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Abstract

We apply the GARCH-copula method to estimate Value at Risk (VaR) for European
and Swedish stock indices. First, marginal distributions are estimated by the ARMA-
GARCH model with normal, Student’s t, and skewed t distributions. Then we investi-
gate the tails of innovations of ARMA-GARCH models using the Peaks over thresholds
method and find that the distributions of stock returns are asymmetric with heavier
left tails than right tails. In order to model the dependence between the time series, we
try elliptical copulas (Gaussian, Student-t) and Archimedean copulas (Gumbel, Frank,
and Clayton) to measure the dependence structure between two time series’ returns.
Parameter estimation is based on the so-called inference for margins, which is a two-
stage method. Moreover, we adopt backtesting to test the goodness-of-fit of di↵erent
copulas using Monte-Carlo simulations.

Our empirical results show that ARMA(1,1)-GARCH(1,1)-t distribution is proven to
be the best fits for margins and Student’t copula gives the highest log-likelihood of the
model and best VaR estimation.

Keywords: VaR, Copula, ARMA-GARCH, Extreme Value Theory, GPD, Hill estima-
tor
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1 Introduction

1.1 Background

Risk management has always been an essential part of financial industries. For ex-
ample, banks are required to hold a certain amount of bu↵er to protect them from
potential losses due to credit risk; investors need quantitative tools to measure market
risks of portfolios or assets. Value at Risk (VaR) is one of the most commonly used
risk measurements by financial analysts. It is defined as the largest expected loss of an
asset under certain conditions. A daily VaR of asset portfolios given a 95% confidence
level describes that VaR estimate covers all but the highest 5% losses overtime period
of a day [1]. VaR estimates for an individual asset are not di�cult to calculate since
there are plenty of univariate distributions to be fitted to the corresponding time series
of an asset. However, VaR estimation of a portfolio consisting of more than two assets
requires the joint multivariate distribution of the portfolio. The dependence measure
between assets makes it di�cult to estimate VaR. Abundant literature focuses on three
estimation methods including Historical Simulation, the Variance-Covariance approach,
and the Monte Carlo method.

The limitation of the historical simulation method is its high dependence on informa-
tion provided by historical data. Problems would arise when the number of data is not
large enough or historical extreme events are unavailable [2]. Moreover, the assumption
of a portfolio following a multivariate normal distribution and of the linear relationship
between asset returns proposed by the Variance-Covariance approach is unrealistic for
financial time series [2].

Monte-Carlo method implements parametric models to construct multivariate distri-
butions for portfolios. Copula theory allows us to decompose a joint distribution into
marginal distributions and a copula function which is used to model the dependence
structure among margins. It was first introduced by Sklar [3] and applied to financial
risk management by Embrechts et al [4]. Copulas allow us to build and describe com-
plex dependence structures without limitation of normality and linear relationship.

In order to model marginal distributions, two well-known univariate conditional volatil-
ity models, auto-regressive conditional heteroskedasticity (ARCH) proposed by Engle
[5] and Bollerslev’s generalized ARCH (GARCH) model [6], are widely used to capture
volatility clustering of financial data, meaning high(low) volatility accompanied with
high(low) volatility for marginal modeling. Huang et al. [7], Jondeau and Rockinger
[8] implemented GARCH-Copula model to compute the VaR of the portfolio. Long
Kang [9] modeled the joint distribution of returns of four assets using GARCH-Copula
with normal, Student-t, Archimedean, and mixed copulas and suggested that Student’s
Copula gives the highest log-likelihood.
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There are di↵erent parameter estimation approaches for GARCH-Copula method [10],
such as a two-step maximum likelihood method [11] where marginal distributions are
fitted first and then estimate copula parameters, non-parametric Pseudo maximum
likelihood [12] using empirical distributions instead of parametric models. Patton [13]
summarized that a multi-stage estimator is more e�cient than a one-stage estimator in
most cases when estimating parameters using the Copula method .

Since VaR is an estimate of the tails of distributions, the accuracy of tail estimation
becomes significant for risk measurement. Peaks over thresholds is a statistical method
to investigate extreme events and a standard approach for the estimation of fat-tailed
distributions. Mcneil[14] combined the GARCH model fitted to marginal distributions
and EVT to estimate the tail of innovations of the GARCH model. Nyström et al.[15]
applied EVT to the filter conditional residuals from ARMA-GARCH models and ana-
lyzed the tail behavior using generalized Pareto distribution. Hotta et al.[16] used GPD
to give a better fit of the heavy left tail of marginal distributions.

Jondeau and Rockinger [8] argue that the dependency featured more persistence and
it was higher between European stock markets than the dependency between the U.S.
and European markets. This thesis aims to combine the GARCH-Copula method with
the Peaks over thresholds method to find the best fit for bivariate financial times series
and use it to estimate Value at Risk.

1.2 Structure of the Paper

The remainder of this report is organized as follows. Section 2 introduces the theory
of VaR estimation and backtesting, Section 3 presents the marginal models, copula
functions, and extreme value theory, Section 4 provides empirical results, and Section
5 concludes the paper with further discussion.
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2 Theoretical background

To calculate the portfolio’s Value at Risk (VaR), we adopted the GARCH-Copula
model, which captures the volatility patterns of individual stock returns and their
dependence structure. The copula concept is central to this approach as it enables the
construction of a multivariate distribution by combining marginal distributions with a
copula function. Consequently, to derive a multivariate distribution for the portfolio,
we implemented the following two steps: (1) Use the ARMA-GARCH model to model
the univariate marginal distributions for each stock return, and (2) Utilize the Copula
function to model the dependence structure between the returns.

2.1 Modeling the Margins

Let rt denote the daily return, then we have

rt = µt + ✏t

where µt is the mean model and ✏t is the noise model.

In this thesis, the ARMA process was used to fit the mean model. General formula of
ARMA(p,q) process is,

µt = C +
pX

i=1

�iµt�i +
qX

j=1

✓j✏t�j.

The GARCH model is an extension to the ARMA model which assumes the time series
has a constant variance �, whereas the GARCH process models conditional variances
based on previous values. Specifically,

�
2
t = ! +

qX

i=1

↵i✏
2
t�i +

pX

j=1

�j�
2
t�j,

✏t = zt�t,

zt ⇠ i.i.d,

where innovations zt are selected from Normal, Student-t, and skewed t distribution
with density functions given by.

fN(x;µ, �) =
1

�
p
2⇡

e
� 1

2 (x�µ)2/�2
,

ft(x; ⌫) =
�(⌫+1

2 )
p
⇡⌫�(⌫2 )

✓
1 +

x
2

⌫

◆�(⌫+1)/2

,
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fskt(x; ⌫, ⇠) =
2⇠

1 + ⇠2


ft(⇠x; ⌫)I(x < 0) + ft(

x

⇠
; ⌫)I(x > 0)

�
,

where ⌫ is the degree of freedom.
To check the presence of asymmetric tails in the residuals of the marginal modeling, we
fitted the Generalized Pareto distribution to the left and right tails, respectively, which
is discussed below.

2.1.1 Ljung-Box Test

Ljung-Box is a statistical test used to check a serial correlation up to a specified lag k.
It determines whether or not the residuals are independent and identically distributed.
The null hypothesis is defined as,

H0 : The residuals are independently distributed.

The test statistics is,

Q = n(n+ 2)
kX

j=1

⇢
2
j/(n� j)

where n is the sample size, k is the number of lags, and ⇢j represents the sample
autocorrelation at lag j. Q follows a chi-squared distribution with k degree of freedom,
i.e. Q ⇠ �

2(k). We reject the null hypothesis and conclude that the residuals of the
model are not independently distributed if Q > �

2
1�↵,k with significance level ↵.

2.1.2 Goodness-of-fit Test

Adjusted Pearson goodness-of-fit test is one type of chi-squared goodness-of-fit that
compares the empirical distribution of the standardized residuals with the chosen the-
oretical ones [17].

H0 : Samples follow the specified distribution.

The null hypothesis will be rejected if the corresponding p-value  ↵, where ↵ is the
significance level and p-value is determined by the �

2 distribution with a suitable of
degree of freedom.

2.2 Generalized Pareto Distribution

Let X1, X2, ... be a sequence of independent random variables with common distribution
function F , and let

Mn = max{X1, ..., Xn}.
If there exists sequences of constants {an > 0} and {bn} such that

Pr{(Mn � bn)/an  z} ! G(z), as n ! 1
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where G is a non-degenerate distribution function, then G belongs to one of the Gumbel,
Fréchet, and Weibull families and it could be combined into a family of the form[18]

G(z) = exp

(
�

1 + ⇠

✓
z � µ

�

◆��1/⇠
)
.

Then for large enough threshold u, the Generalized Pareto distribution theorem gives
the limiting distribution of (X�u|X > u) as u ! x

F where xF = sup{x|F (x) < 1}[19].
The distribution function of (X � u), conditional on X > u, is asymptotically

H(y) = 1�
✓
1 +

⇠y

�̃

◆�1/⇠

(1)

defined on {y : y > 0 and (1 + ⇠y/�̃) > 0}, where �̃ = � + ⇠(u� µ).

2.2.1 Peaks Over Threshold (POT)

Before fitting the Generalized Pareto distribution into tails, the thresholds need to be
selected. A too-high threshold will lead to high variance because of the few exceedances
used to estimate the model. A too-low threshold will lead to high bias due to the
violation of the asymptotic model. This is called the trade-o↵ between bias and variance.
Three methods are commonly used to identify a suitable threshold: the mean residual
life plot, the hill estimator, and a graphical method based on the stability of parameter
estimates.

Mean residual life plot

Suppose a sequence X1, ..., Xn, the exceedances over a threshold u0 are fitted into a
valid GPD given ⇠ < 1. Then the mean of GPD is

E(X � u0|X > u0) =
�u0

1� ⇠
.

For u > u0,

E(X � u|X > u) =
�u

1� ⇠

=
�u0 + ⇠u

1� ⇠
.

Consequently, the conditional mean should be linear for an appropriate threshold. The
mean residual life plot is defined as

( 
u,

1

nu

nuX

i=1

(x(i) � u

!
: u < xmax

)

where x(i) denotes observation that exceed threshold u, nu is the number of exceedances,
and xmax refers to the largest value of x(i).
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Stability of GPD under change of threshold

The shape parameter ⇠ and scale parameter � should be constant above an appropriate
threshold u0. First, given X ⇠ GPD(�, ⇠), we have (X � u|X > u) ⇠ GPD(� + ⇠u, ⇠),
indicating that GPD is stable to the change of threshold and the shape parameter stays
invariant. Denote the scale parameter by �u for a threshold u > u0, which is given by,

�u = �u0 + ⇠(u� u0). (2)

and reparameterize it as,
�
⇤ = �u � ⇠u.

Consequently, �⇤ is constant with respect to u in light of [2] .

The Hill plot

For an ordered sequence X(1,n) � X(2,n) � ... � X(n,n) from independent and identically
distributed random variables X1, X2, ..., Xn, the Hill estimator using k + 1 ordered
statistics is given by,

Hk,n =
1

k

kX

i=1

log

✓
X(i,n)

X(k,n)

◆
, k  n

where Hk,n is an estimator of the shape parameter ⇠ which determines the heaviness
of the tails. The Hill plot shows a range of k values against the tail index ↵ = 1/⇠ for
di↵erent thresholds [20]. An appropriate threshold can be chosen in the region the Hill
estimator tends to be stable.

2.2.2 Modeling the left tail with GPD

In order to show the asymmetric property tails of residuals after marginal modelling,
it is necessary to fit the generalized Pareto distribution for left tails and right tails,
respectively. Typically, the GPD is employed to fit exceedances, which are positive
values above a specified threshold. However, when dealing with left tails, they consist
of shortfalls which are negative. As a result, the inclusion of Peaks Over Threshold
(POT) for negative data becomes essential for accurately capturing the characteristics
of the left tails. Figure 1 illustrates the utilization of POT for both positive and negative
data.
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Figure 1: POT for positive(left) and negative(right) data.

According to Figure 1, Peaks over the threshold for negative data can be achieved by
transforming random variables Xi to �Xi and then choosing �u as threshold after
fitting generalized Pareto distribution for �Xi.

2.2.3 Model Diagnostics

Probability plots and quantile plots are two graphical methods used to check whether
a dataset follows a given distribution. Given ordered observations,

x(1)  x(2)  ...  x(n),

the probability plot is defined by,
⇢✓

F̂ (x(i)),
i

n+ 1

◆
, i = 1, ..., n

�

and the quantile plot is given by,
⇢✓

F̂
�1(

i

n+ 1
), x(i)

◆
, i = 1, ..., n

�

where F̂ is a estimated distribution fitted into observations and F̂
�1 is the corresponding

inverse function of F̂ , i.e. quantile function. The points of probability plots and quantile
plots should be located near the unit diagonal if F̂ is a reasonable estimate of the true
unknown distribution F of observations.
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2.3 Copulas

Risk management is a necessary part of finance. For example, portfolio transactions
face the problem of losing money in the future, and credit risk could cause the borrowers
to fail to repay. As a result, accurate quantitative methods are essential to measuring
financial risks. Copula theory is a powerful tool to measure risk applied to multivariate
distribution. A copula is a function that connects univariate marginals to their multi-
variate distribution. It was first introduced by Sklar in 1959 [3]. In this section, we will
discuss some of its fundamental properties and introduce some commonly used copula
models.

2.3.1 Definition and properties

Let us start with Sklar’s theorem, which is the core of the copula theory.

Sklar’s theorem Let H be a joint distribution with margins F1 and F2. Then
there exists a copula C such that for all x1, x2 2 R,

H(x1, x2) = C(F1(x1), F2(x2)). (3)

If F1 and F2 are continuous, then C is unique; otherwise, C is uniquely determined on
on Ran(F1) ⇥ Ran(F2). Conversely, if C is a copula and F1, F2 are distribution func-
tions, then the function H defined by (3) is a joint distribution function with margins
F1 and F2[21].

A copula function C(u, v) from I2 to I, where I = [0, 1], has the following properties:

1. for every u, v in I,
C(u, 0) = 0 = C(0, v)

C(u, 1) = u, and C(1, v) = v

2. For every u1, u2, v1, v2 in I such that u1  u2 and v1  v2,

C(u2, v2)� C(u2, v1)� C(u1, v2) + C(u1, v1) � 0.

Theorem Fréchet-Hoe↵ding bounds for copula are defined by,

W (u, v)  C(u, v)  M(u, v),

W (u, v) = max(u+ v � 1, 0) and M(u, v) = min(u, v).

where W (u, v) is called as Fréchet-Hoe↵ding lower bound and M(u, v) is Fréchet-

Hoe↵ding upper bound [21].
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Sklar’s theorem can also be generalized to the n-dimensional case in a simple manner
[10]. The N-dimensional copula function is defined as,

C(u1, ..., ud) := F
�
F

�1
1 (u1), ..., F

�d
d (ud)

�
, (u1, ...ud) 2 [0, 1]d,

where F
�1
k are the univariate quantile function, k = 1, ..., d.

2.3.2 Elliptical Copula

Two popular elliptical distributions are multivariate normal Nd(µ,⌃) and multivariate
Student’s t-distribution td(µ,⌃, ⌫), which is defined below.

Let X ⇠ Nd(µ,⌃), the density of X is given by,

f(x) =
e
� 1

2 (x�µ)0⌃�1(x�µ)

(2⇡)d/2 det(⌃)1/2
, x 2 R.

The normal or Gaussian copula C
Gauss
P is the copula of X ⇠ Nd(0, P ), where P is a

correlation matrix. The copula form is obtained by,

C
Gauss
P (u1, ..., ud) := �d(�

�1(u1), ...,�
�1(ud))

where �d is the joint distribution function and �
�1 denotes the inverse function of stan-

dard normal distribution.

Let X ⇠ td(µ,⌃, ⌫), then the density of X is defined as,

f(x) =
�
�
1
2(⌫ + d)

� �
1 + 1

⌫ (x� µ)0⌃�1(x� µ)
��(⌫+d)/2

�(⌫2 )(⇡⌫)
d/2 det(⌃)1/2

.

The form of t-copula is obtained by,

C
t
⌫,d(u1, ..., ud) := td(t

�1
⌫ (u1), ..., t

�d
⌫ (ud))

where td is the joint distribution and t⌫ is the univariate standard t-distribution with
degree of freedom ⌫.

2.3.3 Archimedean Copula

Let � be a continuous function from [0, 1] to [0,1] which satisfies the following prop-
erties:

• �(1) = 0

• �(0) = 1
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• For all t 2 (0, 1),�
0
(t) < 0, i.e. � is decreasing,

• For all t 2 (0, 1),�
00 � 0, i.e. � is convex.

Then � is called the generator function and a Copulas is said to be an Archimedean
copula if it can be written as follows,

C(u, v) = �
[�1](�(u) + �(v))

where �
[�1] is the pseudo-inverse of � defined by,

�
[�1](x) =

⇢
�
�1(x), 0  x  �(0)
0, �(0)  x  1.

Three kinds of one-parameter Archimedean copulas were implemented in this thesis:
Gumbel, Frank, and Clayton with di↵erent generator functions.

Gumbel Copula

The generator of Gumbel family is given by, �(u) = (� ln(u))↵, where ↵ � 1, and
the generator inverse is ��1(t) = exp(�t

1/↵). Consequently, the d-dimensional Gumbel
copula is defined by,

C(u1, ..., ud) = e

✓
�[

Pd
i=1 � ln(ui))↵]

1/↵
◆

, ↵ > 1.

Frank Copula

The generator of the Gumbel family is given by,

�(u) = � ln

✓
e
�↵u � 1

e�↵ � 1

◆

which its inverse is

�
�1(t) = � 1

↵
ln
�
1 + e

t(e�↵ � 1)
�
.

Consequently, the d-dimensional Frank copula is obtained as,

C(u1, ..., ud) = � 1

↵
ln

 
1 +

Qd
i=1(e

�↵ui � 1)

(e�↵ � 1)d�1

!
, ↵ > 0.

Clayton Copula

The generator of Clayton family is given by, �(u) = u
�↵ � 1, and the generator inverse

is ��1(t) = (t+1)�1/↵. Consequently, the d-dimensional Clayton copula is obtained by,

C(u1, ..., ud) =

"
dX

i=1

u
�↵
i � d+ 1

#�1/↵

, ↵ > 0.
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2.3.4 Dependence Measures

Copulas can capture the dependence of marginal distributions and are invariant under
almost surely strictly increasing transformations [22], which means that the dependence
of random variables remains unchanged even after strictly increasing transformation of
them. This implies that any dependence measure which can be defined as function
of copula will be invariant under strictly increasing monotonic transformations. In
this section, we introduce three kinds of dependence measures named Kendall’s tau,
Spearman’s rho, and Pearson’s rho, where Kendall’s tau and Spearman’s rho defined
only based on copulas measure a form of dependence known as a concordance.

Concordance

Let (xi, yi) and (xj, yj) denote two observations form a vector (X, Y ) of continuous
random variables. We say that (xi, yi) and (xj, yj) are concordant if (xi � xj)(yi �
yj) > 0 and they are discordant if (xi � xj)(yi � yj) < 0. Introduced by Scarsini [23],
concordance measures are functions from copulas to the interval [�1, 1]. The value
1 indicates strongest positive dependence and -1 implies the opposite. Kendall’s tau
and Spearman’s rho are two prominent examples of concordance measures for bivariate
copula.

Kendall’s tau

Assume (X1, Y1) and (X2, Y2) are two independent and identically distributed random
vectors, each with joint distribution function H. Then Kendall’s tau is defined as:

⌧ = P ((X1 �X2)(Y1 � Y2) > 0)� P ((X1 �X2)(Y1 � Y2) < 0).

It equals the di↵erence between concordance probability and discordance probability.
In the context of bivariate copula, Kendall’s tau for two uniform random variables U, V
whose copula is denoted by C is given by

⌧ = 4E(C(U, V ))� 1.

Spearman’s rho

Assume (X1, Y1), (X2, Y2), and (X3, Y3) are three independent random vectors with a
common joint distribution function H. The Spearman’s rho is defined as:

⇢ = 3 (P ((X1 �X2)(Y1 � Y3) > 0)� P ((X1 �X2)(Y1 � Y3) < 0))

Considering a bivariate case where (U, V ) ⇠ C, the Spearman’s rho of copula C is
expressed as,

⇢ = Cor(U, V ).
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Pearson’s rho

Pearson correlation rho is a measure of linear dependence between two variables and is
the most popular tool for measuring bivariate relationships. It is defined by

⇢
def
= Corr(X, Y ) =

Cov(X, Y )p
V ar(X)

p
V ar(Y )

.

Properties include:
(1) �1  Corr(X, Y )  1.
(2) If X, Y are independent, then Corr(X, Y ) = 0.
(3) Corr(X, Y ) = 0 does not imply independence.

2.4 Parameter Estimation

Let X1, X2, ..., Xn be a sequence of random variables with cumulative distribution func-
tion (cdf) Fk(xk;↵k) and probability density function (pdf) fk(xk;↵k) with parameters
↵k, k = 1, 2, ..., n, and let X = (X1, X2, ..., Xn)T . According to Sklar’s theorem, the
joint distribution of X can be expressed as,

H(x1, .., xn; ✓) = C(F1(x1;↵1), .., Fn(xn;↵n); �)

where C : In ! I is a copula function with parameter vector �. The corresponding pdf
of X is defined by,

h(x1, .., xn; ✓) = c(F1(x1;↵1), .., Fn(xn;↵n); �)
nY

i=1

fi(xi;↵i)

c(F1(x1;↵1), .., Fn(xn;↵n); �) =
@
n(C(F1(x1;↵1), .., Fn(xn;↵n); �))

@F1(x1;↵1)...@Fn(xn;↵n)

2.4.1 Full Maximum Likelihood (FML)

The full maximum likelihood estimation requires optimizing the log-likelihood function
for all parameters ✓ = (↵1, ...,↵n, �) simultaneously. The log-likelihood function of
{x1t, ...xnt}Tt=1 is

l(✓) =
TX

t=1

log c(F1(x1t;↵1), .., Fn(xnt;↵n); �) +
TX

t=1

nX

i=1

logfi(xit;↵i).

and the optimized parameter ✓̂MLE which maximizes l(✓) is

✓̂MLE = argmax
✓

l(✓).
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2.4.2 Inference for Margins (IFM)

IFM is a two-step estimation method and was introduced in [11]. Since it is computa-
tionally complex to estimate all parameters in one step, the IFM method allows us to
first optimize parameters of marginal distributions and then estimate the dependence
parameter of the copula. Specifically, we decompose the full log-likelihood function as,

l(✓) = lm(↵) + lc(↵, �)

where lm(↵) is the log-likelihood function related to marginal distribution and lc(↵, �)
is the one related to copula function.

Step 1: Estimate marginal parameters {↵i}ni=1 by

↵̂i = argmax
↵i

lm(↵i) = argmax
↵

TX

t=1

logfi(xit;↵i), i = 1, ..., n

Step 2: Estimate copula parameters � by

�̂ = argmax
�

lc(↵̂, �) =
TX

t=1

log c(F1(x1t; ↵̂1), .., Fn(xnt; ↵̂n); �).

2.4.3 Pseudo Maximum Likelihood (PML)

Both the FML and IFM are parametric estimation methods, which means the perfor-
mance of algorithms is dependent on the accuracy of estimated parameters. To address
the potential problem of the misspecification of marginal distributions, Pseudo Maxi-
mum Likelihood, a semiparametric estimation, was proposed in [12]. It is similar to the
IFM, including two steps to carry out, but instead of estimating marginal distributions
parametrically, it utilizes the empirical distribution of the samples.

More specifically, let f̃k, k = 1, ..., n denotes the empirical density of Xk. At step 1 in
the IFM, the marginal distributions are estimated by f̃k, followed by step 2:

�̂
PML
i = argmax

�i

lm(�i) = argmax
�

TX

t=1

logf̃i(xit).

Then perform step 2 as the IFM.

In conclusion, these estimators are all consistent and asymptotically normal [12][13].
Moreover, Kim et al.[24] verified the PML method outperforms than other two estima-
tors when the marginal distributions are misspecified or unknown.
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2.5 Value at Risk

2.5.1 Introduction

Value at Risk is a popular risk management tool in the finance industry and it gives us
the measured risk of a specific portfolio in monetary terms, namely, how much money
we might lose in the future. It is a widely used measure of financial risk, including
credit, liquidity, market price risk, and other risks. It is defined by the maximum ex-
pected loss of a portfolio or assets over a given time horizon at a given confidence level.
The basic concept described by [25] shows one important characteristic that VaR takes
dependence between di↵erent risk factors into consideration.

Definition: (Value at Risk) Given a portfolio or asset return changing from time
t��t to t, the Value at Risk at time t with confidence level 1� ↵ is defined by:

V aRt(↵) = inf{s : Ft(s) � ↵}

where Ft(x) is the distribution of portfolio or asset return Xp,t at time t. We also have
P (xp,t  V aRt(↵)|⌦t�1) = ↵, ⌦t�1 contains all information at time t� 1, which means
that the loss of portfolio or asset returns will not exceed the VaR value with confidence
level 100(1� ↵)%.

We introduce three widely used approaches to estimate VaR: Historical Simulation,
Variance-Covariance Simulation, and Monte Carlo Simulation.

2.5.2 Historical Simulation

The historical simulation uses actual historical data to simulate potential future losses.
It is the simplest method to implement since it does not require any assumptions about
the distribution of returns. However, the disadvantages of historical simulations are
limitations by the limited available historical data, sensitivity to extreme events, and
computational cost.

2.5.3 Variance-Covariance Method

The Variance-Covariance method is a parametric approach for VaR estimation and it
assumes asset returns are normally distributed and the portfolio is a linear function
of them. Suppose a portfolio consisting of two index returns [x1t, x2t] following a two-
dimensional normal distribution with mean rt+1|t and variance-covariance matrix ⌃t,
the VaR over time period of 1 day can be expressed as,

V aRt+1 = rt+1|t + �
2
t+1|t�

�1(↵)
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where ��1(↵) is the inverse function for the cumulative distribution function of standard
normal and �t+1|t denotes standard deviation, which is formulated by,

�
2
t+1|t = W

0
⌃W = [w1w2]


�11,t+1 �12,t+1

�21,t+1 �22,t+1

� 
w1

w2

�
.

Variance-Covariance method is rather simple to implement and can be applied to a
wide range of financial risk estimations. However, one of the disadvantages is the
assumptions about returns following a normal distribution is not always the case in the
financial market. As a result, the estimation of VaR may not be accurate.

2.5.4 Monte Carlo Simulation

The key idea of the Monte Carlo method as a parametric technique to compute the
VaR of a portfolio is to simulate random processes based on the empirical distribution
of stock returns multiple times to make it converge to the unknown true distribution of
returns. Therefore we could use the simulated data to compute the VaR of the portfolio.

There are several procedures to implement Monte Carlo simulation: Firstly, choose
appropriate distributions describing the behavior of stock returns and estimate related
parameters. Secondly, generate a large number of random data based on estimated
distribution. In the end, we could use simulated data to compute the portfolio’s VaR
of interest.

The Monte Carlo method could capture some complex relationships between asset re-
turns which are di�cult to find when applying the historical simulation and variance-
covariance method. As it is not totally dependent on historical data which might never
show again in the future and the simulation is based on the estimated model without
any normal assumption.

On the other hand, the Monte Carlo method also has some drawbacks: it is computa-
tionally intensive and sensitive to the chosen distributions of returns.

2.5.5 Backtesting

Backtesting is a technique used to assess the accuracy of VaR estimation. Backtesting
a model involves the procedure of fitting a parametric model to observations, using
estimated models to make predictions, and then comparing them to historical data.
We applied Kupiec’s test [26] to compare the expected losses against the actual losses
realized in a given period.

Kupiec’s Test

Kupiec’s Test, also known as the unconditional Coverage Test, is based on the assump-
tion that the number of observed exceptions, which are observations in excess of VaR,

15



follows a binomial distribution. Specifically, let N denote the total number of observa-
tions and n represent the number of exceptions. Assuming the model is accurate, the
failure probability should converge to 1 � c given the confidence level c (99%, 95% or
90%). The number of exceptions follows a binomial distribution,

f(n) =


N

n

�
p
n(1� p)N�n

where p is the probability of exceptions under the null hypothesis defined as

H0 : p = p̂ =
n

N
.

Under the null hypothesis that there is a correct amount of exceptions, the test statistics
is formulated by,

LRK = �2ln

✓
(1� p)N�n

p
n

(1� n
N )N�n( n

N )n

◆
.

Furthermore, LRK is asymptotically �
2(1) distributed. If the test statistics is greater

than �
2(1) critical value or the statistical p-value is below the significance level (1%,

5% or 10%), the null hypothesis will be rejected, and the model is seen as not good.
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3 Empirical Results

3.1 Data

In this section, we investigated the dependence structure of stock markets in Europe
and Sweden. Specifically, we will analyze the data STOXX 50 and OMXS 30, which
include daily equity indices from January 3, 2000, to February 28, 2023. The total
number of observations is 5859.

The daily return of the index is defined as,

rt = ln

✓
Pt

Pt�1

◆
= lnPt � lnPt�1.

where Pt is the closing price at time t.

Daily returns for both datasets are shown in Figure 2.

Figure 2: Daily returns of STOXX 50 and OMXS 30.
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The analysis shown in Table 1 reveals that both index returns exhibit heavy tails,
as indicated by kurtosis values exceeding 3, and they display left skewness due to
negative skewness values. The Jarque-Bera test[27] is used to determine whether the
data follows a normal distribution. Specifically, the test statistics of Jarque-Bera test is
always positive and the data tend to follow a normal distribution if the value is close to
zero. The results indicate that neither index return conforms to a normal distribution,
given the substantial deviation of their Jarque-Bera values from zero.

Table 1: Descriptive statistics of index returns

STOXX 50 OMXS 30
Number of Observations 5859 5859

Mean 0.0003507 0.0004422
Standard Deviation 0.01361 0.01447

Skewness -0.1333 -0.08731
Kurtosis 5.219 4.277

Jarque-Bera Test
6674 4479

< 2.2e-16 < 2.2e-16

Figures 3 and 4 demonstrates that index returns share the features of volatility clus-
tering, commonly referred to as autoregressive conditional heteroskedasticity in econo-
metrics, meaning that volatility tends to persist, i.e. large movements followed by large
movements and small changes followed by small changes. In light of these findings, we
opted to adopt ARMA-GARCH models to fit the marginal distributions of both index
returns. considering three innovation distributions for the ARMA-GARCH models:
normal distribution, Student’s t distribution, and skewed Student’s t distribution.
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Figure 3: Autocorrelation of observations(left) and squared observations(right) for data
STOXX 50.

Figure 4: Autocorrelation of observations(left) and squared observations(right) for data
OMXS 30.

3.2 Marginal Modeling

The selection of ARMA(1,1)-GARCH(1,1) models for the two return series is based on
their ability to e↵ectively capture the volatility patterns commonly observed in financial
time series. Subsequently, the parameters of the GARCH models, with three di↵erent
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innovation distributions, were estimated using the Maximum Likelihood method in R.
A summary of the results is presented in Tables 2 and 3.

Table 2: Marginal Modelling results of European daily returns.

ARMA(1,1)-GARCH(1,1)
Normal t Skew t

Parameters

Estimate P-value Estimate P-value Estimate P-value
C 0.0005 0.0000 0.0006 0.0000 0.0004 0.0001
�1 0.7094 0.0000 0.6840 0.0000 0.7294 0.0000
✓1 -0.7531 0.0000 -0.7302 0.0000 -0.7835 0.0000
! 0.0000 0.0014 0.0000 0.2305 0.0000 0.1553
↵1 0.0927 0.0000 0.0886 0.0001 0.0860 0.0000
�1 0.8885 0.0000 0.9012 0.0000 0.9032 0.0000
⌫ 7.3651 0.0000 7.7510 0.0000
⇠ 0.9049 0.0000

Diagnostics
LLF 17756.18 17862.96 17876.23
AIC -6.0591 -6.0952 -6.0994
BIC -6.0523 -6.0872 -6.0903

Ljung-Box
Lag[1] 0.4773 0.2464 0.1257
Lag[5] 0.4268 0.0125 6.27e-09
Lag[9] 0.6334 0.0083 5.61e-03

Adjusted Pearson
Group[30] 1.28e-13 1.97e-04 0.0877
Group[40] 4.13e-14 1.17e-04 0.2846

Gof Test Group[50] 8.44e-12 8.13e-05 0.0784

Table 3: Marginal Modelling results of daily returns in Stockholm.

ARMA(1,1)-GARCH(1,1)
Normal t Skew t

Parameters

Estimate P-value Estimate P-value Estimate P-value
C 0.0006 0.0000 0.0007 0.0000 0.0005 0.0000
�1 0.8450 0.0000 0.8041 0.0004 0.7942 0.0000
✓1 -0.8751 0.0000 -0.8386 0.0000 -0.8423 0.0000
! 0.0000 0.1191 0.0000 0.0306 0.0000 0.0225
↵1 0.0838 0.0000 0.0776 0.0000 0.0748 0.0000
�1 0.9076 0.0000 0.9169 0.0000 0.9192 0.0000
⌫ 8.3333 0.0000 9.0657 0.0000
⇠ 0.8895 0.0000

Diagnostics
LLF 17493.83 17574.54 17592.69
AIC -5.9696 -5.9968 -6.0026
BIC -5.9627 -5.9888 -5.9935

Ljung-Box
Lag[1] 0.8366 0.6538 1.28e-01
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Lag[5] 0.9961 0.9110 1.12e-09
Lag[9] 0.7230 0.6229 9.42e-04

Adjusted Pearson
Group[30] 7.64e-14 5.22e-05 0.1978
Group[40] 5.14e-13 3.57e-06 0.2165

Gof Test Group[50] 1.04e-13 2.87e-04 0.1644

Based on the results from Tables 2 and 3, the models with t and skewed t distributions
provide better fits than the one with normal distribution due to larger likelihoods and
smaller AIC and BIC values. The Ljung-Box test suggests that normal and t distri-
bution are better but the adjusted Pearson goodness-of-fit test indicates the residuals
follow a skewed t distribution.

In order to determine which distribution fits the residuals best, we draw plots comparing
the empirical distribution of the residuals of GARCH models with three theoretical
distributions incorporating estimated parameters. Additionally, QQ plots were shown
for further comparison. Figures 5, 6 and 7 show results for data STOXX 50, and Figure
8, 9 and 10 are for data OMXS 30.

Figure 5: The left plot compares empirical residuals of data STOXX 50 with estimated
normal distribution. QQ plot(right) shows the validity of the fitted normal distribution.
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Figure 6: The left plot compares empirical residuals of data STOXX 50 with the esti-
mated t distribution. QQ plot(right) shows the validity of the fitted t distribution.

Figure 7: The left plot compares empirical residuals of data STOXX 50 with the es-
timated skewed t distribution. QQ plot(right) shows the validity of fitted skewed t

distribution.
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Figure 8: The left plot compares empirical residuals of data OMXS 30 with estimated
normal distribution. QQ plot(right) shows the validity of the fitted normal distribution.

Figure 9: The left plot compares empirical residuals of data OMXS 30 with the esti-
mated t distribution. QQ plot(right) shows the validity of the fitted t distribution.
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Figure 10: The left plot compares empirical residuals of data OMXS 30 with the esti-
mated skewed t distribution. QQ plot(right) shows the validity of fitted skew t distri-
bution.

In conclusion, the t distribution is identified as the most suitable model for fitting the
residuals. On one hand, QQ plots exhibit that t and skewed t distributions fit empirical
residuals pretty well since most points in the plot lie on the line. On the other hand,
the t distribution fits the tails clearly better than the skewed t distribution, which is
significant for Value at risk estimation since it is calculated based on the quantiles.

3.3 Fitting the tails of residuals

In this section, our attention is directed towards an important observation derived
from Figure 11, namely, the presence of asymmetric left and right tails in the empirical
residuals. Notably, the right tail displays a significantly lighter distribution, which the
t distribution fails to adequately capture.

Figure 11: Histograms of residuals of marginal modeling for both data sets. The left
one refers to residuals of data STOXX 50 and the right one represents data OMXS 30.
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Simulation

To verify the hypothetical distributions of the residuals, we use quantile plots. To verify
whether the deviations from the straight line are abnormal, we generated 1000 samples
with the same sample size as our dataset and plotted the quantiles plots as shown in
Figures 12 and 13. The idea is that if the underlying distribution is correct, only about
5% of points would deviate from the simulated quantile plots. These simulated samples
were then compared with the empirical residuals.

Figure 12: Qauntile plot for sorted residuals of ARMA(1,1)-GARCH(1,1)-t model of
data STOXX 50. 1000 lines refer to simulated samples from the t distribution with
estimated parameters.

Figure 13: Qauntile plot for sorted residuals of ARMA(1,1)-GARCH(1,1)-t model of
data OMXS 30. 1000 lines refer to simulated samples from the t distribution with
estimated parameters.

The simulation results reveal that the residuals for both index returns exhibit left
skewness, indicating the presence of heavier left tails. Additionally, the simulations
confirmed the asymmetry in our empirical residuals, with t distributions fitting the left
tail more e↵ectively than the right tail. Given that t distributions are symmetric, we
proceeded to fit the Generalized Pareto Distribution (GPD) separately to the left and
right tails of both index returns.
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GPD fitting

By looking at mean residual life plots in Figure B.1, B.2, and threshold range plots
Figure B.3- B.6, we determined that threshold 2 is appropriate for fitting the right tails
of both return residuals. To address the presence of heavier left tails, we employed the
Hill estimator to identify thresholds. As a result, the optimal order statistics deter-
mined by the hill estimator are 122 for data STOXX 50 and 170 for data OMXS 30,
which correspond to thresholds of -2.3 and -2.1, respectively. The fitting results of the
Generalized Pareto Distribution (GPD) are summarized in Table 4 and Table 5.

Table 4: GPD fitting to residuals of ARMA(1,1)-GARCH(1,1)-tmodel for data STOXX
50.

Left tail Right tail
MLE 95% CI MLE 95% CI

Scale parameter 0.5455 [0.3918, 0.6991] 0.4440 [0.3113,0.5767 ]
Shape parameter 0.1544 [-0.0673, 0.3760] 0.1116 [-0.1142, 0.3374]

AIC 139.97 63.32
BIC 145.61 68.52

No. of observations 124 99

Table 5: GPD fitting to residuals of ARMA(1,1)-GARCH(1,1)-t model for data OMXS
30.

Left tail Right tail
MLE 95% CI MLE 95% CI

Scale parameter 0.5127 [0.3949, 0.6306] 0.4545 [0.3265, 0.5825]
Shape parameter 0.1458 [-0.0306, 0.3221] -0.1041 [-0.3056, 0.0974]

AIC 169.31 25.02
BIC 175.61 30.19

No. of observations 173 98

The left tail of data OMXS 30 exhibits polynomially decreasing in contrast to the finite
right tail. The related results are less clear for data STOXX 50 due to two positive
shape parameter values but they still indicate asymmetric tail distributions.

Quantile plots for GPD

In this section, we adopt an alternative approach to estimate the shape parameter � in
the Generalized Pareto Distribution (GPD) models. The shape parameter, also referred
to as the extreme value index, plays a crucial role in characterizing the distribution of
the tail. If � < 0 the distribution has a finite upper bound, while � = 0 leads to an
exponentially decreasing distribution, and an exponentially decreasing tail occurs when
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� > 0. The majority of research has focused on heavy-tailed distributions, where � > 0.
One prominent method for estimating � is the Hill estimator, proposed by Hill in 1975
[28]. This estimator is defined as follows,

Hk,n =
1

k

kX

j=1

logXn�j+1,n � logXn�k,n

where Xm,n refers to the mth ordered observation out of n data in total. Assume X

follows a Pareto distribution, the Pareto quantile plot is formulated by [29],

✓
log

✓
n+ 1

j

◆
, logXn�j+1,n

◆
, j = 1, ..., n

If the estimated GPD is a good fit to return residuals, the ordered observations served
as empirical quantiles are anticipated to be linear with theoretical values, which means
the Pareto quantile plot will show a line of which the slope is given by the extreme
value index. Therefore, The core idea to estimate the extreme value index of heavier
left tails is to fit a straight line to the Pareto quantile plot and find its slope.

Furthermore, to ensure the stability of the estimated � parameter, we conducted mul-
tiple estimations using various values of k, ranging from 5300 to 5600 with a step size
of 20. Figure 14 and 15 illustrate three examples of quantile plots for the left tails of
the return residuals. The estimated extreme value indices are summarized in Table 6.

Figure 14: Pareto Quantile-Quantile plots with ordered data starting with 5340(left),
5440(middle) and 5540(right). The dots refer to empirical margins filtered by GARCH-
t models for data STOXX 50. The straight line is a regression line fitted to dots.
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Figure 15: Pareto Quantile-Quantile plots with ordered data starting with 5340(left),
5440(middle) and 5540(right). The dots refer to empirical margins filtered by GARCH-
t models for data OMXS 30. The straight line is a regression line fitted to dots.

Table 6: Estimated extreme value index with respect to di↵erent ordered observations

Estimated slope
Starting ordered data STOXX 50 OMXS 30

5300 0.2813885 0.2743794
5320 0.2788361 0.2719707
5340 0.2764416 0.2695846
5360 0.2741536 0.2670354
5380 0.2719008 0.2642499
5400 0.2696917 0.2612712
5420 0.2675284 0.2584317
5440 0.2653725 0.2554969
5460 0.2631412 0.2525685
5480 0.2608068 0.2493760
5500 0.2585585 0.2457505
5520 0.2564094 0.2422614
5540 0.2540690 0.2389333
5560 0.2520349 0.2361775
5580 0.2500530 0.2333648
5600 0.2476369 0.2303134

The results of estimated shape parameters are shown to be stable for both index returns
and the extreme index values for left tails are clearly larger than those for right tails
specified in Tables 4 and 5.

3.4 Copula Modelling

Regarding the elliptical copula, we used an exchangeable dispersion matrix to deter-
mine the dependence structure. In this scenario, the Gaussian copula requires the
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estimation of a single parameter, while the t-copula necessitates the estimation of two
parameters. Additionally, the Gumbel, Frank, and Clayton copulas belong to the class
of one-parameter Archimedean copulas.

Prior to modeling the dependence structure between margins filtered by ARMA(1,1)-
GARCH(1,1)-tmodels, we transform the standardized residuals to uniformly distributed
data. Subsequently, we estimated the dependence parameters using the maximum like-
lihood method. The results are summarized in Table 7.

Table 7: Dependence structure modelling for filtered return index by ARMA(1,1)-
GARCH(1,1)-t.

Gaussian t Gumbel Frank Clayton
copula copula copula copula copula

Estimated parameter 0.7805 0.7889(df = 10.35) 2.2968 7.7626 2.6616
AIC -5512.68 -5667.51 -5292.93 -5241.41 -2898.12
BIC -5506.00 -5654.16 -5286.26 -5234.74 -2891.44

log-likelihood 2757.34 2835.75 2647.47 2621.71 1450.06

Gaussian copula and t copula are better than the other three copulas based on larger
log-likelihood and smaller AIC and BIC values. And their estimated parameters are
closer to dependence measurements presented in Table 8.

Table 8: Dependence measurements for empirical residuals.

Kendall’s tau Spearman’s rho Pearson’s rho
0.5710 0.7583 0.78023

Figure 16 shows empirical filtered margins and five theoretical simulations based on
estimated parameters. It indicates that Gaussian and t copula fitted better graphi-
cally. Gumbel and Clayton copula are both asymmetric Archimedean. Gumbel copula
exhibits greater dependence in the negative tail while Clayton copula demonstrates
greater dependence in the positive tail.
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Figure 16: Scatterplots of 5859 data from Empirical residuals(upper left), and 5859
simulated samples from five kinds of copulas with estimated parameters shown in Table
7.

3.5 Backtesting of VaR

We implemented the GARCH-Copula approach to estimate VaR(Value-at-Risk) for the
portfolio, made up of equally weighted STOXX 50 and OMXS 30, as well as index
returns themselves. The detailed procedure applied to data STOXX 50 and OMX 30
is shown as followed:

1. Fit ARMA(1,1)-GARCH(1,1) with Student-t distribution to both data sets. Ob-
tain the standardized residuals.

2. Transform the marginal standardized residuals into uniformly distributed samples.

3. Estimate dependence structure of two uniformly distributed residuals using cop-
ula modeling by maximum likelihood method. Generate N random samples
(S1i, S2i)

N
i=1 with estimated copula models.

4. Apply probability integral transform to (S1i, S2i)
N
i=1 and then calculate the in-

dex returns based on conditional means and conditional variances of estimated
GARCH models.
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5. Given that the portfolio is calculated by equally weighted two index returns, VaR
could be estimated at di↵erent levels of confidence intervals.

Empirical results of five estimated copulas for portfolio, STOXX 50, and OMXS 30 are
summarized in Table 9, 10, and 11.

Table 9: Number of violations of di↵erent VaR models with 99% confidence level.

↵ = 0.01
No. of observations: 5859 Expected no. of exceptions: 59
Non-rejection region: 39  exceptions  78

Portfolio STOXX 50 OMXS 30
Historical Simulation 43* 51* 49*
Variance-Covariance 93 96 138
Gaussian copula 87 73* 87

t copula 49* 59* 55*
Gumbel copula 98 90 72*
Frank copula 76* 67* 64*
Clayton copula 33 55* 49*

Figures with asterisks are in the non-rejection region under the 99% confidence level
of Kupiec’s Test.

Table 10: Number of violations of di↵erent VaR models with 95% confidence level.

↵ = 0.05
No. of observations: 5859 Expected no. of exceptions: 293
Non-rejection region: 260  exceptions  326

Portfolio STOXX 50 OMXS 30
Historical Simulation 252 265* 259
Variance-Covariance 245 253 301*
Gaussian copula 385 357 405

t copula 314* 320* 320*
Gumbel copula 376 345 385
Frank copula 368 364 336
Clayton copula 325* 304* 308*

Figures with asterisks are in the non-rejection region under 95% confidence level of
Kupiec’s Test.
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Table 11: Number of violations of di↵erent VaR models with 90% confidence level.

↵ = 0.1
No. of observations: 5859 Expected no. of exceptions: 586
Non-rejection region: 548  exceptions  632

Portfolio STOXX 50 OMXS 30
Historical Simulation 552* 552* 539
Variance-Covariance 424 443 502
Gaussian copula 737 696 730

t copula 659 624* 662
Gumbel copula 713 643 727
Frank copula 710 712 714
Clayton copula 587* 633 617*

Figures with asterisks are in the non-rejection region under 90% confidence level of
Kupiec’s Test.

In conclusion, the traditional approach to estimating VaR, historical simulation, tends
to underestimate market risk in financial industries under the condition that a finite
number of extreme events happened in the past. Some copulas, such as Gaussian,
Gumbel, and Frank copula overestimate financial risk based on their relatively large
number of expected exceptions. Finally, t copula and Clayton copula perform the best
among elliptical and Archimedean copulas, respectively.

3.6 VaR prediction

Finally, rolling forecast methods are employed to generate Value at Risk (VaR) predic-
tions for both datasets. In particular, the ARMA-GARCH-t model is estimated using
4,359 observations, leaving 1,500 observations that are utilized for comparison with the
forecasted values. These 1,500 samples are referred to as the ’out of sample’ data, and
the VaR predictions based on them are denoted as ’out of sample VaR’.

One-step prediction for ARMA-GARCH-t model is obtained by,

rt+1|t = Ĉ + �̂1rt + ✓̂1✏̂t

�
2
t+1|t = !̂ + ↵̂✏̂

2
t + �̂�

2
t

✏̂t = rt � r̂t�1.

Then, the VaR prediction is given by,

V aR↵ = rt+1|t +
q

�
2
t+1|t t

�1
↵

where t
�1
↵ is the ↵ quantile of Student’s distribution.
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Figure 17: VaR estimation based on true observations and VaR prediction based on
rolling forecast method, with confidence level 99%, 95%, and 90% for data STOXX 50.

Figure 18: VaR estimation based on true observations and VaR prediction based on
rolling forecast method, with confidence level 99%, 95%, and 90% for data OMXS 30.
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4 Summary

4.1 Conclusions and further analysis

This thesis aims to explore the dependence structure between the European stock mar-
kets (OMXS 30) and Stockholm (STOXX 50) and utilize it to estimate Value at Risk.
Accurately estimating the future losses of a portfolio requires robust multivariate joint
distributions. However, the historical simulation and variance-covariance methods tend
to underestimate risk across di↵erent confidence levels (99%, 95%, and 90%). The as-
sumption of normality and linear relationship between asset returns prove inadequate
in capturing the complexity of dependence structures. Monte Carlo simulation which
constructs joint distribution using the combination of marginal modeling with copula
function will give more reliable results. Empirical results indicate that combining the
ARMA(1,1)-GARCH(1,1)-t model with the t copula yields the most accurate VaR es-
timation. Furthermore, in the process of marginal modeling, Extreme Value theory
indicates the tails of residuals are asymmetric and the left tails are heavier than the
right ones for both datasets.

Future investigations could expand the analysis to include multivariate cases beyond
the bivariate setting explored in this study. Furthermore, considering the asymmetric
tails proved by GPD fitting and the Hill estimator simulation in the residuals from
ARMA-GARCH models, incorporating adjustments based on this characteristic may
improve the accuracy of VaR estimation.
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A ACF plots of residuals after marginal modelings

Figure A.1: Autocorrelation of standard residuals(left) and squared standard residu-
als(right) after ARMA(1,1)-GARCH(1,1)-norm modelling for data STOXX 50.

Figure A.2: Autocorrelation of standard residuals(left) and squared standard residu-
als(right) after ARMA(1,1)-GARCH(1,1)-norm modelling for data OMXS 30.
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Figure A.3: Autocorrelation of standard residuals(left) and squared standard residu-
als(right) after ARMA(1,1)-GARCH(1,1)-t modelling for data STOXX 50.

Figure A.4: Autocorrelation of standard residuals(left) and squared standard residu-
als(right) after ARMA(1,1)-GARCH(1,1)-t modelling for data OMXS 30.
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Figure A.5: Autocorrelation of standard residuals(left) and squared standard residu-
als(right) after ARMA(1,1)-GARCH(1,1)- skewed t modelling for data STOXX 50.

Figure A.6: Autocorrelation of standard residuals(left) and squared standard residu-
als(right) after ARMA(1,1)-GARCH(1,1)-skewed t modelling for data OMXS 30.
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B Mean residual life plots and threshold range plots

In this section, two kinds of threshold selection methods: mean residual life plots and
plots based on the stability of parameter are shown as follows.

Figure B.1: Mean residual life plots of the right tail for both return residuals. The left
plot is for data STOXX 50 and the right one represents OMXS 30.

Figure B.2: Mean residual life plots of the left tail for both return residuals. The left
plot is for data STOXX 50 and the right one represents OMXS 30.
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Figure B.3: Threshold range plots of the right tail for return residuals of data STOXX
50.
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Figure B.4: Threshold range plots of the right tail for return residuals of data OMXS
30.
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Figure B.5: Threshold range plots of the left tail for return residuals of data STOXX
50.
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Figure B.6: Threshold range plots of the left tail for return residuals of data OMXS 30.
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C Diagnostic plots for GPD fitting

Diagnostic plots of right tail:

(a) Probability plot (b) Quantile plot

(c) Return level and confidence interval (d) Density function

Figure C.1: Diagnostic Plots for The GPD of STOXX.
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(a) Probability plot (b) Quantile plot

(c) Return level and confidence interval (d) Density function

Figure C.2: Diagnostic Plots for The GPD of OMX.
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Diagnostic plots of left tail:

(a) Probability plot (b) Quantile plot

(c) Return level and confidence interval (d) Density function

Figure C.3: Diagnostic Plots for The GPD of OMXS30.
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(a) Probability plot (b) Quantile plot

(c) Return level and confidence interval (d) Density function

Figure C.4: Diagnostic Plots for The GPD of OMXS30.

Figure C.5: Hill plots for left tails of data STOXX 50(left) and OMXS 30(right).
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D Hill Estimator simulation

The codes in R implementing the Hill estimator simulation are shown as follows:

Hill3 < � function(start, end, by, X){

data = sort(X)

N < � 5859

k < � seq(start, end, by)

num < � length(k)

len < � N - k

slope < � rep(0,num)

for (p in 1:num){
x < � rep(0, len[p])

y < � rep(0,len[p])

for (j in 1:len[p]) {
x[j]< � log((N+1)/j)

y[j] < � log(data[N-j+1])

}
plot(x,y)

abline(mod < � lm(y x))

slope[p] < � mod$coe�cients[”x”]

}
return(slope)

}
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