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Abstract

LiDAR point clouds are often incomplete due to a single viewpoint, or blockage
and are therefore hard to interpret. In this thesis, we are evaluating different
ways of visualizing annotated data in a point cloud and how to implement the
different methods. We then present our contributions.

First, we evaluate a ground mesh based on the Poisson Surface Reconstruc-
tion method and Ball Pivoting Algorithm. Visualizing cars was done by predict-
ing their shape with the neural network PoinTr. We concluded that pedestrian
point clouds are too sparse to be able to visualize with the methods available
today. The last thing to be evaluated was trees which were visualized with a
rotation method combined with a mesh.

Our results show the difference made by visualizing objects in the point
cloud. We conclude the report with a discussion about the results and future
directions for work in this area.

Keywords: LiDAR, point cloud, Machine Learning, reconstruction, visualization
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Chapter 1

Introduction

Light detection and ranging, LiDAR, is a technology combining 3D- and laser scanning,
which has become increasingly popular in a variety of applications. It can be used to make
3D-representations of surface areas and objects. LiDAR is often used in topology mapping
or navigation for autonomous cars. However, more and more security systems are starting to
use sensors, such as a LiDAR sensor, that generate 3D data to perceive the world around them
and to detect and track people. It can be used to complement or to replace a camera. Often
in surveillance, the sensors are static as opposed to a moving sensor regarding autonomous
cars.

Today, software can detect and track pedestrians and cars. This technology returns an-
notated data, which in this project will be used to visualize objects in a 3D world. The goal is
that after the visualization, a person with an untrained eye should be able to quickly identify
the different objects. This thesis will focus on the visualization of the static objects, ground
and trees, and the dynamic objects, cars and pedestrians. These objects will be evaluated
individually and in their context.

LiDAR sensors have the potential to complement cameras by visualizing environments
in ways cameras are not able to. This could make surveillance more efficient, but for this
technology to become valuable, the LiDAR sensors data have to be interpreted by an operator.
The large size and complexity of LiDAR point clouds can make visualization challenging. Our
approach is a combination of dimension reduction, prediction and meshing. We evaluate and
discuss the performance of different methods and approaches.

1.1 Task and purpose
The focus of this thesis was to visualize points in a point cloud in order to make it easier for
a LiDAR system operator to detect what is displayed. The points have already been grouped
together and objects identified and the points have been annotated with this data. Objects
should be easier to identify, by making them look more realistic. The thesis will focus on
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1. Introduction

what methods to use and how to implement them. The question to be answered in this thesis
is how to visualize our chosen objects and is it afterwards easier to identify and classify them?

The objects that this thesis will be focus on is the ground, the cars, the pedestrians and the
trees. The static ground is occluded by other objects, these occlusions should be filled. Cars,
pedestrians and trees should visually be improved upon as they will suffer from self-occlusion
and may be occluded by other objects.

A secondary task was to reduce the computing time. The implementation will run on
a system with limited processing power, which means that the algorithms created should be
optimized. The visualization should be able to be done in real time but not be too demanding
for the microprocessor. Since it has been a secondary task, the focus has not been to reduce the
computing time. However, it has been used as a deciding factor if two methods are otherwise
equal.

1.2 Limitations and assumptions
Due to lack of annotated data from a real LiDAR sensor, most of the data used for training
and testing was generated with a simulation tool. The simulated data takes realistic noise
and similar variables into account, but the disadvantage of never being truly realistic exists.

Since only a stationary LiDAR sensor is considered in this thesis, all background will be
static background and present in every frame.

Earlier work of detecting certain objects exists, but some objects, for example the ground,
are not currently annotated from real LiDAR data and are not distinguished from other
static objects, such as buildings. This thesis work is based on data where objects, including
the ground, is categorized in types and clusters. Which means this work is located some-
what in the future and that problems like this must be resolved before this solution can be
implemented in full.

1.3 Related work
Earlier work has developed technology to find, classify and track different kind of objects
[1], [4], [6] and [12]. In [1] and [4], the focus was mainly on detecting, classifying and tracking
pedestrians. In [12], beyond pedestrians, cars and animals were classified. The work done
in [6], improved the background model and researched methods for detecting ground and
vegetation.

In [11] and [2], different methods for reconstruction and meshing point clouds are pre-
sented. The method in [2], the Ball-Pivoting Algorithm, presents a dynamic way of com-
puting a mesh. Meanwhile the method presented in [11], Poisson Surface Reconstruction,
considers all the points at once and creates a mathematical function representing a surface.

The papers [16], [15] and [8] each presents a point cloud completion network, PCN, a
neural network designed to predict and fill missing parts of a point cloud. A lot of the work
within point cloud completion are developments from PointNet and PointNet++, [13]. Point-
Net is an architecture that is designed to help process point cloud data. The architecture
consists of a neural network that is permutationally invariant. The neural network can pro-
cess the whole point cloud, rather than having to rely on local data or a limited set of input
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1.4 Disposition

points. PointNet++ is a further development of the architecture, that is able to take advantage
of smaller clusters in order to capture both global and local structures.

The network PoinTr, see [15], is one of the latest point cloud completion networks. It is
a transformer-based model that is geometry-aware, meaning that it takes into account the
geometry of the point cloud while completing it. Being a transformer-based model, it uses a
self-attention and a cross-attention mechanism as well as something that is usually present
in a transformer model, an encoder decoder architecture. This is a model that previously has
been shown to work in tasks like text translation and question answering and now also point
completion.

Human pose estimation is a research area extensive for single view RGB-images, however
more and more research on human pose estimation for point clouds is being done. In [14],
a deep learning framework for skeleton extraction of human point clusters have been devel-
oped. In [9] and [5] human shape reconstruction of point clouds has been explored, where
both single-view and complete dense point clouds are used to reconstruct human models.

1.4 Disposition
In all of the chapters, the following objects are presented in the following order, ground,
cars, pedestrians and trees. Chapter 2 gives a background to the theory and tools used in this
thesis.

In Chapter 3 we use the presented theory to create methods for visualization. All of the
methods used to visualize objects are presented in this chapter.

The results of our visualizations are presented in Chapter 4. Images of our visualizations,
together with data received from our methods are included.

In Chapter 5, we discuss the results and explain which methods we recommend for visu-
alizing our chosen objects in a point cloud. Advantages and disadvantages of the different
methods are presented.

1.5 Statement of Contribution
During the project, Philip Afsén and Kasper Boye Frick have been working very closely to-
gether. The work has been divided evenly, Kasper Boye Frick has mainly been working with
cars and trees, while Philip Afsén has been focusing on the ground and pedestrians. Both
authors have together discussed and developed the final results.
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Chapter 2

Background

In this chapter we introduce and describe many of the concepts and the theory related to
this work. Firstly, we describe a LiDAR sensor and the simulated data that is generated to
represent real LiDAR sensor data.

Afterwards we present the theory that lies behind the main focus areas of the report and
some of the methods that were used in the visualization of these objects.

2.1 LiDAR sensor

The LiDAR sensor scans the environment by using laser pulses and their reflection to get a
3D representation of objects and surfaces. The data is presented as a 3D point cloud, i.e. a
set of discrete points in space.

A LiDAR sensors light beam hits objects in the field of view and bounces back to the
sensor where the beam is detected and measured. Distance is determined by recording the
time between transmission and detection, by using the speed of light to calculate the distance
traveled.

The number of sample points are directly negatively correlated to the amount of frames
per second. Therefore, increasing the number of sample points causes fewer frames per sec-
ond.

Since the sensor in this scenario is static, the scan pattern and distribution can be altered
to be denser in certain parts of the field of view. This will be mentioned in Section 2.2 and
further be discussed in Section 5.1.

LiDAR sensor specifications are presented in Table 2.1.

9



2. Background

Table 2.1: LiDAR sensor specifications

Vertical angle 120°
Horizontal angle 26°

FPS 1-10
Vertical number of points 95

Horizontal number of points 1200

2.2 Simulated data
As mentioned above, an alternative to using real LiDAR data is generating simulated data.
In this work the game engine Unreal Engine has been used for LiDAR simulations. There is a
vast number of settings which can be used to make the simulations more realistic, including
the introduction of noise and bounces. This will be further discussed in Section 3.1.

2.3 Ground representation
As mentioned earlier, the point cloud contains differently shaped occlusions that are formed
behind different objects, quite similar to normal shadows created by light. These occlusions
are introduced to the point cloud due to the LiDAR light beam bouncing off the first object,
not being able to reach the background object, similar to how objects become occluded in
normal photography. This is something that is prominent on large objects like the ground
because there is a higher probability for other objects to occlude it, while smaller objects have
a limited area that can be occluded.

Figure 2.1: Displays an unedited point cloud
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2.3 Ground representation

The ground requires different methods than the other objects to visualize, due to its
larger size and static nature. By defining the ground and then visualizing it, the other objects
become easier to identify.

In Figure 2.1, a raw point cloud is shown. This point cloud is unedited and directly im-
ported to a visualization tool. It is not viewed from the same point of view as the LiDAR
sensor. The aforementioned shadows from objects are also present in the figure, most promi-
nently on the ground and the building. It can be quite hard for the untrained eye to see what
this point cloud is representing.

2.3.1 Ball-Pivoting Algorithm
The Ball-Pivoting Algorithm, BPA, as explained in [2], is a method used to create a triangle
mesh for surface reconstruction in a point cloud. As the name suggests, the algorithm can
be explained by considering a "pivoting ball" with a user defined radius. The ball is placed
such that it touches three points in the point cloud, forming a triangle. The ball then "pivots"
around a line connecting two of these points, searching for a new third point to touch. When
it finds one, a new triangle is created. This process continues, with the ball repeatedly piv-
oting and creating new triangles, until a mesh of interconnected triangles is formed, which
interpolates the surface of the original point cloud. This process can be seen visualized in 2D
in Figure 2.2.

Figure 2.2: How a Ball-Pivoting Algorithm works, from [3]

2.3.2 Poisson Surface Reconstruction
Poisson Surface Reconstruction, is based on a mathematical formula which considers all
points at once, in contrast to BPA. Surface reconstruction is an inverse problem, where the
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2. Background

goal is to model a smooth and watertight surface based on the large number of points an-
notated as ground points. This method utilizes Poisson’s equation to solve the problem, by
reconstructing an implicit function whose value is zero at the points and whose gradient at
the point equals the normal vectors. A more detailed description of the mathematics behind
the Poisson equation can be found in [11].

Figure 2.3: Reconstructions of a model at depths 6 (top), 8 (middle),
and 10 (bottom), from [11]

There are a few key parameters that can be adjusted in this method, including scale and
depth. These two parameters are interrelated and the appropriate values depend on the char-
acteristics of the input point cloud. The depth affects the resolution of the surface, where
a higher depth results in a more detailed reconstruction as you can see in Figure 2.3. The
scale parameter specifies the size of the input point cloud and determines the size of the out-
put mesh. A larger scale will result in a larger mesh, while a smaller scale value will create a
smaller mesh.

2.4 Cars
Figure 2.4 shows how a car could look in a point cloud. It is a relatively big cluster and a car
far from the sensor can in comparison be very sparse. Depending on the car’s direction, it can
be hard to identify that the cluster is a car. This is due to the fact that the car often creates a

12



2.4 Cars

long and broad occlusion, which blocks the view behind it. That occlusion is also cast upon
itself and therefore we do not get a full cloud of a car, instead we only get a portion of it.
This means that some views of a car can be hard to identify, due to the rest of the car being
missing in the point cloud.

(a)
Car
seen
from
above

(b) Car seen from the side

Figure 2.4: Car point cloud from two angles

When using the network PoinTr [15], an important thing to keep in mind is to standardize
the input data in order to make it resemble the structure of the training data. Otherwise, the
model will make assumptions about the geometry and try to fill in parts that are not correct.
The training data that we have used, explained further on in Section 2.4.2, consists in part of
cars that are oriented the same way, scaled the same way and are all centered in the origin.
Therefore, it is needed to mimic PoinTr’s standardization, in order to achieve the best results
from the model.

2.4.1 Rotation
We divided the task of standardizing our car clusters into three tasks, translating, scaling and
rotating the car. The translation and scaling will be described more in Section 3.3 as well as
the different rotation methods.

Principal Component Analysis
The principal component analysis, PCA, is a statistical technique of analyzing data sets with
a high number of dimensions. It does this by identifying the directions, or principal compo-
nents, in the data that capture the maximum amount of variance. This results in a reduced
set of variables that still contains the main characteristics from the original data set. PCA is
further explained in [10] and the steps of PCA is presented in 3.3.3.
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2. Background

Minimum bounding box
A minimum bounding box, often the shape of a cuboid, is a volume in which all points
lie within. The shape of a cuboid makes it easy to find the direction of the box. A lot of
bounding box implementations exist and a problem with a minimum bounding box is that
it is not always aligned with the actual car.

L-Shape method
As can be deducted from Subfigure 2.4a, a car point cloud is usually in the shape of the capital
letter, "L". Whenever the view is not straight ahead at the front or the back, two sides will
be visible and look like the letter "L". When viewed through a LiDAR, this turns into an L-
shaped outline of points and this phenomenon is the inspiration behind the L-shape method.
The L-Shape fitting method described in [17] is used as vehicle orientation detection. It is
an optimization method which finds the rectangle that best fits the points of the cluster, an
illustration of the rectangle optimization is found in Figure 2.5.

Figure 2.5: Illustration of the L-shape method from [17]

Kalman filter
The object tracker initially created in [12] has been further developed and a Kalman filter is
now used to predict the future position of the object.

The Kalman filter is a recursive algorithm widely used in control theory. By using a series
of noisy observable measurements over a specific time, it produces an estimation of unknown
variables and makes a prediction of the next measurement. The Kalman filter algorithm
consists of two main steps, prediction and updating. These two steps will be repeated as
long as the algorithm is running. Since it uses a series of measurements, the estimation will
initially be erroneous, but for each frame the accuracy will be improved. The algorithm can
be used in many areas, it can be applied to objects in point clouds by estimating where the
object cluster will be in the next frame. By estimating where the object will be in the next
frame, a velocity vector can be calculated and could potentially be used to get a more accurate
orientation of the car.
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2.5 Pedestrians

2.4.2 Prediction

A point completion network is a type of machine learning model that is designed to fill in
missing or incomplete data points in a given data set. This is typically done by predicting
the values of the missing data points based on the information provided by the rest of the
training set.

The neural network used to predict the shape of cars in this thesis is based on the code
from the model PoinTr [15]. It is designed for point cloud completion and adopts a trans-
former encoder-decoder architecture. The pipeline of the model consists of firstly down-
sampling inputs to center points and then afterwards extracting local features around those
center points. After that predicting the center points of the missing parts and lastly extrapo-
lating the predicted points from a coarse and sparse point cloud to a finer and denser cloud.

The PoinTr model used was pretrained on a few different data sets. For predictions made
in this thesis, the PoinTr model was pretrained on the PCN data set, described in [16]. This
data set contains raw point cloud data of 8 categories, airplanes, cabinets, cars, chairs, lamps,
sofas, tables and vessels.

The KITTI data set is frequently used in autonomous driving research, a more detailed
explanation can be seen in [7]. It contains a lot of raw car point clouds from every possible
angle that is often used for testing purposes. The connection between KITTI and PoinTr will
be presented in Section 3.3.

2.5 Pedestrians

Pedestrians in point clouds can look very differently depending on their pose and which
direction they are facing towards the sensor. Far away from the sensor, a pedestrian can
have very few points representing it. A lot of pose estimation that exists uses single view
RGB-images. Some research exists relating to pose estimation in point clouds, for example
Pointskel-cnn [14] and [9], though the point clouds used are very dense and often have points
on all sides of the pedestrian, something that is not possible to be captured with one sta-
tionary LiDAR sensor. Figure 2.6 shows one pedestrian from different viewpoints and with
different point densities.
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2. Background

(a)
Dense,
side
view

(b)
Sparse,
side
view

(c)
Dense,
front
view

Figure 2.6: One pedestrian from different viewpoints and different
point densities

2.6 Trees
In order to understand a point cloud and what is being illustrated, it can be crucial to use
static objects as references. From this, one can infer, that it would be important to visualize
these objects accurately, and not only to visualize dynamic objects. Next object to be visual-
ized in this thesis are trees. The difficulties with trees lie within their different shapes, sizes
and different vegetation. They can be hard to classify, partly because they can move in the
wind and since a tree’s leaves can be very sparse. Figure 2.7 displays an unedited tree, the left
side showing a lack of points.
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2.6 Trees

Figure 2.7: Image of an unedited tree

2.6.1 Alpha shape mesh
The triangle meshing method Alpha shape is another way to represent the shape of a set of
points in space. It is based on the parameter name alpha value, which is the value affecting
how detailed the mesh will be. The smaller the alpha value is, the fewer triangles in the mesh,
resulting in a simpler and more coarse shape.
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Chapter 3

Method & implementation

This chapter describes the methods we have chosen in our work and the reasoning behind
our choices. A description how these methods were implemented will also be included in
this chapter.

Initially we will describe how we generated the data used in this work and how we set up
the simulation tool to imitate real LiDAR sensor data.

Afterwards we will present which ground meshing methods were evaluated and how we
implemented and compared them.

In the Section 3.3, we describe how we implemented the neural network, PoinTr, that
was used to visualize cars. We also present what methods were used to standardize our input
point clouds in order to meet the requirements as input data to the network.

Lastly, we will present the methods used for visualizing pedestrians and trees, and how
we implemented these methods.

3.1 Data gathering
To create realistic LiDAR data in Unreal Engine, a few key settings have been used. The
settings and their values are presented in Table 3.1.

Introducing bounce error in the simulation increases the realism. This means that when
the light beam bounces back, it bounces with an angle that has an introduced random error.
The error is randomized between zero and the max bounce error value.

Likewise, to introduce noise the point measured is moved in a random direction between
zero and the max point error.

The max line error is a type of noise, which is introduced to create a natural looking
pattern for the horizontal scan line.

These values of settings have been experimentally produced to make the simulated data
resemble real LiDAR data.

19



3. Method & implementation

Table 3.1: Unreal Engine simulation LiDAR sensor settings

Setting Value
Max bounce error 0.016
Max point error 0.056
Max line error 0.058

Different scan patterns have been evaluated for different types of objects regarding their
visualization. Figure 3.2 shows two distribution curves, which shows how the LiDAR sensors
horizontal lines were distributed in the field of view. To get a more evenly distributed scan
pattern for the ground, the distribution curve used in Subfigure 3.1a has been applied. This
means that the angle between the horizontal lines were constant. The distribution curve used
in Subfigure 3.1b is mainly applied when focusing on dynamic objects. This will be further
discussed in Section 5.1.

(a) A linear dis-
tribution curve

(b) An empirical
researched dis-
tribution curve

Figure 3.1: Distribution curves, density on the y-axis and distance
on the x-axis.

3.2 Ground
In this part, we present the implementation of the Ball-Pivoting Algorithm and the Poisson
Surface Reconstruction.

3.2.1 Ball-Pivoting Algorithm
BPA exists as an implementation in Python libraries, which we used to mesh the ground. As
mentioned in Section 2.3.1 the only parameter that is used in this method is the radius. We
experimented with different radii in order to get a satisfying result. A radius too small could
result in a "ball" that was too small, only being able to reach nearby points in the cloud. It
would fail to reach where the scan pattern created by the LiDAR sensor was too sparse or
where there were occlusions left by other objects. This would lead to the algorithm creating
holes in the ground mesh, something that can be seen exemplified in Subfigure 3.2a
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3.2 Ground

A radius too big could result in a mesh with big and overfitted triangles as the "ball" could
reach points from too far away when not trying to bridge a gap in points. When the ground
was curved or had height differences the algorithm would also be prone to miss data points
as shown in Subfigure 3.2b.

(a) A Ball-
Pivoting Algo-
rithm with a too
small radius, from
[3]

(b) A Ball-
Pivoting
Algorithm with
a too large
radius, also
from [3]

Figure 3.2: Ball-Pivoting Algorithms with bad radii

Increasing the radius also increased the time to execute the algorithm, where a large radius
would not complete in a satisfactory time. In the end we concluded that the radius, r =
24 ∗ avg gave the best result in a trade-off between the problems with a small radius and the
problems with a big radius. avg stands for the average distance from each point in the point
cloud to the nearest other point in the same cloud.

3.2.2 Poisson Surface Reconstruction
The Poisson Surface Reconstruction technique was implemented in a Python library. The
library provided us with a range of options for customizing the mesh, including depth and
scale parameters. By tweaking these parameters, we were able to generate meshes that more
closely resembled the actual ground surface. We conducted multiple experiments, trying
different combinations of depth and scale values, in order to find the optimal settings for
our specific data sets.

Since the output mesh of the method does not always lie within the points as the mesh
should, a minimal bounding box was created around the ground point cluster. The surface
was then limited to only show the parts that were inside the bounding box.
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3.3 Cars
As mentioned in Section 2.4.2, the network’s input data was based on the data set of the PCN
data set. The KITTI data set, also mentioned earlier, containing car point clouds from real
LiDAR sensor scans was used as validation data, or test data. In the PoinTr paper [15] it was
shown that using the PoinTr model, pretrained on the PCN data set and validating with the
KITTI data set generated the results closest to the ground truth. However, all of the input
data in the PoinTr model had to be standardized in a specific way before predicting the cars
shape.

A car cluster was scaled to have a maximum length of 1. The cluster was translated and
placed in the origin. Then the data was rotated such that the long side was parallel to the
x-axis and the front of the car was parallel to the y-axis.

As mentioned, to predict a shape of a car with the PoinTr network, our cars had to be
standardized first. Then the prediction could be made. After this, the standardization needed
to be reversed in order to position the car cluster back to its original place in the world.

3.3.1 Translation
To move the data points along an axis in the coordinate system the following method was
used. By using

xtemp = xold − xmin (3.1)

on each point’s x-coordinate, the cluster is shifted to x = 0, where xmin is the minimum value
of all the point’s x-coordinates. Next, by using

xnew = xtemp −
xmax

2
(3.2)

on the temporary cluster’s x-coordinates, its length is now equal on both sides of the x = 0,
where xmax is the maximum value of all the point’s x-coordinates in the temporary cluster.

By doing the same method for the y-coordinates, the cluster is centered at the origin.
The data was not normalized in regard to the z-axis. This is because of the assumption

that the cars on flat ground already were correctly translated in the z-plane, as were the input
data to the network.

3.3.2 Scaling
To scale an entire cluster and keep the length ratio intact, the equation

nnew =
nold

2 ∗ nmax
(3.3)

was used, where nmax is the absolute maximum value of any x-, y- or z-coordinate value. The
reason for having a 2 in the denominator is because of the translation method explained
above.

This was done for every point’s x-, y- and z-coordinate value.
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3.3.3 Rotation
A human can with little effort look at a dense car point cloud and determine its orientation.
Even with an incomplete point cloud, a human can often determine which direction the car
should have. For a computer it is not as simple. The incomplete cloud can take many different
shapes and the points are unordered.

The network’s training data, the PCN data set [16], consisted of cars perfectly aligned
along the x-axis. And the test data, the KITTI data set, consisted of cars with bounding
boxes, perfectly aligned along the car’s direction. This information was not available on cars
in a raw LiDAR data point cloud.

To rotate a car cluster the three methods, PCA, creating a minimum bounding box and
the L-shape method, were compared and evaluated. In this section the implementation of
these methods will be presented, and later discussed more in detail in Section 5.2.

Principal Component Analysis
When applying the PCA to a data set, the first step is to center the data by subtracting the
mean from each variable. This is done to ensure that the captured direction is the maximum
amount of variance, rather than the direction of the mean. Next, the covariance matrix of
the data is calculated, which contains the information about the correlation between the
variables. The principal components correspond to the eigenvectors of the covariance matrix.
From the principal components of the data set, a rotational matrix could be calculated. This
was later used to rotate the car cluster, aligning it parallel to the global axis. The process of
finding the rotational matrix with PCA is shown in the list below.

1. Find the center of the data set.

2. Compute the covariance matrix.

3. Calculate the eigenvectors of the covariance matrix.

4. Calculate the rotation matrix.

Minimum Bounding Box
Creating a minimum bounding box can be done by determining the coordinates of the ob-
ject’s vertices. Once these are obtained, the box can be constructed by finding the maximum
and minimum values of these coordinates along each dimension.

L-shape method
As mentioned above a car cluster often has the shape of the capital letter, "L". From the pseudo
code presented in [17], the L-shape method was implemented. By finding two points with the
largest distance from each other in the cluster we find the sought diagonal. We iterate through
all possible directions of a rectangle to find the optimal angle of the rectangle in combination
with a minimal area of the rectangle. The angle of the rectangle is also the rotation angle of
the car. Using the angle, a rotation matrix can be computed. Below, the steps of the L-shape
method are presented.
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1. Find the two points with the largest distance, along the rectangles diagonal.

2. Measure the rectangle diagonal angle error.

3. Check the minimal area criterion.

4. Iterate through all possible directions of the rectangle and repeat steps 2 and 3.

5. Compute the rotation matrix.

Kalman filter
The Kalman filter outputs a velocity vector, which has a direction and a magnitude. From
this, the angle for the rotation matrix can be calculated in order to rotate the car cluster,
using dot product.

3.3.4 Prediction
PoinTr had many features. To lower the computational time, we reduced the pipeline and
trimmed it down to the essential features before we used it to solve our problem.

After translating, scaling and rotating, the car cluster is now oriented as the network’s
training data is. We use the PoinTr network to predict the cars shape.

Following the prediction, the car should be introduced back into the world. To do this,
the three standardization methods were simply done in reverse.

3.4 Pedestrians
As mentioned earlier, we realized in the research process that most of the existing recon-
struction methods or pose estimations required very dense or extensive point clusters. We
decided to go with another way to visualize pedestrians.

To visualize pedestrian point clouds, we began with applying a color to the cluster, and
then created a cylinder that originated from the center of the cluster with its circular bases
parallel to the x-y plane. We chose to make the cylinder the same size for each pedestrian
cluster instead of determining the size of the cylinder based on the size of the cluster. Af-
ter that we colored the cylinder a different color than the cluster, also making the cylinder
partially transparent. This meant that the original cluster of points were visible through the
cylinder.

3.5 Trees
A tree can be thought of as a cylinder when thinking about symmetry. If one in presented
with a slice of 25 percent of a cylinder which should be reconstructed, the easy solution would
be to rotate the slice in 90 degree intervals and adding that same slice each interval.

To reconstruct the trees, we reasoned that we usually got 25-50 percent of the circumfer-
ence of the trees. In order to be on the safe side, we rotate our slice four times around the
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z-axis and adding the points each time to get the entire tree. In some cases, the tree slices
overlap somewhat.

After we reconstruct a tree, we separate the stem from the crown of the tree by calculating
where on the tree the average diameter increases by a certain percentage. This is done by
separating the tree into blocks of the same height and comparing the maximum diameter of
the block to the block over it, starting from the bottom. When we hit a block where the
difference is over our cutoff percentage, we assume that is where the crown starts. With this
height determined, we can then color the different parts of the tree into different colors.

When we have reconstructed the point cluster, we use another meshing method in Python
libraries called Alpha shape. By visual determination, we concluded that the value alpha =
120 gave the most realistic looking mesh. The color used by the mesh is inherited from the
color we used for the cluster. We also make the mesh partially transparent and as is the case
with pedestrians, the points in the cluster become visible.
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Chapter 4

Results

In this chapter the results of the previously mentioned methods are presented.

4.1 Ground
In this part the results from the two surface meshing methods BPA and Poisson Surface Re-
construction will be presented. First, we present the world only colorized but not otherwise
edited, see Figure 4.1

Figure 4.1: Image of the initial world colorized
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4.1.1 Ball-Pivoting Algorithm
The mesh created using BPA is presented in Figure 4.2. It is shown that most of the ground
is in fact meshed with this method but as the point cloud becomes more sparse, closer to the
horizon, the mesh stops being continuous and instead produces holes in the ground.

Figure 4.2: Image of a ground mesh constructed from the BPA

4.1.2 Poisson Surface Reconstruction
By visual determination, we concluded that the parameter values presented in Table 4.1 gave
the best mesh results.

Table 4.1: Poisson Surface Reconstruction parameters

Parameter Value
Scale 3
Depth 6

From the Poisson Surface Reconstruction method with the parameter values presented
above, the mesh created is shown in Figure 4.3.

4.2 Cars
In this part we present images on the results we have acquired, using our mentioned methods.

The results for the two rotation methods, PCA and L-shape method will be presented.
Next, the results of the prediction based on both rotation methods will be presented.
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4.2 Cars

Figure 4.3: Image of a ground mesh constructed from the Poisson
Surface Reconstruction method

4.2.1 Rotation
From the rotation methods a direction vector is calculated. Below, in Table 4.2 we present
three angular errors between the angle calculated and the ground truth. These angular errors
have been calculated based on the values contained in the table in Appendix A.1, the values
are also presented as a graph in Appendix A.1.

Table 4.2: Table showing data of the direction vector from the PCA,
L-shape and Kalman methods. All angles are presented in degrees.

PCA L-shape Kalman
Maximum angular error 41.546 17.251 31.313
Minimum angular error 0.564 0.237 0.065

Mean angular error 14.664 6.885 8.336
Median angular error 12.548 6.288 3.547

Percentage closest prediction 9.8 37.7 52.5

These values have been calculated from a car point cloud which was simulated. The car
traveled along a handmade spline, made to capture all sides of the car at one point or another.

4.2.2 Prediction
An image of a predicted car from the side view is shown in Figure 4.4. The side far away
from the viewer has tires with denser points than the side closest, this is is a phenomenon
depending on which side the original points have been located.

In Figure 4.5 two predicted cars based on two different rotation methods are shown. The
cars rear sides, the left sides, are not the same width.
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Figure 4.4: Image of a predicted car from the side view

(a) L-shape rota-
tion

(b) PCA rotation

Figure 4.5: Predicted car based on rotation method, seen from above

4.3 Pedestrians

An image of a visualized pedestrian is shown in Figure 4.6. The half transparent cylinder
contains the human point cluster, which is sparse and can be hard to see.
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Figure 4.6: Image of visualized pedestrian

4.4 Trees
The results of our tree visualization are shown in Figure 4.7. This tree is also half transparent,
showing the points inside of it. However these are the points after the rotation. As mentioned
in 3.5, by visual comparison, we came to the conclusion that the value alpha = 120, gave the
best mesh. This will be explained and justified further in Section 5.4.

Figure 4.7: Image of meshed tree
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4.5 World
Shown in Figure 4.8 is the entire world where all of the objects are visualized with our meth-
ods.

• The ground is meshed with Poisson Surface Reconstruction.

• The cars are predicted with the PoinTr network.

• The pedestrians are visualized with a translucent cylinder.

• The trees are meshed and colorized in different colors.

Figure 4.8: Image of the entire visualized world, containing all mod-
ified objects
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Chapter 5

Discussion

5.1 Ground
Visualizing the ground is one of the most computationally heavy actions in our implementa-
tion. Since this work is supposed to run in real time on a limited system, some of the heavy
work must be moved away from the limited system. One way to do this is to render the static
parts, such as the ground and trees, once during the startup of the system, or on a schedule
to reflect changes that may occur. Then only visualize the dynamic objects in real time for
each frame, since they are more prone to changes. By doing this the point distribution of the
LiDAR scanner that was mentioned earlier can be adjusted accordingly and the time versus
point cloud density trade off can be minimized.

During the frames which lay the basis for static visualization, a very dense point cloud
can be scanned since there is little limitation of time and a specific point distribution to
maximize the points that represent the ground can be used. When scanning dynamic objects
in real time a sparser point cloud might have to be used, since a higher FPS is usually preferred.
Instead, a different point distribution which is denser where dynamic objects usually move
may also be utilized.

5.1.1 Surface Reconstruction
Both the BPA and Poisson Surface Reconstruction solve the two problems of filling in the
shadows that result from other objects and creating a mesh for the ground. However, as can
be seen when comparing Figure 4.2 and Figure 4.3, the mesh from Poisson Surface Recon-
struction, based on the mathematical formula, is more continuous and has less holes further
from the LiDAR sensor. Not only does BPA have trouble filling holes when the ground be-
comes more sparse but is also faulty when big shadows disrupt the ground point cloud.

Unlike BPA, Poisson Surface Reconstruction considers all the points in a mathematical
formula, making it more resilient to noise and other disturbances. Another thing that differs
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with the Poisson Surface Reconstruction is that even though the mesh is more accurately
predicted near the points, it is not limited to the points. It also extends out from the original
points, out of the boundary of the LiDAR scanner, as we see earlier in Figure 4.3. The surface
size is determined by the scale parameter and the bounding box that we use to crop the mesh.
The bounding box can have any desired size or shape, but it is not always perfectly accurate.

Extending the ground based on estimations can be both positive and negative. Positives
are that it will cover ground under buildings and users can decide the size of the mesh, which
can create a bit more realistic visualization. The negative side is that it is only an estimation,
based on the assumption that the ground continues smoothly, and may not be truthful.

The different parameter values increase or decrease the computational cost of Poisson
Surface Reconstruction. Therefore, it was important to try different combinations of scale
and depth. Since a higher depth value increases the accuracy but decreases the efficiency, this
was also an important aspect to consider.

Based on the advantages of the Poisson Surface Reconstruction, that it returns a water-
tight, hole free mesh, it contains more options for an estimated mesh and that it is more
realistic, we would recommend using this method over the BPA.

5.2 Cars
Most of the work with visualizing cars using network completion, was to rotate the car clus-
ters during the standardization to resemble the PCN training data set. As can be seen in
Table 4.2, the angular errors are consistently bigger when using the PCA. The problem with
PCA is that the eigenvectors are determined by the weight of the data values. Since the point
cloud of the car is incomplete, meaning that the majority of points are located on the same
part of a car, the PCA vectors can be distorted and give a false direction.

These problems with PCA were also seen in Figure 4.5, where the rear side of the pre-
dicted cars differed. Rotation using PCA, resulted in a decrease in the cars width, which
differed from the ground truth.

The L-shape method on the other hand shows stronger results throughout the entire
interval. This is because for most frames, the shape of the car cluster is in the form of the
capital letter "L". The moments where the L-shape method does not perform as well, is when
the front or rear of the car is facing the sensor almost entirely.

What can also be seen is that when using the Kalman filter to estimate the direction, the
results become more and more accurate. This is in accordance with the theory of Kalman
filtering. Even though the initial errors are significantly higher than the predictions using L-
shape method, in the last frames, these estimated angular errors becomes even more accurate
than the L-shape angles. This can be seen in Appendix A.1.

As stated in Table 4.2, the L-shape method produces the lowest mean angular error, while
Kalman filtering produces the lowest median angular error. This correlates with the closest
prediction percentage. Kalman filtering produces the best prediction in 52.5 percent of the
cases. Both methods, Kalman filter and the L-shape method, have their advantages and dis-
advantages, but are superior to the results generated using PCA. We suggest using a com-
bination of both methods. By initially using the L-shape method and then complementing
with Kalman filter as the algorithm gets more accurate, we believe the best estimation of the
current direction of the car would be created.
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When standardizing the data, we assume that the cars on the ground are already aligned
along the x-y plane. This is not entirely accurate, partly because of the sensor’s downward
angle. Also, it would not be true if the ground had more elevation than the ones we have sim-
ulated. To make our method more accurate this would need to be taken into consideration.

When translating the car cluster we center it based on the mean value of all the points.
This means that if a car is partially occluded, in such a way that the length of the car becomes
smaller, the calculated center is not aligned with the true center. This leads to a result where
the algorithm will predict a smaller car, since the back of the car becomes located closer to
the center.

A prediction depends on many variables and on the condition of the car cluster. In some
cases the conditions change vary rapidly between each frame. Since we make a new prediction
each frame, the results may therefore change a lot from frame to frame. Though this is very
noticeable when comparing one frame to another, when viewing in real time it is still easy to
identify that the cluster is a car.

5.3 Pedestrians
The stationary sensor we used is capable of capturing points at a long distance, but only from
one angle. This resulted in some pedestrian clusters having as few as 20 points. Even though
the software can classify pedestrians with relatively few points, human pose estimation or
completion methods require more data.

In our research on human pose estimation, we found that the pedestrian point clouds in
our data sets were too sparse to be processed for any existing method today. All methods
require dense clouds. Almost all methods not only require dense clouds, but points on all
sides of a human, something that is impossible to obtain while using one stationary LiDAR
sensor.

We believe that only colorizing humans makes it easier to identify them. However, we be-
lieve that our method, creating a cylinder around the cluster, makes it a bit easier to identify
the pedestrians in the point cloud. The cylinder is half transparent, this was done in order
to still be able to see the pedestrian cluster inside. When the cluster is dense and observed
closely, it can be possible for an observer to classify the object and determine the movements.
This was a feature we wanted to preserve when possible.

The cylinders created have the same size regardless of the pedestrian cluster size, which
was an intentional decision. The clusters could change a lot from frame to frame, due to
movement and potential occlusion, which made it harder to identify the object as pedestrians
while viewing in real time. When the cylinder size corresponded to the pedestrian clusters
height and width, it sometimes resulted in very short and hardly noticeable cylinders, which
defeated the visualization purpose. We concluded that a standardized cylinder size gave the
best results.

There is more work to be done for pedestrian visualization. As the research in especially
human pose estimation and point cloud reconstruction advances, our implementation can
be improved.
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5.4 Trees
Comparing the meshed tree in Figure 4.7 and the unedited tree in Figure 2.7, the meshed tree
has a stem slightly broader than the colorized but otherwise unedited tree. This is mainly
because of two reasons. Firstly, the inclination of a tree is not considered while rotating.
Secondly the rotation is not performed around the tree’s actual midpoint. This is because of
the translation method which was also done for cars, which is explained in Section 3.3.1. The
translation method assumes that the center axis coincides with the cluster’s mean coordinate,
which is usually not the case since the mean is calculated on an incomplete cluster.

The mesh’s alpha value was experimentally determined. A higher value gave a coarser
mesh and a lower value created meshes with more holes in it. The reason for this relatively
high value is because of the broad stem, which is a result of our rotation method.

5.5 Future work
We see that only applying colors to different objects makes it easier to distinguish objects
from each other. We believe that rendering our ground mesh would be a next step in the
same direction and could make it more realistic. By applying colors from a camera on our
mesh, the texture would be more realistic, which would make it even easier to differentiate
objects. This could also be applied on buildings, in combination with meshing buildings.

During the work and thought process on how to make the world look more realistic, we
realized that introducing shade made a big difference. This was not something we set out to
dive deeper into, but we think that a simulated sun creating shade could potentially be a way
to make the visualizations more realistic.

As previously mentioned, we assumed that the cars were parallel with the x-y plane. This
meant that we only rotated the cars around the z-axis. With our way to create a ground
model using a mathematical function, one could determine the grounds inclination by cal-
culating the ground points gradients at the car’s location. The same method to calculate the
inclination under trees could improve the visualization.

The car’s visualization may also be improved by applying or adapting the same technique
used for the ground and static objects, not predicting the car in every frame, but sometimes.
This could be done for example when the car cloud fulfills some user specified criterion, but
this is not something we have researched further. In some cases, the predicted car are smaller
than the ground truth. Improving the scaling and translation methods would create more
accurate predictions.

Car prediction with networks seems to work very well. As mentioned above, as research
in these areas progresses, we believe that our methods can be further improved. Prediction
and pose estimation with humans are something that we found to be very challenging using
our data set. This is also an area which can be improved as the research advances.

The the previous master thesis, [6], which classifies objects, mainly classifies all vegetation
together. This means that trees and bushes are annotated the same. Our implementation
for visualizing trees is based on trees having their own annotation. This would need to be
implemented before our solution could be applied on real LiDAR data.
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5.6 Conclusion
To conclude this thesis, we answer the initially asked question, how to visualize our chosen
objects and is it afterwards easier to identify and classify them?

The chosen and recommended methods to be used for ground, cars, pedestrians and trees
are presented. Poisson Surface Reconstruction was used for meshing and filling the shadows
in the ground. The point completion network PoinTr was used for cars by standardizing the
car cluster first. To visualize pedestrians, we created a cylinder containing the original points.
Trees were visualized by rotating the original points and adding them to the cluster and then
creating a mesh with Alpha shape.

We believe that these methods both separately and together make it easier for an un-
trained eye to visualize and distinguish objects from another compared to the unedited point
clouds.
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Appendix A

Table A.1: Ground truth angle compared to predicted angles using
the methods L-shape, PCA and Kalman filtering

GT L-shape Error PCA Error Kalman Error
63.663 57.375 6.288 54.801 8.862 NaN NaN
64.367 52.375 11.992 55.034 9.333 50.87 13.497
65.955 59.375 6.58 56.613 9.343 36.71 29.245
68.329 57.875 10.454 57.957 10.372 42.96 25.369
71.337 61.25 10.087 61.099 10.238 62.168 9.169
74.77 62.375 12.395 64.148 10.622 53.108 21.662
78.356 65.75 12.606 67.349 11.007 54.897 23.459
81.798 69.375 12.423 69.874 11.925 60.021 21.777
84.794 73.0 11.794 72.733 12.061 62.287 22.507
87.02 77.125 9.895 74.472 12.548 67.568 19.452
88.249 79.5 8.749 76.105 12.144 71.336 16.913
88.189 82.625 5.564 76.169 12.02 74.202 13.987
86.5 77.0 9.5 75.362 11.138 76.912 9.588
82.728 70.375 12.353 71.557 11.172 80.372 2.356
76.273 63.75 12.523 65.679 10.594 81.784 5.51
66.861 55.375 11.486 57.201 9.66 82.939 16.078
55.104 49.875 5.229 47.264 7.84 79.326 24.222
42.792 37.75 5.042 52.408 9.616 74.049 31.257
32.653 24.75 7.903 61.034 28.381 63.966 31.313
24.599 22.75 1.849 66.145 41.546 51.491 26.893
18.34 18.625 0.285 71.932 36.408 39.298 20.957
15.388 15.625 0.237 74.257 31.131 30.027 14.639
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13.469 14.25 0.781 75.25 28.219 21.289 7.82
12.136 14.875 2.739 77.038 25.098 16.355 4.219
11.052 15.625 4.573 76.594 24.458 10.987 0.065
10.109 9.75 0.359 77.206 22.903 8.437 1.673
9.328 11.625 2.297 78.955 20.373 7.208 2.12
8.586 12.625 4.039 77.791 20.796 4.919 3.668
7.901 9.875 1.974 79.18 18.721 3.691 4.21
7.257 12.75 5.493 79.486 17.771 2.901 4.356
6.615 6.25 0.365 78.661 17.954 2.057 4.558
5.986 3.375 2.611 79.767 16.219 0.604 5.382
5.356 7.25 1.894 80.565 14.79 0.604 4.751
4.705 6.625 1.92 80.248 14.458 2.673 2.032
4.033 87.625 6.408 81.088 12.945 1.923 2.11
3.329 10.0 6.671 81.294 12.034 1.423 1.906
2.582 0.25 2.332 81.416 11.166 0.709 1.873
1.765 87.75 4.015 82.685 9.08 0.25 1.515
0.878 3.75 2.872 82.752 8.127 89.254 1.624
89.91 0.875 0.965 84.23 5.68 87.524 2.386
88.773 5.0 6.227 84.396 4.377 86.949 1.824
87.5 89.75 2.25 85.308 2.192 86.358 1.142
86.002 81.875 4.127 86.566 0.564 86.084 0.082
84.15 88.875 4.725 87.827 3.677 85.191 1.041
81.969 0.0 8.031 88.155 6.186 84.601 2.631
78.909 79.75 0.841 85.248 6.34 82.179 3.271
75.0 69.75 5.25 81.253 6.253 75.364 0.364
69.756 68.0 1.756 67.232 2.525 69.299 0.457
64.36 54.375 9.985 44.652 19.708 60.941 3.419
58.851 44.125 14.726 39.273 19.578 55.23 3.622
53.684 41.75 11.934 33.314 20.37 52.032 1.652
48.907 36.0 12.907 29.18 19.727 49.648 0.741
44.751 27.5 17.251 26.156 18.596 46.98 2.229
41.236 31.25 9.986 23.542 17.694 44.182 2.946
38.374 25.25 13.124 20.728 17.646 41.247 2.873
36.129 26.625 9.504 18.583 17.545 38.365 2.236
34.442 20.25 14.192 17.439 17.002 36.148 1.706
33.26 24.25 9.01 17.839 15.421 38.732 5.472
32.519 19.5 13.019 16.649 15.87 33.874 1.355
32.169 26.125 6.044 14.953 17.216 30.636 1.533
32.157 24.625 7.532 14.885 17.273 28.685 3.472

44



12 34 56 78 910 1112 1314 1516 1718 1920 2122 2324 2526 2728 2930 3132 3334 3536 3738 3940 4142 4344 4546 4748 4950 5152 5354 5556 5758 5960 61

051015202530354045

lsh
ap

e

ka
lm

an

pc
a

Fr
am

e

Angularerror

Fi
gu
re

A
.1:

G
ra

ph
re

pr
es

en
ti

ng
an

gu
la

re
rr

or
sf

or
PC

A
,L

-s
ha

pe
m

et
ho

d
an

d
K

al
m

an
fil

te
ri

ng

45



INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2023-01-16

EXAMENSARBETE Visualization of tagged items in a point cloud
STUDENTER Philip Afsén, Kasper Boye Frick
HANDLEDARE Anders Heyden (LTH)
EXAMINATOR Elin Anna Topp (LTH)

Visualisering av taggade objekt i ett
punktmoln

POPULÄRVETENSKAPLIG SAMMANFATTNING Philip Afsén, Kasper Boye Frick

LiDAR punktmoln är ofta ofullständiga på grund av blockering, vilket gör dem svåra
att tolka. I denna artikel presenterar vi olika sätt att visulisera objekten: mark, bilar,
fotgängare och träd.

LiDAR (Light detection and ranging) kan liknas
vid radar, fast med ljus. Det är en teknologi för
att skanna en omgivning och få en 3D representa-
tion av miljön. Datan sparas i ett så kallat punkt-
moln. LiDAR har mestadels använts för att mäta
avstånd. Idag används det mer och mer inom nav-
igering för självkörande bilar. I detta arbete pre-
senterar vi hur det kan börja användas inom över-
vakning.

Som bilden ovan visar, så kan det vara väldigt
svårt att se skillnad på de olika objekten. Vi bör-
jade med att färglägga de olika objekten. Bara
genom att göra detta kan man mycket lättare se
exempelvis vad som är människor eller inte.

Sedan använde vi oss av en metod för att skapa
en yta vilket var marken.

Baksidan av bilar förutspåddes, eller gissades,

med hjälp av en maskininlärningsmetod.
Det visade sig vara väldigt svårt att visualisera

människor, eftersom de är så små och kan stå på
väldigt många sätt. Vi bestämde oss för att visa
dessa genom skapa en halvgenomskinlig cylinder
kring dem.

Träden färgades också och fick en yta precis som
marken. Stammen färgades brun och trädkronan
grön.

Hela världen med alla implementationerna visas
i bilden ovan. Resultaten visar att vissa metoder
är lättare att implementera och att visualisering
av vissa objekt gör det mycket lättare att se vad
som existerar i punktmolnet.

Vi diskuterar fördelar och nackdelar med de
olika metoderna och ser att vår visualisering gör
det lättare att se skillnad på objekt.
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