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Popular science summary 

Modelling of cable extruders through Machine Learning 

Introduction 

In the production of their High Voltage Direct Current Cables (HVDC) and High Voltage Alternating 

Current Cables (HVAC), NKT uses triple extruders to create layers of insulation and semi-conduction in 

their cables to improve its electrical properties. To optimize the process, a machine learning model was 

created to simulate the cable-product based on the extrusion-head inputs. 

Project 

In simple terms, an extruder is a machine that presses out molten plastic in a mold-like fashion to acquire 

the desired dimensions and shape of the plastic product. These layers are extruded around the conductor 

(a copper or aluminium rod or wire) through three separate extruder screws that are all connected to a 

triple extrusion head. In the triple head the melts flow together around the conductor. Imagine putting a 

small rod in the middle of a toothpaste tube and pressing out the toothpaste around the rod, then we put 

that in the same manner in the middle of a larger toothpaste tube and press the toothpaste out again 

around our toothpaste coated rod. The toothpaste would in this example be the plastic and the final 

product will be a rod (conductor) with layers of toothpaste (plastic insulation) stacked on top of one 

another. 

This extrusion process is controlled by manipulation of the extruder screw motor speeds; the screw is 

what drives the melt forward; the puller rate, which is the speed with which the extruded cable is pulled 

away from the triple head and the position of the distributor walls in the triple head. The distributor walls 

can be thought of as walls that keep the plastic melt from flowing together before the actual extrusion die. 

To better control the process and optimize the cable dimensions so that the insulation can be thinner 

without running the risk of being too thin (which would destroy the cable), this project aimed to create a 

model that can predict how the extruder is affected by the inputs described above, with respect to layer 

thickness and centering of the conductor in each layer. 

The model produced is a neural network of Extreme learning type. The Extreme part basically just means 

that the learning is a matrix operation and not weight tuning, which lets it learn extremely fast compared 

to models where each weight must be tuned. 

The extreme learning machine was built in python, together with software that helps in the training of the 

model, as well as two different Graphical User Interface that can be used to simulate the model. One of 

the GUIs Simulate the thickness of each layer at four different points perpendicular to each other in the 

cable, as a line graph. The other GUI simulates the cross-section of the cable. 

The model was tested and validated in the working range of the process with certain parts of the inputs 

unknown and was shown to capture the correct trend in the working range. If the unknown inputs 

matched those of the test and training sets, it would accurately simulate the real process. The model is a 

proof of concept of how simple it is to model complex dynamics with little computing power utilizing 

machine learning and serves as a foundation for building optimal controllers or other control aid for the 

extrusion process. 
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Abstract 

In the production of their High Voltage Direct Current Cables (HVDC) and High Voltage Alternating 

Current Cables (HVAC), NKT uses triple extruders to create layers of insulation and semi-conduction. A 

model to predict the effect of extruder inputs on the cable’s insulation and semi-conducting layers has been 

created and trained to predict the extruder in discrete time. The project developed a deep learning extreme 

learning machine algorithm and proved that it has good enough accuracy and generalization to predict the 

cable states as a function of extruder motor and line speeds as well as distributor screw positions. 

The project also explored how to evaluate and test a model, despite the fact it has insufficient data, by 

dividing it into two parts and letting them be trained independently, with a subset of unknown inputs. The 

results were satisfactory. A way of combining the models was also proposed but was not further explored. 

While the model shows that it can accurately describe the extruder in the ranges of where it is trained, the 

data acquisition was poor and hindered the collection of good enough training sets to let the model predict 

over the whole input range. The model does, however, act as a proof of concept that can be further 

developed into a finished state. It also showed that it can still predict the correct trends of the extruder even 

if the model is acting outside of the range where it is trained.  
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1. Background and Introduction 
In the production of their High Voltage Direct 

Current Cables (HVDC) and High Voltage 

Alternating Current Cables (HVAC), NKT uses 

triple extruders to create layers of insulation and 

semi-conduction. The layers are extruded around 

the conductor with a tripe extruder head which is 

controlled by a process operator.  

To achieve optimal performance in the cables, 

the layers need to be centered around the 

conductor and have the right thickness. This is 

achieved by manual operation of the extruder 

input settings together with analogue inputs. 

Currently there is no clear model of how the 

extruder inputs affect the centering and the 

thickness of the three layers; the operators use 

heuristics and experience to achieve a good result. 

This means that the education of new process 

operators is expensive and time consuming and 

the process suboptimal. 

This project aims to develop a model that is 

accurate enough to simulate the real-world 

process and make the extruder operation easier 

and more precise. The simulation and data will be 

presented to the operator in a graphical user 

interface (GUI). 

2. Problem formulation 
The first part of the project involves stating the 

problems, and the operations needed to be done 

to have a final product capable of fulfilling the 

goals of the project. This means clarifying the 

goals, and the problems that need to be solved to 

achieve them. 

2.1. Goals and outcome 
First, a model that can describe how the centering 

of the layers vary with the extruder inputs is 

needed. Second a model to describe how the layer 

thickness varies with the extruder input. These 

then need to be combined into a model that can 

describe both as a function of extruder inputs. 

The model will then be used to simulate the 

process and present it in a graphical user interface 

(GUI) to help an operator control the process. It 

will be implemented in the process to 

continuously track the inputs to the extruder or 

help the operator upon start up; another use can 

be as an aid in educating new process engineers 

or operators. 

2.2. Problems 
The first problem is to formulate the first 

iteration of a mathematical model that can be 

used in describing the process. How do the 

process parameters vary with the independent 

variables? Are the inputs the only independent 

variables, and if there are more, do they add 

degrees of freedom or not?  

Software that can fit the model to experimental 

data is needed to tune the process parameters of 

the model. How will this tool be built? How good 

does the model need to be before it can be used 

to achieve the desired result? 

How will the model and data be presented to the 

operator? How will the GUI be built? And what 

information is useful to an operator? 

2.3. Initial approach 
A literature study was conducted to get initial 

information on how the process works and what 

tools there are to solve the problem. The purpose 

was to get an understanding and inspiration on 

how to tackle the task at hand. This literature 

study was continued all throughout the project. 

From the initially gathered information, the 

process would be, roughly, a three-step process. 

First the data will need to be extracted from the 

database where it is located, then a model of 

choice needs to be decided on. The model then 

needs to be fitted to data to see how well it 

performs. This is iterated on until a satisfactory 

model is obtained.  

The model should then be expanded into all 

aspects of the process and tuned so that it has a 

good enough prediction capacity. And if there is 

time and possibility improved as much as 

possible.  

2.4. Additional problems 
From observing the real process and dialog with 

personnel at NKT, the process of obtaining the 

data needed for some of the inputs will be the 

biggest issue when trying to figure out how the 

model should be trained. While there are 

experiments from an earlier job, it is not enough 

to be used as basis for model training. 
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3. Literature study 
The first part of the process is understanding 

what variables affect the two parameters, 

centering, and thickness, in each layer. Are the 

parameters independent or dependent? What are 

the material properties of the layers, and how will 

they affect the model. What previous work has 

been done in modelling similar processes and 

what parameters have been looked at? 

This part aims to explore what plastic extrusion 

is, and how it is utilized in industry, as well as 

what is known about the process of extrusion in 

terms of modelling and simulation. 

3.1. Plastic extrusion 
The extrusion process of polymeric materials is 

an integrated process with many components and 

different processes in a production line. The 

extent of the line may vary a lot depending on the 

application of the product and production 

methods. It is multi-variable dependent, and 

small off-sets in the operating parameters can 

yield useless products. For the plastic to, set 

accordingly; behave in a controllable manner; and 

produce a predictable result, the temperature 

profile in the process must be closely monitored 

and controlled[1]. 

The general process can be compartmentalized 

into a few different steps. First the plastic material 

is received, inspected, and stored. Here an 

overview of the inventory is done, to assure that 

there are no defects other than the expected ones. 

After this the material might go through a 

blending process where additives are added, it 

may also be done previously by the supplier. This 

is done so that the plastic has the right material 

properties for its purpose.  Some resins must be 

dried before entering the extruder to eliminate 

polymer degradation due to moisture or to 

remove condensate of the surface caused by cold 

storage spaces[1, 2]. 

Material is then fed to the extruder; melted mixed 

and ready to be molded. It is then transported to 

the die where it is shaped into the required shape. 

After it has been extruded through the die, it is 

cooled down as it is pulled away from the die at 

constant speed, to attain the right shape and cross 

section. Secondary operations are normally 

applied after the puller[1].  The product is then 

inspected for defects and quality assured before it 

is shipped to the customer[1].  

In wire coating, an extrusion method known as 

coextrusion is used to achieve the required 

characteristics and electrical properties in the 

wire. Coextrusion is achieved by having several 

extrusion-dies extrude onto each other in a 

simultaneous fashion.  

The adhesion between the layers is driven by 

process factors, assuming an appropriate tie layer 

has been applied. The four major factors are tie 

layer thickness, functionality in the tie layer, melt 

temperature and contact time[3]. 

3.2. Parameters 
Modelling of the process parameters centering, 

and layer thickness, seems to have varying 

complexity and differ a lot in terms of modelling. 

While the thickness seems to be somewhat easy 

to model, the initial centering of the cable is 

not[2]. An image describing these measurements 

is displayed below in figure 3.1.  

The centering of the layers around the conductor 

is a process that is very non-linear and hard to 

predict with linear approximations. If this was the 

only problem a model could be made with 

presumably little difficulty using various 

methods, e.g. the extreme learning machine, as 

has been done previously[4], but to a different set 

of inputs. The tuning screws for the distributor 

walls are, however, an analogue input and are not 

monitored, making it difficult to estimate the 

impact of each input on the extruder. And fitting 

a model without the right training data can prove 

to be difficult. 

3.3. Utilization in the cable industry 
In the cable industry, extrusion can be utilized 

when creating the insulation and semi conductive 

layers in the cables.  

The first step in the process involves melting the 

plastic that is to be extruded; it comes as granules 

that need to be tightly sealed from the outside to 

prevent contamination of the insulation that 

might cause performance loss[2]. The molten 

plastic is then transported to the extrusion die 

where it is pressed out in the shape that it is 

supposed to have. All the layers are typically co-

extruded around the conductor and dimensions 

are closely monitored[1].
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Figure 3.1: Image displaying the cross-section of the cable and the thickness as well as a display of what poor centering may 
look like. The bottom left of the picture shows a stylized picture of the real cable cross-section, and the bottom right shows 
which part is being modelled. 
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3.4. Extrusion modelling 
Previous work has been done to try and model 

different types of extruder processes. K.S Boparai 

et al.[5],  have modelled an extrusion process 

called fused deposition modeling, a type of 3D 

printing procedure. They utilized a response 

surface methodology (RSM), which is a statistical 

way of exploring the interconnectivity and 

relations between independent variables and a 

response variable[5]. The procedure can be 

viewed mathematically according to eq 3.1. 

𝑌 = 𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4… , 𝑥𝑛) ± 𝜀 

𝜂 = 𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4… , 𝑥𝑛) 
𝑌 =  𝜂 ± 𝜀 

 
3.1 

 

Where 𝑌 is the desired response function and  𝑓 

is the function of independent input variables 𝑥, 

𝜂 is the response surface, and 𝜀 is the fitting error. 

The response surface represents the expected 

response from the input set. The functional 

relationship can be determined by selecting a 

polynomial of higher order[5, 6]. They proposed 

a second order polynomial as the approximation 

for the response function. It can be written 

mathematically as eq 3.2. 

𝑌 = 𝑎0 +∑𝑎𝑖𝑥𝑖

𝑛

𝑖=1

+∑𝑎𝑖𝑖𝑥𝑖
2

𝑛

𝑖=1

+∑𝑎𝑖𝑗𝑥𝑖𝑥𝑗

𝑛

𝑖<𝑗

+ 𝜀 
 
3.2 
 

Where 𝑎𝑖 is the linear effect of 𝑥𝑖, 𝑎𝑖𝑖 is the 

quadratic effect of 𝑥𝑖 and 𝑎𝑖𝑗 and reveals the 

linear-by-linear interaction between 𝑥𝑖 and 𝑥𝑗. 

The resulting response model accurately fit the 

experimental data and the goodness of fit was 

acceptable[5]. 

3.5. Extrusion control 
Other attempts at modeling extruders have been 

made in attempts to control the process. 

Specifically in the cable extrusion industry 

attempts at automating conductor centering, and 

layer thickness tuning have been made. 

Hui Li et al.[4], has done research on cable 

extrusion control, utilizing the Extreme learning 

machine (ELM) to program a Heuristic dynamic 

programming controller (HDP) for a system like 

the one shown in figure 3.2. 

 
Figure 3.2: Image of single screw plastic extruder blue 
print. [4] 

3.5.1 Extreme learning machine 
The ELM concept is essentially a single feed 

forward neural network; A standard feedforward 

network (SLFN) with L hidden neurons (nodes), 

and 𝑁 arbitrary samples (𝑥𝑖and 𝑡𝑖) can be written 

as eq 3.3. 

𝑥𝑖 = [𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑛]
𝑇 ∈ 𝑅𝑛, 𝑁 ≠ 𝑛   

𝑡𝑖 = [𝑡𝑖1, 𝑡𝑖2, … , 𝑡𝑖𝑚]
𝑇 ∈ 𝑅𝑚 

∑𝛽𝑗𝑔(𝑤𝑗 ⋅ 𝑥𝑖 + 𝑏𝑗) = 𝑜𝑖 , 𝑖 = 1, … , 𝑁

𝐿

𝑗=1

 

(𝛽𝑗, 𝑏𝑗)  ∈ 𝑅 

[4, 7] 
 

 
 
3.3 
 

Where 𝑥𝑖 and 𝑡𝑖 are input and target values. 𝑜𝑖 is 

the output of the ELM and 𝑤𝑗 is the input 

weight-matrix between the hidden layer neurons 

and the input layer neurons. 𝑔 is the activation 

function for the hidden layer which can be a 

number of nonlinear functions, e.g., sigmoid or 

multi-quadratic; 𝑏𝑗 is the bias for the hidden 

neurons and 𝛽 is the output weight-matrix[7]. 

The learning process of the ELM is basically to 

minimize an error, most commonly a mean 

square error between the output of the ELM and 

the expected target value. It can be depicted 

mathematically as equation 3.4. 

𝐸 =∑(𝑜𝑖 − 𝑡𝑖)
2

𝐿

𝑗=1

, 𝑖 = 1,… ,𝑁 

 

 
3.4 
 

Where 𝐸 is the error that is to be minimized. The 

prediction model of the extruder was based on 

the ELM. 
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3.5.2 Improving the ELM 
The robustness of the ELM can be further 

improved by utilizing the theory of Bartlett[8]. It 

states that the robustness of the ELM increases 

when the norm of the output weights decreases. 

This gives rise to a new optimization problem by 

utilizing ridge regression in the ELM seen in eq 

3.5[9]. 

𝐸 = 𝑜𝑖 − 𝑡𝑖, 𝑖 = 1,… ,𝑁 
𝑚𝑖𝑛

𝐸, 𝛽
 
1

2
‖𝛽‖2

2 + 𝐶 
1

2
‖𝐸‖2

2 

 

 
3.5 
 

Since the problem is no longer a simple least 

square minimization with respect to only the 

prediction error the MP pseudo inverse of the 

hidden layer matrix can no longer be used to 

calculate the output weights. Instead, the solution 

can be obtained by equation 3.6[10]. 

𝛽 =  (
𝐼

𝐶
+ 𝐻𝑇𝐻)

−1

𝐻𝑇𝑌, L < N 

𝛽 =  𝐻𝑇 (
𝐼

𝐶
+ 𝐻𝐻𝑇)

−1

⋅ 𝑌, L > N 

𝐻 = [
ℎ(𝑥1)
⋮

ℎ(𝑥𝑁)
] 

ℎ = 𝑔(𝑎𝑗 ⋅ 𝑥𝑖 + 𝑏𝑗) 
 

 
 
 
3.6 
 

Where 𝐶 is the error penalty factor, or 

generalization factor, determining how much 

weight should be put on model accuracy[10]. 

3.5.3 Heuristic dynamic programing 
The prediction model achieved based on the 

ELM could accurately fit the experimental data 

from the extruder and gave a good description of 

the real process, even better than some back 

propagation network that it was evaluated 

against[4]. 

An HDP controller was created based on the 

ELM prediction model. The purpose of the 

Model network in HDP is to predict the next 

state of the system. It is then implemented in an 

HDP learning algorithm which sets the weights 

of the different learning machines by letting the 

states propagate forward through the network 

until the weights minimize a cost function[4].  

3.5.4 How good is ELM for cable extrusion 

control? 
Hui Li et al., concluded in their report that the 

ELM based HDP controller could accurately fit 

the experimental data and program the weights of 

the HDP, thus making it possible to control the 

extruder in this way. 

3.6. The Deep ELM 
When on the topic of ELMs and their ability to 

train single feed forward networks quickly and 

accurately with good generalization, it is worth 

exploring the value of Deep Extreme Learning 

Machine (DELM). To understand the DELM, 

the individual parts of the algorithm must first be 

explored.  

3.6.1 The Autoencoder ELM 
The first key in training a multi-layered ELM is to 

have some way of producing unsupervised inputs 

for each hidden layer of the ELM. This is done 

with an Autoencoder ELM(ELM-AE). It works 

by first encoding the inputs into a feature space, 

and then reconstructs the original data as best as 

possible through least square optimization. This 

generates the parameters of the hidden layers, by 

repeated process[10]. The whole process can be 

described as equation 3.7. 

𝑥𝑖 = [𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑛]
𝑇 ∈ 𝑅𝑛, 𝑁 ≠ 𝑛  

∑𝛽𝑔(𝑎𝑗 ⋅ 𝑥𝑖 + 𝑏𝑗) = 𝑥𝑖
𝑇 , 𝑖 = 1,… ,𝑁

𝐿

𝑗=1

 

𝑎𝑇𝑎 = 𝐼, 𝑏𝑇𝑏 = 1 

 
 
3.7 
 

The autoencoder lets the algorithm learn 

unsupervised, meaning it is not constrained to 

finding a solution. This means it is trained to 

unknown or hidden patterns in the training data 

sets. So the key feature that discerns ELM-AE 

from the regular ELM is that the input weights 

and biases are orthogonal matrixes, and that it 

finds patterns and clusters without a set 

direction[10]. Since this way of programming the 

hidden layers does not require backpropagation 

or tuning, it also retains the fast-rendering speeds 

of the ELM while still adding the ability to 

increase resolution of noisy and outlier data from 

the autoencoder[10]. 

3.6.2 Solving the output layer 
The next step in the DELM is to solve the output 

layer by minimizing the least square mean error. 

As with a normal ELM, it can be solved by 
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finding the solution to the problem in equation 

3.8. 

𝛽 =  (𝐻𝑇𝐻)−1𝐻𝑇𝑌, L < N 
 

𝛽 =  𝐻𝑇(𝐻𝐻𝑇)−1 ⋅ 𝑌, L > N 

𝐻 = [
ℎ(𝑥1)
⋮

ℎ(𝑥𝑁)
] 

 
 
3.8 
 

Which can be done, as stated previously, by 

computing the Moore Penrose inverse of the last 

hidden layer matrix, or as in eq 3.6. if a 

regularization parameter is used. Another 

approach would be to treat the last hidden layer 

as an unknown and introduce a kernel instead[9, 

10]. This would be done as equation 3.9[10]. 

ℎ(𝑥𝑖)𝐻 = 𝐾𝐸𝐿𝑀,𝑖 = [
𝐾(𝑥𝑖, 𝑥1)

⋮
𝐾(𝑥𝑖, 𝑥𝑁)

] 

Ω𝐸𝐿𝑀 = 𝐻𝐻𝑇= [𝐾𝐸𝐿𝑀,1…𝐾𝐸𝐿𝑀,𝑁] 
 

𝐻𝛽 =  𝐾𝐸𝐿𝑀 (
𝐼

𝐶
+ Ω𝐸𝐿𝑀)

−1

𝑌 

 

 
 
 
3.9 
 

The kernel function 𝐾 can be chosen among 

several different ones depending on what the 

machine is trying to do. This version of an ELM 

with a kernel is known as KELM or Kernel 

ELM[9, 10]. Introducing a kernel is generally 

done when the machine is unsure if the input it is 

given is incorrect or not and is more common in 

classification problems. 

The last hidden layer would then be the inputs to 

the ELM, or KELM in the specific case of the 

DELM[10]. This proposed way of creating a deep 

ELM is depicted below in figure 3.3. 

Each hidden layer acts as the input for the next 

and is trained sequentially by the ELM-AE. All 

layers except the last are therefore trained 

unsupervised while the last layer is 

supervised[10]. 

3.7. Historian data retrieval 
Wonderware Historian receives SQL queries 

from clients through its Data Retrieval 

subsystems, which can locate the requested data 

and perform the needed processing of the data. 

In the case of configuration and event data, 

normal SQL queries can be used since the data is 

stored inside SQL Server database tables. 

Historical data must be retrieved from history 

blocks and then sent to clients as if it is stored in 

SQL Server tables. 

The retrieval subsystem features include support 

for queries with all tag types, meaning all tag types 

can be included in the same query when retrieving 

data from the history table. Any combination of 

tags can be submitted in a single query. The 

strings can be of both fixed and variable length; 

All internal time computation and manipulation 

is done using the Win32 FILETIME type. The 

Resolution of FILETIME is 100 nanoseconds. All 

times are handled internally as UTC but the 

conversion to and from local time are handled 

going in and out of retrieval, so the external 

interface is local time[11]. 

3.8. Measuring equipment 
To measure the layer thickness at four points 

perpendicular to each other in the extruder layers, 

NKT uses Sikora X-RAY 8000 with an addition 

for NXT. This type is specifically made to use in 

measuring medium, high and extra high voltage 

cables with e.g., XLPE as insulation. The 

measuring accuracy of the instrument is ±15 𝜇𝑚, 

but is done on the hot measurements, and the 

data that is logged is the converted cold 

measurements of the cable[2, 12]. 

[The following section has been left empty on purpose] 

.
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Fig 3.3: Overarching structure of Deep Extreme Learning Machine algorithm and training of Auto Encoders. [10] 
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4. Project and method 
At the start of the project a visit to NKT was 

conducted where the process was observed up 

close together with dialog with NKT engineers. 

This gave a lot of insight into what parts of the 

project would prove useful, and possible to 

achieve. The first iteration action plan was 

therefore altered somewhat in accordance with 

the new information. 

4.1. What is useful? 
The initial project formulation described the 

goals as being a pretty much finished model that 

can simulate the centering and the thickness. But 

after the literature study, this was pushed off as a 

“best case scenario” and a set of new goals were 

added.  

A software that can teach and simplify the 

operating of the extruder head would provide 

useful; this would not require the modelling of 

the full process but only the effect of the tuning 

screws on the layer thickness. While such a tool 

would serve little purpose to an experienced 

operator, it would be a handy tool for new 

operators to quickly learn how the tuning should 

be done.  

Making a model and proving that it can predict 

the data and generalize over a greater span with 

high accuracy, even if the training data cannot be 

acquired in full would still provide useful 

intelligence but also a place from where it is 

possible to continue work on gathering data, that 

then can be used in training the model. Hence a 

training tool that can be used by other people 

with minimal learning, should be designed. 

The initially proposed two models, based on 

physical components and properties as a 

continuous model equation were abandoned 

since it was clear that a black-box approach was 

needed due to the lack of knowledge of the 

intricacies of the process. 

4.2. Process 
The extruders that are going to be modelled are 

triple head extruders, that co-extrude the 2 semi-

conducting layers and the insulation layer at the 

same time onto the conductor.  

The initial part of the process involves feeding 

plastic granules to a hopper that melts the plastic 

material. They are then tempered and extruded 

onto the conductor with the three extrusion 

heads. 

The position of the cable in the extrusion head is 

tuned using in total twelve screws, turned to set 

the position of the die distributors. The centering 

is usually done at startup of the process. These 

screws are not monitored through any input and 

are analogue in their function[2]. 

The crosslinking of the polymer is what gives the 

cables its mechanical properties. It takes place in 

a vulcanization zone right after the extrusion 

head. Once the polymer has been crosslinked that 

cable is set, and there is no way to change the 

composition of the cable.  

4.3. Insulation 
The reason for insulation in the cables is to lower 

the magnetic field interferences. This is done so 

that a higher transmission voltage can be put over 

the cable, which will make for less losses in the 

cable over long distances. Insulation is generally 

accompanied by Semi-conducting layers to 

smoothen the resistance gap between the 

insulation and the conductive layers[2, 13]. 

4.4. XLPE 
The insulation material that is used in the cables 

is cross linked polyethylene (XLPE). The 

vulcanization process of the polymer starts with 

a catalyzing agent, a peroxide (commonly DCP), 

and a Low-Density Polyethylene (LDPE). The 

DCP forms a free radical when exposed to heat 

and steals one of the hydrogen atoms from the 

LDPE. This lets the LDPE create a bond with 

other hydrogen sparce LDPE and create a 

crosslinking structure[14]. The process can be 

seen below in figure 4.1. 

 
 

 
Figure 4.1: XLPE synthesis with DCP and LDPE. [14] 
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It is important to carefully monitor the extruder 

screw and die temperatures to avoid degradation 

of the XLPE, but still keep it in a molten state 

where it can be extruded at the correct pressure 

profile in the die barrel and  the crosshead[15]. 

Since the process is catalyzed with a peroxide, the 

turnover of peroxide can be measured to obtain 

the degree of cross linking in the cable. If the 

degree of cross linking is too low, the cable is 

scrapped[2]. 

Because of the mechanical effects, shape memory 

etcetera, of the crosslinked polymer, it is 

important that the reaction only takes place 

within the vulcanization zone of the line. If the 

cross linking happens to early, or in the extruder 

screw itself, the cable will be ruined. This calls for 

careful manipulation and control of the 

temperature gradient through the extrusion line. 

The number of vulcanization zones also vary 

between different extruders [2]. 

The cross-linking process is well understood and 

the effects of the cross-linking on the layer 

dimensions and position can be very accurately 

calculated. Thus, the measurements taken from 

the melt, right after the extrusion head, can be 

used to calculate the final dimensions of the semi-

conductive and insulating layer. 

4.5. Making the software 
The first part of making the software is to read 

the data from NKT’s database to the machine 

kernel. The data is then going to be used to fit a 

mathematical model that will be used to simulate 

the process. 

NKT uses an SQL Historian database where all 

the signal data is stored. To get the data from the 

database a python package called pandas was 

used and, after the data is downloaded and sorted, 

it is returned as a pandas dataframe. The data 

was queried from the database using pyodbc, 

which is a built-in function in python. 

Since the historian database only registers 

changes in the process when the change is 

sufficiently large, data can be sparce with a lot of 

time between the data points. Thus, the software 

would need to handle both the raw data and 

interpolated data. 

The actual interpolation of the data is done locally 

on the database by a function written by NKT. 

The interpolations are linear but should describe 

the real data sufficiently. 

This is all created in a function called, getdata 

or getdatainterp for the interpolated data. 

These functions build a string, using database tags 

and time stamps. This is done according to how 

the local function is designed to pass the inputs. 

The functions are part of the Functions 

package created for the project. 

After the literature study, as previously 

mentioned, it was apparent that a model 

formulation based on physical components and 

material properties would be close to impossible 

to achieve. A different approach was therefore 

adopted with a response surface methodology, 

where different types of polynomials are fitted to 

the data instead, to see if the dynamic could be 

described by a polynomial model. 

4.6. UI for choosing training sets 
As described  in section 3, the Wonder Works 

Historian client does the time conversion and 

handling of historical data blocks, so a normal 

query with tag names and time stamps in local 

time can be used to query the data from the 

database. 

For this an interface called Training Wheels 

was created. It lets the user choose a time stamp 

according to a template. It also lets the user 

choose which output tag the model is going to 

use as a target variable for the training. This 

means that the model can be trained to each 

variable at a time. Depending on what type of 

model is to be fitted, the interface lets the user 

decide on what parameters should be used in the 

training. It is depicted below in figure 4.2.  

[The following section has been left empty on purpose]
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Figure 4.2: Image of Training Wheels interface created for the project. 

The plotting part of the interface is there to detect 

anomalies in data and give a quick glimpse of the 

prediction and how good the fit is, but it needs to 

be compared with other metrics to determine 

model accuracy. During the training, the 

predictions of the model are plotted together 

with the actual logged output of the process. The 

feature is only meant to give the user a first grasp, 

and to understand the fit, the RMSE of the model 

needs to be looked at as well, together with an 

analysis of the data sets. 

The UI also gives the user an option to fit all the 

parameters of the model at once. While running, 

the UI updates the user on where in the training 

process it is by telling the user which output it is 

training to and if it is in the process of reading 

data from the database or calculating the least 

square fit. 

4.7. Polynomial regression model 
The polynomial regression model was introduced 

to see if such a model could accurately describe 

the, straight forward, but complex dynamics of 

the extruder. The model was implemented using 

linear regression as a base. 

First the fitting data was transformed into 

polynomial feature form according to equation 

4.1. 

𝑥 = (𝑥1𝑖, … , 𝑥𝑛𝑖), 𝑖 = 1,… ,𝑀  

𝐶 =

[
 
 
 
 
 
 
11 ⋯ ∏𝑥1𝑖

𝑑𝑖

𝑀

𝑖=1

⋮ ⋱ ⋮

1𝑛 ⋯ ∏𝑥𝑛𝑖
𝑑𝑖

𝑀

𝑖=1 ]
 
 
 
 
 
 

, 𝑠. 𝑡.∑𝑑𝑖 = 𝑑 

 

 
 
 
 
4.1 
 

Where 𝑥𝑖 is the input, and 𝑖 represents the nr of 

the input for 𝑀 inputs. 𝐶 is a polynomial matrix 

that contains the evaluation of each term in the 

polynomial based on the inputs, for every set of 

inputs 𝑖. 𝑑 is the degree of the polynomial. 

This transformed data is then split into training 

sets and test sets. It is done to try to avoid an 

overfitting problem. The training set is used to fit 

coefficients of a polynomial of degree 𝑑 

according to equation 4.2. This was done using 

the SKlearn function PolynomialFeatures 

together with fit_transform. 
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𝑃 = (𝑐1, … , 𝑐𝑗)  

𝑃𝐶 =

[
 
 
 
 
 
 
𝑐111 ⋯ 𝑐𝑗∏𝑥1𝑖

𝑑𝑖

𝑀

𝑖=1

⋮ ⋱ ⋮

𝑐11𝑛 ⋯ 𝑐𝑗∏𝑥𝑛𝑖
𝑑𝑖

𝑀

𝑖=1 ]
 
 
 
 
 
 

, 𝑠. 𝑡.∑𝑑𝑖 = 𝑑 

  
 
 
4.2 
 

Where 𝑗 is the nr of polynomial terms and 𝑃 is a 

vector with the coefficients of the polynomial. The 

model used to fit the polynomial is a linear 

regression model function called 

LinearRegression. 

4.8. ELM model 
The ELM was built manually in python and 

training sets were constructed with the help of 

SciKit-Learn. It was implemented as 

described in equation 3.3, with iteration over the 

number of hidden nodes that would best fit the 

data while avoiding over-fit. The learning process 

was a Mean Square Error minimization problem, 

where the data sets were split up into training sets 

and test sets, with a ratio of 70:30, and tried over 

different random initializations of the network; 

The optimal number of hidden nodes varied for 

each output signal. 

The resulting ELM model consists of a set of 

input weights, output weights and biases for each 

output that is being measured in the extruder 

head. An illustration of the model can be seen in 

Fig 4.3. 

 
Figure 4.3: ELM model structure. 

The model was trained to a few different data sets 

with a single time stamp to see if the training 

algorithm worked. The resulting model is 

described in equation 4.3. 

𝑥𝑐𝑒 = [𝑥𝑐𝑒1, … , 𝑥𝑐𝑒12]
𝑇 

𝑥 = [𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥𝑐𝑒]
𝑇 ∈ 𝑅𝑛 

ℎ = 𝑔(𝑤𝑗 ⋅ 𝑥 + 𝑏𝑗) 

∑𝛽𝑗𝐻 = 𝑜 

𝐿

𝑗=1

 

 
 
 
4.3 
 

 

With 𝑥𝑐𝑒 representing all the inputs from the 

twelve centering screws and 𝑥 the complete set of 

inputs. 

The model output weight is computed 

analytically using the Moore-Penrose inverse, 

seen in equation 4.4. The implementation of this 

in python is done using the scipy function 

Pinv. Depending on how the network is 

initialized, it can generate different output 

matrixes 𝛽, which does seem to influence the 

generalization capabilities of the model. 

𝐻† =  𝑝𝑠𝑒𝑢𝑑𝑜 𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑜𝑓 𝐻 

𝐻 = 𝑔(𝑤𝑗 ⋅ 𝑥𝑖 + 𝑏𝑗)  

𝛽 =  𝐻†𝑌 

 

 
4.4 
 

Where 𝑌 is the training set outputs values of the 

process, for each input set 𝑖. 𝐻 is a vector 

containing the value of all transformations for all 

inputs and hidden nodes. 

The model is then written to text files that store 

the output weights, input weights and the biases. 

This is done using the function savetxt in 

python. Since the model is written as strings, it 

needs to be reverted to a pandas dataframe 

when calling the model. To achieve this, the 

strings are split at select points and sorted into a 

list, the list is then converted into a dataframe. 

Each string is then converted to a float using 

float. 

The reason the ELM was favored in this project 

over a classical back-propagation algorithm with 

gradient tuning is due to the lack of time and need 

for fast training. 

4.9. A model of two parts 
While working on the model, it became apparent 

that it would be difficult to obtain any data at all 

from the centering screws. So, to be able to 

continue the project a new direction was taken. 

To be able to train the model, while lacking 

critical data from some of the inputs it was 

divided into two parts. 

The first part of the model is only trained to data 

sets where there is no centering done. It is 

basically a model that only describes the output 

as a function of the three screw motor speeds and 

the line speed, in total four inputs. 
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The second part of the model would be 

describing the output as function of the centering 

screws, or the angles between the conductor and 

the distributors in the extruder head.  

These two parts could then be combined into a 

single model, describing the full extruder head. 

This would be done by letting the output of the 

first part be part of the input of the second part. 

The model can be seen in figure 4.4.  

 
Figure 4.4: Illustration of the full model, combined from 
two separatley trained models. 

The postulated upside with this approach is that, 

even if one part of the model works poorly, the 

other one would still work independently of the 

other, since they would be trained independently. 

And both parts could be simulated and evaluated 

separately, since they are each technically a full 

model, some of the inputs are just unknowns. It 

would however require the extruder to be run at 

the specific conditions that fit each part of the 

model to simulate it as one unit. 

So, to conclude, the centering part (second part) 

of the model will only work in the linear regions 

of the motor and line speeds that the first part of 

the model works on, and vice versa. The window 

of where this working region for the second part 

of the model is, is unknown in the current 

training algorithm and the two parts can’t be 

combined unless it is. 

4.10. Finding the first training sets 
The difficult part of this project was to find the 

appropriate data sets to use as training sets for the 

model. The following idea was formulated to find 

good enough data sets for the first part of the 

model, and the shortcomings they will have, to 

still be able to evaluate if the model works well 

enough. 

4.10.1 Data acquisition first part 
Depending on what type of cable is produced in 

each extruder, different tools are used for the 

extruder heads. These tools might influence the 

process, but little is known about the specific 

effects. Because of this, the test sets should 

include at least one data set that has a 

heterogeneous tool set, or it will most likely be 

slightly over-fitted to a specific toolset. Another 

way of getting around the problem is training the 

model to only homogeneous sets and create 

several models for different setups. Alas, these 

toolsets are not a part of the model and therefore, 

all the data sets need to belong to the same type 

of cable; the specifics of the cable and the 

properties might vary with the cable type. This 

should be done to avoid model errors due to an 

input (toolset) that is not captured by the model.  

The reason that the toolsets are not included as 

inputs is because of time constraints and access 

constraints. It is, however, something that could 

be added if the data is accessible. Worth noting is 

that the model might fit the data quite well from 

different tool sets, even though it doesn’t 

recognize it as a parameter, if the difference in 

output dependance on each tool set is small. 

Since the data that is logged on to the database 

doesn’t include the manual centering screws, each 

set must only contain a period where there was 

no centering done at all. This should not be too 

hard to capture since most operators only start 

centering after the line is running at operating 

conditions. This can be double checked by 

plotting the dataset to see if there is collinearity 

with the motor speeds. 

Thus, the time stamps were initially chosen to a 

line start of the process. A line start is where they 

fire up the extruders and increase the speed of the 

motor and line to the operating point. 

However since the process doesn’t completely 

stabilize until a couple of hours after the start[2], 

it also introduces a new constraint on the data 

sets used in training. Initially it was postulated 

that this dynamic would be captured by the model 

as it was trained to line starts only, however since 
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it is dependent on both parts of the model, the 

training sets for both parts would need to be from 

the process when it is stable and when it is not, 

since the model won’t know the difference in the 

unknown input, it just knows there is a difference. 

But the data still needs to be taken from a run 

where no centering has been done, which means 

a data set where no centering has been done for 

the full duration of the line would need to be 

found. This is neigh impossible, since it can’t be 

seen by plotting it, since the collinear 

relationships method fails as noise together with 

the slow dynamic of the extruder makes it hard to 

see if there is any correlation. 

The last difficulty is to capture the full effect of 

different base settings. A base setting will be 

defined here as the state that the extruder head is 

in as the process is started. This entails the 

centering screw positions and distributor toolset 

used. To make this happen, each training set 

should contain a different base setting. This is 

very hard to achieve since the data is not logged 

anywhere or noted by the operators. For 

example, in one case they might keep the settings 

they had on the previous run because it already 

had good centering, and in some cases the head 

has been taken apart between line starts and has 

a different setting[2]. This means that the model 

might have a hidden bias towards a certain setting 

which will later turn up in validation. 

One con in only getting the data from successful 

runs is that each cable has a “recipe” which is 

used to get the right cable dimensions. This 

means that the model only works in specific linear 

combinations of the motor and lines speeds if it 

doesn’t generalize well enough. It is a problem if 

the model should be used to simulate changes 

outside of these linear ranges. 

So, if data sets that follow all these criteria can be 

found, it should allow the first part of the model 

to work independently of the second and 

simulate the model in a specific working range 

which would allow it to also be validated. 

4.10.2 Data for second part 
The only data available for the second part that is 

extensive enough(barely) to use as training for the 

second part of the model is an old test run made 

in an old job, so the model will have to do with 

that.  

4.10.3 Trend 
The program used to find the time stamps for 

each data set that is going to be used in training 

is called Trend and the interface is shown in 

figure 4.5. 

 
Figure 4.5: Trend interface used to find data sets. 
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The data is plotted as a line graph with a 

normalized value on the y-axis. Each tag is 

displayed in its own unit. 

4.11. The optimal model 
The optimal approach, when training the neural 

network would be to train the whole model 

simultaneously to all the input variables. This 

would create a much simpler learning algorithm 

and it would be much simpler to implement. It 

would also be easy to implement a discrete time 

derivative in the training sets as well, to better 

capture the dynamics of the system as it is 

simulated. 

4.12. Simulating the model  
When the model is trained and ready, a simulation 

GUI can read the model from the text files and 

save it. The model is then passed to a response 

function together with inputs from the simulation 

GUI, where the motor speeds, line speed, and the 

centering screws can be adjusted. The response 

function solves the model and returns the model 

output to the simulation GUI and plots it. 

To view a sort of instant response of the system, 

this loop is then animated to generate time 

invariant responses to the inputs, and plotted vs 

a timeline. This means that the timeline does not 

show the actual response time of the system only 

the input time, since the real system is slow, and 

has delayed reactions to the inputs being given. It 

shows the slow input response instantly, which 

can be crucial if the model is to be used as an 

operating aid in the future and fast inputs are 

needed to not go below nominal layer thickness. 

The model can also be simulated in discrete time 

by returning the output of the model as an input. 

The model then needs to be trained to the 

discrete time derivative, by shifting the training 

vector by one step, making each input vs output 

response a discrete time derivative of the time 

between each measurement. This shift is 

described in equation 4.5. 

𝑥𝑖 = [

𝑥1,1, 𝑥1,2, … , 𝑥1,𝑛
⋮

𝑥𝑁−1,1, 𝑥𝑁−1,2, … , 𝑥𝑁−1,𝑛
] ∈ 𝑅𝑛   

𝑡𝑖 = [

𝑥2,1, 𝑥2,2, … , 𝑥2,𝑛
⋮

𝑥𝑁,1, 𝑥𝑁,2, … , 𝑥𝑁,𝑛
] ∈ 𝑅𝑚 

𝑇 = 30𝑠, 𝑁 ≠ 𝑛 

 
 
 
4.5 
 

Where 𝑇 is the real time between each data point 

and represents the discrete time step. It must be 

noted however that to get such a discrete time 

response the training data needs to be 

interpolated to generate equal time steps. 

Since the model is not trained to a time variable, 

it would only be possible to show the actual time 

response of the system if a time variable was 

added to the model, to keep track of the 

measuring delay. This is not possible since it 

would require a much better understanding of the 

process and how it varies in real time, and 

equations of the dynamics formulated. 

The full GUI exists in three parts. The first part 

is the training environment, where the model can 

be retrained to different data sets. Then there is 

the simulation of the Xray signals as a line graph, 

with the nominal values of the layers. Then the 

last part is a centering UI which shows the cross 

section of the cable and how it changes with the 

extruder inputs.  

The purpose of the line graph simulation is to 

show a clearer image of how far off from the 

nominal value the extruder output is, to give a 

more intuitive picture of how good the layer 

thickness is in the cable. An image of the line 

graph simulation is shown below in figure 4.6. 

The centering GUI calculates each layer cross 

section based on the values of the simulated Xray 

signals. This means that it won’t show an accurate 

representation of what the cross section looks 

like, but rather show the trend of how it changes 

when inputs are changed.

 
 
 
 
 
 
 

 



15 
 

 
Figure 4.6: Line graph simulator of layer thickness Xray measurements. This is an unfinished itteration. The motor 
and line speeds have been blocked due to confidentiality. 

4.13. Cross-section graphics  
While it, at first glance, might not seem like too 

big of an issue, it turns out that it is quite difficult 

to show a graphical representation of the cable 

cross sections, by just going off 4 values. The 

question then becomes, how can the cross 

section of each one of the layers be calculated 

from only the 4 points of measurement that is 

available and still show an intuitive picture of how 

the conductor moves within the cable. 

First an approach where a circle was divided into 

4 parts; each part is a quarter slice of the circle 

calculated by making a circle section between 

each combination of nearby data points. The data 

points in question are the 4-layer thickness values 

represented as coordinates in the plot. This 

approach didn’t really give an intuitive picture of 

how the centering of the layers around the 

conductor moves as the layer thickness varies. 

So instead of drawing the circle sections as 

mentioned above, the circle was first drawn as a 

perfect circle based on the average radius of the 

circle assuming it is completely symmetrical. 

Then it is distorted by the ratio between the actual 

distance from the center of the perfect circle to 

the measured point in each direction, and the 

radius of the prefect circle. This is done for all 

four of the data points. Finally, the circle is 

moved on the plot so that the center of the circle 

is where the center of the perfect circle would be 

if the data points of the perfect circle would align 

with the actual data points, basically a moving 

oval. 

Along with this, small text windows are placed at 

roughly the point of each measured output in the 

circle, which show the value of the output. Unlike 

the line graph, this figure is animated at a set 

interval together with a discrete time signal and 

shows the discrete time response of an input 

change but speed up to about 30 times the real 

discrete time step. It can be seen below in figure 

4.7. 

The screw inputs are in the real process tied 

together and the corresponding backside screw 

should be changed to match its frontside screw. 

The position of each extruder is shown as well to 

give a better view of where the cable is in real 

space.  
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Figure 4.7: Image of the centering simulation tool, the line speeds and motor speeds have been blocked from 
view due to confidentiality. 

4.14. Improved model-robustness 
To further increase the robustness of the model, 

to reduce error propagation and increase the 

generalization, the model was expanded to 

include a robustness parameter also known as a 

regularization parameter. This method is known 

as ridge regression. Since the Moore Penrose 

pseudo inverse can no longer be used to calculate 

the least square, a function calculating it had to be 

added. The function calculates the least square 

solution and thus the semi-inverse of the dual 

optimization problem according to equation 4.6. 

𝐻−1 = 

{
 
 

 
 (
𝐼

𝐶
+ 𝐻𝑇𝐻)

−1

⋅ 𝐻𝑇 , 𝐿 < 𝑁

𝐻𝑇 (
𝐼

𝐶
+ 𝐻𝐻𝑇)

−1

, 𝐿 > 𝑁

𝐻−1, 𝐿 = 𝑁
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Where 𝐶 is the regularization parameter. This 

approach forces the model to not overfit the 

training data, by giving a penalty to the size of 

magnitude of the output weights.  

While the model is now quite robust for the data 

fitting, it still can’t solve the issue of underlying 

data patterns and with the second part taking 

outputs and returning them as inputs for the next 

iteration of the process simulation, this will still 

give cause to error propagation when the model 

receives outlier inputs outside the range of where 

it is trained, since the inputs are unknown. To 

solve this the model is once again expanded, this 

time into a deep learning algorithm. 

4.15. Deep learning dual ELM 
The deep learning model is built on the theory of 

ELM and takes inspiration from the Deep 

Learning Extreme Learning Machine. The model 

uses a total of six hidden layers where four are 

trained unsupervised and two are trained 

supervised. Once again, the direction of utilizing 

a non-propagating training algorithm is due to a 

lack of time and the need for quick retraining. 

The hidden layers were introduced to help cluster 

inaccurate data in the second part. 

The overarching structure of the model is the 

same as the first model, with two independent 

parts. And to combine them. it would then take 

the output of the first part as part of the input in 

the second part just like in the first model 

iteration. 

To train the unsupervised layers, an autoencoder 

ELM is used. It is implemented in the same way 

as described in equation 3.7. To create the 

autoencoder input layers SciPy’s function 

ortho_group is used. To create the biases, a 

gaussian random matrix is created and each 
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element is squared. Each element in the matrix is 

then divided by the norm of the vector. Lastly to 

regain the initial distribution, each element is 

square rooted, and the sign of the original value 

is restored. The output layer is then calculated 

with equation 4.6. Each layer is trained to the 

output of the previous layer according to 

equation 4.7. The unsupervised layers are all but 

the last, for 𝑉 number of layers. 

𝐻𝑖 = 𝑎𝑖 ⋅ 𝑋𝑖 + 𝐵, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑖𝑛𝑝𝑢𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 𝑋 

𝑋𝑖 = 𝑣𝐻𝑖 , 𝑖 = 1, … , 𝑉 − 1  
𝑋𝑖+1 = 𝑔𝑣𝑋𝑖 
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Where 𝑔 is the activation function, which is a 

standard rectified linear unit function, 𝐵 is the 

bias, 𝑣 is the weights and 𝑎 is the AE input 

weights. The last layer is trained by an ELM with 

a regularization parameter. The resulting model is 

described in equation 4.8 and shown in figure 4.8. 

𝐻𝑉 = 𝑋∏𝑣𝑖𝑔

𝑉−1

𝑖=1

 

𝑌 = 𝛽 ∙  𝐾(𝐻𝑉) = 𝑓(𝑋1, 𝑤) 
𝑤 = [𝑣,𝐾,𝛽] 
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Where 𝑋1 are the inputs to the first layer, and 𝑌 

is the output of the last layer. 𝑣 are the weights 

and 𝐾 is the ELM feature map obtained in 

training of the last layer, represented by the green, 

orange, and blue layer in figure 4.8.  

The combined model can be described 

mathematically as equation 4.9 and is depicted in 

figure 4.9. 

𝑌1,𝑝𝑎𝑟𝑡1 = 𝑓(𝑥1,𝑖𝑗, 𝑤1) 
𝑌2,𝑝𝑎𝑟𝑡1 = 𝑓𝑓(𝑌1,𝑝𝑎𝑟𝑡1, 𝑥2,𝑖𝑗 ,𝑤2) 
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The computation time and learning time for the 

deep version is almost as fast as the regular ELM. 

With this model a thought experiment was 

conducted. If the first part of the model is trained 

to something that is completely independent of 

the second part of the model, theoretically it 

should be able to reproduce the inputs of the first 

part, motor- and line speeds from the 

experiments used in training the second part. 

This would let the full model be tested as well, 

instead of just being a postulated idea. Thus, it 

could be trained to the amount of plastic 

extruded per unit length of cable pulled, which 

should be independent of other parts of the 

extruder. 

The reason such an experiment should be 

possible is, now with an unsupervised part of the 

model, it should detect irregularities in the linear 

pattern and correctly cluster them, to increase the 

accuracy of the output from outliers and noise. 

Slightly inaccurate predictions from the model 

should therefore suffice in training. So hopefully 

the first part of the model can be trained with data 

from the theoretical “recipes” that is used to 

achieve certain layer thicknesses together with 

bleed runs and, in that way, generate data outside 

of the normal runs, thus eliminating the need for 

test runs with the full cable. This model could 

then be used to reproduce the unknown data for 

the second part of the model, thus making the 

combination possible. Due to lack of time, 

however, this remained as nothing more than an 

idea.  

[The following section has been left empty on purpose] 
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Fig 4.8: Single thread of the model, with 3 hidden layers. 

 

 
Fig 4.9: Combined model description. 



19 
 

5. Model results and 

implementation 
The first model, the polynomial model, had a 

good fitting capability to the data that it was 

trained to, but ran into an issue of slight over-

fitting. An acceptable standard of Root Mean 

Square Error (RMSE) was set to two times that 

of the RMSE for the train sets as an initial target 

base, but equal to the train set RMSE would be 

optimal. The initial testing performance of the 

polynomial model is shown in figure 5.1 to a 

made-up test set of data based on motorspeed1, 

with only one input and one output. 

While the RMSE is quite low on the training set 

displayed in the picture, it can clearly be seen that 

it is off trend at several points in the prediction, 

which means that it is overfitting too much to 

capture the process dynamics accurately enough. 

At first it was hard to understand why the 

polynomial model was unable to reach an 

acceptable level of generalization. 

 
Fig 5.1: Polynomial model prediction for the inner semi-
conductor layer test set. Blue line is the model prediction 
and red line is the actual output. The values on the axis 
are transformed values, the MSE value is the relative 
value between the test and training set.  

A theory was that maybe these types of models 

are more sensitive to the training data than, say, 

an ELM, since not all the independent variables 

that are affecting the extruder output are included 

in the training sets. It may also be the case that it 

is more sensitive to outliers than the ELM. For 

reference the same test-training set was given to 

the ELM, and the results can be seen below in 

figure 5.2.  

It also seems like the overfit increases with the 

number of inputs. A trend like this can be seen 

when increasing the number of inputs that is 

given to the polynomial model to fit. When 

comparing the testing RMSE to the training 

RMSE a trend, where the larger the training 

accuracy is compared to the test accuracy, the 

more the model seems to have overfitted the 

data. All of this is consistent with the theory from 

section 3. This is displayed in table 5.1 and shown 

in figures 5.3, 5.4 and 5.5. 

These images show why it is important to not 

only look at how well the prediction accuracy is, 

because even if it is good for both the training 

data and the test data, it might be the case that it 

has overfitted the training data. The mean error 

on the test set might then be low because of e.g., 

measuring noise that happens to weakly correlate 

with the prediction, but the actual input to the 

real value lacks correlation. This can be identified 

by looking at the scatter plot or line plot to see if 

there is correlation or not. A model with poor 

robustness can act as a high pass filter amplifying 

high frequency signals, which causes a severely 

unstable model. So, the relative accuracy of a 

well-chosen test set always needs to be compared 

to the training accuracy. 

The opposite might also be the case, where the 

model is underfitted. It then acts as a low pass 

filter with too low of a breakthrough frequency, 

then it filters out important changes and causes 

the model to not respond at all to inputs that it 

should respond to. 

[The following section has been left empty on purpose] 
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Table 5.1: Extruder predictions with 4 inputs. 
 Deg Training 

MSE (1) 
Test 
MSE 
(1) 

∆MSE 
 (1) 

Polynomial model    
Set 1 3 0.010 0.044 0.034 
Set 2     3 0.011 0.024 0.013 
Set 3     3 0.004 0.048 0.044 
Set 1 2 0.004 0.015 0.011 
Set 2     2 0.010 0.026 0.015 
Set 3     2 0.003 0.009 0.006 
 Nodes    
ELM model    
Set 1 100 n 0.005 0.005 0.000 
Set 2 1000 n 0.011 0.011 0.000 
Set 3 1000 n 0.002 0.003 0.001 
     

 

 
Figure 5.2: ELM model prediction for the inner semi-
conductor layer test set. Blue line is model prediction 
and red line is the actual output. The values on the axis 
are transformed values. 

 
Figure 5.3: polynomial model prediction for the inner 
semi-conductor layer test set. Blue line is model 
prediction and red line is the actual output. The values 
on the axis are transformed values. 

 
Figure 5.4: Polynomial model prediction for the 
insulation layer test set. Blue line is model prediction 
and red line is the actual output. The values on the axis 
are transformed values. 

 
Figure 5.5: polynomial model prediction for the outer 
semi-conductor layer test set. Blue line is model 
prediction and red line is the actual output. The values 
on the axis are transformed values. 

 

When analyzing the data, it is clear that there is 

multicollinearity in the data sets, caused by noise 

and how the line is started, which is most likely 

the cause of why the polynomial model is not 

working. Of course, there might be better ways 

to implement this type of model, but at some 

point, a choice of model must be made, to finish 

the project on time. 

So, in the end, the polynomial model doesn’t 

measure up to the ELM, which even at a single 

extruder motor speed signal, gives better 

generalization than what the polynomial 

regression model gives, and the gap grows as the 

number of inputs increases. The accuracy of the 

test set is also a lot better for the ELM. Thus, it 

was decided to not take the polynomial regression 

model any further and focus purely on machine 

learning with neural networks. 

When expanding the training sets to multiple runs 

of the extruder, the generalization of the ELM 

stays quite good if nodes are chosen carefully. 

The more homogeneous data sets with regards to 

which cable is produced; this probably means 
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centering screw positions and tool sets are the 

same; the lower the relative RMSE can go at the 

cost of overfitting. But if one data set is much 

larger than the others, it will also cause a type of 

“fake” fit, since the error of the other data sets 

are diluted, but still retain the overfitting. This is 

obviously very bad. An example of this is shown 

in figure 5.6. 

 
Figure 5.6: Results of training for one Xray signal. Blue are model predictions and red are the measured response. Top left 
shows the extruder operating inputs. 

As can be seen in the three-dimensional graph in 

the top left, all the data points contain the same 

type of linear run and cable product. 

The generalization is good when looking only at 

the RMSE values, but when looking at the plot, a 

subset of the data has been overfitted due to it 

containing way more data points than the other 

ones. This can be seen by looking at the scatter 

plot and how it seems to have weak to no 

correlation at the lower speeds, which is not what 

is expected. In this specific case the data set 

containing data from the lower motor speeds 

only contains a fifth of the data points of the set 

containing the higher speeds. Because of this, it is 

important to choose data sets of not too much 

different sizes, so that the fitting capabilities can 

be read from the RMSE values. This could in 

theory also be solved by adding a penalty term to 

larger data sets. The bottleneck for the model, 

even when only looking at the logged inputs, is in 

this specific case, still to a degree the lack of 

extruder screw input data. 

It’s worth noting however that extreme caution 

needs to be taken when choosing the number of 

hidden nodes in the regular ELM, since it seems 

to be very sensitive to the number of nodes. This 

becomes more of a problem as the data gets more 

nonlinear, noisy, and inaccurate as in the case of 

the distributors. The regular ELM is therefore 

not enough to describe the centering and thus 

should not be used. 

5.0.1 The multicollinear pattern problem 
As can be seen in figure 5.7. The extruders are 

always started in a linear way, so historical data 

from line runs doesn’t train the model how to 

operate outside of these linear settings if there are 

non-linear deviations because of 

multicollinearity. Since the model is only 

supposed to work in a range close to the 

operating range, it might not be a big issue. But it 

is important to remember that the performance 

of the model would most likely be better even in 

the operating range with a broader range of data 

sets. 
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Figure 5.7: Extruder line input data plotted against each 
other. The multicollinear properties of the data set is 
obvious, each “line” is a separate cable produced. 

The data that is being logged might also be better 

if it was taken as hot measurements when it 

passes the X-rays. Otherwise, variations in the 

post-extruder part of the line might affect how 

the model performs. 

5.1. Ridge regressor model 
When introducing the ridge regression with 

emphasis on minimizing the output weight 

norms, according to bartlett[8], the generalization 

as well as the model accuracy should improve 

even for asymmetric training data. This is 

empirically proven when looking at the same data 

sets as in figure 5.6, but with the penalty term 

added; the model performs a lot better which can 

be seen in figure 5.8.

 

 
Figure 5.8: Results of training for one Xray signal. Blue are model predictions and red are the measured response. Top left 
shows the extruder operating inputs. 

 

The RMSE may only seem slightly better at first 

glance, but, with true weights to the data points it 

is most likely much better.   

When the number of data sets increases, the 

nature of how operators and control hardware 

control the extruders create a lot of noise and 

errors due to how the centering of the extruder is 

set; they basically create known unknowns for the 

inputs that aren’t part of the training sets; Also, 

when utilizing data from several different cable 

types, which means different tool sets in the 

extruder head, it creates a difficult learning 

environment for the model. This is partly because 

of unlabeled inputs but also since 

multicollinearity is present combined with the 

number of data points approaching two-hundred 

thousand. With ridge regression, the latter turns 

out not to be that big of a problem, but the 

former requires carefully chosen training sets. 

This is demonstrated when giving the model 

several runs of different cables, where, most 

likely, all the runs pertaining to the same cable 
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produced, should have the same settings on the 

centering screws; this conclusion is drawn from 

looking at the trend and might not be a hundred 

percent accurate. So, all the runs from cable A 

would have the same settings, and all the runs 

from cable B would have the same settings. But 

A and B might have different settings to each 

other. Such an experiment is shown in figure 5.9.

 

 
Figure 5.9: Results of training for one Xray signal. Blue are model predictions and red are the measured response. Top left 
shows the extruder operating inputs. The data sets used are from different line runs. 

While, in this experiment the model just 

attributes these differences to the different motor 

and line speed combinations shown in the top left 

graph. It proves that if a label were to be added 

for the screws, the model would be able to 

accurately label and predict these inputs as well. 

What can also be seen is that the model filters out 

measurement errors and noise in the continuous 

part of the process where the output seems to 

follow a random distribution. An index label can 

also be added to represent these unknown screw 

positions. 

An interesting observation is that it does not 

seem to matter if the data set chosen has 

centering or not. The only difference seems to be 

that around the point the centering was done, a 

local cluster of predictions with larger error than 

the mean is found. In a way the model seems to 

just assume that these points are inaccurate, 

which may be convenient. Why this happens is 

unknown, but it might just be that the datapoints 

affected by centering are too few. This can be 

seen in figure 5.10. 

 
Figure 5.10: Extruder prediction and measured value, 
Blue is the prediction and red is the measurement. 

By looking at the data in Trend it looks like there 

has been centering done in the region that is 

circled in the figure. It still seems to capture the 

correct trend, but with a slower dynamic. The 

trend should therefore hopefully still be captured 

when using data where centering has been done. 
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5.2. Can the independent model be 

used? 
While the ELM can still categorize and accurately 

predict the data sets that it is given, it can, for the 

data it is not given, at best only label each new 

data set to a specific index. In this case, the index 

represents a specific centering screw, and tool set. 

And as previously mentioned, since the centering 

screw positions and the tools used for the 

extruder head is not logged anywhere and could 

not be obtained in the training of the model, the 

model cannot be used to predict the real process 

if the settings of the extruder head do not happen 

to coincide with the one represented by the 

chosen index. This is not a problem in the 

combined model, where the screws are modelled 

as well since each part can discern the settings of 

the other one. But it means that the model is only 

good for validation or looking at the trend, due 

to local uncertainties in intervals where an 

unknown input has been altered. 

5.3. Single model clarification 
At this point some clarification is needed to 

understand what has been done this far. The 

model that has been evaluated this far is basically 

a single model that describes the full extruder 

head from inputs to outputs. However, it has a 

subset of inputs that are unknown meaning that 

they only describe the extruder at the specific 

values of these inputs as they were in the training 

sets, and these values are unknown. In what has 

been coined the “first part” in this report, these 

unknown inputs are the tools and the centering 

screws. The initial idea was that the accuracy of 

the model can still be evaluated even if the 

training sets that are needed for it cannot be 

acquired in full since the training sets have been 

chosen so that the difference in the unknown 

inputs have a multicollinear relationship with 

each type of data set; the model basically 

attributes the effect of the unknown inputs to 

something that is known and strongly correlated 

to the unknowns. It turns out that, if the purpose 

is only to see if the trend is correct, even if this 

correlation is not present, the model still works. 

And the model can be fitted to any data set with 

good results, but it will fail to capture the dynamic 

in areas where the unknown inputs have been 

changed, but it does capture the correct trend. 

5.4. Modelling centering screws first 

iteration 
To test if the second part of the model that is 

lacking data sets work, old data from previous 

measurements were used in the task of training 

the model. The problem with this data is that it 

contains only a single run of the extruder, and 

only seven screw adjustments. The likelihood of 

a model being accurate with this data is almost 

null, but it can at least give an indication of how 

well the model can generalize the data it is given 

and how well it predicts the data that it does have. 

The first iteration of the model gave very poor 

results, the generalization was poor and as 

demonstrated in figure 5.11, the errors 

propagating through the system causes the 

unstable model to go haywire as soon as the 

inputs deviate even slightly from the inputs in the 

training range as can be seen when simulating it. 

 
Figure 5.11: simulation of first iteration of models 
second part, with a 5% input deviation from the range 
in which its trained.  

A deviation of 5% of screw angle outside of the 

range of the training inputs results in a cable with 

an average asymmetric layer thickness of eighty 

quadrillion lightyears. This version of the model 

would most likely not be good enough even with 

a full bank of training sets and tailored 

experiments. The fitting accuracy of a noise 

induced input set was practically zero. 

5.5. Modelling centering screws second 

iteration 
To lower the risk of error propagation and 

increase the resistance to noisy or inaccurate 

inputs together with increased robustness, a 
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regularization parameter was added to the second 

part of the model as well, and the model was 

expanded to a deep layer machine, which is earlier 

described in section 4. This version performed 

significantly better than the previous iteration and 

gave good accuracy as well as acceptable 

robustness. The training results of this version 

can be seen in table 5.2. The noise induced in the 

test was set to 20% more than the measurement 

inaccuracy of the Sikora and the approximated 

white noise of 30%. This is to see if the 

unsupervised layers are doing their job. 

As can be seen the prediction accuracy is quite 

good. The largest error can be seen in outer 

semiconductor which is to be expected since the 

adjustment of this layer contains the least number 

of data points. 

Table 5.2: Model results of second part. 
 Training 

Error 
(%) 

Test 
Error 
(%) 

Noisy 
Error 
(%) 

InnSem XL 0.908 0.928 0.934 
InnSem XR 1.202 1.400 1.208 
InnSem YL 0.810 0.872 0.817 
InnSem YR 0.985 0.896 1.009 

Insul XL 0.366 0.332 0.412 
Insul XR 0.555 0.609 0.577 
Insul YL 0.779 0.791 0.798 
Insul YR 0.845 0.890 0.864 

OutSem XL 2.654 2.460 2.675 
OutSem XR 2.654 2.508 2.654 
OutSem YL 3.107 3.068 3.139 
OutSem YR 3.156 3.229 3.164 

 

 

To showcase how well it generalizes the process 

the model was simulated with inputs 1200% 

outside of the fitting range. The resulting cross 

section can be seen in figure 5.12.

 

 
Figure 5.12: Second iteration of the second part of the model, simulated 1200% outside the range of 
training inputs, It must be noted that the simulation is done for Ex30 and not Ex31 so the position of the 
extruders are incorrect in the picture. 

While the values are probably not correct, the 

trend is the same as that of the experimental run. 

And the values are consistent with logged runs of 

the extruder. If the process is run according to 

the experimental run, it has a largest deviation 

from the real value of 3%. This deviation is in the 

outer semiconductive layer. And the trend is the 

same as in the simulation in the figure above. This 

shows that with more data a model with a very 

high level of accuracy can be obtained if the data 

is available to use in training. Also, with the 

model having unsupervised learning, it would 

hopefully let the model cluster and find patterns 

in the data that lets it recognize and accurately 

predict noisy input signals, cold-measurement 

errors and sort out outlier datapoints. The effect 

would be that the tests run to acquire the data, 

won’t need to be as rigorous and if the data can 

be logged, it could be low resolution and still be 

used in the training. 
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5.6. Observations 
By far, the most difficult layer to predict 

accurately is the inner semiconducting layer. 

While the other two layers seem somewhat 

consistent regardless of what the flaws of the 

training have been. For example, when fitting the 

model to three different cable runs, the outer 

semi-conductor and the insulation still behave 

normally. This is not to be confused with them 

being true to the real process, but the variation in 

thickness doesn’t fluctuate to unreasonable 

values. The inner semi-conductor is a different 

story. When only using the standard ELM model, 

as soon as the model goes outside of the linear 

range, even when it is in between two valid ranges 

the model becomes increasingly inaccurate. This 

is fixed with ridge regression, but the fit is 

generally worse than the other two when there is 

equal amount of data points in the training sets 

for all the inputs. 

The general RMSE values of the model vs the real 

output is generally around 2% higher than when 

fitting the other 2 layers which indicates that the 

model does worse at predicting the inner semi-

conductor with accuracy. This could be due to 

several reasons. The measurement could be 

noisier than the others which could cause the 

model to fit it worse. It could also just be more 

sensitive to the different inputs to the extruder. 

5.7. How to get data for unknown 

inputs 
The easiest problem to solve in the model is the 

issue of how the process is started and what data 

can be obtained from the history blocks. As 

mentioned earlier the line starts are done in a 

linear fashion as can be seen in figure 5.7. 

Experiments where all but one extruder input is 

run at a constant, while one at a time each input 

would be adjusted over a range which encases all 

the possible operating ranges that the extruder 

will be ran on, would give the model the data it 

needs to generalize over the whole process. 

Because of the ridge regression this should only 

need to be done a couple of times for each input. 

To solve the issue of the lack of centering screw 

data, a way of monitoring the screw would need 

to be added. The best way for model fitting would 

probably be to install sensors that can directly 

measure the angle between the conductor and the 

distributors in the extruder head. Not only can 

they be logged directly to the data base, but they 

are also far more precise than just looking at the 

screw. These sensors could also be added to just 

measure the angle from the sensor position, it 

doesn’t really matter what angle it measures, as 

long as that angle can be converted to an input 

that can be understood by an operator. 

Another possible way of solving the issue is to 

film the startup process and train another 

classification algorithm to the task of recognizing 

the screw positions. Then all that would be 

needed to monitor the inputs is a camera that 

records an image on the screw state, and the 

algorithm would recognize which position the 

screw is in. This would obviously require 

someone to create the model and train it first. 

5.8. Validation 
To validate how the first part of the model works 

independently in the operating ranges of the 

extruder is quite easy. All the data from random 

runs of the extruder that have not been part of 

the training or testing can be downloaded from 

the historian database and predicted. Thus, it is 

easy to see if the model is predicting accurately or 

not.  

To estimate the accuracy of the model outside of 

the operating ranges is more difficult since it 

would require the extruder to be ran outside the 

operating ranges as a test. This might obviously 

be expensive, and it may not even be that 

interesting to see if the model is accurate outside 

of the operating range, or at least, not for the 

operating aid. But, to show what the model does 

in this range, the model was ran outside the 

operating range by between 10-30% on each 

extruder motor speed. The result can be seen in 

figure 5.13.
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Figure 5.13: First part of the model ran 10-30% outside the extruder motor speed operating range. 
Simulating Ex31. 

One quite peculiar point to make here is that the 

output seems to somewhat reverse the thickness 

order of the inner semiconducting layer when 

only the motor speed of the outer 

semiconducting layer is run outside of the 

operating range. When the model is run between 

the operating ranges but in the same linear 

fashion, the expected trend where the layers are 

the thinnest on the left side in the x direction and 

the left side on the y direction is observed. The 

former is where the melt flows together in the die. 

This is all displayed in figure 5.14.

 
Figure 5.14: First part of the model ran between the extruder motor speed operating range for motor 1 and 
motor 2 and outside for motor 3. Simulating Ex31. 
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Once again, the expected output is not 

completely correct for all the data sets given as 

validation, which can be confidently attributed to 

the fact that these sets are ran with different 

extruder distributor settings (extruder screw 

positions, tool set). But it does seem to follow the 

correct trend. What this shows is that the model 

correctly filters out noise and manages to capture 

the slower frequency changes well. 

The validation of the second part of the model is, 

in this project, quite pointless since the model has 

not been trained to sufficient data sets. 

5.9. Interesting find 
The tools used seem to have a much larger impact 

on the centering than initially thought. It was 

already known that the distributor position versus 

the conductor, i.e., what the centering screws 

affect, has a large impact. But it seems like maybe 

the toolset has a large impact as well. When 

letting the model predict different cables where 

the same motor and line speeds have been used, 

it seems like the centering can vary by a lot just 

based on the index being different (a different 

type of cable produced). This is displayed when 

fitting the data to sets of different cables, where 

there looks to have been no centering done. It is 

shown below in figure 5.15. 

 
Figure 5.15: Extruder prediction of set where there most 
likely has been no centering, but cable types differ. 
Exhibits sign of underfit, even though nothing suggests 
it should be. 

It is not completely clear what is causing this 

behavior, it might be the case that centering has 

indeed been done on these runs, and the method 

used to detect it is flawed, but the theory is as 

stated above that it is something else that is 

causing it, since the model seems to fail to 

distinguish the difference in outputs which may 

be to some linear relationship with the tools. It 

also may just be that the model finds some 

strange relationship in the data that happens to 

work in the regression. 

6. Conclusion and future 

prospects 
A model that can accurately predict and 

generalize over the data that it is given as training 

has been successfully achieved through the 

means of a deep learning extreme learning 

machine algorithm with ridge regression 

(DRELM). However, good enough training to 

train the model to predict in a wide enough range 

of inputs, so that it can be used as an operating 

tool for NKT, could not be acquired. It must also 

be pointed out that when there is enough data for 

all the inputs available the DRELM should not be 

needed over the ELM with ridge regression, since 

there would be no need to classify if the data 

belongs to different base settings anymore, but 

the efficiency of both are very similar. 

6.1. Reflection 
The model has obvious flaws in how it is trained. 

And while the DRELM does a good job of 

adapting to the training sets it is given, it will only 

ever be as good as the training it gets.  

To truly make a model that can accurately 

describe the process together with the time 

dependance, a few things would need to be 

added. First a time parameter needs to be 

included; the data that is generated does have 

time stamps from when it is taken, but it is only 

when the reading from the measuring equipment 

is taken, so the delay would need to be estimated 

in the time stamps. The data is also converted to 

post vulcanization values, or so-called cold 

measurements, by computation and this would 

need to be included. 

However, the purpose of this model is not to 

describe the model in real-time, only to estimate 

the effects of extruder inputs on the steady state 

output. To do this, it only needs to capture how 

the steady state of the cable cross-section changes 

upon input changes which can be done with a 

discrete time model. Data from the screws would 

also have to be logged in a way that can be 

accessed by a computer, so it can be used when 

training the model. This could be done manually 

by operators with pen and paper, or in custom 
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software and then be transferred by hand to 

digital sheet, or directly by measuring equipment. 

The better the data sets that can be obtained, the 

better the model will perform. If it was possible 

to run experiments tailored to each input type and 

ways that the extruder heads can be set up, it 

would make the performance of the model better, 

but as have been shown in this project, the quality 

of experiments can be quite poor, and it would 

still work. 

The input changes of the distributor screws 

would have to be measured against a baseline of 

the distributors, which can act as a reference for 

the input changes or taken as an angle 

measurement. Better documentation on what 

toolset is used in the extruder would also be 

needed. So, to put it simple, most problems could 

easily be solved by just monitoring and logging 

the distributor data to the historian database. 

6.2. Future work 
This leads to the subject of how to continue this 

project if it is deemed worth. The current model 

has already proven to be able to accurately predict 

layer thickness of the data it is trained to. It has 

good generalization capabilities, and all that is 

needed is more data sets.  

Extensive trial runs would need to be done to 

gather data to further validate the model and see 

how well the second part of the model works. 

The easiest would be to use data from bleed tests 

to train the first part of the model or substitute it 

for the model that each cable “recipe” is taken 

from and train the model to reconstructed data. 

Many more tests would also have to be run so 

there is enough data to train the model. 

If all the data can be obtained simultaneously 

from the database or by other means, the model 

should be run as a single part with all the inputs 

and outputs, the only reason to run the model as 

two separate parts is when lacking data from one 

or more inputs. 

As previously mentioned, the best way would be 

to install sensors or other measuring equipment 

and start logging the distributor data. This would 

passively generate model training data, which has 

been proven in this project to be good enough to 

eventually create a model that works. 

6.3. Things the model can achieve 
As touched upon in the literature study, a 

possibility with this type of model might be that 

the process can be controlled without the help of 

an operator. With an accurate enough model, a 

heuristic dynamic programming algorithm could 

easily be set up to generate optimal controllers for 

NKTs extruder. This could in turn let the process 

be controlled much more precisely than a human 

ever could. On top of that, the network could 

possibly be taught how to counteract white noise 

in the sensors used to monitor the process input 

signals, which could create a smoother cable 

surface. Further classifier algorithms may also be 

possible to make, to automate crash procedures 

or other types of quality control. An example of 

this would be to feed the model data to a 

topology scanner, another AI could then be 

taught to predict the topology of the cable purely 

based on model output. The AI could then tell 

the operator in real time what the effects of what 

is currently happening are and suggest a change 

to the operator of how to fix it. This could 

hypothetically let operators run the process much 

closer to the nominal values without running the 

risk of going under it and ruining the cable. 

There is also the possibility of quick retraining, 

and the model can be run and trained to the start-

up of new extruder lines, to quickly understand 

how the process should be operated or 

identifying faults. 

6.4. Take aways 
NKT has a lot to gain from better tracking of 

their process parameters, both in terms of 

creating sophisticated software to aid in process 

operations, but also for a better understanding of 

how the process works, which would be 

especially useful to identify problems and 

solutions in start up of new extruder lines.  
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