

Control Aid Implementation

-Modelling and simulation of triple extruder-

by

Karl Langsér

Department of chemical engineering

Lund University

with

NKT HV Cables AB

for

Master Thesis

June 2023

Bernt Nilsson - Examiner

Niklas Andersson - Head Supervisor

Erik Lundström - Supervisor

Tommy Johansson – Supervisor

[The following section has been left empty on purpose]

Popular science summary

Modelling of cable extruders through Machine Learning

Introduction

In the production of their High Voltage Direct Current Cables (HVDC) and High Voltage Alternating

Current Cables (HVAC), NKT uses triple extruders to create layers of insulation and semi-conduction in

their cables to improve its electrical properties. To optimize the process, a machine learning model was

created to simulate the cable-product based on the extrusion-head inputs.

Project

In simple terms, an extruder is a machine that presses out molten plastic in a mold-like fashion to acquire

the desired dimensions and shape of the plastic product. These layers are extruded around the conductor

(a copper or aluminium rod or wire) through three separate extruder screws that are all connected to a

triple extrusion head. In the triple head the melts flow together around the conductor. Imagine putting a

small rod in the middle of a toothpaste tube and pressing out the toothpaste around the rod, then we put

that in the same manner in the middle of a larger toothpaste tube and press the toothpaste out again

around our toothpaste coated rod. The toothpaste would in this example be the plastic and the final

product will be a rod (conductor) with layers of toothpaste (plastic insulation) stacked on top of one

another.

This extrusion process is controlled by manipulation of the extruder screw motor speeds; the screw is

what drives the melt forward; the puller rate, which is the speed with which the extruded cable is pulled

away from the triple head and the position of the distributor walls in the triple head. The distributor walls

can be thought of as walls that keep the plastic melt from flowing together before the actual extrusion die.

To better control the process and optimize the cable dimensions so that the insulation can be thinner

without running the risk of being too thin (which would destroy the cable), this project aimed to create a

model that can predict how the extruder is affected by the inputs described above, with respect to layer

thickness and centering of the conductor in each layer.

The model produced is a neural network of Extreme learning type. The Extreme part basically just means

that the learning is a matrix operation and not weight tuning, which lets it learn extremely fast compared

to models where each weight must be tuned.

The extreme learning machine was built in python, together with software that helps in the training of the

model, as well as two different Graphical User Interface that can be used to simulate the model. One of

the GUIs Simulate the thickness of each layer at four different points perpendicular to each other in the

cable, as a line graph. The other GUI simulates the cross-section of the cable.

The model was tested and validated in the working range of the process with certain parts of the inputs

unknown and was shown to capture the correct trend in the working range. If the unknown inputs

matched those of the test and training sets, it would accurately simulate the real process. The model is a

proof of concept of how simple it is to model complex dynamics with little computing power utilizing

machine learning and serves as a foundation for building optimal controllers or other control aid for the

extrusion process.

[The following section has been left empty on purpose]

Acknowledgements

I want to start by thanking NKT and Rickard Nilsson for letting me do my master thesis together with

them. A special mention goes out to Tommy Johansson and Erik Lundström for acting as aids during the

project. Another mention goes to Erik Lundström for helping me understand the process and which

variables should be the focus of the project, which greatly reduced the time it would have taken to

understand the results and how to get the model working.

For helping in scheduling a visit to see a start-up of the process line, and a walkthrough of the full process

line, I want to thank Jennie Aborres.

I also want to thank Bernt Nilsson and Niklas Andersson for acting as Examinator and Head supervisor

of this project, making it possible for me to conduct my master thesis.

Abstract

In the production of their High Voltage Direct Current Cables (HVDC) and High Voltage Alternating

Current Cables (HVAC), NKT uses triple extruders to create layers of insulation and semi-conduction. A

model to predict the effect of extruder inputs on the cable’s insulation and semi-conducting layers has been

created and trained to predict the extruder in discrete time. The project developed a deep learning extreme

learning machine algorithm and proved that it has good enough accuracy and generalization to predict the

cable states as a function of extruder motor and line speeds as well as distributor screw positions.

The project also explored how to evaluate and test a model, despite the fact it has insufficient data, by

dividing it into two parts and letting them be trained independently, with a subset of unknown inputs. The

results were satisfactory. A way of combining the models was also proposed but was not further explored.

While the model shows that it can accurately describe the extruder in the ranges of where it is trained, the

data acquisition was poor and hindered the collection of good enough training sets to let the model predict

over the whole input range. The model does, however, act as a proof of concept that can be further

developed into a finished state. It also showed that it can still predict the correct trends of the extruder even

if the model is acting outside of the range where it is trained.

Contents
1. Background and Introduction ... 1

2. Problem formulation ... 1

2.1. Goals and outcome .. 1

2.2. Problems .. 1

2.3. Initial approach .. 1

2.4. Additional problems ... 1

3. Literature study ... 2

3.1. Plastic extrusion ... 2

3.2. Parameters ... 2

3.3. Utilization in the cable industry ... 2

3.4. Extrusion modelling ... 4

3.5. Extrusion control .. 4

3.5.1 Extreme learning machine ... 4

3.5.2 Improving the ELM ... 5

3.5.3 Heuristic dynamic programing ... 5

3.5.4 How good is ELM for cable extrusion control? .. 5

3.6. The Deep ELM .. 5

3.6.1 The Autoencoder ELM.. 5

3.6.2 Solving the output layer ... 5

3.7. Historian data retrieval .. 6

3.8. Measuring equipment .. 6

4. Project and method .. 8

4.1. What is useful? ... 8

4.2. Process ... 8

4.3. Insulation ... 8

4.4. XLPE .. 8

4.5. Making the software .. 9

4.6. UI for choosing training sets .. 9

4.7. Polynomial regression model ... 10

4.8. ELM model ... 11

4.9. A model of two parts ... 11

4.10. Finding the first training sets ... 12

4.10.1 Data acquisition first part .. 12

4.10.2 Data for second part .. 13

4.10.3 Trend .. 13

4.11. The optimal model ... 14

4.12. Simulating the model ... 14

4.13. Cross-section graphics ... 15

4.14. Improved model-robustness .. 16

4.15. Deep learning dual ELM ... 16

5. Model results and implementation .. 19

5.0.1 The multicollinear pattern problem... 21

5.1. Ridge regressor model ... 22

5.2. Can the independent model be used? ... 24

5.3. Single model clarification ... 24

5.4. Modelling centering screws first iteration ... 24

5.5. Modelling centering screws second iteration .. 24

5.6. Observations .. 26

5.7. How to get data for unknown inputs ... 26

5.8. Validation ... 26

5.9. Interesting find ... 28

6. Conclusion and future prospects .. 28

6.1. Reflection ... 28

6.2. Future work .. 29

6.3. Things the model can achieve .. 29

6.4. Take aways ... 29

References .. 30

1

1. Background and Introduction
In the production of their High Voltage Direct

Current Cables (HVDC) and High Voltage

Alternating Current Cables (HVAC), NKT uses

triple extruders to create layers of insulation and

semi-conduction. The layers are extruded around

the conductor with a tripe extruder head which is

controlled by a process operator.

To achieve optimal performance in the cables,

the layers need to be centered around the

conductor and have the right thickness. This is

achieved by manual operation of the extruder

input settings together with analogue inputs.

Currently there is no clear model of how the

extruder inputs affect the centering and the

thickness of the three layers; the operators use

heuristics and experience to achieve a good result.

This means that the education of new process

operators is expensive and time consuming and

the process suboptimal.

This project aims to develop a model that is

accurate enough to simulate the real-world

process and make the extruder operation easier

and more precise. The simulation and data will be

presented to the operator in a graphical user

interface (GUI).

2. Problem formulation
The first part of the project involves stating the

problems, and the operations needed to be done

to have a final product capable of fulfilling the

goals of the project. This means clarifying the

goals, and the problems that need to be solved to

achieve them.

2.1. Goals and outcome
First, a model that can describe how the centering

of the layers vary with the extruder inputs is

needed. Second a model to describe how the layer

thickness varies with the extruder input. These

then need to be combined into a model that can

describe both as a function of extruder inputs.

The model will then be used to simulate the

process and present it in a graphical user interface

(GUI) to help an operator control the process. It

will be implemented in the process to

continuously track the inputs to the extruder or

help the operator upon start up; another use can

be as an aid in educating new process engineers

or operators.

2.2. Problems
The first problem is to formulate the first

iteration of a mathematical model that can be

used in describing the process. How do the

process parameters vary with the independent

variables? Are the inputs the only independent

variables, and if there are more, do they add

degrees of freedom or not?

Software that can fit the model to experimental

data is needed to tune the process parameters of

the model. How will this tool be built? How good

does the model need to be before it can be used

to achieve the desired result?

How will the model and data be presented to the

operator? How will the GUI be built? And what

information is useful to an operator?

2.3. Initial approach
A literature study was conducted to get initial

information on how the process works and what

tools there are to solve the problem. The purpose

was to get an understanding and inspiration on

how to tackle the task at hand. This literature

study was continued all throughout the project.

From the initially gathered information, the

process would be, roughly, a three-step process.

First the data will need to be extracted from the

database where it is located, then a model of

choice needs to be decided on. The model then

needs to be fitted to data to see how well it

performs. This is iterated on until a satisfactory

model is obtained.

The model should then be expanded into all

aspects of the process and tuned so that it has a

good enough prediction capacity. And if there is

time and possibility improved as much as

possible.

2.4. Additional problems
From observing the real process and dialog with

personnel at NKT, the process of obtaining the

data needed for some of the inputs will be the

biggest issue when trying to figure out how the

model should be trained. While there are

experiments from an earlier job, it is not enough

to be used as basis for model training.

2

3. Literature study
The first part of the process is understanding

what variables affect the two parameters,

centering, and thickness, in each layer. Are the

parameters independent or dependent? What are

the material properties of the layers, and how will

they affect the model. What previous work has

been done in modelling similar processes and

what parameters have been looked at?

This part aims to explore what plastic extrusion

is, and how it is utilized in industry, as well as

what is known about the process of extrusion in

terms of modelling and simulation.

3.1. Plastic extrusion
The extrusion process of polymeric materials is

an integrated process with many components and

different processes in a production line. The

extent of the line may vary a lot depending on the

application of the product and production

methods. It is multi-variable dependent, and

small off-sets in the operating parameters can

yield useless products. For the plastic to, set

accordingly; behave in a controllable manner; and

produce a predictable result, the temperature

profile in the process must be closely monitored

and controlled[1].

The general process can be compartmentalized

into a few different steps. First the plastic material

is received, inspected, and stored. Here an

overview of the inventory is done, to assure that

there are no defects other than the expected ones.

After this the material might go through a

blending process where additives are added, it

may also be done previously by the supplier. This

is done so that the plastic has the right material

properties for its purpose. Some resins must be

dried before entering the extruder to eliminate

polymer degradation due to moisture or to

remove condensate of the surface caused by cold

storage spaces[1, 2].

Material is then fed to the extruder; melted mixed

and ready to be molded. It is then transported to

the die where it is shaped into the required shape.

After it has been extruded through the die, it is

cooled down as it is pulled away from the die at

constant speed, to attain the right shape and cross

section. Secondary operations are normally

applied after the puller[1]. The product is then

inspected for defects and quality assured before it

is shipped to the customer[1].

In wire coating, an extrusion method known as

coextrusion is used to achieve the required

characteristics and electrical properties in the

wire. Coextrusion is achieved by having several

extrusion-dies extrude onto each other in a

simultaneous fashion.

The adhesion between the layers is driven by

process factors, assuming an appropriate tie layer

has been applied. The four major factors are tie

layer thickness, functionality in the tie layer, melt

temperature and contact time[3].

3.2. Parameters
Modelling of the process parameters centering,

and layer thickness, seems to have varying

complexity and differ a lot in terms of modelling.

While the thickness seems to be somewhat easy

to model, the initial centering of the cable is

not[2]. An image describing these measurements

is displayed below in figure 3.1.

The centering of the layers around the conductor

is a process that is very non-linear and hard to

predict with linear approximations. If this was the

only problem a model could be made with

presumably little difficulty using various

methods, e.g. the extreme learning machine, as

has been done previously[4], but to a different set

of inputs. The tuning screws for the distributor

walls are, however, an analogue input and are not

monitored, making it difficult to estimate the

impact of each input on the extruder. And fitting

a model without the right training data can prove

to be difficult.

3.3. Utilization in the cable industry
In the cable industry, extrusion can be utilized

when creating the insulation and semi conductive

layers in the cables.

The first step in the process involves melting the

plastic that is to be extruded; it comes as granules

that need to be tightly sealed from the outside to

prevent contamination of the insulation that

might cause performance loss[2]. The molten

plastic is then transported to the extrusion die

where it is pressed out in the shape that it is

supposed to have. All the layers are typically co-

extruded around the conductor and dimensions

are closely monitored[1].

3

‘

Figure 3.1: Image displaying the cross-section of the cable and the thickness as well as a display of what poor centering may
look like. The bottom left of the picture shows a stylized picture of the real cable cross-section, and the bottom right shows
which part is being modelled.

4

3.4. Extrusion modelling
Previous work has been done to try and model

different types of extruder processes. K.S Boparai

et al.[5], have modelled an extrusion process

called fused deposition modeling, a type of 3D

printing procedure. They utilized a response

surface methodology (RSM), which is a statistical

way of exploring the interconnectivity and

relations between independent variables and a

response variable[5]. The procedure can be

viewed mathematically according to eq 3.1.

𝑌 = 𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4… , 𝑥𝑛) ± 𝜀

𝜂 = 𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4… , 𝑥𝑛)
𝑌 = 𝜂 ± 𝜀

3.1

Where 𝑌 is the desired response function and 𝑓

is the function of independent input variables 𝑥,

𝜂 is the response surface, and 𝜀 is the fitting error.

The response surface represents the expected

response from the input set. The functional

relationship can be determined by selecting a

polynomial of higher order[5, 6]. They proposed

a second order polynomial as the approximation

for the response function. It can be written

mathematically as eq 3.2.

𝑌 = 𝑎0 +∑𝑎𝑖𝑥𝑖

𝑛

𝑖=1

+∑𝑎𝑖𝑖𝑥𝑖
2

𝑛

𝑖=1

+∑𝑎𝑖𝑗𝑥𝑖𝑥𝑗

𝑛

𝑖<𝑗

+ 𝜀

3.2

Where 𝑎𝑖 is the linear effect of 𝑥𝑖, 𝑎𝑖𝑖 is the

quadratic effect of 𝑥𝑖 and 𝑎𝑖𝑗 and reveals the

linear-by-linear interaction between 𝑥𝑖 and 𝑥𝑗.

The resulting response model accurately fit the

experimental data and the goodness of fit was

acceptable[5].

3.5. Extrusion control
Other attempts at modeling extruders have been

made in attempts to control the process.

Specifically in the cable extrusion industry

attempts at automating conductor centering, and

layer thickness tuning have been made.

Hui Li et al.[4], has done research on cable

extrusion control, utilizing the Extreme learning

machine (ELM) to program a Heuristic dynamic

programming controller (HDP) for a system like

the one shown in figure 3.2.

Figure 3.2: Image of single screw plastic extruder blue
print. [4]

3.5.1 Extreme learning machine
The ELM concept is essentially a single feed

forward neural network; A standard feedforward

network (SLFN) with L hidden neurons (nodes),

and 𝑁 arbitrary samples (𝑥𝑖and 𝑡𝑖) can be written

as eq 3.3.

𝑥𝑖 = [𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑛]
𝑇 ∈ 𝑅𝑛, 𝑁 ≠ 𝑛

𝑡𝑖 = [𝑡𝑖1, 𝑡𝑖2, … , 𝑡𝑖𝑚]
𝑇 ∈ 𝑅𝑚

∑𝛽𝑗𝑔(𝑤𝑗 ⋅ 𝑥𝑖 + 𝑏𝑗) = 𝑜𝑖 , 𝑖 = 1, … , 𝑁

𝐿

𝑗=1

(𝛽𝑗, 𝑏𝑗) ∈ 𝑅

[4, 7]

3.3

Where 𝑥𝑖 and 𝑡𝑖 are input and target values. 𝑜𝑖 is

the output of the ELM and 𝑤𝑗 is the input

weight-matrix between the hidden layer neurons

and the input layer neurons. 𝑔 is the activation

function for the hidden layer which can be a

number of nonlinear functions, e.g., sigmoid or

multi-quadratic; 𝑏𝑗 is the bias for the hidden

neurons and 𝛽 is the output weight-matrix[7].

The learning process of the ELM is basically to

minimize an error, most commonly a mean

square error between the output of the ELM and

the expected target value. It can be depicted

mathematically as equation 3.4.

𝐸 =∑(𝑜𝑖 − 𝑡𝑖)
2

𝐿

𝑗=1

, 𝑖 = 1,… ,𝑁

3.4

Where 𝐸 is the error that is to be minimized. The

prediction model of the extruder was based on

the ELM.

5

3.5.2 Improving the ELM
The robustness of the ELM can be further

improved by utilizing the theory of Bartlett[8]. It

states that the robustness of the ELM increases

when the norm of the output weights decreases.

This gives rise to a new optimization problem by

utilizing ridge regression in the ELM seen in eq

3.5[9].

𝐸 = 𝑜𝑖 − 𝑡𝑖, 𝑖 = 1,… ,𝑁
𝑚𝑖𝑛

𝐸, 𝛽

1

2
‖𝛽‖2

2 + 𝐶
1

2
‖𝐸‖2

2

3.5

Since the problem is no longer a simple least

square minimization with respect to only the

prediction error the MP pseudo inverse of the

hidden layer matrix can no longer be used to

calculate the output weights. Instead, the solution

can be obtained by equation 3.6[10].

𝛽 = (
𝐼

𝐶
+ 𝐻𝑇𝐻)

−1

𝐻𝑇𝑌, L < N

𝛽 = 𝐻𝑇 (
𝐼

𝐶
+ 𝐻𝐻𝑇)

−1

⋅ 𝑌, L > N

𝐻 = [
ℎ(𝑥1)
⋮

ℎ(𝑥𝑁)
]

ℎ = 𝑔(𝑎𝑗 ⋅ 𝑥𝑖 + 𝑏𝑗)

3.6

Where 𝐶 is the error penalty factor, or

generalization factor, determining how much

weight should be put on model accuracy[10].

3.5.3 Heuristic dynamic programing
The prediction model achieved based on the

ELM could accurately fit the experimental data

from the extruder and gave a good description of

the real process, even better than some back

propagation network that it was evaluated

against[4].

An HDP controller was created based on the

ELM prediction model. The purpose of the

Model network in HDP is to predict the next

state of the system. It is then implemented in an

HDP learning algorithm which sets the weights

of the different learning machines by letting the

states propagate forward through the network

until the weights minimize a cost function[4].

3.5.4 How good is ELM for cable extrusion

control?
Hui Li et al., concluded in their report that the

ELM based HDP controller could accurately fit

the experimental data and program the weights of

the HDP, thus making it possible to control the

extruder in this way.

3.6. The Deep ELM
When on the topic of ELMs and their ability to

train single feed forward networks quickly and

accurately with good generalization, it is worth

exploring the value of Deep Extreme Learning

Machine (DELM). To understand the DELM,

the individual parts of the algorithm must first be

explored.

3.6.1 The Autoencoder ELM
The first key in training a multi-layered ELM is to

have some way of producing unsupervised inputs

for each hidden layer of the ELM. This is done

with an Autoencoder ELM(ELM-AE). It works

by first encoding the inputs into a feature space,

and then reconstructs the original data as best as

possible through least square optimization. This

generates the parameters of the hidden layers, by

repeated process[10]. The whole process can be

described as equation 3.7.

𝑥𝑖 = [𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑛]
𝑇 ∈ 𝑅𝑛, 𝑁 ≠ 𝑛

∑𝛽𝑔(𝑎𝑗 ⋅ 𝑥𝑖 + 𝑏𝑗) = 𝑥𝑖
𝑇 , 𝑖 = 1,… ,𝑁

𝐿

𝑗=1

𝑎𝑇𝑎 = 𝐼, 𝑏𝑇𝑏 = 1

3.7

The autoencoder lets the algorithm learn

unsupervised, meaning it is not constrained to

finding a solution. This means it is trained to

unknown or hidden patterns in the training data

sets. So the key feature that discerns ELM-AE

from the regular ELM is that the input weights

and biases are orthogonal matrixes, and that it

finds patterns and clusters without a set

direction[10]. Since this way of programming the

hidden layers does not require backpropagation

or tuning, it also retains the fast-rendering speeds

of the ELM while still adding the ability to

increase resolution of noisy and outlier data from

the autoencoder[10].

3.6.2 Solving the output layer
The next step in the DELM is to solve the output

layer by minimizing the least square mean error.

As with a normal ELM, it can be solved by

6

finding the solution to the problem in equation

3.8.

𝛽 = (𝐻𝑇𝐻)−1𝐻𝑇𝑌, L < N

𝛽 = 𝐻𝑇(𝐻𝐻𝑇)−1 ⋅ 𝑌, L > N

𝐻 = [
ℎ(𝑥1)
⋮

ℎ(𝑥𝑁)
]

3.8

Which can be done, as stated previously, by

computing the Moore Penrose inverse of the last

hidden layer matrix, or as in eq 3.6. if a

regularization parameter is used. Another

approach would be to treat the last hidden layer

as an unknown and introduce a kernel instead[9,

10]. This would be done as equation 3.9[10].

ℎ(𝑥𝑖)𝐻 = 𝐾𝐸𝐿𝑀,𝑖 = [
𝐾(𝑥𝑖, 𝑥1)

⋮
𝐾(𝑥𝑖, 𝑥𝑁)

]

Ω𝐸𝐿𝑀 = 𝐻𝐻𝑇= [𝐾𝐸𝐿𝑀,1…𝐾𝐸𝐿𝑀,𝑁]

𝐻𝛽 = 𝐾𝐸𝐿𝑀 (
𝐼

𝐶
+ Ω𝐸𝐿𝑀)

−1

𝑌

3.9

The kernel function 𝐾 can be chosen among

several different ones depending on what the

machine is trying to do. This version of an ELM

with a kernel is known as KELM or Kernel

ELM[9, 10]. Introducing a kernel is generally

done when the machine is unsure if the input it is

given is incorrect or not and is more common in

classification problems.

The last hidden layer would then be the inputs to

the ELM, or KELM in the specific case of the

DELM[10]. This proposed way of creating a deep

ELM is depicted below in figure 3.3.

Each hidden layer acts as the input for the next

and is trained sequentially by the ELM-AE. All

layers except the last are therefore trained

unsupervised while the last layer is

supervised[10].

3.7. Historian data retrieval
Wonderware Historian receives SQL queries

from clients through its Data Retrieval

subsystems, which can locate the requested data

and perform the needed processing of the data.

In the case of configuration and event data,

normal SQL queries can be used since the data is

stored inside SQL Server database tables.

Historical data must be retrieved from history

blocks and then sent to clients as if it is stored in

SQL Server tables.

The retrieval subsystem features include support

for queries with all tag types, meaning all tag types

can be included in the same query when retrieving

data from the history table. Any combination of

tags can be submitted in a single query. The

strings can be of both fixed and variable length;

All internal time computation and manipulation

is done using the Win32 FILETIME type. The

Resolution of FILETIME is 100 nanoseconds. All

times are handled internally as UTC but the

conversion to and from local time are handled

going in and out of retrieval, so the external

interface is local time[11].

3.8. Measuring equipment
To measure the layer thickness at four points

perpendicular to each other in the extruder layers,

NKT uses Sikora X-RAY 8000 with an addition

for NXT. This type is specifically made to use in

measuring medium, high and extra high voltage

cables with e.g., XLPE as insulation. The

measuring accuracy of the instrument is ±15 𝜇𝑚,

but is done on the hot measurements, and the

data that is logged is the converted cold

measurements of the cable[2, 12].

[The following section has been left empty on purpose]

.

7

Fig 3.3: Overarching structure of Deep Extreme Learning Machine algorithm and training of Auto Encoders. [10]

8

4. Project and method
At the start of the project a visit to NKT was

conducted where the process was observed up

close together with dialog with NKT engineers.

This gave a lot of insight into what parts of the

project would prove useful, and possible to

achieve. The first iteration action plan was

therefore altered somewhat in accordance with

the new information.

4.1. What is useful?
The initial project formulation described the

goals as being a pretty much finished model that

can simulate the centering and the thickness. But

after the literature study, this was pushed off as a

“best case scenario” and a set of new goals were

added.

A software that can teach and simplify the

operating of the extruder head would provide

useful; this would not require the modelling of

the full process but only the effect of the tuning

screws on the layer thickness. While such a tool

would serve little purpose to an experienced

operator, it would be a handy tool for new

operators to quickly learn how the tuning should

be done.

Making a model and proving that it can predict

the data and generalize over a greater span with

high accuracy, even if the training data cannot be

acquired in full would still provide useful

intelligence but also a place from where it is

possible to continue work on gathering data, that

then can be used in training the model. Hence a

training tool that can be used by other people

with minimal learning, should be designed.

The initially proposed two models, based on

physical components and properties as a

continuous model equation were abandoned

since it was clear that a black-box approach was

needed due to the lack of knowledge of the

intricacies of the process.

4.2. Process
The extruders that are going to be modelled are

triple head extruders, that co-extrude the 2 semi-

conducting layers and the insulation layer at the

same time onto the conductor.

The initial part of the process involves feeding

plastic granules to a hopper that melts the plastic

material. They are then tempered and extruded

onto the conductor with the three extrusion

heads.

The position of the cable in the extrusion head is

tuned using in total twelve screws, turned to set

the position of the die distributors. The centering

is usually done at startup of the process. These

screws are not monitored through any input and

are analogue in their function[2].

The crosslinking of the polymer is what gives the

cables its mechanical properties. It takes place in

a vulcanization zone right after the extrusion

head. Once the polymer has been crosslinked that

cable is set, and there is no way to change the

composition of the cable.

4.3. Insulation
The reason for insulation in the cables is to lower

the magnetic field interferences. This is done so

that a higher transmission voltage can be put over

the cable, which will make for less losses in the

cable over long distances. Insulation is generally

accompanied by Semi-conducting layers to

smoothen the resistance gap between the

insulation and the conductive layers[2, 13].

4.4. XLPE
The insulation material that is used in the cables

is cross linked polyethylene (XLPE). The

vulcanization process of the polymer starts with

a catalyzing agent, a peroxide (commonly DCP),

and a Low-Density Polyethylene (LDPE). The

DCP forms a free radical when exposed to heat

and steals one of the hydrogen atoms from the

LDPE. This lets the LDPE create a bond with

other hydrogen sparce LDPE and create a

crosslinking structure[14]. The process can be

seen below in figure 4.1.

Figure 4.1: XLPE synthesis with DCP and LDPE. [14]

9

It is important to carefully monitor the extruder

screw and die temperatures to avoid degradation

of the XLPE, but still keep it in a molten state

where it can be extruded at the correct pressure

profile in the die barrel and the crosshead[15].

Since the process is catalyzed with a peroxide, the

turnover of peroxide can be measured to obtain

the degree of cross linking in the cable. If the

degree of cross linking is too low, the cable is

scrapped[2].

Because of the mechanical effects, shape memory

etcetera, of the crosslinked polymer, it is

important that the reaction only takes place

within the vulcanization zone of the line. If the

cross linking happens to early, or in the extruder

screw itself, the cable will be ruined. This calls for

careful manipulation and control of the

temperature gradient through the extrusion line.

The number of vulcanization zones also vary

between different extruders [2].

The cross-linking process is well understood and

the effects of the cross-linking on the layer

dimensions and position can be very accurately

calculated. Thus, the measurements taken from

the melt, right after the extrusion head, can be

used to calculate the final dimensions of the semi-

conductive and insulating layer.

4.5. Making the software
The first part of making the software is to read

the data from NKT’s database to the machine

kernel. The data is then going to be used to fit a

mathematical model that will be used to simulate

the process.

NKT uses an SQL Historian database where all

the signal data is stored. To get the data from the

database a python package called pandas was

used and, after the data is downloaded and sorted,

it is returned as a pandas dataframe. The data

was queried from the database using pyodbc,

which is a built-in function in python.

Since the historian database only registers

changes in the process when the change is

sufficiently large, data can be sparce with a lot of

time between the data points. Thus, the software

would need to handle both the raw data and

interpolated data.

The actual interpolation of the data is done locally

on the database by a function written by NKT.

The interpolations are linear but should describe

the real data sufficiently.

This is all created in a function called, getdata

or getdatainterp for the interpolated data.

These functions build a string, using database tags

and time stamps. This is done according to how

the local function is designed to pass the inputs.

The functions are part of the Functions

package created for the project.

After the literature study, as previously

mentioned, it was apparent that a model

formulation based on physical components and

material properties would be close to impossible

to achieve. A different approach was therefore

adopted with a response surface methodology,

where different types of polynomials are fitted to

the data instead, to see if the dynamic could be

described by a polynomial model.

4.6. UI for choosing training sets
As described in section 3, the Wonder Works

Historian client does the time conversion and

handling of historical data blocks, so a normal

query with tag names and time stamps in local

time can be used to query the data from the

database.

For this an interface called Training Wheels

was created. It lets the user choose a time stamp

according to a template. It also lets the user

choose which output tag the model is going to

use as a target variable for the training. This

means that the model can be trained to each

variable at a time. Depending on what type of

model is to be fitted, the interface lets the user

decide on what parameters should be used in the

training. It is depicted below in figure 4.2.

[The following section has been left empty on purpose]

10

Figure 4.2: Image of Training Wheels interface created for the project.

The plotting part of the interface is there to detect

anomalies in data and give a quick glimpse of the

prediction and how good the fit is, but it needs to

be compared with other metrics to determine

model accuracy. During the training, the

predictions of the model are plotted together

with the actual logged output of the process. The

feature is only meant to give the user a first grasp,

and to understand the fit, the RMSE of the model

needs to be looked at as well, together with an

analysis of the data sets.

The UI also gives the user an option to fit all the

parameters of the model at once. While running,

the UI updates the user on where in the training

process it is by telling the user which output it is

training to and if it is in the process of reading

data from the database or calculating the least

square fit.

4.7. Polynomial regression model
The polynomial regression model was introduced

to see if such a model could accurately describe

the, straight forward, but complex dynamics of

the extruder. The model was implemented using

linear regression as a base.

First the fitting data was transformed into

polynomial feature form according to equation

4.1.

𝑥 = (𝑥1𝑖, … , 𝑥𝑛𝑖), 𝑖 = 1,… ,𝑀

𝐶 =

[

11 ⋯ ∏𝑥1𝑖

𝑑𝑖

𝑀

𝑖=1

⋮ ⋱ ⋮

1𝑛 ⋯ ∏𝑥𝑛𝑖
𝑑𝑖

𝑀

𝑖=1]

, 𝑠. 𝑡.∑𝑑𝑖 = 𝑑

4.1

Where 𝑥𝑖 is the input, and 𝑖 represents the nr of

the input for 𝑀 inputs. 𝐶 is a polynomial matrix

that contains the evaluation of each term in the

polynomial based on the inputs, for every set of

inputs 𝑖. 𝑑 is the degree of the polynomial.

This transformed data is then split into training

sets and test sets. It is done to try to avoid an

overfitting problem. The training set is used to fit

coefficients of a polynomial of degree 𝑑

according to equation 4.2. This was done using

the SKlearn function PolynomialFeatures

together with fit_transform.

11

𝑃 = (𝑐1, … , 𝑐𝑗)

𝑃𝐶 =

[

𝑐111 ⋯ 𝑐𝑗∏𝑥1𝑖

𝑑𝑖

𝑀

𝑖=1

⋮ ⋱ ⋮

𝑐11𝑛 ⋯ 𝑐𝑗∏𝑥𝑛𝑖
𝑑𝑖

𝑀

𝑖=1]

, 𝑠. 𝑡.∑𝑑𝑖 = 𝑑

4.2

Where 𝑗 is the nr of polynomial terms and 𝑃 is a

vector with the coefficients of the polynomial. The

model used to fit the polynomial is a linear

regression model function called

LinearRegression.

4.8. ELM model
The ELM was built manually in python and

training sets were constructed with the help of

SciKit-Learn. It was implemented as

described in equation 3.3, with iteration over the

number of hidden nodes that would best fit the

data while avoiding over-fit. The learning process

was a Mean Square Error minimization problem,

where the data sets were split up into training sets

and test sets, with a ratio of 70:30, and tried over

different random initializations of the network;

The optimal number of hidden nodes varied for

each output signal.

The resulting ELM model consists of a set of

input weights, output weights and biases for each

output that is being measured in the extruder

head. An illustration of the model can be seen in

Fig 4.3.

Figure 4.3: ELM model structure.

The model was trained to a few different data sets

with a single time stamp to see if the training

algorithm worked. The resulting model is

described in equation 4.3.

𝑥𝑐𝑒 = [𝑥𝑐𝑒1, … , 𝑥𝑐𝑒12]
𝑇

𝑥 = [𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥𝑐𝑒]
𝑇 ∈ 𝑅𝑛

ℎ = 𝑔(𝑤𝑗 ⋅ 𝑥 + 𝑏𝑗)

∑𝛽𝑗𝐻 = 𝑜

𝐿

𝑗=1

4.3

With 𝑥𝑐𝑒 representing all the inputs from the

twelve centering screws and 𝑥 the complete set of

inputs.

The model output weight is computed

analytically using the Moore-Penrose inverse,

seen in equation 4.4. The implementation of this

in python is done using the scipy function

Pinv. Depending on how the network is

initialized, it can generate different output

matrixes 𝛽, which does seem to influence the

generalization capabilities of the model.

𝐻† = 𝑝𝑠𝑒𝑢𝑑𝑜 𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑜𝑓 𝐻

𝐻 = 𝑔(𝑤𝑗 ⋅ 𝑥𝑖 + 𝑏𝑗)

𝛽 = 𝐻†𝑌

4.4

Where 𝑌 is the training set outputs values of the

process, for each input set 𝑖. 𝐻 is a vector

containing the value of all transformations for all

inputs and hidden nodes.

The model is then written to text files that store

the output weights, input weights and the biases.

This is done using the function savetxt in

python. Since the model is written as strings, it

needs to be reverted to a pandas dataframe

when calling the model. To achieve this, the

strings are split at select points and sorted into a

list, the list is then converted into a dataframe.

Each string is then converted to a float using

float.

The reason the ELM was favored in this project

over a classical back-propagation algorithm with

gradient tuning is due to the lack of time and need

for fast training.

4.9. A model of two parts
While working on the model, it became apparent

that it would be difficult to obtain any data at all

from the centering screws. So, to be able to

continue the project a new direction was taken.

To be able to train the model, while lacking

critical data from some of the inputs it was

divided into two parts.

The first part of the model is only trained to data

sets where there is no centering done. It is

basically a model that only describes the output

as a function of the three screw motor speeds and

the line speed, in total four inputs.

12

The second part of the model would be

describing the output as function of the centering

screws, or the angles between the conductor and

the distributors in the extruder head.

These two parts could then be combined into a

single model, describing the full extruder head.

This would be done by letting the output of the

first part be part of the input of the second part.

The model can be seen in figure 4.4.

Figure 4.4: Illustration of the full model, combined from
two separatley trained models.

The postulated upside with this approach is that,

even if one part of the model works poorly, the

other one would still work independently of the

other, since they would be trained independently.

And both parts could be simulated and evaluated

separately, since they are each technically a full

model, some of the inputs are just unknowns. It

would however require the extruder to be run at

the specific conditions that fit each part of the

model to simulate it as one unit.

So, to conclude, the centering part (second part)

of the model will only work in the linear regions

of the motor and line speeds that the first part of

the model works on, and vice versa. The window

of where this working region for the second part

of the model is, is unknown in the current

training algorithm and the two parts can’t be

combined unless it is.

4.10. Finding the first training sets
The difficult part of this project was to find the

appropriate data sets to use as training sets for the

model. The following idea was formulated to find

good enough data sets for the first part of the

model, and the shortcomings they will have, to

still be able to evaluate if the model works well

enough.

4.10.1 Data acquisition first part
Depending on what type of cable is produced in

each extruder, different tools are used for the

extruder heads. These tools might influence the

process, but little is known about the specific

effects. Because of this, the test sets should

include at least one data set that has a

heterogeneous tool set, or it will most likely be

slightly over-fitted to a specific toolset. Another

way of getting around the problem is training the

model to only homogeneous sets and create

several models for different setups. Alas, these

toolsets are not a part of the model and therefore,

all the data sets need to belong to the same type

of cable; the specifics of the cable and the

properties might vary with the cable type. This

should be done to avoid model errors due to an

input (toolset) that is not captured by the model.

The reason that the toolsets are not included as

inputs is because of time constraints and access

constraints. It is, however, something that could

be added if the data is accessible. Worth noting is

that the model might fit the data quite well from

different tool sets, even though it doesn’t

recognize it as a parameter, if the difference in

output dependance on each tool set is small.

Since the data that is logged on to the database

doesn’t include the manual centering screws, each

set must only contain a period where there was

no centering done at all. This should not be too

hard to capture since most operators only start

centering after the line is running at operating

conditions. This can be double checked by

plotting the dataset to see if there is collinearity

with the motor speeds.

Thus, the time stamps were initially chosen to a

line start of the process. A line start is where they

fire up the extruders and increase the speed of the

motor and line to the operating point.

However since the process doesn’t completely

stabilize until a couple of hours after the start[2],

it also introduces a new constraint on the data

sets used in training. Initially it was postulated

that this dynamic would be captured by the model

as it was trained to line starts only, however since

13

it is dependent on both parts of the model, the

training sets for both parts would need to be from

the process when it is stable and when it is not,

since the model won’t know the difference in the

unknown input, it just knows there is a difference.

But the data still needs to be taken from a run

where no centering has been done, which means

a data set where no centering has been done for

the full duration of the line would need to be

found. This is neigh impossible, since it can’t be

seen by plotting it, since the collinear

relationships method fails as noise together with

the slow dynamic of the extruder makes it hard to

see if there is any correlation.

The last difficulty is to capture the full effect of

different base settings. A base setting will be

defined here as the state that the extruder head is

in as the process is started. This entails the

centering screw positions and distributor toolset

used. To make this happen, each training set

should contain a different base setting. This is

very hard to achieve since the data is not logged

anywhere or noted by the operators. For

example, in one case they might keep the settings

they had on the previous run because it already

had good centering, and in some cases the head

has been taken apart between line starts and has

a different setting[2]. This means that the model

might have a hidden bias towards a certain setting

which will later turn up in validation.

One con in only getting the data from successful

runs is that each cable has a “recipe” which is

used to get the right cable dimensions. This

means that the model only works in specific linear

combinations of the motor and lines speeds if it

doesn’t generalize well enough. It is a problem if

the model should be used to simulate changes

outside of these linear ranges.

So, if data sets that follow all these criteria can be

found, it should allow the first part of the model

to work independently of the second and

simulate the model in a specific working range

which would allow it to also be validated.

4.10.2 Data for second part
The only data available for the second part that is

extensive enough(barely) to use as training for the

second part of the model is an old test run made

in an old job, so the model will have to do with

that.

4.10.3 Trend
The program used to find the time stamps for

each data set that is going to be used in training

is called Trend and the interface is shown in

figure 4.5.

Figure 4.5: Trend interface used to find data sets.

14

The data is plotted as a line graph with a

normalized value on the y-axis. Each tag is

displayed in its own unit.

4.11. The optimal model
The optimal approach, when training the neural

network would be to train the whole model

simultaneously to all the input variables. This

would create a much simpler learning algorithm

and it would be much simpler to implement. It

would also be easy to implement a discrete time

derivative in the training sets as well, to better

capture the dynamics of the system as it is

simulated.

4.12. Simulating the model
When the model is trained and ready, a simulation

GUI can read the model from the text files and

save it. The model is then passed to a response

function together with inputs from the simulation

GUI, where the motor speeds, line speed, and the

centering screws can be adjusted. The response

function solves the model and returns the model

output to the simulation GUI and plots it.

To view a sort of instant response of the system,

this loop is then animated to generate time

invariant responses to the inputs, and plotted vs

a timeline. This means that the timeline does not

show the actual response time of the system only

the input time, since the real system is slow, and

has delayed reactions to the inputs being given. It

shows the slow input response instantly, which

can be crucial if the model is to be used as an

operating aid in the future and fast inputs are

needed to not go below nominal layer thickness.

The model can also be simulated in discrete time

by returning the output of the model as an input.

The model then needs to be trained to the

discrete time derivative, by shifting the training

vector by one step, making each input vs output

response a discrete time derivative of the time

between each measurement. This shift is

described in equation 4.5.

𝑥𝑖 = [

𝑥1,1, 𝑥1,2, … , 𝑥1,𝑛
⋮

𝑥𝑁−1,1, 𝑥𝑁−1,2, … , 𝑥𝑁−1,𝑛
] ∈ 𝑅𝑛

𝑡𝑖 = [

𝑥2,1, 𝑥2,2, … , 𝑥2,𝑛
⋮

𝑥𝑁,1, 𝑥𝑁,2, … , 𝑥𝑁,𝑛
] ∈ 𝑅𝑚

𝑇 = 30𝑠, 𝑁 ≠ 𝑛

4.5

Where 𝑇 is the real time between each data point

and represents the discrete time step. It must be

noted however that to get such a discrete time

response the training data needs to be

interpolated to generate equal time steps.

Since the model is not trained to a time variable,

it would only be possible to show the actual time

response of the system if a time variable was

added to the model, to keep track of the

measuring delay. This is not possible since it

would require a much better understanding of the

process and how it varies in real time, and

equations of the dynamics formulated.

The full GUI exists in three parts. The first part

is the training environment, where the model can

be retrained to different data sets. Then there is

the simulation of the Xray signals as a line graph,

with the nominal values of the layers. Then the

last part is a centering UI which shows the cross

section of the cable and how it changes with the

extruder inputs.

The purpose of the line graph simulation is to

show a clearer image of how far off from the

nominal value the extruder output is, to give a

more intuitive picture of how good the layer

thickness is in the cable. An image of the line

graph simulation is shown below in figure 4.6.

The centering GUI calculates each layer cross

section based on the values of the simulated Xray

signals. This means that it won’t show an accurate

representation of what the cross section looks

like, but rather show the trend of how it changes

when inputs are changed.

15

Figure 4.6: Line graph simulator of layer thickness Xray measurements. This is an unfinished itteration. The motor
and line speeds have been blocked due to confidentiality.

4.13. Cross-section graphics
While it, at first glance, might not seem like too

big of an issue, it turns out that it is quite difficult

to show a graphical representation of the cable

cross sections, by just going off 4 values. The

question then becomes, how can the cross

section of each one of the layers be calculated

from only the 4 points of measurement that is

available and still show an intuitive picture of how

the conductor moves within the cable.

First an approach where a circle was divided into

4 parts; each part is a quarter slice of the circle

calculated by making a circle section between

each combination of nearby data points. The data

points in question are the 4-layer thickness values

represented as coordinates in the plot. This

approach didn’t really give an intuitive picture of

how the centering of the layers around the

conductor moves as the layer thickness varies.

So instead of drawing the circle sections as

mentioned above, the circle was first drawn as a

perfect circle based on the average radius of the

circle assuming it is completely symmetrical.

Then it is distorted by the ratio between the actual

distance from the center of the perfect circle to

the measured point in each direction, and the

radius of the prefect circle. This is done for all

four of the data points. Finally, the circle is

moved on the plot so that the center of the circle

is where the center of the perfect circle would be

if the data points of the perfect circle would align

with the actual data points, basically a moving

oval.

Along with this, small text windows are placed at

roughly the point of each measured output in the

circle, which show the value of the output. Unlike

the line graph, this figure is animated at a set

interval together with a discrete time signal and

shows the discrete time response of an input

change but speed up to about 30 times the real

discrete time step. It can be seen below in figure

4.7.

The screw inputs are in the real process tied

together and the corresponding backside screw

should be changed to match its frontside screw.

The position of each extruder is shown as well to

give a better view of where the cable is in real

space.

16

Figure 4.7: Image of the centering simulation tool, the line speeds and motor speeds have been blocked from
view due to confidentiality.

4.14. Improved model-robustness
To further increase the robustness of the model,

to reduce error propagation and increase the

generalization, the model was expanded to

include a robustness parameter also known as a

regularization parameter. This method is known

as ridge regression. Since the Moore Penrose

pseudo inverse can no longer be used to calculate

the least square, a function calculating it had to be

added. The function calculates the least square

solution and thus the semi-inverse of the dual

optimization problem according to equation 4.6.

𝐻−1 =

{

 (
𝐼

𝐶
+ 𝐻𝑇𝐻)

−1

⋅ 𝐻𝑇 , 𝐿 < 𝑁

𝐻𝑇 (
𝐼

𝐶
+ 𝐻𝐻𝑇)

−1

, 𝐿 > 𝑁

𝐻−1, 𝐿 = 𝑁

4.6

Where 𝐶 is the regularization parameter. This

approach forces the model to not overfit the

training data, by giving a penalty to the size of

magnitude of the output weights.

While the model is now quite robust for the data

fitting, it still can’t solve the issue of underlying

data patterns and with the second part taking

outputs and returning them as inputs for the next

iteration of the process simulation, this will still

give cause to error propagation when the model

receives outlier inputs outside the range of where

it is trained, since the inputs are unknown. To

solve this the model is once again expanded, this

time into a deep learning algorithm.

4.15. Deep learning dual ELM
The deep learning model is built on the theory of

ELM and takes inspiration from the Deep

Learning Extreme Learning Machine. The model

uses a total of six hidden layers where four are

trained unsupervised and two are trained

supervised. Once again, the direction of utilizing

a non-propagating training algorithm is due to a

lack of time and the need for quick retraining.

The hidden layers were introduced to help cluster

inaccurate data in the second part.

The overarching structure of the model is the

same as the first model, with two independent

parts. And to combine them. it would then take

the output of the first part as part of the input in

the second part just like in the first model

iteration.

To train the unsupervised layers, an autoencoder

ELM is used. It is implemented in the same way

as described in equation 3.7. To create the

autoencoder input layers SciPy’s function

ortho_group is used. To create the biases, a

gaussian random matrix is created and each

17

element is squared. Each element in the matrix is

then divided by the norm of the vector. Lastly to

regain the initial distribution, each element is

square rooted, and the sign of the original value

is restored. The output layer is then calculated

with equation 4.6. Each layer is trained to the

output of the previous layer according to

equation 4.7. The unsupervised layers are all but

the last, for 𝑉 number of layers.

𝐻𝑖 = 𝑎𝑖 ⋅ 𝑋𝑖 + 𝐵, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑖𝑛𝑝𝑢𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 𝑋

𝑋𝑖 = 𝑣𝐻𝑖 , 𝑖 = 1, … , 𝑉 − 1
𝑋𝑖+1 = 𝑔𝑣𝑋𝑖

4.7

Where 𝑔 is the activation function, which is a

standard rectified linear unit function, 𝐵 is the

bias, 𝑣 is the weights and 𝑎 is the AE input

weights. The last layer is trained by an ELM with

a regularization parameter. The resulting model is

described in equation 4.8 and shown in figure 4.8.

𝐻𝑉 = 𝑋∏𝑣𝑖𝑔

𝑉−1

𝑖=1

𝑌 = 𝛽 ∙ 𝐾(𝐻𝑉) = 𝑓(𝑋1, 𝑤)
𝑤 = [𝑣,𝐾,𝛽]

4.8

Where 𝑋1 are the inputs to the first layer, and 𝑌

is the output of the last layer. 𝑣 are the weights

and 𝐾 is the ELM feature map obtained in

training of the last layer, represented by the green,

orange, and blue layer in figure 4.8.

The combined model can be described

mathematically as equation 4.9 and is depicted in

figure 4.9.

𝑌1,𝑝𝑎𝑟𝑡1 = 𝑓(𝑥1,𝑖𝑗, 𝑤1)
𝑌2,𝑝𝑎𝑟𝑡1 = 𝑓𝑓(𝑌1,𝑝𝑎𝑟𝑡1, 𝑥2,𝑖𝑗 ,𝑤2)

4.9

The computation time and learning time for the

deep version is almost as fast as the regular ELM.

With this model a thought experiment was

conducted. If the first part of the model is trained

to something that is completely independent of

the second part of the model, theoretically it

should be able to reproduce the inputs of the first

part, motor- and line speeds from the

experiments used in training the second part.

This would let the full model be tested as well,

instead of just being a postulated idea. Thus, it

could be trained to the amount of plastic

extruded per unit length of cable pulled, which

should be independent of other parts of the

extruder.

The reason such an experiment should be

possible is, now with an unsupervised part of the

model, it should detect irregularities in the linear

pattern and correctly cluster them, to increase the

accuracy of the output from outliers and noise.

Slightly inaccurate predictions from the model

should therefore suffice in training. So hopefully

the first part of the model can be trained with data

from the theoretical “recipes” that is used to

achieve certain layer thicknesses together with

bleed runs and, in that way, generate data outside

of the normal runs, thus eliminating the need for

test runs with the full cable. This model could

then be used to reproduce the unknown data for

the second part of the model, thus making the

combination possible. Due to lack of time,

however, this remained as nothing more than an

idea.

[The following section has been left empty on purpose]

18

Fig 4.8: Single thread of the model, with 3 hidden layers.

Fig 4.9: Combined model description.

19

5. Model results and

implementation
The first model, the polynomial model, had a

good fitting capability to the data that it was

trained to, but ran into an issue of slight over-

fitting. An acceptable standard of Root Mean

Square Error (RMSE) was set to two times that

of the RMSE for the train sets as an initial target

base, but equal to the train set RMSE would be

optimal. The initial testing performance of the

polynomial model is shown in figure 5.1 to a

made-up test set of data based on motorspeed1,

with only one input and one output.

While the RMSE is quite low on the training set

displayed in the picture, it can clearly be seen that

it is off trend at several points in the prediction,

which means that it is overfitting too much to

capture the process dynamics accurately enough.

At first it was hard to understand why the

polynomial model was unable to reach an

acceptable level of generalization.

Fig 5.1: Polynomial model prediction for the inner semi-
conductor layer test set. Blue line is the model prediction
and red line is the actual output. The values on the axis
are transformed values, the MSE value is the relative
value between the test and training set.

A theory was that maybe these types of models

are more sensitive to the training data than, say,

an ELM, since not all the independent variables

that are affecting the extruder output are included

in the training sets. It may also be the case that it

is more sensitive to outliers than the ELM. For

reference the same test-training set was given to

the ELM, and the results can be seen below in

figure 5.2.

It also seems like the overfit increases with the

number of inputs. A trend like this can be seen

when increasing the number of inputs that is

given to the polynomial model to fit. When

comparing the testing RMSE to the training

RMSE a trend, where the larger the training

accuracy is compared to the test accuracy, the

more the model seems to have overfitted the

data. All of this is consistent with the theory from

section 3. This is displayed in table 5.1 and shown

in figures 5.3, 5.4 and 5.5.

These images show why it is important to not

only look at how well the prediction accuracy is,

because even if it is good for both the training

data and the test data, it might be the case that it

has overfitted the training data. The mean error

on the test set might then be low because of e.g.,

measuring noise that happens to weakly correlate

with the prediction, but the actual input to the

real value lacks correlation. This can be identified

by looking at the scatter plot or line plot to see if

there is correlation or not. A model with poor

robustness can act as a high pass filter amplifying

high frequency signals, which causes a severely

unstable model. So, the relative accuracy of a

well-chosen test set always needs to be compared

to the training accuracy.

The opposite might also be the case, where the

model is underfitted. It then acts as a low pass

filter with too low of a breakthrough frequency,

then it filters out important changes and causes

the model to not respond at all to inputs that it

should respond to.

[The following section has been left empty on purpose]

20

Table 5.1: Extruder predictions with 4 inputs.
 Deg Training

MSE (1)
Test
MSE
(1)

∆MSE
 (1)

Polynomial model
Set 1 3 0.010 0.044 0.034
Set 2 3 0.011 0.024 0.013
Set 3 3 0.004 0.048 0.044
Set 1 2 0.004 0.015 0.011
Set 2 2 0.010 0.026 0.015
Set 3 2 0.003 0.009 0.006
 Nodes
ELM model
Set 1 100 n 0.005 0.005 0.000
Set 2 1000 n 0.011 0.011 0.000
Set 3 1000 n 0.002 0.003 0.001

Figure 5.2: ELM model prediction for the inner semi-
conductor layer test set. Blue line is model prediction
and red line is the actual output. The values on the axis
are transformed values.

Figure 5.3: polynomial model prediction for the inner
semi-conductor layer test set. Blue line is model
prediction and red line is the actual output. The values
on the axis are transformed values.

Figure 5.4: Polynomial model prediction for the
insulation layer test set. Blue line is model prediction
and red line is the actual output. The values on the axis
are transformed values.

Figure 5.5: polynomial model prediction for the outer
semi-conductor layer test set. Blue line is model
prediction and red line is the actual output. The values
on the axis are transformed values.

When analyzing the data, it is clear that there is

multicollinearity in the data sets, caused by noise

and how the line is started, which is most likely

the cause of why the polynomial model is not

working. Of course, there might be better ways

to implement this type of model, but at some

point, a choice of model must be made, to finish

the project on time.

So, in the end, the polynomial model doesn’t

measure up to the ELM, which even at a single

extruder motor speed signal, gives better

generalization than what the polynomial

regression model gives, and the gap grows as the

number of inputs increases. The accuracy of the

test set is also a lot better for the ELM. Thus, it

was decided to not take the polynomial regression

model any further and focus purely on machine

learning with neural networks.

When expanding the training sets to multiple runs

of the extruder, the generalization of the ELM

stays quite good if nodes are chosen carefully.

The more homogeneous data sets with regards to

which cable is produced; this probably means

21

centering screw positions and tool sets are the

same; the lower the relative RMSE can go at the

cost of overfitting. But if one data set is much

larger than the others, it will also cause a type of

“fake” fit, since the error of the other data sets

are diluted, but still retain the overfitting. This is

obviously very bad. An example of this is shown

in figure 5.6.

Figure 5.6: Results of training for one Xray signal. Blue are model predictions and red are the measured response. Top left
shows the extruder operating inputs.

As can be seen in the three-dimensional graph in

the top left, all the data points contain the same

type of linear run and cable product.

The generalization is good when looking only at

the RMSE values, but when looking at the plot, a

subset of the data has been overfitted due to it

containing way more data points than the other

ones. This can be seen by looking at the scatter

plot and how it seems to have weak to no

correlation at the lower speeds, which is not what

is expected. In this specific case the data set

containing data from the lower motor speeds

only contains a fifth of the data points of the set

containing the higher speeds. Because of this, it is

important to choose data sets of not too much

different sizes, so that the fitting capabilities can

be read from the RMSE values. This could in

theory also be solved by adding a penalty term to

larger data sets. The bottleneck for the model,

even when only looking at the logged inputs, is in

this specific case, still to a degree the lack of

extruder screw input data.

It’s worth noting however that extreme caution

needs to be taken when choosing the number of

hidden nodes in the regular ELM, since it seems

to be very sensitive to the number of nodes. This

becomes more of a problem as the data gets more

nonlinear, noisy, and inaccurate as in the case of

the distributors. The regular ELM is therefore

not enough to describe the centering and thus

should not be used.

5.0.1 The multicollinear pattern problem
As can be seen in figure 5.7. The extruders are

always started in a linear way, so historical data

from line runs doesn’t train the model how to

operate outside of these linear settings if there are

non-linear deviations because of

multicollinearity. Since the model is only

supposed to work in a range close to the

operating range, it might not be a big issue. But it

is important to remember that the performance

of the model would most likely be better even in

the operating range with a broader range of data

sets.

22

Figure 5.7: Extruder line input data plotted against each
other. The multicollinear properties of the data set is
obvious, each “line” is a separate cable produced.

The data that is being logged might also be better

if it was taken as hot measurements when it

passes the X-rays. Otherwise, variations in the

post-extruder part of the line might affect how

the model performs.

5.1. Ridge regressor model
When introducing the ridge regression with

emphasis on minimizing the output weight

norms, according to bartlett[8], the generalization

as well as the model accuracy should improve

even for asymmetric training data. This is

empirically proven when looking at the same data

sets as in figure 5.6, but with the penalty term

added; the model performs a lot better which can

be seen in figure 5.8.

Figure 5.8: Results of training for one Xray signal. Blue are model predictions and red are the measured response. Top left
shows the extruder operating inputs.

The RMSE may only seem slightly better at first

glance, but, with true weights to the data points it

is most likely much better.

When the number of data sets increases, the

nature of how operators and control hardware

control the extruders create a lot of noise and

errors due to how the centering of the extruder is

set; they basically create known unknowns for the

inputs that aren’t part of the training sets; Also,

when utilizing data from several different cable

types, which means different tool sets in the

extruder head, it creates a difficult learning

environment for the model. This is partly because

of unlabeled inputs but also since

multicollinearity is present combined with the

number of data points approaching two-hundred

thousand. With ridge regression, the latter turns

out not to be that big of a problem, but the

former requires carefully chosen training sets.

This is demonstrated when giving the model

several runs of different cables, where, most

likely, all the runs pertaining to the same cable

23

produced, should have the same settings on the

centering screws; this conclusion is drawn from

looking at the trend and might not be a hundred

percent accurate. So, all the runs from cable A

would have the same settings, and all the runs

from cable B would have the same settings. But

A and B might have different settings to each

other. Such an experiment is shown in figure 5.9.

Figure 5.9: Results of training for one Xray signal. Blue are model predictions and red are the measured response. Top left
shows the extruder operating inputs. The data sets used are from different line runs.

While, in this experiment the model just

attributes these differences to the different motor

and line speed combinations shown in the top left

graph. It proves that if a label were to be added

for the screws, the model would be able to

accurately label and predict these inputs as well.

What can also be seen is that the model filters out

measurement errors and noise in the continuous

part of the process where the output seems to

follow a random distribution. An index label can

also be added to represent these unknown screw

positions.

An interesting observation is that it does not

seem to matter if the data set chosen has

centering or not. The only difference seems to be

that around the point the centering was done, a

local cluster of predictions with larger error than

the mean is found. In a way the model seems to

just assume that these points are inaccurate,

which may be convenient. Why this happens is

unknown, but it might just be that the datapoints

affected by centering are too few. This can be

seen in figure 5.10.

Figure 5.10: Extruder prediction and measured value,
Blue is the prediction and red is the measurement.

By looking at the data in Trend it looks like there

has been centering done in the region that is

circled in the figure. It still seems to capture the

correct trend, but with a slower dynamic. The

trend should therefore hopefully still be captured

when using data where centering has been done.

24

5.2. Can the independent model be

used?
While the ELM can still categorize and accurately

predict the data sets that it is given, it can, for the

data it is not given, at best only label each new

data set to a specific index. In this case, the index

represents a specific centering screw, and tool set.

And as previously mentioned, since the centering

screw positions and the tools used for the

extruder head is not logged anywhere and could

not be obtained in the training of the model, the

model cannot be used to predict the real process

if the settings of the extruder head do not happen

to coincide with the one represented by the

chosen index. This is not a problem in the

combined model, where the screws are modelled

as well since each part can discern the settings of

the other one. But it means that the model is only

good for validation or looking at the trend, due

to local uncertainties in intervals where an

unknown input has been altered.

5.3. Single model clarification
At this point some clarification is needed to

understand what has been done this far. The

model that has been evaluated this far is basically

a single model that describes the full extruder

head from inputs to outputs. However, it has a

subset of inputs that are unknown meaning that

they only describe the extruder at the specific

values of these inputs as they were in the training

sets, and these values are unknown. In what has

been coined the “first part” in this report, these

unknown inputs are the tools and the centering

screws. The initial idea was that the accuracy of

the model can still be evaluated even if the

training sets that are needed for it cannot be

acquired in full since the training sets have been

chosen so that the difference in the unknown

inputs have a multicollinear relationship with

each type of data set; the model basically

attributes the effect of the unknown inputs to

something that is known and strongly correlated

to the unknowns. It turns out that, if the purpose

is only to see if the trend is correct, even if this

correlation is not present, the model still works.

And the model can be fitted to any data set with

good results, but it will fail to capture the dynamic

in areas where the unknown inputs have been

changed, but it does capture the correct trend.

5.4. Modelling centering screws first

iteration
To test if the second part of the model that is

lacking data sets work, old data from previous

measurements were used in the task of training

the model. The problem with this data is that it

contains only a single run of the extruder, and

only seven screw adjustments. The likelihood of

a model being accurate with this data is almost

null, but it can at least give an indication of how

well the model can generalize the data it is given

and how well it predicts the data that it does have.

The first iteration of the model gave very poor

results, the generalization was poor and as

demonstrated in figure 5.11, the errors

propagating through the system causes the

unstable model to go haywire as soon as the

inputs deviate even slightly from the inputs in the

training range as can be seen when simulating it.

Figure 5.11: simulation of first iteration of models
second part, with a 5% input deviation from the range
in which its trained.

A deviation of 5% of screw angle outside of the

range of the training inputs results in a cable with

an average asymmetric layer thickness of eighty

quadrillion lightyears. This version of the model

would most likely not be good enough even with

a full bank of training sets and tailored

experiments. The fitting accuracy of a noise

induced input set was practically zero.

5.5. Modelling centering screws second

iteration
To lower the risk of error propagation and

increase the resistance to noisy or inaccurate

inputs together with increased robustness, a

25

regularization parameter was added to the second

part of the model as well, and the model was

expanded to a deep layer machine, which is earlier

described in section 4. This version performed

significantly better than the previous iteration and

gave good accuracy as well as acceptable

robustness. The training results of this version

can be seen in table 5.2. The noise induced in the

test was set to 20% more than the measurement

inaccuracy of the Sikora and the approximated

white noise of 30%. This is to see if the

unsupervised layers are doing their job.

As can be seen the prediction accuracy is quite

good. The largest error can be seen in outer

semiconductor which is to be expected since the

adjustment of this layer contains the least number

of data points.

Table 5.2: Model results of second part.
 Training

Error
(%)

Test
Error
(%)

Noisy
Error
(%)

InnSem XL 0.908 0.928 0.934
InnSem XR 1.202 1.400 1.208
InnSem YL 0.810 0.872 0.817
InnSem YR 0.985 0.896 1.009

Insul XL 0.366 0.332 0.412
Insul XR 0.555 0.609 0.577
Insul YL 0.779 0.791 0.798
Insul YR 0.845 0.890 0.864

OutSem XL 2.654 2.460 2.675
OutSem XR 2.654 2.508 2.654
OutSem YL 3.107 3.068 3.139
OutSem YR 3.156 3.229 3.164

To showcase how well it generalizes the process

the model was simulated with inputs 1200%

outside of the fitting range. The resulting cross

section can be seen in figure 5.12.

Figure 5.12: Second iteration of the second part of the model, simulated 1200% outside the range of
training inputs, It must be noted that the simulation is done for Ex30 and not Ex31 so the position of the
extruders are incorrect in the picture.

While the values are probably not correct, the

trend is the same as that of the experimental run.

And the values are consistent with logged runs of

the extruder. If the process is run according to

the experimental run, it has a largest deviation

from the real value of 3%. This deviation is in the

outer semiconductive layer. And the trend is the

same as in the simulation in the figure above. This

shows that with more data a model with a very

high level of accuracy can be obtained if the data

is available to use in training. Also, with the

model having unsupervised learning, it would

hopefully let the model cluster and find patterns

in the data that lets it recognize and accurately

predict noisy input signals, cold-measurement

errors and sort out outlier datapoints. The effect

would be that the tests run to acquire the data,

won’t need to be as rigorous and if the data can

be logged, it could be low resolution and still be

used in the training.

26

5.6. Observations
By far, the most difficult layer to predict

accurately is the inner semiconducting layer.

While the other two layers seem somewhat

consistent regardless of what the flaws of the

training have been. For example, when fitting the

model to three different cable runs, the outer

semi-conductor and the insulation still behave

normally. This is not to be confused with them

being true to the real process, but the variation in

thickness doesn’t fluctuate to unreasonable

values. The inner semi-conductor is a different

story. When only using the standard ELM model,

as soon as the model goes outside of the linear

range, even when it is in between two valid ranges

the model becomes increasingly inaccurate. This

is fixed with ridge regression, but the fit is

generally worse than the other two when there is

equal amount of data points in the training sets

for all the inputs.

The general RMSE values of the model vs the real

output is generally around 2% higher than when

fitting the other 2 layers which indicates that the

model does worse at predicting the inner semi-

conductor with accuracy. This could be due to

several reasons. The measurement could be

noisier than the others which could cause the

model to fit it worse. It could also just be more

sensitive to the different inputs to the extruder.

5.7. How to get data for unknown

inputs
The easiest problem to solve in the model is the

issue of how the process is started and what data

can be obtained from the history blocks. As

mentioned earlier the line starts are done in a

linear fashion as can be seen in figure 5.7.

Experiments where all but one extruder input is

run at a constant, while one at a time each input

would be adjusted over a range which encases all

the possible operating ranges that the extruder

will be ran on, would give the model the data it

needs to generalize over the whole process.

Because of the ridge regression this should only

need to be done a couple of times for each input.

To solve the issue of the lack of centering screw

data, a way of monitoring the screw would need

to be added. The best way for model fitting would

probably be to install sensors that can directly

measure the angle between the conductor and the

distributors in the extruder head. Not only can

they be logged directly to the data base, but they

are also far more precise than just looking at the

screw. These sensors could also be added to just

measure the angle from the sensor position, it

doesn’t really matter what angle it measures, as

long as that angle can be converted to an input

that can be understood by an operator.

Another possible way of solving the issue is to

film the startup process and train another

classification algorithm to the task of recognizing

the screw positions. Then all that would be

needed to monitor the inputs is a camera that

records an image on the screw state, and the

algorithm would recognize which position the

screw is in. This would obviously require

someone to create the model and train it first.

5.8. Validation
To validate how the first part of the model works

independently in the operating ranges of the

extruder is quite easy. All the data from random

runs of the extruder that have not been part of

the training or testing can be downloaded from

the historian database and predicted. Thus, it is

easy to see if the model is predicting accurately or

not.

To estimate the accuracy of the model outside of

the operating ranges is more difficult since it

would require the extruder to be ran outside the

operating ranges as a test. This might obviously

be expensive, and it may not even be that

interesting to see if the model is accurate outside

of the operating range, or at least, not for the

operating aid. But, to show what the model does

in this range, the model was ran outside the

operating range by between 10-30% on each

extruder motor speed. The result can be seen in

figure 5.13.

27

Figure 5.13: First part of the model ran 10-30% outside the extruder motor speed operating range.
Simulating Ex31.

One quite peculiar point to make here is that the

output seems to somewhat reverse the thickness

order of the inner semiconducting layer when

only the motor speed of the outer

semiconducting layer is run outside of the

operating range. When the model is run between

the operating ranges but in the same linear

fashion, the expected trend where the layers are

the thinnest on the left side in the x direction and

the left side on the y direction is observed. The

former is where the melt flows together in the die.

This is all displayed in figure 5.14.

Figure 5.14: First part of the model ran between the extruder motor speed operating range for motor 1 and
motor 2 and outside for motor 3. Simulating Ex31.

28

Once again, the expected output is not

completely correct for all the data sets given as

validation, which can be confidently attributed to

the fact that these sets are ran with different

extruder distributor settings (extruder screw

positions, tool set). But it does seem to follow the

correct trend. What this shows is that the model

correctly filters out noise and manages to capture

the slower frequency changes well.

The validation of the second part of the model is,

in this project, quite pointless since the model has

not been trained to sufficient data sets.

5.9. Interesting find
The tools used seem to have a much larger impact

on the centering than initially thought. It was

already known that the distributor position versus

the conductor, i.e., what the centering screws

affect, has a large impact. But it seems like maybe

the toolset has a large impact as well. When

letting the model predict different cables where

the same motor and line speeds have been used,

it seems like the centering can vary by a lot just

based on the index being different (a different

type of cable produced). This is displayed when

fitting the data to sets of different cables, where

there looks to have been no centering done. It is

shown below in figure 5.15.

Figure 5.15: Extruder prediction of set where there most
likely has been no centering, but cable types differ.
Exhibits sign of underfit, even though nothing suggests
it should be.

It is not completely clear what is causing this

behavior, it might be the case that centering has

indeed been done on these runs, and the method

used to detect it is flawed, but the theory is as

stated above that it is something else that is

causing it, since the model seems to fail to

distinguish the difference in outputs which may

be to some linear relationship with the tools. It

also may just be that the model finds some

strange relationship in the data that happens to

work in the regression.

6. Conclusion and future

prospects
A model that can accurately predict and

generalize over the data that it is given as training

has been successfully achieved through the

means of a deep learning extreme learning

machine algorithm with ridge regression

(DRELM). However, good enough training to

train the model to predict in a wide enough range

of inputs, so that it can be used as an operating

tool for NKT, could not be acquired. It must also

be pointed out that when there is enough data for

all the inputs available the DRELM should not be

needed over the ELM with ridge regression, since

there would be no need to classify if the data

belongs to different base settings anymore, but

the efficiency of both are very similar.

6.1. Reflection
The model has obvious flaws in how it is trained.

And while the DRELM does a good job of

adapting to the training sets it is given, it will only

ever be as good as the training it gets.

To truly make a model that can accurately

describe the process together with the time

dependance, a few things would need to be

added. First a time parameter needs to be

included; the data that is generated does have

time stamps from when it is taken, but it is only

when the reading from the measuring equipment

is taken, so the delay would need to be estimated

in the time stamps. The data is also converted to

post vulcanization values, or so-called cold

measurements, by computation and this would

need to be included.

However, the purpose of this model is not to

describe the model in real-time, only to estimate

the effects of extruder inputs on the steady state

output. To do this, it only needs to capture how

the steady state of the cable cross-section changes

upon input changes which can be done with a

discrete time model. Data from the screws would

also have to be logged in a way that can be

accessed by a computer, so it can be used when

training the model. This could be done manually

by operators with pen and paper, or in custom

29

software and then be transferred by hand to

digital sheet, or directly by measuring equipment.

The better the data sets that can be obtained, the

better the model will perform. If it was possible

to run experiments tailored to each input type and

ways that the extruder heads can be set up, it

would make the performance of the model better,

but as have been shown in this project, the quality

of experiments can be quite poor, and it would

still work.

The input changes of the distributor screws

would have to be measured against a baseline of

the distributors, which can act as a reference for

the input changes or taken as an angle

measurement. Better documentation on what

toolset is used in the extruder would also be

needed. So, to put it simple, most problems could

easily be solved by just monitoring and logging

the distributor data to the historian database.

6.2. Future work
This leads to the subject of how to continue this

project if it is deemed worth. The current model

has already proven to be able to accurately predict

layer thickness of the data it is trained to. It has

good generalization capabilities, and all that is

needed is more data sets.

Extensive trial runs would need to be done to

gather data to further validate the model and see

how well the second part of the model works.

The easiest would be to use data from bleed tests

to train the first part of the model or substitute it

for the model that each cable “recipe” is taken

from and train the model to reconstructed data.

Many more tests would also have to be run so

there is enough data to train the model.

If all the data can be obtained simultaneously

from the database or by other means, the model

should be run as a single part with all the inputs

and outputs, the only reason to run the model as

two separate parts is when lacking data from one

or more inputs.

As previously mentioned, the best way would be

to install sensors or other measuring equipment

and start logging the distributor data. This would

passively generate model training data, which has

been proven in this project to be good enough to

eventually create a model that works.

6.3. Things the model can achieve
As touched upon in the literature study, a

possibility with this type of model might be that

the process can be controlled without the help of

an operator. With an accurate enough model, a

heuristic dynamic programming algorithm could

easily be set up to generate optimal controllers for

NKTs extruder. This could in turn let the process

be controlled much more precisely than a human

ever could. On top of that, the network could

possibly be taught how to counteract white noise

in the sensors used to monitor the process input

signals, which could create a smoother cable

surface. Further classifier algorithms may also be

possible to make, to automate crash procedures

or other types of quality control. An example of

this would be to feed the model data to a

topology scanner, another AI could then be

taught to predict the topology of the cable purely

based on model output. The AI could then tell

the operator in real time what the effects of what

is currently happening are and suggest a change

to the operator of how to fix it. This could

hypothetically let operators run the process much

closer to the nominal values without running the

risk of going under it and ruining the cable.

There is also the possibility of quick retraining,

and the model can be run and trained to the start-

up of new extruder lines, to quickly understand

how the process should be operated or

identifying faults.

6.4. Take aways
NKT has a lot to gain from better tracking of

their process parameters, both in terms of

creating sophisticated software to aid in process

operations, but also for a better understanding of

how the process works, which would be

especially useful to identify problems and

solutions in start up of new extruder lines.

30

References
[1] J. R. Wagner, E. M. Mount, and H. F. Giles, "1 - Extrusion Process," in Extrusion (Second

Edition), J. R. Wagner, E. M. Mount, and H. F. Giles Eds. Oxford: William Andrew Publishing,
2014, pp. 3-11.

[2] E. Lundström, K. Langsér, Ed., ed, 2023.
[3] J. R. Wagner, E. M. Mount, and H. F. Giles, "40 - Coextrusion Applications," in Extrusion

(Second Edition), J. R. Wagner, E. M. Mount, and H. F. Giles Eds. Oxford: William Andrew
Publishing, 2014, pp. 449-466.

[4] H. Li, L. Liu, W. Luo, X. Zhang, and M. Luo, "Research on Optimization Method of Wire and
Cable Extrusion Control System," in 2019 Chinese Automation Congress (CAC), 22-24 Nov.
2019 2019, pp. 1703-1708, doi: 10.1109/CAC48633.2019.8997078.

[5] K. S. Boparai, R. Singh, and H. Singh, "Modeling and optimization of extrusion process
parameters for the development of Nylon6–Al–Al2O3 alternative FDM filament," Progress in
Additive Manufacturing, vol. 1, no. 1, pp. 115-128, 2016/06/01 2016, doi: 10.1007/s40964-
016-0011-x.

[6] D. C. Montgomery, Design and Analysis of Experiments, 9th ed. Wiley, 2017.
[7] J. Wang, S. Lu, S.-H. Wang, and Y.-D. Zhang, "A review on extreme learning machine,"

Multimedia Tools and Applications, vol. 81, no. 29, pp. 41611-41660, 2022/12/01 2022, doi:
10.1007/s11042-021-11007-7.

[8] P. L. Bartlett, "The sample complexity of pattern classification with neural networks: The size
of the weights is more important than the size of the network," IEEE Transactions on
Information Theory, Article vol. 44, no. 2, pp. 525-536, 1998, doi: 10.1109/18.661502.

[9] X. Ding, J. Liu, F. Yang, and J. Cao, "Random compact Gaussian kernel: Application to ELM
classification and regression," Knowledge-Based Systems, vol. 217, p. 106848, 2021/04/06/
2021, doi: https://doi.org/10.1016/j.knosys.2021.106848.

[10] S. Ding, N. Zhang, X. Xu, L. Guo, and J. Zhang, "Deep Extreme Learning Machine and Its
Application in EEG Classification," Mathematical Problems in Engineering, vol. 2015, p.
129021, 2015/05/27 2015, doi: 10.1155/2015/129021.

[11] Wonderware Historian Retrieval Guide: Schnieder Electric Software, 2017. Accessed on:
2/20.

[12] "X-RAY 8000 ADVANCED/NXT." Sikora International Corporation.
https://sikora.net/en/products/xray8000nxt/ (accessed 04/19, 2023).

[13] M. G. Andersson et al., "Highly Insulating Polyethylene Blends for High-Voltage Direct-
Current Power Cables," ACS Macro Letters, vol. 6, no. 2, pp. 78-82, 2017/02/21 2017, doi:
10.1021/acsmacrolett.6b00941.

[14] F. B. Meng et al., "Insulation Properties and Interfacial Quantum Chemical Analysis of Cross-
Linked Polyethylene Under Different Degassing Time for HVDC Cable Factory Joint
Applications," IEEE Transactions on Dielectrics and Electrical Insulation, vol. 30, no. 1, pp.
271-278, 2023, doi: 10.1109/TDEI.2022.3226136.

[15] R. Nejdl and V. Mentlík, "Influence of tools setting on processing quality of XLPE core
insulation," in Proceedings of the 2014 15th International Scientific Conference on Electric
Power Engineering (EPE), 12-14 May 2014 2014, pp. 407-410, doi:
10.1109/EPE.2014.6839456.

https://doi.org/10.1016/j.knosys.2021.106848
https://sikora.net/en/products/xray8000nxt/

