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ABSTRACT 

Flooding in oil palm plantations in Southeast Asia is a common problem. The oil 

palm’s habitable range is restricted to lowland equatorial areas, and the high rainfall 

and degraded landscapes associated with oil palm cultivation leaves oil palm prone to 

inundation. Waterlogged roots can diminish yields and increase palm mortality 

leading to significant financial losses for the oil palm industry. Oil palm expansion is 

associated with environmental degradation and high carbon emissions; when 

expansion occurs in flood-prone areas a high environmental cost is paid for little or 

no economic gain. Climate change is expected to bring about more variable and 

extreme rainfall events with more frequent flooding in Southeast Asia, therefore the 

problem of inundation in oil palm plantations is set to worsen.  

Few studies have applied remote sensing technology to the problem of inundation in 

oil palm plantations. To the best of the author’s knowledge, this is the first study to 

report the backscatter characteristics of flooded oil palm. In addition, this study aims 

to contribute to the under-developed research areas of mapping smallholder 

management systems and young oil palm.   

This study tested the ability of Sentinel-1 C-band VV and VH data to detect the 

presence/absence of flooding in oil palm stands of all growth stages in a study area in 

Jambi Province, Indonesia. Smallholdings were the predominant production system 

although industrial holdings were also present. Classes were defined to represent the 

growth stages of oil palm in flooded and non-flooded conditions, and the backscatter 

characteristics and separability of the classes were determined.   

C-band successfully detected the presence of flooding in very young oil palm, but not 

in older oil palm. As the canopy began to close, the C-band signal reached a saturation 

point so that the backscatter profiles of older oil palm in flooded and non-flooded 

conditions were indistinguishable. Even in very young oil palm, where C-band was 

successful in detecting flooding, overlap existed in the backscatter responses in flooded 

and non-flooded conditions due to residual speckle noise in the data and a wide spread 

in the backscatter values caused by a complex backscatter return from the target. A less 

complex study setting may permit a more effective reduction of residual speckle noise, 

which would improve C-band’s ability to identify flooding in open canopy oil palm. 
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1. INTRODUCTION  

The oil palm (Elaeis guineensis) provides the world’s cheapest and highest-yielding 

vegetable oil (Vijay et al., 2016). Demand for palm oil and its derivatives as edible oil, 

biofuel, and ingredients in personal care products, cosmetics, and cleaning products has 

led to the rampant expansion of oil palm in the tropics (Phalan et al., 2013; Vijay et al., 

2016). Today, annual global production of palm oil is 77 million tonnes (USDA, 2022) 

and it is expected to reach 120–156 million tonnes by 2050 (Corley, 2009). Indonesia 

and Malaysia are responsible for 59% and 25% of global palm oil production, 

respectively (USDA, 2022), and have planted areas of 16.24 Mha (Gaveau et al., 2022) 

and 5.9 Mha (MPOC, 2020), respectively. Another 12–19 Mha of oil palm is expected 

to be planted globally by 2050 (Pohl et al., 2015; Mohd Najib et al., 2020). 

The oil palm’s habitable range is restricted to lowland equatorial areas, which are home 

to forest ecosystems of considerable value for their endemism, biodiversity, carbon 

storage, and provision of ecosystem services (Abram et al., 2014; Vijay et al., 2016). 

More than half of Indonesia’s cultivated area in oil palm has replaced forests (Koh & 

Wilcove, 2008; Vijay et al., 2016). Of the forest that was lost in Indonesia between 2000 

and 2019, 32% (3.09 Mha) was ultimately replaced by oil palm (Gaveau et al., 2022).  

1.1. Flooding in oil palm plantations 

The degraded landscapes associated with oil palm cultivation coupled with the high 

rainfall common to the oil palm’s habitable range pose a major flood risk to oil palm 

plantations (Chong et al., 2017). Surface waterlogging and localised flooding in oil 

palm plantations in Southeast Asia is a common occurrence (Hai et al., 2001; Lee & 

Ong, 2006; Marti, 2008; Ahamad et al., 2011; USDA, 2015; Tarigan, 2016; Woittiez et 

al., 2017; Merten et al., 2020, Abubakar et al., 2021). Many oil palm plantations, 

especially those on flatter terrain, have experienced prolonged saturation at the end of 

the rainy season, with water extending across hundreds of acres and to a depth of a few 

meters (Lee & Ong, 2006). Inundation can persist from several days to more than a few 

months (Lee & Ong, 2006; Woittiez et al., 2017). 
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The optimal water table depth for oil palm cultivation is 0.60–0.75 m below the land 

surface (Mantel et al., 2007). Oil palm can tolerate periods of saturation less than two 

weeks in duration so long as the water is oxygen-rich and not stagnant (Mantel et al., 

2007). Ideally, drainage systems should not allow saturated conditions in oil palm 

stands to exceed three days (Mantel et al., 2007) as the impaired respiratory function 

of waterlogged roots diminishes physiological processes and productivity (Woittiez et 

al., 2017). Inundation can cause death in juvenile palms and reduced yields in mature 

palms (Henson et al., 2008).  

Furthermore, flood events hinder operational processes by impeding access to oil palm 

stands and severely compromising maintenance activities (e.g., fertilisation), 

harvesting schedules, and the transportation of produce (Merten et al., 2020; 

Yamamoto et al., 2021). 

Flood events have caused substantial financial losses for the oil palm industry (Abram 

et al., 2014). For example, floods in the Lower Kinabatangan floodplains of Sabah, 

Malaysia, in 1996 and 2000 caused the mortality of 1,900 ha and 5,000 ha of young oil 

palm, respectively, and an economic loss of MYR 4.4 million and MYR 10 million, 

respectively (Hai et al., 2001). In December 2014, heavy rainfall in Peninsular West 

Malaysia caused lowland flooding in 184,000 ha of oil palm (USDA, 2015). This 

reduced palm oil production by 230,000 tonnes compared to December 2013 and 

continued to suppress production in 2015 (USDA, 2015). More intense monsoon 

rainfall and more frequent flooding events caused by climate change in Southeast Asia 

(Hijoka et al., 2014; Loo et al., 2015; Heitmann et al., 2017; Kelley & Prabowo, 2019; 

Abubakar et al., 2021) are likely to exacerbate the problem. Plantations cease to be 

economically viable even at the stage of impaired drainage, thus oil palm companies 

may abandon plantations well before they reach a flooded stage (Sumarga et al., 2016; 

Abubakar et al., 2021).  

Multiple factors contribute to an increased risk of flooding in oil palm environments 

(Merten et al., 2020). Oil palm plantations are associated with severe soil degradation 

and erosion (Guilliame et al., 2015, 2016), which can cause low soil water infiltration 

rates (Tarigan et al., 2018; Merten et al., 2020). This, coupled with the low 

evapotranspiration rates that are characteristic of young oil palms, may increase 
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surface run-off (Tarigan et al., 2018; Merten et al., 2020). Meanwhile, the flow of soil 

into rivers reduces the depth of riverbeds, while the land use conversion of upland 

areas to rubber and oil palm increases the streamflow (Merten et al., 2020).  

Furthermore, oil palm expansion increasingly occurs at the expense of peatlands 

(Miettinen et al., 2012a, 2012b; Carlson et al., 2013; Pittman et al., 2013; Sumarga et 

al., 2016). Indonesia is estimated to have between 14.9 Mha and 20.9 Mha of peatland 

(the wide range of this estimate is primarily due to a lack of reliable data on the extent 

of peatland in Papua province) (Warren et al., 2017). Furthermore, Warren et al. 

(2017) estimate that Indonesia’s peatland contains 30% more carbon than the 

country’s entire forest biomass. An estimated 2.0–2.5 Mha of peatland has been 

converted to oil palm in Indonesia (Page et al., 2011; Miettinen et al., 2016; Osaki et 

al., 2016). However, oil palm concessions encompass a much larger area (6.63 Mha) 

of peatland, much of which is unplanted or degraded (RSPO, 2017; CRR, 2021). 

According to the most conservative estimate of Miettinen et al. (2012a), 6 Mha of 

Indonesia’s peatland will be converted to oil palm by 2030. 

Indonesia’s peatland largely resides less than 20 m above sea level (Page et al., 2011). 

Due to its very high (90%) water content, peatland is drained for oil palm cultivation, 

causing it to subside by 1.0–1.5 m following drainage (Sumarga et al., 2016). This 

subsidence continues by a further 3–5 cm/year (Sumarga et al., 2016) and increasingly 

prolongs the inundation period (Merten et al., 2020). Soil compaction (e.g., through 

heavy machinery use) also lowers the surface and reduces the infiltration rate, leading 

to increased surface runoff and reduced groundwater recharge (Hooijer et al., 2015; 

Dislich et al., 2017; Merten et al., 2020). 

Fire is the traditional means of clearing land in Indonesia and, despite laws prohibiting 

its use in land clearance, its use persists (Pittman et al., 2013; Dislich et al., 2017; 

Noojipady et al., 2017; Adrianto et al., 2020; Edwards et al., 2020). Drained peatland, 

and especially fire-degraded peatland, is closely linked to surface flooding (Page et al., 

2009). In fact, some fire-degraded peatland in Indonesia is subject to near year-round 

flooding (Wösten et al., 2006b). The susceptibility to flooding of fire-degraded peatland 

is a result of several factors: the low transpiration rate of cleared land, which leads to 

deeper and longer-lasting surface water during the rainy season; the oxidation and 
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combustion of peat, which lowers the peat surface (subsidence); and the diminished 

water storage capacity of burnt peat (Page et al., 2009; Merten et al., 2020).  

In addition to flood-susceptible peatlands, oil palm cultivation extends into wetlands 

and riverine floodplains of tropical lowland forests (Abram et al., 2014; Kelley & 

Prabowo, 2019; Merten et al., 2020). Junk et al. (1989, p. 112) define floodplains as 

“areas that are periodically inundated by the lateral overflow of rivers or lakes, and/or 

by direct precipitation or groundwater”. In riverine floodplains of Southeast Asia, the 

inundation may be daily and tidal, such as in mangrove forests, or annual, where 

forests are seasonally flooded during the rainy season (Abram et al., 2014). Although 

the regular lateral exchange of water between rivers and wetlands or rivers and 

floodplains may abate flood events, the degradation of the soil’s physical properties by 

oil palm cultivation means the expansion of plantations into wetlands and floodplains 

can disrupt their ecohydrological functioning (Merten et al., 2020).  

Several studies (e.g., Jelsma et al., 2017; Kelley & Prabowo, 2019; Schoneveld et al., 

2019; Merten et al., 2020) report that it is private companies, political elites, external 

investors, and more affluent farmers who are especially likely to cultivate floodplains, 

wetlands, and peatlands as they can support more industrialised land management 

operations (Merten et al., 2020). Flood events have spurred smallholders, who used to 

cultivate riparian zones for food crops or for oil palm, to sell or lease their land to 

commercial parties (Kelley & Prabowo, 2019; Merten et al., 2020).   

In Indonesia, approximately 40% (6.08 Mha) of the cultivated area in oil palm is under 

smallholder production (DJP, 2021) and this is expected to increase to 60% by 2030 

(Saragih, 2017). The Roundtable on Sustainable Palm Oil (RSPO) define smallholders 

as “farmers who grow oil palm, alongside with subsistence crops, where the family 

provides the majority of labour and the farm provides the principal source of income, 

and the planted oil palm area is less than 50 hectares” (RSPO, 2018).  

For many independent smallholders, yields are diminished by the inability to 

implement proper drainage systems to prevent waterlogging, particularly in peatland 

areas (Woittiez et al., 2017). Although the RSPO has an Independent Smallholder 

Standard (RSPO, 2019), smallholders are subject to fewer regulations, are challenging 
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to capture in traceability systems, and are frequently lacking the capacity or incentives 

to comply with sustainability norms (Schoneveld et al., 2019). This is in contrast to 

commercial plantations, which increasingly comply with international sustainability 

standards (Schoneveld et al., 2019). With competition for land in non-peat soils and 

non-forested areas high among commercial plantations, smallholders are increasingly 

pushed into ecologically sensitive landscapes (Schoneveld et al., 2019). 

Flood control measures (e.g., drainage channels, levees, pumping stations, retention 

basins) can be implemented in oil palm areas that are prone to waterlogging and 

flooding (Sumarga et al., 2016), but they are complex, extremely costly, and often 

ineffective (Hai et al., 2001; Lee & Ong, 2006; Abram et al., 2014; Sumarga et al., 

2016). In peatland, where flood control measures are especially necessary (Jelsma et 

al., 2017), an extensive network of dykes is required (Sumarga et al., 2016). The dykes 

are prone to subsidence and, in prolonged dry spells, to cracking, necessitating a 

continuous and expensive maintenance program (Sumarga et al., 2016). Pumping is an 

inefficient method of flood control, but it may be used to remove excess water once low 

surface gradients impede gravity drainage (Sumarga et al., 2016). Yet the cost of 

pumping often proves prohibitive when compared to the revenue generated from oil 

palm production (Sumarga et al., 2016).  

Moreover, the establishment of drainage or flood control infrastructure can redistribute 

floodwaters at a local level, giving rise to new social conflicts (Merten et al., 2020). 

Water infrastructure introduced by oil palm companies in wetland areas to reduce the 

impact of flooding on their plantations has been blamed for worsening the duration and 

depth of flooding on smallholder plantations situated adjacent to or downstream of the 

infrastructure (Merten et al., 2020). This leads to an inequitable distribution of flood 

damages in oil palm settings (Merten et al., 2020).   

Palm oil yields have been stagnant for several years and to meet production demands the 

oil palm industry has focused on the expansion of planted area (USDA, 2012; Murphy, 

2014; Pirker et al., 2016; Woittiez et al., 2017), but the expansion has largely occurred in 

marginal areas, such as peatlands, riparian zones, and degraded soils (Guilliame et al., 

2016). For example, in contrast to Sumatra, Borneo still possesses abundant land 

available for oil palm development, however the primary source of new land for oil 
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palm cultivation is peatland (Schoneveld et al., 2019). As land in Indonesia becomes 

increasingly scarce, the expansion of oil palm into marginal areas risks exacerbating 

environmental and social problems (Noor et al., 2017; Schoneveld et al., 2019). 

Furthermore, the remaining tropical forest that resides in high altitude areas is under 

increasing pressure as warming temperatures in high elevation areas expand the suitable 

area for oil palm cultivation and lowland areas suffer an increase in flood risk 

(Yamamoto et al., 2021).  

The accurate detection of flooding in both industrial holdings and smallholdings of oil 

palm is necessary to build an understanding of the extent, frequency, and severity of 

flooding in oil palm plantations, which has important implications for spatial planning, 

land management practices, and policy in the oil palm sector. Under-productive stands 

that are taken out of production have the potential to undergo rehabilitation to restore 

the ecosystem, social, and/or economic functions of the peatland and forest landscapes 

that they replaced (Abram et al., 2014; Nawir et al., 2016; Dislich et al., 2017). In 

addition, managing the flood risk faced by existing oil palm plantations in lowland 

areas will help prevent future deforestation in upland areas (Yamamoto et al., 2021). 

1.2. Remote sensing applications for flooding in oil palm plantations 

The extraction of flooded vegetation for flood monitoring is still a novel field compared 

to the more common application of wetland monitoring (Tsyganskaya et al., 2018b). 

Compared to the detection of open flood waters, there is a dearth of research on flooded 

surfaces beneath vegetation (Tsyganskaya et al., 2018b; Shen et al., 2019). This obscures 

the true extent of flooding, which can have a significant impact on human lives, property, 

and agricultural productivity (Tsyganskaya et al., 2018b).  

In a review of remote sensing applications in oil palm studies, Chong et al. (2017) call 

for remote sensing to play a role in addressing the flood risk faced by oil palm 

plantations. So far, the application of remote sensing technology in oil palm studies 

has largely focused on land cover classification, change detection, pest and disease 

detection, and the estimation of physical plantation parameters such as tree counts, 

stand age, above ground biomass, and yield (Chong et al., 2017). Studies have 

reported challenges in detecting smallholder stands (Koh et al., 2011; Gunarso et al., 
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2013; Gutiérrez-Vélez & DeFries, 2013; Yayusman & Nagasawa, 2015; Lee et al., 

2016; Miettinen et al., 2016; Torbick et al., 2016; Descals et al., 2019), newly-planted 

or immature (open-canopy) stands (Koh et al., 2011; Li et al., 2015; Miettinen et al., 

2015, 2016; Lazecky et al., 2018; Descals et al., 2019), and degraded stands (Santos & 

Messina, 2008; Gutiérrez-Vélez & DeFries, 2013).  

Smallholder, newly-planted, immature, and degraded stands contain heterogeneous 

ground cover, which may make them spectrally and structurally indistinct from other 

land cover types and inhibit their detection (Gutiérrez-Vélez & DeFries, 2013). 

Consequently, the extent of oil palm land cover is frequently under-estimated (Li et 

al., 2015; Miettinen et al., 2015; Mohd Najib et al., 2020). Moreover, the cycle of 

planting, growing, and clear-felling creates a continually evolving patch work of 

plantations of different ages (Rosenqvist, 1996). It is important that oil palm mapping 

captures these intermediate growth stages (Rosenqvist, 1996). Several studies (e.g., 

Gutiérrez-Vélez & DeFries, 2013; Yayusman & Nagasawa, 2015; Lee et al., 2016) 

have named the reliable detection of immature and smallholder oil palm as an 

important objective for future research.  

Very few studies have applied remote sensing technology to study inundation in oil 

palm stands, with those that have focusing on the development of hydrological models 

(Wösten et al., 2006a) and spatial and economic analyses (Abram et al., 2014; 

Sumarga et al., 2016). To the best of the author’s knowledge, only one study 

(Yamamoto et al., 2021) has attempted to use remote sensing technology to identify 

inundation in an oil palm environment.  

Yamamoto et al. (2021) assessed the flooding vulnerability of young (< 3 years old) 

and mature oil palm in the Batanghari River Basin in Indonesia by overlaying a 

maximum flood extent map with an oil palm distribution map. They surmised that oil 

palm classified as young in 2015 should be classified as mature in 2018 if it had 

avoided impaired growth due to flooding in the intervening period. The authors 

created a “during flood” image by compositing a series of wet season images derived 

from Sentinel-1 C-band synthetic aperture radar (SAR) data acquired between 

December 2016 and April 2017. They also created a “before flood” image by 

compositing a series of dry season images acquired in August 2016. They divided the 
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VV (vertical transmit, vertical receive) backscatter of the “during flood” image by the 

VV backscatter of the “before flood” image and used a threshold to define the flood 

extent. Cloud-free composites of Sentinel-2 data, combined with Sentinel-1 data, were 

used to create the distribution maps of young and mature oil palm in 2015 and 2018.  

The authors reported that in the “during flood” image, young oil palm comprised 79% 

of the flooded oil palm. They also reported that just 6% of the flooded young oil palm 

‘survived’ to 2018, in contrast to 52% of the flooded mature oil palm. However, the 

findings of the Yamamoto et al. study must be interpreted with caution. Although the 

2015 oil palm distribution map was validated, the 2018 map was not. Therefore, the 

accuracy of the reported land use changes, including the changes in the proportion of 

young and mature oil palm between 2015 and 2018 is unknown. In addition, the flood 

extent was not validated, therefore the accuracy of the distribution and proportion of 

flooded and non-flooded oil palm is unknown. The limited penetration capability of 

the C-band signal in vegetation canopies means the flood extent map was derived 

primarily from the backscatter of open water surfaces and standing water underneath 

young oil palm. The true maximum extent of flooding in the study area is likely to 

cover a greater area and include a greater proportion of mature oil palm than was 

reported in the study.  

To produce a map of flooded oil palm, Yamamoto et al. (2021) produced separate 

intermediate outputs of oil palm land cover and the presence of water then overlaid the 

outputs to produce a final map of flooded oil palm in their study area. They did not 

attempt to directly identify oil palm in flooded and non-flooded conditions. To the best 

of the author’s knowledge, no studies have attempted to assess the ability of Sentinel-1 

C-band VV and VH (vertical transmit, horizontal receive) data to detect the 

presence/absence of flooding in oil palm stands during an actual flood event.  

1.2.1. SAR vs. optical approaches 

The remote sensors used for oil palm mapping and monitoring primarily collect SAR 

data or optical data. Sensors of optical and SAR data collect different but 

complementary information. Optical sensors measure spectral reflectance between the 

visible and shortwave infrared (SWIR) domain of the electromagnetic spectrum, while 
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SAR sensors transmit microwave energy and receive the return signal as backscatter. 

The reflection of optical energy depends on the leaf structure, pigmentation, and 

moisture of the vegetation, while the backscatter of microwave energy depends on the 

size, density, orientation, and moisture content of the vegetation relative to the radar 

wavelength (Joshi et al., 2016).  

Optical imagery possesses several disadvantages to SAR data for studying oil palm 

environments. Oil palm stands rapidly develop a closed canopy that is difficult to 

distinguish spectrally and structurally from other land cover types, especially forest 

and secondary vegetation (Santos & Messina, 2008; Gutiérrez-Vélez & DeFries, 2013; 

Tan et al., 2013; Miettinen et al., 2015; Mohd Najib et al., 2020; Xu et al., 2021). It is 

highly challenging to identify oil palm stands using optical imagery with a spatial 

resolution of 10–30 m; rather, very high (< 1 m) spatial resolution optical imagery is 

required (Miettinen & Liew, 2011; Miettinen et al., 2015). The quality of optical 

imagery is also affected by haze and smoke, which is a common occurrence in South-

East Asia due to pollution caused in part by the oil palm industry burning plantation 

waste (Pohl et al., 2015; Pohl & Loong, 2016). 

Optical sensors are unable to penetrate clouds, and the persistent cloud cover that is 

typical in the tropics makes the acquisition of cloud-free imagery in oil-palm growing 

areas highly challenging (Santos & Messina, 2008; Cheng et al., 2016; Torbick et al., 

2016). In fact, it takes between one and seven years to obtain a cloud-free image 

(Pittman et al., 2013; Pohl & Loong, 2016). Persistent cloud cover is also 

characteristic of flood events (Martinis et al., 2017) and flood events may come and go 

without the acquisition of a single cloud-free optical image (Clement et al., 2017). In 

contrast, the active sensors of SAR systems can operate day and night and under all 

weather conditions (Plank et al., 2017). 

The principal deficiency of optical sensors in studies of flooded vegetation is their 

inability to penetrate vegetation canopies, thus standing water underneath a canopy 

remains undetected (Pham-Duc et al., 2017; Tsyganskaya et al., 2018b). In contrast to 

optical systems, SAR systems use longer wavelengths of the electromagnetic 

spectrum, enabling them to penetrate clouds and vegetation canopies to detect a 

flooded land surface underneath (Tsyganskaya et al., 2018b).  
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In general, SAR systems comprising longer wavelengths (L-band [λ=23.6 cm] and P-

band [λ=70 cm]) and co-polarised sensors (HH [horizontal transmit, horizontal 

receive] and VV) penetrate deeper into vegetation canopies than those comprising 

shorter wavelengths (C-band [λ=5.6 cm] and X-band [λ=3.1 cm]) and cross-polarised 

sensors (HV [horizontal transmit, vertical receive] and VH) (Tsyganskaya et al., 

2018b). However, many factors determine the penetration depth of a SAR signal and a 

detailed overview of the scattering mechanisms observed in flooded vegetation is 

provided in Appendix A. In 2024, the European Space Agency (ESA) will launch 

“Biomass”—the first space-borne P-band SAR—which will enable even greater 

canopy penetration and flood-detection capabilities in forested areas.  

There are several challenges associated with SAR image analysis and interpretation, 

especially in relation to flooded vegetation (Tsyganskaya et al., 2018b). Due to the 

side-looking nature of SAR systems, geometric distortions (radar shadow, overlaying, 

and foreshortening) can occur in hilly regions. The effect is exacerbated by steep 

terrain and small look angles, but it may be mitigated with geometric correction 

(Tsyganskaya et al., 2018b). Speckle is intrinsic to SAR imagery and it appears as a 

salt-and-pepper pattern (Singh & Shree, 2016). Speckle is noise caused by the random 

interference of the return signals generated from a multitude of ground scatterers (Lee 

et al., 1994; Singh & Shree, 2016). Speckle impedes image interpretation and reduces 

classification accuracy (Lee et al., 1994; Singh & Shree, 2016), but it may be 

suppressed with the application of filters. Furthermore, scattering mechanisms are 

determined by the characteristics of the sensor and the target, which adds complexity 

to the interpretation of SAR imagery. 

Studies have demonstrated the ability of SAR data to distinguish oil palm from other 

land cover types using SAR backscatter (Rosenqvist, 1996; Miettinen & Liew, 2011; 

Morel et al., 2011; Li et al., 2015; Miettinen et al., 2015; Kee et al., 2018; Lazecky et 

al., 2018; Ballester-Berman & Rastoll-Gimenez, 2021), SAR backscatter and SAR 

texture information (Santos & Messina, 2008; Rakwatin et al., 2012; Laurin et al., 

2013; Yayusman & Nagasawa, 2015; Torbick et al., 2016; Descals et al., 2019; Mohd 

Najib et al., 2020), or a combination of SAR data and optical data (comprising one or 

more of spectral characteristics, vegetation indices, and texture variables) (Santos & 

Messina, 2008; Koh et al., 2011; Gutiérrez-Vélez & DeFries, 2013; Laurin et al., 2013; 
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Tan et al., 2013; Yayusman & Nagasawa, 2015; Cheng et al., 2016; Torbick et al., 

2016; De Alban et al., 2018; Descals et al., 2019; Nomura et al., 2019; Poortinga et al., 

2019; Mohd Najib et al., 2020; Xu et al., 2021). Other applications of SAR data in oil 

palm environments include studies of stand age (Carolita et al., 2019), moisture 

content (soil and palm), aboveground biomass, and tree height (Pohl & Loong, 2016). 

In a review of characteristics and approaches to detect flooded vegetation using SAR 

technology, the authors call for the development of approaches to detect flooded 

vegetation from “various and complex environments” (Tsyganskaya et al., 2018b, p. 

2255). SAR sensors not only hold many advantages over optical sensors for the 

detection of flooded vegetation (Tsyganskaya et al., 2018b), but their use in the 

heterogeneous and complex environment of an oil palm plantation is significantly 

under-developed (Teng et al., 2015; Pohl et al., 2015; Pohl & Loong, 2016). 

According to Ballester-Berman and Rastoll-Gimenez (2021, p. 3) “further 

investigation must be carried out to understand C-band backscattering signatures from 

[oil palm] monoculture plantations”. 

The vegetation biomass (structure and density) that sits above ground or above water 

exerts a considerable effect on the scattering mechanisms of the SAR signal 

(Tsyganskaya et al., 2018b). In general, backscatter increases with increasing biomass 

until a saturation point is reached where the volume scattering from the canopy 

completely obscures the double bounce effect so that water underneath a canopy is no 

longer detected (Tsyganskaya et al., 2018b). Sensor characteristics and environmental 

conditions determine the point of saturation (Tsyganskaya et al., 2018b). (More 

detailed information on the influence of target characteristics on the scattering 

mechanisms of flooded vegetation is provided in Appendix A.) 

The strong influence of biomass on backscatter, coupled with the under-representation 

of juvenile/open-canopy oil palm in remote sensing studies, means it is important to 

account for all the different growth stages of oil palm in a plantation so that the full 

extent of flooding in an oil palm stand may be determined.  

Hitherto, Sentinel-1 has been the primary source of freely available SAR data, therefore 

Sentinel-1 C-band data is the focus of this study. Despite the relatively short wavelength 
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of C-band, it is hoped that the cavernous space underneath an oil palm canopy (Figure 1) 

facilitates the use of C-band data in studies of flooding in oil palm stands.  

 

Figure 1: The ‘hollow’ space underneath an oil palm canopy. 

 

1.3. Problem statement 

Inundation in oil palm stands causes reduced yields in mature palms and mortality in 

young palms and interferes with operational processes. This reduces a plantation’s 

economic viability and may lead to its abandonment. When this occurs, a high 

environmental price has been paid to cultivate oil palm for little or no economic gain. 

Improving our understanding of flood occurrences in oil palm plantations is essential 

for effective land use planning and conservation. This will inform decision-makers in 

the oil palm industry and policy-makers in government of the sensitivity of certain 

landscapes to oil palm cultivation so that the expansion of oil palm into flood-prone 

areas may be avoided and existing under-productive stands may be taken out of 

production and rehabilitated. SAR represents a valuable tool in flood assessments due 

Image credit: https://commons.wikimedia.org/wiki/File:Oilpalm_malaysia.jpg 
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to its ability to see through the cloud cover that is associated with flood events. It can 

also penetrate vegetation canopies to detect standing water underneath a canopy. It is 

not yet known if Sentinel-1 C-band VV and VH data can detect the presence/absence 

of flooding in oil palm stands.  

1.4. Objectives 

The overall objective of this study is to examine the capability of Sentinel-1 C-band VV 

and VH SAR data to detect the presence/absence of flooding in oil palm. The specific 

objective is to determine the backscatter characteristics and separability of different 

growth stages of oil palm in flooded and non-flooded conditions. 

1.5. Research questions 

1. What are the backscatter characteristics of the different oil palm growth stages 

in flooded and non-flooded conditions in the VV and VH polarisations? 

2. What is the separability of the backscatter profiles of the different oil palm 

growth stages in flooded and non-flooded conditions in the VV and VH 

polarisations? 

3. To what extent does the backscatter of derived bands improve the separability 

of the backscatter profiles of the different oil palm growth stages in flooded 

and non-flooded conditions? 

4. To what extent does a time series of standardised backscatter improve the 

separability of the backscatter profiles of the different growth stages in flooded 

and non-flooded conditions? 

5. To what extent can Sentinel-1 C-band VV and VH data detect flooding in oil 

palm plantations? 
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2. DATA AND METHODS 

2.1. Study area 

In the absence of field data, very high spatial resolution optical data may be used as 

reference data. As a free and open source of very high spatial resolution optical data, 

Google Earth was used to perform a visual search for standing water in oil palm stands 

on the islands of Sumatra and Kalimantan, which are home to the major oil palm 

growing provinces in Indonesia. 

A Google Earth image acquired on 26 November 2016 in a sub-area of Jambi Province 

on Sumatra Island was selected for the study area based on the following criteria: 1) the 

visible presence of general flooding (e.g., burst river banks, flooded residential areas); 2) 

the visible presence of standing water within oil palm stands; 3) overlapping coverage of 

the area by a Sentinel-1 scene acquired on 23 November 2016 (i.e., coincident to within 

± 3 days of the Google Earth image); 4) the presence of a variety of growth stages of oil 

palm; 5) a database of imagery available in the ‘time slider’ feature of Google Earth 

(useful for comparing the appearance of oil palm land cover over multiple acquisition 

dates under flooded and non-flooded conditions); 6) support from the rainfall record of 

heavy rainfall in the area in the days/weeks preceding the acquisition of the Google 

Earth and Sentinel-1 scenes.  

As the Google Earth image captured over the general region of the study area comprised 

both low- and high-resolution imagery, a precise boundary for the study area was 

defined by digitising the extent of the high-resolution Google Earth imagery acquired on 

26 November 2016 (Figure 2).  

Jambi province’s two main weather stations reside within the study area: Stasiun 

Klimatologi Muaro Jambi (SKMJ) and Stasiun Meteorologi Sultan Thaha (SMST). 

According to the Meteorological, Climatological, and Geophysical Agency of Indonesia, 

BMKG (Badan Meteorologi, Klimatologi, dan Geofisika), both stations recorded the 

year’s highest daily rainfall in the days preceding the image acquisitions: SMST 

recorded 63.3 mm of rainfall on 5 November 2016 and SKMJ recorded 99.4 mm of 
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rainfall on 16 November 2016. In the 22 days preceding the acquisition of the Sentinel-1 

scene, SKMJ recorded 476 mm of rainfall—a total that includes 6 days of missing data, 

thus the actual rainfall total is likely to be even higher.  

 

 

Figure 2: The study area in Jambi Province on Sumatra Island, Indonesia (red outline), 

including the location of two weather stations, SKMJ and SMST. Inset: the study area (red 

polygon) on Sumatra Island.  

The study area extends from 103°22’ E to 103°41’ E and from 1°29’ S to 1°43’ S and 

captures an area of ~792 km2, including a section of the Batanghari River and Jambi 

City. Oil palm is widespread in the study area and smallholdings are the predominant 

production system although industrial holdings are also present. The terrain is relatively 

flat and elevation peaks at 87 m. 

Jambi Province has undergone rapid land use change with 1 million ha of forest 

converted to other land cover types between 1990 and 2013 (Tarigan et al., 2016). 

Image credit: Google Earth 
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During this period, oil palm replaced 360,000 ha of forest (Tarigan et al., 2016). 

Although peatland is widespread in Jambi Province, it resides mostly outside of the 

study area (Nurdiana et al., 2016).  

The climate in Jambi Province is humid tropical with an average maximum and 

minimum temperature of 33 °C and 29 °C, respectively (Brown, 2004). It receives 

abundant rainfall throughout the year, with annual rainfall averaging 2466 mm and 

ranging from 1306 mm to 3412 mm (Wösten et al., 2006a). The driest months are 

June-August (Comeau et al., 2013). Evapotranspiration is steady throughout the year 

and averages 1300 mm per year (Wösten et al., 2006a).  

Indonesia’s National Board for Disaster Management, BNPB (Badan Nasional 

Penanggulangan Bencana), reported 36 flood events in Jambi Province in 2020 

(BNPB, 2021). In the future, the Batanghari River Basin, which is home to Jambi 

Province’s longest river, will experience flooded areas 2.3 times the size of historical 

flooded areas, and the maximum flood depth will increase from 3.7 m to 4.8 m 

(Yamamoto et al., 2021). Remaining upland tropical forest in the Batanghari River 

Basin is under increasing pressure as warming temperatures expand the suitable area 

for oil palm cultivation into high elevation areas while existing plantations in the basin 

are increasingly vulnerable to flooding (Yamamoto et al., 2021). 

2.2. Data 

2.2.1. Sentinel-1 SAR data 

The Sentinel-1 data used in this study comprised both a time series and a single 

date flood scene acquired on 23 November 2016. The time series comprised seven 

scenes acquired between 26 July 2016 and 17 December 2016, including the flood 

scene (Table 1).  
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Table 1: Acquisition dates of the Sentinel-1 scenes. 

 

 

 

 

 

The dual-polarisation (VV and VH) data were collected from the Sentinel-1A C-band 

sensor in Interferometric Wide (IW) swath mode (the primary mode for terrestrial 

applications) at a geometric resolution of 5 x 20 m. The swath width is 250 km and 

comprises three sub-swaths and an incidence angle range of 29.1°–46.0°. The data were 

delivered as a Level-1 Ground Range Detected High Resolution (GRDH) multi-looked 

product with 10 x 10 m pixel spacing (Table 2). The data are freely available from ESA’s 

Copernicus Open Access Hub (https://scihub.copernicus.eu/dhus/#/home).  

To ensure an identical acquisition geometry among scenes, only scenes in the same 

(ascending) orbit (relative orbit number 171) were downloaded. Although additional 

scenes in the same ascending orbit were available to download, which would have 

reduced the revisit time from 24 days to 12 days, the additional scenes contained 

single-polarisation (VV) data only. As different polarisations contribute different 

information for the detection of flooded vegetation (Tsyganskaya et al., 2018b), only 

scenes comprising dual-polarisation (VV and VH) data were used. 

  

No. Acquisition date 

1 26 July 2016 

2 19 August 2016 

3 12 September 2016 

4 06 October 2016 

5 30 October 2016 

6 23 November 20161  

7 17 December 2016 

1 Flood scene 
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Table 2: Characteristics of the Sentinel-1 scenes. 

2.2.2. Google Earth optical imagery 

This study used a single scene of very high spatial resolution (< 1 m) Google Earth 

optical data acquired on 26 November 2016 over the study area. The scene is 

coincident to within ± 3 days of the Sentinel-1 flood scene acquired on 23 November 

2016. The scene provided the reference data for the visual interpretation and manual 

digitisation of oil palm land cover, and it informed the location of training areas to 

identify the backscatter characteristics of the different growth stages of oil palm in 

flooded and non-flooded conditions. Google Earth imagery is freely available through 

the Google Earth Pro app (https://www.google.com/earth/desktop/).  

2.2.3. Ancillary data 

A Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) 

provided elevation data to exclude areas > 30 m in elevation (and therefore unlikely to 

experience flooding) during the creation of the oil palm land cover mask. The data are 

freely available from U.S. Geological Survey’s (USGS’s) EarthExplorer tool 

(https://earthexplorer.usgs.gov/).  

Characteristic Value 

Instrument Sentinel-1A 

Band (wavelength) C-band (5.6 cm) 

Frequency 5.405 GHz 

Mode Interferometric Wide (IW) swath 

Polarisation VV and VH 

Resolution 20 x 22 m (ground range and azimuth) 

Pixel spacing 10 x 10 m 

Incidence angle 30.7°–45.9°2 

Pass direction Ascending 

Relative orbit 171 

Product Level-1 GRDH (Ground Range Detected, High Resolution) 

2 The near- and far-range incidence angles within the boundary of the study area are 36.2° and 38.5°, respectively. 
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BMKG provided daily rainfall data to support the presence of flooding in the study 

area in the days/weeks preceding the Google Earth and Sentinel-1 flood scene dates 

(http://dataonline.bmkg.go.id/).  

2.3. Methods 

2.3.1. Methodological flowchart 

The research methodology (Figure 3) was designed to test whether Sentinel-1 data 

can detect flooding in oil palm plantations by first examining the backscatter 

characteristics and separability of different growth stages of oil palm in flooded and 

non-flooded conditions (herein referred to as the oil palm classes). It comprised five 

main components: data pre-processing, mapping of oil palm land cover, extraction of 

training samples for the oil palm classes, examination of backscatter characteristics of 

the oil palm classes, and a separability analysis. The separability analysis was 

threefold. To begin, the separability of the backscatter profiles of the oil palm classes 

on the flood date in the VV and VH polarisations was assessed. Then, the potential 

for improving the separability using derived bands and a time series was explored.  

 
Figure 3: Methodological flowchart.  
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2.3.2. Pre-processing of Sentinel-1 SAR data 

The pre-processing of the seven Sentinel-1 scenes was performed in ESA’s SNAP 

(Sentinel Application Platform) software using the Sentinel-1 Toolbox (S1TBX) 

module and the Batch Processing tool. Pre-processing was carried out in accordance 

with the steps described in the training materials published by the Research and User 

Support for Sentinel core products (RUS) service (Serco Italia SPA, 2018). For a 

detailed description of the steps involved in the Sentinel-1 GRDH pre-processing 

workflow refer to Filipponi (2019). The Graph Builder tool was used to specify the 

main steps and their order of processing (Figure 4). 

 

Figure 4: The pre-processing steps for batch processing are first specified in SNAP’s Graph 

Builder tool. 

To optimise the pre-processing and storage of data, first the scenes were subset to an 

area close to the study area boundary to exclude superfluous data from outside the 

study area boundary. A precise orbit file was applied and thermal noise was removed. 

The scene was radiometrically calibrated to derive backscatter coefficient values 

(sigma nought). Calibration in SNAP compensates for the influence of incidence angle 

on backscatter intensity, although the difference in the near- and far-range incidence 

angles covering the study area was small. Speckle noise was suppressed through the 

application of the simple Lee 5x5 speckle filter (Lee, 1980). The adoption of a larger 

window size during speckle filtering was limited by the numerous smallholder parcels 

in the study area resulting in a small target area. Geometric distortions were corrected 

with Range Doppler terrain correction using a SRTM DEM downloaded automatically 

by the SNAP software. Lastly, sigma nought values were converted to decibel using a 

logarithmic transformation. The output of the pre-processing in SNAP was an image of 

VV or VH backscatter coefficient values (σ0 in decibels [dB]) in a geographic 

coordinate system (WGS84) for the flood date and for each date in the time series (an 

image of the output for the flood date is presented in Appendix B, Figure B1). 
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To prepare for the time series analysis, and to ensure precise pixel alignment, the 

scenes were co-registered and combined into a layer stack. The flood scene was used 

as the master to which the other scenes were slaved. The layer stack was cropped to 

the precise study area boundary. Finally, the layer stack underwent a visual 

verification to confirm the precise pixel alignment among the bands in the layer stack.  

For visualisation purposes, a false colour composite of the flood scene was created by 

repeating the above method. Data were kept in sigma nought to create a standard RGB 

image: R = VV; G = VH; B = VV/VH (Figure 5).  

 

 

 

Figure 5: A standard colour composite (R = VV; G = VH; B = VV/VH) of the Sentinel-1 scene 

over the study area on the flood date in which the Batanghari River appears a dark navy blue, 

forest is shaded green, oil palm appears purple, Jambi City is marked by bright yellows, 

greens and pinks, and areas of open water appear navy/royal blue. 

2.3.3. Mapping of oil palm land cover 

A mask of oil palm land cover was created from the visual interpretation and manual 

digitisation of oil palm in the study area. Areas > 30 m in elevation were excluded from 
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the digitisation process. The mask informed the location of training areas for the 

generation of backscatter profiles for the oil palm classes by excluding non-oil palm 

land cover and oil palm that is less vulnerable to flooding. If the separability analysis 

revealed sufficient separation among the oil palm classes to perform an image 

classification, the mask would also be used to restrict the image classification to areas of 

oil palm land cover only to reduce misclassifications with other land cover types. 

Exclusion of areas > 30 m in elevation 

An SRTM 1-Arc second (30 m) Global (void-filled) DEM product covering the study 

area was downloaded in GeoTIFF format (in WGS84) from 

https://earthexplorer.usgs.gov/ (Entity ID: SRTM1S02E103V3). 

In ESRI’s ArcGIS Desktop 10.5.1, the Google Earth KML file (in WGS84) of the 

study area boundary was converted to shapefile. The DEM was clipped to the study 

area boundary, and the DEM was exported to TIFF format.  

Using ArcGIS’s spatial analyst function, the DEM was reclassified using two natural 

break (Jenks) classes: 1 = areas ≤ 30 m in elevation; 2 = areas > 30 m in elevation).  

To remove isolated pixels and small groups of pixels, the raster was reclassified using 

a region group operation. This operation created numerous regions from the isolated 

pixels and groups of pixels. The field calculator was used to assign a value of 1 or 2 to 

a new field in the attribute table. Values were assigned to regions based on the value of 

the pixels in the wider area surrounding each region.  

The raster was reclassified using the new attribute field as the reclass field. The raster 

was reclassified again to convert pixels with a value of ‘1’ to NoData, while pixels 

with a value of ‘2’ remain unchanged.  

Using ArcGIS’s convert raster to polygon function, the raster was converted to 

shapefile. The shapefile was converted to KML for importing into Google Earth. 

Converting the raster to shapefile before converting it to KML preserves the sharpness 

of the pixel edges in Google Earth.  
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The output was a temporary mask for use in Google Earth that obscured areas > 30 m 

in elevation. Only visible areas (areas ≤ 30 m in elevation) were included in the visual 

interpretation and manual digitisation of oil palm land cover. 

Visual interpretation and manual digitisation of oil palm land cover 

A grid was created in ArcGIS and imported into Google Earth to reduce the study area 

to a series of small manageable areas that aided the visual interpretation process and 

reduced the chances of missing areas of oil palm land cover. The grid comprised 25 cells 

across by 24 cells down with each cell covering approximately 1.47 km2. Cells were 

analysed systematically, moving from left to right across the columns of cells and 

moving down each cell in a column before starting a new column.  

The visual interpretation and manual digitisation process was carried out in Google 

Earth. All oil palm land cover ≥ 5000 m2 (0.5 ha) in area was digitised. The outer 

extent of oil palm land cover was digitised (no distinction was made for the different 

growth stages that may exist within a continuous area of oil palm).  

Oil palm is easily identifiable in high-resolution Google Earth imagery due to its 

distinctive star-shaped crown and planting pattern. The standard planting scheme 

utilises a triangular pattern with 9-meter spacing between palms, which is designed to 

boost yield and optimise sunlight infiltration (Chong et al., 2017) (Figure 6).  

  

Image credit: Chong et al. (2017) Image credit: Google Earth 

Figure 6: The distinctive star-shaped crown and triangular planting pattern of the oil palm is 

easily identifiable in high spatial resolution Google Earth imagery. 
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To minimise potential misclassifications, any buildings or permanent water features 

visible within an oil palm plantation were digitised for later exclusion from the oil 

palm land cover mask.  

In ArcGIS, the Google Earth KMZ file was converted to a layer file and then exported to 

shapefile format. Unwanted features (e.g., buildings, reservoirs) were excluded by copying 

the oil palm land cover shapefile in ArcGIS’s table of contents and performing a ‘select by 

location’. Features of the target layer that were completely within the source layer features 

were selected and exported to shapefile. The erase tool was used to remove the polygons 

representing unwanted features from the oil palm parcels.  

The output was a mask of all oil palm land cover ≥ 5000 m2 (0.5 ha) in area and ≤ 30 m in 

elevation in the study area (Figure 7). The mask comprises 1380 individual polygons and 

covers an area of 53.70 km2 (5370.32 ha). 

  

Figure 7: Oil palm land cover (red polygons) overlaying the standard colour composite of 

the study area on the flood date. The mask represents the extent of oil palm land cover that 

is ≥ 5000 m2 (0.5 ha) in area and ≤ 30 m in elevation.  
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2.3.4. Extraction of training samples 

Training samples were used to determine the backscatter characteristics of the different 

growth stages of oil palm in flood and non-flooded conditions. First the training classes 

were identified and then the training areas were selected.  

Identification of training classes 

Twelve training classes were identified by visually inspecting the area within the oil palm 

land cover mask in Google Earth. The classes represent the different growth stages of oil 

palm in either flooded or non-flooded conditions based on the presence/absence of 

standing water. The growth stages are based on Fitrianto et al. (2018) who described four 

classes (seeds, young, teen, mature) of oil palm in a plantation in Indonesia by adopting a 

canopy density model to estimate stand age based on a series of indices derived from 

Landsat data. The authors state that the four classes align with the classification of oil 

palm provided by the Plantation Education Agency of Indonesia, however this study was 

unable to confirm this. Data to verify a canopy density model or an estimate of stand age 

was not available for this study. Moreover, oil palm stands of the same age do not 

necessarily share the same phenology due to differences in the management, growth, and 

productivity of the stand. Consequently, this study adopted a qualitative approach to 

define the growth stages using phenology based on image characteristics (Table 3). 

Fitrianto et al. (2018) acknowledged that their mature class incorporated a particularly 

wide range of oil palm ages due to the difficulty in distinguishing younger mature palms 

(15–20 years old) from older mature palms (> 20 years old) using Landsat data. This 

study attempted to address this by including an additional class (adult) to differentiate a 

canopy that is partially closed or beginning to close from one that is completely closed. 

Examples of the classes as they appear in Google Earth are provided in Figure 8. 
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Table 3: Description of the oil palm growth stages. 

Growth stage Description 

Unplanted No palms visible. Identifiable as oil palm from the land 

preparation/management. 

Seedling Tiny round dots, recognisable as oil palm due to the planting pattern. 

Young Very small tree crowns and a higher ratio of visible ground cover 

than canopy/crown cover. 

Teen Small tree crowns with an approximately equal or lower ratio of 

visible ground cover than canopy/crown cover. Completely open 

canopy; fronds do not touch fronds on other tree crowns. 

Adult Canopy beginning to close. Some fronds touch fronds on other tree 

crowns. 

Mature Canopy closed. All tree crowns touch other tree crowns.  

 

 

 
Figure 8: Examples of Google Earth imagery in the study area showing the growth stages of oil palm 

in flooded and non-flooded conditions. The acquisition date of the flooded imagery is 26 November 

2016. The classes are abbreviated as follows: ‘NF’ = non-flooded; ‘F’ = flooded; ‘U’ = unplanted; 

‘S’ = seedling; ‘Y’ = young; ‘T’ = teen; ‘A’ = adult; ‘M’ = mature. 

UF UNF SF SNF 

YF YNF TF TNF 

AF ANF MF MNF 
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Selection of training areas 

Training areas were identified by visually interpreting the area within the oil palm land 

cover mask in Google Earth. Finding suitable training areas proved highly challenging as 

the presence of numerous smallholder plots meant multiple classes were present within a 

small area and the boundaries between the classes were fuzzy. Consequently, all suitable 

training areas were sampled. An area was considered suitable if it contained a representative 

example of a training class, i.e., only one class was present, the stand was uniform (no 

intercropping, missing trees, or degraded trees), and the presence/absence of standing water 

was unequivocal. The time slider feature in Google Earth’s database of historical imagery 

facilitated a comparison of an area’s appearance under flooded and non-flooded conditions. 

Polygons were manually digitised around training areas, taking care to exclude edge pixels 

if the training area was near the border of another class or near the border of the oil palm 

land cover mask. The KML file was converted to shapefile in ArcGIS and imported to 

SNAP for further analysis. In total 102 training areas were created (Figure 9). The 

characteristics of the training samples are shown in Table 4.  

Table 4: Characteristics of the training samples. 

Training class No. of training areas No. of pixels 

Unplanted non-flooded  6  437 

Unplanted flooded  2  734 

Seedling non-flooded  10  706 

Seedling flooded  7  665 

Young non-flooded  10  893 

Young flooded  8  917 

Teen non-flooded  11  720 

Teen flooded  8  435 

Adult non-flooded  12  626 

Adult flooded  7  388 

Mature non-flooded  10  884 

Mature flooded  11  974 

Total  102  8,379 
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Figure 9: Distribution of the training areas (red polygons) in the study area.  

The oil palm land cover mask is shown for reference. 

2.3.5. Analysis of backscatter characteristics 

The output of the pre-processed Sentinel-1 data described in Section 2.3.2. provides 

the VV and VH backscatter coefficients on the flood date for the analysis of the 

backscatter characteristics of the oil palm classes. The pixel values of the backscatter 

coefficients in the VV and VH polarisations were exported from SNAP using the 

‘Export Mask Pixels’ function. The training area shapefiles created in Section 2.3.4. 

were used to ‘mask’ the pixel values according to class to enable the pixel values for a 

single class to be exported. The data were pasted into a Microsoft Excel spreadsheet 

for further analysis. Frequency histograms of the backscatter coefficients were created 

in Excel to visually assess the backscatter signatures and the spectral separability of 

the oil palm classes. 
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2.3.6. Analysis of separability 

A series of statistical tests were conducted in IBM’s SPSS 27 to quantify the spectral 

separability of the classes. A visual assessment of the frequency histograms and SPSS’s 

Normal Q-Q Plots of the backscatter in the VV and VH polarisations suggested that 

many of the classes (both non-flooded and flooded) had distributions that deviate from 

normal (the SPSS output of the Normal Q-Q Plots is presented in Appendix B, Figures 

B2–B3). Yet violating the normality assumption does not generally affect the Type I 

error rate or the statistical power of the F-test, especially when the sample sizes are 

large (Delacre et al., 2019). However, unequal variances can strongly influence the 

Type I error rate and the statistical power of the F-test, especially if the sample sizes are 

unequal (Tomarken & Serlin, 1986; Delacre et al., 2019).  

The sample sizes used in this study were large, but unequal. To assess the equality 

of the variances, the Levene’s test was carried out in SPSS. The Levene’s test was 

based on means with a confidence interval of 95%. The variances in the backscatter 

coefficients among the non-flooded growth stages were not equal in the VV 

polarisation, F(5, 4260) = 18.196, p = .000, or the VH polarisation, F(5, 4260) = 

10.765, p = .000. Similarly, the variances in the backscatter coefficients among the 

flooded growth stages were not equal in the VV polarisation, F(5, 4107) = 145.139, 

p = .000, or the VH polarisation, F(5, 4107) = 330.342, p = .000.   

A Welch’s t-test was conducted in SPSS to assess the difference between the mean 

backscatter coefficients of a single growth stage of oil palm in flooded and non-

flooded conditions. Welch’s t-test is the most appropriate statistical test to assess the 

difference between two means when the assumptions of normality and equal variance 

are violated, and when the samples sizes differ (Delacre et al., 2017). 

Transformed Divergence, which is a widely used statistical test in remote sensing, was 

also undertaken to quantify the spectral separability between an individual growth stage 

of oil palm in flooded and non-flooded conditions. After first subsetting the layer stack 

in SNAP to form new products that contain the bands to be used as inputs, the products 

were exported as a GeoTIFF and imported to Hexagon Spatial’s Erdas Imagine 2020. 

The following input combinations were entered into Erdas Imagine’s Transformed 
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Divergence function: VV backscatter coefficients only, VH backscatter coefficients 

only, VV and VH backscatter coefficients combined. The shapefiles representing the 

training areas of the different classes were imported to the Erdas Imagine signature 

editor. The signature editor’s ‘evaluate/separability’ tool evaluated the separablity of 

the signatures using the different band combinations as inputs and generated a report of 

Transformed Divergence scores. Although the Transformed Divergence test assumes 

the data exhibit a normal distribution, the Normal Q-Q Plots revealed that many of the 

distributions show only a small deviation from normality. The full cell arrays of the 

Transformed Divergence scores are provided in Appendix B, Tables B1–B2.  

Use of derived bands to improve separability  

Three additional bands (in σ0 [dB]) were derived from the VV and VH backscatter 

coefficients for the flood date using the ‘band maths’ function in SNAP: a ratio image 

(VV/VH), a difference image (VV-VH), and a normalised difference image (NDI) 

(NDI = [VV-VH] / [VV+VH]). Derived backscatter bands can improve the accuracy 

of image classifications compared to the VV and VH backscatter available in the 

Sentinel-1 product (Miettinen et al., 2015; Abdikan et al., 2016; Tsyganskaya et al., 

2018a).  

The pixel values of the backscatter coefficients in the derived bands were exported 

from SNAP using the ‘Export Mask Pixels’ function. The training area shapefiles 

created in Section 2.3.4. were used to ‘mask’ the pixel values according to class (e.g., 

‘seedling flooded’) to enable the pixel values for a single class to be exported. The 

data were pasted into a Microsoft Excel spreadsheet for further analysis. Frequency 

histograms of the backscatter coefficients were created in Excel to visually assess the 

backscatter signatures of the derived bands and the separability of the oil palm classes. 

An example of the appearance of the backscatter in the derived bands on the flood date 

is provided in Figure 10. 
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Figure 10: Detailed view of the study area on the flood date showing the appearance of the 

backscatter in the VV and VH polarisations (in dB) and in the three derived bands: VV/VH, 

VV-VH, and NDI. Oil palm parcels are outlined in blue.  

VV 

Google Earth 26 November 2016 

VH 

NDI 

VV-VH VV/VH 
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Use of time series to improve separability  

The output of the pre-processed Sentinel-1 data described in Section 2.3.2. provides 

the VV and VH backscatter coefficients for the time series analysis. The time series 

analysis was adapted from a methodology presented by Tsyganskaya et al. (2018a). 

Comparing changes in absolute backscatter values over time is not always feasible due 

to the influence of environmental factors (e.g., wind, rainfall, phenological stage) on 

the backscatter values (Tsyganskaya et al., 2018a). To permit comparison, the absolute 

backscatter value of each pixel in the flood date scene can be standardised over the 

time series using the following z-transformation (Tsyganskaya et al., 2018a) (Eq. 1): 

𝑍 =
(𝑥−𝜇)

𝜎
 (1) 

where x is the backscatter value of a pixel on the flood date, and µ and σ are the mean 

and standard deviation, respectively, of the backscatter values of the same pixel over 

the time series (Tsyganskaya et al., 2018a).  

The z-transformation is performed using the ‘band maths’ function in SNAP and the 

output is a z-score image. A z-score image was generated on the flood date for each 

polarisation (VV and VH). The pixel values of the two z-score images were exported 

from SNAP using the ‘Export Mask Pixels’ function. The training area shapefiles 

created in Section 2.3.4. were used to ‘mask’ the pixel values according to class (e.g., 

‘seedling flooded’) to enable the pixel values for a single class to be exported. The 

data were pasted into a Microsoft Excel spreadsheet for further analysis. Frequency 

histograms of the z-scores were created in Excel to visually assess the standardised 

backscatter signatures and the separability of the oil palm classes. 
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3. RESULTS 

This section first presents the backscatter characteristics of the oil palm classes on the 

flood date in the VV and VH polarisations, and then examines the separability of the 

classes. Finally, the potential to improve the separability of the classes using derived 

bands and a time series is explored.  

3.1. Backscatter characteristics of the oil palm classes in the VV and 

VH polarisations on the flood date  

The mean backscatter coefficient in the VV polarisation was -7.85 dB (σ = 1.19 dB) 

and -11.41 dB (σ = 4.62 dB) for the oil palm classes in non-flooded and flooded 

conditions, respectively (Figure 11).  
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Figure 11: The VV backscatter coefficients on the flood date. 
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The unplanted flooded class exhibited very low backscatter and appeared dark in 

the VV image. In flooded conditions, increasing growth stage showed increasing 

VV backscatter, however, the marginal increase in backscatter diminished with 

each successive growth stage, and by the adult and mature growth stages the 

increase in backscatter was minimal. In non-flooded conditions the different growth 

stages exhibited similar backscatter responses revealing that the growth stage had 

little impact on C-band backscatter when flooding was absent. The backscatter 

coefficients of the seedling and young growth stages displayed a wider dynamic 

range in flooded conditions than in non-flooded conditions. 

The mean backscatter coefficient in the VH polarisation was -14.32 dB (σ = 1.36 dB) 

and -18.16 dB (σ = 3.89 dB) for the oil palm classes in non-flooded and flooded 

conditions, respectively (Figure 12).  
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Figure 12: The VH backscatter coefficients on the flood date. 
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The backscatter response of all classes was lower in the VH polarisation than in the 

VV polarisation. The pattern of backscatter observed in the VH polarisation mirrors 

that described above for the VV polarisation. A summary of the backscatter 

characteristics (min., max., mean., std. dev.) is presented in Appendix B, Table B3. 

3.2. Separability of the oil palm classes in the VV and VH 

polarisations on the flood date  

The Welch’s t-test assessed the difference in the backscatter response of an individual 

growth stage of oil palm when flooding was present compared to when flooding was absent. 

In both polarisations, and for all growth stages of oil palm, the Welch’s t-test showed a 

significant difference between the mean backscatter coefficients of a single growth stage of 

oil palm in flooded and non-flooded conditions at the level of α = 0.05 (Table 5). 

Table 5: Welch’s t-test comparing the means of the backscatter coefficients of the growth 

stages in flooded (F) and non-flooded (NF) conditions. 

Growth stage (F v. NF) Polarisation Welch’s t df1 df2 p 

Unplanted VV 22515.868 1 1165.302 .000 

Unplanted VH 23209.376 1 708.584 .000 

Seedling VV 1992.902 1 836.794 .000 

Seedling VH 3106.327 1 816.890 .000 

Young VV 1812.635 1 1710.392 .000 

Young VH 2648.440 1 1699.367 .000 

Teen VV 598.497 1 965.514 .000 

Teen VH 333.398 1 771.877 .000 

Adult VV 37.739 1 837.133 .000 

Adult VH 135.726 1 966.672 .000 

Mature VV 13.475 1 1673.270 .000 

Mature VH 85.239 1 1649.212 .000 

The Transformed Divergence test quantified the spectral separability among the oil palm 

classes using the input combinations: VV backscatter coefficients only, VH backscatter 

coefficients only, both VV and VH backscatter coefficients (VV and VH) (Table 6).  
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Table 6: Average separability of an individual growth stage of oil palm in flooded (F) and 

non-flooded (NF) conditions in VV polarisation, VH polarisation, and both polarisations 

together (VV and VH) using Transformed Divergence3.  

Growth stage 

(F v. NF) 

Average  

separability (VV) 

Average 

separability (VH) 

Average separability  

(VV and VH) 

Unplanted 2000 2000 2000 

Seedling 1641 1864 1946 

Young 785 1035 1139 

Teen 425 318 521 

Adult 30 134 156 

Mature 25 74 106 

3 Transformed Divergence scores range from 0 (no separability) to 2000 (excellent separability). Scores 

above 1900 represent good separation while scores below 1700 signify poor separation (Jensen, 2005). 

Compared to the VV polarisation, the VH polarisation generally achieved a slightly 

higher separability between a single growth stage of oil palm in flooded and non-

flooded conditions, although the highest separation was achieved when the backscatter 

of both polarisations was used. 

The unplanted growth stage displayed unique backscatter profiles in flooded and non-

flooded conditions and exhibited very high separability in both polarisations. This was 

confirmed by the Transformed Divergence test, which found that these two classes had 

the highest possible separability (2000) in all polarisation combinations.  

The backscatter profiles of the seedling growth stage in flooded and non-flooded 

conditions exhibited high separability in both polarisations, and this was confirmed by 

the Transformed Divergence test, which recorded good separability (1946) between 

these two classes when the backscatter of both polarisations was considered. 

A partial overlap in the backscatter distributions of the young growth stage in flooded and 

non-flooded conditions existed in both polarisations, and the Transformed Divergence 

test reported poor separability between these two classes in all polarisation combinations.  
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There was considerable overlap in the backscatter distributions of the teen, adult, and 

mature growth stages in flooded and non-flooded conditions in both polarisations. In fact, 

by the adult growth stage, the backscatter profile in flooded conditions resembled that of 

non-flooded conditions. The Transformed Divergence test scores were extremely low in 

all polarisation combinations for the teen, adult, and mature growth stages.  

To test whether fewer classes improved the separability, classes were grouped into a 

set of refined classes. The backscatter responses of the individual growth stages of oil 

palm in flooded and non-flooded conditions revealed that in both polarisations the C-

band signal saturated by the adult growth stage. Consequently, the flooded classes 

were grouped into an ‘open canopy’ class (i.e., seedling, young, teen) and a ‘closed 

canopy’ class (i.e., adult, mature). Due to its unique backscatter profile, the unplanted 

flooded class remained as a separate class. The non-flooded classes were combined 

into a single group as the growth stage appears to have minimal impact on the 

backscatter response of the non-flooded classes.  

Figure 13 shows the backscatter profiles of the refined oil palm classes while Table 7 

presents the average separability of the refined classes. There was reasonable separability 

between open canopy and closed canopy oil palm in flooded conditions, with a ~3 dB and 

~4 dB overlap in VV backscatter and VH backscatter, respectively. In contrast, the overlap 

between open canopy flooded oil palm and non-flooded oil palm was greater, with a ~4 

dB and ~5 dB overlap in VV backscatter and VH backscatter, respectively. The 

backscatter distributions of closed canopy flooded oil palm and non-flooded oil palm 

overlapped completely. Although the refined classes enhanced the separability, they did 

not improve C-band’s ability to detect the presence/absence of flooding in a discernible 

way and the separability remained insufficient to perform an image classification. 
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Non-flooded  
(all growth stages) 

Unplanted flooded Open canopy flooded (seedling, 

young, and teen growth stages) 

Closed canopy flooded (adult  
and mature growth stages) 

 

 

Figure 13: The VV and VH backscatter coefficients on the flood date for the refined classes.  

Table 7: Average separability of the refined classes in VV polarisation, VH polarisation, and both 

polarisations together (VV and VH) using Transformed Divergence4.   

Class Average 

separability 

(VV) 

Average 

separability 

(VH) 

Average 

separability 

(VV and VH) 

Non-flooded5 1026 1069 1155 

Unplanted flooded 1995 1989 1998 

Open canopy flooded6 1448 1484 1574 

Closed canopy flooded7 1116 1143 1181 

Average of all classes 1396 1421 1477 

4 Transformed Divergence scores range from 0 (no separability) to 2000 (excellent separability). Scores 

above 1900 represent good separation while scores below 1700 signify poor separation (Jensen, 2005). 

5 The non-flooded class combines all growth stages (unplanted, seedling, young, teen, adult, mature). 

6 The open canopy flooded class combines the seedling, young, and teen growth stages.  

7 The closed canopy flooded class combines the adult and mature growth stages.  

3.3. Use of derived bands to improve separability 

The backscatter response in the derived bands (VV/VH, VV-VH, NDI) was considerably 

less useful than the backscatter response in the VV and VH polarisations (Figures 14–15). 

The unplanted growth stage showed some distinction between flooded and non-flooded 

conditions in the VV/VH and NDI bands, but the distinction was much weaker than the 

unique backscatter pattern shown in the VV and VH polarisations. The remaining classes 

did not reveal a distinctive backscatter pattern according to growth stage or ground 

condition in any of the derived bands. 
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Figure 14: The VV/VH backscatter ratio and the VV-VH backscatter difference on the 

flood date. 
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3.4. Use of time series to improve separability 

The standardised backscatter (z-score) compared the backscatter response on the flood 

date to the backscatter response recorded on six other dates in the time series. For the 

unplanted growth stage in flooded conditions, the standardised backscatter in the VV 

and VH polarisations showed the same distinct pattern: the backscatter response was 

highly concentrated between 2.0 and 2.5 standard deviations below the mean (i.e., the 

mean of the backscatter values of the same pixel over the time series) (Figures 16–17). 

This is consistent with our expectations: assuming flooding was not present on the 

other six dates in the time series, the backscatter intensity of the unplanted growth 

stage on the flood date would be lower than the backscatter intensity averaged over the 

rest of the time series. The unplanted growth stage in flooded conditions is essentially 

an open water surface and the smooth surface acts as a specular reflector of microwave 

energy. Likewise, the standardised backscatter of the seedling and young growth 

stages in flooded conditions was heavily skewed towards standard deviations below 

the mean, although the values were more variable than those of the unplanted growth 
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Figure 15: The normalised difference (NDI) of the backscatter on the flood date. 
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stage in flooded conditions. Yet when compared to the backscatter profiles of the flood 

date, the standardised backscatter profiles of the unplanted, seedling, and young 

growth stages exhibited greater overlap in flooded and non-flooded conditions. 

Therefore, the time series approach did not improve the separability of the oil palm 

classes. As seen with the flood date backscatter response, the standardised backscatter 

eventually saturated and showed no sensitivity towards the presence/absence of 

flooding in the teen, adult, and mature growth stages. 
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Figure 16: The standardised VV backscatter (z-score) on the flood date. 
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4. DISCUSSION 

This study examines the capability of Sentinel-1 C-band VV and VH SAR data to 

detect the presence/absence of flooding in oil palm plantations. The oil palm is 

stratified into growth stages that represent the different phenological stages of the oil 

palm present in the study area based on the image characteristics of Google Earth 

imagery. Because the growth stage determines the structure, transmissivity, and surface 

roughness of the oil palm, it has a strong effect on the backscatter return. By accounting 

for the growth stage, a clearer understanding of the strengths and limitations of C-band 

data for the detection of flooding in oil palm is achieved compared to if differences in 

target characteristics are ignored. Similarly, if only closed canopy oil palm is examined, 

the presence of flooding in a plantation may be underestimated. In this study, classes 

are derived from the different growth stages of oil palm in flooded and non-flooded 

conditions, and the backscatter characteristics and spectral separability of the classes 

are explored. Here we discuss the key findings and the sensitivities of the method.  

4.1.  Backscatter characteristics and separability of the oil palm classes 

There is a significant difference in the mean backscatter response of the individual 

growth stages of oil palm in flooded and non-flooded conditions in the VV and VH 

polarisations. This is true for all growth stages including the adult and mature growth 

stages, which showed a near total overlap in their distributions. This is due to the large 

sample sizes causing even slight differences in the means to be statistically significant.  

The backscatter distributions of the classes overlap to such an extent that unique 

backscatter profiles for the classes are not identified, except for unplanted flooded oil 

palm. For all classes, the highest separability is achieved with dual-polarisation 

backscatter rather than single-polarisation backscatter, which is consistent with the 

literature (Abdikan et al., 2016; Pham-Duc et al., 2017; Tsyganskaya et al., 2018b). 

The high separability of the unplanted flooded oil palm is expected as the sensor is 

essentially detecting standing open water. In both VV and VH polarisations, upon 

interaction with a calm water surface, the signal undergoes specular or forward scattering 
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away from the antenna. For all other classes, the ground surface and the presence of 

palms increases the interaction of the signal with the target, thereby increasing the 

proportion of the signal that is returned to the antenna. Consequently, the unplanted 

flooded class has a uniquely low backscatter return compared to the other classes.  

The backscatter response of all classes of oil palm is higher in the VV polarisation 

than in the VH polarisation, which is expected. In forest applications, cross-polarised 

backscatter, which is associated with volume scattering, is generally lower than co-

polarised backscatter, which is associated with surface scattering and double bounce 

scattering (Rosenqvist, 2018; Kellndorfer, 2019).  

According to Rosenqvist (2018), the oil palm’s dense canopy of large fronds prevents 

the C-band, and even the L-band, signal from penetrating the canopy. The C- and L-

band signals exhibit similar backscatter in oil palm plantations, with the signal 

restricted to interactions with the top of the canopy where the large leaves and branches 

generate a strong direct co-polarisation scatter (Rosenqvist & Oguma, 1995; 

Rosenqvist, 2018). Consequently, the backscatter that is observed in the older growth 

stages is predominantly surface scattering from the oil palm canopy while the dominant 

scattering from low or sparse vegetation is direct surface scattering from the ground 

(Ranson & Sun, 2000). The impenetrability of the oil palm’s dense canopy by the C-

band signal means that volume scattering observed in this study is limited to vegetation 

that is low or sparse (Rosenqvist, 2018). C-band’s limited ability to penetrate the oil 

palm’s dense canopy means that the double bounce effect that creates a strong return 

signal and very bright backscatter in inundated forests is not observed in this study. 

In the absence of flooding, the different growth stages have little impact on the 

backscatter response of the C-band signal. However, in flooded conditions, a clear 

pattern of increasing backscatter with palm growth exists in both polarisations. The 

mean VV and VH backscatter coefficients of the flooded classes increase with 

increasing growth stage, but the marginal increase in backscatter diminishes with each 

successive growth stage. The increase in VV and VH backscatter with growth stage in 

flooded conditions represents a transition from forward (specular) scattering in 

unplanted flooded oil palm to an increase in volume scattering and direct surface 

scattering as the juvenile palms grow. Eventually a saturation point is reached and the 
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VV and VH backscatter response of the adult and mature growth stages in flooded 

conditions resembles that of non-flooded conditions. 

Saturation “indicates that additional contribution from a certain parameter, in this case 

biomass, does not result in a higher backscatter response” (Rosenqvist, 1996, p. 3223). 

While cross-polarisations like VH are sensitive to biomass and therefore sensitive to 

differences in palm growth, C-band’s short wavelength and limited canopy penetration 

inhibits interactions with the physical parameters of the palms (Sinha et al., 2015) 

causing it to saturate sooner (at ~ 60–70 tons/ha) than bands with longer wavelengths 

(Nizalapur et al., 2010). The saturation of the C-band signal in oil palm plantations is 

reported in several studies (e.g., Rosenqvist & Oguma, 1995; Ballester-Berman & 

Rastoll-Gimenez, 2021; Darmawan et al., 2021). 

Consequently, C-band backscatter on its own struggles to distinguish between different 

growth stages of oil palm (Descals et al., 2019; Xu et al., 2021). Often additional data 

(e.g., L-band backscatter, optical data, texture variables, vegetation indices) are needed 

to complement C-band data when attempting to distinguish between young and mature 

oil palm (Descals et al., 2019; Xu et al., 2021; Yamamoto et al., 2021). 

In addition, the spectral variance of the backscatter profiles contributes to the poor 

separability of the classes. This is most notable in the seedling and young growth 

stages, which show a higher spectral variance in flooded conditions than in non-

flooded conditions in the VV polarisation and, in particular, the VH polarisation. 

VH polarisation has a wider backscatter variability in vegetated areas than VV 

polarisation (Twele et al., 2016) and in sparsely vegetated areas the low backscatter 

generated by cross-polarisations can lead to the misclassification of sparse vegetation 

as water (Manjusree et al., 2012; Twele et al., 2016). In addition, the large spread in 

backscatter coefficients for the flooded seedling class is influenced by the spacing of 

the oil palms (~ 9 m apart) relative to the spatial resolution of the SAR data (10 x 10 

m). The signal detects the standing open water between the seedlings, resulting in low 

VV and VH backscatter. However, the interaction of the signal with the seedlings adds 

complexity to the backscatter return. Volume scattering is generated by C-band’s 

ability to penetrate the seedling’s branches and leaves. In addition, shorter 
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wavelengths like C-band may generate weak double bounce scattering in vegetation 

that is low or sparse (Martinis & Rieke, 2015). 

In young flooded oil palm, the larger size of the palms compared to the seedlings 

means that the signal detects less standing water. Larger palms mean less open surface 

water to create specular or forward scattering and reduced penetration of the palm’s 

crowns to detect water underneath. For this reason, this class does not exhibit the same 

low backscatter in the VV and VH polarisations as the unplanted and seedling flooded 

classes, but it still displays a wider spectral variance than the same growth stage in 

non-flooded conditions.  

While the spectral variances of the different growth stages in non-flooded conditions 

are relatively stable, the spectral variance of the different growth stages in flooded 

conditions narrows as the growth stage increases. By the teen growth stage, the 

spectral variance of the growth stage in flooded and non-flooded classes is similar.  

Although the backscatter response of flooded oil palm cannot be compared to other 

studies as, to the best of the author’s knowledge, no other studies have reported the 

backscatter characteristics of oil palm in flooded conditions, it is possible to compare 

the spectral variance of non-flooded oil palm. For mature non-flooded oil palm, this 

study observed backscatter coefficients ranging from -10.27 dB to -4.09 dB in the VV 

polarisation and from -19.35 dB to -11.73 dB in the VH polarisation. This is a 

dynamic range of 6.2 dB and 7.6 dB in the VV and VH polarisations, respectively. In 

contrast, the backscatter coefficients of ‘closed canopy’ oil palm reported in Miettinen 

et al. (2015) ranged from approximately -6 dB to -8 dB in the VV polarisation and 

approximately -14.75 dB to -16.5 dB in the VH polarisation. This is a dynamic range 

of 2 dB and 1.75 dB in the VV and VH polarisations, respectively. Furthermore, 

across all growth stages examined by Rosenqvist and Oguma (1995), VV backscatter 

fell within a dynamic range of ~ 3 dB, with a saturation point around -6 dB. This 

suggests that the spectral variance of the non-flooded classes (as well as the flooded 

classes) is much wider than ideal due to the presence of residual speckle noise in the 

data (Ballester-Berman & Rastoll-Gimenez, 2021). 
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Nonetheless, is important to note that the backscatter response observed in this study is 

not transferable to other study settings (Mohd Najib et al., 2020; Ballester-Berman & 

Rastoll-Gimenez, 2021). The interactions between the sensor and the target are unique 

and arise from a particular combination of sensor characteristics and target 

characteristics (see Appendix A for a detailed overview of the scattering mechanisms 

observed in flooded vegetation). Studies based on ground truth measurements (e.g., 

Teng et al., 2015; Toh et al., 2019) report considerably different values for the oil 

palm’s physical parameters across different ages. This is significant because the 

backscatter response of oil palms depends on their structure and planting density 

(Darmawan et al., 2021). Differences in management systems, planting patterns, 

planting density, plant age, and plant morphology will see differences in the backscatter 

response that studies observe (Ballester-Berman & Rastoll-Gimenez, 2021). 

The backscatter profiles of the oil palm classes in the derived bands are less distinctive 

than the backscatter profiles in the VV and VH polarisations. In the time series, both 

the VV and VH standardised backscatter (z-scores) reach total saturation by the adult 

growth stage, which mirrors the point of saturation observed on the flood date. The 

VV and VH standardised backscatter is sensitive to the presence/absence of flooding 

in the unplanted, seedling, and young growth stages, but it does not improve the 

distinctiveness of the classes compared to the backscatter of the flood date. Therefore, 

the backscatter of the derived bands, and the standardised backscatter of the time 

series, do not improve the separability of the oil palm classes compared to the use of 

single date (flood scene) VV and VH backscatter.  

In sum, C-band’s inability to penetrate the dense oil palm canopy means that the 

double bounce effect that is characteristic of flooded forests is not observed, therefore 

it is not possible to detect the presence/absence of standing water except in very young 

oil palm. In older oil palm, C-band is unable to detect any difference between the 

backscatter response in flooded and non-flooded conditions. C-band’s tendency to 

saturate early means it is not sensitive to biomass and struggles to differentiate among 

the different growth stages of oil palm. This is true for all growth stages in non-

flooded conditions and for older growth stages in flooded conditions. The presence of 

flooding improves the ability to identify different growth stages of oil palm, but to a 

limited extent. While flooded seedling oil palm, and to a lesser extent flooded young 
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oil palm, may be distinguished from the same growth stage in non-flooded conditions, 

the wide spectral variance of these classes means their backscatter profiles overlap 

considerably with other classes. This is because the younger growth stages in flooded 

conditions generate a complex backscatter return caused by the size of the target 

relative to the spatial resolution of the data, which produces substantial variability in 

the backscatter coefficients. What is more, the backscatter spread of all the classes is 

wide due to the presence of residual speckle noise in the data.  

4.2.  The sensitivities of the method 

The sensitivities of the method to detect the presence/absence of flooding in oil palm 

stands are determined by the limitations of the data and the strengths and weaknesses 

of the method. 

4.2.1. Limitations of the data 

Sentinel-1 SAR data 

The limitations of C-band’s relatively short wavelength are mentioned previously. 

The lack of HH polarisation for the study area is unfortunate as HH is the preferred 

polarisation for the detection of flooded vegetation (Martinis & Rieke, 2015; 

Tsyganskaya et al., 2018b) and flood extent (Manjusree et al., 2012; Twele et al., 

2016). While both VV and HH polarisations measure surface scattering, the latter 

detects differences in surface scattering. The vertical polarised wave is more attenuated 

than the horizontally polarised wave, therefore HH polarisation achieves superior 

canopy penetration and a stronger reflection when striking the water surface than VV 

polarisation (Tsyganskaya et al., 2018b). Consequently, HH polarisation contributes 

more double bounce scattering than VV polarisation (Tsyganskaya et al., 2018b). 

Similarly, the lack of HV polarisation means less sensitivity towards volume scattering 

and differences in biomass. 

For the detection of flooded forests, incidence angles < 35° are generally more 

effective than incidence angles > 35° (Hess et al., 1990; Wang et al., 1995; Townsend, 
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2001). The near- and far-range incidence angles of the C-band data covering the study 

area are 36.2° and 38.5°, respectively. This small range in incidence angles, combined 

with the radiometric calibration performed during pre-processing, means that 

differences in incidence angles will have a negligible effect on the backscatter 

coefficients. Given the impenetrability of the oil palm canopy to even L-band data, 

it’s doubtful that C-band data with a steeper incidence angle would have markedly 

improved the transmissivity of the oil palm canopy.  

Reference data 

In the absence of ground truth data, this study relies extensively on Google Earth 

imagery to provide reference data for the creation of the oil palm land cover mask and 

to inform the location of training areas. Manual visual interpretation is time-

consuming and monotonous, and errors may occur if operator fatigue sets in. Although 

every effort is made to ensure an assigned class is unequivocal, it is possible that an 

incorrect class is assigned to some training areas. This is especially true for the older 

growth stages where the canopy coverage makes the ground cover less visible and 

identifying the presence/absence of standing water is less certain than for the younger 

growth stages. Furthermore, other than the presence/absence of standing water, the 

spatial resolution of the Google Earth imagery is insufficient for determining the 

ground surface or ground condition of the oil palm stands, which is important for 

differentiating growth stages of oil palm, as discussed in the next section. 

A three-day time lag exists between the acquisition of the reference data and the flood 

scene. In the three days that elapsed between the acquisition of the Sentinel-1 scene 

and the Google Earth scene, just 9.8 mm of rainfall was recorded at the SKMJ weather 

station in the study area. Consequently, a slight recession in the amount of standing 

water may have occurred between the acquisition dates of the Sentinel-1 scene and the 

Google Earth scene, in which case the Google Earth scene would represent a slightly 

conservative source of reference data. Consequently, if an area appears flooded in the 

Google Earth scene it is a reasonable assumption that the area is flooded in the 

Sentinel-1 scene, but if an area appears non-flooded in the Google Earth scene, it is 

possible that flooding is present in the Sentinel-1 scene but has receded before the 

acquisition of the Google Earth scene. If a recession in flooding did occur between the 
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acquisition dates, and if any of the training areas for the non-flooded classes overlap 

with these areas, it would mean some flooded pixels were present in the training 

samples of the non-flooded classes. 

4.2.2. Weaknesses of the method 

The advantages of applying SAR data to the detection of flooded vegetation and 

flooded forests are outlined in the Introduction. This section focuses on the 

weaknesses of the method, which largely relate to challenges in the study setting. 

Some of the challenges are specific to the study area and others are relevant to oil 

palm environments more generally. 

The oil palm’s management system has a significant impact on the backscatter 

response. Oon et al. (2019) used both C-band and L-band data to examine the 

backscatter intensity of smallholder and industrial plantations. They found that 

smallholdings exhibited a significantly higher average backscatter intensity than 

industrial plantations in C-band VV, C-band VH, and L-band HV. They suggested this 

was due to the multiple tree species that were present in the smallholdings (Oon et al., 

2019). They also found that smallholdings in their study area were well-drained with 

more extensive flood-control waterways than the industrial plantations (Oon et al., 

2019). Although Oon et al. (2019) reported a difference in C-band backscatter 

intensity between oil palm management systems, the findings of Descals et al. (2019) 

did not corroborate this. 

Industrial plantations are characterised by a monoculture management system, a 

uniform stand age, and a planted area > 50 ha (Oon et al., 2019). In contrast, the 

management system of smallholdings may be monoculture or polyculture (where the 

oil palm is intercropped with banana, rubber, cassava, pineapple, and other crops), and 

the stand age may be uniform or variable (Oon et al., 2019). In addition, smallholdings 

may feature irregular planting patterns with multiple row orientations occurring within 

the same parcel, unhealthy trees with stunted growth, and numerous missing trees that 

reveal large patches of bare soil or vegetation (Oon et al., 2019). Consequently, the 

ground cover of smallholdings is highly heterogeneous (Gutiérrez-Vélez & DeFries, 

2013). These characteristics are a feature of the smallholdings in this study, which 
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created a problem of fuzzy class boundaries during the extraction of the training 

samples. Although training samples are not collected from these heterogeneous areas, 

the number of potential training areas is reduced. Moreover, the diversity of the target 

features may interfere with the backscatter response and increase the likelihood of 

errors if an image classification is performed. 

In this study, no distinction is made between smallholdings and industrial holdings 

during the collection of the training samples due to the difficulty in obtaining a 

sufficient number of training samples for each class. Had a distinction been made, it 

would contribute valuable information towards understanding the potential differences 

in the backscatter response from different management systems.  

The total backscatter produced from a vegetated surface consists not only of 

backscatter from the vegetated surface, but also backscatter from the ground cover 

(some of which is attenuated by the vegetation) and backscatter from ground-

vegetation interactions (Vreugdenhil et al., 2018). According to Izzawati (2002), the 

ground condition varies widely in oil palm plantations, and may consist of swamp, 

undergrowth, or plantation debris. Furthermore, X-, C-, and L-band are all sensitive to 

the condition of the ground surface in oil palm plantations and any attempt to 

differentiate the growth stage of oil palm will be hindered without prior knowledge of 

the ground conditions (Izzawati, 2002). Other than the presence/absence of standing 

water, the training samples used in this study do not account for differences in the 

ground surface so the impact of ground condition on the backscatter observed in this 

study is unknown.  

The pre-processed SAR data used in this study contained residual speckle noise, which 

contributes to the spread in the backscatter distributions of the classes. Again, the 

smallholdings presented a challenge for the reduction of speckle. The application of a 

speckle filter with a window size larger than 5x5 is not feasible as the small size of the 

smallholder parcels, and the mixed classes within the parcels, would incorporate the 

backscatter intensity of pixels from other oil palm classes, and from other land cover 

classes, into the target pixel. Other approaches to reduce speckle, such as averaging 

multiple SAR images from the same orbit track and applying a multitemporal speckle 

filter, take advantage of the oil palm’s relatively stable phenology throughout the year 
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(Lazecky et al., 2018). However, this approach is not appropriate for this study as the 

backscatter intensity on the flood date cannot be averaged with the backscatter 

intensity of other (non-flooded) dates. Object-based image classification is known to 

reduce speckle noise as pixels with similar backscatter values are grouped into objects 

(Tsyganskaya et al., 2018b). However, the fuzzy boundaries of the oil palm classes in 

the smallholdings makes the creation of reference image objects, which are used 

during the validation of the segmentation process, challenging and unreliable.   

4.2.3. Recommendations for future research 

The outcomes of this study strongly lend themselves to further research: 

The nature of the smallholder plantations in this study restricted the ability to reduce 

speckle noise sufficiently. Future studies that exclude smallholdings could test whether 

a larger speckle filter window or an alternative speckle reduction method can reduce 

the speckle noise, which would reduce the spectral variance of the classes.  

Notwithstanding, research on smallholdings is under-developed. The backscatter 

intensities of smallholdings and industrial holdings should be differentiated to 

determine whether a difference in backscatter intensity exists between management 

systems. This knowledge may improve the separability of flooded and non-flooded oil 

palm as well as different growth stages of oil palm. 

The impact of row orientation on backscatter intensity warrants investigation. This study 

notes that oil palm is planted in a variety of row orientations, not only in smallholdings, 

but in industrial plantations also. Row orientations vary both within plantations and 

between plantations, and the impact on the backscatter response is unknown. 

The reliability of reference data could be improved by using actual ground truth data 

to avoid errors that may arise in the visual interpretation process of optical imagery. 

This would also provide an opportunity for the condition of the ground surface to be 

accounted for in the backscatter response. However, this would require field work that 

coincided with an actual inundation event and there are practical implications for 

conducting field work in such conditions. Gaining access to a flooded plantation at an 
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optimal time may be prevented by logistical challenges, such as poor weather, flooded 

overland routes, and damage to infrastructure. Furthermore, gaining permission to 

access a plantation, even when flooding is absent, is often challenging. 

Incorporating additional data (e.g., L-band backscatter intensity, optical data, texture 

variables, vegetation indices) to supplement C-band backscatter intensity may improve 

the detection of flooded oil palm. When combined with C-band backscatter, these data 

have improved the detection of oil palm land cover, oil palm age, and the type of 

management system. It is highly likely that their inclusion would improve the 

detection of flooding in oil palm plantations compared to C-band backscatter alone. In 

addition, new free and open source SAR data coming online in 2024, such as the 

NISAR (NASA/Indian Space Research Organization SAR) dual frequency (L- and S-

band [λ=12 cm]) fully polarimetric data, and ESA’s Biomass mission (P-band) fully 

polarimetric data, provides additional opportunities to map the extent of flooding in oil 

palm plantations.  

P-band’s long wavelength is capable of penetrating even dense forest canopies, and it 

is expected to be highly effective at identifying the presence/absence of standing water 

underneath all growth stages of oil palm, including older (closed canopy) growth 

stages. Furthermore, P-band is sensitive to biomass and should be effective at 

differentiating the growth stages of oil palm even in non-flooded conditions, which C-

band cannot achieve. However, young palms may be completely transparent to P-

band, potentially making P-band less suitable for differentiating among the young 

(open canopy) growth stages of oil palm. In studies where detecting the different 

growth stages of oil palm is important, supplementing P-band data with shorter 

wavelength data, such as L-band, may be necessary. However, it may be possible to 

utilise only P-band backscatter if the desired aim is to map the extent of flooding in an 

oil palm environment without considering the growth stage of the oil palm. 
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5. CONCLUSIONS 

The backscatter response of all classes was lower in the VH polarisation than in 

the VV polarisation as the oil palm generated more surface scattering than volume 

scattering. However, the pattern of the backscatter response was the same in both 

polarisations. 

The unplanted flooded class exhibited very low backscatter and displayed a unique 

backscatter profile that represented open surface water. In flooded conditions, the 

backscatter in both polarisations increased with increasing growth stage, however 

the marginal increase in backscatter diminished with each successive growth stage, 

and by the adult and mature growth stages the increase in backscatter was minimal. 

The backscatter coefficients of the seedling and young growth stages displayed a 

wider dynamic range in flooded conditions than in non-flooded conditions as they 

formed a mixed target that generated a complex return signal. The backscatter 

response of the non-flooded classes was similar revealing that the growth stage had 

little impact on C-band backscatter when flooding was absent. There was a wide 

spread in the backscatter coefficients of all the classes due to residual speckle noise 

in the data. 

The greatest separation was achieved for a single growth stage of oil palm in flooded 

and non-flooded conditions when the backscatter of both polarisations was used. The 

separability of the backscatter distributions in flooded and non-flooded conditions 

began with high separability in the unplanted and seedling growth stages and rapidly 

declined with increasing growth stage. By the adult growth stage there was total 

overlap in the backscatter distributions and no separability between flooded and non-

flooded conditions.  

The highest separability in the backscatter profiles of the different oil palm growth 

stages in flooded and non-flooded conditions was achieved by the VV and VH 

backscatter on the flood date. The backscatter of the derived bands and the 

standardised backscatter of the timeseries did not improve the separability.   
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Sentinel-1 C-band VV and VH data is highly effective at identifying flooding in 

unplanted areas of oil palm plantations and in oil palm seedlings, and it is moderately 

effective at identifying flooding in young oil palm. It is unable to detect flooding in 

teen, adult, or mature oil palm.  

This study contributed to the following under-developed research areas in the 

field of remote sensing: the study of inundation in oil palm stands, the study of 

smallholder plantations, and the study of juvenile/open canopy oil palm. To the 

best of the author’s knowledge, this is the first study to report the backscatter 

characteristics of flooded oil palm.   
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APPENDICES 

Appendix A 

A.1. Scattering mechanisms of flooded vegetation 

This section provides an overview of the backscatter mechanisms that are common to 

flooded vegetation, and the characteristics of the sensor and the target that govern them. 

A.1.1. Backscatter mechanisms 

In an SAR image, dark areas are produced by a low backscatter return (the signal is 

reflected away from the antenna) while bright areas represent a high backscatter return 

(the signal is reflected towards the antenna). Natural scenes generate three main types 

of backscatter: surface, volume, and double bounce (Meyer, 2019). 

Surface scattering comprises direct, forward (specular), and diffuse scattering. In 

direct scattering, a surface that is orientated perpendicular to the SAR antenna reflects 

the SAR signal directly back to the antenna (Rosenqvist, 2018). Forward or specular 

scattering occurs when a surface that appears smooth relative to the signal’s 

wavelength (such as calm water, or at longer wavelengths, smooth bare soil) reflects 

the signal away from the antenna (Rosenqvist, 2018). Diffuse scattering occurs when a 

surface that appears rough relative to the wavelength (such as choppy water or a 

ploughed field) scatters the signal in different directions, including towards the 

antenna (Rosenqvist, 2018). 

Volume scattering occurs when the signal bounces multiple times within a 3-

dimensional structure, such as a plant canopy, before a portion is reflected towards the 

antenna (Rosenqvist, 2018). 

Double bounce scattering occurs when a corner reflector is created from the 

perpendicular orientation of a vertical target (such plant stems and tree trunks) and a 

flat ground or water surface. When the specular reflection off water interacts with 
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emerging tree trunks it generates a strong corner reflector and a particularly high 

return signal (Clement et al., 2017). 

Open surface water is easily distinguishable in SAR imagery as it is a specular reflector 

of microwave energy, thus it generates low backscatter and appears dark in the image 

(Schlaffer et al., 2015). The backscatter from dry land increases with soil moisture and is 

generally higher than that of open surface water while the backscatter from flooded 

vegetation is higher still due to the double bounce effect (Wilusz et al., 2017).  

However, the pattern of increasing backscatter from open surface water to dry land to 

flooded vegetation is not always observed due to several factors that influence the 

backscatter return (Wilusz et al., 2017). Sensor characteristics (i.e., wavelength, 

polarisation, incidence angle) and environmental factors (e.g., plant type, plant 

phenology, soil moisture) exert a strong influence on the SAR signal and complicate 

the interpretation of SAR imagery (Tsyganskaya et al., 2018b).   

A.1.2. Sensor characteristics 

Wavelength 

The wavelength of the SAR signal governs its sensitivity to different targets. Objects 

that are the same size or larger than the wavelength of the signal are generally visible, 

while objects that are considerably smaller than the wavelength of the signal are 

generally invisible (although small objects may still contribute to signal attenuation) 

(Rosenqvist, 2018). At longer wavelengths, small objects like leaves and twigs appear 

transparent enabling the signal to penetrate deeper into the canopy and interact with 

larger objects, such as the trunk and branches, and potentially the ground surface or 

water surface also (Rosenqvist, 2018).  

For this reason, L-band (λ=23.6 cm) is highly effective at detecting water underneath 

forested canopies as it generates a stronger double bounce effect than C-band (λ=5.6 

cm) and X-band (λ=3.1 cm) (Martinis et al., 2017; Plank et al., 2017). Shorter 

wavelengths exhibit greater canopy attenuation, volume scattering and surface 
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scattering from the canopy, which reduces the backscatter ratio between flooded and 

non-flooded forests (Martinis et al., 2017).  

Yet the relationship between a signal’s wavelength and its sensitivity to different targets is 

moderated by certain target characteristics. For example, C-band and even X-band can be 

used for mapping flooded vegetation depending on the type, density, and structure of the 

canopy, such as in sparse forests and in leaf-off conditions (Martinis et al., 2017; Plank et 

al., 2017). In fact, in sparsely vegetated areas, C-band may outperform L-band in detecting 

flooded vegetation by achieving a higher return signal (Tsyganskaya et al., 2018b). Sparse 

vegetation may be too transparent to L-band to achieve an interaction between the signal 

and the water surface and vegetation (Tsyganskaya et al., 2018b). (See Section A.1.3. for 

additional information on target characteristics.) 

Polarisation 

Polarisation is “the orientation of the plane of oscillation of a propagating signal” (Meyer, 

2019, p. 27). Most SAR sensors today transmit and receive at horizontal and/or vertical 

linear polarisation (Meyer, 2019). Co-polarised sensors operate in HH (horizontal 

transmit, horizontal receive) or VV (vertical transmit, vertical receive) polarisation, while 

cross-polarised sensors operate in HV (horizontal transmit, vertical receive) or VH 

(vertical transmit, horizontal receive) polarisation (Meyer, 2019). Modern sensors tend to 

operate in dual-polarisation mode (HH and VV; HH and HV; VV and VH) or quad-

polarisation mode (HH, VV, HV, VH) (Tsyganskaya et al., 2018b).  

The polarisation influences the interaction of the signal with the target. The 

polarisations are sensitive to different scattering mechanisms and the backscatter does 

not occur equally in the different polarisations (Meyer, 2019). In general, the relative 

scattering strength of the polarisations is as follows (Meyer, 2019): 

Surface scattering: SVV > SHH > SHV or SVH 

Volume scattering: Main source of SHV and SVH 

Double bounce scattering: SHH > SVV > SHV or SVH 

where ‘S’ is the scattering power (Meyer, 2019). 
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Of the surface scattering sub-types, direct scattering appears bright in the co-polarised 

channels, forward (specular) scattering appears dark in both co- and cross-polarised 

channels, while the amount of backscatter received from diffuse scattering increases in 

the co-polarised channels as surface roughness increases (Rosenqvist, 2018). In 

volume scattering, the random orientation of the scattering surfaces within a 3-

dimensional structure means the polarisation of the return signal is random and the 

backscatter is received equally in co- and cross-polarisations (Rosenqvist, 2018). 

When a signal is reflected from a vertical target the direction of the polarisation 

remains unchanged, therefore in double bounce scattering the return signal is co-

polarised (Rosenqvist, 2018). Consequently, co-polarised backscatter is associated 

with measuring surface scattering and double bounce scattering, while cross-polarised 

backscatter is associated with measuring volume scattering (Tsyganskaya et al., 

2018b; Kellndorfer, 2019).  

An increase in polarisation complexity generates different scattering mechanisms that 

help discriminate among vegetation types and environmental conditions, but it comes at 

a loss in spatial resolution (Tsyganskaya et al., 2018b). Co-polarisations are generally 

more effective at detecting flooded forests than cross-polarisations as cross-

polarisations generate very low backscatter (Martinis et al., 2017), and in sparsely 

vegetated areas cross-polarisations can lead to the misclassification of sparse vegetation 

as water (Manjusree et al., 2012; Twele et al., 2016). HH is widely considered more 

effective than VV for detecting flooded forests as HH is more sensitive to the double 

bounce effect (Tsyganskaya et al., 2018b). Compared to VV, HH penetrates further into 

the canopy and generates a stronger reflection from a water surface (Tsyganskaya et al., 

2018b). However, as the backscatter coefficients of the different polarisations 

contribute different information, the detection of flooded vegetation is usually enhanced 

when a combination of co- and cross-polarisation backscatter is used (Abdikan et al., 

2016; Pham-Duc et al., 2017; Tsyganskaya et al., 2018b). 

Incidence angle 

The incidence angle is “the angle between the radar signal and an imaginary line 

perpendicular to the Earth's surface” (Lang et al., 2008, p. 3898). The incidence angle 

of the SAR signal varies by sensor and may range from 10° (steep) to 65° (shallow) 
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(Tsyganskaya et al., 2018b). Incidence angle exerts a strong influence on backscatter 

(Kellndorfer, 2019). Shallower incidence angles increase the interaction between the 

signal and the crown layer in a forest canopy, producing more volume scattering 

(Martinis et al., 2017; Tsyganskaya et al., 2018b). At steeper incidence angles the 

signal has a shorter pathway through the crown layer, which increases the 

transmissivity of the canopy and the double bounce effect (Martinis and Rieke, 2015; 

Tsyganskaya et al., 2018b). However, this pattern is not universally observed and the 

influence of incidence angle on backscatter depends on the density and structure of the 

forest as this determines the amount of attenuation and volume scattering by the 

canopy (Hess et al., 1990; Townsend, 2001; Lang et al., 2008). 

In sum, assuming all other sensor characteristics are equal, the ratio of backscatter 

between forests in flooded and non-flooded conditions is higher for longer wavelengths 

(L-band) than shorter wavelengths (C- and X-band), higher for co-polarisations than 

cross-polarisations, higher for HH polarisation than VV polarisation, and higher for 

small incidence angles than large incidence angles (Wang et al., 1995). Nonetheless, L-

band HH data can be difficult and/or expensive to acquire. Of the currently active SAR 

systems that record L-band (ALOS-2) and C-band data (Sentinel-1 and Radarsat-2) for 

commercial applications, only Sentinel-1 is a free and open data source. Although 

Sentinel-1 HH and HV data are available for polar regions, only VV and VH data are 

available for most observation zones.  

A.1.3. Target characteristics 

Since the characteristics of an SAR sensor are usually stable, variations in backscatter 

over time stem from changes in the target characteristics, particularly moisture 

content, surface roughness, and structure (Kellndorfer, 2019).  

Oil palms possess an umbrella-like crown of large fronds that radiate out from the top 

of a single straight trunk (Rosenqvist & Oguma, 1995; Rosenqvist, 1996) (Error! 

Reference source not found.). The fronds reach a width of 2 m and a length of 5–8 m, 

and comprise an oblong stem made up of numerous long slender pinnate leaflets 

(Rosenqvist, 1996). A single frond has a leaf area of 6–7 m2 totalling 150–200 m2 per 

palm (Rosenqvist, 1996). Oil palms grow to a total height of 12–16 m and as the palm 
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grows, old fronds are removed leaving behind a very rough scale-like trunk 

(Rosenqvist, 1996). The ground cover consists of grass, legumes and, in older stands, 

mounds of dead fronds (Rosenqvist, 1996). The planting density is 120–150 palms per 

hectare in commercial plantations (Woittiez et al., 2017). Palms are felled and replanted 

once productivity declines at around 20–25 years of age (Rosenqvist, 1996). 

 

Figure A1: Anatomy of an oil palm tree. 

The SAR signal is highly sensitive to moisture, including soil moisture, vegetation 

moisture, standing open water, and standing water under canopies (Kellndorfer, 2019). 

The dielectric constant is a measure of material’s electric properties. It governs the 

interaction between the signal and a target material, including how much of the signal 

scatters at the surface, penetrates the material, or is absorbed by the material (Meyer, 

2019). With respect to microwave energy, the dielectric constant of most natural 

Root 

Kernel 

Mesocarp 

Frond 

Leaflets 

Image credit: Muhammad et al. (2017) 
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materials on Earth in dry conditions is between 3 and 8, while water has a dielectric 

constant of 80. Changes in the water content of a material causes significant changes 

in the dielectric constant. An increase in the moisture content of soil or vegetation 

results in reduced penetration and a stronger backscatter return. In general, moist 

objects appear bright while dry objects appear dark. (Open surface water is an 

exception: it appears dark because the smooth surface acts as a specular reflector of 

microwave energy. When the surface is roughened by wind or movement, open water 

surfaces generate a stronger return signal and appear brighter in SAR imagery, 

particularly at shorter wavelengths [Kellndorfer, 2019]).  

As soil moisture increases in non-flooded forests, the backscatter ratio between forests 

under flooded and non-flooded conditions decreases (Wang et al., 1995). Backscatter 

increases with increasing soil moisture regardless of the biomass level so long as 

transmissivity of the biomass is possible (i.e., the saturation point has not been reached) 

(Kasischke et al., 2003; Tsyganskaya et al., 2018b). If soil moisture is low, the interaction 

of the signal with the vegetation and the ground surface generates multiple scatterings, 

which attenuate the signal and decrease the return signal to the antenna (Kwoun & Lu, 

2009). Conversely, if soil moisture is high, the backscatter return is increased as the high 

dielectric constant of water diminishes the transmission of the signal (Kwoun & Lu, 2009).  

Surface roughness is associated with a higher backscatter return as rough surfaces exhibit 

diffuse scattering and return some of the signal to the antenna. In contrast, smooth 

surfaces produce forward scattering and reflect the signal away from the antenna. Forest 

canopies are rough surfaces that appear moderately bright (grey) in SAR imagery. The 

‘roughness’ of a surface is relative, and the same surface can generate different backscatter 

depending on the wavelength and the incidence angle. If two surfaces have an equivalent 

surface roughness, the surface with the lower moisture content will appear darker. 

The importance of the vegetation biomass is discussed in the Introduction section. The 

biomass of the crown and trunk, coupled with the vertical structure (trunk, branches, 

leaves) and horizontal structure (planting pattern, planting density) of the vegetation, 

determines the size, orientation, and distribution of the scattering surfaces within a 

forest canopy (Oon et al., 2019). 
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Appendix B 

 

 

Figure B1: Sentinel-1 C-band VV and VH backscatter (in dB) recorded in the  

study area on the flood date. 
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Figure B2: SPSS output of the Normal Q-Q Plot of VV and VH backscatter for the non-

flooded classes: unplanted (U), seedling (S), young (Y), teen (T), adult (A), mature (M). 
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Figure B3: SPSS output of the Normal Q-Q Plot of VV and VH backscatter for the 

flooded classes: unplanted (U), seedling (S), young (Y), teen (T), adult (A), mature (M). 
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Table B1: Transformed Divergence scores quantifying the spectral separability between 

classes8 in VV polarisation and VH polarisation.  

 UNF UF SNF SF YNF YF TNF TF ANF AF MNF MF 

UNF 0 2000 15 1532 140 589 108 313 156 64 312 419 

UF 2000 0 2000 1684 2000 1977 2000 1997 2000 2000 2000 2000 

SNF 15 2000 0 1641 86 739 83 444 105 52 239 315 

SF 1532 1684 1641 0 1528 395 1284 801 1461 1279 1528 1776 

YNF 140 2000 86 1528 0 785 17 583 2 32 38 83 

YF 589 1977 739 395 785 0 580 69 747 530 898 1178 

TNF 108 2000 83 1284 17 580 0 425 13 6 64 152 

TF 313 1997 444 801 583 69 425 0 568 359 748 980 

ANF 156 2000 105 1461 2 747 13 568 0 30 27 79 

AF 64 2000 52 1279 32 530 6 359 30 0 106 206 

MNF 312 2000 239 1528 38 898 64 748 27 106 0 25 

MF 419 2000 315 1776 83 1178 152 980 79 206 25 0 

 

 UNF UF SNF SF YNF YF TNF TF ANF AF MNF MF 

UNF 0 2000 47 1691 60 1127 271 869 154 549 318 259 

UF 2000 0 2000 1714 2000 1982 2000 1990 2000 2000 2000 2000 

SNF 47 2000 0 1864 19 1263 256 1006 112 458 285 141 

SF 1691 1714 1864 0 1741 542 1370 604 1583 1638 1438 1815 

YNF 60 2000 19 1741 0 1035 134 773 38 304 156 70 

YF 1127 1982 1263 542 1035 0 530 32 773 595 542 987 

TNF 271 2000 256 1370 134 530 0 318 31 60 3 78 

TF 869 1990 1006 604 773 32 318 0 526 386 330 726 

ANF 154 2000 112 1583 38 773 31 526 0 134 41 27 

AF 549 2000 458 1638 304 595 60 386 134 0 36 127 

MNF 318 2000 285 1438 156 542 3 330 41 36 0 74 

MF 259 2000 141 1815 70 987 78 726 27 127 74 0 

8 The classes are abbreviated as follows: ‘NF’ = non-flooded; ‘F’ = flooded; ‘U’ = unplanted;  

‘S’ = seedling; ‘Y’ = young; ‘T’ = teen; ‘A’ = adult; ‘M’ = mature.  

  

VV 
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Table B2: Transformed Divergence scores quantifying the spectral separability between 

classes9 in both polarisations together (VV and VH). 

 UNF UF SNF SF YNF YF TNF TF ANF AF MNF MF 

UNF 0 2000 71 1877 297 1274 466 936 367 739 653 736 

UF 2000 0 2000 1950 2000 1999 2000 2000 2000 2000 2000 2000 

SNF 71 2000 0 1946 143 1399 383 1090 255 580 566 527 

SF 1877 1950 1946 0 1815 584 1559 898 1782 1712 1828 1948 

YNF 297 2000 143 1815 0 1139 154 897 69 320 312 221 

YF 1274 1999 1399 584 1139 0 719 88 1022 740 1100 1413 

TNF 466 2000 383 1559 154 719 0 521 40 65 104 199 

TF 936 2000 1090 898 897 88 521 0 779 553 896 1199 

ANF 367 2000 255 1782 69 1022 40 779 0 156 91 110 

AF 739 2000 580 1712 320 740 65 553 156 0 179 263 

MNF 653 2000 566 1828 312 1100 104 896 91 179 0 106 

MF 736 2000 527 1948 221 1413 199 1199 110 263 106 0 

9 The classes are abbreviated as follows: ‘NF’ = non-flooded; ‘F’ = flooded; ‘U’ = unplanted;  

‘S’ = seedling; ‘Y’ = young; ‘T’ = teen; ‘A’ = adult; ‘M’ = mature.  
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Table B3: Backscatter characteristics of the oil palm classes in VV polarisation 

and VH polarisation (in dB).  

Class Min. Max. Mean Std. Dev. 

Unplanted flooded -25.13 -16.15 -19.90 1.66 

Unplanted non-flooded -10.44 -6.06 -8.51 0.93 

Seedling flooded -18.89 -8.06 -12.68 2.40 

Seedling non-flooded -10.90 -6.26 -8.26 0.90 

Young flooded -15.39 -6.88 -10.33 1.46 

Young non-flooded -10.97 -5.56 -7.74 1.11 

Teen flooded -12.44 -7.05 -9.81 1.21 

Teen non-flooded -12.01 -5.19 -7.97 1.30 

Adult flooded -11.54 -5.54 -8.18 1.17 

Adult non-flooded -10.78 -4.82 -7.71 1.20 

Mature flooded -9.49 -4.30 -7.15 0.95 

Mature non-flooded -10.27 -4.09 -7.33 1.21 

 

 

Class Min. Max. Mean Std. Dev. 

Unplanted flooded -26.46 -21.31 -24.61 0.97 

Unplanted non-flooded -16.69 -9.33 -13.40 1.34 

Seedling flooded -27.18 -13.42 -20.24 2.87 

Seedling non-flooded -17.34 -11.09 -13.69 1.01 

Young flooded -21.03 -13.22 -17.30 1.54 

Young non-flooded -17.57 -11.32 -14.01 1.16 

Teen flooded -20.41 -12.33 -16.71 1.71 

Teen non-flooded -19.38 -11.74 -14.95 1.38 

Adult flooded -18.74 -13.17 -15.26 0.96 

Adult non-flooded -19.13 -11.13 -14.45 1.25 

Mature flooded -17.49 -11.40 -14.48 0.97 

Mature non-flooded -19.35 -11.73 -14.96 1.27 

 

VV 

VH 
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