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Abstract

Aberrations to the wavefront of a laser beam reduce the quality of the focal spot and
are generally undesired. This project is aimed at determining the aberrations of laser
beams by using a phase retrieval algorithm and to show that it is possible to correct
the aberrations with a spatial light modulator to optimize the focal spot. In particular,
a two-dimensional phase pattern is retrieved and decomposed into Zernike polyno-
mials to generate two distinct correction patters that are applied to the spatial light
modulator to increase the peak intensity and reduce the width of the focal spot. Mea-
surements of the aberrations of a terawatt laser are performed with the phase retrieval
algorithm and compared to measurements with a Shack–Hartmann wavefront sensor.
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Popular Science Summary

Removing the Aberrations from an Invisible Laser Beam

A laser beam can be focused to a spot to achieve an even higher intensity of the light,
but aberrations of the beam increase the size of the focal spot and reduce the intensity
and this project shows that the aberrations can be corrected.

A convex lens such as for example a magnifying glass can be used to focus light to
a small spot which is called the focal spot. On a sunny day a magnifying glass can
be used to burn a piece of paper by focusing the sunlight onto this paper. A larger
magnifying glass can collect more light and leads to a higher intensity of the focused
sunlight. It is not possible to focus all the light into one infinitely small spot. That
would result in an infinitely high intensity in this point and that is not possible due
to the laws of physics. The size of the focal spot also depends on the focal length of
the lens and a magnifying glass with a shorter focal length can create a smaller focal
spot with a higher intensity that burns the paper better.

It is possible to calculate the size of this focal spot by using formulas, but in reality
the size of the focal spot is usually larger due to aberrations of the light that gets fo-
cused. The light that comes from the sun also does not reach the magnifying glass
without aberrations and the same is true during night when we look at the stars. The
stars twinkle and at every moment look a little bit different due to aberrations of the
light that originate from the turbulent atmosphere of the earth. Astronauts flying
outside the atmosphere do not see this twinkling and could also focus the starlight
better with a lens or a curved mirror. This is one of the reasons why space telescopes
are launched to outer space to capture images of the universe. It is exceptionally
expensive to built space telescopes and to launch them to outer space and the maxi-
mum size of space telescopes is limited by the used rocket. A technology that is used
in the largest ground-based telescopes is called adaptive optics. The aberrations that
originate in our atmosphere are constantly measured and corrected by deforming a
mirror to counteract the effects of the atmosphere. The telescope can then see the
stars without any twinkling.

A deformable mirrors is also used in the laboratory at the Lund High-Power Laser
Facility where the experimental work for this project was done. Even if the light from
the infrared lasers propagate in vacuum and do do not twinkle, aberrations are still
present in a laser beam. They can originate from the laser itself or be introduced
by mirrors or lenses or other components in the setup that are not aligned perfectly.
The aberrations do not change so quickly and if the aberrations are measured, they
can be corrected with the deformable mirror. The laser beam then gets focused and
the focal spot gets better if the aberrations from the beam are first removed. This
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focused light is used to generate high-order harmonics that create invisible pulses in
the extreme ultraviolet spectrum with a duration of just a few hundred attoseconds.
100 attoseconds is an incredibly short time that is 10 quadrillion times shorter than
a single second. Even light that is so fast that it could theoretically orbit the earth
more than 7 times during a single second merely travels a distance that is shorter than
0.0005 times the thickness of a human hair during 100 attoseconds.

In this project, the aberrations of the infrared terawatt laser are measured with two
different methods and a separate setup is built to optimize the focal spot by correcting
the aberrations with a spatial light modulator which is a device that is similar to a
deformable mirror with many small pixels. One method to measure the aberrations of
a laser beam is to use an expensive device which is called a Shack-Hartmann wavefront
sensor. It is also possible to instead focus the laser beam with a lens or a curved mirror
and to capture images before and behind the focal spot and to use an algorithm on
a computer to calculate the aberrations of the beam. This is a much cheaper and
accessible way to determine the aberrations of a laser beam because the beam just has
to get focused and just one camera is needed. This project shows that it is possible
to measure the aberrations of an infrared laser beam with a camera and the phase
retrieval algorithm and that the measured aberrations in the beam can be corrected
with a spatial light modulator to create an improved and smaller focal spot.
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Chapter 1

Introduction

1.1 Background and Motivation

An unaberrated Gaussian beam with a flat wavefront can with a parabolic mirror be
focused to the smallest spot size that is physically possible and the focal spot has a
Gaussian intensity profile. Aberrations of a beam lead to a deformation of the wave-
front that results in a larger and non-Gaussian focal spot with a lower peak intensity.
Aberrations in a laser beam can originate from misaligned optical components in a
setup and examples for typical aberrations are astigmatism and coma.

For high-order harmonic generation in the 10Hz laboratory of the Lund High-Power
Laser Facility, laser pulses are focused into a gas to generate high-order harmonics.
Aberrations of the infrared beam lead to aberrations of the generated high-order har-
monics and the lower intensity of the driving field due to the aberrations leads to a
lower yield of the high-order harmonics. Those aberrations are undesired and result in
a lower intensity of the focused extreme ultraviolet light (XUV). A reduction of those
aberrations is currently attempted with a deformable mirror and a measurement of
the wavefront with a Shack-Hartmann wavefront sensor, but the improvements to
the beam profile are thought to be limited.

Themotivation for this project originates from the idea to measure the aberrations in a
different way by using a phase retrieval algorithm and to compare the results from the
phase retrieval algorithm with the measurements of the Shack-Hartmann wavefront
sensor.
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Themain goal of this project is to show that a phase retrieval algorithm in conjunction
with a camera can be used tomeasure the two-dimensional phase pattern of an infrared
laser beam and that adaptive optics can be used to correct the aberrations and optimize
the focal spot. In particular, a setup with an infrared diode laser is built and a spatial
light modulator (SLM) is used to correct the aberrations.

1.2 Thesis Outline

Chapter 2 covers the theoretical background and emphasizes the theoretical concepts
and components that are relevant to this project. Chapter 3 provides a description
of the simulations, programming of the SLM and the experimental methods that are
used to obtain the phase of the beams and explains how the aberrations are corrected
with the SLM. The results of the simulations and initial tests of the SLM, measure-
ments of the phase and the improvements to the focal spot are shown and discussed
in Chapter 4. Chapter 5 concludes the project by summarizing the achieved results
and providing an outlook on prospective next steps.
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Chapter 2

Theory

2.1 Laser Physics

Laser stands for ”light amplification by stimulated emission of radiation” and is based
on the process of stimulated emission that dates back to Albert Einstein¹. The first
operation of a laser took until 1960 and was achieved by Theodore Maiman² and is
based on the work of Arthur Schawlow and Charles Townes³. Today, lasers are not
just indispensable in fields such as optical communication, manufacturing, medicine
and fundamental research but also provide the basis for this project.

2.1.1 Stimulated Emission

A laser is usually constructed with a gain medium inside an optical cavity. The gain
medium is pumped to generate exited states and the optical cavity can be built by
using a highly reflective spherical mirror on each side of the cavity. The lowest energy
level of an atom is called the ground state and occurs when all electrons occupy the
lowest energy state E0. If an electron absorbs a photon with the frequency ν and
energy⁴

Eph = h · ν (2.1)

where h is Planck’s constant, the electron can get excited if there is a state available
and occupy the new energy state with the energy

E1 = E0 + Eph. (2.2)

The deexcitation of an electron back to the ground state leads to the emission of a
photon with a frequency that corresponds to the energy difference between the states.
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The emission can be spontaneous but also be induced by the interaction of a photon
with the same energy as the emitted photon. That process is called stimulated emission
and is the basis for lasers. The emitted photon will not just have the same energy as the
photon that stimulated the emission, but it will also have the same phase, direction
and polarization.⁵ The radiation from a continuous laser is thus monochromatic and
coherent.

A laser that is optically pumped with incoherent light must have at least three energy
states because the probability for stimulated emission is equal to the probability for
stimulated absorption and a population inversion could otherwise not be achieved.⁶
If more electrons are in the exited state than the ground state, then an avalanche
effect can be started and the radiation gets amplified for every pass through the gain
medium. A small fraction of the light does not get reflected by the mirrors of the
lasers and the light that passes through the mirror with the lower reflectivity forms a
beam.

2.1.2 Gaussian Beam

The Gaussian beam is a solution of the paraxial Helmholtz equation⁷

∂2A

∂x2
+

∂2A

∂y2
− i · 2k · ∂A

∂z
= 0 (2.3)

with the complex envelope A(r⃗ ), the imaginary number i and the wavenumber k.
The intensity distribution of the light that is emitted from a laser can often be de-
scribed as a Gaussian beam and is given by⁸

I(ρ, z) = I0 ·
[

w0

W (z)

]2
· e−

2ρ2

W2(z) (2.4)

with the peak intensity I0, the beam waist radius w0, the axial position z, the beam
radiusW (z) and the radial position ρ. The intensity is thus the highest in the center
of the beam and decreases as a Gaussian function with an increasing radial distance
ρ. The beam radius is never smaller than the beam waist radius and small beam waist
radii lead to larger divergence angles. The half-angle of the divergence also depends
on the wavelength λ and is given by⁹

θ0 =
λ

π · w0
. (2.5)
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The radius of curvature of a Gaussian beam is described by¹⁰

R(z) = z ·
[
1 +

(zR
z

)2
]

(2.6)

where z represents the distance from the beam waist and zR is the Rayleigh range that
is defined as¹⁰

zR =
πw2

0

λ
. (2.7)

At the beam waist, the radius of curvature is undefined and the wavefronts are planar.
The radius of curvature has a minimum value at a distance of one Rayleigh range from
the beam waist and therefore the wavefronts are most strongly curved at this distance.

2.1.3 Ultrafast Optics

The Intense XUV Attosecond Physics beamline for high-order harmonic generation
uses a terawatt laser. This high power can not be achieved continuously but just for
very short times. Short pulses with a high intensity are generated by a combination
of techniques.

The minimum value of the time-bandwidth product for a Gaussian pulse shape is¹¹

∆t ·∆ν = 0.441 (2.8)

with the temporal width∆t and the spectral width∆ν. A broad spectral bandwidth
is thus needed for the generation of very short pulses. A pulse with a duration of 35 fs
for example needs a spectral bandwidth of at least 12.6THz.

Mode locking is a technique that can generate ultrashort pulses of light by locking the
phase of multiple modes in a laser cavity.¹² The frequencies ν of the possible modes
q in the cavity with the length L are spaced equidistantly and are determined by

ν = q · c

2L
. (2.9)

The number of possible modes depends on the bandwidth of the laser which is limited
by the gain profile of the gain medium. Before mode locking is achieved, the modes
oscillate with a random phase relation to each other. If a constant phase difference
between the individual modes is achieved, periodical constructive interference of the
modes leads to pulses with a repetition rate that corresponds to the round trip time
in the cavity of the laser.

The high intensity of the ultrashort pulses leads to self-focusing in the gain medium of
the laser which damages it.¹³ A technique that avoids such damage by stretching the
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pulse in time before the amplification was invented by Donna Strickland and Gérard
Mourou and is called chirped pulse amplification.¹⁴ Gratings or chirped mirrors are
used to chirp or stretch an initially short pulse in time before the amplification which
reduces the intensity and prevents damage of the gain medium. The amplification of
the chirped pulse then increases the pulse energy. The subsequent compression of the
chirped pulse leads to ultrashort pulses with a very high peak power.

2.1.4 Aberrations

For a monochromatic beam, an optical wavefront is the surface where the phase has
the same value. An ideal wavefront for unfocused beams is often a planar wavefront.
The phase is then constant across the entire beam profile and the light can be focused
to the smallest possible spot as illustrated in Figure 2.1. A spherical lens introduces
spherical aberration for light outside the paraxial region and plane wavefronts do not
get focused to the smallest physically possible spot size that can be achieved with
parabolic mirrors or aspheric lenses that are more difficult to manufacture.¹⁵

Figure 2.1: Schematic illustration of the focusing of an unaberrated wavefront by a lens

A parabolic curvature of the wavefronts would result in a focal spot that is shifted to
a different position along the direction of the beam propagation. Tilted wavefronts
would shift the focal spot to a different position in the focal plane. Aberrations of
the beam lead to non-planar wavefronts and the size of the focal spot increases due to
different tilts and curvatures of the wavefront at different positions across the beam
profile.
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2.2 Adaptive Optics

To correct aberrations of a laser beam, the aberrated wavefront has to be shaped so
that the corrected wavefront is flat or has the desired curvature. Since a wavefront
represents the surface with the same phase, a phase delay has to be added to the beam
that cancels the aberrations at every point across the beam profile. This can be done
by increasing the optical path length of the beam according to the aberrations across
the beam profile.

2.2.1 Deformable Mirror

One way to increase the optical path length of a beam selectively across the beam pro-
file is to reflect the beam from a deformedmirror that has a curvature of its surface that
corrects the wavefront of the aberrated beam. A schematic two-dimensional represen-
tation of this principle is illustrated in Figure 2.2. The deformable mirror is curved
according to the curvature of the aberrated wavefront and the angle of incidence of
the beam. The reflected beam then has a flat wavefront without any aberrations. The
mirror can additionally also be deformed to converge or diverge the beam and thus
change the focal length of a setup by adding a radial symmetrical curvature to the
reflected wavefront.

Figure 2.2: Schematic two-dimensional illustration of the correction of an aberrated wavefront by a de-
formable mirror
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The deformation of the mirror is usually achieved by mechanically moving the reflec-
tive surface with individually controlled actuators. Although segmented deformable
mirrors that are based on microelectromechanical systems¹⁶ and liquid based de-
formable mirrors¹⁷ exist, most deformable mirror technologies use a solid and con-
tinuous reflective surface that is deformed by the actuators positioned below. The
reflective surface usually consists of at least one thin membrane that can be controlled
by applying a magnetic or electric field to the individual actuators.

The deformable mirror that is used in this project is a bimorph deformable mirror with
two layers of a piezoceramic material below a high reflection coated glass layer. The
application of a voltage up to 350V to electrodes expands the piezoceramic material
due to the inverse piezoelectric effect and thereby also deforms the reflective surface.
One layer out of the piezoceramic material is controlled by one electrode and used
for the main curvature of the wavefront to shift the focus of the beam to the desired
position behind themirror. The other piezoceramic layer is controlled by 31 electrodes
and used to correct the aberrations of the wavefront.

2.2.2 Spatial Light Modulation

SLMs are devices that modulate the phase, the intensity, the amplitude or the po-
larization of light across a one-dimensional or two-dimensional region and can be
addressed electrically or optically.¹⁸ They can either be transmissive or reflective and
usually consist out of many individual pixels that can impart an independent modula-
tion to the light. Many different technologies for spatial light modulation exist. SLMs
can be based on the acousto-optic effect¹⁹, the electro-optic effect²⁰, the magneto-
optic effect²¹, micromechanical arrays where every pixel can be moved individually²²
or the tilt of the molecules in liquid crystals²³. Since a liquid crystal SLM that only
modulates the phase is used in this project, this technology is explained in this section.

To correct aberrations by increasing the optical path length of the beam, it is not
just possible to increase the geometrical path length as in the case of deformable mir-
rors. Liquid crystal SLMs modify the optical path length by changing the refractive
index along the path of the light by rotating the molecules of liquid crystals. The
molecules have an elongated shape and are as in usual liquids not ordered positionally
but are ordered orientationally as in usual crystals.²⁴ The molecular orientation of the
anisotropic molecules can be changed by an electric field due to torque that originates
from induced dipoles and the electric forces.²⁵ An individual voltage across the liq-
uid crystal layer can be applied to every pixel of the SLM which leads to a different
rotation of the molecules in every pixel of the SLM.
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Figure 2.3: Schematic illustration of the phase modulation of liquid crystals depending on the applied voltage
that changes the orientation of the liquid crystals

A birefringent uniaxial crystal has an ordinary refractive index no that is independent
from the rotation angle θ and another refractive index that depends on the orienta-
tion of the crystal. That refractive index n(θ) can vary between no and the principal
refractive index of one axis of the index ellipsoid ne and is calculated by²⁶

1

n2(θ)
=

cos2(θ)
n2
e

+
sin2(θ)
n2
o

. (2.10)

Linearly polarized light that is polarized parallel to the orientation of the untilted
liquid crystal molecules is used for all later experiments and the phase shift of the
modulated light then depends on the rotation angle θ and is described by²⁶

φ =
2π · n(θ) · d

λ0
(2.11)

with the distance of propagation in the liquid crystal layer d and the vacuum wave-
length λ0. Depending on the values of no and ne, a different orientation of the liquid
crystal molecules leads to a different phase shift and allows to modulate the phase in-
dependently for every pixel of the SLM by applying different voltages to the electrodes
of every pixel.

A liquid crystal on silicon SLM (LCOS SLM) that is reflective is used in this project. It
consists out of a silicon substrate, a dielectric mirror, a liquid crystal layer, alignment
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films, transparent electrodes and a glass substrate.²⁷ The reflected modulated light
traverses the liquid crystal layer twice. Part of the light is reflected from the glass
substrate or other layers on top the liquid crystal layer without being modulated by
the liquid crystals of the SLM. That light is called the zero-order reflection and it
can be discriminated from the modulated light by applying an additional linear or
spherical phase to the SLM.²⁸

2.3 Zernike Polynomials

To describe wavefront aberrations of a laser beam and the phase of an optical wave,
a linear combination of Zernike polynomials can be used. Each Zernike polynomial
describes a specific aberration. The coefficients in front of the individual Zernike
polynomials represent the amplitude and sign of the aberration.

Zernike polynomials are, especially for higher orders, described in a simpler form if
polar coordinates instead of Cartesian coordinates are used. The Zernike polynomials
in polar coordinates are given by

Zm
n (ρ, θ) =

{
Rm

n (ρ) cos(m · θ), ifm ≥ 0

Rm
n (ρ) sin(|m| · θ), ifm < 0

(2.12)

with the radial polynomial Rm
n (ρ) defined as

Rm
n (ρ) =

n−|m|
2∑

k=0

(−1)k(n− k)!

k!
(
n+|m|

2 − k
)
!
(
n−|m|

2 − k
)
!
ρn−2k (2.13)

with the radial distance ρ, the azimuthal angle θ and the integers for the radial order
n and the angular frequency m. n− |m| can never be odd because for a given n, m
can take the value of any integer from −n to n but has to have the same parity as n.

The values of the Zernike polynomials are always between −1 and 1. Zernike poly-
nomials are continuous and orthogonal over a unit circle²⁹ and due to their com-
pleteness³⁰ they can be used to represent any circular phase distribution. The Zernike
polynomials in polar coordinates up to the radial order n = 4 are shown in Table 2.1.

The first three Zernike polynomials do not describe real aberrations. Piston just leads
to an addition or subtraction of a constant phase across the entire wavefront. Vertical
and horizontal tilt lead to a tilt of the wavefront and because the direction of propa-
gation of a wave is normal to the wavefront, the beam travels at a different angle but
has no curved wavefront.
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Defocus is a radially symmetric aberration that leads to a converging or diverging
beam and thus to a shift of the focal spot along the direction of propagation. Astig-
matism of a beam can lead to different foci for rays that propagate in orthogonal
planes. If focused with a spherical lens, astigmatism causes an elongated and broad
focus and it is not possible to focus all the light into a single spot. The name coma
originates from the comet-shaped image that is formed in the focal spot during the
presence of this aberration.³¹ Spherical aberration is an aberration that forms if a
beam is focused with a spherical lens. The smallest possible focal spot is reached if for
example a parabolic mirror is used to focus a flat wavefront.¹⁵ Spherical lenses and
spherical mirrors introduce spherical aberration and more complex aspheric lenses are
needed to not introduce this aberration to a focused beam.³²

Table 2.1: Zernike polynomials up to the radial order n=4 and their corresponding optical aberrations

Zernike Indices
Zernike Polynomials Aberration

n m

0 0 Z0
0 (ρ) = 1 Piston

1 −1 Z−1
1 (ρ) = ρ · sin(φ) Vertical Tilt

1 1 Z1
1 (ρ) = ρ · cos(φ) Horizontal Tilt

2 −2 Z−2
2 (ρ) = ρ2 · sin(2 · φ) Oblique

Astigmatism

2 0 Z0
2 (ρ) = 2ρ2 − 1 Defocus

2 2 Z2
2 (ρ) = ρ2 · cos(2 · φ) Vertical

Astigmatism

3 −3 Z−3
3 (ρ) = ρ3 · sin(3 · φ) Vertical Trefoil

3 −1 Z−1
3 (ρ) = (3ρ3 − 2ρ) · sin(φ) Vertical Coma

3 1 Z1
3 (ρ) = (3ρ3 − 2ρ) · cos(φ) Horizontal Coma

3 3 Z3
3 (ρ) = ρ3 · cos(3 · φ) Oblique Trefoil

4 −4 Z−4
4 (ρ) = ρ4 · sin(4 · φ) Oblique Tetrafoil

4 −2 Z−2
4 (ρ) = (4ρ4−3ρ2) ·sin(2 ·φ) Secondary Oblique

Astigmatism

4 0 Z0
4 (ρ) = 6ρ4 − 6ρ2 + 1 Primary Spherical

4 2 Z2
4 (ρ) = (4ρ4 − 3ρ2) · cos(2 ·φ) Secondary Vertical

Astigmatism

4 4 Z4
4 (ρ) = ρ4 · cos(4 · φ) Vertical Tetrafoil
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A graphical illustration of the Zernike polynomials up to the radial order n = 4 is
depicted in Figure 2.4. The Zernike polynomials can be multiplied with a factor to
span a different range than between −1 and 1 to represent the phase across the beam
profile. It can be seen that piston leads to the same addition or subtraction of phase in-
dependent of the position on the beam profile. If a beam is reflected by an orthogonal
mirror, then the movement of the mirror along the direction of the beam propagation
introduces a different amount of piston but no aberrations. If a mirror is rotated or
tilted slightly, then the phase of the beam changes in the same way as described by
the Zernike polynomials corresponding to horizontal tilt or vertical tilt, respectively.
It can also be seen that the Zernike polynomial corresponding to defocus describes
a radially symmetric curvature of the wavefront and that will result in a converging
or diverging beam. The different foci for rays propagating in two orthogonal planes
in the case of astigmatism can be imagined from the orthogonally opposite curva-
ture in the corresponding shown Zernike polynomials. The correspondence between
higher order aberrations and their Zernike polynomials is more complex and harder
to illustrate by simple terms.

Figure 2.4: Graphical illustration of the Zernike polynomials up to the radial order n = 4
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2.4 Phase Retrieval

To be able to correct aberrations of a laser beamwith adaptive optics, the aberrations of
the wavefront first have to be determined. A wavefront represents the surface with an
equal phase and therefore the phase first has to bemeasured along the two-dimensional
beam profile before aberrations can be corrected. It is not trivial to measure the phase
of an optical beam and the methods usually rely on an intensity measurement in
some way. The standard approach is to use a Shack–Hartmann wavefront sensor. An
alternative that is used for most measurements during this project are phase retrieval
algorithms.

2.4.1 Shack–Hartmann Wavefront Sensor

The Shack–Hartmann wavefront sensor was developed by Roland Shack to mea-
sure the atmospheric aberrations for the observation of satellites with ground-based
telescopes and is based on the principle of the Hartmann screen test.³³ A Shack–
Hartmann wavefront sensor in conjunction with a software is a direct way to measure
the curvature of wavefronts at the position where the Shack–Hartmann Wavefront
sensor is placed. A two-dimensional schematic representation of a Shack–Hartmann
Wavefront sensor is shown in Figure 2.5.

Figure 2.5: Two-dimensional schematic representation
of a Schack-Hartmann wavefront sensor

Figure 2.6: Recorded image of a wavefront
measurement of the terawatt
laser by a Schack-Hartmann
wavefront sensor
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A Shack–Hartmann Wavefront sensor is basically constructed out of two elements,
a microlens array and a camera.³⁴ The microlens array is an array out of many small
lenses or lenslets. Each lenslet focuses a small part of the beam onto the sensor of a
camera. Depending on the curvature of the wavefront at the position of the lenslet,
the focal spot appears at a different position of the sensor. For a flat wavefront, the
positions of the focal spots on the sensor are known. A curved wavefront shifts the
focal spot of each lenslet by a distance d on the sensor as shown in Figure 2.5. Multiple
focal spots of a two-dimensional microlens array are shown in Figure 2.6. The distance
and direction of the shift from the positions of the focal spots of an unaberrated beam
with a flat wavefront are used by the software of the Shack–Hartmann wavefront
sensor to calculate the phase map of the beam.

2.4.2 Phase Retrieval Algorithm

The complex amplitude describes a wave completely and consists out of the amplitude
and the phase of the wave. The absolute value of the amplitude can easily be obtained
bymeasuring the intensity with for example a camera and taking the square root of the
measured intensity. The phase is seemingly lost when just the intensity is measured
which is known as the phase retrieval problem.³⁵

The Gerchberg-Saxton algorithm is an algorithm that was developed by R.W. Gerch-
berg and W.O. Saxton to determine the phase of electromagnetic waves from known
intensities in the far field and focal plane.³⁶The algorithm relies on the conditions that
the two planes with the known intensities are transverse to the direction of the beam
propagation and that the planes are related by a Fourier transform. The Gerchberg-
Saxton algorithm can then iteratively determine the phase of the wave.

If for example the optical phase of a laser beam should be retrieved by the Gerchberg-
Saxton Algorithm, then the intensities in the two planes that are Fourier transform
related first have to be determined. This can be done by focusing the beam with for
example a lens and by capturing one image in the far field before the lens and another
image in the focal plane of the lens. The square roots of the measured intensities are
proportional to the amplitudes of the beam in those two planes.

If the amplitudes are known, then the Gerchberg-Saxton algorithm is used to deter-
mine the missing phase according to the following procedure for one iteration of the
Gerchberg-Saxton algorithm.
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1. The amplitude in the far fieldAFF is known due to the intensity measurement
and a first guess has to be made for the phase. This guess Φ1 can be completely
random typically within the range from −π to π or be guessed according to
the expected wavefront curvature. The amplitude and the first phase guess then
lead to the initial description of the field in the far field.

UFF (x, y) = |AFF (x, y)| · eiΦ1(x,y) (2.14)

2. Now a Fourier transform of the field in the far field is performed to calculate
the complex amplitude of the field in the focal plane. The calculated complex
amplitude in the focal plane is then

UFocus(x
′, y′) = F

[
|AFF (x, y)| · eiΦ1(x,y)

]
= |A′

Focus(x
′, y′)|·eiΦ2(x′,y′)

(2.15)
with the new calculated phase Φ2 and the calculated amplitude in the focal
plane A′

Focus that can now be replaced by the measured amplitude AFocus to
get an improved description of the field in the focal plane.

UFocus(x
′, y′) = |AFocus(x

′, y′)| · eiΦ2(x′,y′) (2.16)

3. An inverse Fourier transform of UFocus leads to a new calculated complex am-
plitude in the far field.

UFF (x, y) = F−1
[
|AFocus(x

′, y′)| · eiΦ2(x′,y′)
]
= |A′

FF (x, y)| · eiΦ3(x,y)

(2.17)
The calculated amplitude is again replaced by themeasured amplitude and leads
to a new expression for the complex amplitude in the far field.

UFF (x, y) = |AFF (x, y)| · eiΦ3(x,y) (2.18)

Equation 2.18 is similar to equation 2.14, but Φ3 generally is a better description of
the actual phase than the initial guessΦ1. This one iteration of the Gerchberg-Saxton
algorithm therefore leads to an improved description of the phase in the far field. The
obtained expression for the complex amplitude in the far field UFF is now used for
the next iteration of the algorithm that starts with step 2. A Fourier transform is again
performed to calculate the phase in the focal plane Φ4 and the amplitude AFocus is
taken from the measurement. The inverse Fourier transform of that complex ampli-
tude is again calculated to obtain the phase in the far field Φ5 and this phase together
with the measured amplitude AFF construct the complex field after the second iter-
ation of the algorithm.
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The procedure can now be repeated as often as desired. The squared error of the
differences between the calculated and measured amplitude after each iteration must
always decrease or stay constant for each iteration.³⁶ The exact phase in both plains
of the beam is obtained if the squared error is zero. Because the squared error can also
stay constant if the algorithm gets stuck in a local minimum, the exact phase does not
necessarily get determined more exactly if the algorithm is run for more iterations.
This is due to the non-convexity of the algorithm.³⁷

Several modifications and improvements to the standard Gerchberg-Saxton algorithm
are possible. The error-reduction algorithm is a popular alternative to the standard
Gerchberg-Saxton algorithm that improves the problem of stagnation during the it-
erations.³⁸ The input-output algorithm is another modified algorithm that converges
even faster.³⁹ To prevent phase retrieval algorithms from stagnating in a local mini-
mum, it is for example possible to perturb the phase slightly for every iteration, as it
is done in the spatial phase perturbation Gerchberg-Saxton algorithm that can also be
combined with other algorithms to further reduce the convergence time.⁴⁰

The phase retrieval algorithm that is used for the retrieval of the phase in this project
is based on the Gerchberg-Saxton algorithm, but uses measured amplitudes from dif-
ferent planes along the direction of the beam propagation. The two planes are not the
far field and focal plane as in the standard Gerchberg-Saxton algorithm, but instead
the amplitudes in planes around the focus are used. One plane is at a distance before
the focus and the other plane is at the same distance behind the focus. A numerical
propagator is used to propagate between the two planes around the geometrical focus
during the iterations and after the spatial phases in the planes around the focus are
determined, the propagation from one of the planes around the focus back to the far
field is calculated.
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Chapter 3

Methods

3.1 Simulations

To simulate the intensity distribution in the focal plane for different applied phase
patterns on the SLM, simulations are performed in MATLAB. Since the used SLM is
a phase-only SLM, the amplitude is not modulated when simulating the effect of the
SLM. A Gaussian distribution with a beam diameter that corresponds to 74% of the
height of the active area of the SLM is used as the incident amplitude on the SLM
to match best with the actual illumination of the SLM in the laboratory. An infinite
radius of curvature is assumed for the incident wavefront. The uniform phase is then
changed to a value between 0 and 2π for every pixel of the simulated SLM with a
resolution of 1272 by 1024 discrete pixels. The simulated intensity in the far field
corresponds to the intensity distribution in the focal plane of a lens and fast Fourier
transforms are used for the simulations. Simulations are performed for a variety of
phase patterns that correspond to Zernike polynomials that are converted to a range
between 0 and 2π. MATLAB functions from the OTSLM Toolbox for Structured
Light Methods are used for the generation of SLM phase patterns and the visualiza-
tion in the far field.⁴¹

3.2 Setup

The setup that is used for all spatial light modulation experiments is built on an op-
tical table and is shown in Figure 3.1. A HAMAMATSU X13139-9685 LCOS-SLM
with a resolution of 1272 by 1024 pixels on an active area of 15.9mm by 12.8mm
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is used for the spatial light modulation.²⁷ A Thorlabs CPS780S laser diode with a
wavelength of 780 nm and power of 2.5mW is used as the light source. The beam
first passes through a linear polarizer. The polarizer is rotated in a way so that the
linear polarized light is polarized horizontally so that the polarization is parallel to the
horizontal orientation of the liquid crystal molecules of the SLM.This alignment with
the liquid crystals of the SLM is important to only modulate the phase and not the
amplitude and for angles of incidence greater than zero, as it is the case in this setup,
it is also prescribed to only use horizontally polarized incident light in the operation
manual of the SLM.²⁷

The beam is then reflected from a 1 inch silver mirror at an angle of incidence of about
45◦. The mirror is used for adjustments to steer the beam into the desired direction.
The beam is then impinging at normal incidence onto a telescope. The telescope is
constructed by using two plano-convex lenses with focal lengths of 3 cm and 15 cm.
It magnifies the beam five times to illuminate most of the active area of the SLM.

A pinhole with a diameter of 15µm is used to spatially filter the beam. It acts as a
low-pass filter and removes the higher spatial frequencies from the beam to reduce the
aberrations and achieve a round beam profile.

The beam is then reflected onto the SLM by a 2 inch silver mirror. The 2 inch size of
themirror is used to avoid diffraction and tomake sure that the entire beam is reflected
at this 45◦ angle of incidence and to simplify the alignment. A round illumination
of almost the entire active area of the SLM is achieved. The SLM then reflects the
modulated light onto another 2 inch silver mirror. Because the SLM works best for
normal incidence of the beam, it is tried to achieve an angle of incidence that is as
small as possible. The distance from the first and second 2 inch mirror to the SLM
is 145 cm and 137 cm, respectively. The second 2 inch mirror is placed as close as
possible to the on the SLM incident beam. An angle of incident on the SLM of about
1.2◦ is achieved. The 2 inch size of the second 2 inch mirror is especially important
during the generation of holograms because those patterns on the SLM lead to large
and diverging modulated beams. Even larger or closer optics behind the SLM should
be used for the generation of large holograms, but this is not the focus of this project
and 2 inch at this distance are sufficient for testing holograms on the SLM and for
wavefront corrections of aberrated beams.

A 2 inch plano-convex lens with a focal length of 30 cm is used to focus the light into a
camera. A FLIRGrasshopper3GS3-U3-91S6M-C camera is used for all images taken
on this setup. It is a monochrome CCD camera with a Sony ICX814 sensor with a
resolution of 3376 by 2704 pixels, a size of the active area of 12.5mm by 10.0mm
and a pixel size of 3.69µm.⁴² The camera is mounted on top of a translation stage
that allows precise adjustments of the camera position along the direction of the beam
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propagation. This translation stage is not just helpful for finding the focal spot but
also allows to take images of the beam profile up to 7.5mm before and behind the
focal plane for the phase retrieval measurements.

Figure 3.1: Setup that is used for all spatial light modulation experiments¹

3.3 Programming the Spatial Light Modulator

The phase-only HAMAMATSU X13139-9685 LCOS-SLM modulates the phase of
the reflected light for every pixel to a value between 0 and 2π. The active area that
can be used for the modulation has a size of 15.9mm in the horizontal direction by
12.8mm in the vertical direction. It has a resolution of 1272 by 1024 discrete pixels
that are all controlled separately by loading an integer value between 0 and 255 to
each pixel. Those pixel values are then converted to a voltage on the liquid crystals
that lead to a rotation of the liquid crystal molecules and a separate modulation of
the phase for every pixel.

The imparted phase shift does not only depend on the orientation of the liquid crys-
tals but also on the wavelength of the light. The employed SLM can be used for
wavelengths from 750 nm to 850 nm, but the necessary voltage on the liquid crystals
that is needed for a 2π phase shift changes with the wavelength. For the used 780 nm
wavelength of the diode laser, a phase shift of 2π is already reached at an input signal
level of 205. Therefore, just integer values between 0 and 205 are loaded to the SLM
and this leads to a phase shift between 0 and 2π for the reflected beam.

¹This graphic was generated with illustrations from the ComponentLibrary by Alexander Franzen⁴³
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Due to manufacturing imperfections and unevennesses of the surface of the SLM, a
distortion correction map is always loaded on top of the desired phase map. Several
correction maps for different wavelengths are provided as bitmap images by the man-
ufacturer and the correction map for 780 nm is always added to the desired phase
pattern in MATLAB.

A small percentage of the light reflected from the SLM does not get modulated be-
cause it is reflected directly from the surface of the SLM without entering the liquid
crystals. Due to this zero-order reflection from the SLM, a phase pattern is also always
added on top of the desired phase pattern and the correction phase pattern to shift
the modulated beam to a different direction than the zero-order reflection. A linearly
ramped phase pattern can be applied to the SLM to shift the zero-order reflection
to a different position in the focal plane.²⁸ A linear tilt from 0 to 2π was applied to
the SLM and led to a shift of the modulated light, but it did not lead to a complete
separation from the zero-order reflection in the focal plane with this setup due to a
small change of the angle of the light propagation. Instead, a phase pattern that cor-
responds to a linear blazed grating with a period of 0.492mm is always added on top
of the desired phase pattern and the correction phase pattern in MATLAB.The phase
pattern consists out of 26 individual linear phase ramps from 0 to 2π that lead to a
larger tilt of the wavefront and is shown in the middle of Figure 3.2.

(a) SLM distortion correction
phase pattern

(b) Linear phase pattern (c) Example for an applied phase
pattern

Figure 3.2: The applied phase pattern is constructed by combining the desired phase pattern, the distortion
correction phase pattern for the SLM and the linear grating phase pattern

A modulo operation of the added phase patterns is performed to make sure that the
uploaded pattern is always between pixel values of 0 and 205 and thus the phase shift
is never larger than 2π. The remainder after division by 206 is used if the pixel values
exceed 205. For example, a phase shift of 3π can not be achieved and the modulation
is indistinguishable from a phase shift of π. The applied linear phase pattern leads
to a slightly different angle of the reflected modulated light. The focused modulated
beam thus gets shifted to a different position on the sensor of the camera.
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The zero-order reflection is not altered by the phase patterns on the SLM and therefore
always appears at the same position on the sensor. This allows a separation of the
modulated light from the zero-order reflection and is important for just measuring
the modulated light.

The SLM is configured as a second display of a PC and the phase patterns containing
integer values between 0 and 205 are displayed as a BMP image in full screen mode
on the second display. Due to unstable characteristics of the SLM during the warm
up, the SLM was turned on at least 20minutes before any measurements are taken.

3.3.1 Testing the SLM by Loading Linear Phase Patterns and Fresnel Lens
Phase Patterns to the SLM

For initial tests of the SLM, phase patterns that correspond to blazed gratings are up-
loaded to the SLM. Different grating periods and different orientations of the applied
phase patterns are tried and it is observed how the direction of the modulated light
changes.

It is also tried to focus the beam without a lens by applying phase patterns to the SLM
that resemble the phase change that a Fresnel lens would impart on the beam. Phase
patterns corresponding to different focal lengths are uploaded to the SLM and the
focal spot behind the SLM is determined by holding a piece of paper into the beam
and looking at the paper with an infrared viewer.

3.3.2 Generating Holograms with the SLM

Due to the Fourier relation, the phase pattern in the far field contains the information
for the intensity distribution in the focal plane. If a phase pattern as the one that is
shown on the right hand side of Figure 3.2 is applied to the SLM, a two-dimensional
hologram appears in the focal plane. To further test the SLM and to make sure that
the applied phase patterns have the right orientation and rotation, holograms are gen-
erated and the corresponding phase patterns are obtained by using the Gerchberg–
Saxton algorithm from the OTSLM Toolbox for Structured Light Methods.⁴¹ The
algorithm iterates between the in the focal plane desired amplitude pattern that was
generated beforehand as a grayscale image and the phase pattern on the SLM. 100 it-
erations between both planes are computed and the obtained phase pattern is then
applied to the SLM. The imaged hologram in the focal plane of the lens is compared
to the simulations and the right orientation and rotation of the phase patterns on the
SLM that are crucial for the later corrections of aberrations are determined.
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3.3.3 Loading Zernike Aberration Polynomials on the SLM

Several aberrations that can be described by Zernike polynomials were also uploaded
to the SLM. The Zernike polynomials that have values between −1 and 1 are con-
verted into a range from 0 to 2π and the size of the circular phase patterns is chosen
to match the diameter of the beam. Images in the focal plane of the 2 inch lens are
recorded. The measurements are compared to the simulations.

3.4 Phase Retrieval

To optimize the focal spot of a laser beam with a SLM or deformable mirror, the
aberrations of the beam have to be corrected. It is thus necessary to characterize and
measure the aberrations before they can be corrected with adaptive optics. A phase
retrieval algorithm is used for the measurement of the aberrations. It was developed
by Cord Arnold and in the master’s degree project of Mattias Ammitzböll.⁴⁴

One image of the beam profile at a short distance before the focus and one image of
the beam profile at the same distance behind the focus are recorded and used as the
input for the phase retrieval algorithm. The distance from the focus is used as the
initial guess for the radius of curvature because it is the best guess of the phase if the
images are taken at a distance from the focus that is much larger than the Rayleigh
range.

Different neutral density filters for different camera positions are mounted in front of
the sensor of the camera to not overexpose the recorded images and to make sure that
almost the entire dynamic range of the grayscale sensor of the camera is used. The
background noise in the images is removed and the images are filtered by cutting out
higher-order wave numbers. All spatial frequencies that are larger than a manually
adapted threshold are removed in the frequency domain. It is also zoomed into the
right region of the recorded images to remove the zero-order reflection of the SLM
that appears at a different position on the sensor of the camera to not affect the quality
of the phase retrieval.

The phase retrieval algorithm is always run for 100 iterations and the retrieved phase
in the far field is calculated as a matrix. The far field beam size is also calculated and
used to scale the retrieved phase matrix to the physical dimensions. The phase retrieval
algorithm also decomposes the retrieved phase into the first 10 Zernike polynomials
according to the Fringe indexing scheme.⁴⁵
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3.5 Measuring the Wavefront of Aberrated Beams

For measuring the wavefront on the setup with the diode laser that is shown in Fig-
ure 3.1, images are recorded at different distances from the focal plane of a 2 inch lens
with a focal length of 30 cm. If the initial beam diameter is assumed to be as large as
the height of the active area of the SLM, then the beam waist radius of the unfocused
beam is w0 = 6.4mm and the Rayleigh range of the unfocused beam is

zR =
π · (6.4mm)2

780 nm
= 164.97m. (3.1)

The minimum waist radius to which the beam can be focused is described by⁴⁶

w′
0 =

w0√
1 +

(
zR
f

)2
. (3.2)

The theoretical radius of the focal spot is thus

w′
0 =

6.4mm√
1 +

(
164.97m
0.3m

)2 = 11.64µm (3.3)

and can be used to calculate the Rayleigh range of the focused beam to

z′R =
πw′2

0

λ
=

π · (11.64µm)2

780 nm
= 545.7µm. (3.4)

It should therefore not be attempted to record the images at distances from the focus
that are not significantly larger than 545.7µm.

Images are recorded by moving the camera on the translation stage along the beam by
rotating amicrometer screw. Different distances from the focus between 1.25mmand
the maximum range of the translation stage of 7.5mm are tried and the ideal distance
for best results with the phase retrieval algorithm is determined experimentally. It is
not trivial to know which results from the phase retrieval algorithm are better than
others, but if an unaberrated beam with a flat wavefront is assumed as the incident
beam on the SLM, then the ideal retrieval of the phase is the same as the applied
phase pattern on the SLM. Therefore, Zernike polynomial phase patterns are applied
to the SLM to introduce known aberrations to the beam. Images are then recorded
at different camera positions and the retrieved phase is compared for images taken
at different distances from the focus. Seven individual Zernike polynomials and one
linear combination of multiple Zernike polynomials are applied to the SLM. The
retrieved phase is shown as an interpolated matrix of the retrieved phase matrix in
the far field and also as a phase pattern that is obtained by linearly combining the
retrieved Zernike polynomials with their corresponding amplitude.
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3.6 Measuring the Wavefront of the Terawatt Laser

The beamline for high-order harmonic generation at the Lund High-Power Laser Fa-
cility up to the generation chamber is depicted in Figure 3.3. The beam that is gen-
erated in another room by the terawatt laser has a repetition rate of 10Hz and pulse
energy up to 1.5 J at a center wavelength of 810 nm. 200mJ are guided to the labora-
tory in vacuum in transport tubes. The pulses then get compressed in the compressor
chamber down to a pulse duration of about 35 fs. After the compression, the beam
is reflected from two mirrors before it hits the deformable mirror that is used for the
correction of wavefront aberrations and for changing the focal length. The first piezo-
electric actuator of the deformable mirror changes the curvature of the mirror and
leads to a change in focal length along the direction of the beam propagation. The
beam then gets focused by the focusing mirror and can for high-order harmonic gen-
eration be sent to a folding cross before it reaches the generation chamber where the
pulses get focused into a gas cell or gas jet. The gas that is used for the generation of
high-order harmonics gets released from a nozzle in pulses that are synchronized with
the pulses of the infrared beam.

If the rotational stage is rotated to another angle, the beam that gets reflected by the
focus mirror is not sent to the folding cross and generation chamber, but the beam
can be sent out of a window of the compressor chamber to be analyzed by a Shack-
Hartmann wavefront sensor.

Figure 3.3: The Intense XUV Attosecond Physics beamline up to the generation chamber²

To characterize the aberrations of the terawatt laser, two independent methods are
used. The aberrations are first measured by using a Shack-Hartmannwavefront sensor.
The measured aberrations of the beam are displayed by using Zernike Polynomials.
A voltage map on the 32 piezoelectric actuators of the deformable mirror that should
have no impact on the wavefront other than focusing the beam is loaded for an initial

²Adapted from an unpublished graphic by Marius Plach
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characterization of the aberrations. It is then attempted to optimize the wavefront by
loading a different voltage map to the piezoelectric actuators of the deformable mirror.
This correction map is obtained by running a hill climbing algorithm on the Closed-
loop 10.0 software by the manufacturer of the deformable mirror and Shack-Hartmann
wavefront sensor.

For the characterization of the aberrations with the phase retrieval algorithm, images
before and behind the focus are taken with a DAHENG IMAGING MER2-160-
75GM-P camera. For this, the leakage from the last mirror before the generation
chamber exits the vacuum through a window and is sent along the beamline in par-
allel to the beam that is used for the generation of high-order harmonics. Due to the
additional path length of the leakage compared to the beam that is sent to the gener-
ation chamber, the focal spot of the leakage is reached before the generation chamber
and allows to take images at different distances before and behind the focus. Due to
difficulties of finding the focal spot exactly for this beam with a long Rayleigh range,
images are taken at an interval of 5 cm over a range of 140 cm. Those measurements
are performed for both the map on the deformable mirror that should have no impact
on the wavefront other than focusing the beam and also the correction map from the
measurements with the Shack-Hartmann wavefront sensor. The independent mea-
surements from the Shack-Hartmann wavefront sensor and the retrieved phase from
the images taken for the phase retrieval algorithm can then be compared.

3.7 Optimizing the Focal Spot

To optimize the focal spot on the setup with the diode laser by the SLM, the phase
is retrieved with the phase retrieval algorithm as described in section 3.4. Images are
taken 5mm before and behind the estimated focal spot due to best results in previous
experiments. The retrieved phase is obtained as a matrix that contains the phase for a
two-dimensional region in the far field. The center region of the retrieved intensity of
the beam in the far field is taken as the center of the retrieved phase. The dimensions
of an extrapolated matrix of the phase correspond to the size of the active area of the
SLM. The extrapolated matrix has the same resolution as the SLM. The correction
pattern that can be applied to the SLM to correct the aberrations is the negative of
the retrieved extrapolated matrix that is converted into a range from 0 to 2π.

An alternative approach to obtain a correction phase pattern is by using Zernike
polynomials. The retrieved aberrations are expressed by using a linear combination
of Zernike polynomials from order 3 up to 10 according to the Fringe indexing
scheme.⁴⁵ The negative of the retrieved aberrations expressed by those Zernike poly-
nomials are converted into a range from 0 to 2π and a correction phase pattern with
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the resolution of the SLM is generated. The lower order Zernike polynomials corre-
sponding to piston and horizontal and vertical tilt are not used because they do not
correlate to aberrations. Because the beam diameter is magnified by the telescope so
that it has the same height as the active area of the SLM, the size of the Zernike poly-
nomials used for the correction phase pattern is also chosen to match the height of
the active area of the SLM.

To show that the obtained correction patterns can be used to optimize the focal spot
if aberrations are present, aberrations are first introduced by the SLM. Zernike poly-
nomials up to n = 3 as well as a linear combination of multiple Zernike polynomials
are applied separately to the SLM and the by the phase retrieval algorithm obtained
correction patterns are applied on top of the originally applied patterns. This is done
for both the correction pattern that is obtained from the extrapolated far field matrix
as well as the correction pattern using Zernike polynomials for all 7 separately applied
Zernike phase patterns and the linear combination of multiple Zernike polynomials.

To quantify the peak intensity of the focal spot, images are recorded in the focal plane
and the measured peak intensity is normalized to the measured peak intensity of the
focal spot of the unaberrated beam. For the measurements of the unaberrated beam,
no aberrations are introduced with the SLM and just the correction pattern and linear
phase pattern are applied to the SLM.The aberrations corresponding to Zernike poly-
nomials are introduced with the SLM and the uncorrected peak intensity is measured.
It is then corrected by applying the interpolated correction matrix on top of the aber-
ration phase pattern and the peak intensity is measured again. The same procedure is
done for the Zernike correction patterns.

Another approach to characterize the focal spot is by determining the full width at
half maximum (FWHM) of the focused beam profile. It describes the diameter of
the beam in the range for which the intensity is at least half of the peak intensity. A
Gaussian curve is fitted to two perpendicular axes of the beam profile and the average
of those two determined widths of the beam is taken as the FWHM of the focal spot.
The determined FWHM for all the measurements are normalized to the FWHM of
the focal spot for the beam without any introduced aberrations.

Even though the applied Zernike phase patterns were chosen because they correspond
to realistic aberrations in optical systems, it is also attempted to correct aberrations
that were not first introduced by the SLM. A phase pattern that just contains the
correction pattern and the linear phase pattern is applied to the SLM to not introduce
any aberrations. The 2 inch lens with a focal length of 30 cm is tilted by approximately
10◦ to introduce typical aberrations in misaligned optical setups. Correction patterns
with and without using Zernike polynomials are generated by measuring 5mmbefore
and behind the new and slightly shifted estimated focal spot. The peak intensities and
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widths of the corrected focal spots are then compared to those of the uncorrected focal
spot.

At the end it is also attempted to improve the focal spot of the nearly unaberrated
beam. The phase pattern that just contains the correction pattern and the linear phase
pattern is again applied to the SLM and the 2 inch lens is rotated back to the previous
position perpendicular to the direction of the beam propagation to not introduce
any aberrations. Measurements 5mm before and behind the focal spot are recorded
and the by the phase retrieval algorithm recovered correction phase patterns with and
without using Zernike polynomials are applied to the SLM to attempt to optimize
the nearly unaberrated focal spot.
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Chapter 4

Results and Discussion

4.1 Applying Phase Patterns to the SLM

4.1.1 Shifting and Focusing the Beam with the SLM

The application of phase patterns that correspond to blazed gratings yield the expected
results. It is possible to diffract the beam into different directions and the direction of
the shift of the beam depends on the orientation of the blazed grating. The diffraction
angle changes for different grating periods of the applied phase pattern. The applica-
tion of a phase pattern with a single ramp from 0 to 2π leads to a very small change
of the angle of the modulated light. Smaller grating periods between the individual 0
to 2π phase ramps of the blazed grating phase pattern lead to larger shifts of the angle
of the diffracted light from the optical axis.

The application of phase patterns that resemble the phase change that a Fresnel lens
would impart on the beam also leads to the expected results. The beam is focused at
distances behind the SLM that correspond to the focal length of the applied Fresnel
lens phase patterns. Due to the small angle between the incident beam on the SLM
and the reflected beam it is not possible to observe a focal spot for Fresnel lens phase
patterns that correspond to a focal length of less than about 10 cm because the paper
on which the focal spot is observed with the infrared viewer then blocks the incident
beam.
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4.1.2 Holograms

To further test the SLM and also to compare the orientation and rotation of the
recorded images in the focal plane with the simulations, phase patterns that corre-
spond to holograms are applied to the SLM. Images are then taken in the focal plane
of the 2 inch lens with a focal length of 30 cm. Different holograms and phase patterns
that lead to different sizes of the observed holograms are tried. Larger holograms lead
to a higher resolution of the holograms in the focal plane, but the size of the holograms
is limited by the size of the used 2 inch optics behind the SLM because the edges of
large holograms correspond to large diffraction angles from the SLM and that light
does not hit the mirror behind the SLM or the focusing lens if the hologram is too
large. An example for a hologram that is too large can be seen in Figure 4.1 and com-
pared to the uncut hologram on the left in Figure 4.2. The edges on the bottom left
and right in the image are not reflected onto the image sensor due to the limited size
of the optics. Larger holograms also have a lower brightness because the intensity is
reduced if the same power of the diode laser is distributed over a larger area.

Figure 4.1: A hologram that is too large for the used setup

4.1.3 Shifting the Modulated Light away from the Zero-Order Reflection

The zero-order reflection from the SLM is the bright spot with the diffraction spikes
in the middle of the images in Figure 4.1 and Figure 4.2. It always appears at the same
position on the image sensor of the camera. A blazed grating phase pattern that is
applied to the SLM will shift the reflected light into different angles and the by the
SLM modulated beam appears at a different position on the image sensor relative to
the zero-order reflection. This effect of the for all later experiments used blazed grating
phase pattern with a period of 0.492mm is shown in Figure 4.2.
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(a)Without applied linear phase pattern (b)With applied linear phase pattern

Figure 4.2: Shifting the modulated beam away from the zero-order reflection

The zero-order reflection still appears at the same position on the image sensor, but
the modulated light is shifted to a different position on the image sensor which allows
to separate the modulated light from the zero-order reflection in the focal plane for all
later experiments. The zero-order reflection is also shifted away enough for all images
taken before and behind the focus to not influence the phase retrieval algorithm by
including unmodulated light.

4.1.4 Zernike Aberration Polynomials

The simulations and measurements of the aberrations in the focal plane that are in-
troduced by applying Zernike polynomials to the SLM are shown in Table 4.1. The
depicted bitmap phase patterns that correspond to phase shifts between 0 and 2π are
used for the simulations and the same patterns plus the correction pattern and blazed
grating phase pattern are uploaded to the SLM. The zero-order reflection is visible
below the depicted region of the measured focal plane and not considered anymore
because it does not affect the region of interest in the images. The measurements
generally agree very well with the simulations and it is apparent that it is possible to
introduce aberrations to the beam by applying Zernike polynomials to the SLM. Be-
cause an unaberrated wavefront is used for the simulations and the deviations of the
measured images from the simulations are very small, it can be concluded that the
aberrations of the beam before the modulation by the SLM have to be rather small.
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Table 4.1: Applied phase patterns on the SLM and the intensity in the focal plane

Zernike Indices
Aberration Phase Pattern Simulation Measurementn m

0 0 Unaberrated

2 0 Defocus

2 2
Vertical

Astigmatism

2 −2
Oblique

Astigmatism

3 1 Horizontal
Coma

3 −1 Vertical Coma

4 0 Primary
Spherical

3 3 Oblique Trefoil

3 −3 Vertical Trefoil

4 2
Secondary
Vertical

Astigmatism

4 −2
Secondary
Oblique

Astigmatism

4 4 Vertical
Tetrafoil

4 −4
Oblique
Tetrafoil
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4.2 Retrieving the Wavefront of Aberrated Beams

A typical development of the integratedmean-squared error of the differences between
the calculated and measured amplitude after each iteration of the phase retrieval algo-
rithm is shown in Figure 4.3. The integrated mean-squared error drops quickly during
the first 10 iterations of the algorithm. The reduction of this error after more than
100 iterations is typically very small and the computation of 100 iterations already
takes a few minutes. Therefore, the phase retrieval algorithm is always run for 100
iterations for all measurements.

100 101 102 103 104

Number of Iterations

0.008

0.0085

0.009

0.0095

0.01

0.0105

0.011

0.0115

0.012

0.0125

0.013

In
te

gr
at

ed
 S

qu
ar

ed
 E

rr
or

 (
a.

u.
)

Figure 4.3: Example for the reduction of the integrated mean-square error as a function of the number of
iterations for 10000 iterations of the algorithm for the measurement of the introduced aberration
of oblique trefoil

The results from the phase retrieval algorithm of the by the SLM introduced aberra-
tions yield similar retrieved phase patterns to the applied phase patterns for all tried
recording distances between 1.25mm and 7.5mm before and behind the focus. The
best results are obtained for images that are recorded 5mm before and behind the
focus. Those results are shown in Table 4.2. The position of the focal spot can be
determined to an accuracy of about 500µm with the camera on the translation stage
and leads to larger relative uncertainties for small recording distances from the focus.
Due to the superiority of the recording distance from the focus of 5mm, all future
images for the phase retrieval algorithm on this setup are recorded at this distance.
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The applied and retrieved amplitudes of the Zernike polynomials are shown in the
appendix. The results in Table 4.2 clearly show that it is possible to retrieve the aber-
rations of the beam with the phase retrieval algorithm. The phase patterns are shown
for the same size as the size of the active area of the SLM. All applied phase patterns
on the SLM can be reconstructed to a high visual similarity. The directly retrieved in-
terpolated phase maps look noisy compared to the applied phase patterns, but the size
and amplitude of the retrieved phase patterns generally matches the applied patterns
very well. Smoother and less noisy looking retrieved phase patterns are obtained if
the retrieved Zernike polynomials of the aberrations are used to construct the images.
The size of the Zernike polynomials is selected to match the beam diameter and have
the same height as the active area of the SLM because this corresponds very well to
the size of the directly retrieved phase patterns in the far field as shown in Table 4.2.

Table 4.2: Applied phase patterns on the SLM and the retrieved phase patterns with and without using Zernike
polynomials

Zernike Indices
Aberration Applied Retrieved Retrieved Zerniken m

2 0 Defocus

2 2
Vertical

Astigmatism

2 −2
Oblique

Astigmatism

3 1 Horizontal
Coma

3 −1 Vertical Coma

3 3 Oblique
Trefoil

3 −3 Vertical Trefoil

0 π 2π

Phase (rad)
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The linear combination of multiple Zernike polynomials that is applied to the SLM is
constructed by combining 0.5 times the Zernike polynomial corresponding to oblique
astigmatism plus 0.3 times horizontal coma plus 0.2 times vertical astigmatism and is
shown on the left in Figure 4.5. The amplitudes of the retrieved decomposed aberra-
tions are shown as the coefficient of the individual Zernike polynomials in Figure 4.4.
The coefficients of the individual Zernike polynomials are not recovered completely
and the amplitudes of the decomposed aberrations deviate from the applied ampli-
tudes by up to a value of 0.174 in the case of oblique astigmatism.
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Figure 4.4: Amplitudes of the applied aberrations and the retrieved aberrations as the coefficient of the de-
composed individual Zernike polynomials for the applied phase pattern constructed from a linear
combination of multiple Zernike polynomials

The directly retrieved interpolated phase pattern is shown in the middle of Figure 4.5
and the by the retrieved Zernike polynomials reconstructed phase pattern is shown
on the right-hand side of Figure 4.5. The retrieved phase patterns confirm the results
from the experiments with the individually applied Zernike phase patterns. The re-
trieved aberrations without Zernike polynomials match the size of the applied phase
pattern very well but the noisy looking image does not look completely similar to
the applied phase pattern. Despite the deviations of the retrieved amplitudes of the
Zernike polynomials shown in Figure 4.4, the phase pattern that is obtained from the
retrieved Zernike polynomials and shown on the right hand side of Figure 4.5 does
appear vastly similar to the applied phase pattern on the left of Figure 4.5.
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(a) Applied phase pattern (b) Retrieved phase pat-
tern

(c) Retrieved Zernike
phase pattern
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Figure 4.5: Applied phase pattern that is a linear combination of Zernike polynomials and the by the phase
retrieval algorithm retrieved phase patterns

The results from the retrieval of the phase patterns that are applied to the SLM show
that applied Zernike polynomials can be recovered very well if the retrieved Zernike
polynomials are used for the generation of the retrieved phase patterns. The directly
retrieved phase patterns without using Zernike polynomials give a lower visual simi-
larity to the applied phase patterns. At this point it is not absolutely certain that the
Zernike polynomials give the better retrieved aberrations for applied Zernike phase
patterns because it is also possible that the almost aberration-free incident beam al-
ready has small higher order aberrations that can not be described by the first ten
orders of Zernike polynomials or that further aberrations are introduced to the beam
behind the SLM that might also not be described so well by the first ten orders of
Zernike polynomials. It is therefore important to use and compare both methods for
the correction of aberrations in later experiments to verify that the first ten orders of
Zernike polynomials give a better description of the actual aberrations of the beam
and that the phase patterns without Zernike polynomials just contain random noise.

4.3 Characterization of the Terawatt Laser

Figure 4.6 shows the measurement of the wavefront of the terawatt laser by using the
Shack-Hartmann wavefront sensor. The first 20 Zernike Polynomials according to
the Fringe indexing scheme⁴⁵ without the first 4 polynomials are used to show the
aberrations of the beam. The aberrations that are shown on the left were measured
for a voltage map on the actuators of the deformable mirror that should have no
impact on the wavefront other than focusing the beam. Although those aberrations
are rather small with an average root mean square deviation of 0.0744 rad from a
perfect wavefront, the purpose of the deformablemirror is to correct those aberrations.
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A hill climbing algorithm was run with the software of the wavefront sensor and the
deformable mirror to correct the aberrations of the beam by applying a voltage map
to the electrodes of the piezoceramic material to deform the reflective surface of the
deformable mirror. The corrected wavefront of the terawatt laser is shown on the right
hand side of Figure 4.6 and shows that the deformable mirror does improve the wave-
front and the deviations from a perfect wavefront with this voltage map are reduced
to a root mean square error of 0.0330 rad. The improvements to the beam quality
are significant, but unfortunately smaller aberrations remain and the reasons for this
are unclear. It could be attributed to a number of factors ranging from imperfect
wavefront sensing or the possibility that the aberrations are not suited for correction
using the chosen deformable mirror to inherent limitations of the software employed
in adjusting the actuators of the deformable mirror.
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(a) Phase pattern of the beam for the no impact
map on the deformable mirror
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(b) Phase pattern of the beam for the hill climbing
optimized map on the deformable mirror

Figure 4.6: Wavefront of the terawatt laser obtained with the Shack-Hartmann wavefront sensor

To compare the measurements with the Shack-Hartmann wavefront sensor of the
aberrations with an independent alternative, the taken images before and behind the
focus of the leakage of the terawatt laser are used with the phase retrieval algorithm
to obtain the wavefront. The position of the camera where the beam diameter is
measured to be the smallest is taken as the focal spot. The distance of the camera
position of 37.5 cm from this focal spot is used for the recording of the images for the
phase retrieval algorithm. The use of other camera positions for the capturing of the
images for the phase retrieval algorithm leads to similar results. The aberrations for
both voltage maps on the deformable mirror that are directly shown as an interpolated
far field phase map of the retrieved phase are depicted in Figure 4.7.
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(a) Phase pattern of the beam for the no impact
map on the deformable mirror
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(b) Phase pattern of the beam for the hill climbing
optimized map on the deformable mirror

Figure 4.7: Wavefront of the terawatt laser obtained with the phase retrieval algorithm

To better compare the retrieved phase with the results from the Shack-Hartmann
wavefront sensor, the aberrations are expressed in terms of Zernike polynomials and
the same size and scale as for the Shack-Hartmann wavefront sensor measurements is
used. The measured aberrations are depicted in Figure 4.8 and confirm the reduction
of aberrations when the optimized voltage map is applied to the deformable mir-
ror. In particular, the RMS deviation from an unaberrated wavefront reduces from
0.0571 rad to 0.0224 rad.
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(a) Phase pattern of the beam for the no impact
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(b) Phase pattern of the beam for the hill climbing
optimized map on the deformable mirror

Figure 4.8: Wavefront of the terawatt laser obtained with the phase retrieval algorithm and expressed by the
first ten orders of Zernike polynomials
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Even though the results from the measurements with the two independent methods
do not match perfectly, the reduction of the aberrations by improvements to the wave-
front by the deformable mirror are confirmed by both the Shack-Hartmann wavefront
sensor and the phase retrieval algorithm to a reduction of the RMS deviations by a
factor of 2.25 and 2.55, respectively.

The reason for the differences in the measured aberrations between both methods is
not clear. It could be due to a change of the aberrations between the time of both
measurements or measurement uncertainties with the Shack-Hartmann wavefront
sensor or the phase retrieval algorithm but also due to different aberrations at the
location of the Shack-Hartmann wavefront sensor and the camera that is used for the
recording of the images for the phase retrieval algorithm. The focus mirror, the folding
cross and the mirror that is used to send the beam leakage along the beamline can all
have an impact on the wavefront that is measured with the phase retrieval algorithm
but not on the measurements by the Shack-Hartmann wavefront sensor as shown in
Figure 3.3. The passing of the focused beam through the substrate of a mirror of the
folding cross at an angle of incidence of 45◦ will also induce some aberrations to the
leakage. Future measurements on the same location of the beam with both methods
would clarify the validity of this theory, but the final shutdown of the terawatt laser
prevents this for now.

4.4 Focal Spot Optimization

4.4.1 Correcting Zernike Aberrations that are introduced by the SLM

The introduction of the aberrations by the SLM leads to a reduced peak intensity of
the focal spot. The application of the by the phase retrieval algorithm obtained cor-
rection patterns on top of the originally applied aberration patterns increases the peak
intensity again as shown in Table 4.3. All measured peak intensities of the aberrated
focal spot and the by the interpolated matrix corrected peak intensity in the focal spot
and the by the Zernike correction pattern corrected focal spot are all normalized to
the peak intensity of the not by the SLM aberrated focal spot.
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Table 4.3: Peak intensity normalized to the not by the SLM aberrated peak intensity in the focal spot

Zernike Indices
Aberration Uncorrected

Correction
Pattern

Zernike
Correctionn m

2 0 Defocus 0.265 1.018 1.071

2 2
Vertical

Astigmatism 0.465 0.969 0.978

2 −2
Oblique

Astigmatism 0.460 0.836 0.942

3 1 Horizontal
Coma 0.637 0.903 0.991

3 −1 Vertical Coma 0.456 0.562 0.872

3 3 Oblique Trefoil 0.518 0.845 0.912

3 −3 Vertical Trefoil 0.509 0.894 0.867

The results show that the peak intensity drops to an average value of 47.3% of the
original peak intensity if Zernike aberrations are introduced with the SLM. The cor-
rection of the aberrations with the from the phase retrieval algorithm obtained cor-
rection phase patterns on the SLM improves the focus substantially. The average
peak intensity for the correction phase patterns without using Zernike polynomials
increases to 86.1% of the original peak intensity of the beam without introduced
aberrations and increases the peak intensity by a factor of 1.82. The correction of the
aberrations with the Zernike polynomial correction patterns yields an average peak
intensity of 94.8% of the peak intensity with no aberration phase patterns applied to
the SLM and increases the peak intensity compared to the uncorrected aberrations by
a factor of 2.00.

The use of Zernike polynomials for the generation of the correction phase patterns
leads to better results than the use of correction phase patterns without using Zernike
polynomials in all cases for the introduced aberrations except vertical trefoil. This
could be due to the noise in the directly retrieved phase maps that is filtered by the
decomposition into Zernike polynomials but also due to the presence of just lower
order aberrations that were introduced in terms of Zernike polynomials.

It should be noted that the correction of defocus leads to higher peak intensities than
the measurement of the focal spot of the not by the SLM aberrated beam. This shows
that the SLM does not just manage to correct the aberrations that were introduced
by the SLM, but also the aberrations that are inherent to the setup. It can thus be
concluded that the incident beam is not completely aberration-free or that the initial
measurement of the unaberrated focal spot was not performed exactly in the focal
plane and that it should be possible to achieve an even higher peak intensity if the
almost unaberrated incident beam is corrected.
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As an alternative method to characterize the focal spot, the FWHM is also calculated
and normalized to the FWHM of the unaberrated beam of 21.235µm.

Table 4.4: FWHM normalized to the not by the SLM aberrated FWHM in the focal spot

Zernike Indices
Aberration Uncorrected

Correction
Pattern

Zernike
Correctionn m

2 0 Defocus 2.490 0.905 0.921

2 2
Vertical

Astigmatism 1.664 0.984 1.020

2 −2
Oblique

Astigmatism 1.662 1.014 1.046

3 1 Horizontal
Coma 1.132 0.978 1.047

3 −1 Vertical Coma 1.457 1.375 1.115

3 3 Oblique Trefoil 1.429 1.064 1.109

3 −3 Vertical Trefoil 1.462 1.079 1.126

The FWHM of the aberrated beams increased on average by 61.4% compared to
the focal spot without introduced aberrations.The FWHM of the focal spot for the
correction patterns without using Zernike polynomials is reduced to on average just
5.69% larger values than the FWHM of the unaberrated beam. The Zernike correc-
tion patterns reduce the FWHM of the focal spots to 5.48%more than the focal spot
of the beam without introduced aberrations. Both approaches to correct the aberra-
tions thus lead to on average very similar results in the improvement of the width of
the focal spot. The correction of vertical coma with the Zernike polynomial correc-
tion pattern leads to a much better result, but in all other cases the correction with the
Zernike polynomial correction patterns performed slightly worse than the correction
without using Zernike polynomials.

It is shown that the FWHM can be reduced by 34.50% by using the retrieved cor-
rection patterns without the use of Zernike polynomials and by 34.63% with using
Zernike polynomials for the correction pattern. Even though this shows a clear re-
duction in beam width and improvement of the focal spot, it is not clear how well the
parameter of FWHM actually describes strongly aberrated beam profiles. Gaussian
curves are fitted to all beam profiles to determine the FWHM, but strongly aberrated
beams do not have a Gaussian intensity distribution in the focal plane. The parameter
of the peak intensity in the focal spot is independent from any assumed beam profiles
and is probably a better indication of the quality of the focal spot.
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4.4.2 Correcting Complex Aberrations that are introduced by the SLM

Since the individual application of Zernike polynomials to the SLM and the correc-
tion of those aberrations led to promising results, it is now attempted to apply a linear
combination of multiple Zernike polynomials as an aberration phase pattern to the
SLM and to correct those aberrations. The applied pattern is randomly chosen as the
linear combination of 0.5 times the Zernike polynomial corresponding to oblique
astigmatism plus 0.3 times horizontal coma plus 0.2 times vertical astigmatism.

By retrieving the phase and correcting the aberrations, the peak intensity could be
increased and the FWHM is reduced for both applied correction phase patterns. For
the correction phase pattern without using Zernike polynomials, the peak intensity
compared to the aberrated beam could be increased by 17.54% and the FWHM is
reduced by 7.35%. The correction with Zernike polynomials leads to an increase in
peak intensity of 20.85% and reduction of FWHM of 9.75%.

4.4.3 Correcting Aberrations that are Introduced by a Tilted Lens

The tilt of the 2 inch lens leads to a shifted focal spot. The new focal spot is estimated
by moving the camera to the position where the beam appears the smallest and the
measured focal spot is shown on the left in Figure 4.10. The tilt around the vertical
axis of the lens introduces a strong aberration of vertical astigmatism as shown in
Figure 4.9.
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Figure 4.9: Amplitudes of the retrieved aberrations as the coefficient of the decomposed individual Zernike
polynomials for the uncorrected setup with the tilted lens
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The application of the retrieved correction phase pattern without the use of Zernike
polynomials leads to the improved focus that is depicted in the middle of Figure 4.10.
On the right-hand side of Figure 4.10, the by the retrieved Zernike correction pattern
improved focal spot is shown.

(a) Uncorrected focal spot of
the tilted lens

(b) Corrected without Zernike
polynomials

(c) Corrected with Zernike
polynomials

Figure 4.10: Measured focal spot of the setup with the tilted lens

The same camera settings have been used for the recording of the three images. It is
visually clear that the tilt of the lens introduces strong aberrations to the beam and
this is confirmed by the retrieved aberrations shown in Figure 4.9. The beam profile
does not look Gaussian and the peak intensity is low. Both correction patterns on the
SLM improve the focal spot substantially. In particular, the correction pattern that is
obtained from the interpolated retrieved phase pattern matrix in the far field increased
the peak intensity by a factor of 2.85 and reduced the FWHMof previously 40.42µm
to 18.68µm. The correction of the aberrations introduced by the tilted lens with the
correction pattern with Zernike polynomials, increases the peak intensity by a factor
of 2.79 and reduces the FWHM of the beam in the focus to 19.43µm.

This results show that it is not just possible to correct simple aberrations that are
introduced with the SLM, but that it is also possible to correct complex aberrations
that occur in typical optical setups both with and without using Zernike polynomials
for the generation of the correction phase patterns. In this example, the Zernike
polynomial correction pattern performs slightly worse than the correction pattern
without Zernike polynomials. This could be due to more complex aberrations that
are not described so well with just the first ten orders of Zernike polynomials. Just
the first ten Zernike polynomials still manage to improve the focal spot remarkably
and the use of more higher order Zernike polynomials could potentially lead to even
better results.
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4.4.4 Correcting Aberrations that are Inherent to the Setup

The application of the phase pattern that just contains the correction pattern for the
manufacturing imperfections of the SLM and the linear phase pattern leads to the
nearly unaberrated focal spot that is depicted on the left in Figure 4.11. The SLM
basically just reflects the light like a mirror without introducing any aberrations or
corrections to the wavefront. This nearly unaberrated beam profile has previously
been used for comparisons to aberrated and corrected beams. The correction of the
by the SLM introduced aberration of defocus as described in section 4.4.1 led to a
slightly higher peak intensity than the peak intensity of this nearly unaberrated focal
spot and indicated that it should be possible to improve the focal spot of this nearly
unaberrated beam either by correcting aberrations or shifting the focal spot exactly to
the position of the sensor of the camera.

Even though the setup has been carefully aligned, small misalignments remain in the
setup and it is possible to improve the focal spot slightly by applying the correction
patterns that are obtained from the phase retrieval algorithm to the SLM.The correc-
tion with the directly retrieved phase pattern without using Zernike polynomials im-
proves the peak intensity slightly by 2.49% but also increases the FWHMmarginally
by 0.32% and the focal spot is shown in the middle in Figure 4.11. The use of the
correction pattern that is based on Zernike polynomials yields the focal spot depicted
to the right-hand side of Figure 4.11. Compared to the uncorrected beam, the peak
intensity is increased by 4.15% and the FWHM decreases by 1.26%.

(a) Uncorrected focal spot of
the setup

(b) Corrected without Zernike
polynomials

(c) Corrected with Zernike
polynomials

Figure 4.11: Measured focal spot of the setup without any introduced aberrations

The correction of the remaining aberrations in the well-aligned setup is hence possible
but limited due to the small room for improvement of the already Gaussian looking
beam profile. The use of the correction pattern with the first 10 Zernike polynomials
yields the best results and indicates that the aberrations that are inherent to the setup
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can be described well by using those lower order Zernike polynomials.
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Chapter 5

Conclusion and Outlook

This project shows that setups containing adaptive optics can be used to improve the
focal spot of a laser beam. In particular, it was shown that by capturing two images
around the focus and using a phase retrieval algorithm it is possible to retrieve the
phase of a laser beam in the far field and that the obtained aberrations to the wavefront
can be corrected by using spatial light modulation to optimize the focal spot.

All aberrations that were introduced to the beam could be corrected very well by
both applying the correction phase pattern with and without Zernike polynomials.
The correction pattern that just applies a linear combination of the first ten orders
of Zernike polynomials seems to mostly lead to a better correction of the aberrations
than the direct use of the retrieved interpolated phase pattern without using Zernike
polynomials. This is especially true for simple aberrations that were introduced by
applying phase patterns corresponding to Zernike polynomials or linear combinations
of Zernike polynomials to the SLM. The peak intensity increased in all cases if either
of the two retrieved correction patterns was applied to the SLM, but the Zernike
polynomial phase patterns led to a better description of those wavefront aberrations
and to higher peak intensities of the corrected focal spots.

Complex and realistic aberrations that a misaligned and tilted lens introduces to a
beam could be corrected very well by applying correction patterns with and without
using Zernike polynomials to the SLM. Those experiments resulted in the only infe-
riority of the correction of the focal spot by using a correction pattern with Zernike
polynomials. This is likely due to the complexity of the introduced aberrations that
can not be described so well with just the first ten orders of Zernike polynomials. Fu-
ture experiments could investigate the use of more higher order Zernike polynomials
for the generation of the correction phase pattern. Those experiments would clarify
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whether Zernike polynomials always lead to a better correction of realistic aberrations
if the right number of Zernike polynomials are used, or if the direct correction by us-
ing the interpolated retrieved phase pattern leads to better results in certain cases. It
should be noted that the use of just the first ten orders of Zernike polynomials for the
generation of the correction phase pattern still leads to a considerable improvement
of the focal spot and just slightly smaller improvements to the focal spot than the use
of the correction pattern without Zernike polynomials.

Spatial light modulation in conjunction with this phase retrieval algorithm could be
used in almost every setup to improve the focal spot. This could be shown by improv-
ing the focal spot of a well-aligned setup that already produced a nearly unaberrated
focal spot before any wavefront corrections. The improvement to the focal spot are
limited by the minimum spot size that can physically be obtained and the focal spot
in an almost aberration-free setup can thus not be improved much.

The project shows that all aberrations on the built setup could be measured and cor-
rected reliably. Future work should replicate this focal spot optimization with dif-
ferent lasers and on different setups such as the intense XUV beamline of the Lund
High-Power Laser Facility. The beam size of this setup is larger than the size of the
used SLM and prevents a direct implementation. If a sufficiently large SLM that can
tolerate the high power of the laser would be implemented to the beamline or alterna-
tively a software for the already used deformable mirror that can correct aberrations
according to the specified Zernike polynomials of the aberrations would exist, then
the phase retrieval algorithm could be used together with the adaptive optics to cor-
rect the aberrations of the beam to improve the focal spot for all future experiments
on this beamline.
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Appendix

The amplitudes of the applied Zernike polynomials and the retrieved aberrations as
the coefficient of the decomposed Zernike polynomials that are used to generate the
retrieved Zernike phase patterns in Table 4.2 are shown in the following figures.
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Figure 1: Applied aberration: Defocus

Def
oc

us

Obli
qu

e 
Asti

gm
at

ism

Ver
tic

al 
Asti

gm
at

ism

Ver
tic

al 
Tre

fo
il

Ver
tic

al 
Com

a

Hor
izo

nt
al 

Com
a

Obli
qu

e 
Tre

fo
il

0

0.2

0.4

0.6

0.8

1

A
m

pl
itu

de

Applied Amplitude
Retrieved Amplitudes

Figure 2: Applied aberration: Vertical Astigmatism
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Figure 3: Applied aberration: Oblique Astigmatism
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Figure 4: Applied aberration: Horizontal Coma
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Figure 5: Applied aberration: Vertical Coma
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Figure 6: Applied aberration: Oblique Trefoil
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Figure 7: Applied aberration: Vertical Trefoil
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