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Abstract

When a robotic arm is performing a task, there is a risk of undesired and possibly
dangerous behaviour. Two such dangers can be physical injuries or the destruction of
equipment. In most applications today a full safety stop with guide rails is implemen-
ted.

A deep dive into robot safety in the form of a literature study was carried out. This
newly acquired knowledge was then used to perform various safety rule studies to
define some more straightforward classes of situations that could be dangerous and
what response is appropriate for each of them.

To reduce these risks, a safety program was created, whose aim is to ensure that when
the robot arm violates safety, the dangerous behaviour is stopped, and if the situation
allows, the robot arm is returned to an earlier state that is safe. This resulted in
both an interface between the robot arm’s controller and the safety program, but also
a safety program that was able to perform multiple reactions. One of them is the
ability to return to the start position. The program is able to follow the rules for
speed, force, and position, where the rule for position is defined in terms of spatial
volumes. A template for adapting and creating rules and reactions to broken rules was
also created. A series of successful experiments of keeping rules were carried out to
show the safety program’s validity and functionality. These were carried out on two
different reinforcement learning scenarios. The novelty of the solution in this thesis
was to design and evaluate a system that steers reinforcement learning towards a safe
behaviour by integrating rule-based safety monitoring into the training process. The
other uncommon behaviour for safety applications, present in this solution, is to have
a way to recover to a safe state automatically when rule breaches occur.

Keywords: robot arm, safety, human-robot interaction, reaction, safety rules, rules
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Sammanfattning

När en robotarm utför en uppgift finns det risk för oönskat beteende som kan vara
farligt. Tv̊a s̊adana faror kan vara fysiska skador eller förstörelse av utrustning. De
flesta tillämpningar p̊a säkerhet idag best̊ar av säkerhetsstop och säkerhets regler.

En djupdykning inom robotsäkerhet i form av en litteraturstudie utfördes. Denna
nyförvärvade kunskap användes sedan för att utföra olika säkerhetsregelstudier för att
definiera n̊agra fler enkla klasser av situationer som kan vara farliga och vilken respons
som är lämplig för var och en av dem.

För att minska dessa risker, har ett säkerhetsprogramet skapats, vars syfte är att
säkerställa att när robotarmen bryter mot säkerheten, s̊a stoppas det farliga bete-
endet, och om situationen till̊ater, återg̊ar robotarmen till en tidigare position som
är säker. Detta resulterade i b̊ade ett gränssnitt mellan robotarmens styrenhet och
säkerhetsprogramet, men ocks̊a ett säkerhetsprogram som kunde utföra flera olika re-
aktioner, en av dem är en reaktion som återställer positionen för robotens sluteffektor
till startpositionen. Programmet kan följa reglerna för hastighet, kraft och position,
där regeln för position definieras i termer av volymer. En mall för anpassning och
skapande av egna regler och reaktioner för brutna regler skapades ocks̊a. En serie av
experiment utfördes för att visa programmets giltighet och dess funktionalitet detta
gave ett positivt resutlat. Det nya med denna lösning är att b̊ade ha ett system som
kan användas p̊a Förstärkningsinlärning för att säkerställa dess säkera beteende, men
ocks̊a att ha ett sätt att återhämta sig till ett säkert tillst̊and automatiskt.

Nyckelord: robotarm, säkerhet, människa-robot interaktion, reaktion, säkerhetsregler,
regler
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Terminology and definitions

Action vector
The action vector is a vector that describes an action taken by the robot arm in this
case. An action can be, for example, move to this new position.

Clamping in robot structure
This scenario means that a human has gotten a limb stuck in the robot arm structure
whilst the robot arm is applying a force on the stuck limb.

Compliance mode
This is a mode where the robot’s motor stiffens goes to 0, making it comply with
externally applied forces put on it hence why its called compliance mode.

Constrained impact
Constrained impact is an impact scenario where a human gets stuck between an object
and the robot arm.

Contact scenarios
Contact scenarios are a descriptive term describing a situation where the robot arm
has come in contact with something.

Electric tools
Electric tools can be anything from plasma cutters to heat-guns to tools based on
electric motors, or any other tool which gets its energy from an electric source.

End-effector
An end-effector is a device placed at the end of a robotic arm with the purpose of
adding some functionality to interact with the environment.

Force vector
This is a vector describing a force.

Hazard of the object
How dangerous an object is to a certain situation.

Joint
Joint in this context refers to, for example, an elbow joint in the robot arm. The robot
arm contains many different joints giving it mobility.

Memory mode
Memory mode is a mode where the safety program remembers previous states which
can then be used to perform different reactions.

Mode
A mode describes a setting for how to behave when certain criteria are met.
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No human present
No person is detected near the robot.

Normal operations zones
Areas where no extra limits are put on the robot.

Object characteristics
Object characteristics is a descriptive character of a certain object, these can be for
example anything describing how soft or hard an object is to how sharp or dull it is.

Object position
Position of an object.

Object safety
Object safety means ensuring safety around an object.

Operator present
An operator for the robot is detected near the robot.

Partially constrained impact
Partially constrained impact is an impact scenario where the human becomes con-
strained for a short time but is able to move one of the objects away.

Power tools
Power tools are tools usually based on either compressed air, electric motors or some
form of combustion engine.

Quasi-static contact
Quasi-static contact is a contact scenario where a human is not able to recoil way form
the contact scenario.

Reaction vector
The reaction vector is the same as the action vector. The difference is that the values
in it have been changed by the safety program as a reaction to some breach of the
safety limits.

Reduced operations
A decrease in allowed movements such as speed or forces.

Return to origin
Return to origin is one of the reaction behaviors for a broken rule created in this thesis.
The reaction causes the robot arm to return to the starting position.

Reward system
A reward system refers to a system manly used in artificial intelligence (AI) training
applications. The reward is a signal to the AI that the behaviors leading up to the
reward were a preferred behavior increasing the likely hood of that behavior happening
again in the future.

RL reinforcement learning
RL is a form of neural network training method based on simulated reward systems.
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Robot Operation Modes
A mode describes a setting for how to behave when certain criterion are met. Robot
operation modes in this sense means modes in which the robot can be operating.

RosMari
RosMari is a programming language with the focus on safety and was one of the
inspirations for this thesis.

Safety interface
The safety interface is the program created in this thesis that manages communication
between the controller and the safety program.

Safety limits
A descriptive term is the safety limit, describing as it says a limit that ensures safety.

Safety Studies
Safety studies are a set of idea brainstorming about robot safety that are carried out
in this thesis.

Safety Study
Safety study is one single brainstorming about robot safety.

Safety system
Is a descriptive term meaning a program or a set of programs that ensures safety.

Singularity scenarios
Is when the robot’s number of degrees of freedom is reduced in some amount by its
configuration in space.

State vector
A vector describing the state the robot is in. The state in this case describes the state
of a robot arm a state can be for example a measured position.

Stop operations
The robot is forced to stop.

Stop zones
Areas where the robot is forces to stop of it enters them.

Taxonomy
Taxonomy is a system of categorizing or classifying groups of objects and things in
science.

Transient contact
In a Transient contact scenario the human is able to recoil away from the contact
scenario.

Tool safety
Tool safety means ensuring safety around a tool.

Tools
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Tools can be for example anything from a saw to a drill to a gripper or possible a
welder that can either be used by the robot arm or exist in its environment.

Unconstrained impact
Is as it is called an impact scenario where the human is not constrained from moving
away.

Visitor present
A visitor is detected near the robot.

Volumes
Volumes is a term used to describe a virtual created 3d-shape that in this thesis has
some safety functionality attached to it.

Warning zones
Areas where extra safety limits are added to the robot if it is in them.

X



Contents

Abstract I

Sammanfattning III

Acknowledgements V

Terminology and definitions VII

Table of Contents XII

1 Introduction 1
1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Project Aims and Main Challenges . . . . . . . . . . . . . . . . . . . . 1
1.3 Approach and Methodology . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Methodology 5
2.1 Literature Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Safety Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Safety of Robot Systems 7
3.1 Robot Contact Scenarios Literature Study . . . . . . . . . . . . . . . . 7
3.2 Taxonomy Literature Study . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2.1 Different Types of Failures That Can Occur . . . . . . . . . . . 10
3.2.2 Types of Human-Robot Contact Scenarios . . . . . . . . . . . . 10
3.2.3 Different Perspectives on Safety . . . . . . . . . . . . . . . . . . 10
3.2.4 Comment on Safety Studies . . . . . . . . . . . . . . . . . . . . 13
3.2.5 Summary of the Taxonomy . . . . . . . . . . . . . . . . . . . . 13
3.2.6 Discussion on the Literature Studies . . . . . . . . . . . . . . . 14

4 Results of Safety Studies 17
4.1 Initial safety studies creating tree structure taxonomy . . . . . . . . . . 17
4.2 Safety Study, Creating a State Space . . . . . . . . . . . . . . . . . . . 18

4.2.1 Robot Safety State Space . . . . . . . . . . . . . . . . . . . . . 19
4.2.2 Robot-Human Safety State Space . . . . . . . . . . . . . . . . . 22

4.3 Schematic of the Proposed Programming Database Structure . . . . . . 25

5 Safety Program Implementation 27
5.1 Studying the Tools and Software . . . . . . . . . . . . . . . . . . . . . 27
5.2 Program Environment Description . . . . . . . . . . . . . . . . . . . . . 27
5.3 The Safety Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

XI



5.4 The Safety Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.4.1 The Safety rules format . . . . . . . . . . . . . . . . . . . . . . 32

6 Simulation Experiments 35
6.1 Testing the Correct Behavior . . . . . . . . . . . . . . . . . . . . . . . . 35
6.2 Testing the Recovery Behavior . . . . . . . . . . . . . . . . . . . . . . . 36
6.3 Testing the Stop Behavior for Human Safety . . . . . . . . . . . . . . . 36
6.4 Memory-less Stop Behavior . . . . . . . . . . . . . . . . . . . . . . . . 37
6.5 Testing with Obstacle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.6 Further Data on the Tests . . . . . . . . . . . . . . . . . . . . . . . . . 38

7 Discussion and Conclusion 43
7.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Bibliography 45

A Appendix programming part 47
A.1 David’s Safety Program . . . . . . . . . . . . . . . . . . . . . . . . . . 47
A.2 David’s Safety Interface . . . . . . . . . . . . . . . . . . . . . . . . . . 58

XII



1 Introduction

1.1 Background and Motivation

The research question of this thesis is how to formulate and implement safety con-
straints on the movements and forces of a robot arm in a way that stops dangerous
behaviours from occurring. In the area of robotics and industrial machines, safety is
an important aspect. Many machines and robots work with great forces, high speeds
and are heavy. This makes these machines dangerous to work with. For example, an
operator of such a machine can accidentally give a command that can be catastrophic
to equipment and be very expensive to repair. It could harm humans in the case
where human-robot interaction (HRI) is possible. This also applies if the control is
given to some sort of artificial intelligence (AI) system. The usual solution to this is to
implement both physical and software guide rails and safety stops to make sure that
if dangerous behaviour is detected, the machine shuts down. It also means that the
production stops, if the machine is unattended, which often is unacceptable. To find
a better solution would be of great interest to this field.

1.2 Project Aims and Main Challenges

It is assume that the robot of this thesis is a compliant robot arm which is a robot arm
that has a springiness effect to an externally applied force. The robot arm is assumed
to weight about 28 kg and have a length of about 1 m. It is further assumed that the
work area can be populated with both humans and various objects that the robot can
come in contact with. Another assumption is that the main task of the robot is to
insert a Small cylindrical peg attached to the end of the robot arm in to a cylindrical
hole placed in the work area. The final assumption is that the robot arm is going to
try to do things that are not safe neither for any objects in the work area but also not
for any humans present in the work area.

The aim of this master thesis work is to ensure safety of a robot application in a
working environment. The goal is to have a safety system for both humans that can
be in the work area but also objects present that can be fragile as well as the robot
arm it self.

A subsequent aim is to define a format for safety that makes sure that a controller
handling the arm is not able do anything that can destroy equipment or harm anyone.
This is to be done by establishing rules and limits for this format, where the first
step is to define what is “safe” and what is “not safe”. For example, the arm could
only be allowed to move in a specified spatial volume. Similarly, a forbidden volume
can be defined. Additionally, limiting forces and speeds might be constraints worth
considering.
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Another aim is to implement a safety system based on the format for safety with the
rules and limits, as well ass adding appropriate reactions for the breach of these. A
reaction For example, could be that the movement is stopped. But often a better
reaction is to return to a previous step that is inside of the rule conditions. It is also
relevant to be able to return to the start of the task if a failure occurred. This is
because obstacles in the workspace could mean that a straight line back to the start
position is not always an option.

The last aim is to be able to use the safety system in a reinforcement learning (RL)
application to ensure a safe behavior while training.

This project will not, however, cover programming any artificial intelligence (AI) or
machine learning (ML) algorithms. This project will not cover any other robots but
the Kuka iiwa robot arm (although the developed solution is general enough to be
compatible with other robots). It will only cover the physical safety of objects and
humans but not computer security.

The main research questions of this thesis is: Is it possible to create a safety system
that is capable of ensuring a safe behavior by a robot arm controlled by an artificial
intelligence? Is it possible to run a safety system on a training artificial intelligence
model? Is it possible to have an automatic recovery behavior for a robot arm when
safety is breached?

1.3 Approach and Methodology

The thesis is divided into 4 main parts, see Figure 1.1. The first part covers the
literature studies, which are performed to get a better understanding of safety in an
industrial environment and in human-robot interactions. Then a summary report is
created as a basis for future steps.

The second part are the safety studies which are based on the literature studies for
developing a structure for defining safety in the context of the robot. The structure is
then scrutinized to ensure its rigidity. When a rigid structure for safety is met the work
moves on to the next step. However, If the structure is found flawed, more literature
studies are to be carried out until a good level is met.

The third part is the program implementation. Which consists of creating a program
which resembles the structure for safety, developed in the previous step, as closely as
possible. Minor testing of the program is carried out to see that all parts work as
intended and if more features are needed until a fully working version is created.

The final step is to validate the program by testing it in simulation to see if unsafe
behaviors are being stopped correctly and that safe behaviors are allowed to continue.
Data about the performance of the tests are then to be gathered for further analysis.

The chapters are structured as follows: Section 2 describes the methodology. Section 3
describes the results of the literature studies. Section 4 describes the safety studies.
Section 5 describes the safety program and Section 6 contains the validation of the

2



Literature studeis Safety studdies Program 
implementation

Final Testing

Figure 1.1: A Flowchart displaying the method of this thesis divided in to four steps

program. Section 7 contains the discussion and conclusion, as well as future work.
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2 Methodology

The first part of the project was to get acquainted with the tools and software that
were going to be worked with in the production of the safety system. The second
step was to conduct literature studies of both robot safety in general, but also safety
in robot-human interaction as well as safety when training and running RL on robot
systems. This was done to have better understanding of safety in the field of robotics.
After the literature studies, some safety studies in the form of thought experiments
were carried out and documented, however the initial resulting safety studies were
found flawed as they did not pass the scrutinization. Thereafter, new iterations of
literature studies and safety studies continued until a satisfactory safety manual and
document was created as well as a few descriptive charts, see section 4. This was done
to have the base for the program.

In the final step, the implementation of the two programs, the safety interface and the
safety system, was to be created, the safety interface was programmed using C++ and
the safety system was done in Python. The programming was done in incremental
steps with small goals along the way towards the main goal.

2.1 Literature Studies

It was important to acquire knowledge in the field of safety in industry and robotics
in order to have the appropriate background to be able to create a capable safety
system. The search started with interviewing knowledgeable people in the field at the
university for guidance of were to beguine the literature studies. Here a few articles on
the idea of the RosMari safety system programming language were acquired. RosMari
is a programming language with the focus on safety, that one of the supervisors had
created. The focus in the articles was on the idea of separating the safety system into
a separate process but also some safety system examples.

One idea when doing the literature studies was to find some sort of taxonomy tree
structure to base the safety studies on. This, however, proved more difficult than
expected. Dialogue with the people at the university about their knowledge in the
field and articles that would be of interest were continuously held. It was also decided
to go and ask the university library for help, which resulted in an interesting article[1].
The results were documented and summarized in a minor report and discussed with
the supervisors.

5



2.2 Safety Studies

The safety studies were an exploratory brainstorming activity based of the literature
studies where the goal was to creating a structure or taxonomy that would single
out important aspects of safety. The purpose behind the creation of a structure or
taxonomy was to have a blueprint to follow when making the safety program.

Safety studies were carried out a few times after some literature studies. The first safety
study was to divide according to categories found in the literature studies following
a tree based structure with a root base branching out in to more detailed categories.
The resulting structure was however not as well grounded in literature studies as was
initially thought.

After more literature studies, a new tree structure was created, this time dividing
according to normal operations(the robot follows the task at hand with no extra safety
limits), warning mode(the robot has some extra limits but is still able to continue
working) and disaster mode(the robot is stopped or shut down). After reviewing the
resulting structure it was again decided to do another safety study

The final literature study was the basis for the two final safety studies, one for defining
the most important features for categorizing safety and the other for the creation of
the schematic of the safety program. The idea of the categorization was to go through
each possible main situation for the robot setup creating a volume-based safety system.
And the idea for the schematic of the program was to create a tree of data structures
to visualize their respective attributes, see section 4.3.

2.3 Programming

According to the literature studies and safety studies a program was created. This was
done with normal programming procedures with both bug testing and fixing. The main
goal of this program was to ensure the safety that was defined in the safety studies
and that the robot arm would always be stopped from acting in a dangerous way.
Two programs were created, one being the safety program itself and the other being a
interface program. The two programs had to communicate with each other, this meant
creating a communication system. Thankfully the basis for this already existed in the
ROS package. In order to test the capabilities of the programs and check their different
functionalities, they were both run on the simulation. This was also done interactively
for each new ability that was added until a final well-working program was acquired.
The final testing that was performed was to examine if the safety program would stop
the dangerous behaviors. This was done by inducing dangerous behaviors by the AI
and seeing if this was appropriately stopped. It was further also checked that good
behaviors were allowed to continue without intervention from the safety program.

6



3 Safety of Robot Systems

This part consists of the Literature studies which were carried out in two main steps.
These steps were carried out to increase the knowledge in the area of safety in robotics
for the purpose of having a firm base to build a safety system on. The first of the two
steps was the different contact scenarios which were studied for the purpose of getting
a better understanding of the physical limitations for how safe contact is defined. The
second step focuses more on different taxonomies and contains the summary of the
literature study.

3.1 Robot Contact Scenarios Literature Study

The article [2] was one of the inspirations for the first iteration of safety studies as
it contains a form of taxonomy for different scenarios of contact and accidents. The
article [2] was interesting in the sense that it contained a taxonomy which was par-
tially dividing according to the following structure; near singularities(which is when
the robot’s number of degrees of freedom is reduced by its configuration in space),
in singularity, as well as, dynamic contact, quasi-static contact and sharp or blunt
contact. These examples were interesting due to the similar nature of the contact
scenarios to the robot arm in this thesis which also can cause such contacts to occur.
Another inspiration was a paper which contained a few examples of how safety limits
work [3]. Here an autonomous mobile robot is designed to work on mink farms and
the robot is to drive around on the farm. One problem encountered in this article
[3] is making sure that the robot does not fall over, which prompted limits on the
measured tilt angle as well as speed limits. Another limit was on the time spent in
each farmhouse due to the exhaust from the robot which in high consentration could
be dangerous for the animals at the farm. This same robot was also able to take cor-
rective measures for each breach of a limit. This shows the multi-variability of safety
and that there are many things to take into consideration to ensure safety in different
applications.

When looking for human safety in human-robot interaction, it is important to follow
values for safe human-robot contact. Two articles that stood out in this area was [4,
5], in both it was concluded that for a robot arm of a similar size and weight as the
one used for this thesis project (a Kuka LBR iiwa), the safety limit for speed was to
be applied at a maximum safe velocity of 0.25 m/s. However, in [5] some examples
concluded a much lower speed of 0.1 and 0.2 m/s, whilst it was also argued in the
same article that the speed limit of 0.25 m/s is a bit too confining. This was debated
in light of the possibility of different setups and functionalities of the task at hand.

In this thesis a quick hand calculation was carried out as a simple validation for the
robot arm that safety was to be applied to. Some estimations of the weight of the
robot arm and of the thickness of the skin at the temple of a human head, yielded

7



a very similar resulting velocity as a safety limit. The arm was modeled as a solid
bar with equal mass density along the arm, which rotates around one of the ends,
and then impact an object with an estimated skin thickness of 0.2mm, which is the
maximum allowed deceleration distance, simulating the head of a human. In this case
the maximum allowed force is FMax=110 N according to Table 3.1, if it is assumed
that the hit is from a 1cm² area hitting at the temple. This 1cm² area is assumed
reasonable for the geometry of the robot arm in this thesis.

First are the estimated physical values of the thickness of the skin of a human head
lskin, as well as the length of the robot arm larm, and the weight of the robot arm
marm. Here FMax is the maximum allowed force on the head at the impact point.

lskin ≈ 2 mm (3.1)

larm ≈ 1 m (3.2)

marm ≈ 28 kg (3.3)

FMax ≈ 110 N (3.4)

The max Energy allowed in a collision with the estimated breaking length of 2mm and
a max force of 110 N gives in Equation 3.5

Ehuman = FMax ∗ lskin ≈ 0.22 J (3.5)

This is very close to the number 0.23 J presented in the article [6] for the maximum
allowed energy transfers for an impact scenario to the forehead.

Equation 3.6 is the equation for the moment of inertia of a symmetric beam fastened
at one end, acquired from [7].Where I is the inertia, m the mass, and l the length, of
the arm.

Iarm = marm ∗ l2arm
3

(3.6)

Equation 3.7 is the energy equation for a rotating symmetric beam fixed in one end
point [7]. E is the rotational energy, I is the inertia, m the mass, l the length and ω
is the rotational velocity.

Earm = Iarm
ω2

2
(3.7)

Combining Equation 3.6 with Equation 3.7 gives the following Equation 3.8

Earm = marm ∗ l2arm
3

∗ ω2

2
=

marm ∗ l2arm ∗ ω2

6
(3.8)

Calculating the maximum allowed rotational velocity for the robot arm combines
Equation 3.8 with Equation 3.5 which gives the Equation 3.9 which in turn results
in Equation 3.10

Earm = Ehuman ⇒ marm ∗ l2arm ∗ ω2

6
= Ehuman ⇒ (3.9)

8



Body region Specific body area Quasi-static contact

Maximum permissible pressure N/cm²

Skull and forehead Middle of forehead 130

Temple 110

Face Masticatory muscle 110

Neck Neck muscle 140

Seventh neck muscle 210

Back and shoulder Shoulder joint 160

Fifth lumbar vertebra 210

Chest Sternum 120

Abdomen Pectoral muscle 170

Abdominal muscle 140

Pelvis Pelvic bone 210

Upper arms and elbow joints Deltoid Muscle 190

Humerus 220

Lower arms and wrist joints Radial bone 190

Forearm muscle 180

arm nerve 180

Table 3.1: A list of biomechanical limits describing the max tolerable forces for different
human contact scenarios, from [6]

ω =

√
Ehuman ∗ 6
marm ∗ l2arm

≈ 0.22 rad/s = 12 ◦/s (3.10)

Translating angular velocity to linear in Equation 3.11.

1 m ∗ 0.22 rad/s ≈ 0.22 m/s (3.11)

Compared to the values used in prior work, 0.25 m/s is very close to the calculated
value of 0.22 m/s Equation 3.11 velocity. However, even though these values are a base
for making sure that the right safety limits are put in place, it is still not necessarily
enough. In the article [2] the risk of simply trusting the sensor values was highlighted.
A difference of as high as 100 N between the sensor values and the measured value was
recorded. Instead, it was suggested to perform physical measurements of the various
movements of the robot and the maximum values that appear, to provide as a risk
assessment for safety.
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3.2 Taxonomy Literature Study

To find any taxonomy-based standard for safety has yielded no major result. The
search lasted for 3 weeks on the university’s search engine LUBsearch, the university
library and Google scholar. What has been found that was relevant, although not
standard, are the following taxonomy figures, Figure 3.1 and Figure 3.2.

3.2.1 Different Types of Failures That Can Occur

The first taxonomy tree that was found, see Figure 3.1, was based on the different
causes of breaches in safety. It did not focus on the situation of the breach of safety,
but the focus was on who or what caused the breach to occur and who is responsible
for the breach. This however, is not quite what this thesis is about as in this thesis the
focus is on identifying the situations that have a high probability of being dangerous.

Failure

Engineering Human Environment

Commun-
icationEffector

PowerSensor

Control
System

InteractionDesign

SlipMistake

Figure 3.1: A Taxonomy describing causes to failures which can come form three main
sources: Engineering failures, environmental circumstances and Human
errors. According to [5].

3.2.2 Types of Human-Robot Contact Scenarios

Another taxonomy tree that was found see Figure 3.2 was one which was based on
the dangerous situations that can occur. However, it does not cover situations other
than where a human is involved and focuses only on the human aspect of safety. It
also goes into more detail in the human safety aspect for some areas which were later
seen in this thesis as unnecessary due to them being sen as equally disallowed and so
they could be lumped together.

3.2.3 Different Perspectives on Safety

The following are citations from [1] containing different human-robot interactions from
different sources that are summarized in [1]. The most applicable scenarios for this
thesis have been hand-picked.
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Figure 3.2: Different scenarios of contact between robots and humans classified according
to [5]. The figure on the bottom left represents an unconstrained contact
scenario where the person is able to recoil. The middle bottom represents a
secondary possible contact scenario after the first contact. The bottom right
image represents a clamping contact scenario where the person gets stuck in
the robot structure. The top left image represents a contact where the person
is partially constrained by objects in the environment. The top right scenario
is a contact scenario where the person is constrained between a solid object
and the robot. All scenarios can lead to a secondary impact scenario.[5]

Figure 3.3: An example of a setup with different work zones. Each zone has a different
mode of operation. This is described both in this figure-image but also in the
Table 3.2 accompanying it. The figure is inspired by [8]

In [1] a literature review was found on the human-robot collaboration (HRC) subject.
The parts most interesting for the robot arm in this thesis application were then added
to a collection. These are in the text that follows in this subsection:

The first interesting example was from [1] also found in [9], was an industrial safety
application where safety was divided into, ”human action restriction, robot behaviour
modification, injury classification, injury minimisation and collision avoidance” [1].
This gave an insight into an example of categories of hazard avoidance to keep in
mind when setting up the safety rules later.
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Action strategy in HRC

Robot action Human action

If operator enters If visitor enters Operator Visitor

Warning zone (Z1) Warning signal Warning signal Enter with awareness Stay with caution

Speed reduction zone (Z2) Speed reduction Stop Continue individual process Not allowed leave safely

Speed reduction zone-the head area (Z3) Stop Hard stop, manual restart needed Continue individual process Not allowed leave safely

Collaborative zone (Z4) Collaborative task Hard stop, manual restart needed Collaborative task Not allowed leave safely

Stop zone (Z5) Stop Hard stop, manual restart needed Continue individual process Not allowed leave safely

Table 3.2: The Table describes the different modes of operation and the different
apropreate actions to take in the different zones described in Figure 3.3. The
table is from [8].

Another example was [10] where a gripper was used in human-robot collaboration and
the conclusion was that the main danger was crushing and pinching actions from the
gripper on the human [10]. This was interesting due to the fact that it gave examples
of the most common dangers when dealing with grippers. However, these dangers are
still applicable to the robot arm in this thesis as pinching and crushing are still very
real dangers.

In [1, 11], different robot designs are discussed. Mentioned are, the compliance of the
robot, how human-friendly the physical design is, for example: Rounded edges instead
of sharp edges, if the system is well monitored with cameras and sensors etc., if stiffness
is variable and if the real-time system is of high enough quality or fast enough in its
reactions for the application [1]. Even though not many of these are applicable to the
thesis, they are in any case important things to take into consideration for the current
equipment to ensure that it is not stretched to its limits.

Further, reactions were discussed, Both a stop reaction and a reaction for moving away
from the human as well [1, 12]. Preventative measures where the robot is trying to
avoid the human, correcting the robot’s path is mentioned. Also warning the human
in question of possible dangers, and stopping if needed are methods mentioned[1, 13].
These reactions are quite similar to the proposed recovery behaviour in this thesis.
However, the difference is that a recovery is a self-correction of an already broken rule.
Here the reaction is of a more preemptive nature.

Then a solution is proposed that divides the robot workspace into different zones with
different parameters for the robot arm to work under. This follows the layout of
Figure 3.3 and Table 3.2. Here a quote follows form the paper [1]: “Stop and reduced
speed zones are configured during the layout design of the HRC cell, considering the
task of both the human and the robot. Conventionally, the size of different zones is a
static environment without changes during operation. However, in a symbiotic HRC
cell, the robot’s speed and task are dynamically changed and monitored by the system.
Consequently, the size of the zones can be dynamically modified as well. For instance,
when the moving speed of the robot decreases, the potential energy transferred to the
human is lower” [1]. This is a solution that supports the prior suggestion in the
introduction, of having volumes or zones as it is called here, were the robot is to have
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different rules in different zones. The article further includes the concept of having a
way to recover form broken rules.

The same paper then continues to discuss how it acts if different tools are used. It
is mention that sharpenss of the tool should affect the operation limits and that the
speed in a certain case described should decrease by 50% and that the allowed energy
transfer is decreased by 75% [1]. This is another thing to consider in the application.
however, the energy of the end-effector was not available.

3.2.4 Comment on Safety Studies

The application of the robot arm in this thesis project requires more than just human
safety. It also requires object safety and tool safety to not destroy any equipment.
Although not necessarily a new field due to the nature of safety, the implementation
of object safety can be a branch of the safety for humans but, with a lower safety
priority than the safety for humans in the program.

3.2.5 Summary of the Taxonomy

What follows is a concluded taxonomy created after summarizing the most common
features encountered in the diffident articles after the literature studies. This was done
as finding proper taxonomies which contained the sought after sub Taxonomies for this
thesis, were not found. The different taxonomies that were created are:

• Different contact scenarios, see Figure 3.2

– Quasi-static contact

– Transient contact

– Sub-scenarios

∗ Secondary impact

∗ Unconstrained impact

∗ Clamping in robot structure

∗ Partially constrained impact

∗ Constrained impact

• Different objects

– Tools

∗ Power tools

∗ Electric tools

– Object characteristics

∗ Object position

∗ Sharpness/minimum contact area

∗ (Hazard of the object)
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• Different safety measures(preventative)

– Stop operations

– Reduced operations

∗ Forces

∗ Speeds

∗ Energies

• Different volumetric definitions

– Normal operations zones

– Warning zones (many different safety measures possible)

– Stop zones

• Different humans with different authorization

– Operator present

– Visitor present

– No human present

A minor modification of [3, 2, 6, 8]

Talking to two researchers familiar with the field here at Lund university, both agree
that there currently is no common safety standard, but rather that every company
and robot implementation has its own taxonomy for safety, depending on their specific
situation. Which is the same conclusion that was made during the literature studies.
However, this does not mean that any or some of these taxonomies can not be a basis
for a new definition and make the taxonomy as flexible and modular as possible for
more general use cases.

One conclusion that can be made form [1] is that it is useful to have zones of operations
of which the robot’s behaviour is determined by, for example, if the human is present
in a zone. These zones are also very adaptable in size and safety thresholds depending
on the different scenarios. For example this can depend on if a human is in the zone,
the human task in the zone, the tools that are used, the objects in the zone and then
what limitations are appropriate for the zone for the set scenario. For example, stop
zone, reduced forces and speeds zone, invisible wall zone.

3.2.6 Discussion on the Literature Studies

I believe that the most sensible way of implementing a program for safety for a robot
arm is to define operation volumes with operation limits set by the physical environ-
ment. I do not however, think there should be predefined safety limits for different
hazards categories, which you would just choose from for your application in a volume.
For example: object characteristics, tools used, clamping hazards and impact hazards.
But rather that every different scenario would have to be evaluated separately to en-
sure that the safety is thought through thoroughly. However, differentiating between
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volume definitions like stop, warning, normal operations, and main volume (where all
objects should be encompassed by subvolumes) and defining a few safety constraints
and operation modes that can be useful in different scenarios, is a more sensible ap-
proach. Also defining the main contact scenarios as a suggestion like human contact
and object contact but with no deeper description is a good idea. The last safety
situation is when the Jacobian matrix of the robot state approaches the singularity
or, as said before, when the degrees of freedom of the robot is decreasing.

The system that was implemented have these different classifications seen in Figure
3.4. The main volume must cover all subvolumes, the main volume is a border in which
the robot should operate, it is not supposed to leave it to ensure safety outside of the
main volume. Main volume operation can be defined in different ways, but usually it is
a cap on speed and forces, to ensure the well-being of the robot. The reactions defined
on the border to ”out of bounds” can also vary. For example, the robot can use some
kind of invisible wall function, go back recovery behaviour, or even a stop command
with an operator needed for recovery. The operations inside the main volume can also
be variable depending on input, for example, if a sensitive object is added or removed.

The subvolume is a smaller volume inside the main volume it usually covers an object
but not necessarily. This volume should be a zone where a specific operation mode
is defined. For instance, speed, force and energy or invisible wall operations or other
recovery behaviour. A subvolume can be a stop, warning or other operation area
defined by the safety of both objects and human presence. All objects in the main
volume should be covered by some sort of subvolume to ensure that the main volume
is free from objects.

Each volume definition must contain a safety behaviour for all possible objects or
humans that can enter it. It must be able to change depending on how the circumstance
changes, especially for the human case. Here the word ”object” is synonymous with a
tool, an unknown object and other robots present.

Each situation both inside and outside of a volume must have a definition of how to
treat a contact or collision. Note that depending on the physical and software-wise
characteristics it is not always possible to determine if the robot has collided with a
human. In the cases that contact is detected but a human contact can not be ruled out,
the program should always assume that a human contact has occurred. How to treat
a contact depends on the application, whether the contact is necessary, unimportant,
undesirable, or hazardous. The next step is to design some kind of recovery behaviour
for contact.

In summary, all safety evaluations for a system must be done separately. All possible
hazards and safety operation parameters have to be defined for each possible hazard
in the system. After this the defined operations can then be put into subvolumes.
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(a)

(b)

(c)

Figure 3.4: In this figure from a)-c) contain all the different objects that exist in the state
set. This figure also describes the different objects encountered in the figures
in section 4. The green rectangle in a) and b) is representing the outer border
of the allowed robot’s movements and is called the main volume, and the
orange rectangle in b) is representing a sub-volume where other predefined
safety rules and safety limits for the robot govern. Underneath the volumes,
in c) comes a list of the different objects that can exist in and outside the
volume. A blue person represents a human. The wrench represents different
tools and the grey rectangle with the orange border represents a known
object with a known position. The black box with a question mark on it
represents unknown objects with unknown positions and the orange robot
arm represents the robot. Underneath this is a similar list but with a robot
arm in the beginning with a red yellow star representing a collision. And the
same objects as before representing objects that the can be collided with.
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4 Results of Safety Studies

The safety studies are a set of thought experiments conducted based on the previous
literature studies. The goal of these safety studies was to define a system for categor-
ization safety, in order to have a base for creating a program for robot safety. These
were done in 3 main iterations were the first two are described in the section 4.1 and
the final safety study is defined in the section 4.2 describing the finalization. The last
part contains a schematic map to follow when programming see section 4.3.

4.1 Initial safety studies creating tree structure tax-

onomy

In the first safety study conducted, the objective was to define all resulting states
from the different taxonomy categories based on the first literature studies which were
divided into these following categories: A singularity (decrease in the degree of free-
dom), a form of contact (dynamic and quasi-static), and manipulator characteristics
(sharp vs blunt). In difference to [2] the robot arm of this thesis had a scenario which
included situations for not only human safety but for object safety as well. There
were more possible variables like if a human is present, if there are objects that might
be delicate, as well as volumetric limits. These were kept in mind as more details
on each of these categories were added. To minimize the taxonomy tree structure
the contact subcategories of, sharp, blunt, dynamic, quasi-static, as well as pinching,
were lumped together into the supercathegory contact characteristics. The definition
of ”sharp,” what that really means, and where the line between sharp and blunt is
drawn, has also been questioned due to the definition being ambiguous. Instead, it was
seen as a stabbing incident, which meant that it was not treated differently depending
on dynamic and quasi-static but rather as an unacceptable state. As well as contact
scenarios, the singularity scenarios were also seen as a categorisation for the taxonomy
tree. singularity scenarios was divided into limit angles, volumetric limits as well as
limited by objects in the volume. The category of volumetric limits was divided into
physical limits and virtual limits. This was done with the thought, that the robot can
not only hit a firm object, but it might also be that some virtual area would be a limit.
But exactly how to treat it was not thought more of at this stage.

In a meeting with the supervisors, the resulting taxonomy tree was reviewed and
discussed. Is it a good idea to start off basing everything on singularity as the first
category or if human presence should be the main one, what are the sources for doing
so and the missing and lacking reactions for each state and its multidimensionality?
The decision was to do more literature studies.

After more literature studies, the focus was more on the reactions of each state. A
new, more refined state tree was also created. Which tried to simplify the states by
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combining some of the previous states into one category and also removing those seen
as unnecessary. First, the identification of the safety modes are as follows: normal
operations, warning mode, and finally catastrophe mode as primary reactions which
contains a list of appropriate reactions for each mode. It then branches in to primary
reaction which has a certain set of states, here some of these are, human presence,
then object safety, and volume safety. This in turn branches in to more intricate sub-
reactions. As mentioned before due to the focus on the reaction rather than the state.
This meant that a lot of research went to real physical limits for speeds and volumes
and forces etc. For the warning mode there is a greater restriction on movement force
and speed than in normal mode. In normal mode, the robot is free to move as fast and
with as much force as the task allows it to. While the disaster mode is divided into a
few more states. The first branching for disaster mode is divided the same as warning
mode but with an immediate stop reaction. Whilst the human part of the disaster
mod is divided into two parts. One part describes how to deal with blunt objects
involved with a contact scenario, which is a warning mode, that can lead to a stop
mode if the parameters for further human safety can not be satisfied. The thought
was to prevent a continuous hitting of a human whilst still not being too restrictive
when the objects are seen as more or less harmless. Whilst the other is an immediate
stop mode due to the immediate danger this state can be to a human. This is due to
the object in this state being sharp or semi-sharp. As a clarification, blunt and sharp
and semi-sharp are characteristics defined in this thought experiment as something an
operator or an engineer is to define for each separate object in the robot workspace.

When presented to the supervisors some critics were if the basis for this division
was grounded in some standard taxonomy. That was not the case, as for now no
standard had been found but instead only examples. Another topic was that this,
even though very interesting, now instead of covering states, covered the reaction and
that there must be a way to cover both dimensions together well. In discussions with
the supervisors, it was previously mentioned that from their knowledge there was no
standard but it was still decided to do some more studies on the matter.

4.2 Safety Study, Creating a State Space

In this part of the safety study the goal is to create a state space which covers the
significant states the robot can be in. This is to have a template to follow when creating
the safety program to minimize the risk of forgetting to take into consideration an
important danger.

Each section for a state was divided into two parts. The first part for each type of
situation goes through the different states and explains what they represent and what
is included in the state. The second part describes the proposed reactions tied to
each state for what correct behaviour can be and what parameters can be defined.
The basis for this second part came form the previous literature studies, as well as
discussion with knowledgeable people in the field, as well as experience gained while
reading the literature studies. For a deeper explanation of the elements in Figure 4.1
and Figure 4.2, see Figure 3.4.
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The common recurring suggested reaction category to the states is the suggested limit
operations as we will call it in the future and has the following proposed limitations
for the state it occurs in:

• Suggested limit operations

1. Maximum end-effector speed

2. Maximum end-effector force

3. Maximum joint speed

4. Maximum joint force

5. Maximum energy limit of moving mass

6. Compliance mode

7. Maximum physical or virtual limitation X (custom limitation)

4.2.1 Robot Safety State Space

a) Inside the main volume

In this state, see Figure 4.1:a, the robot is operating normally with the appointed
settings from the operator or programmer. There are no foreseeable limitations to the
robot and therefore it can operate freely. All obstacles inside the main volume (the
main volume is the volume which covers every allowed position for the robot) should
be encompassed by subvolume definitions if possible.

These are the proposed reactions and limitations for this state:

• Volume limits (space limit functions, space limit functions for joints)

• Maximum end-effector speed

• Maximum end-effector force

• Maximum joint speed

• Maximum joint force

• Maximum energy limit of moving mass

• Maximum physical or virtual limitation X (custom limitation)

b) Inside a subvolume

While inside a subvolume, see Figure 4.1:b, the limit of speed, force, volume limits
and restricted area in the subvolumes, apply to the robot. These limits are set by the
operator or programmer to the desired values. Subvolumes can also be placed inside
of each other to create intricate behaviour if that is desired. If multiple subvolumes
occupy the same space, the subvolume with the highest safety settings overrules the
others in its occupied volume. Subvolumes are quite useful to cover different objects
and tools. Especially where operations need to be changed due to, for example, safety
around an object, or where stronger forces are allowed, for a specific task. ”Compliance
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(a) (b)

(c) (d)

(e) (f)

Figure 4.1: Figure 4.1:a The robot arm is inside the main volume. Figure 4.1:b The robot
arm is inside a subvolume. Figure 4.1:c The robot arm has come in contact
with a known object. Figure 4.1:d The robot arm has left or partially left the
main volume. Figure 4.1:e The robot arm has come in contact with an object
whilst also being outside or partly outside the main volume. Figure 4.1:f The
robot arm has come in contact with an unknown object.

mode” is when the robots motor stiffens goes to 0, making it comply with forces put
on it hence why its called ”compliance mode”.

These are the proposed reactions and limitations for this state:

1. Stop command and call for operator

(a) (Optional) Compliance mode

2. Stop command and recovery behaviour (If recovery behaviour fails return to step 1.)

(a) Return to the previous step outside subvolume

(b) Move in the normal direction to the border surface away from the subvolume

(c) Move away from the center of the subvolume

(d) Recovery algorithm X (custom algorithm)

3. Suggested safety violation operations or subvolume operations

(a) Suggested limit operations

4. Invisible wall behaviour

(a) Forces in the normal direction to the subvolume surface in the subvolumes direction set to 0

(b) Forces towards the centre of the subvolume set to 0

(c) Invisible wall function X (custom function)
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c) Contact or collision in a subvolume

Contact with an object in the subvolume, see Figure 4.1:c, can be either positive or
negative depending on the intended use and the object’s characteristics depending on
safety. This is defined by the programmer or operator of the system for the specific
subvolume.

These are the proposed reactions and limitations for this state:

1. Stop command and call for operator

(a) (Optional) Compliance mode

2. Stop command and recovery behaviour (If recovery behaviour fails return to step 1.)

(a) Return to the previous step inside or outside subvolume

(b) Moves away from the centre of the subvolume until the outside

(c) Move in the normal direction to the border surface away from the subvolume

(d) Recovery algorithm X (custom algorithm)

3. Suggested contact operations

(a) Suggested limit operations

4. No change in safety behaviour

d) Out of bounds or outside main volume

In this state, see Figure 4.1:d, the robot has left the main volume or operating area
and is therefore out of bounds. Once the robot is in this state, it is difficult to predict
what will happen next and contact with any object or human is possible making this
state a safety risk. Some safety measure that ensures that a human is not present in
the reachable area of the robot or close to the main volume must be present. However,
in some cases, the environment around the main volume is not populated with either
objects or humans that the robot can reach and is therefore somewhat safe to move
through for the robot. The purpose of the main volume is to encompass the entire
working area and all operations of the robot.

These are the proposed reactions and limitations for this state:

1. Stop command and call for operator

(a) (Optional) Compliance mode

2. Stop command and recovery behaviour (If recovery behaviour fails return to step 1.)

(a) Return to the previous step inside bounds

(b) Move towards the centre of volume until inside

(c) Move in the normal direction to the border surface in direction of the main volume

(d) Recovery algorithm X (custom algorithm)

3. Invisible wall behaviour

(a) Forces in the normal direction to the volume surface in out-of-bounds direction set to 0

(b) Forces away from the centre set to 0

(c) Invisible wall function X (custom function)
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e) Out of bounds contact or collision

In the case, see Figure 4.1:e, the robot has exited fully or partially the main volume
or operating area and has come in contact with or collided with some unknown object
or possibly a human, we can no longer guarantee safety and must therefore come to
an emergency stop. In the case that the volume outside of the main volume is known,
contact is still unexpected, therefore an emergency stop is mandatory.

These are the proposed reactions and limitations for this state:

1. Stop command and call for operator

(a) (Optional) Compliance mode

f) Contact with unknown object

In this case, see Figure 4.1:f, the robot is in contact with an unknown object or
an object with an unknown position. Contact with an unknown object is usually
unacceptable and needs human intervention. However, in some cases these objects are
not unknown objects, but rather it is their position that is unknown, or somewhat
unknown and contact is not only allowed but desired for normal operations. An
example of a situation where the object is not unknown but the position is, is were
a box is to be moved by the robot arm from one point to the other but the exact
position of the box is impossible to know. In this case, the treatment of this object
should be defined under the limits for the main volume.

These are the proposed reactions and limitations for this state:

1. Stop command and call for operator

(a) (Optional) Compliance mode

2. Suggested contact operations

(a) Suggested limit operations

3. No change in safety behaviour

4.2.2 Robot-Human Safety State Space

a) Human in the main volume

If a human is present in or close to the main volume, see Figure 4.2:a, all operations
must be adapted to only operate in a way that can ensure the person’s safety. What
is safe is different from case to case and must be evaluated for every specific situation.
One example that can determine the settings is any tool used by the robot, if it is
sharp or blunt. Another example is the specification of the objects in the environment
of the main volume operations. There are many more factors needed to determine the
safety and these two examples are not guidelines.
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(a) (b)

(c) (d)

Figure 4.2: Figure 4.2:a The robot arm is in the main volume while a human is also
present in the main volume. Figure 4.2:b The robot is in a subvolume while a
human is present somewhere in the the main volume, possibly also the
subvolume. Figure 4.2:c The robot arm has come in contact with an object
whilst a human is present somewhere in the main volume. Figure 4.2:d The
robot arm has come in contact with or collided with a human inside the main
volume.

These are the proposed reactions and limitations for this state:

1. Stop command and call for the operator or wait until the main volume is clear of any humans

(a) (Optional) Compliance mode

2. Suggested Human safety operations

(a) Suggested limit operations

b) Inside a subvolume, while human in the main volume

Just like when a human is present in the main volume, the operations for the main
volume need to be safe. The same is the case for subvolumes that a human can enter,
see Figure 4.2:b. These volumes are also useful to cover different objects and tools
with which usually need a harder safety limit. Sometimes making the subvolume a
restricted area while a human is present is important to ensure safety. However, it
might be that a subvolume is safe even though a human is present due to the fact that
the area is unreachable for the human.

These are the proposed reactions and limitations for this state:

1. Stop command and call for operator or whait until the main volume is clear of any humans

(a) (Optional) Compliance mode

2. Stop command and recovery behaviour, move away from subvolume (If recovery behaviour fails return to step
1.)

(a) Return to the previous step outside subvolume

(b) Move in the normal direction to the border surface away from the subvolume
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(c) Move away from the center of the subvolume

(d) Recovery algorithm X (custom algorithm)

3. Suggested human safety operations

(a) Suggested limit operations

4. Invisible wall behaviour

(a) Forces in the normal direction to the volume surface in the subvolume direction set to 0

(b) Forces towards the centre set to 0

(c) Invisible wall function X (custom function)

c) Contact or collision while human in operating area

The robot has collided with something in a subvolume while a human is present in the
main volume, see Figure 4.2:c. This could be an object, an unknown object or even
a human. This is unacceptable because there is an extra risk of clamping a human
between the object and the robot. In some cases as mentioned, human contact can be
defined separately but the extra risk of clamping is still there. Also, compliance mode
in this case is not necessarily possible. This can be due to the fact that the weight
of the load on the end-effector might vary, causing it to fall on someone if compliance
mode is applied.

These are the proposed reactions and limitations for this state:

1. Human contact or collision, is hazardous

(a) Stop operations and call for the operator until the human leaves and the operator acknowledge.

i. Compliant mode if safe to do so.

(b) Safety stop X (custom function)

2. Human contact or collision, is allowed

(a) Stop operations, compliant mode and safe operations (then move on to c)

i. Suggested limit operations

(b) Stop move, move away from contact area (then move on to c)

i. Suggested limit operations

(c) If contacted twice in a row while a human is in the main volume (then move on to step 1.)

(d) Human-contact behaviour X (then move on to step 1.)

3. Human collaborative mode

(a) Collaborative behaviour X (custom behavior)

d) Human contact or collision

Human contact is when the robot has come in contact with an object or human inside
or at the border of the main volume while a human is detected near the main volume,
see Figure 4.2:d. If it is possible to differentiate between object contact and human
contact in some other way, that will be the definition of human contact. In most
cases, human contact is unacceptable and demands a safety stop. However, in some
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rare cases human contact is intended and follows under the human safety operations
defined.

These are the proposed reactions and limitations for this state:

1. Human contact or collision, is hazardous

(a) Stop operations and call for the operator until the human leaves and the operator acknowledge.

i. Compliant mode if safe to do so.

(b) Safety stop X (custom function)

2. Human contact or collision, is allowed

(a) Stop operations, compliant mode and safe operations (then move on to c)

i. Suggested limit operations

(b) Stop, move away from contact area (then move on to c)

i. Maximum end-effector speed

ii. Maximum end-effector force

iii. Maximum joint speed

iv. Maximum joint force

v. Maximum energy limit of moving mass

(c) Compliance mode

(d) Maximum physical or virtual limitation X (custom limitation)

(e) If contacted twice in a row while a human is in the main volume (then move on to step 1.)

(f) Human contact behaviour X (custom behavior) (then move on to step 1.)

3. Human collaborative mode

(a) Collaborative behaviour X (custom behavior)

4.3 Schematic of the Proposed Programming Data-

base Structure

After the safety studies a summary and a simplification was needed for a more programming-
friendly model. This was done by creating the following data base structure see Figure
4.3. This structure needed to have the ability to be flexible enough to cover all the
different states created in Section 4.2 but also simple enough to be easy to use. It was
here decide to have a root defined by a volume which would hold a shape and govern
a sub category called mode, the mode would contain all limits and reactions discussed
in Section 4.2.

The database structure was done in the following way: Firstly, the definition of sub-
volumes, which contains a few parameters which define the data sets such as an iden-
tifier, as well as a priority number for keeping track of overlapping subvolumes. This
is then followed by the volume limits itself and finally a list of mode indexes which
contains all work modes that exist within a certain volume. It also contains a separate
coordinate system which can be changed on the fly during the operations. This is due
to the fact that some objects in the area can move, for example, if there are two robots
working together. Each subvolume also contains a few triggers, mostly volumetric but
it can be defined as a plane, that activate the subvolumes, and its modes of operation.
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Figure 4.3: The first box, centre middle top, describes the main volume which should
contain different subvolumes and the different modes of operation the main
volume can be in. The modes that are connected to the subvolumes and the
main volume are operational modes for limits and rules.

The highest authority is the main volume, the main volume is where the robot is to
be operating, it is to encompass the entire volume of where the robot can go. It is
different to the subvolumes in the sense that it does not contain any triggers. This is
because when no triggers from other subvolumes are active, the operations go back to
the main volume operations.

The main and sub-volumes contain the modes of operations. These modes have dif-
ferent contents, with each mode having a main or sub-volume, an identifier, a priority
marker and a trigger. This is due to the fact that even though the volume is defined
in the main or sub-volume content, time is a dimension of its own and at certain times
or at certain states, some things can be allowed but in other times and states they
are not. For example, an object can be picked in one please and pushed in another,
allowing different kinds of contact in different times. Each mode contains a set of
operation limits, which can be, speeds, forces, angles, and so on. Reactions is a list of
possible reactions to a certain breach of operation limits. That can be, stopping and
calling for an operator, in the most aggressive reactions, but sometimes a simple slow
down, or even move back, can suffice.

Reaction triggers are triggers that cause a reaction. they are very similar to operation
limits, however, the operation limit does not necessarily trigger a reaction. This can
be due to the mode not being triggered. For example, pick an object, place an object
or do not touch an object mode. If the robot is in touch mode but the operation limits
for pick mode trigger, this should not lead to a reaction and thus the reaction trigger
does not fire.
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5 Safety Program Implementation

5.1 Studying the Tools and Software

The following tools were studied at the beginning of the project:

ROS or robot operating system is a middleware that is used for communication. Com-
munication is done through something called a master which manages the different
messages going back and forth between the different programs [14]. This middleware
is used to connect the different programs bot for the internals of SkiREIL but also for
connecting the safety program to the robot controllsystem. It was of course important
to learn this program in order to be able to use the communication features present.
To learn ROS a tutorial from ROS’s own website [15] was followed.

SkiROS2 is a skill-based platform [16] for complex behavior trees [17]. This is an
important part of the SkiREIL package used in this project. SkiROS2 was important
to studdy as it contains the AI decition system and this was to be contained by the
safety system. SkiROS2 was studied by reading the instructions on the website [17].

SkiREIL is a package [18] which contains the programs that were to be worked on in
this thesis; SkiROS2 is one of the policies that is supported by SkiREIL. SkiREIL is
a framework that combines reinforcement learning methods with skill-based behavior
trees.

RosMari is a safety system programming language [3] that operates separately from
the other programs. The reason behind that is to ensure that the safety program is
always able to be executed no matter what happens to the main system. Another
purpose of RosMari is also to simplify programming in order to minimize the risk
of code errors. RosMari was created in a research project on the university inspired
by the article [3]. This article [3] was studied to understand the implication of the
safety program and its functionality. RosMari was an inspiration for this thesis with
its features of having separate processes and programming simplicity.

5.2 Program Environment Description

This section describes the environment the programs for this thesis was created in.
the reason behind this is to ensure understanding of how and why things were done.

The SkiREIL framework that was to be worked on already contained a control system
for the movement of the arm. SkiREIL also contains a part for decision making, this
is the machine learning part, determining new positions to move to as well as giving
the robot commands for force and speed. A constant force is to be applied in the
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Figure 5.1: This shows the architecture of the SkiREIL system, the parts being worked
on have been the safety interface and the rule-based safety system or what is
called the safety program. The idea is that a system engineer will be able to
work on the safety rules of the safety program and define the learning
scenario. The image is taken from [19].

commended direction when a force command is given. The program works with a
state vector as well as an action vector when updating the desired commands and
these were sent back and forth between different parts in SkiREIL. This was done
to ensure that the orchestra of internal simulation, controller, output signals, and
decision-making, were synced up correctly to ensure the functionality of the program
and the robot arm.

As can be imagined from the introduction, the task here is to intercept the state
vector and the main update of the action vector and ensure that safety is preserved.
As mentioned this state vector contains end-effector position, end-effector orientation,
forces, joint position and joint orientation, but here only the end-effector position
and orientation will be of interest. From the action vector, however, both reference
position, reference orientation, as well as reference forces and reference stiffness will
be needed [20].

Now to what has been added during the thesis. To make sure that safety is always
ensured, a safety program will be running separately on an isolated thread. There-
fore two things were added: First a safety program to handle the safety rules, and
secondly an interface program between the SkiREIL library and the safety program
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that manages the communication between the two.

5.3 The Safety Interface

See Figure 5.1 for a detailed image of the program.

At the unchanged state of the SkiREIL program, to send the state vector and the action
vector to the safety program, just as they are, makes no sense. This is because the two
vectors at the unchanged state can be hard to understand for someone working with
the safety program. Therefore a Safety interface class was constructed which would
divide up the state and action vector into more palatable chunks that we can call
physical traits, like the previously mentioned positions, orientations, reference values
of position, orientation, force and stiffness. Also, the speed value of the arm was
needed, this was however not part of the state vector that was being acquired and was
instead added separately to the existing chunks.

The configuration of the safety scenario needs to be uploaded to the safety program in
which it will operate. It will need limitations and rules to be operated on. This is done
by a separate function, but still in the safety interface part of SkiREIL. This function
receives the configuration which is defined in JSON with all safety limits and rules. It
then converts it to a string and sends it over to the safety program over ROS service
message. This is done first in a separate function in the safety interface to minimize
unnecessary calls during the safety checking.

After the setup of the safety scenario has been communicated to the safety program,
the state vector and action vector are divided up into their physical traits and prepared
to be sent to the safety program according to their respective data type over a ROS
service message. Following this, the safety interface waits for a reply from the safety
program. Here exists a fail-safe: If a reply can not be established, the safety interface
will return a failed safety check to SkiREIL which in turn throws an exception and
subsequently brake any further robot actions.

If the communication works properly, a response will be received from the safety
program consisting of 3 parts. The first part is a string which contains the message
about the breach situation. The second part contains a possibly altered version of the
action vector, lets call it the reaction vector. this reaction vector is then used in the
safety interface to overwrite the current action vector. The third part contains a set
of booleans connected to different reactions predefined in the safety interface.

The response from the safety program depends on the situation and exists in three
different cases. Case one, if no rule has been broken, an empty string will be received
by the interface program from the safety program, as well as a reaction vector equal to
the action vector, and a batch of false Boolean’s standing for that no reaction should
occur. The following two cases are cases where a rule is broken. In case two the string,
will contain a text describing the breach and which rule that has been broken. And
a change in the reaction vector triggering the reaction of the robot, but with false
reaction booleans. In the third case, as before, the string contains the breach info, but

29



the reaction vector being equal to the action vector, it is the reaction booleans that
will return true and trigger their respective pre-programmed reactions to the robot.

Pre-programmed reactions are the reactions that exist in the safety interface. These
reactions work by checking their designated reaction boolean value coming from the
safety program. If such a reaction boolean is true the pre-preprogrammed reaction
ensues. These reactions that are hard coded in the safety interface are the slowdown
reaction and the set forces to 0 reaction. The slow down function is a very simple
function that sets the reference position values to the current position values, thereby
forcing the controller to want to stay in the position of the previous step.

The safety status is checked for every RL step. In the current set of experiments, this
is 10 Hz. This value can of course be adjusted to a desired value for the custom-chosen
scenario.

5.4 The Safety Program

The safety program first receives the JSON configuration with all the limits and rules
and saves them in a Python dictionary. Secondly, it receives all physical traits from
SkiREIL over the ROS service message. Each time the safety program receives the
physical traits, it pairs each physical trait with its corresponding rules and limits and
compares them to check if any rule is broken. For example, absolute speed is paired
with every speed rule and checked for any breach of value. The safety program is
able to receive updates on its environment at any time from the JSON file during the
robots operation, this adds the multidimensionality of time to the safety program if
so is desired.

Rules can be somewhat complex. A set of rules that needs to be breached together to
trigger a reaction is called a block. So each block contains multiple rules. For example,
one block can contain one rule for speed, another for force and one for a physical
breach volume for the position of the end-effector. In this case, if the speed exceeds its
maximum allowed value but the other limits are not breached the situation will not
trigger a reaction. One scenario in which such a rule can be applied could be because
outside this volume a higher speed is allowed or because it is the combination of speed
and force in this volume that would be undesired. In any case, all rules need to be
broken simultaneously in a block for a reaction to trigger.

A block does not only contain rules, each block also contains a unique ID number for
the breach, a “limit category” information message string in case of a breach and the
reaction itself as a string, as well as a priority number. For the priority number, a low
number means that the block is having a higher priority, in case multiple competing
overlapping rules trigger their reactions simultaneously.

After all traits have been checked against their corresponding rules, a list of all detected
breaches that satisfy a block is stored and then sorted according to each block’s priority
number. Then these blocks are filtered leaving only those with the highest priority
number. At this point, all the different blocks reactions are stored in a dictionary
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of reactions as well as all information connected to the blocks in question. Here lies
an exception; If any of the blocks contain the reaction “stop”, this will be the only
reaction allowed in the dictionary of reactions. Subsequently if a “stop” is detected,
only one block will continue to the next part.

In the next part, all dictionary keys (keys are keywords that can be used in a diction-
ary data structure to receive a variable) which are the reaction keywords from each
reaction will cause certain changes to the reaction vector that are to be sent back to
safety interface as well as setting reaction booleans true and false accordingly. One in-
formation string about the breach is also created which contains both the information
message string, the id and the reaction for each block in one string, and if multiple
blocks are triggered at once the strings get added together into one big message. Fi-
nally, all physical traits as well as the message string and the reaction booleans are
sent back to SkiREIL.

There are two reactions that cause the change in the reference value. The first one
is the “stop” reaction and the second is the “return to origin” reaction. The “stop”
reaction saves the first pose that caused the breach and sets the reference pose trait to
this position every time the safety program is called. The “return to origin” reaction
uses the recording of all the different physical traits since the start of the episode to
find its way back to a point close enough to the start point. This is done by setting
the reference pose trait to the recorded path taken.

However, when the SkiREIL is training the RL model, multiple threads of SkiREIL
can be running simultaneously. Having a memory of the states of the robot arm is then
a problem as mixing up the saved states of the different threads is bound to happen.
Therefore the safety program is to be run in a different mode without a memory of
previous states. Instead it is operation in a in out setting. Therefore when training,
both the stop and return reactions are replaced by a stateless stop reaction which
slows down the robot by setting the reference pose trait to the current pose while the
reaction is triggering. As this does not rely on the saved states it can just return the
correct reaction for the current thread.

The JSON file containing the safety blocks where the rules follows a particular set-up
according to table 5.1.

In the Table 5.1 the dots are replaced with rules for an imaginary case. How to
create blocks is described in the following way. A block works like an “and expression”
meaning that all statements inside a block need to be fulfilled to trigger a reaction
from the safety system. The same statement/category can not be added more than
once. For example, there is only one “reaction” in each block. The same goes for the
rule statements, for example: ““velocity”:0.3”, and for all statements. Although not
all statements in a block are rules. Some are identifiers for debugging. Like: ”limit
category” and ”combine id”. The priority number can be used as an “or” statement
if the priority of multiple blocks are the same. If this is the case, all statements will
return a reaction for example, if two blocks are satisfied, it will return both reactions.
Two exceptions to this rule are “stop” and “decelerate”. “stop” is prioritized over the
other reactions and “decelerate” is prioritized over the “return to origin” reaction. If
one priority is higher than the other and both blocks are triggered only the reaction
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"safety_interface": "safety_interface":

{ {

"limit category": "x", "limit category": "Velocity exceeded",

"Human presence":bool, --> "Human presence":False,

"combine id": int, "combine id": 1,

"priority":int, "priority":1,

"reaction":"x" "reaction":"decelerate"

. "Velocity":double

. "Box_info":"position inside 3D box volume"

. "x_max": 1,

}, "y_max": 1,

"z_max": 1,

"x_min": 0,

"y_min": 0,

"z_min": 0,

},

Table 5.1: To the left is a JSON format representation of what a block looks like. The
text to the left contains the mandatory parts of the block and the dots
symbolize the different limits that can be added. To the right is a JSON
format example of what a block can look like when it is filled in. A block is
comparable to the modes in section 4.3 but with out the hierarchical structure
of the volumes on top of the modes

of the block with the higher priority will run.

5.4.1 The Safety rules format

Following is a description of how to write rules to the safety program from the Json
format, and an explanation of what goes into each rule. The first half describes the
mandatory entries that needs to be filled in for the block to function. These are as
follows:

• Limit category contains a string describing the situation that caused a reaction
to occur so that it is easier to debug, this is done according to the example:

”limit category”: ”position inside 3D box volume”

• To the specific ID a number is written to help identify the specific rule that was
broken in case many blocks have the same limit category text to help debugging.
Here follows how to do that:

”combine id”: int

• The priority number serves the purpose of structuring the blocks in an organized
way. This works by letting the smallest integer have the highest priority. the
priority number can be used as an “or” statement if multiple rules have the same
priority.

”priority”: int
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• A boolean is used to mark if the block applies to a situation with or without a
human presencet. If the input is not important and the same behavior should
occur for both cases, two identical blocks, but with the human boolean set to
true in one of them and false in the other can be created.

”Human presence”: bool

• The reaction string is also part of the mandatory parts. following is how to write
the rule and a list of possible reaction commands.

”Reaction”:string
For example: ”stop” , ”decelerate”, ”Turn off active force”, ”return to origin”,
“”. See also ”origin tolerance” in the next section. This “” is an empty reaction
if no reaction is desirable or if a rule is to be skipped. For example, if a small
hole in a restricted area is desired, which the robot is allowed to go through, the
empty reaction can be useful.

This finishes the mandatory attributes needed in each rule block. The following are
the optional rules and limits that can be added in a block :

• To identify if the limit is broken inside or outside a defined volume. ”position
inside 3d box volume” will trigger a reaction when the position is inside a given
volume and thus a broken rule. The opposite is true for the ”position outside 3d
box volume”, which will trigger a reaction when the value of the robot is outside
a certain volume. Only a maximum of one 3d box volume may exist in each
block.

”Box info”: string
Existing alternatives ”position inside 3D box volume”, ”position outside 3D box
volume”

– The following are the limits of the 3d box volume with min and max val-
ues. It is possible to choose between one and all the limits below for the
3d volume defined. Of course, this means that the box is not always a
conventional box but a box that can span to infinity in a set of directions
depending on how you define the limits.

– ”x max”: double,

– ”y max”: double,

– ”z max”: double,

– ”x min”: double,

– ”y min”: double,

– ”z min”: double,

• This is how the maximum end-effector velocity limit is defined.

”Velocity”:double

• Defines the maximum allowed force limit to the end-effector position.

”Force”:double
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• Origin tolerance is the tolerance that is the allowed distance for the end-effectro
position to the recorded position, for it to continue to the next position for the
”return to origin reaction”. This must also be tied to the ”return to origin
reaction” otherwise it does not work.

“origin tolerance”: double
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6 Simulation Experiments

The robot arm has been tested in simulation to see if it reacts accordingly to different
breaches. The “return to origin” reaction as well as the “stop”,” reduce speed” and
”reduce force” reaction has been tested respectively. Figure 6.1 shows the start con-
figuration and the successful completion of a peg-insertion task. The next session in
Figure 6.2 shows that the robot arm is stopped when reaching the defined rule limit
and then returns to the origin as was expected. Then it is shown in Figure 6.3 that
the stop function, which depends on the situational inputs, work on the scenario of a
human entering the area. This scenario is set in the JSON file to limit the operations
and not allow it to get too close to other objects. It was also compared in Figure
6.4 how well the stateless stop function is, in comparison to the return to the origin,
which works the same as the normal stop function at the beginning of a breach. In
Figure 6.5 it is shown that the safety system works not only for the scenario in which
it was tested and programmed, but also for a completely different task showing the
adaptability of the safety systems.

6.1 Testing the Correct Behavior

Figure 6.1: Peg insertion task. Start(left) keyframe for the robot arm where the
controller is behaving normally (start to the left and ending to the right)

As the first proof of concept, the robot arm is to start 4 to 5 decimeters in a random
spot over its target, in this case, a cylindrical hole. The arm itself is fitted with a peg,
and this cylindrical peg carries the end-effector position. The objective of the fully
trained robot arm is to insert the cylindrical peg in the hole. The robot’s task was
to simulate a factory process of placing cylinders in a motor block. As can be seen in
Figure 6.1 this was successfully done, showing that it is possible to set up safety rules
that do not intervene during normal operations of a robot.
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6.2 Testing the Recovery Behavior

The settings for the controller (not the safety) were then changed in a way that the
robot arm would try to go far away from its target and do so at high velocity. The safety
rules set (the same as the successful peg insertion) were that of a 3D box surrounding
the area, the x and y coordinates are in the same plane as the table and the z is in the
vertical direction. There was a small buffer between the table and this defined box, as
well as limits set in the x and y direction to prevent the arm from going too far away
from the objective. In the positive z direction, which was in the up direction, a more
lenient limit was set. As Figure 6.2 shows the robot arm that started in the normal
position and moved along the blue path was successfully stopped from exceeding the
box limits shown in red and was then returned to the start position along the same
path shown in yellow. See also Table 6.2, for the first value that breached the rule.

Figure 6.2: Breach, recovery and end of recovery keyframe, left to right, for the robot arm
where the controller is overshooting (path marked in blue) a lot, causing a
breach of rules (marked in red), the return to origin path is marked in yellow.

6.3 Testing the Stop Behavior for Human Safety

Figure 6.3: Start and end keyframe, from left to rigth, for the robot arm when a human
is present causing stricter rules which in turn caused a breach which caused
the “stop” reaction. The rule is marked in read in this figure.

Further, the presence of a human was set to true because the safety rules are set so
that if a human is present, the ”return to origin” reaction is replaced with the ”stop”
reaction and an additional box is checked around the target to prevent clamping. The
stop function was shown to work as intended, shown in Figure 6.3, where the robot
arm was stopped until the end of the episode.
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6.4 Memory-less Stop Behavior

Figure 6.4: Return-to-origin reaction furthest point, to the left, in comparisons to simple
stop furthest point, to the right, after the breach. The figure shows the path
in blue taken by the end-effector and the breach point in red.

The safety system was then run in stateless mode, the mode for when the robot is in
training. The robot arms controller was still set in the same way so the arm goes away
from the target with increased speed. The arm was successfully stopped, however, the
distance travelled from the box limit point to its stopping position was increased as
shown in Figure 6.4. This was to be expected since the stateless stop reaction is a
much simpler method with a moving stop position, whilst the stop and return-to-origin
reactions respectively move to a memorized position of the first incursion of the rule,
giving it a stronger braking ability. Just to clarify, the moving stop function works
by setting the reference value to the current value for the controller until it gets an
update of the position 0.1 s later in this case.

6.5 Testing with Obstacle

Figure 6.5: Start and end keyframe from left to rigth for another scenario, the
avoid-obstacle scenario, where the robot stops. The new senario is that of a
obstacle betwene the robot arm an the cylindrical hole. The robot arm
end-effector is not allowed to come close to the read obstacke box. The
breach of the limit is shown in the last keyframe with the read line showing
where the limit is.

Now to see if this was a general solution or a more specific one, the same proposed
safety rules and reactions were added for the avoid-obstacle scenario shown in Figure
6.5. This was a new scenario not encountered during the design an programming
phase. Similar rules around the cylindrical hole were added, as well as a box volume
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limit surrounding the read cube in the workspace. The arm, as seen in Figure 6.5, was
stopped before the end-effector (the center bottom of the peg’s coordinates) hit the
obstacle. When it comes to the rest of the arm, which is touching the obstacle, it is
to be mentioned that only the end-effector position was known to the safety system
at the time. The concept is clearly shown for the end-effector position, causing a
reaction, which it does here clearly. As to the rest of the arm, this is left for further
development and discussion.

6.6 Further Data on the Tests

Figure 6.6 Shows a snippet captured a few milliseconds before the breach that lead
to the recovery behavior from Figure 6.2. This snippet shows how the speed limit is
breached and how it is immediately detected, it also shows how the reaction is able
to slow down the robot arm to a safe speed. The same breach of speed and slowing
down can also be seen in Table 6.1

Both Table 6.2 and Table 6.3 as well as Table 6.5 show the instance in time when a
volume limit is breached as well as the volume limits. The tables also shows the exact
position the end-effector of the arm was in at the time of the breach as well as the
reaction that followed. Table 6.2 shows the volume breach that caused the recovery
behavior to start. Table 6.3 shows the volume breach that caused the stop reaction.
And Table 6.5 shows the breach of the avoid-obstacle scenario.

In Figure 6.7 as well as Table 6.4 the breach of both force and velocity can be seen.
The figure shows a sniped that clearly shows how the velocity of the arm is slowed
down every time it exceeds the limit. The table shows an instance of when the velocity
breach is detected with in the same time frame. The figure also shows the force breach
and the Boolean reaction trigger to the breach of the limit. Table 6.4 also shows
an instance were the limit for force is breached and that a reaction is triggered. Note
however that in these examples the limit is set very low to achieve as frequent breaches
of the limits as possible to test the safety system.
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Figure 6.6: The diagram shows the recorded data around the event in Table 6.1. The
solid orange line is the limit, the spaced green line is the measured value and
the red dotted line shows if a reaction was triggered with its y axis to the
right as a boolean.

timestamp 14.6 rule measured value reaction

maximum velocity 0.6 0.9673829787 decelerate TRUE

Human presence FALSE FALSE Text output: ”decelerate”

timestamp 14.7 rule measured value reaction

maximum velocity 0.6 0.9401015946 decelerate TRUE

Human presence FALSE FALSE Text output: ”decelerate”

timestamp 14.8 rule measured value reaction

maximum velocity 0.6 0.5645789733 decelerate False

Human presence FALSE FALSE Text output:

Table 6.1: Rule breach in yellow reaction in green, showing how the decelerate reaction
decreases the speed of the end-effector from 0.96 m/s to 0.94 m/s and finally
when there is no more breach the speed is decreased to 0.57m/s of an interval
of 0.1s between measuring points whilst breaking a new rule in Table 6.2. See
also Figure 6.6.
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rule breach outside designated volume

timestamp 14.8 rule max measured value rule min reaction

x -0.45 -0.4075623845 -0.75 Reference x -0.4742667151

y 0.35 -0.09492050803 -0.35 Reference y -0.0719180574

z 1.45 0.9302736751 0.649 Reference z 0.9537281945

Human presence FALSE FALSE Text output: ”return to origin”

Table 6.2: Rule breach in yellow reaction in green, showing the reaction of the return to
origin function giving back the previous x,y,z position as the new reference
position. x, y, z are the Cartesian coordinates for both the limits and the
measured end-effector position.

rule breach inside designated volume

timestamp 14.5 rule max measured value rule min reaction

x -0.4 -0.5688028626 -0.8 Reference x -0.5688028626

y 0.2 -0.002292065054 -0.2 Reference y -0.002292065054

z 0.85 0.8423955782 0.35 Reference z 0.8423955782

Human presence True True Text output: ”stop”

Table 6.3: Rule breach in yellow reaction in green, breach of being inside a defined
volume resulting in the reaction stop which sets the reference position to the
current position. x, y, z are the Cartesian coordinates for both the limits and
the measured end-effector position.

timestamp 2.4 rule measured value reaction

max velocity 0.1 0.1196450425 decelerate TRUE

Human presence FALSE FALSE Text output: ”decelerate”

timestamp 2.5 rule measured value reaction

force 0.1 1 Turn off active force TRUE

Human presence FALSE FALSE Text output: ”Turn off active force”

Table 6.4: Rule breach in yellow reaction in green, shows both the “decelerate” reaction
as well as the “Turn of active force” reaction sending their respective booleans.
See also Figure 6.7.
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Figure 6.7: The diagram shows the recorded data around the event in Table 6.4. The
solid orange line is the limit, the spaced green line is the measured value, and
the red dotted line is the reaction triggers value, true or false, with its
separate axis to the right.

rule breach inside designated volume

timestamp 0.7 rule max measured value rule min reaction

x -0.25 -0.5502321441 -0.79 Reference x -0.5504980574

y 0.53 0.5298671124 0.07 Reference y 0.5375262483

z 0.981 0.7209949864 0.6 Reference z 0.7329785352

Human presence True True Text output: ”return to origin”

Table 6.5: Rule breach in yellow reaction in green, is of the avoid-obstacle scenario. It is
shown to react appropriately by sending a previous position in green. x, y, z
are the Cartesian coordinates for both the limits and the measured
end-effector position.
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7 Discussion and Conclusion

The simulation results look very promising and all the reactions to the defined rules
work as intended. The speed of the stop reaction and the speed of the return reaction
is within acceptable limits. From the scenario of of Figure 6.3, stopping with the
cartesian impedance controller from a speed of 0.15 m/s to a complete stand still, of
the about 20 kg arm, took 0.3 seconds without activating any of the robot arm’s brakes.
In the scenario, same as Table 6.1, the decelerated reaction was decelerating from 0.97
m/s to 0.56 m/s in 0.2 seconds. The way the braking works can be a bit criticized due
to the fact that the deceleration reaction only continues the current inertial trajectory
without taking into account the desired trajectory and braking along that path. The
deceleration could also be optimized if it would run inmemory mode (when not training
it is posible to remember previous states). Then it would decelerate in relation to one
point until the speed is decreased and then let the controller take over. Instead of
always updating the point to which the deceleration occurs.

A few of the recovery behaviours like the behaviour of only moving back a few steps
in time when a volume breach occurs, or moving perpendicular to the breach, as well
as the invisible wall behaviour which would only break in the breach direction, only
allowing movements in the tangential direction, as well the perpendicular direction
away from the breach, was not possible to be implemented. This was due to the time
restriction for the thesis.

The field of safety in human-robot interactions is quite a broad one and finding clear
and straightforward rules and guidelines to follow when setting up the safety was not
as easy as first thought. This was due to the fact that there are many ways of doing
things and different people have made different solutions to very similar problems. The
safety method used in this thesis is a combination of many different safety solutions
where the most sensible methods for the task at hand were used.

When formulating the safety studies as mentioned, the literature studies were the basis
for the different states and their respective safety level. Literature studies was also
important for formulation scenarios likely to occur in the robot arm setup selected
for this thesis. As a helpful tool, the different scenarios were drawn up to help find
all the different states in this entire simplified state space. The conclusion was that
the exact situation for what are the safety parameters that will ensure safety for this
specific scenario, like objects and tools and their characteristics, are to be worked out
separately and not to have general rules for each situation. However some simplified
states like human contact, object contact, inside a volume, and having some rough
categories of rules with variable values for what is safe was seen as a sensible solution.
For example, defining volumes and some state characteristics from the robot that can
be given a custom maximum and minimum value.
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7.1 Future Work

Some future work that can be done is adding the mentioned more sophisticated recov-
ery behaviors currently not added. In addition to this, improving some of the already
working reactions and adding some more complexity to their functions to ensure a
more efficient reaction time is worth considering. The stateless mode could also be
completely scratched if the safety program could be run in memory mode with the
parallel threads, creating multiple running instances of the safety program connected
to their respective instance.

Another thing is to add a repetition safety switch that triggers if the same safety rules
are broken many times in a row which would indicate that the robot has gotten stuck
and needs human attention. When writing rules in the JSON file, it is very important
that all texts describing the rules, the reactions, and the limits contain no errors. This
could be easily improved with a Json schema file, indicating spell errors or commands
that do not exist. Another solution worth considering would be to have a graphical
user interface where the different volumes and there respective rules would be seen in
the 3D robot environment. This graphical user interface would then create the JSON
files automatically from the scenario created. Also, a graphical user interface for the
breaking of rules could also be a good idea in an industrial setting with an operator
working on the safety program.

The implementation of a reward system would be of great value, as SkiREIL is a
reinforcement learning platform. And tying rules and breaches of them together with
some reward value would be favorable. For example, if the speed limit is broken
deduct 2 points from the reward value or if a certain volume is breached deduct 4
points all depending on the desired outcome. This was also not implemented due to
time constraints but it should not be too complicated as this can be done in a very
similar way to the already existing architecture.

Adding more inputs for the safety system would also be of value. As one of the
simulation scenarios shows, that had an arm segments which were breaching the limits
due to their position being unknown for the safety system. Extra inputs could also
help identify contacts with force curves for the transient contact instance, as well as
helping in keeping the kinetic energy of the entire arm, including arm segments under
safe limits.
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Appendix A

Appendix programming part

A.1 David’s Safety Program

#!/usr/bin/env python

# encoding: utf-8

#from turtle import delay

from formatter import NullFormatter

from lib2to3.refactor import RefactoringTool

#from lzma import CHECK_ID_MAX

#from multiprocessing.resource_sharer import stop

#from xmlrpc.client import Boolean

import copy

import rospy

from std_msgs.msg import String

from std_msgs.msg import Bool

from geometry_msgs.msg import Pose

from geometry_msgs.msg import PoseStamped

from geometry_msgs.msg import Wrench

from geometry_msgs.msg import WrenchStamped

from geometry_msgs.msg import Vector3Stamped

#from skireil import to_RosMari_msg

from skireil.msg import RosMariHumanPresent

from skireil.msg import RosMariReactionmsg

from skireil.srv import RosMari,RosMariRequest, RosMariResponse

from skireil.srv import RosMariLoad,RosMariLoadRequest, RosMariLoadResponse

from skireil.srv import RosMariRealSafety,RosMariRealSafetyRequest,

RosMariRealSafetyResponse

import numpy as np

import threading

import time

import json

import os

class read_and_set_limits:

debugging = False

list_of_limits = []

read_from_limits = []

#debugging variable that controlls extra prints

def set_debugging(self,debugging):

self.debugging = debugging
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#loads in the json string with the list of rules/limits

def load_and_set_rules(self, json_string):

data=json.loads(json_string)

self.list_of_limits = data

if self.debugging:

print(self.list_of_limits)

#this can be good if you do not realy whant to load a json file and

whant to chek that a newly created rule just works.

def set_debugg_values(self):

self.list_of_limits=self.read_from_limits

#this returns the list of the rules/limits

def get_list_of_limits(self):

return self.list_of_limits

# contains funktions that cheks for safety breaches and returns a list

relevant reactions

class check_safety_rules():

#cheks if end efector is oustside a defined 3d_volume/2d_area/1d line

def check_if_outside(self,limits,robot_state):

outside=False

name = "ee_position"

attrs1 = ["_min","_max"]

attrs2 = ["x", "y", "z"]

if "Box_info" in limits:

for attr1 in attrs1:

for attr2 in attrs2:

if (attr2+attr1) in limits:

if(attr1=="_min"):

outside = outside or robot_state[name+"."+attr2]<

limits[attr2+attr1]

if(attr1=="_max"):

outside = outside or robot_state[name+"."+attr2]>

limits[attr2+attr1]

return outside

#returns true on gemoetric breach or absens of current rule

def check_geometric_breach(self, limits, robot_state):

Geometric_rule_breach=True

outside = self.check_if_outside(limits, robot_state)

if "Box_info" in limits:

if limits["Box_info"] == "position outside 3D box volume":

Geometric_rule_breach = outside

if limits["Box_info"] =="position inside 3D box volume":

Geometric_rule_breach = not outside

return Geometric_rule_breach
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#returns true on velocity breach or absens of current rule

def check_velocity_breach(self, limits, robot_state):

velocity_TrueFalse = True

if "velocity" in limits:

velocity_TrueFalse = velocity_TrueFalse and robot_state["

ee_velocity"]>limits["velocity"]

return velocity_TrueFalse

#returns true on force breach or absens of current rule

def check_force_breach(self, limits, robot_state):

force_TrueFalse = True

if "force" in limits:

force_TrueFalse = force_TrueFalse and robot_state["ee_force"]>

limits["force"]

return force_TrueFalse

#returns true if rule human precense bolean is same as the steate human

precens or absens of current rule

def check_human(self,limits, robot_state, human_precent):

human_TrueFalse =True

if "Human presence" in limits:

human_TrueFalse = human_TrueFalse and limits["Human presence"]==

human_precent

return human_TrueFalse

#sums upp if all breaches in rule block is breached and then return true

def check_safety_breach(self, limits, robot_state, human_precent):

breach=True

breach = breach and self.check_geometric_breach(limits, robot_state)

breach = breach and self.check_velocity_breach(limits, robot_state)

breach = breach and self.check_force_breach(limits, robot_state)

breach = breach and self.check_human(limits, robot_state,

human_precent)

return breach

#finds a list of the breached rules with the highest priority and then

retruns a dictionary with all the active reactions

def check_all_safety_rules(self, list_of_limits, robot_state,

human_precent):

priority = float(’inf’)

reactions=[]

for limits in list_of_limits:

if self.check_safety_breach(limits, robot_state, human_precent):

if limits["priority"]<=priority:

priority = limits["priority"]

reactions.append(limits)

reactions_list = {}
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for R in reversed(reactions):

if R["priority"]==priority:

#a list of code of what to do to reactions_list if a certain

reaction is detected if it should be added or not in

sertain situtations

# moastly it is exlusivly just add. in this case stop

reaction is treated differently.

if "stop" == R["reaction"]:

reactions_list.pop("decelerate",None)

reactions_list.pop("Turn off active force",None)

reactions_list.pop("return to origin",None)

reactions_list["stop"]=R

if "decelerate" == R["reaction"] and not ("stop" in

reactions_list):

reactions_list["decelerate"] = R

#print("decelerate")

if "Turn off active force" == R["reaction"] and not ("stop"

in reactions_list):

reactions_list["Turn off active force"] = R

#print("Turn off active force")

if "return to origin" == R["reaction"] and not ("stop" in

reactions_list):

reactions_list["return to origin"] = R

return reactions_list

#has functions for adding the incomming service message to "robot_state" and

also save them in a record for the return to origin function. also

contains said rection and a few others on how to respond to the sender.

and finaly sends back the service message.

class service_message_and_reaction():

#initing al variables used

def __init__(self):

self.read_and_set = read_and_set_limits()

self.check_safety = check_safety_rules()

self.variable_i = 0

self.robot_state = {}

self.states_list=[]

self.in_recovery_mode=False

self.recovery_Limits={}

self.recovery_counter=0

self.stopbool = False

50



self.stopPose= Pose()

self.stopPose.position.x=0.0

self.stopPose.position.y=0.0

self.stopPose.position.z=0.0

self.stopPose.orientation.x=0.0

self.stopPose.orientation.y=0.0

self.stopPose.orientation.z=0.0

self.stopPose.orientation.w=0.0

self.stopClock = 0.0

self.stopLapTime = 2.0

self.in_learning = False

self.debugging = False

#sets the in learning varialbe. in learning controlls if the program

should be statles or not if in learning it is stateles. this is for

the simplification of threading in the sender side.

def set_in_learning(self, in_learning):

self.in_learning = in_learning

#debugging var for more prints

def set_debugging(self, debugging):

self.debugging=debugging # gives more active prints

#stateless stop functions just sets the ref pose to the current pose and

stiffnes to 200 and 20 values agreed upon

def simple_stop(self,robot_state,ref_pose):

self.set_coordinates(robot_state,"ee_position",ref_pose.position)

self.set_coordinates(robot_state,"ee_orientation",ref_pose.

orientation)

wrench = Wrench()

self.set_coordinage_value(0, wrench.force)

self.set_coordinage_value(0, wrench.torque)

stiffness = Wrench()

self.set_coordinage_value(200, stiffness.force)

self.set_coordinage_value(20, stiffness.torque)

return ref_pose,wrench,stiffness

#stopfunction with states sets to the first broken value position and

orientation

def stop_function(self):

self.set_coordinates(self.robot_state, "ee_position", self.stopPose.

position)

self.set_coordinates(self.robot_state, "ee_orientation", self.

stopPose.orientation,get_w=True)

#do not set the values acording to to the edge of the defined volumes

#the complexity of alowed and disalowed volumes make it to much of a

hassle at this time

#just think about it, if you have a tube of a allowed volume undoing

51



an outside disalowed volume if

#you hit the edge of this tube far away from the edge of the outside

volume it will putt an position far down the tube

#at its entrance isntead of close to the breach therfore a faster

sampling might be needed in such a case

#to ensure the closnes of the stop position to the breach point

#also for safety adding a value for the time it spends or sample

periodes it takes before it

# resets so you can safely push it away posibly.

# sets a all coordinates to the same value

def set_coordinage_value(self, value, src, get_w=False):

attrs = ["x", "y", "z"]

if get_w:

attrs.append("w")

for attr in attrs:

setattr(src, attr, value)

#stopfunction with states returnts the first broken value position and

orientation as well as stiffnes 200 and 20 values agreed upon

def return_stop(self):

wrench = Wrench()

self.set_coordinage_value(0, wrench.force)

self.set_coordinage_value(0, wrench.torque)

stiffness = Wrench()

self.set_coordinage_value(200, stiffness.force)

self.set_coordinage_value(20, stiffness.torque)

return self.stopPose,wrench,stiffness

#subracts two coordinate dictionaries to eachother

def subtract_dict_coordinates(self, dict1, dict2, name, get_w=False):

attrs=["x", "y", "z"]

if get_w:

attrs.append("w")

vector=[]

for attr in attrs:

vector.append(dict1[name + "." + attr]-dict2[name + "." + attr])

return vector

#calculates the euclidian distance betwene spatial points

def euclidean_distance(self, delta_vector):

return np.sqrt(np.sum(np.square(delta_vector)))

#returns to the origin position acording to te recorded values. when it

is close enough acording to the preset tolerance value it will stop

auto entering this function

def return_to_origin(self):

referencePose= Pose()

delta_position_vector=self.subtract_dict_coordinates(self.states_list
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[self.recovery_counter], self.robot_state, "ee_position")

delta_orientation_vector=self.subtract_dict_coordinates(self.

states_list[self.recovery_counter], self.robot_state, "

ee_orientation",get_w=True)

#Distance to origin

delta_origin_position_vector=self.subtract_dict_coordinates(self.

states_list[0], self.robot_state, "ee_position")

delta_origin_orientation_vector=self.subtract_dict_coordinates(self.

states_list[0], self.robot_state, "ee_orientation",get_w=True)

delta_position=self.euclidean_distance(delta_position_vector)

delta_origin_position=self.euclidean_distance(

delta_origin_position_vector)

if delta_origin_position <=self.recovery_Limits["origin tolerance"]:

self.in_recovery_mode=False

elif delta_position <=self.recovery_Limits["origin tolerance"]:

self.recovery_counter = self.recovery_counter-1

self.set_coordinates(self.states_list[self.recovery_counter], "

ee_position", referencePose.position)

self.set_coordinates(self.states_list[self.recovery_counter], "

ee_orientation", referencePose.orientation,get_w=True)

wrench = Wrench()

self.set_coordinage_value(0, wrench.force)

self.set_coordinage_value(0, wrench.torque)

stiffness = Wrench()

self.set_coordinage_value(200, stiffness.force)

self.set_coordinage_value(20, stiffness.torque)

return referencePose, wrench, stiffness

#here all reactions prepared to be sent as a service message

def publish_reactions(self, reaction_list):

if self.robot_state["time"]<=0.1:

self.stopbool = False

wrench = Wrench()

self.set_coordinates(self.robot_state, "ee_force", wrench.force)

self.set_coordinates(self.robot_state, "ee_torque", wrench.torque)

stiffness = Wrench()

self.set_coordinates(self.robot_state, "ee_springforce", stiffness.

force)
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self.set_coordinates(self.robot_state, "ee_springtorque", stiffness.

torque)

violated_rule_info=""

decelerate=False

turn_off_active_force = False

turn_off_stiffness=False

violated_rule_info += self.robot_state["header timestamp"]

referencePose = Pose()

self.set_coordinates(self.robot_state, "ref_ee_position",

referencePose.position)

self.set_coordinates(self.robot_state, "ref_ee_orientation",

referencePose.orientation,get_w=True)

if self.debugging:

print("x: "+str(self.robot_state["ee_position.x"])+"\n"+"y: "+str

(self.robot_state["ee_position.y"])+"\n"+"z: "+str(self.

robot_state["ee_position.z"])+"\n")

#the reaction is decided here

for reaction in reaction_list:

violated_rule_info += "limit category: " + (reaction_list[

reaction]["limit category"]) + "\t"+" id: "+ str(

reaction_list[reaction]["combine id"]) + "\t"+" reaction: "+

(reaction_list[reaction]["reaction"]) +"\t"+" Human presenc:

"+str(reaction_list[reaction]["Human presence"])+"\n"

decelerate = decelerate or "decelerate" == reaction

turn_off_active_force = turn_off_active_force or "Turn off active

force" == reaction

turn_off_stiffness = turn_off_stiffness or turn_off_stiffness ==

"turn_off_stiffness"# add this to the reactions

if not self.in_learning:

if(not self.stopbool and "stop"==reaction):

self.stopbool=True

self.stopClock=self.robot_state["time"]

self.stop_function()

#sets up the stop sets the flag for a reached stop to true

so the robot stays in thet state

#then the clock funktion clock is set this will ensure

that the arms referances position can be manualy

changed

#then sets the position at wich the arm is to be locked at

if(reaction=="return to origin" and not self.in_recovery_mode
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):

self.in_recovery_mode=True

self.recovery_counter=len(self.states_list)-1

self.recovery_Limits=reaction_list[reaction]

elif reaction=="stop" or reaction=="return to origin": # if in

learning no states are saved so rection must be more simple

referencePose ,wrench, stiffness = self.simple_stop(self.

robot_state,referencePose)

#if not in learning it will performe recorded stop and recovery

if not self.in_learning:

#clock funktion that tics every laptime seconds and updates the

stop positon

if(self.stopPose and self.robot_state["time"]-self.stopClock>=

self.stopLapTime):

self.stopClock=self.robot_state["time"]

self.stop_function()

#checks if recovery is True and then proceds to override pose

values and stiffens values untill it is no longer true wich

is when it hais retrunt to the origin point

if(self.in_recovery_mode and not decelerate and not self.stopbool

):

referencePose,wrench,stiffness = self.return_to_origin()

#also checs if stopbool ist true then overrides the pose values

and stiffens values untill it is no longer true wich is at

the end of the sesion when time is less then 0.1s

if(self.stopbool):

referencePose,wrench,stiffness = self.return_stop()

#end of reaction

if self.debugging:

rospy.loginfo(violated_rule_info)

rospy.loginfo(decelerate)

rospy.loginfo(turn_off_active_force)

rospy.loginfo(turn_off_stiffness)

#rospy.loginfo(pubreaction)

rospy.loginfo(referencePose)

#here is returned all the values needed for the service messge

return violated_rule_info,decelerate,turn_off_active_force,

turn_off_stiffness,referencePose,wrench,stiffness

#loads all coordinate values from the incomming service message to the "

robot_state" dictionary

def load_from_coordinates(self, dst,dst_name,src,get_w = False):

attrs = ["x", "y", "z"]

if get_w:

attrs.append("w")
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for attr in attrs:

dst[dst_name + "." + attr] = getattr(src, attr)

#here is done the reverse of "load_from_coordinates()" here it load from

the "robot_state" dictionary to the service message responce

def set_coordinates(self, dst,dst_name,src,get_w = False):

attrs = ["x", "y", "z"]

if get_w:

attrs.append("w")

for attr in attrs:

setattr(src, attr, dst[dst_name + "." + attr])

#deals with all the service messages forward and back again

def service_callback(self, req):

refpose = Pose()

wrench = Wrench()

stiffness = Wrench()

self.load_from_coordinates(self.robot_state, "ee_position", req.pose.

position)

self.load_from_coordinates(self.robot_state, "ee_orientation", req.

pose.orientation, get_w = True)

self.load_from_coordinates(self.robot_state, "ref_ee_position", req.

refpose.position)

self.load_from_coordinates(self.robot_state, "ref_ee_orientation",

req.refpose.orientation, get_w = True)

self.load_from_coordinates(self.robot_state, "ee_force", req.wrench.

force)

self.load_from_coordinates(self.robot_state, "ee_torque", req.wrench.

torque)

self.load_from_coordinates(self.robot_state, "ee_springforce", req.

stiffness.force)

self.load_from_coordinates(self.robot_state, "ee_springtorque", req.

stiffness.torque)

self.robot_state["ee_force"] = self.euclidean_distance([req.wrench.

force.x, req.wrench.force.y, req.wrench.force.z])

if self.debugging:

print("ee_force")

print(self.robot_state["ee_force"])

self.load_from_coordinates(self.robot_state, "ee_velocity", req.

velocity)

self.robot_state["ee_velocity"] = self.euclidean_distance([req.

velocity.x, req.velocity.y, req.velocity.z])

if self.debugging:

print("ee_velocity")

print(self.robot_state["ee_velocity"])

self.robot_state["human_pose"]=req.human
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if self.debugging:

self.robot_state["human_pose"]= False # debugging

self.robot_state["header timestamp"] = str(req.header.stamp.secs) +

":" + str(req.header.stamp.nsecs) +":"

self.robot_state["time"] = req.header.stamp.secs + req.header.stamp.

nsecs*10**-9

#add your loading before this comment

#when in learning, safety run in stateless mode.

if not self.in_learning:

temp_state=copy.deepcopy(self.robot_state)

self.states_list.append(temp_state)

violated_rule, decelerate, turn_off_active_force, turn_off_stiffness,

refpose, wrench, stiffness=self.publish_reactions(self.

check_safety.check_all_safety_rules(self.read_and_set.

get_list_of_limits(), self.robot_state,self.robot_state["

human_pose"]))

return RosMariRealSafetyResponse(violated_rule, decelerate,

turn_off_active_force, turn_off_stiffness, refpose, wrench,

stiffness)

def load(self, pathreq):

self.read_and_set.set_debugging(self.debugging)

self.read_and_set.load_and_set_rules(pathreq.path)

#self.read_and_set.set_debugg_values()#if testing of custom rules and

reactions is desired this can be helpfull

acknolidgment="list arrived"

return RosMariLoadResponse(acknolidgment)

def listener(smar):

debugging = False

rospy.init_node(’skireil’, anonymous=True)

smar.set_debugging(debugging)

if debugging:

print("in service")

s = rospy.Service("RosMariRealSafety_server",RosMariRealSafety,smar.

service_callback)

s2 = rospy.Service("RosMari_load",RosMariLoad,smar.load)

in_learning = rospy.get_param("/RosMariRealSafety/learning",False)

if debugging:

in_learning=False # debugging

print("in_learning might be set as a set value due to it being

debuging")

print("python RosMariRealSafety outpuf from rospy.get_param:

in_learnning = "+str(in_learning))

smar.set_in_learning(in_learning)
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rospy.spin()

print("after rosspin")

if __name__ == ’__main__’:

variable_i=0

#read_and_set.put_limits_together()

smar=service_message_and_reaction()

smar.__init__()

print("in main before listner()")

listener(smar)

print("in main after listner()")

A.2 David’s Safety Interface

//|

//| Copyright Inria July 2017

//| This project has received funding from the European Research Council

(ERC) under

//| the European Union’s Horizon 2020 research and innovation programme (

grant

//| agreement No 637972) - see http://www.resibots.eu

//|

//| Contributor(s):

//| - Matthias Mayr (matthias.mayr@cs.lth.se)

//| - Konstantinos Chatzilygeroudis (konstantinos.chatzilygeroudis@inria

.fr)

//| - Rituraj Kaushik (rituraj.kaushik@inria.fr)

//| - Roberto Rama (bertoski@gmail.com)

//|

//|

//| This software is governed by the CeCILL-C license under French law

and

//| abiding by the rules of distribution of free software. You can use,

//| modify and/ or redistribute the software under the terms of the

CeCILL-C

//| license as circulated by CEA, CNRS and INRIA at the following URL

//| "http://www.cecill.info".

//|

//| As a counterpart to the access to the source code and rights to copy,

//| modify and redistribute granted by the license, users are provided

only

//| with a limited warranty and the software’s author, the holder of the

//| economic rights, and the successive licensors have only limited

//| liability.

//|

//| In this respect, the user’s attention is drawn to the risks

associated

//| with loading, using, modifying and/or developing or reproducing the
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//| software by the user in light of its specific status of free software

,

//| that may mean that it is complicated to manipulate, and that also

//| therefore means that it is reserved for developers and experienced

//| professionals having in-depth computer knowledge. Users are therefore

//| encouraged to load and test the software’s suitability as regards

their

//| requirements in conditions enabling the security of their systems and

/or

//| data to be ensured and, more generally, to use and operate it in the

//| same conditions as regards security.

//|

//| The fact that you are presently reading this means that you have had

//| knowledge of the CeCILL-C license and that you accept its terms.

//|

#ifndef SKIREIL_SAFETY_INTERFACE_DAVIDS_INTERFACE_HPP

#define SKIREIL_SAFETY_INTERFACE_DAVIDS_INTERFACE_HPP

#include <skireil/safety/safety_interface.hpp>

#include <skireil/system/dart_system.hpp>

#include <skireil/parameters.hpp>

#include <cartesian_impedance_controller/cartesian_impedance_controller.h>

#include <skireil/controller/discrete_motion_generator.hpp>

#include <skireil/controller/motion_generator_configuration.hpp>

#include <skireil/experiments/cartesian_impedance_action.hpp>

#include <robot_dart/robot.hpp>

#include "geometry_msgs/Point.h"

#include <eigen_conversions/eigen_msg.h>

#include <geometry_msgs/Pose.h>

#include <geometry_msgs/Vector3.h>

#include <geometry_msgs/Vector3Stamped.h>

#include <Eigen/Core>

#include <Eigen/Geometry>

#include <ros/ros.h>

#include "std_msgs/String.h"

#include "std_msgs/Bool.h"

#include <skireil/RosMariHumanPresent.h>

#include <skireil/To_RosMari_msg.h>

#include <skireil/RosMariReactionmsg.h>

#include <skireil/RosMari.h>

#include <skireil/RosMariLoad.h>

#include <skireil/RosMariRealSafety.h>

#include <skireil/parameters.hpp>

//#include <skireil/safety/davids_safety_interface.hpp>

#include <string>

#include <vector>

#include <sstream>
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using namespace std;

namespace skireil

{

namespace safety

{

template <typename RolloutInfo, typename Params>

class davids_safety_interface : public SafetyInterface<RolloutInfo,

Params>

{

private:

ros::NodeHandle _n;

ros::ServiceClient _client2 = _n.serviceClient<skireil::

RosMariLoad>("RosMari_load");

ros::ServiceClient _client3 = _n.serviceClient<skireil::

RosMariRealSafety>("RosMariRealSafety_server");

public:

bool configure(const nlohmann::json &conf, const std::vector<

std::string> &robot_dof){

skireil::RosMariLoad RML;

std::stringstream ss;

ss << conf;

string data = ss.str();

RML.request.path = data;

if (_client2.call(RML)){

ROS_INFO("acknowledgement: %ld", (string)RML.response.

acknowledge);

return true;

}

else

{

ROS_ERROR("Failed to call service RosMari");

return false;

}

}

//returns a value that is rounded to nr amount of decimals

double round_double(double nr,int decimals){

int decimal=std::pow(10,decimals);

double value = (long)(nr * decimal+0.5);

return (double)value/decimal;

}

//rounds off to values to the caem nr of decimal pints before

comparing them. and returns true if they are not equal

bool not_equal(double var1,double var2, int decimals){

return round_double(var1, decimals) != round_double(var2,

decimals);

}

bool operator()(Eigen::VectorXd &state, Eigen::VectorXd &
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action, double time)

{

skireil::RosMariRealSafety RMRS;

auto robot = this->_robot;

if (!robot){

LOG(FATAL)<<"empty pointer _robot

davids_safety_interface.hpp";

}

//recives the different states and stores them in more

palatable variables

robot->set_positions(state.head(7), Params::skireil::

robot_dof());

robot->set_velocities(state.segment(7, 7), Params::skireil

::robot_dof());

const Eigen::Matrix<double, 6, 1> deltaPos = robot->

jacobian(Params::skireil::robot_end_effector(), Params

::skireil::robot_dof()) * robot->velocities(Params::

skireil::robot_dof());

std::pair<Eigen::Vector3d, Eigen::Quaterniond> ref_pose;

Eigen::Matrix<double, 6, 1> var_wrench;

Eigen::Matrix<double, 7, 1> var_stiffness;

learning_skills::cartesian_impedance_action::

from_eigen_vector(action, &ref_pose, &var_wrench, &

var_stiffness);

RMRS.request.header.stamp.sec=time;

RMRS.request.header.stamp.nsec= 1000000000*(time-RMRS.

request.header.stamp.sec);

tf::poseEigenToMsg(robot->skeleton()->getBodyNode(Params::

skireil::robot_end_effector())->getWorldTransform(),

RMRS.request.pose);

RMRS.request.velocity.x = deltaPos(3);

RMRS.request.velocity.y = deltaPos(4);

RMRS.request.velocity.z = deltaPos(5);

RMRS.request.wrench.force.x = var_wrench(0);

RMRS.request.wrench.force.y = var_wrench(1);

RMRS.request.wrench.force.z = var_wrench(2);

RMRS.request.wrench.torque.x = var_wrench(3);

RMRS.request.wrench.torque.y = var_wrench(4);

RMRS.request.wrench.torque.z = var_wrench(5);

RMRS.request.refpose.position.x=ref_pose.first.x();

RMRS.request.refpose.position.y=ref_pose.first.y();

RMRS.request.refpose.position.z=ref_pose.first.z();

RMRS.request.refpose.orientation.x=ref_pose.second.x();

RMRS.request.refpose.orientation.y=ref_pose.second.y();

RMRS.request.refpose.orientation.z=ref_pose.second.z();

RMRS.request.refpose.orientation.w=ref_pose.second.w();

RMRS.request.stiffness.force.x = var_stiffness(0);

RMRS.request.stiffness.force.y = var_stiffness(1);
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RMRS.request.stiffness.force.z = var_stiffness(2);

RMRS.request.stiffness.torque.x = var_stiffness(3);

RMRS.request.stiffness.torque.y = var_stiffness(4);

RMRS.request.stiffness.torque.z = var_stiffness(5);

RMRS.request.human = false;

int i = 0;

bool rule_broken = false;

bool decelerate = false;

int decimals = 5;

bool success = false;

// runs the state and action trhough the safety program

while(!success && i < 3){

i++;

//cheks that the call can be recived

if (_client3.call(RMRS))

{

success=true;

//setting action values if reciven a bool back for

reaction decelerate

if(RMRS.response.decelerate){

std::cout << "violated_rule: " << RMRS.response

.violated_rule << std::endl;

ref_pose.first = robot->skeleton()->getBodyNode

(Params::skireil::robot_end_effector())->

getWorldTransform().matrix().block(0, 3, 3,

1);

ref_pose.second = Eigen::Matrix3d(robot->

skeleton()->getBodyNode (Params::skireil::

robot_end_effector())->getWorldTransform().

matrix().block(0, 0, 3, 3));

var_stiffness[0] = 200;

var_stiffness[1] = 200;

var_stiffness[2] = 200;

var_stiffness[3] = 20;

var_stiffness[4] = 20;

var_stiffness[5] = 20;

var_stiffness[6] = 0;

rule_broken = true;

decelerate=true;

}

//setting action values if reciven a bool back for

reaction turn of active force

if(RMRS.response.turn_off_active_force){

std::cout << "violated_rule: " << RMRS.response

.violated_rule << std::endl;

var_wrench(0) = 0;

var_wrench(1) = 0;

var_wrench(2) = 0;

var_wrench(3) = 0;
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var_wrench(4) = 0;

var_wrench(5) = 0;

rule_broken = true;

}

//setting action values if reciven a bool back for

reaction turn of stiffness

if(RMRS.response.turn_off_stiffness){

std::cout << "violated_rule: " << RMRS.response

.violated_rule << std::endl;

var_stiffness[0] = 0;

var_stiffness[1] = 0;

var_stiffness[2] = 0;

var_stiffness[3] = 0;

var_stiffness[4] = 0;

var_stiffness[5] = 0;

var_stiffness[6] = 0;

rule_broken = true;

}

//setting action values directly as a respons form

the RosMariRealSafety’s values

if(!decelerate){

if(not_equal(ref_pose.first.x(), RMRS.response.

refpose.position.x, decimals) ||

not_equal(ref_pose.first.y(), RMRS.response.

refpose.position.y, decimals)||

not_equal(ref_pose.first.z(), RMRS.response.

refpose.position.z, decimals)){

std::cout << "violated_rule: " << RMRS.

response.violated_rule << std::endl;

rule_broken = true;

}

ref_pose.first.x() = RMRS.response.refpose.

position.x;

ref_pose.first.y() = RMRS.response.refpose.

position.y;

ref_pose.first.z() = RMRS.response.refpose.

position.z;

ref_pose.second.x() = RMRS.response.refpose.

orientation.x;

ref_pose.second.y() = RMRS.response.refpose.

orientation.y;

ref_pose.second.z() = RMRS.response.refpose.

orientation.z;

ref_pose.second.w() = RMRS.response.refpose.

orientation.w;

var_stiffness(0) = RMRS.response.stiffness.

force.x;

var_stiffness(1) = RMRS.response.stiffness.

force.y;

var_stiffness(2) = RMRS.response.stiffness.
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force.z;

var_stiffness(3) = RMRS.response.stiffness.

torque.x;

var_stiffness(4) = RMRS.response.stiffness.

torque.y;

var_stiffness(5) = RMRS.response.stiffness.

torque.z;

var_wrench(0) = RMRS.response.wrench.force.x;

var_wrench(1) = RMRS.response.wrench.force.y;

var_wrench(2) = RMRS.response.wrench.force.z;

var_wrench(3) = RMRS.response.wrench.torque.x;

var_wrench(4) = RMRS.response.wrench.torque.y;

var_wrench(5) = RMRS.response.wrench.torque.z;

}

//always prints if a breach of rules are detected

if(rule_broken){

ROS_INFO("violated_rule: %ld", (string)RMRS.

response.violated_rule);

LOG(WARNING) << "Detected a breach of rules,

violated rule: "<<RMRS.response.

violated_rule<<std::endl;

}

}

//if the service message failed

else

{

ROS_ERROR("Failed to call service RosMari");

success = false;

}

}

//if the service message failed it will frece the

robot stopping it from moving as a safety feature.

it will though be complient

if(!success){

ref_pose.first = robot->skeleton()->getBodyNode (

Params::skireil::robot_end_effector())->

getWorldTransform().matrix().block(0, 3, 3, 1);

ref_pose.second = Eigen::Matrix3d(robot->skeleton()

->getBodyNode (Params::skireil::

robot_end_effector())->getWorldTransform().

matrix().block(0, 0, 3, 3));

}

//if the service message succeded it will translate the

values back to a reaction and set it

action=learning_skills::cartesian_impedance_action::

to_eigen_vector(Params::safety::action_dim(), ref_pose

, var_wrench, var_stiffness);

return !rule_broken;

}

size_t state_safety_dim() const
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{

return 0;

}

size_t action_safety_dim() const

{

return 0;

}

bool recover_from_incident(const SafetyIncident &incident,

const Eigen::VectorXd &state, Eigen::VectorXd &action)

const

{

return true;

}

};

}

}

#endif
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Safe control of robot applications

POPULAR SCIENCE SUMMARY David Sandell

Safety and artificial intelligence are two important subjects to today, combining these
are of high interest and significance. To combine these two was the task of this thesis
with the focus lying on the safety. In robotics and industrial applications where the
machines are heavy and powerful the potential for harm are also greater, therefore
safety is of even more importance.

Therefore, such a safety program was created that
can both protect sensitive equipment from dan-
ger and ensure safe execution when people are in-
volved and may be injured. This was achieved
through a series of different rules and responses,
rules that covered areas that could not be safely
reached by the robot, but also areas where higher
safety was controlled and limited in the form of
force and speed limits. The project was carried
out with a robotic arm controlled and trained by
an artificial intelligence.

The advantage of the safety system created, as
mentioned earlier, is that it was applied to an
artificial intelligence system, but also that un-
like previous applications that often only included
safety stops to maintain safety, here both proac-
tive safety was applied in the form of maintaining
speed and force limits, as well as giving the safety
system the ability to correct bad behavior and re-
turn to a previous safe state if possible. Another

advantage of the applied safety system is that it
runs as a separate process, making it independent
of the speed of the control system controlling the
robot.

The work performed is a good foundation to
build upon for other projects, as it is modellable
for the employment in other applications, as well
as laying the foundation for safety itself in the
form of a set of safety rules and situations that
can be applied to similar designs of robots.

In the literature studies conducted to increase
knowledge about robot safety, one thing was strik-
ing. Namely, that there was no standardized tax-
onomy that was used as a template within these
articles, but that different applications and com-
panies defined safety differently in their own ways.
Therefore, it was necessary to define a system of
safety definitions based on a summary of other
safety utilizations.


	Abstract
	Sammanfattning
	Acknowledgements
	Terminology and definitions
	Table of Contents
	Introduction
	Background and Motivation
	Project Aims and Main Challenges
	Approach and Methodology

	Methodology
	Literature Studies
	Safety Studies
	Programming

	Safety of Robot Systems
	Robot Contact Scenarios Literature Study
	Taxonomy Literature Study
	Different Types of Failures That Can Occur 
	Types of Human-Robot Contact Scenarios
	Different Perspectives on Safety
	Comment on Safety Studies
	Summary of the Taxonomy
	Discussion on the Literature Studies


	Results of Safety Studies
	Initial safety studies creating tree structure taxonomy
	Safety Study, Creating a State Space
	Robot Safety State Space
	Robot-Human Safety State Space

	Schematic of the Proposed Programming Database Structure

	Safety Program Implementation
	Studying the Tools and Software
	Program Environment Description
	The Safety Interface
	The Safety Program
	The Safety rules format


	Simulation Experiments
	Testing the Correct Behavior
	Testing the Recovery Behavior
	Testing the Stop Behavior for Human Safety
	Memory-less Stop Behavior
	Testing with Obstacle
	Further Data on the Tests

	Discussion and Conclusion
	Future Work

	Bibliography
	Appendix programming part
	David's Safety Program
	David's Safety Interface


