So it allocates a Block for its own Chunk and links it.

T1:

T2:

Figure 4.9: When T1 then proceeds to link its last Block to the Tail,
it would leave its reservation out of order. Depending on the imple-
mentation, it might also overwrite the next pointer pointing to T2’s
Block, leaving it floating in memory.

27

4. Design And Race Conditions

4.3.2 Race Condition 2

Head

Tail

T1:

T2:

SNAPSHOT

Figure 4.10: When T1 wants to reserve a Chunk first it takes a snap-
shot of the current state of Tail Block.

Head

Tail

T1:

T2:SNAPSHOT

Figure 4.11: T2 also takes a snapshot of the current state of the
Queue.

Head

Tail T1:

T2:

Succeeds: COMMIT

Loses race

Wins race

Figure 4.12: Both threads will attempt to reserve the free space for
themselves. Here T1 wins the race and manages to reserve space for
half its Chunksize .

28

4.3 Potential Race Conditions

Head

Tail T1:

T2:

Wakes up and proceeds

Sleeping...calling malloc() for it's next Block etc...

Succeeds: COMMIT

T1 gets overwritten!

Figure 4.13: T2 now manages to reserve the free space it saw in the
snapshot, this overwrites T1’s reservation.

Head

Tail T1:

T2:

Proceeds to attach it's next Block

Succeeds: COMMIT

Figure 4.14: There is no way for T1 to know its previous reservation
was overwritten, so it proceeds where it left off.

If T2 would’ve won the race, it would have still been disastrous as its data would have simply
been overwritten by a waking T1.

29

4. Design And Race Conditions

30

Chapter 5

Spillover Queue Algorithm

This section describes Spillover Queue and how it works. First, we explain two key novel
ideas that allowed us to create SOQ, we then explain the main reserve algorithm and how
it handles concurrency and the previously described race conditions. Finally, we give an
overview of the auxiliary methods Put and Get and describe some optimizations.

5.1 Pointer Packing

Working in a small memory environment is nearly always a limitation, however, there is one
subtle benefit. 32-bit or short pointers rather than standard 64-bit, can represent the entire
memory space and this also happens to be exactly what DBX’s memory pool allocator provides.
SOQ cleverly exploits the combination of 32-bit pointers on modern 64-bit architecture by
using a technique we refer to as Pointer Packing. Pointer packing allows SOQ to compare and
update multiple states with a single unary CAS.

5.1.1 NextCursor

The Block shown in Figure 5.1 contains two Chunks and the remainder is free space. Consider
two pointers, one at the start of the Block and one to the end of the Chunks. The second is
known as a Cursor and can be used to write to the free space in the Block. The Cursor and the
start of the Block are separated by an offset. The Cursor is an important state of the Block as
it dictates how filled up the Block is currently.

31

5. Spillover Queue

next

Start Cursor

Offset

Figure 5.1

Another important state of a Block is the next field. This is where the Block stores the
Next pointer that it uses to point to the next Block in the Queue. With the system’s short
pointers, both the Cursor and the Next pointer are 32-bits wide. Both of these states describe
the same Block and are stored in the same Block. We can therefore store them consecutively
in a memory region of 64 bits in the Block.

11011010000111011010000111101011 10000111001111011000000001101000

64-bits
Eg. uint64_t, u64...

next cursor

We represent both the Next pointer and the cursor with an atomic unsigned 64-bit in-
teger which we refer to as the NextCursor. This 64-bit integer can be updated atomically
with a CAS, which compares and updates both fields atomically. This is an incredibly useful
property, a CAS on the NextCursor will fail if either field is modified, but can also update
both at the same time. When we later want to recover the Next pointer and the Cursor
from the 64-bit integer they are stored in, we Split(NextCursor). Split does this by casting
the NextCursor to an unsigned 32-bit integer to retrieve the Cursor and right shifting the
NextCursor by 32 and then casting the result to an unsigned 32-bit type to retrieve the Next
pointer.

Algorithm 3 Split()

1: function Split(NextCursor)
2: next = (uint32) (NextCursor » 32)
3: cursor = (uint32) NextCursor
4: return next, cursor

To simplify the implementation of SOQ, we instead store the Offset in the Cursor part
of the NextCursor rather than the Cursor pointer. This is equivalent to the Cursor pointer
as one can recreate it by using the Block pointer and the Offset. This makes it easy to move
the Cursor by incrementing it. We can even move the Cursor without splitting the NextCur-
sor just by incrementing the entire NextCursor directly, NextCursor += x, as long as the
addition doesn’t make the Cursor part exceed 232 − 1, which it never will in a correct imple-
mentation as it would suggest a 4GB Offset.

32

5.2 The GuessQueue

5.2 The GuessQueue
Race Condition 1 shows a thread reserving a Chunk that spans multiple Blocks will run
into many concurrency problems. A solution is to not try to link each Block on its own, but
rather attempt to link all of them at once. We pre-allocate these Blocks and link them together
forming a new sub-Queue with enough total space reserved to hold the Chunk in its entirety.
This sub-Queue is called the GuessQueue and it’s created with the method Guess(Chunksize).

T1:Head

Tail

Guess(size)

Free Space
Guess Queue

Figure 5.2: T1 generating a GuessQueue for it’s large Chunk.

However, there’s most likely still free space to use up in the Queue, which means that the
GuessQueue might not be exactly what needs to be reserved and linked. This is where the
guessing comes from. The GuessQueue is a pessimistic guess, of how many Blocks should be
linked and how filled up those Blocks should be. The pessimism means that the GuessQueue
assumes that there’s no free space and allocates as many Blocks as it needs. We can see in
Figure 5.3 that the free space that needs to be used up means that equally much redundant
space was allocated and created in the GuessQueue. SOQ resolves this by using a concept
we call Trimming explained in Section 5.3. When we finally want to link or commit the entire
GuessQueue at once, it’s enough to link the Head of the GuessQueue to the Queue’s Tail and
then update the Tail to be the GuessQueue’s Tail.

T1:Head

Tail

Guess(size)

Free Space
Redundant Space

Figure 5.3

33

5. Spillover Queue

5.3 Reserve Algorithm
Here we explain the main concurrent Reserve algorithm of SOQ. Algorithm 4, 5 and 6 all
outline the same reserve method but with gradually decreasing level of abstraction to assist
understanding. The method is broken up into phases as seen in Algorithm 4 which are then
explained slightly more concretely in Algorithm 5 where the colored outline represents each
phase.

5.3.1 Phases of Reserve
The overall outline of the method is closely related to MSQ’s Enqueue, there’s still only one
loop, it also starts with atomically reading the Tail but instead of also reading the next field
of the Tail we read the NextCursor. It also then checks whether the next field is still null
and if it isn’t it attempts to assist in correcting the Queue. SOQ also still has an atomic Tail
pointer, an atomic Head pointer and every Block’s NextCursor is also an atomic variable.

Guess, Look, Trim, Try To Commit, Reset and Retry
The first phase is the creation of the GuessQueue. This is done outside of the loop and only
once, the pessimistic sizing means that it can be generated without ever viewing the state of
the real Queue, and it only needs the Chunksize as a parameter. We then want to take a ’look’
at the actual state of the Queue to determine how we should trim the GuessQueue. This
viewing of the real Queue is the Snapshot phase, the Snapshot involves atomically reading and
storing the Q→Tail and then reading the Tail→NextCursor, from this we can determine
everything we need to know about the current state of the Queue. The NextCursor now allows
us to determine how much we should trim from the GuessQueue for it to fit the current state
of the Queue, this is done in the next phase, the Trimming phase. Because of the pessimistic
sizing, we will only ever need to remove reserved space from the GuessQueue and never
allocate and add more. Once the trimming is completed, it’s time to attempt to Commit the
GuessQueue. A Commit is where the algorithm attempts to update the actual state of the
Queue itself by trying to make a reservation. A Commit always involves attempting to modify
the Q→Tail→NextCursor that was read in the Snapshot with a CAS. If it needs to spillover
and link the Head of its GuessQueue, it will update the Next pointer, if the Chunksize is small
enough and it doesn’t need to spillover, it will update it by incrementing the Cursor part.
A spillover Commit attempt is shown in Figures 5.4 through 5.6, and a Cursor increment
attempt is shown in Figures 5.7 through 5.9. The CAS attempt in the Commit might fail, this
means that the NextCursor read in the Snapshot has changed somehow by another thread. In
this case, it’s time to retry, however, we know that the state of the Queue has changed, which
means that the GuessQueue isn’t an exact fit anymore, the free space is most likely different.
This is why, upon a failed Commit, we need to Reset. In the Reset phase, we restore any
trimming done to the GuessQueue, so that when we loop again, the GuessQueue is complete
and pessimistic again and we can retry to Commit.

This is the general loop pattern of a reserving thread, take a look at the state of the Queue
with a Snapshot, trim the GuessQueue, try to Commit, and if it doesn’t succeed, Reset the
GuessQueue, start over and Retry until the Commit succeeds.

34

5.3 Reserve Algorithm

Algorithm 4 Phases of Reserve

1: function reserve(Q, size)
2: GUESS QUEUE
3: loop
4: SNAPSHOT
5: if next == NULL then
6: TRIMMING PHASE
7: COMMIT ATTEMPT
8: if Commit is successful then
9: LONG SWING

10: else
11: RESET AND RETRY
12: else
13: SHORT SWING

Algorithm 5 High level explanation of Reserve

1: function Reserve(Q, Chunksize)
2: Generate a GuessQueue from the Chunksize by calling Guess(Chunksize);
3: loop
4: Atomically read the Tail pointer to get the Tail;
5: Atomically read the NextCurser of the Tail;
6: Split the NextCursor to find the Next pointer Next and the Cursor;
7: if next == NULL then
8: Let free_space be how much space is left in the Tail Block compute it using

the Cursor and the Blocksize ;
9: Trim the GuessQueue depending on the free_space;

10: Store reference to any trimmed Block in maybe_dropped;
11: Create new_next_cursor for the Tail Block that points to the Head of the

GuessQueue or only has an incremented Cursor;

12: Attempt to update the NextCursor of the Tail with the new_next_cursor using
a CAS on the Tail Block;

13: if Commit is successful then
14: Reservation is completed
15: Attempt once to complete a long swing to the Tail of the GuessQueue

using a CAS on the Tail pointer.
16: Free maybe_dropped;
17: Create and return ChunkIndex;
18: else
19: Commit failed
20: The Tail’s NextCursor has changed, the Snapshot is invalid
21: Reset the GuessQueue and try again;
22: else
23: The Tail pointer is no longer pointing to the last Block in the Queue. Try to

complete a short swing by moving the Tail one step with a CAS;

35

5. Spillover Queue

Trimming and The Power of Pessimism

The naive use of the GuessQueue would be to first take the Snapshot of the Queue, generate
a GuessQueue based on the Snapshot which would perfectly fit, and try to Commit it to
the Queue, if the Commit fails and the Queue has been modified, it simply repeats and
creates a new GuessQueue. This is a correct solution but faces starvation and performance
problems. This is evident when reasoning about the synchronization points of reserve. We
consider the Snapshot the first synchronization point as that’s the first read or interaction
of the current state of the Queue, the next synchronization point is the Commit attempt as
here we try to update the Queue. For the Commit to be successful, the Queue needs to be
consistent with the state read at the Snapshot, so the Commit depends on nothing changing
between the Snapshot and the CAS in the Commit. Thus, it is crucial that SOQ optimizes
the phases between these two points because the longer time spent between the Snapshot
and the Commit the more likely it is that another thread has managed to Commit something
itself. Therefore, taking a Snapshot, and then starting to allocate Blocks and construct the
GuessQueue would massively increase the likelihood that the Commit fails. Lots of failing
Commits means lots of expensive failing CAS’s, and as Nir Shavit showed [4] this starvation
can kill performance.

If we wanna minimize the compute between the synchronization points, we want to move
as many operations as possible out of the critical section between the points, so we try to do
as many operations as possible before the Snapshot and after the Commit. Let’s say we at-
tempted to use an optimistic GuessQueue instead. An optimistic GuessQueue would assume
that there’s a whole Block of free space available for itself. When we then take a Snapshot, there
would most likely be less free space, so we would probably have to grow the GuessQueue by
allocating and linking a new Block. This means that there could be an expensive call to the al-
locator between the synchronization points. Therefore, rather than growing the GuessQueue
between the Snapshot and the Commit, we trim it. The trimming will only ever involve fast
O(1) atomic updates, it can be:

1. Decrement the cursor of the GuessQueue→Tail→NextCursor

2. Un-link the redundant GuessQueue→Tail Block entirely. As seen in figure 5.8.

3. A combination of 1. and 2. Un-link the redundant Tail Block and decrement the
NextCursor of the previous (new Tail) Block. See 5.5.

A reference to any removed redundant Block is saved in the variable maybe_dropped.
Which can then be safely freed or ’droppped’ after the Commit succeeds. There will only
ever be a maximum of one Block trimmed off the GuessQueue. See Theorem 1 for proof of
this. This also allows us to efficiently Reset the GuessQueue if the Commit fails. We stored
a reference to a removed Block and since it was just un-linked its NextCursor remains the
same as when the GuessQueue was created, so to reset we can just link maybe_dropped to the
Tail of the GuessQueue again. We also don’t have to keep allocating and freeing Blocks on
every failed Commit, we instead re-use the Blocks as we keep looping.

36

5.3 Reserve Algorithm

T1:Head

Tail SNAPSHOT

Free Space
Redundant Space

Figure 5.4: T1 takes a Snapshot of the current state of the Tail of the
Queue, which allows it to see how much free space is available at that
moment.

T1:Head

Tail

Trim()

Free Space

maybe_dropped:

Figure 5.5: It uses the free space to trim the Guess Queue accordingly.
A Block is redundant so a reference to it is stored in maybe_dropped.

T1:Head

Tail

drop:

Successful: COMMIT

Figure 5.6: The Commit succeeds, the Q→Tail→NextCursor is
updated to include the GuessQueue→Head and maybe_dropped is
freed.

37

5. Spillover Queue

T1:Head

Tail

Guess(size)

Free Space

Figure 5.7: The Chunksize fits within a single Block so the
GuessQueue is merely a single Block.

T1:Head

Tail Trim()

maybe_dropped:

Figure 5.8: After finding the free space, the entire GuessQueue gets
trimmed and is stored in maybe_dropped.

T1:Head

Tail

drop:

Successful: COMMIT

Cursor += size

Figure 5.9: The Commit succeeds, the Cursor of the Tail Block re-
mains the same but incremented by Chunksize . The GuessQueue is
dropped.

38

5.3 Reserve Algorithm

General Case
The previous Figure 5.9 shows how a Chunk smaller than the free space fits inside the Tail
Block in its entirety. This means that to add it the only Commit that occurs is an atomic in-
crement of the Cursor. We call this the general case, and should be the most common and effi-
cient case. The critical section trimming is very fast as it is just storing the entire GuessQueue
in maybe_dropped and the new_next_cursor which we attempt to Commit, is computed quickly
by just incrementing the NextCursor. If, on the other hand, the Chunks were consistently
>Blocksize the GuessQueue will also consistently contain more Blocks which means more calls
to the allocator and less probability of the general case. If this happens too frequently we the-
orize the Blocksize should be increased.

Tail Swinging
When a thread finally commits its GuessQueue, the Tail pointer should be updated to what-
ever Block is the new Tail Block. In MSQ, we try to update the Tail pointer to the new
Block that was just enqueued, however, in SOQ, the Tail of the GuessQueue should become
the new Tail. The thread that successfully committed the GuessQueue knows the address of
the GuessQueue→Tail, this means that after its commit succeeds it can attempt to move
the Tail there directly with a single CAS on the Tail pointer. We call this the Long Swing, the
Tail pointer might swing past multiple Blocks at once.

However, another thread might attempt to reserve before the Long Swing has occurred
but after the first thread successfully committed its GuessQueue. In this case, much like in
MSQ, the second thread will discover that the next field of the Q→Tail is not null. However,
this thread doesn’t know where the GuessQueue’s Tail is, all it knows is that there’s at least
one more Block that has been linked to the Tail via the Next pointer. So, it will CAS the
Tail to be this Next pointer and move the Tail pointer one Block, we call this the Short Swing.
When the reserving thread finally attempts to Long Swing, the CAS will fail as the Tail has
been moved by another thread. Thanks to the Short Swing, the Tail pointer has swung one
Block, but the Q→Tail is still not null as there’s still more GuessQueue to go. So, when the
Short Swinging thread loops and re-tries, it will Short Swing again, doing so until the data
structure has been corrected and it can finally attempt to reserve. If a third thread joins in
and attempts to reserve in the middle of this process, it too will discover that the Next field
is not null, so it will join in and start trying to Short Swing the Tail pointer as well. These
threads will cooperate in Short Swinging until the data structure is corrected.

Figures 5.10 through 5.18 illustrate first what happens if the Long Swing completes and
then what happens if the Long Swing fails and a series of Short Swings complete.

39

5. Spillover Queue

Head

Tail

T1:

T2:

Succeeds: COMMIT

Figure 5.10: T1 successfully Commits a large GuessQueue before T2
manages to Commit itself. T2’s Commit fails so it will reset and run
the loop again.

Head

Tail

T1:

T2:

Succeeds: LONG SWING

Figure 5.11: T1 wins and manages to complete a Long Swing directly
to the new Tail and it’s done

40

5.3 Reserve Algorithm

Head

Tail

T1:

T2:

tail->next != null

Figure 5.12: If however, T2 wins before the Long Swing, it first dis-
covers that the Tail’s Next pointer is not null.

Head

Tail

T1:

T2:
Succeeds: SHORT SWING

Figure 5.13: It completes a Short Swing to the next element and
loops again starting over to retry its reserve.

41

5. Spillover Queue

Head

Tail

T1:

T2:

Fails: LONG SWING

Figure 5.14: When T1 then finally attempts it’s Long Swing it’s too
late, the CAS will fail as the Tail has changed.

Head

Tail

T1:

T2:

T3:

Succeeds: SHORT SWING

Figure 5.15: If a new thread, T3, attempts to reserve in the middle
of this, nothing changes. T3 will see that the Tail’s next field is not
null, so it will also complete a Short Swing, loop, and retry.

42

5.3 Reserve Algorithm

Head

Tail

T1:

T2:

T3:
Succeeds: SHORT SWING

Figure 5.16: Upon its retry it discovers it still needs to Short Swing
and does so. There’s also a race between T3 and T2 to see who can
Short Swing first, only one succeeds due to the CAS.

Head

Tail

T1:

T2:

T3:

Succeeds: COMMIT

Figure 5.17: The data structure is now corrected and T2 will get past
the condition and can successfully commit its Chunk.

43

5. Spillover Queue

Head

Tail

T1:

T2:

T3:

Succeeds: COMMIT

Figure 5.18: T3 also manages to Commit its Chunk.

This is interesting since only T1 knows where the Tail of its GuessQueue is, and if it
doesn’t have time to update the Tail there, every other thread will blindly cooperate to cor-
rect the data structure until they find the Tail of the GuessQueue, it’s another example of
concurrent assistance.

One might think that an optimization would be to allow T1 to re-attempt its Long
Swing. However, there’s no telling where the Tail pointer has moved between T1’s com-
mit and its Long Swing attempt. The Tail pointer may have moved far beyond the end of
T1’s GuessQueue, so to re-attempt its Long Swing may move the Tail pointer backward. This
is why it’s important that the Long Swing is attempted once and not in a loop.

5.3.2 Implementation Details
We will now take a closer look at the implementation of reserve by analyzing the pseudo-
code in Algorithm 7. On line 14, we check if the free_space is greater than the size of the
Cursor of the GuessQueue’s Tail. Essentially this check determines if a whole Block will be
trimmed off the GuessQueue or not. In both cases we create the new_next_cursor, this is the
new state of the Tail’s NextCursor and is what we try to Commit to the Queue, it can point to
the Head of the GuessQueue or if it’s a general case it’s simply incremented. Committing the
new_next_cursor is done with the CAS on line 21, which will of course fail if another thread
has committed.

If the condition on line 14 is true and we need to trim a Block from the GuessQueue,
we call the Trim method. This method accepts a reference to the GuessQueue and the
free_space, it will Trim the GuessQueue, removing any Tail Block by setting the previous
Block’s next field to null, and updating that previous Block’s cursor. Trim determines how
the new_next_cursor, should look in this case, if there is spillover or it’s a simple general case.
It also accepts the pointer long_tail which points to the Block that the Long Swing should try
to update to. The long_tail is always set to the Tail of the GuessQueue initially as we can see
on line 9. However there are two more states this could be in. 1. the GuessQueue→Tail
could have been trimmed off and there could be another previous Block which becomes the

44

5.3 Reserve Algorithm

Algorithm 7 Pseudocode of Reserve()

1: function reserve(Q, size)
2: GQ = Guess(size)
3: block_size = Q→BlockSize
4:
5: loop
6: tail = Q→Tail
7: next_cursor = tail→NextCursor
8: next, cursor = Split(next_cursor)
9: long_tail = GQ→Tail

10: maybe_dropped = NULL
11:
12: if next == NULL then
13: free_space = block_size − cursor
14: if free_space >= GQ→Tail→cursor then
15: maybe_dropped = GQ→Tail
16: new_next_cursor = Trim(&GQ, free_space, long_tail)
17: else
18: GQ→Tail→NextCursor -= free_space
19: new_next_cursor = GQ→Head
20:
21: if CAS(Q→Tail→NextCursor, next_cursor, new_next_cursor) then
22:
23: if long_tail != NULL then
24: CAS(Q→Tail, tail, long_tail)
25:
26: if maybe_dropped != NULL then
27: FREE(maybe_dropped)
28:
29: return ChunkIndex(tail, cursor)
30: else
31: Reset(GQ, maybe_dropped)
32: else
33: CAS(Q–>Tail, tail, next)

Tail of the GuessQueue, it is then this Block we set long_tail to. 2. There might be no new
Tail Block as in figure 5.6, because a general case reserve doesn’t link any new GuessQueue.
In this case, it’s very important to set the long_tail to null and check for this on line 24 be-
fore attempting the Long Swing because we do not want to CAS the Tail to null, or even
worse CAS the Tail to a Block that has been trimmed and then freed. So in this case we’d
rather leave the Tail as it is. Similarly, we check on line 27 if any Block actually has been
trimmed before attempting to free the maybe_dropped variable. We can see that if we fail to
Commit the new_next_cursor we call the Reset method on line 31 to re-create the original
GuessQueue before we can loop and retry. We can also see the Short Swing attempt on line
33. If the commit succeeds and the Long Swing has been attempted and maybe_dropped has
been freed, we can generate the ChunkIndex and return it on line 29. More information on
this method is described in Section 5.4.

45

5. Spillover Queue

Avoiding race conditions
We can now see how the NextCursor avoids Race Condition 2 as seen in 4.10 through 4.14.
When T2. wakes up in 4.13 and attempts to Commit its Chunk. The Cursor would have been
incremented and the CAS in T2’s commit will fail. The same thing would happen if another
thread had linked its GuessQueue as then the Next pointer would have been changed from
null to pointing at the Head of the GuessQueue. Another interesting benefit is that the
Snapshot contains two atomic loads, one to find the Tail and another to find the NextCursor.
Another thread might intervene between these two operations and successfully Commit. In
this case, the Snapshot is invalid from the start, however, the NextCursor resolves this as
well because if the Tail has moved, the Next field will not be null and if the competing
thread has completed a general case Commit, then the Tail will still be the same but the
Cursor has updated. Crucially we know that if the Tail has moved, the Next field will have
already changed before, because a Commit that links a Block will always happen before it or
any assisting thread tries to move the Tail, as an assisting thread can only move and will only
move the Tail if the Next has been updated.

Proof of Maximum One Block Trim
We will now show that there can only ever be one Block that needs to be trimmed from the
GuessQueue.

Theorem 1. There can be at most one Block that gets trimmed from the GuessQueue.

Proof. We prove this by showing that in the worst case, where the trimming as large as pos-
sible, no more than one Block will be trimmed. Consider the Tail Cursor, Q→Tail→NextCursor,
or TC of the Queue. If we want to trim the largest possible number of Blocks from the
GuessQueue, the TC should be as small as possible leaving as much free space as possible. This
happens when TC = 0 and the Tail is simply an empty Block with f ree_space = Blocksize,
however, it’s not possible to have a completely empty Tail Block in the algorithm, because
every Tail Block was once a part of the reserving threads GuessQueue and no thread would
allocate an empty Block and link it if it didn’t need that space at all. So the worst case is
actually f ree_space = Blocksize − 1, where the Block is empty but has 1 byte of data re-
served. How much is trimmed is also dependent on how filled up the Tail of the GuessQueue
is as well, TCGuessQueue. We get the worst case here when TCGuessQueue is as small as possible
as well, so TCGuessQueue = 1. Now we can see that in the worst case with the largest trim-
ming is f ree_space = Blocksize − 1 and TCGuessQueue = 1. Here we can see that still there
will be only one Block trimmed from the GuessQueue. as if there’s only one Block in the
GuessQueue with TCGuessQUeue, as in the general case, we will remove it in its entirety and
increment the TC by 1. If there are > 1 Blocks in the GuessQueue, the TC will be filled up,
one Block will be trimmed from the GuessQueue and the new Tail of the GuessQueue will
have TCGuessQueue = 2.

Note: It’s important to realize that even if there have been multiple Blocks linked between
the Snapshot and Trimming phase, it doesn’t change this property, the only state of the Queue
that determines how much needs to be trimmed is the TC it does not make a difference which
Tail it is.

46

5.3 Reserve Algorithm

ABA Problem
Without having a garbage collector, or any form of safe memory reclamation framework, SOQ
could be susceptible to the ABA problem. In the context of DBX and the real use case of
SOQ, the ABA problem is impossible. The reason is that the consuming single-threaded
side that pops elements from the Head of SOQ will never catch up to the producing Tail
of the queue. This is because the MVCC mechanisms always maintain at least one live ver-
sion (meaning there will always be at least 1 Block in the Queue). However, SOQ offers
additional protection for ABA in case of other use cases of the structure. As mentioned in
the background, the most common approach to resolve ABA is a counter that gets updated
with each ABA-sensitive CAS. This requires more exotic atomics than the well-supported
unary CAS. So SOQ applies the same Pointer Packing trick to achieve this. The atomic Tail
pointer which is also 32-bit, becomes half pointer and half 32-bit counter, the same goes for
the atomic Head pointer. This simulates having exotic architecture, avoiding ABA.

47

5. Spillover Queue

5.4 Get and Put
We have now covered how to asynchronously reserve memory in SOQ, what remains to un-
derstand is how the different threads access and actually use the reserved space. This is
done mainly through two methods, Get(ChunkIndex) which retrieves the Chunk stored at
ChunkIndex and Put(ChunkIndex, data) which stores the data in the Chunk allocated at
ChunkIndex.

5.4.1 Memory Layout
On the system level, the only interaction a thread can have with its data in the SOQ is through
the ChunkIndex abstraction. Internally, the ChunkIndex contains its own 32-bit pointer to
the start of a Chunk in the SOQ. This means that some metadata needs to be stored in SOQ
itself. The first is the Chunk Header, this is simply a 2-byte header denoting the size of the
Chunk in the Queue. Using Theorem 2. we can guarantee that this Header never overspills by
making the completely reasonable assumption that all Chunks are of even size. The header is
written to the Block right before the ChunkIndex is returned by the methodChunkIndex as
seen in Algorithm 7. This way we don’t have to store the size excessively in the ChunkIndex.
The Block Header contains the metadata pertaining to each Block, the most relevant being the
NextCursor, and is written to the Block at the creation of the GuessQueue.

Chunk Header

Block HeaderChunkIdx

Figure 5.19: Anatomy of a Block

5.4.2 Get and Put Implementation
Get(ChunkIndex) takes the ChunkIndex, dereferences the pointer it contains to find the
Chunk Header, it then reads the size of the Chunk. It creates an intermediate byte-buffer
data structure to store the actual contents of the Chunk and returns it. When it hits the end
of the Block, as the Chunk overspills, it will read the NextCursor and follow the Next pointer
to the next part of the Chunk. Put(ChunkIndex, data) also starts from the Chunk Header
but does the opposite, gradually writing the data to the allocated space, until it needs to
jump to another Block with the Next pointer.

48

5.4 Get and Put

5.4.3 Minor Optimizations
Alignment Trick
Once SOQ receives the ChunkIndex in the Get and Put methods, the methods know where
the Chunk starts and the size of the Chunk by using the pointer. However, it doesn’t know
where the Block ends, and further, it doesn’t know where the NextCursor is stored. This can
be resolved by storing this data in the ChunkIndex abstraction along with the pointer to
the start of the Chunk, however, with the tight memory requirements this redundancy is not
acceptable. SOQ resolves this by exploiting memory alignment. Whenever a Block is stored
in memory, allocators usually ensure that it’s aligned to its size, meaning that the address
it’s stored at is a multiple of its size. With the memory pool only allocating a single size, all
Blocks are guaranteed to be aligned.

If Blocksize picked are always powers of 2, which they are by convention, the nearest
aligned Block can be found by taking the ChunkIndex pointer and zeroing the last log2(Blocksize)
bits. This gives a pointer to the start of the Block which allows SOQ to find the NextCursor
as well as find the end of the Block by offsetting by the Blocksize.

Avoiding Spillover When Wanted
The reconstruction of the Chunk might be an expensive process for small Chunks. For exam-
ple in DBX, a common Chunk to store in SOQ is a 32-bit (4-byte) pointer to another Chunk.
If this Chunk overspills between two Blocks, merely fetching it through its ChunkIndex
would be a proportionately expensive process.

1. Dereference the pointer stored in the ChunkIndex to find the Chunk Header

2. Read the 2 byte Chunk Header.

3. Instantiate an intermediary byte buffer vector, vector<char>[ChunkSize] or array
to store the Chunk.

4. Read the bytes in the current Block.

5. Atomically load the NextCursor, split it to find the Next pointer.

6. Dereference the Next pointer to find the rest of the Chunk.

7. Read and store the bytes of the rest of the Chunk in the intermediary data structure
and return it.

In this case, we have multiple pointer dereferences, the instantiation of a vector and an
atomic_load just to read a spilled over 32-bit (4-byte) pointer from SOQ. These are un-
avoidable costs when fetching data that has spilled over and when dealing with large Chunks
these costs are proportionately insignificant. For small Chunks, if we want to avoid these
costs for a certain size, eg. 4 bytes, we can ensure that any Chunk of size 4 will not spillover.
This allows a user of SOQ to read the 4-byte pointer directly from SOQ safely knowing that
it’s contiguous in memory.

49

5. Spillover Queue

Let’s consider the smallest allocation size that can be available and the smallest free space
in SOQ to be the granularity. If we want 4-byte pointers to never spillover, we need to ensure
that the granularity is 4. Because there can never be free space finer than this.

We achieve this is by ensuring that the Greatest Common Divisor or gcd of the Blocksize
and all Chunks of size Chunksizes is equal to the wanted granularity. In the short pointer case,
gcd(Chunksizes, Blocksize) = 4.

Theorem 2. Any set of Chunks of varying sizes, Chunksizes, stored in any order, in a set of Blocks of
size Blocksize will have a granularity equivalent to gcd(Chunksizes, Blocksize).

Proof. Any free space is created by subtracting a Chunksize from either a Block of Blocksize
or any other previous free space. By the definition of gcd any Blocksize and any Chunksize
can be re-written in the form of a whole number multiple times the gcd. So Block might be
written as size 5 × gcd while a Chunk is 2 × gcd, and by subtracting and adding multiples
of a gcd, one can never create a number smaller than that gcd. Therefore no free space can be
created smaller than gcd.

Thus, if a user of SOQ explicitly wants to avoid 4-byte pointers spilling over, it is enough
to ensure that the gcd of all Chunks added and the Blocksize is 4. The way this is achieved
is by padding any allocated Chunk to the nearest multiple of 4. In this case, the worst-case
wasted space and largest padding is 3 bytes which is technically a slight memory trade-off,
but 3 bytes is an insignificant size when compared to cache-line sizes, meaning the Chunks
probably get padded to 32 bytes anyway and the gcd is probably already 32.

50

Chapter 6

Evaluation

Using experiments we evaluate the performance of SOQ and compare it to an implementa-
tion of a modified MSQ. The relation between the Blocksize and the Chunksize determines a
lot about the internals of SOQ, it determines how many Blocks the GuessQueue contains,
how big the allocations need to be, the probability of each type of and size of trimming, how
many spillovers and how often the general case will happen. For benchmarking purposes, we
created an MSQ which has the same operations as SOQ, it can however allocate variable-
sized Blocks using the dynamic allocator malloc. It has the same design as the variable-sized
Blocks and Chunks shown in figure 4.1. This could be a drop-in replacement for SOQ which
doesn’t have fixed Blocksize . We also investigate how the data structure deals with high con-
tention as we see the scaling of throughput with a higher number of threads. The metric we
use is throughput (operations per second) or Op/s where a higher Op/s is a more performant
data structure. The SOQ experiments are limited in their execution by the time it takes
for the memory pool allocator to run out of pages. Since the allocator is designed for small
memory systems, this happens after 4GB of memory has been requested in total.

Both the MSQ and SOQ are written in Rust and the experiments run on an x86-64 Intel
i7-1165G7, with 4 cores and 8 threads, with an L1 cache of 312KB and 64-byte cache-lines.
The source code is compiled using the Rust nightly toolchain version 1.66.0 using sequential
consistency in its memory model.

51

6. Evaluation

6.1 Results

Figure 6.1: Throughput compared to the number of threads for
SOQ- Blocksize and an MSQ reserving 64 bytes.

Figure 6.1 shows various SOQ instances with different Blocksize compared to the benchmark-
ing MSQ implementation. The MSQ uses Rust’s malloc equivalent, std::alloc while the
SOQ uses the memory pool. Here, each thread reserves Chunks of size 64 bytes, in a loop
800,000 times concurrently and timing finishes when all threads have completed their oper-
ations. We are only able to have each thread iterate 800,000 times as for high thread counts,
the memory pool runs out of space.

52

6.1 Results

Block
Size

(bytes)

0
200

400
600

800
1000

C
hunk

Size
(bytes)

0
200

400
600

800
1000

O
p
/s

×
10

6

0

2

4

6

Figure 6.2: Throughput compared to Blocksize and Chunksize

In figure 6.2, we instantiate SOQ’s of varying Blocksize , we then spawn 4 threads that
will concurrently and in a loop reserve Chunks of Chunksize . The iteration occurs 202,400
times per thread, reserving a Chunksize each time. 202,400 was also the maximum number of
per thread iterations that was possible before the memory pool ran out of space. The time
to complete these reservations is taken once every thread is completed, which allows us to
compute the throughput.

53

6. Evaluation

Block Size (bytes)

0
50

100
150

200
250

C
hunk

Size
(bytes)

20

40

60

80

100

120

T
im

e
to

allo
cate

64k
b

(s)

10

20

30

40

Figure 6.3: Total time to reserve 64KB in ms

Figure 6.3 shows how long it takes to reserve a total size of 64KB by varying the Blocksize
andChunksize dimensions. Here we compute how many Chunks are required for eachChunksize
to reserve 64KB by each thread, the threads then continuously attempt to reserve thatChunksize
until they have reserved a total of 64KB.

6.2 Discussion
Contention
In figure 6.1, we see that both MSQ and SOQ have drastically reduced performance under
high contention. SOQ under-performs MSQ in throughput only achieving about 35% of the
throughput of MSQ at best. Worse throughput is however expected as MSQ is a subset of
SOQ in terms of computations and in terms of what it does, MSQ has no Batching, Spillover,
GuessQueue, Trimming, Resets, etc. Importantly we see that the throughput of SOQ is at
its highest at around 2-4 threads, which is the thread count of the target system DBX. How-
ever, a peak of 3m operations per second is still considered a highly successful throughput,
as the DBX system deals with an order of magnitude fewer transactions per second. With
one transaction being one operation, SOQ will safely not be a bottleneck in the system. It
is surprising however how the MSQ only loses throughput as the thread count increases. We
believe this is due to the fact that Rust’s std::alloc is not lock-free. Also, a single-threaded
sequential program actually gets a lot of help from the hardware in terms of pre-fetching and
more successful branch prediction.

54

6.2 Discussion

Throughput
6.2 shows how throughput changes as we vary the Blocksize for differently large Chunks being
reserved. Throughput decreases with larger Chunks being reserved, this is not very surprising
as larger Chunks will in general require creating GuessQueues with more linked Blocks. Al-
though, to our surprise, we previously hypothesized that larger Blocksize would allow a higher
throughput because we would more often hit the general case of just increasing the Cursor
as seen in Figure 5.9. The data however suggests that Blocksize has no significant impact, the
throughput seems mostly independent of the Blocksize . We theorize that this is due to an un-
foreseen limitation in SOQ, the pessimistic GuessQueue will always create at least one Block
no matter the Chunksize , so with a small Chunksize and a large Blocksize this GuessQueue will
be a large Block even though the probability that the GuessQueue will be Commited and
not trimmed is low due to the fact that there is probably being plenty of free space since the
Blocks are big. However, even with this considered it’s still surprising that there is no corre-
lation between Blocksize and throughput. Larger Blocks will require smaller GuessQueues to
be constructed which will be faster as there’s less linking etc. This is probably due to another
unforeseen limitation, that of the memory pool allocator. One would expect the allocator to
hand out Blocks with a complexity not proportionate to the Blocksize , since at instantiation
it knows all sizes it needs to allocate, this does not seem to be the behavior.

This is probably due to the underlying system below this allocator, there is probably no
such performance gain within the size of a page. However, this independence is also a testa-
ment to the efficiency of the GuessQueue + Trimming combination since we also don’t see
a performance loss for large Chunks with small Blocksize , the fact that the majority of the
GuessQueue does not have to be re-allocated in every loop makes the algorithm proportion-
ately fast even in this case.

In figure 6.3 we see the time required to reserve 64KB plummets as the Chunksize increases.
This is because larger Chunks require fewer operations to reserve a certain amount, so when
we increase the Chunksize we don’t need to call reserve as many times. Again we see that for
larger Blocksize the Blocksize seems to have no effect on the performance. Although a larger
Blocksize is still more memory efficient, since we need to pad every Block with the Block
Header, we want as few Blocks as possible.

Longer Experiments
As mentioned, the experiments are limited by the amount of memory that the 32-bit memory
pool can allocate. We would like to do more robust testing, to see if for example, SOQ can run
for weeks without hitting a seg-fault. However, in order to do such extensive, long-running
testing, we need a concurrent garbage collector to run and free memory from the head of
the Queue. However, this means that the garbage-collecting thread can catch up with the
reserving threads and free a Block that is about to be updated. This race condition can only be
resolved by using a different memory-managed language, or by the manual implementation
of some form of safe memory reclamation. Because this race condition is not possible in
the context of DBX, and safe memory reclamation is very time-consuming and difficult to
implement, this has been left out of the scope of this thesis.

55

6. Evaluation

56

Chapter 7

Conclusion

Here we discuss some of the problems we faced when designing and implementing SOQ, as
well as thoughts about its contribution, this is hopefully useful to anyone working on lock-
free memory allocators or on lock-free Queues and wishes to extend the work or use a SOQ
or some ideas from it in their system. Furthermore, we will discuss some of the future work
that can be done to improve SOQ.

7.1 Implementing a SOQ
There is a general consensus within the concurrent programming community that one should
avoid implementing their own lock-free data structures unless it is truly necessary. To do so
anyway will often result in at best, a big waste of development time and at worst, dangerous
subtly unsafe code. It is considered a case of Donald Knuth’s root of all evil, premature optimiza-
tion. If anything, this holds doubly true when it comes to SOQ. SOQ is optimized for both
lock-free concurrent performance, and for low memory usage, these two fields rarely over-
lap but when they do, implementations can get extremely hairy. An SOQ implementation
deals with careful pointer arithmetic, bit-wise memory operations on pointers that are cast
pointers between to and from integers and then updated with CAS. All these things are hard
to reason about as a programmer leading to extremely subtle, hard-to-find bugs in incorrect
implementations. For example, if a programmer’s arithmetic is slightly off when comput-
ing the new_next_cursor, the Cursor part might exceed its 32-bits and overflow into changing
the Next pointer part, creating a NextCursor with a completely random Next pointer. This
might only happen for some edge cases where the GuessQueue is n long and the size is x and
the free_space is y with just the right amount of trimming needed. This means a faulty SOQ
implementation could likely work for years before hitting a segmentation fault. Even worse,
this might overflow the pointer to point to a consecutive Block which makes it even more
confusing. However, unlike working with regular integer overflow, there is no way to detect

57

7. Conclusion

this in the run-time, this pointer might only seg-fault much later on in the program, mak-
ing it even harder to realize what the edge case was that caused it. Further, this all happens
concurrently, so it’s also hard to replicate the exact state that caused it. There’s also a lot of
tedious casework and many edge cases abstracted out in the Trim method, if a Block needs
to be trimmed or not, if the GuessQueue even contains more than one Block, also where the
Chunk Header should be written, there’s a case where there is no free space at all in which
case we need to create and link the GuessQueue but not spillover. All this meant it took us
3 months to get the first working implementation of SOQ which is only about 1000 lines
of code, where the 500 line REserve took the majority of the time. However, in the con-
text of the DBX system, SOQ is not a case of premature optimization, with no mutexes and
while dealing with very small memory and fixed size heap allocations only, SOQ exploits
its small memory environment and 32-bit pointers with the NextCursor creating a lock-free
data structure that would be nearly impossible to create otherwise but is still highly required
by the system.

It is worth mentioning that there is nothing special about exactly 32-bit pointers, SOQ
can also be implemented with one of the exotic atomic primitives, namely DWCAS. DWCAS
operating on 128-bit contiguous memory could fit a standard 64-bit Next pointer as well as a
Cursor and even an ABA counter if needed, all depending on the requirements of the system.
This does make SOQ a more general data structure than one only possible in embedded
systems, especially since DWCAS is the most commonly supported exotic CAS.

SOQ is only a Queue in its very fundamental structure, but on a high level, it’s actually
more of an allocator itself. Reserve is just a way to allocate memory as well. More specifically
it closely resembles a linear memory allocator, one that can only free memory in order. If you
turn the Blocks requested from the memory pool allocator into requests for pages from the
OS, you don’t need a custom memory pool but SOQ becomes an allocator itself.

7.2 Future Work
There are still plenty performance improvements that could be applied to SOQ, as men-
tioned previously, we always generate a GuessQueue with a single Block even if the Chunk is
very small. This is an example of the GuessQueue being too pessimistic. One area to explore
is that of a fast path for small Chunks. Here, below some threshold, small enough Chunks
could read the free space and attempt directly go for a general case Cursor increment if pos-
sible, and otherwise, they re-attempt with a traditional GuessQueue. The fast path could
even be attempted multiple times before the threads run out of patience and default to the
GuessQueue. In this situation, a reserve call will start off by being optimistic, and then when
it runs out of patience, resort to being pessimistic.

Another idea when it comes to sizing the Blocks can be borrowed from how vectors are
implemented internally. When they are instantiated they allocate some initial size and when
this memory is used up, they will create a new allocation double (or sometimes other factors
like 1.5) the size of the previous. This is due to the idea that if a program has used x memory it
will probably want to use x more, it would be bad to have many small increments of the size
and call the allocator many times. We could borrow this for SOQ, have an initial Blocksize and
then when a reservation comes in that requires spillover and a new Block, would allocate a
new Block double the Blocksize of the previous. This obviously would require modifications to

58

7.3 Final Words

the memory pool allocator but it’s not much more difficult to build such an allocator. Another
area that hasn’t been discussed in this work is that of memory consistency models. Currently,
SOQ is only implemented with Sequential Consistency at all atomic operations. However,
relaxing the consistency would give the compiler more freedom to optimize and could grant
some performance benefits. Another theoretical aspect to work on is proving that Reserve
is correct and linearizable which was excluded from the scope of this industry-focused work.

It would also be interesting to figure out a way to turn Spillover Queue into a Multiple-
Consumer Queue as well. In the context of DBX, there was only one garbage collector that
could consume the Queue, but to make SOQ more general we could try to extend it to have
many consuming threads. One would have to be very careful when freeing the Blocks since
many threads can have Chunks on the same Block. We also theorize that there could be a lot of
performance benefits from trying to use the wait-free fetch_and_add (FAA) atomic when
incrementing the Cursor, which needs to be done without reading the Cursor. However, it’s
not completely clear how such an algorithm would work, because when the FAA succeeds,
which it always will, we might have incremented the Cursor beyond the available free space,
in which case we should also link a Block. But there is a race condition between incrementing
the Cursor, realizing we need to link a Block, and linking the Block. This is the problem with
FAA not being conditional.

7.3 Final Words
This thesis introduces and evaluates the novel lock-free data structure Spillover Queue. We
explain how the design and features of SOQ fit the very strict requirements demonstrated
in Section 3.1 and the reserve algorithm is able to solve the various race conditions with its
NextCursor, how it manages to enqueue many Blocks concurrently without blocking using
its GuessQueue and can still use concurrent assistance to correct itself. We see that the per-
formance in terms of throughput is high enough to not be a bottleneck in the system as it
reaches upwards of 6m Op/s. We explain how it manages to use a highly efficient memory
pool allocator even with the major limitation of fixed Block-sizes, in order to completely
avoid fragmentation in memory.

In conclusion, we succeeded with the goal of this thesis and introduced some new ideas
in the space of lock-free queues.

59

7. Conclusion

60

References

[1] Maged M. Michael and Michael L. Scott. Simple, fast, and practical non-blocking and
blocking concurrent queue algorithms. In Proceedings of the Fifteenth Annual ACM Sym-
posium on Principles of Distributed Computing, PODC ’96, page 267–275, New York, NY,
USA, 1996. Association for Computing Machinery.

[2] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming, Revised Reprint.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edition, 2012.

[3] Peng Zhang. Chapter 5 - microprocessors. In Peng Zhang, editor, Advanced Industrial
Control Technology, pages 155–214. William Andrew Publishing, Oxford, 2010.

[4] Edya Ladan-Mozes and Nir Shavit. An optimistic approach to lock-free fifo queues.
volume 20, pages 117–131, 12 2004.

[5] Hermann Schweizer, Maciej Besta, and Torsten Hoefler. Evaluating the cost of atomic
operations on modern architectures, 10 2020.

[6] Ole Agesen, David Detlefs, Christine Flood, Alexander Garthwaite, Paul Martin, Mark
Moir, Nir Shavit, and Guy Steele. dcas-based concurrent deques. Theory Comput. Syst.,
35:349–386, 06 2002.

[7] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and Patrick
O’Neil. A critique of ansi sql isolation levels. In Proceedings of the 1995 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’95, page 1–10, New York,
NY, USA, 1995. Association for Computing Machinery.

[8] Thomas J. Watson IBM Research Center and R.K. Treiber. Systems Programming: Coping
with Parallelism. Research Report RJ. International Business Machines Incorporated,
Thomas J. Watson Research Center, 1986.

[9] Adam Morrison and Yehuda Afek. Fast concurrent queues for x86 processors. In ACM
SIGPLAN Symposium on Principles & Practice of Parallel Programming, 2013.

61

REFERENCES

[10] Chaoran Yang and John Mellor-Crummey. A wait-free queue as fast as fetch-and-
add. In Proceedings of the 21st ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP ’16, New York, NY, USA, 2016. Association for Computing
Machinery.

62

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2023-01-20

EXAMENSARBETE SOQ: A Novel Lock-Free Queue with Variable-Size Storage In Fixed-Sized Blocks
STUDENT Marcus Begic
HANDLEDARE Jonas Skeppstedt (LTH)
EXAMINATOR Nikos Ntarmos (Huawei Research)

Spillover Queue: En Ny Låsfri Kö

POPULÄRVETENSKAPLIG SAMMANFATTNING Marcus Begic

Databaser sparar flera versioner av samma data för att säkra att alla läsare alltid ser
en version som ingen annan håller på att skriva i samtidigt. De gör det i en stor
köliknande versionskedja. Detta arbete introducerar en ny, minneseffektiv och låsfri
datastruktur för lagring av versionskedjor särskilt i databaser med litet minne.

Om någon skriver data i en databas samtidigt som
någon annan läser från databasen kan stora prob-
lem uppstå. Om en databas lagrar information om
en bank, och pengar överförs från ett bankonto till
ett annat, hade man kunnat se balansen i bägge
kontona efter att pengar tagits ur det ena men in-
nan det lagts till det andra. Det hade verkat som
om pengarna försvunnit.

För att lösa detta, lagrar en databas flera kopior
av datan samtidigt, då kan en skriva till sin kopia
samtidigt som någon annan läser från en annan.
Dessa kopior kan vara av alla möjliga storlekar och
lagras en efter en i en kedja av versioner, liknande
en kö. Versionskedjor kan bli minnesdyra eftersom
multipler av all data i databasen kan behöva la-
gras i dem. I stora system lägger man bara till mer
minne i systemet, men i inbyggda databaser, som
hittas i hårdvara som säljs i miljontal, vill man
undvika att göra minnet större för att tillverknin-
gen kan bli väldigt kostsam.

Ett sätt att använda mindre minne är att endast
allokera minnesblock av samma storlek. Datorer
gillar detta då alla minnesblock kan lagras ett efter
ett, vilket inte slösar lika mycket plats som om de
alla vore av olika storlekar och inte riktigt pas-
sade i minnet. Vår datastruktur, Spillover Queue
(SOQ) gör just detta, den allokerar endast min-
nesblock av en viss storlek. Dock kan versioner

vara av alla möjliga storlekar, då SOQ löser detta
genom att låta en version spilla över flera minnes-
block. Flera kan vilja skriva sina versioner till
SOQ samtidigt. Detta brukar lösas genom att
tvinga en skrivare vänta på en annan, genom s.k.
blockering. Blockering är dock långsamt och kan
leda till många problem. SOQ är därför helt icke-
blockerande, en avancerad teknik som också kallas
låsfri programmering. Detta ger SOQ en mycket
högre prestanda vilket kan göra hela databasen
snabbare.

Början
Slut

Minnesblock

VersionVersion som spiller över

Bild: En SOQ med versioner i en databas

Resultatet visar att SOQ kan hantera en mag-
nitud fler samtidiga skrivare än en stor databas
kan ha, och är därför inte en flaskhals i systemet.
SOQ introducerar även nya tekniker inom låsfri
programmering som utnyttjar miljöer med litet
minne, vilket annars nästan alltid är en nackdel.

	Introduction
	Background
	Concurrent Programming
	Database Systems and Concurrency
	Transactions and Concurrency Control
	Small Memory Environments

	Related Work
	MS Queue
	Improvents to MSQ

	Problem Statement
	Database X
	Goal

	Design And Race Conditions
	FIFO Queue Data Structure
	Overall Design
	Naming Convention
	Variable-Sized Blocks and Variable-Sized Chunks
	Fixed-Sized Blocks and Fixed-Sized Chunks
	Variable-Sized Chunks With Fixed-Size Blocks with Fragments
	Fixed-Sized Blocks and Variable-Sized Chunks with Spillover

	Potential Race Conditions
	Race Condition 1
	Race Condition 2

	Spillover Queue
	Pointer Packing
	NextCursor

	The GuessQueue
	Reserve Algorithm
	Phases of Reserve
	Implementation Details

	Get and Put
	Memory Layout
	Get and Put Implementation
	Minor Optimizations

	Evaluation
	Results
	Discussion

	Conclusion
	Implementing a SOQ
	Future Work
	Final Words

	Tom sida

