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Abstract 

Soil moisture (SM) plays an important role in the exchange of heat and water between the 

surface and atmosphere, impacting water and energy cycles and the climate. Satellite remote 

sensing offers a global-scale estimation of SM; however, the coarse resolutions of satellite SM 

products, typically ranging from 25-50 km, are unsuitable for regional analysis. To overcome 

this limitation, various spatial downscaling methods have been developed to disaggregate SM 

products at coarse resolution to estimates at higher resolution. One commonly used approach 

is the optical and thermal-based method, which utilizes higher resolution ancillary data, such 

as land surface temperatures (LST) and vegetation indices (VI), within a triangular feature 

space. Previous studies have primarily relied on the use of NDVI (Normalised difference 

Vegetation Index) or EVI (Enhanced Vegetation Index) as VIs, neglecting the potential benefits 

of newly proposed VIs for spatial downscaling. Consequently, few studies have investigated 

the influence of different VIs on the downscaling of gridded soil moisture. This study aims to 

investigate the influences of using different VIs on spatial downscaling of the coarse resolution 

SM product. Two study areas are focused on in this study (1) an area around the SMOSMANIA 

network in southern France with 18 SM measurement stations and (2) an area surrounding the 

REMEDHUS network in northern Spain with 17 measurement stations. The daily ESA CCI 

SM product at 0.25° resolution was spatially downscaled using four different VIs including the 

NDVI, EVI, the kernel NDVI (kNDVI) and Plant Phenology Index (PPI) to produce a higher 

resolution SM product at 1 km and 16-day resolutions. All four VIs and the LST were obtained 

from MODIS products. The Vegetation Temperature Condition Index (VTCI) based 

downscaling approach was used for this study, in which wet and dry edges of the triangular 

feature space were determined by fitting a linear line to the maximum and minimum 

temperatures, respectively, for each VI interval. Evaluation showed that using PPI showed 

better consistency between two study areas, having the good correlation and ubRMSD against 

the in-situ measurements, whilst the performance of using other VIs particularly EVI and 

kNDVI varied in the study area. Using NDVI generally yielded the poorest overall performance 

in terms of ubRMSD and correlation, but it outperformed kNDVI in areas with generally 

sparser vegetation within the SMOSMANIA network. Comparison of SM product at the 

original coarse resolution and spatially downscaled SM, the ESA CCI SM product generally 

outperformed the downscaled SM products, with only 12 out of 35 stations showing superior 

performance for the downscaled products in terms of correlation and 10 out of 35 stations in 

terms of ubRMSD.  
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1 Introduction 

Soil moisture (SM) is simply defined as the volumetric content of water of the soil, which can 

stretch down to more than a metres depth (NIDIS, n.d.). Although for this study, evaluations 

are only limited to the upper 5 cm, as microwave remote sensing is only considered to represent 

the surface SM (Peng et al., 2015). SM plays a vital role in plant growth, acting as a plant’s 

water source, a principal requirement for life. It also is an important factor in the exchange of 

heat and water between the surface and atmosphere through both plant transpiration and 

evaporation, effecting both water and energy cycles and by extension the climate (Civeira, 

2019; ESA, n.d.). Thus monitoring SM has varying uses, whether its studying vegetation 

dynamics and observing changing climate effect, or evaluating flood risks and drought 

(Chifflard et al., 2018; Gałęzewski et al., 2021). Ideally, SM can be measured through ground 

instruments, which can obtain ground truths at a point scale in different depths and high 

temporal resolutions with relative ease (Peng et al., 2017). But these methods are insufficient 

as ground instruments are often sparse, limited and fail to represent areas around and between 

the ground instruments, which can vary greatly in SM due to surface heterogeneity such as 

topography, vegetation, or aspect (Fathololoumi et al., 2021). With the revolution of satellite 

remote sensing, it has become possible to estimate SM over large areas up to the global scale 

(Peng et al., 2017). Many different soil moisture products have been developed at varying 

spatial and temporal resolutions (Dorigo et al., 2017; Entekhabi et al., 2014; Jackson et al., 

2012). However, the results are only as good as the data used, not only regarding its overall 

accuracy but also its resolution. One significant drawback of satellite-derived soil moisture 

(SM) products is their coarse resolutions, the European Space Agency Climate Change 

Initiative (ESA CCI) for example provides SM at 25 km resolution while the Soil Moisture and 

Ocean Salinity (SMOS) mission has a resolution ranging from 35-50 km. Such resolutions are 

unsuitable for local-scale studies, be it for crop modelling or water management applications 

(Peng et al., 2017, 2021). In addition, these soil moisture products are limited to very low 

penetration depths, only representing the top layer of the soil moisture, the surface soil 

moisture, whereas the soil moisture can extend metres below the surface to the root zone 

(NIDIS, n.d.). 
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Considerable efforts have been made to downscale coarse satellite SM to obtain a higher 

resolution product. Peng et al. (2017) summarized three main methods for increasing the spatial 

resolutions of satellite SM products. (1) The geoinformation method: Using ancillary data such 

as topography, soil attributes, and vegetation characteristics which is correlated with SM as 

parameters in the downscaling process. (2) The modelling method: which various models are 

based on geo-statistics to calculate statistics across different scales to describe the spatial 

distribution of a course SM product to model a finer SM product. (3) Satellite based methods: 

Using and combining the various advantages of different satellite sensors to achieve a more 

accurate product. Different algorithms under this category have been developed.  

 

One commonly used method for spatial downscaling of SM with satellite-based methods is 

using the Optical/Thermal data. This method relies on the relationship of higher resolution 

ancillary data, such as land surface temperatures (LST) and vegetation indices (VI). 

Throughout the years various alterations have been made on these relationships. Initially, in 

2002, Zhan et al, proposed using a polynomial fitting approach, in which a polynomial function 

was applied to LST and VI in addition to the surface albedo. Thus, a regression coefficient 

could be calculated from the coarser resolution data and then applied to the higher resolution 

data to obtain the downscaled SM. Later, in 2008, Merlin et al. proposed an alternative method 

to downscale a SMOS SM product in south-eastern Australia. It was a more physical based 

approach using variables more directly linked to SM, such as soil temperature, evaporative 

fraction and evaporation efficiency. This method is however computationally complex and is 

susceptible to uncertainties when estimating the SM variable through modelling. Kim and 

Hogue proposed a much simpler method in 2012, the UCLA method, in which a downscaling 

factor could be calculated from the LST-VI relationship as a function of LST, where it was 

calculated from the LST extremum for each VI value. This downscaling factor could then be 

applied to disaggregate the SM at a coarse spatial resolution to SM estimates at higher spatial 

resolution (Peng et al., 2017). Kim and Hogue (2012) also compared their method to the 

previously mentioned approaches on the AMSR-E SM product in southern Arizona and found 

that it performed better than the polynomial approach whilst producing similar results to Merlin 

et al.’s method. However, despite these methods showing increasing improvements and results 

they are still limited to the resolution of the higher resolution data, which in these cases are 

MODIS 1 km LST and VI data. 
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Recent efforts have been made to combat this, such as a study from 2017, which performed a 

polynomial downscaling approach over the Zoige Plateau using higher resolution (30 m) 

thermal infrared band and VI data provided by Landsat-5 to achieve promising results with the 

Normalised Difference Vegetation Index (NDVI) in addition to the Enhanced Vegetation Index 

(EVI) designed to limit the effects of the background soil. (USGS, n.d.; Zhao et al., 2017). This 

method is however limited by the low temporal resolution of the Landsat data. A further study 

by Xu et al. (2018) tried to solve this limitation by fusing the Landsat-8 data directly with 

MODIS data to maintain both high spatial and temporal resolutions which produced a daily 

SM product with 120 m spatial resolution which showed good performance with in-site 

measurements over Iowa (Xu et al., 2018). A limitation of these methods is that they used a 

linear fitting and assumed a simple relationship between the SM and auxiliary variables which 

could otherwise be more complex. To tackle this Mao et al. (2022) used the random forest 

machine learning method with auxiliary variables such as lagging SM as soil memory to 

combat the linearity of the LST and VI to downscale the SMAP SM product which resulted in 

good performance with in-situ measurements in The Pearl River Basin (Mao et al., 2022).  

 

What these studies have in common, except for Zhao et al., (2017) is that they limit themselves 

to NDVI or EVI. However, there are many different VI available and using different VI as 

inputs could have important influence on the downscaled result as they are all unique and 

developed to tackle different issues. A previous study in Spain compared the spatial 

downscaling with NDVI and EVI and showed that EVI is more suitable than NDVI in 

estimating SM with a higher mean correlation coefficient (R) (Peng et al., 2015). More 

recently, EVI has been chosen over NDVI due to its various advantages in various downscaling 

processes with good results. For example in the downscaling of SMAP product with machine 

learning based approach in the Pearl River Basin (Zhang et al., 2022) and downscaling of the 

ESA CCI SM product in the Naqu area within the Tibetan Plateau (Zhu et al., 2023). 

 

Since the introduction of EVI and NDVI, more complex and specialised VI have been 

developed resulting in improved performance, one of which is the Plant Phenology Index (PPI) 

introduced by Jin and Eklundh (2014) to improve performance in densely vegetated areas and 

limit the effects of snow, resulting in a product which has been shown to outperform both 

NDVI and EVI in high latitude areas and boreal forests. The kernel NDVI (kNDVI) is another 

recent VI product which has also shown to outperform NDVI by applying a kernel function to 

NDVI, to combat NDVI’s saturation in dense vegetation and force a linear relationship between 
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the NDVI and  the leaf area index (LAI), LAI being an indicator the amount of foliage in an 

area (Camps-Valls et al., 2021).  

 

To the best of my knowledge, very few studies focused on testing with more complex or various 

VIs other than NDVI or EVI with optical and thermal satellite-based algorithms for spatial 

downscaling of gridded soil moisture products. Being a key factor in the determining how 

effect of evapotranspiration on LST, the VI is an important input to spatial downscaling 

algorithms, and different VIs have their strength and weaknesses and have varying suitability 

for different tasks, it is relevant and interesting to investigate how using different VIs would 

affect the downscaled results. This is relevant as various new VI products have been developed 

and released since NDVI and EVI which provide rich dataset to test. Therefore, this study aims 

to investigate the influence of using different VI on spatial downscaling of gridded SM 

products with the simplistic UCLA method with a Vegetation Temperature Condition Index 

(VTCI) as a scaling factor, as proposed by Peng et al. (2015), hereafter referred to as the VTCI 

based method. Using the VTCI based method, which has been shown to produce promising 

results in a variety of regions (Peng et al., 2016; Peng & Loew, 2017; Tian et al., 2019) this 

study’s objective is to produce a more accurate SM product which is more suitable as a data 

source for analysis and modelling on a more local scale. Four different VI, namely the NDVI, 

EVI, PPI, and kNDVI will be used and compared to examine which can yield more accurate 

spatially downscaled SM estimates against the in-situ measurements from relatively dense 

network. This study will focus on SM in southern Europe and particularly the use of two SM 

networks within the International Soil Moisture Network (ISMN), the REMEDHUS network 

in Spain and SMOSMANIA network in southern France. Although this study uses previously 

defined downscaling methods, this study takes a novel approach as it: (1) uses more recent VIs 

such as PPI and kNDVI which haven’t been used or evaluated for downscaling of SM, whilst 

other studies have been limited to more standard VIs such as NDVI and EVI (Peng et al., 2016; 

Zhang et al., 2022; Zhu et al., 2023); (2) focuses on the comparison and effects of the different 

VI inputs on the SM downscaling, opposed to other studies which have focused more on the 

methodology (Kim & Hogue, 2012; Tian et al., 2019); (3), uses a bigger study area and 

introduces the SMOSMANIA network in addition to the REMEDHUS network, allowing for 

more hydrological contrast and geographical variety in the study area and also allows for a 

comparison between to two different regions, whereas other studies have been limited to one 

region or few stations (Liu et al., 2021; Rostami et al., 2023). Specifically, this study will 

answer the following research questions: 
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1) How do different VI indices perform in the downscaling of SM and is there any VI 

which produces a more accurate product? 

2) Do the different VI derived downscaling products give consistent results in different 

regions?  

3) Are the downscaled SM products capable of providing better results than the coarse 

SM product? 

 

2 Background 

2.1 Satellite-based estimation of soil moisture  

Satellites can estimate SM from the surface using microwaves (1-300 GHz) which are sensitive 

to the water content of the soil due to the poor transmission of microwaves through water which 

increases the dielectric constant (Seneviratne et al., 2010). A wet soil will thus emit less 

microwaves than a dry soil as the microwaves gets absorbed by the water in the soil. Satellites 

can measure these emitted microwaves either through a return signal from a transmitted wave 

pulse from the satellite (active) or as reflected radiation of the surface from an external source 

(passive) (Das & Paul, 2015). Active sensors tend to have a higher spatial resolution than 

passive sensors thanks to their larger antenna created by the Synthetic Aperture Radar (SAR) 

(NASA, 2020). In contrast, the passive sensors have the advantage of being more sensitive  and 

generally having a higher temporal resolution of daily measurements, see Table 1 (Entekhabi 

et al., 2014; Peng et al., 2017). 

 

These sensors also vary in respect to what specific wavelengths they use. Wavelength at lower 

frequencies are in general more suitable for SM measurements due to their increased surface 

penetration power. For instance, X-band frequencies (8-12 GHz) tend to only interact with the 

top of the canopy whilst lower frequency C-bands (4-8 GHz) penetrate further into the canopy. 

The L-band (1-2 GHz) is the preferred band as it manages to reach and reflect from the soil 

surface, providing more information on the soil profile (Das & Paul, 2015).  

 

In previous years, SM measurements have been conducted with a variety of sensors onboard 

different satellites. The passive Scanning Multichannel Microwave Radiometer (SMMR) was 

launched in 1978 onboard the Nimbus-7 satellite capable of measuring microwave radiation at 
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6.6-37 GHz and providing daily measurements at 25 km resolution up until 1987 (Guha & 

Lakshmi, 2004). Roughly half a month later, the Special Sensor Microwave Imager (SSM/I) 

passive sensor was launched onboard the DMSP-F8 satellite, increasing the measurable 

microwave range to 19-85 GHz, providing daily measurements at 12.5-25 km resolution and 

until 2009 (National Snow and Ice Data center, n.d.). The sensor was however further improved 

in 1997 onboard the Tropical Rainfall Measuring Mission (TRMM) in which a pair of 

additional 10.7 GHz channels were added to the sensor, now named The TRMM Microwave 

Imager (TMI) capable of obtaining daily measurements at 5-45 km resolution (NASA, n.d.). 

Other notable passive sensors include the Advanced Microwave Scanning Radiometer for EOS 

(AMSR-E), the WindSat sensor, the Advanced Microwave Scanning Radiometer 2 (AMSR2) 

and the Micro-wave Radiation Imager (MWRI) (Minnett, 2019; National Satellite 

Meteorological Center, n.d.; OSCAR, n.d.). 

 

For active sensors, The Active Microwave Instrument (AMI) was launched in 1991 onboard 

the European Remote Sensing Satellite 1 (ERS-1), providing wavelength measurements at 5.3 

GHz (C-Band) every 3 days at 50 km resolution up until 2000 due to a technical failure but 

was then replaced by ERS-2 from 1995 till its retirement in 2011 (Attema, 1991; ESA, n.d.). 

However, before then, in 2006, the Advanced Scatterometer (ASCAT) was launched onboard 

the MetOp-A satellite, succeeding the AMI, providing measurements at 5.3 GHz from 2006 

until 2021. Since then MetOp-A, MetOp-B and MetOp-C have also been launched with the 

ASCAT sensor providing measurements from 2012 and 2018 respectively providing 

measurements every 1.5 days at 12.5 – 50 km resolution (EUMETSAT, 2020a, 2020b). 

 

Most of these sensors provide very high frequency measurements but the area is lacking in 

lower end of the spectrum, not having the lower frequencies needed for optimal ground 

penetration and soil moisture retrieval (< C – Band) (Das & Paul, 2015). To combat this, the 

first dedicated SM mission, specifically designed to measure SM was launched in 2009, The 

Soil Moisture and Ocean Salinity mission (SMOS), using 1.4 GHz (L-Band) to measure surface 

SM with a spatial resolution of 35 km, every 2.5-3 days (Parrens et al., 2016). The SMOS has 

been used in various studies and has shown to have good accuracy with field observations 

(Jackson et al., 2012; Yang et al., 2016). It has however been shown to be very sensitive to 

noise from radio frequency interference. 
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Alternatively, the European Space Agency Climate Change Initiative (ESA CCI) SM product 

was introduced in 2010 and has proven itself as an suitable soil moisture index but is also 

limited in having a very coarse spatial resolution of 0.25° (28 km). The ESA CCI SM takes 

advantage of both passive (SMMR, SSM/I, TMI, and AMSR-E) and active (ERS AMI and 

ASCAT) sensors and combining them to produce a more accurate product (Dorigo et al., 2017; 

Peng et al., 2016) which has shown to have a better performance over SMOS in humid areas 

in Michigan, in terms of ubRMSD (X. Xu & Frey, 2021a). The ESA CCI SM good performance 

could be attributed to its use of the Triple Collocation Analysis (TCA) method in combining 

the different SM products. The TCA limits the amount errors of the combined products by 

calculating the covariance between them to retrieve their respective errors. The errors of each 

product can then be used as weights to combine the products on a per-pixel basis, where a 

higher weight is assigned to lower errors (Dorigo et al., 2017; Gruber et al., 2016). 

 

More recently, the Soil Moisture Active Passive (SMAP) mission was launched in 2015, using 

the L-Band akin to SMOS, but based on the same foundation as ESA CCI of using concurrent 

measurements from both an active and passive sensor (Entekhabi et al., 2014), but differing in 

the sense that both measurements belong to the same satellite, providing measurements every 

9 days with 9 km resolution. A study comparing SMAP and SMOS SM products over different 

landscapes in Africa, showed the advantages of SMAP, having both a higher correlation and 

lower error than SMOS and ASCAT products (Mousa & Shu, 2020). Compared to ESA CCI, 

SMAP showed higher correlation but ESA CCI achieved a higher absolute accuracy with a 

lower average ubRMSE (X. Xu & Frey, 2021b). 

 

However, in spite of these three SM products, SMOS, SMAP and ESA CCI showing great 

promise and accuracy, one significant drawback of these products are their coarse resolutions 

which are unsuitable for analysis on a local scale, whether it be for crop modelling or water 

management applications (Peng et al., 2017). In order to support regional studies effectively, 

it is crucial to utilize suitable spatial downscaling algorithms to disaggregate such SM products 

at coarse resolution to SM estimates at higher spatial resolution. 
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Table 1. An overview of the different satellite sensors along with their respective frequencies 

and temporal range (Attema, 1991; Entekhabi et al., 2014; ESA, n.d.; EUMETSAT, 2020a, 

2020b; Guha & Lakshmi, 2004; Minnett, 2019; NASA, n.d.; National Satellite 

Meteorological Center, n.d.; National Snow and Ice Data center, n.d.; OSCAR, n.d.). 

Sensor Satellite 
Frequency 

(GHz) 

Spatial 

resolution 

(km) 

Temporal 

resolution 

Temporal 

Range 

(years) 

Sensor 

Type 

SMMR Nimbus-7 6.6-37  25 Daily 1978-1987 Passive 

SSM/I DMSP-F8 19-85  12.5-25  Daily 1987-2009 Passive 

TMI TRMM 10.7-85  5 – 45  Daily 1997-2015 Passive 

ASMR-E Aqua 6.9-89  5.4–56  Daily 2002-2011 Passive 

WindSat Coriolis 6.8-37  25 Daily 2003-2021 Passive 

AMSR2 
GCOM-

W1 
6.9-89  3-62 2 days 2012- Passive 

MWRI FY-3B 19.6-150  11-40 Daily 2010-2020 Passive 

MIRAS SMOS 
1.4  

(L-Band) 
35-50  2.5-3 days 2009- Passive 

Radar/ 

Radiometer 
SMAP 

1.2-1.3 

(L-Band)/ 

1.4  

(L-Band) 

9 2-3 days 2015- 
Active/ 

Passive 

AMI ERS-1/2 
5.3  

(C-Band) 
50  3 days 1991-2000 Active 

ASCAT 

MetOp-A/ 

MetOp-B/ 

MetOp-C 

5.3 

 (C-Band) 
12.5 – 50  1.5 days 

2006- 2021/ 

2012-/ 

2018- 

Active 
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2.2 Optical and thermal satellite-based methods for spatial downscaling of soil 

moisture products 

There are various ways in which downscaled SM (SMd) has been obtained with optical and 

thermal satellite-based methods. One of which is a triangular method, in which SM is 

calculated from the VI, LST and a regression coefficient that are implemented into a second-

order polynomial regression formula in which the SM can be calculated. This equation can be 

rewritten to isolate and calculate the regression coefficient using the known SM of the coarser 

SM product. The regression coefficient can then be reapplied to the higher resolution VI and 

LST to calculate the downscaled SM (Kim & Hogue, 2012). This method is however highly 

dependent on the accuracy of the coarser scaled SM product (SMcr), in which any errors or 

poor accuracy in the SMcr will result in a poor polynomial fitting which further produces 

significant uncertainties to the SMd products (Kim & Hogue, 2012). 

 

Another study by Merlin et al. (2018), used a similar method as described above but suggested 

using additional SM parameters and micrometeorological and atmospheric observation, such 

as soil moisture capacity, evaporation resistance, vegetation skin temperatures and fraction 

covers (Merlin et al., 2008). A study in 2012 in Arizona has shown that this method produced 

good results, having both higher correlations and lower ubRMSD than the triangular method 

(Kim & Hogue, 2012). However, this method puts more weight on the LST than the VI, which 

becomes a limitation and disadvantage when LST may not be representative of the soil, such 

as when LST may be dominantly influenced by altitude, geographic location, etc. (Kim & 

Hogue, 2012). In addition, it is a complex method, requiring more inputs which may depend 

on soil types, boundary conditions, etc. 

 

A simpler method was proposed by Kim and Hogue (2012), the UCLA method, which unlike 

the triangular method is not based on a regression approach, nor does it require additional 

information on soil properties, surface micrometeorological or atmospheric observations akin 

to the method proposed by Merlin et al. (2008). The UCLA method instead relies on retrieving 

a scaling factor from the LST-VI relationship which can then be normalised by average SM 

value and then applied as a scaling factor to the coarser SM product, see Equation 1.  

 

𝑆𝑀𝑑 = 𝑆𝑀𝑐𝑟 × (
𝑆𝑀𝑉𝐼−𝐿𝑆𝑇

𝑆𝑀̅̅̅̅̅𝑉𝐼−𝐿𝑆𝑇
)  (1) 
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Where, SMVI-LST is the scaling factor, calculate from the LST of each VI value and 𝑆 𝑀 ̅̅ ̅̅ VI-LST is 

the mean of the scaling factor values within the overlaying coarser scaled pixel. SMcr is the 

coarser resolution SM and SMd is the downscaled SM product (Kim & Hogue, 2012). The 

calculation of the 𝑆 𝑀 ̅̅ ̅̅ VI-LST can be seen on Equation 2, where n and m are the number grids of 

the SMd product within the ith row and jth column of the SMcr product. 

 

𝑆𝑀̅̅ ̅̅ 𝑉𝐼−𝐿𝑆𝑇 =
1

𝑚𝑛
∑ ∑ 𝑆𝑀𝑉𝐼−𝐿𝑆𝑇𝑖𝑗

𝑚
𝑗=1

𝑛
𝑖=1  (2) 

 

A comparison to the aforementioned downscaling methods showed that both Merlin’s method 

and UCLA methods performed better than the triangular method, with UCLA only having a 

slightly higher RMSE value than Merlin’s method. The UCLA however has the advantage of 

needing less inputs and being computationally more efficient (Kim & Hogue, 2012). 

 

2.2.1 Scaling factor 

A prominent scaling factor which has been used in a variety of evaluations is the Vegetation 

Temperature condition index (VTCI) (Tian et al., 2019), first developed in 2004 as a way to 

measure drought in which a lower VTCI values correlates to a higher degree of drought (Wan 

et al., 2004). VTCI is defined with the following Equation 3: 

 

 

𝑉𝑇𝐶𝐼 =  
𝑇𝑚𝑎𝑥−𝑇𝑝𝑖𝑥𝑒𝑙

𝑇𝑚𝑎𝑥−𝑇𝑚𝑖𝑛
  (3) 

 

where, Tmax an Tmin are the maximum and minimum temperatures for all pixels within a 

specified VI interval and Tpixel is the temperature of a specific pixel. Tmin represents the wet 

edge, or lower limit where there is no water restriction on plant growth. In contrast Tmax 

represents a dry edge where plants are under dry condition. Thus, from Equation 3, we can 

calculate a value VTCI value ranging from 0 to 1, signifying the level of drought and SM (Wan 

et al., 2004). 
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2.2.3 Triangular feature space 

A fundamental element of optical and thermal based downscaling methods is the triangular 

feature space, which describes the relationship between the vegetation of a pixel and its 

temperature (Garcia et al., 2014). The space derives its name from the triangular/trapezoidal 

pattern that appears when pixel values are plotted over an area which follows the following 

criteria (Garcia et al., 2014) : (1) Enough hydrological contrasts (from wet to dry soils) (Garcia 

et al., 2014) ; (2) For a given VI, the variations in LST reflect variations in SM and then the 

partitioning of sensible and latent heat fluxes, assuming the other factors such as the available 

energy to the surface, air temperatures and aerodynamic resistance are the same (Garcia et al., 

2014). 

 

The pattern is limited by two boundaries which form the triangle/trapezoid, the wet edge, a 

zone of max evaporation which represents the minimum temperature for each VI interval and 

the dry edge, a zone of no evaporation which represents the maximum temperature for a given 

VI interval (Peng et al., 2017), see Figure 1. 

 

 

Figure 1. Diagram of the triangular (trapezoidal) space between land surface temperature 

(LST) and vegetation index (VI). (Figure reprinted and modified from Li et al., 2009, Peng et 

al., 2017 and Zhao et al., 2022).  

 

There are various ways in which the wet and dry edges are defined, the simplest method, used 

by Peng et al. (2015) is to use the maximum and minimum temperatures for each VI interval, 

determined by the dry and wet edges respectively and applying them to every pixel within said 

interval.  
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An alternative study by Garcia et al. (2014) investigated using quantile regression to define the 

dry edge based on the value of the upper quantiles with a fixed wet edge value, either as a 

constant 0 or the mean of all values. The study compared the effect of different upper quantiles 

and wet edges values. There results determined that using a 95% and 99% upper quantile for 

the dry edge and a constant value 0 for the wet edge showed best results with R value of ~0.8 

with in-situ measurements. The study however did not compare this method with the simpler 

method used by Peng et al. (2015). 

 

2.3 Vegetation indices 

Vegetation indices (VI) can be defined as the combination of different surface reflectance 

wavelengths in order to highlight or quantify vegetation properties. The reflected surface 

wavelengths are highly related to the vegetation as it absorbs visible light (400-750 nm) due to 

photosynthesis and thus the ratio of reflected visible to near infrared (0.75-1.3 μm) wavelength 

is affected, allowing us to differentiate and quantify the amount of vegetation in a simple 

manner. The VI is an important tool in vegetation monitoring, being a key indicator of 

vegetation conditions, cover, foliage, and phenology, as well as estimating various processes 

such as evapotranspiration and primary production (Jin & Eklundh, 2014). Thus, using 

radiometric measurements VIs can be created to indicate the amount of vegetation on a per-

pixel basis (Pettorelli, 2013b). Various studies have compared the performance of different VIs 

and shown the potential of using different VI to tackle varying issues (Camps-Valls et al., 2021; 

Jin & Eklundh, 2014; Tiruneh et al., 2022). Based on literature review, this study focused on 

four VIs. Firstly, the Normalised Difference Vegetation (NDVI) was chosen for its simplicity 

and popularity, serving as an important benchmark for comparisons of the other VIs. Secondly, 

the Enhanced Vegetation Index (EVI) was chosen because of its popularity and its ability to 

produce good results in a variety of environments, limiting the effects of both soil and 

atmospheric background noise. Thirdly, the Plant Phenology Index was chosen, not only 

because of its suitability in dense vegetation and linearity LAI but also because despite showing 

relatively good performance, a limiting amount of studies have been conducted to further 

evaluate the index. Lastly, the kernel NDVI (kNDVI) was chosen as it is a relatively novel 

index and a few studies have used it for evaluation. Furthermore, it is a very simple index which 

can be derived from NDVI, conserving its simplicity but also being more suitable for denser 

vegetation. 
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2.3.1 Normalised Difference Vegetation Index 

The most widely used index is the Normalised Difference Vegetation Index (NDVI), first 

introduced in 1974 (Rouse et al., 1974; Xiang et al., 2000). NDVI quantifies vegetation based 

on the difference between the vegetation reflectance of the near infrared (NIR) wavelengths 

and its absorption of the visible Red wavelengths (Pettorelli, 2013a), see Equation 4, where 

NIR and Red are the reflectance of the near infrared and visible red wavelengths respectively. 

The simplicity of the NDVI and the availability of the NIR and Red bands have made NDVI a 

popular choice of index. It is a ratio-based index which makes it less susceptible to signal 

variations from varying laminations, topography or other viewing conditions (Fensholt et al., 

2006). Although NDVI’s popularity and simplistic approach may make it seem like an obvious 

choice of VI, it does have its disadvantages. As a ratio-based index, it is nonlinear with LAI, 

making it less sensitive and highly saturated to dense vegetation (Huete et al., 2002) in addition 

to being very sensitive to aerosols in the atmosphere and underlying soil (Pettorelli, 2013a).  

 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+𝑅𝑒𝑑
 (4) 

 

2.3.2 Enhanced Vegetation Index 

The Enhanced Vegetation Index (EVI) is another notable index designed to limit the effects of 

the atmosphere and background soil (Chuvieco, 2016). The foundation of the EVI is the 

implementation of the Blue band, which suffers from the same atmospheric impacts as the Red 

band and can thus be used to cancel out or limit any of its effects. A soil adjustment factor (L) 

is then further implemented to limit the effects of the soil background(Huete et al., 2002). 

 

EVI also considers coefficients C1 and C2 which are aerosols resistance terms which allow the 

Blue band to correct for aerosol influences in the Red band as well as a gaining factor (G) to 

boost the sense of the signal, see Equation 5. For EVI, C1 = 6, C2 = 7.5 and G  = 2.5 (Chuvieco, 

2016; Huete et al., 2002). 

 

𝐸𝑉𝐼 = 𝐺 × 
𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+𝐶1× 𝑅𝑒𝑑−𝐶2×𝐵𝑙𝑢𝑒+𝐿
 (5) 

 

EVI does have a drawback which is that it is dependent on the Blue band, which makes 

monitoring of EVI over a long range in time limited as the Blue band was only implemented 
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in MODIS satellite sensors in 2000 (Jiang et al., 2008). EVI2 was thus created to tackle this 

issue (Jiang et al., 2008). By assuming the visible bands, Blue and Red in this case, are highly 

correlated with each other than the Blue band can be substituted for the Red band, using a 

coefficient c, see Equation 6. 

 

𝐵𝑙𝑢𝑒 =
𝑅𝑒𝑑

𝑐
   (6) 

 

Thus, we get a new equation for EVI2 which uses only the Red and NIR bands, see Equation 

7. 

 

𝐸𝑉𝐼2 = 𝐺 ×
𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+(6−
7.5

𝑐
)𝑅𝑒𝑑+1

  (7) 

 

2.3.3 Plant Phenology Index 

A study in 2014 introduced the Plant Phenology Index (PPI), a new VI to counter prior VI’s 

sensitivity to dense vegetation and non-linearity with LAI, the foundations of which is that LAI 

is the most visible variable in a plants phenological cycle. This is important, especially in boreal 

areas, where green biomass renewal rate is slow, and reflectance will be affected by snow (Jin 

& Eklundh, 2014). 

 

Akin to NDVI, PPI is calculated from Red and NIR reflectance, however PPI is based on a 

modified Beer’s law which also takes into account the relationship between the LAI and canopy 

reflectance, see Equation 8 (Jin & Eklundh, 2014). 

 

𝑃𝑃𝐼 = −𝐾 × 𝑙𝑛
(𝑀−𝐷𝑉𝐼)

𝑀−𝐷𝑉𝐼𝑠
 (8) 

 

Here DVI represent the difference in Red and NIR reflectance, whilst more specifically the 

DVIs is the difference in Red and NIR reflectance of the soil. M is the maximum DVI value 

per pixel (canopy maximum) from all available data ranging from 2000 to 2022. K represents 

a gaining factor which is also dependant on the sun zenith angles, the diffuse fraction of solar 

radiation and leaf angular distribution (Jin & Eklundh, 2014). 

 

PPI has been found to perform better than EVI and NDVI in snowy and northern regions to 

determine start of seasons. Similarly, PPI has shown stronger correlations with GPP ground 
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measurements than both NDVI and EVI in forest covering Sweden and Finland. Additionally, 

the same study showed that PPI is not affected by saturation of dense vegetation like the other 

VIs. The way in which PPI handles snow and saturation can be very important in SM 

estimation, especially in areas of dense vegetation, such as forests but also areas prone to snow 

cover such as northern latitudes and high elevation areas (Jin & Eklundh, 2014). 

 

However, a disadvantage of the PPI is that it seems to be more sensitive to noise then NDVI 

and EVI during the peak of the growing seasons and at high LAI values but does however 

display more robustness during the seasonal transition periods. This can be explained by the 

reflectance being insensitive to LAI in the growing season, thus resulting in NDVI and EVI, 

not being as affected as they are not linear with LAI (Jin & Eklundh, 2014). 

 

2.3.4 Kernel Normalised Difference Vegetation Index 

The kernel Normalised Difference Vegetation Index (kNDVI) was introduced to conserve the 

simplicity of the NDVI but combat its issues in dense vegetation. kNDVI uses a kernel function 

to solve the non-linearity of NDVI with LAI, which in turn limits the saturation effects of dense 

vegetation (Camps-Valls et al., 2021). A radial basis function, k, reproducing kernel is used to 

measure similarities between NIR and red bands, see Equation 9 where x and x’ represent the 

NIR and red bands respectively and σ represents the notion of distance between the NIR and 

red bands (Camps-Valls et al., 2021), see Equation 9.  

 

𝑘(𝑥, 𝑥′) = 𝑒𝑥𝑝 (
−(𝑥−𝑥′)

2𝜎
)2 (9) 

 

This equation can be further simplified by assigning the average distance between NIR and 

Red bands as σ, i.e., σ = 0.5(NIR + Red) theoretically making the index more adaptive to each 

pixel, resulting in a simplified Equation 10 (Camps-Valls et al., 2021). 

 

𝑘𝑁𝐷𝑉𝐼 = tanh (𝑁𝐷𝑉𝐼2) (10) 

 

An evaluation on 169 FLUXNET stations around the world found that not only does kNDVI 

show stronger correlation than NDVI with GPP measurements but it also outperforms NDVI 

in all applications in all biomes and climate zones and is more resistant to saturation and noise. 
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This can be important for estimating SM for the same reason as the PPI, however kNDVI has 

the advantage of having a much simpler approach (Camps-Valls et al., 2021). 

 
 

 

 

 

 

3 Study area  

Two study areas were used for the evaluation of the downscaled SM. Study area 1 is located in 

northern Spain and covers the area of the REMEDHUS network, the same study area used by 

Peng et al (2015) and thus this facilitates a direct comparison of our results. The region is 

relatively flat and has dry and warm summers and wet and mild winters due to its semiarid 

Mediterranean climate. Study area 2 covers a larger area, spreading from southern France to 

Italy and up to Austria, Switzerland, and southern Germany where there is a lot of contrast in 

soil moisture surrounding the Alps. The network, SMOSMANIA that was used for the 

evaluation in study area 2 is in southern France. Sharing a similar climate to its southern 

counterpart, the region surrounding the SMOSMANIA network gets mild wet winters and dry 

warm summers from the Mediterranean, but experiences wetter summer as the area extends 

westwards to a more Oceanic climate. Both study areas, along with their measurement stations 

can be seen on Figure 2. An overview of the stations used and their landcover is presented in 

Table A1 in the Appendix.  
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Figure 2. Locations of the two study areas and in-situ soil moisture measurements from the 

ISMN stations. 

 

4 Data 

 

4.1 Satellite data 

The data used in this study include LST and VI data acquired from the Moderate Resolution 

Imaging Spectroradiometer (MODIS) sensor onboard the Aqua and Terra satellites, providing 

daily measurements globally at 0.25° (~28 km), 0.5° (~55km) and 1 km spatial resolutions. The 

MODIS MOD13A2 product was used to obtain the NDVI and EVI data, providing 16-day VI 

data at 1 km resolution. The 16-day data is composited from 8-day data in which each pixel 

value represents the best value, in terms of cloud cover, atmospheric condition and viewing 

angle, over the 8-day period. In a more straightforward approach, the LST was obtained from 

the MOD11A2 MODIS product, in which every 8 days is averaged into 8-day composites for 

both day and night temperatures at a 1 km resolution. PPI obtained from MCD43 NBAR 

MODIS product at 500 m resolution was provided by Hongxiao Jin, its creator and researcher 

at Lund University. Both the VI and LST data were collected for both MODIS tiles H17V8 and 

H18V8, covering study areas 1 and 2 respectively, spanning January 1st, 2010, to December 
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31st, 2011, for study area 1, and from January 1st, 2018, to December 31st, 2020, for study area 

2. 

 

For the lower spatial resolution SM, the ESA CCI SM v07.0 COMBINED product from ESA 

CCI was used, created by a combination of both active (ERS AMI and ASCAT) and passive 

(SMMR, SSM/I, TMI, AMSR-E) satellite products, resulting in a daily 0.25° spatial resolution 

SM product with a 5 cm observation depth and global coverage. As the ESA CCI SM product 

only has global coverage, the data was extracted for the previously mentioned dates, regardless 

of the study areas. 

 

4.2 In-situ soil moisture measurements 

For the purpose of evaluation, in-situ SM measurements were retrieved from the ISMN, 

providing a harmonised database of SM across the globe in cubic metres of water per cubic 

metre of soil (m3/m3) at varying depths. Two ISMN networks were used for the evaluation, the 

SMOSMANIA and REMEDHUS networks. The REMEDHUS network contained 24 stations. 

For this study 7 stations were omitted as they did not cover the study period, either partly or 

fully. SMOSMANIA network contained 21 stations, all station matched the study period, but 

3 stations had to be removed as they were not covered by the study area. Despite the 

harmonisation efforts of the ISMN, networks do differ in their measurement sensors. The 

REMEDHUS stations, for example, use the Stevens Hydra Probe sensor by Stevens Water Inc. 

whilst SMOSMANIA stations use the ThetaProbe ML3 and ThetaProbe ML2x sensors by 

Delta-T Devices. These sensors are however comparatively very similar, all having a sensing 

radius of 3 cm around the sensor and accuracy of ± 0.01 m3/m3. For this study, hourly SM data 

tagged as “GOOD” quality at a depth of 5 cm for 16 stations within the REMEDHUS network 

and 18 stations within the SMOSMANIA network were used, covering both study areas. Data 

was extracted in accordance with their respective study areas and previously mentioned dates. 

 

The data used, their temporal and spatial resolution along with other information are 

summarised in Table 2. An overview of ISMN station used for the evaluation is listed in the 

Appendix, along with the dates used. 
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Table 2. Overview of data used along with their spatial and temporal resolutions and coverage 

(Data obtained from https://ladsweb.modaps.eosdis.nasa.gov/search/ and https://esa-

soilmoisture-cci.org/). 

Data Product 
Spatial  

resolution 

Temporal 

resolution 
Spatial Coverage 

Temporal 

Coverage  

ESA CCI Soil moisture 0.25°  Daily Global 
2010 - 2011 & 

2018 - 2020  

MOD11A2 
LSTday & 

 LSTnight 
1 km 

8-day  

average 

MODIS tiles H18V4  

& H17V4 

2010 - 2011 & 

2018 - 2020 

MOD13A2 
NDVI, EVI  

& kNDVI 
1 km 

16-day  

composites 

MODIS tiles H18V4  

& H17V4 

2010 - 2011 & 

2018 - 2020 

MCD43 

NBAR 
PPI 500 m Daily 

MODIS tiles H18V4  

& H17V4 

2010, 2011 & 

2018 - 2020 

 
 

5 Methodology 

The downscaling of the ESA CCI SM for this study is partly based on a previous study from 

Peng et al. (2015) for downscaling SM in northern Spain, using the VTCI based downscaling 

method proposed by Kim and Hogue (2012) with VTCI as a scaling factor. In addition, the wet 

and dry edges are simply defined by the extremum of the temperature for each VI interval, as 

opposed to the upper and lower quantiles, as proposed by Garcia et al (2014) as it did not show 

any advantage during the initial testing for this study.  

 

5.1 Data harmonisation  

Before any processing and calculations can be done, all datasets had to be harmonised so both 

their projections and temporal resolutions were aligned and converted into GEOTIFF format. 

The NDVI, EVI and LSTs were extracted from their relative Hierarchical Data Formats (.hdf) 

using the HDF-EOS to GEOTIFF conversion tool (HEG) which converted the data formats to 

GEOTIFFs as well as reprojected it from its sinusoidal projection to a geographical projection 

to correlate with the ESA CCI soil moisture product. From the resulting NDVI GEOTIFF, the 

kNDVI could be calculated using Equation 10. But first all negative values had to be masked 

and reclassified so they would not get converted into positive values. Daily ESA CCI SM was 

downloaded from an FTP server as NetCDF files in a geographic projection. The 
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MakeNetCDFRasterLayer function within the arcpy module in python was used to convert the 

ESA CCI SM from NetCDG to GEOTIFFs whilst conserving its projection. To convert the PPI 

data, the MATLAB files were read into python using the scipy module to extract the PPI data 

as arrays. Which were then converted into rasters with the arcpy NumPyArrayToRaster 

function using the lower left corner of the H18V04 tile and pixel size as parameters and then 

defining the projection to match the ESA CCI SM product. A bilinear resampling approach 

was then applied to the PPI data to upscale it to the same resolution as the other VI and LST.  

 

After all data sets had been spatially aligned, excluding the coarser resolution, they all had to 

be temporally aligned. The EVI, NDVI and kNDVI have a temporal resolution of 16 days. This 

acted as the temporal limit, so all other datasets were upscaled to a 16-day resolution. As is the 

case with PPI and ESA CCI SM, data for every 16th day snapshot was extracted and used, 

averages and compositions were not calculated for this daily data so that a snapshot per 

snapshot comparison could be conducted with in-situ measurements. In addition, due to that 

complicated methods in which the 16-day composites are calculated, compositing the daily 

data by simple averaging would not produce a fair equivalent.  But in the case for the LSTs, a 

dataset including 8-day averages at 8-day intervals was used to combat the limiting amount of 

data provided by the alternative daily LST snapshot dataset. So, every other dataset, i.e., 8-day 

averages at 16-day intervals was used.  

 

In the case of temperatures, LST can vary greatly over large areas time of day, locality and 

elevation, making it liable to cause uncertainty in the triangular feature space. To account for 

these various studies have made efforts to combat this using the difference in day and night 

LST to obtain a more relative temperature. Their results have shown improved results in the 

downscaling of both the ESA CCI SM product in northern Spain as well as in southwestern 

China (Peng et al., 2015, 2016). The same approach was used in this study, using day and night 

LST from the MOD11A2 product and subtracting them using Equation 11. 

∆𝐿𝑆𝑇 =  𝐿𝑆𝑇𝑑𝑎𝑦 − 𝐿𝑆𝑇𝑛𝑖𝑔ℎ𝑡 (11) 

 

Now that all datasets were spatially and temporally harmonised and have been scaled, a further 

processing could commence. 
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5.2 Vegetation Temperature Condition Index 

In order to calculate the Vegetation Temperature Condition Indices (VTCI), each VI raster for 

each day was plotted against the corresponding ΔLST raster. The VI and ΔLST rasters were 

converted into arrays using the numpy module and the subsequently turned into lists which 

were then plotted together, one point for each pixel within the study area for each day. For 

study area 2, this amounted to a maximum of 287.832 points whilst for study area 2 it amounted 

to a maximum of 1.122.368 point, the amount of points plotted were then limited to the amount 

of pixels available with valid data. From the plot created, showing a triangular or trapezoidal 

relationship between ΔLST and VI, the upper (wet edge) and lower (dry edge) boundaries, see 

Figure 1, could be calculated. The edges were calculated by extracting the highest and lowest 

ΔLST values for each VI interval. In this case the interval was defined as 0.05. The highest and 

lowest ΔLST values were then added to a separate list along with their corresponding VI values. 

Using the polyfit function within the numpy module the slope and y-intercept of the best fitting 

linear line for each edge could be calculated. As opposed to Peng et al. (2015) study, where the 

wet edge is fixed for all VI intervals, here the wet edge is dynamic. It is assumed that the rate 

of evaporation is related to the amount of vegetation, thus the change in vegetation should have 

an impact on the temperature. This approach has been shown to give promising results,  having 

been used in the downscaling of ESA CCI SM in western Iran, achieving correlations of 

roughly 0.7 with in-situ measurements (Rostami et al., 2023). 

  

With the edges defined, the VTCI could be calculated based on the VI values. For each pixel, 

its VI value was checked, and its interval determined. The VTCI was then calculated 

by subtracting its corresponding ΔLST from the wet edge value for each interval and then 

dividing it by the difference in wet edge and dry edge values, using Equation 3, but substituting 

the daily LST value with ΔLST. These VTCI values were then added to a new empty array. In 

the case in which a VI value does not belong to an interval, the value was added to the new 

VTCI array as NODATA. Using the NumPyArrayRaster the VTCI arrays were converted into 

GEOTIFFs using the lower left corner and the cell sizes of the original raster as parameters. The 

results being VTCI rasters for each type of VI at 16-day intervals. With the VTCI serving the 

purpose as a scaling factor to apply to the coarse resolution ESA CCI SM product.  
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5.3 Spatial downscaling  

Each VTCI raster for each date and VI was applied to the ESA CCI SM product of the same 

date. First the ESA CCI SM was resampled to the same spatial resolution as the VTCI so a 

pixel-on-pixel calculation could be processed. The downscaling was done by multiplying the 

pixel value of the VTCI raster with the ESA CCI SM value of its corresponding pixel and then 

dividing it with the average VTCI values within the boundaries of the overlaying coarser 

resolution pixel, see Equation 1, where SMVI-LST is replaced by VTCI and SMcr is the ESA CCI 

M product to achieve the downscaled SM (SMd).    

   

5.4 In-situ soil moisture measurements from ISMN stations 

The ISMN stations measure SM at an hourly interval. Thus, to match their data with satellite 

observations, their measurements averaged to obtain the mean daily SM, a similar approach to 

that of Zhu et al. (2023) who used said approach to match 30 min measurements to daily 

averages. For this study measurements were extracted from 00:00 to 23:00 for every day and 

averaged to obtain the daily mean. In order to limit the effects of absence of data, the average 

was calculated by summing up all the measurements and dividing by the amount of hours with 

measurements, as opposed to simply dividing by the amount of hours in the day. Subsequently, 

to match with the lower temporal resolution satellite data, every 16th value was extracted to 

obtain a dataset containing 16-day in-situ data from the ISMN stations.  

  

To obtain the pixel-based SM of the 16-day SMd products corresponding to each station the 

Sample function within the arcpy module was used. Because of the low radius (3 cm) of in-situ 

measurements, only the overlaying pixel, 1 km for SMd and 25 km for SMcr, was sampled. This 

was done for all SM products. The resulting point sampled SM products for each station were 

then written into a text file which could then be read into python and formatted as separate lists 

for each different SM product.  

 

5.5 Evaluation  

The pytemso python toolbox was used to evaluate the SMd products with the ISMN stations, 

using the listed values of the downscaled SM product and in-situ measurements. Measurements 

were only compared for days in which data was available for all products, thus new lists were 

created for each VI which only contained data for dates which had data for all the different VI.  
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These lists of values, one for each SM product were then evaluated against the in-situ 

measurements list using two functions within the pytemso toolbox, The ubrmsd function which 

calculated the unbiased root-mean-square deviation (ubRMSD) in m3/m3 and pearsonr 

function which calculated the unitless Pearson correlation coefficient (R). The ubRMSD, has 

been widely used in SM evaluations as it can reflect SM anomalies independent of bias which 

may be caused seasonal changes in SM, elevation or surface roughness, see Equation 11 where 

x and y and are predicted and observed values respectively and 𝑥 ̅and �̅�  are there means 

(Entekhabi et al., 2010; Peng et al., 2015; Zhang et al., 2022). Likewise, the R value is also a 

widely used metric for evaluation of SM as it measures the strength of the linear relationship 

between predicted and observed values, ranging from -1 to 1 where the correlation 

increases/decreases as it deviates from 0, see Equation 12 where x and y are the predicted and 

observed values respectively and n is the amount of pairs (Entekhabi et al., 2010; Peng et al., 

2015; Profillidis & Botzoris, 2019).  

 

𝑢𝑏𝑅𝑀𝑆𝐷 = √((𝑥 − 𝑥 ) − (𝑦 − �̅�))2  (11) 

 

𝑅 =
𝑛(∑𝑥𝑦)−(∑𝑥)(∑𝑦)

√[𝑛∑𝑥2−(∑𝑥)2][𝑛∑𝑦2−(∑𝑦)2]
 (12) 

 

The SMd products were evaluated against the 17 stations within the RHEMEDUS network and 

18 stations in the SMOSMANIA network. R and ubRMSD values of each station were 

calculated as well as the simple mean across all stations for each network. In addition, a 

weighted mean of R was also calculated using the variance of each station as a weighing factor, 

where a higher weight is attributed to stations with lower variance. This was done so that low 

accuracy and potentially erroneous stations would have a limited impact on the results. 

Additionally, all SM products were plotted with the in-situ ground measurements to look at 

temporal patterns and overall fit.  

 

To compare the spatial patterns of the different SMd products, the SMd products were visualised 

on maps, along with the LST and SMcr-ESACCI, for both study areas on the same day. By doing 

this the SMd products could be visually compared over a larger area and the effect of LST and 

SMcr visualised. In addition, their temporal patterns were analysed by the plotting a time series 

of the SMd products along with the SMcr and in-situ measurements. Through the time series, 

the performance of the SMd could be compared visually with the in-situ measurements and 
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SMcr to see how they match with their temporal variations. So not only could their performance 

be evaluated against the in-situ measurements, but also the original SMcr product. 

 

6 Results 

6.1 LST-VI relationships 

The LST-VI feature spaces were calculated at 16-day intervals for each VI. Figure 3 shows the 

different features spaces for the same day in 2018 produced by the 4 different VIs. From these 

figures we can see that the NDVI showed more of a square shape whilst the alternative VIs, 

such as EVI and kNDVI, showed a better resemblance to a trapezoid and PPI showing a very 

distinct sharp triangular shape. The NDVI and kNDVI samples also seemed to be denser at the 

higher end of the VI spectrum whilst EVI, tended to be denser in the middle and PPI had the 

highest density in the lower end. 

 
Figure 3.  LST-VI triangular (trapezoidal) feature spaces for: A) Normalised Difference 

Vegetation Index (NDVI), B) Enhanced Vegetation Index (EVI), C) Plant Phenology Index 

(PPI) and D) kernel Normalised Difference Vegetation Index (kNDVI). For 2018 day #177 in 

study area 2.  
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A comparison of the LST-VI relationships of the different VIs showed that in the case of both 

wet and dry edges, NDVI had by far the most gradual slope, whilst non-saturated VIs such as 

EVI and kNDVI were considerably steeper. PPI had a slightly steeper slope than NDVI in both 

cases, but it also covered a larger range in values. With regards to the Y-intercept, values were 

more similar between the VIs, with the difference of the Y-intercepts for both wet edges and 

dry edges temperatures not exceeding 5°C. When comparing the variation of the slope 

parameters, NDVI showed the greatest temporal slope variance for the wet and dry edges. In 

the case of the dry edge, PPI had the second greatest temporal variability followed by EVI and 

then kNDVI with the lowest variability. In contrast for the wet edge slope, kNDVI had the 

most temporal variability following NDVI, whilst EVI and PPI had the lowest variance. The 

temporal variability of the Y-intercepts for all VIs and both edges are all very similar with the 

wet edges only having a difference of about 0.07 and dry edges only having a difference of 

about 0.03. A summarisation for the wet edge and dry edges can be seen on Tables 3 and 4 

respectively. 

 

Table 3. An overview of means and coefficients of variations (CV) of the wet edge slopes and 

Y-intercepts for the different VI in 2018 for study area 2. 

Wet edge 

VI Slope (mean) Y- Intercept (mean) Slope (CV) Y-Intercept (CV) 

EVI 19.60 -13.97 0.56 -0.83 

NDVI 4.04 -10.94 1.45 -0.82 

kNDVI 10.11 -12.69 0.84 -0.77 

PPI 6.92 -10.79 0.57 -0.76 

 

Table 4. An overview of means and CV of the dry edge slopes and Y-intercepts for the 

different VI in 2018 for study area 2. 

Dry edge 

VI Slope (mean) Y- Intercept (mean) Slope (CV) Y-Intercept (CV) 

EVI -17.12 32.50 -0.37 0.15 

NDVI -4.95 28.75 -1.09 0.15 

kNDVI -19.47 33.55 -0.35 0.16 

PPI -6.49 29.53 -0.62 0.19 

 

Looking at the same day for study area 1 in 2010, a similar pattern can be observed, with NDVI 

having near horizontal wet and dry edges and EVI and kNDVI have a more trapezoidal shape 

whilst PPI resembles more of a triangle, see Figure 4. In contrast to study area 2 however, the 

triangular feature space for NDVI, EVI and kNDVI are denser towards the lower end of the VI 
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spectrum while PPI with the broadest range fails to show any density hot spots. NDVI also 

seems to be lacking VI data in the lower end, causing the dry edge to flatten out and appear 

more horizontal, despite the point themselves showing a more trapezoidal shape. 

 

Figure 4. LST-VI triangular (trapezoidal) feature spaces for: A) NDVI, B) EVI, C) PPI and D) 

kNDVI. For 2010 day #177 in study area 1. 

Calculating the mean slopes and intercept as well as the CV for the wet and dry edges in study 

area 1 for 2010 produced very similar results to study area 2, with PPI and NDVI showing the 

lowest mean slopes for both wet and dry edges whilst the Y-intercepts showed similar results 

for all the VIs. Furthermore, kNDVI and EVI showed the lowest variance for the dry edge 

slope, whilst kNDVI had higher variance for the wet edge slope whereas opposed to study area 

2, NDVI produced a more stable slope. PPI produced the least amount of variance for the wet 

edge slope and the second highest variance for the dry edge slope after NDVI, the same ranking 

as for study area 2. A summarisation for the wet edge and dry edges can be seen on Tables 5 

and 6 respectively. 
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Table 5. An overview of means and CV of the wet edge slopes and Y-intercepts for the 

different VI in 2010 for study area 1. 

Wet edge 

VI Slope (mean) Y- Intercept (mean) Slope (CV) Y-Intercept (CV) 

EVI 15.48  -8.31 0.80 -1.30 

NDVI 3.55  -5.27 0.78  -1.88  

kNDVI 9.75 -6.50 1.15 -1.67 

PPI 5.03  9.08 0.58 -1.33 

 

 

Table 6. An overview of means and CV of the dry edge slopes and Y-intercepts for the 

different VI in 2010 for study area 1. 

Dry edge 

VI Slope (mean) Y- Intercept (mean) Slope (CV) Y-Intercept (CV) 

EVI -15.20 27.84 -0.26 0.13  
NDVI -5.54 25.28 -0.79 0.12 

kNDVI -19.89 29.92 -0.26 0.12 

PPI -8.36 27.45 -0.68 0.15 

 

 

 

6.2 Spatial comparison 

Looking closer at day #177 for 2018 corresponding to the earlier triangular feature spaces, a 

comparison of the resulting SMd in addition to the original SMcr and ΔLST are shown in Figure 

5. All SMd products were indistinguishable from one another, there seemed however to be a 

distintion on a more finer level, with SMd-PPI and SMd-NDVI having the lower max SM values. 

Whilst SMd-kNDVI had a significantly higher maximum values, correspond to an increase of 

around 0.14 m3/m3. Compared to the original SMcr, the SMd product showed very similar 

patterns when looking at the distribution of the maximum and minimum values, although the 

SMd products seemed to overestimate the SM values and have a range of roughly double that 

of SMcr, see Figure 5. 

 

Similarly, looking at day #177 for 2010 in study area 1, Figure 6. The SMd products are visually 

indistinguishably from one another. Dissimilarity to study area 2, however, SMd products 
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seemed to have a significantly higher maximum SM value in study area 1, exceeding 1 m3/m3. 

This could be due to a pixel having a significantly higher VTCI value than the surrounding 

pixels bounded by the coarser resolution pixel. SMd-NDVI and SMd-EVI showed the highest 

SM values, whereas SMd-kNDVI and SMd-PPI showed more robustness to the effect of VTCI 

outliers having lower maximum SM values. 
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Figure 5. A visual comparison of: A) The difference in day and night temperatures (ΔLST), B) 

ESA CCI SM product (SMcr-ESACCI), C) NDVI derived downscaled SM product (SMd-NDVI), D) 

EVI derived downscaled product (SMd-EVI), E) kNDVI derived downscaled product SMd-kNDVI 

and F) PPI derived downscaled product SMd-PPI. For 2018 day #177 within study area 2. 
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Figure 6. A visual comparison of: A) ΔLST, B) SMcr-ESACCI and the downscaled SM products: 

C) SMd-NDVI, D) SMd-EVI, E) SMd-kNDVI and F) SMd-PPI.  For 2010 day #177 within study area 1. 

 

 

 

6.3 Evaluation with REMEDHUS ISMN network 

The evaluation with the SM products against the in-situ measurements from the REMEDHUS 

ISMN network, showed that the original ESA CCI SM (SMcr) product outperformed the SMd 
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products in all sectors. Of the SMd products, SMd-kNDVI performed best in terms of ubRMSD 

and R with a simple mean ubRMSD of 0.065 ± 0.035 m3/m3 and a simple and weighted mean 

R of 0.64 ± 0.15 and 0.71 respectively. SMd-NDVI showed the worst performance for all metrics, 

having a simple and weighted mean R values of 0.57 ± 0.15 and 0.63 respectively and mean 

ubRMSD value of 0.075 ± 0.032 m3/m3. An overview of the mean R and ubRMSD values are 

summarised in Table 7. Figures 7 and 8 show the boxplots for ubRMSD and R respectively. In 

terms of ubRMSD, all SM product showed consistent low ubRMSD values, with only a couple 

of outliers with high ubRMSD. In terms of R, the SMd products showed more variation in their 

values but produced similar medians with only SMcr-ESACCI having a slightly higher median R. 

 

Table 7. Simple and weighted mean correlations and ubRMSD for the different downscaled 

SM products and ESA CCI SM against the REMEDHUS network. Correlations and ubRMSD 

are also shown from a previous study by Peng et al. (2015) covering the same time period 

and study area. 

Product 
R 

(Simple mean) 

R 

(Weighted mean) 

ubRMSD (m3/m3) 

(Simple mean) 

SMd-NDVI 0.57 ± 0.15 0.63 0.075 ± 0.032 

SMd-PPI 0.62 ± 0.14 0.69 0.067 ± 0.035 

SMd-EVI 0.61 ± 0.14 0.67 0.069 ±0.033 

SMd-kNDVI 0.64 ± 0.15 0.71 0.065 ±0.035 

SMcr-ESACCI 0.70 ± 0.16 0.78 0.063 ± 0.036 

SMcr-ESACCI 

Peng (2015) 
0.53 ± 0.13 NA 0.05 ± 0.02 

SMd-LAI 

Peng (2015) 
0.42 ± 0.17 NA 0.06 ± 0.17 
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Figure 7. Boxplot for ubRMSD values for the different SM products with the REMEDHUS 

network. 

 

 
Figure 8. Boxplot for correlation coefficients (R) of the different SM products with the 

REMEDHUS network. 

 
When comparing the individual stations, SMcr had the highest R in 13 out of the 17 stations, 

only being outperformed by SMd-PPI at station I06, SMd-kNDVI at station N09 and SMd-EVI at 

station K10. Focusing on the SMd products, SMd-PPI showed the highest R in 6 stations, SMd-

kNDVI at 8 and SMd-EVI at 2 whilst SMd-NDVI never produced the best performance, see Figure 9 

(A). Regarding ubRMSD, SMcr had the best results in 15 stations, only being outperformed in 

N09 by SMd-kNDVI. Out of the SMd products, SMd-kNDVI had the best performance at 12 stations 
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each whilst SMd-PPI only outperformed in 3, SMd-EVI in one and SMd-NDVI in none, see Figure 9 

(B). 

 

Figure 9. The evaluation metrics A) correlation coefficients (R), and B) ubRMSD of each SM 

product against the in-situ measurements for each station in the REMEDHUS network. 

 

Stations M05 and K13 showed the worst and best correlations respectively. For station M05, 

SMd-NDVI had the lowest R of the SMd products at 0.15, followed by SMd-EVI with 0.18,  

SMd-kNDVI with 0.22 and SMd-PPI at 0.24. The SMcr product however had a much better 

correlation with an R of 0.47. Looking at Figure 10 (A) at the different SM plotted with the in-

situ ground measurements it us shown that both the SMd and SMcr products overestimate SM 

relative to in-situ measurements, especially in the early parts 2010 where there seems to be no 

resemblance in the patterns. It can however be seen is that there was a clear similarity in 

temporal patterns and values between SMd and SMcr. For station K13, which showed the best 

correlation with the SMd products, SMd-kNDVI has the highest R of 0.81, followed by SMd-PPI 

and SMd-EVI with 0.80 and SMd-NDVI at 0.78. Looking at Figure 10 (B) it is shown that the SM 

products matched the temporal pattern of the in-situ measurements and provide similar values. 
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Figure 10. Time series of the SM products and in-situ measurements for: A) The worst 

correlated station (M05) and B) best correlated station (K13). 

 

Stations M13 and M09 had the worst and best ubRMSD values respectively. For station M09, 

SMd-EVI has the worst ubRMSD of the SMd products at 0.043 m3/m3, followed closely by  

SMd-NDVI at 0.042 m3/m3, SMd-PPI at 0.041 m3/m3 and SMd-kNDVI at 0.037 m3/m3. SMcr had the 

lowest value at 0.031 m3/m3. Figure 11 (B) shows how the temporal patterns seem to match 

well with the in-situ measurements, but there also seems to be more noise for the SMd products 

than the SMcr. For station M13, all products showed very similar ubRMSD values, ranging 

from 0.156 m3/m3 for the SMcr to 0.157 m3/m3 for both SMd-kNDVI and SMd-EVI, whilst SMd-PPI 

and SMd-NDVI followed closely behind at 0.158 m3/m3. Looking at Figure 11 (A), big spikes 

can be shown for in-situ measurements in winter periods which are highly underestimated in 

the SMcr and SMd products, which can be explain the high ubRMSD. 
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Figure 11. Time series of the SM products and in-situ measurements for: A) The station with 

the worst ubRMSD (M13) and B) The station with the best ubRMSD (M09). 

 
 

6.4 Evaluation with SMOSMANIA ISMN network 

In comparison to the evaluation with the REMEDHUS network, the SMOSMANIA stations in 

study area 2, showed similar results. The SMcr product still outperformed the SMd products, in 

all sectors. Of the SMd products, all products produced similar ubRMSD, with SMd-EVI and 

SMd-PPI at 0.065 ± 0.014 m3/m3 and SMd-kNDVI at 0.059 ± 0.015 m3/m3 and SMd-NDVI at 0.060 ± 

0.014 m3/m3. All SMd products also produces similar correlations, SMd-PPI had a mean R of 0.61 

± 0.21, followed by SMd-kNDVI at 0.60 ± 0.21 and SMd-PPI and SMd-NDVI both at 0.60 ± 0.23. SMcr 

had a greater R at 0.68 ± 0.17. On the other hand, comparing the weighted means, the SMd 

products produced R more similarly to the SMcr product with SMd-EVI and SMd-PPI at 0.75, SMd-

NDVI at 0.74 and SMd-kNDVI at 0.73, whilst SMcr only had a R of 0.76. An overview of the mean 

R and ubRMSD values are summarised in Table 8. Figures 12 and 13 show the boxplots for 

ubRMSD and R respectively. Compared to study area 1, the SMd products showed less 

consistency in ubRMSD values but produced similar medians. SMcr-ESACCI had a lower median 

ubRMSD but produced more inconsistent results. However, in terms of R, SMcr-ESACCI showed 

more consistency than the SMd products and produced a higher median R. 
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Table 8. Simple and weighted mean correlations and ubRMSD for the different downscaled SM 

products and ESA CCI SM against the SMOSMANIA network. 

Product 
R 

(Simple mean) 

R 

(Weighted mean) 

ubRMSD (m3/m3) 

(Simple mean) 

SMd-NDVI 0.60 ± 0.23 0.74 0.068 ± 0.014 

SMd-PPI 0.61 ± 0.21 0.75 0.065 ± 0.014 

SMd-EVI 0.60 ± 0.23 0.75 0.065 ± 0.014 

SMd-kNDVI 0.60 ± 0.21 0.73 0.067 ± 0.014 

SMcr-ESACCI 0.68 ± 0.17 0.76 0.055 ± 0.017 

 
 

 

Figure 12. Boxplot for ubRMSD values for the different SM products with the SMOSMANIA 

network. 

 

 

Figure 13. Boxplot for correlation coefficients (R) of the different SM products with the 

SMOSMANIA network. 
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When comparing the individual stations, the SMcr had a higher R then SMd products in most 

stations, having better correlation in 10 out of 18 stations, whilst SMd-EVI and SMd-PPI performed 

better in 4 stations each. Out of the SMd products, SMd-PPI seemed to perform best, showing 

highest correlation at 7 stations, followed closely by SMd-EVI, having best performance in 6 

stations. SMd-kNDVI only showed the best performance in 4 station and SMd-NDVI in 1, Figure 14 

(A). With regards to ubRMSD, SMcr showed the best results in 11 out 18 stations, whilst SMd-

EVI showed the best results in 3 stations and SMd-PPI in 1 station. Of the SMd products, The SMd-

PPI showed the best performance at 7 stations whilst SMd-EVI outperformed in 6, followed 

closely by SMd-kNDVI managing to outperform the other SMd product in 4 stations. SMd-NDVI 

only managed to produce the best ubRMSD at 1 station, Figure 14 (B).  

 

 

Figure 14. The evaluation metrics, A) correlation coefficient (R), and B) ubRMSD of each SM 

product against the in-situ measurements for each station in the SMOSMANIA network. 

 
 
Stations LGC and MNT showed the worst and best correlations respectively. For station LGC, 

SMd-NDVI had the lowest R of the SMd products at 0.09, followed by SMd-EVI at 0.10, SMd-PPI at 
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0.21 and SMd-kNDVI at 0.25. The SMcr product however had a much better correlation with 0.65. 

Looking at Figure 15 (A) at the different SM plotted with the in-situ ground it is shown that 

the SMd and SMcr overestimate the SM everywhere, the SMcr resembled the pattern of the in-

situ measurements better whilst the SMd products showed more sign of noise and extremes.  

For station MNT, which showed the best correlation with the downscaled products, SMd-EVI 

had the highest R of 0.88, followed by SMd-PPI at 0.87, and SMd-NDVI at 0.86 and SMd-kNDVI at 

0.85. The SMcr produced similar results, with a R of 0.87, only outperforming SMd-kNDVI and 

SMd-NDVI. Looking at Figure 15 (B) it is shown that both the SMd and SMcr products matched 

the temporal pattern of the in-situ measurements very closely, but they did underestimate the 

in-situ SM significantly over the winter periods. 

 

 
Figure 15. Time series of the SM products and in-situ measurements for: A) The worst 

correlated station (LGC) and B) the best correlated station (MNT). 

 

Stations MZN and MTN had the worst and best ubRMSD values respectively. For station 

MZN, SMd-PPI had the highest ubRMSD of the SMd products at 0.089 m3/m3, followed by SMd-

EVI and SMd-NDVI with 0.086 m3/m3 and SMd-kNDVI at 0.084 m3/m3 with the best result. Overall 

SMcr had the highest ubRMSD of 0.093 m3/m3, see Figure 16 (A). For station MTN, SMd-EVI 

and SMd-NDVI showed the highest ubRMSD at 0.03 m3/m3 of the SMd products, followed very 

closely by SMd-PPI and SMd-kNDVI at 0.029 m3/m3. SMcr produces the best ubRMSD at 0.027 

m3/m3.  Looking at Figure 16 (B) it is shown how the temporal patterns between the SM 
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products seem to show a temporal resemblance with slight overestimation of SM as compared 

to in-situ measurements. 

 

 
Figure 16. Time series of the SM products and in-situ measurements for: A) The station with 

the worst ubRMSD (MZN) and B) The station with the best ubRMSD (MTN). 

 

7 Discussion 

7.1 LST-VI relationships 

Looking at the LST-VI relationships for study area 2 we can see how the different VI can have 

an influence on the results. In Figure 3, we can see how NDVI fails to show a trapezoidal or 

triangular relationship with the LST, having both wet and dry edges nearly horizontal resulting 

in a near constant VTCI value for all VI intervals which in turn will ignore any variety in the 

different landcovers and vegetation densities, thus creating a scaling factor solely dependent 

on the LST. For the same day, EVI, kNDVI and PPI produce a more trapezoidal or even a 

triangular relationship with LST, increasing the influence of the VI on the VTCI. A further 

investigation for the entire 2018 period, there can be seen a great difference in the mean slopes 

and their temporal variance whilst their Y-intercepts are more constant between the VI, see 

Figures 3 and 4. EVI seems to have the greatest mean slope for the wet edge whilst kNDVI has 

the greatest mean slope for the dry edge, indicating a greater heat increase with increasing VI. 

For both the wet and dry edges, NDVI has the most gradual mean slopes, followed by PPI. 

Although the range of PPI values is 3 times that of the other VI. Despite NDVI’s failing to 
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show an adequate shape in the triangular feature space for the specific day, it does show the 

greatest variance in slope for both the dry edge and wet edge over the study period, indicating 

that its shape and therefore applicability can vary greatly throughout the time period. Compared 

to NDVI, EVI and kNDVI show the least amount of variance for both the dry and wet edge 

slopes, indicating more stable edges and less temporally variability. This contrast in variability 

of EVI and kNDVI as opposed to NDVI is likely a result of limited or absence of high valued 

VI pixels of EVI and kNDVI which can vary greatly through the year. Higher saturated VI 

values will lead to a more gradual slope and thus the shape of the NDVI triangular feature space 

will therefore be more sensitive by higher VI and subsequently have a greater temporal 

variability.  kNDVI does however have a greater variance for the wet edge slope than EVI 

which could be as a result of EVI being better suited at ignoring canopy background signals 

and reduce atmospheric influences and thus potentially producing a more accurate product. 

This does however not explain why only the wet edge seems to be affected. PPI on the other 

hand, also avoiding saturation of dense vegetation, does not share EVI’s and kNDVI’s stable 

dry edge slope, having greater variance but being more stable than NDVI. Its wet edge slope 

is however more stable compared to the other VI, a contrasting relationship to kNDVI, whose 

dry edge is more stable than its wet edge. 

 

7.2 Comparison with results of Peng et al (2015) 

The result for study area 1 shows good results compared to evaluations performed by Peng et 

al. (2015) over the same period, using similar methods. In comparison with in-situ 

measurements, their downscaled SM product had a mean R of 0.42 ± 0.17, it is however not 

clarified whether this represents a simple or weighted mean. Nevertheless, assuming it is a 

simple mean, this study’s SMd provides a better result ranging from 0.57 ± 0.15 to 0.64 ± 0.15. 

In addition, it also shows a better R for SMcr at 0.70 ± 0.16 as opposed to their mean R of 0.53 

± 0.13. In terms of ubRMSD, Peng et al (2015) results outperform results of this study with 

mean ubRMSD values of 0.06 ± 0.017 m3/m3 and 0.05 ± 0.02 m3/m3 for the SMd and SMcr 

respectively whereas this study shows mean ubRMSD values of 0.065 ± 0.035 m3/m3 to 0.075 

± 0.032 m3/m3 for the SMd and 0.063 ± 0.036 m3/m3 for the SMcr. Looking at the station 

individually, the constituency of this study and Peng et al. (2015) results vary, with stations 

such as H9 and M13 showing consistently high R and ubRMSD whilst other stations such J3 

gives good correlation in this study as opposed a more lacking performance in Peng et al. 

(2015) study. 
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The varying results between the two studies could be influenced by the different methods in 

estimating the wet and dry edges between the two studies, whilst both studies used a best fitted 

linear line to determine the dry edges, Peng et al. (2015) used a fixed value for the wet edge, 

whilst this study used a dynamic wet edge, determined by a best fitted linear line, akin to the 

dry edge, thus resulting in more variance with changing VI value. Peng et al. (2015) also took 

more precautions in estimating the VTCI, by masking out high elevation areas to limit the 

influence of altitude on the temperature. In addition, Peng et al. (2015) limited themselves to 

only sampling homogenous landcover such as cropland. These precautions were not taken in 

this study, but nevertheless did manage to generally provide better results, indicating the 

limiting effect of these factors. This would however not explain the big difference in the SMcr 

correlations between the two studies, which may be attributed to the sampling strategy. 

Dissimilarly to Peng et al (2015), this study negated three stations (E10, J14 and F11) from the 

evaluation due to their limiting data range resulting in smaller sampler sizes thus providing 

more unreliable correlation which will skew the overall results. 

 

7.3 Evaluation with SMOSMANIA and REMEDHUS networks 

The considerably larger study area, study area 2 shows very consistent results to study area 1 

having only a slightly lower ubRMSD and higher standard deviation of the mean correlation 

for all the SM products. However, regarding the standard deviation, we would expect lower 

values in study area 2 as the temporal sample size is larger and we would expect the standard 

deviation to decrease with an increased sample size (Ramachandran & Tsokos, 2021). We do 

however also see the standard deviation being nearly the same for the SMcr products for both 

study areas indicating that the standard deviation is less effected by the temporal sample size, 

but rather the downscaling method. This could be further explained by the increased variety in 

landcovers of the sample stations in study area 2, such as stations BRN, LGC and MJN which 

are all tree covered and show very poor correlations with the SMd products. Indicating the 

inconsistency and insufficiency of using methods described in this study with different 

landcovers. That being said, in contrast to the correlation, the ubRMSD values are better in 

study area 2, having both a lower mean and standard deviation of ubRMSD which might be 

due to the high ubRMSD for stations H9 and M13 in study area 1 and the fewer stations used 

in said network.  
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7.4 Comparison of the downscaled soil moisture products 

Comparing the performance of the different VIs for both study areas, all VIs show promising 

results, not deviating more than a tenth in R and a hundredth in ubRMSD from one another and 

producing overlapping performance with respect to standard deviations. However, looking 

closer at the individual stations, we see a different picture. For study area 2, SMd-EVI and SMd-

PPI give the most consistently good results, both having the very similar R and ubRMSD for all 

stations. We do see that SMd-EVI generally outperforms the SMd-PPI at stations in vineyards such 

as PZN, non-irrigated arable lands such as PRG, SVN and quite significantly in the urban areas 

such as LZG. SMd-PPI manages to give better results for forested, higher vegetation areas, such 

as stations LGC and BRN where despite not showing a significant correlation still produced 

results notably better than EVI.  

 

For study area 1, there are no tree covered stations, thus a comparison between the areas is 

lacking for the forested areas, there are however non-irrigated arable lands and vineyards. In 

contrast to study area 2, for the study area 1, SMd-PPI seems to outperform SMd-EVI significantly 

in most stations, including stations in non-irrigated arable lands and vineyards. Alternatively, 

SMd-kNDVI shows good consistently good results, outperforming the other SMd products at 8 

stations in terms of R and 12 stations in terms of ubRMSD. But similarly, to SMd-EVI, its 

performance slightly drops between study areas. In study area 1, SMd-kNDVI struggles to keep 

up with SMd-NDVI and is outperformed by it in terms of R in 14 of 18 stations, 2 of which 

happened to be forested regions. Indicating the potential of using SMd-kNDVI in densely 

vegetated areas and its limits in sparser vegetation. This cannot however be claimed to be true 

for both study area, as there seems to be shift in performance for SMd-kNDVI between the 

stations. The inconsistency in SMd-kNDVI performance could be explained by the heuristic 

approach in Equation 9, assuming σ represent the average values of Red and NIR bands. Whilst 

for optimum performance a specific σ values should be chosen for different areas, as higher σ 

values are more sensitive to denser vegetation and lower σ values are more sensitive to sparser 

vegetation. The heuristic, although simple could thus lead to poor results, specifically in the 

plotting of the triangular features space as the index will only being optimised for low or high 

VI values which in turn greatly affect the wet and dry edges. Thus, this generalisation may not 

be suitable for larger areas with a lot of variety vegetation and landcovers. Further evaluation 

must however be conducted to state such a claim. What this study’s results do show is that 

SMd-PPI, although not always having the best results, does show consistency between the two 



 

43 
 

study areas which SMd-kNDVI and SMd-EVI fail to do. But also, that PPI manages to keep up with 

the other VIs, and in some cases outperforms them, in an environment in which its not 

developed to thrive or have an advantage further showing its potential to thrive in areas where 

it does have an advantage, such as the northern latitudes and forested areas. The reason for its 

good performance could be due to its sensitivity to the soil differential index (DVI) and LAI, 

see Equation 8, two factors which have been shown to be closely related to soil (Jin & Eklundh, 

2014; Peng et al., 2015). It should however be noted that the PPI data had a temporal resolution 

of 1 day as opposed to the other VIs with 16-day resolution, this could have affected the overall 

result as daily data was compared with composite data. Nevertheless, as PPI is considered more 

sensitive to noise than other VI, we could expect correlations to increase by compositing PPI 

and thus decreasing the noise. If we assume the PPI value does not fluctuate significantly within 

the compositing period (Jin & Eklundh, 2014).  

 

7.5 Limitations of this study 
 

Throughout this study, many limitations were met, mainly in the form of data availability and 

quality. For instance, the VI products limit the temporal resolutions to 16-day intervals which 

greatly reduces the sample size to only 23 images a year, thus increasing the margin of error. 

Furthermore, the VI values do not represent the surface of the specific day as this study uses 

composites for the VIs based on the quality of the pixel over an 8-day period. This is however 

a limitation which has been met in a variety of studies using the same data and does not solely 

effect this study (Kim & Hogue, 2012; Peng et al., 2016). The LST suffers the same issues as 

8-day averages are used and it is assumed that the temperature does not vary greatly within the 

8-day period. Kim and Hogue (2012) met the same limitations using averaged LST but 

compared there results with daily LST temperatures and found that daily LST produced 

generally better correlations. However, by using the daily LST they met other limitations with 

cloud cover significantly effecting their data availability.  Using a downscaling factor also has 

its limits, as it is a more general approach which lacks consideration of variations in terrain and 

atmospheric background and is less dependent on physical processes. Furthermore, they are 

highly dependent on the accuracy of the satellite data and the fitting of the triangular feature 

space, which may cause uncertainties if not adjusted in a suitable manner (Zhao et al., 2022). 

However, despite these limits, the downscaling of SM with a scaling factor has still managed 

to produce satisfactory results in a variety of studies across different regions ((Kim & Hogue, 

2012; Peng et al., 2015, 2016)). Other issues arose when looking for a study area due to the 
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limiting amount of SM networks, in suitable locations with good hydrological contrasts, 

constituent data availability, quantity of stations and relevant measurements. Even with a 

suitable amount of sample stations, such as in this study, there are still issues regarding their 

positions, for example the SMOSMANIA network covers a variety of different landcovers but 

there are too few stations for each landcover to provide a proper evaluation between them, 

similar limitation have been met in a variety of studies, due to the lack of ground measurements 

able to represent the otherwise complex landscape (Liu et al., 2021). Another limitation 

includes the choice of methods used in this study, as there are many different alterations and 

ways which have been used to downscale SM with optical and thermal based methods which 

were not evaluated in this study due to time constraints and overall scope of the study (Garcia 

et al., 2014; Kim & Hogue, 2012; Peng & Loew, 2017).  

 

7.6 Recommendations for future studies  

This study opens a wide range of questions which can further motivate future studies. More 

generally, it would be interesting to look at the other downscaling methods and alterations, 

such as using a fixed wet edge, or using quantiles to determine the extremum temperatures with 

the different VIs. It would also be interesting to look at the effects of the size of study area on 

the downscaling process, a repeated study could be done for study area 2, using a smaller study 

area around the SMOSMANIA network and compare the results. Additionally, due to the 

similar performance of the mean metrics and overlapping results a further, more thorough 

evaluation should be conducted using more advanced statistical test such as a significance 

analysis. This study shows the possibilities of using different VI and further studies can be 

done to discover their fullest potential. kNDVI could be further enhanced using a more 

optimised σ value and proper testing should be conducted to fully evaluate its effect on the 

downscaling process. Furthermore, PPI’s fullest potential should be investigated in areas of 

higher latitudes and denser vegetation, such as the FMI network in Finland to see how it 

compares with other VI in areas where it is advantageous. 

 

8 Conclusions 

This study aimed at evaluating and comparing the influence of using four different vegetation 

indexes VIs on spatial downscaling of ESA CCI soil moisture (SM) product at the coarse spatial 

resolution with the Vegetation Temperature Condition Index (VTCI) based method. Four 

considered VIs include NDVI, EVI, the kernel NDVI (kNDVI) and Plant Phenology Index 



 

45 
 

(PPI). The downscaled SM estimates were evaluated in two study areas, study area 1 

surrounding the REMEDHUS network in northern Spain and study area 2 surrounding the 

SMOSMANIA network in southern France. The results showed that in terms of evaluation 

metrics, such as ubRMSD and R, the different VIs seem to influence the overall accuracy of 

the product. All VIs produced very similar results with mean R not deviating by more than 0.07 

and 0.01 for study areas 1 and 2 respectively and mean ubRMSD not deviating by more than 

0.01 and 0.001 for study areas 1 and 2 respectively. Comparing the temporal and spatial 

patterns visually of the different downscaled SM products did not show any distinguishable 

difference, as the downscaled SM products seemed to follow each other closely in a time series 

and produce similar results spatially. However, more significant results could be seen on a per 

station basis where PPI outperformed in most stations in terms of R, whereas kNDVI performed 

the best in most stations in terms of ubRMSD. EVI showed lacking performance compared to 

the kNDVI and PPI but did show improved results over NDVI which only produced best R at 

1 station.   

 

Regarding the performance of the downscaled SM products in different regions, the 

consistency seemed to be dependent on the VI. Whereas PPI and NDVI produced consistent 

results for both study areas, the performance of the EVI and kNDVI derived SM seemed to be 

more dependent on the study area. For study area 1, kNDVI produced great results, having the 

highest mean R of 0.64 ± 0.15 and the lowest ubRMSD of 0.065 ± 0.035 m3/m3 and 

outperforming the other downscaled SM products in 8/17 and 12/18 stations for R and 

ubRMSD respectively. However, in study are 2, kNDVI produces comparatively worse results, 

only outperforming the other downscaled SM products in 4/18 stations for both R and 

ubRMSD. EVI showed good performance in study area 2, outperforming the other SMd 

products in 6/18 and 5/18 stations for R and ubRMSD respectively. The performance of EVI 

is however lacking in study area 1 where it has the second lowest mean R of 0.61 ± 0.14 and 

second highest ubRMSD of 0.069 ± 0.033 m3/m3 and only outperforms the other downscaled 

SM products in 1/16 and 2/16 stations for ubRMSD and R respectively. 

 

In comparison to the original coarse SM product, the downscaled SM products generally did 

not yield improved results. The original ESA CCI SM product had much better performance in 

terms of higher R and lower ubRMSD, with a mean R of 0.70 ± 0.16 for study area 1 and 0.68 

± 0.17 for study area and a ubRMSD of 0.063 ± 0.036 m3/m3 and 0.055 ± 0.017 m3/m3 for 

study area 1 and 2, respectively. For study area 1, the downscaled SM products only managed 
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to outperform the coarser SM product in terms of R in 3 out of 16 stations. For study area 2, 

they only managed to outperform the coarse SM product in terms of R in 8 out of 18 stations. 

Results showed that the accuracy of the coarse SM product is not conserved in the downscaling 

process and generally outperforms the downscaled SM products in near all cases for both 

ubRMSD and R in both study areas. 

 
 
This study encountered several limitations. First, the temporal resolution of the data used, such 

as the 8-day averaged LST and 16-day VIs may not capture the full dynamics of the variables, 

which affects the accuracy of the spatial downscaling method. Secondly, various alterations 

and alternative approaches for downscaling SM with VTCI-based methods were not evaluated 

in this study due to time constraints and overall scope of the study. Thirdly, the limited number 

of stations covering a wide range of land covers also restricted the practicality of conducting a 

comprehensive land cover-based evaluation. Although these factors acted as limitations in this 

study, they do serve as motivation for further research. Further studies could compare and 

evaluate the effects of using mean and daily LST data, to further understand its influence on 

the spatial downscaling results. It is also important to test the VIs with the different alterations 

of the VTCI based method, for example using a fixed wet edge or quantiles to determine the 

upper and lower limits of the edges. Furthermore, studies and evaluations should be conducted 

for the different VIs in different climates and regions, especially PPI which has produced 

consistent good results in low latitude regions with sparse vegetation where it has no significant 

advantage over the other VIs, as opposed to if it were evaluated in northern regions with dense 

vegetation and snow cover. 
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Appendix 
 

Table A1. The used ISMN stations for the REMEDHUS and SMOSMANIA networks. The 

temporal range used and their landcover types.  

REMEDHUS SMOSMANIA 

ID Temporal range Landcover ID Temporal range Landcover 

F6 2010-2012 Agriculture BRN 2018-2021 
Broad-leaved 

forest 

F11 2010-2012 
Non-irrigated 

arable land 
BRZ 2018-2021 Pastures 

H7 2010-2012 Vineyards CBR 2018-2021 

Complex 

cultivation 

patterns 

H9 2010-2012 
Permanently 

irrigated land 
CDM 2018-2021 

Vineyard 

 

H13 2010-2012 
Non-irrigated 

arable land 
LGC 2018-2021 

Coniferous 

forest 

I6 2010-2012 
Non-irrigated 

arable land 
LHS 2018-2021 

Non-irrigated 

arable land 

J3 2010-2012 
Non-irrigated 

arable land 
LZG 2018-2021 

Airport 

 

K4 2010-2012 
Permanently 

irrigated land 
MJN 2018-2021 

Broad-leaved 

forest 

K10 2010-2012 
Non-irrigated 

arable land 
MNT 2018-2021 Pasture 

K13 2010-2012 
Non-irrigated 

arable land 
MTN 2018-2021 Pasture 

L3 2010-2012 
Non-irrigated 

arable land 
MZN 2018-2021 

Coniferous 

forest 

L7 2010-2012 
Non-irrigated 

arable land 
NBN 2018-2021 

Sclerophyllous 

vegetation 

M5 2010-2012 
Non-irrigated 

arable land 
PRD 2018-2021 Vineyard 

M9 2010-2012 
Permanently 

irrigated land 
PRG 2018-2021 

Non-irrigated 

arable land 

M13 2010-2012 
Non-irrigated 

arable land 
PZN 2018-2021 Vineyard 

N9 2010-2012 
Non-irrigated 

arable land 
SFL 2018-2021 

Complex 

cultivation 

patterns 

O7 2010-2012 
Non-irrigated 

arable land 
SVN 2018-2021 

Non-irrigated 

arable land 

Data obtained from https://ismn.earth/en/dataviewer/ VLV 2018-2021 Vineyard 
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