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Abstract 

New food products are constantly put on the market. Today the focus often lies in creating 

nutritional and sustainable products to reduce the environmental impact of the product in 

question. One example of this is the approval of the yellow mealworm, Tenebrio Molitor, as a 

novel food in the European union. To efficiently include the protein fraction of the yellow 

mealworm into food formulations, knowledge of the techno-functional properties of the protein 

is crucial. The techno-functional properties of the protein have further been demonstrated to be 

manipulable by partial enzymatic hydrolysis. This thesis aimed to develop a mechanistic 

mathematical model that describes the change in the molecular weight distribution of the 

protein due to multi-enzymatic hydrolysis. Which could later be used to tailor the techno-

functional properties. The developed model showed good result in being able to capture the 

expected multi-enzyme systems behavior, but it was necessary to introduce empirical 

adjustment factors to calibrate the model adequately with literature data. Synthetic data was 

created to examine the potential of accurately estimating the model parameters and to examine 

the temperature and pH dependence of the system through response surface methodology. 

Estimation of the parameters with the synthetic data revealed that the optimization procedure 

is likely to be sensitive to converge in local minimums. Correlation matrices also revealed a 

high interdependence among the parameters, making the task of finding a unique optimal 

calibration difficult. The empirical model used in the response surface method showed potential 

to capture the expected temperature and pH dependencies of the model, if given correct 

estimations.      

  



 



 

Sammanfattning 

Nya livsmedel dyker hela tiden upp på marknaden. Ofta ligger fokus på att skapa hälsosamma 

och miljövänliga produkter som minskar vår påverkan på klimatet. Ett exempel på en detta är 

godkännandet av mjölbaggen, Tenebrio Molitor, som ett livsmedel i Europeiska unionen. För 

att effektiv inkludera proteinet från mjölbaggen i livsmedelsprodukter, är kunskap om 

proteinets funktionella egenskaper avgörande. De funktionella egenskaperna har påvisats vara 

föränderliga genom hydrolys med hjälp av enzymer. Denna tes syftade till att formulera en 

mekanistisk matematisk modell som beskriver förändringen i molekylviktsfördelningen hos 

proteinet när det hydrolyseras av olika enzymer. Denna modell kan sedan användas för att 

skräddarsy proteinets funktionella egenskaper till olika livsmedel. Modellen visade potential att 

kunna fånga det förväntade beteendet i hydrolyssystemet, men tillägget av empiriska 

parametrar var nödvändigt för att få tillräckligt bra kalibreringsresultat gentemot data i 

tillgänglig litteratur. Syntetiska dataset skapades för att undersöka möjligheterna att exakt 

uppskatta värdet hos modellparametrarna och även för att fånga temperatur- och pH-beroendet 

i processen genom ”Ytresponsmetodik”. Resultatet från parameterkalibreringar med den 

syntetiska datan påvisade att optimeringsproceduren sannolikt är känslig för att fastna i lokala 

minima. Vidare beräknades korrelationsmatriser för parameterskattningarna som visade ett 

starkt beroende mellan parametrarna, vilket innebär att det är svårt att hitta en unik optimal 

skattning. Temperatur- och pH-beroendet hos modellen kan sannolikt fångas med hjälp av den 

förslagna empiriska modellen inom ytresponsmetodiken, men kräver i så fall korrekta 

parameterskattningar.               

  



 



 

Popular Science Summary 

Most people have probably noted the recent upswing in new food products that are promoted 

as being more environmentally friendly to consume. One recent development is the start of 

research regarding insects as food. Although insect products have not reached the store shelves 

yet to a great extent, plenty of research is ongoing for large scale production of food products 

containing insects. One insect that recently was approved in the European union as a novel food 

is the yellow mealworm Tenebrio Molitor. The protein in the yellow mealworm is nutritious 

and could have health benefits for human if it was included in food products, while being more 

environmentally friendly compared to other sources of protein. 

Proteins are long chains of similar molecules that are called amino acids. The length of the 

chains can vary drastically, from one or two, up to several hundreds, or more. When the protein 

is extracted from its source, the mixture will contain proteins with very different lengths. The 

ratio between the amounts of the different protein lengths will have a big impact on the food 

product that it is included in. In terms of taste, texture etc. The impact on the food product can 

be controlled by splitting the proteins into shorter chains before introducing it into the food 

product. This can be done with the help of enzymes and is called hydrolysis.  

In this thesis, a model was constructed to describe the hydrolysis of proteins with the help of 

enzymes. A model is essentially math that describes what would happen in a real experiment. 

Models are never perfect, but if they are good enough, they can give you a good idea of what 

happens and can save much time and resources since less lab work is required. The created 

model showed potential to be useful in predicting how the different chain lengths would change 

due to the enzymatic hydrolysis. But it was also shown that determining the exact mathematical 

expressions of the model can be difficult and more work is required.        

       

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Populärvetenskaplig Sammanfattning 

Fler och fler livsmedelsprodukter dyker upp på marknaden som marknadsförs som 

miljövänliga, jämfört med liknande alternativ. På senaste tiden har forskning om insekter som 

livsmedel fått ett lyft, även om få produkter finns tillgängliga för konsumenter än. 

Mjölbaggen, Tenebrio Molitor, är en insekt som nyligen blev godkänt livsmedel i Europeiska 

unionen. Proteinet i mjölbaggar anses näringsrikt och kan vara ett hälsosamt tillägg i 

livsmedelsprodukter. Samtidigt som det är mer miljövänligt än många andra proteinkällor. 

Proteiner är långa kedjor av molekyler som kallas aminosyror. Kedjornas längd kan variera 

drastisk, från enstaka syror till flera hundra, eller fler. När protein extraheras från källan 

kommer extraktionen innehålla en blandning av alla möjliga kedjelängder. Förhållandet 

mellan andelarna av olika längder har stor påverkan på smak och konsistens när det 

inkluderas i livsmedel. Påverkan som protein har kan justeras genom att dela upp 

proteinkedjorna till kortare kedjor med hjälp av enzymer. Denna process kallas hydrolys. 

Den här tesen syftade till att skapa en modell som beskriver hydrolysen av protein med hjälp 

av olika enzymer. En modell är, enkelt sagt, matematik som beskriver vad som hade hänt i ett 

verkligt experiment. Modeller beskriver aldrig verkligheten exakt men om dem gör ett 

tillräckligt bra jobb kan de ge bra uppskattningar. Detta kan i sin tur spara mycket tid och 

resurser då färre verkliga experiment behöver utföras. Modellen som skapades visade god 

potential att beskriva hydrolysprocessen och hur kedjelängderna varierar på grund av 

enzymerna. Men samtidigt påvisades det att ta fram de exakta matematiska uttrycken i 

modellen kan vara svårt, och vidare utveckling av modellen är nödvändigt.           

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Nomenclature 

Roman Letters 

Superscript “en” and “ex” refers to endopeptidase and exopeptidase respectively  

A Pre-exponential factor “Same as rate constant” 

𝑐𝑝 Total peptide concentration [ 𝑚𝑚𝑜𝑙 𝐿−1 ] 

𝐸𝐴 Activation energy [ J mol−1] 

𝐸𝑓 Free enzyme concentration [ 𝑔 𝑒𝑛𝑧𝑦𝑚𝑒 𝐿−1 ] 

〈𝐸 + 𝑃〉 Enzyme-Substrate complex [ 𝑔 𝑒𝑛𝑧𝑦𝑚𝑒 𝐿−1 ] 

𝐸𝑡 Total enzyme concentration [ 𝑔 𝑒𝑛𝑧𝑦𝑚𝑒 𝐿−1 ] 

𝐹𝐴𝐴 
Fraction of specific amino acid 

in the protein 
 

𝐻 
Concentration of hydrolyzed 

peptide bonds 
[ 𝑚𝑚𝑜𝑙 𝑏𝑜𝑛𝑑𝑠 𝐿−1 ] 

𝐽(𝜃) 
Cost function as the sum of 

square errors 
 

𝑘 Reaction rate constant [ 𝑚𝑚𝑜𝑙 𝑔−1 𝑒𝑛𝑧𝑦𝑚𝑒 𝑚𝑖𝑛−1] 

𝐾𝑑𝑖𝑠 Dissociation constant [ 𝑚𝑚𝑜𝑙 𝑏𝑜𝑛𝑑𝑠 𝐿−1 ] 

𝐾𝐼 Inhibition constant [ 𝑚𝑚𝑜𝑙 𝐿−1 ] 

M Molecular weight [ 𝑔 𝑚𝑜𝑙−1 ] 

N 
Maximal degree of 

polymerization 
 

N Total number of datapoints  

𝑁𝐷𝑆, 𝑁𝑦, 𝑁𝑡 

Number of datasets, model 

outputs, and time evaluations 

respectively 

 

𝑃𝑖 
Concentration of peptide with 

length i 
[ 𝑚𝑚𝑜𝑙 𝐿−1 ] 

R Universal gas constant [ J K−1 mol−1] 

𝑟𝑃𝑖 Net reaction rate of 𝑃𝑖 [ 𝑚𝑚𝑜𝑙 𝐿−1 𝑚𝑖𝑛−1 ] 

𝑅𝑀𝑆𝐷 Root-mean-square deviation  



 

𝑆0 Total protein concentration [ 𝑔 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 𝐿−1 ] 

𝑠2 Error of variance  

T Temperature [𝐾] 𝑜𝑟 [℃] 

t Time [ min ] 

𝑢 Vector of model inputs  

x Vector of state-variables  

X Model matrix is RSM  

𝑦 Model output  

�̂� Datapoint  

𝑦0 
Initial Values of lumped 

components 
[ 𝑔 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 𝐿−1 ] 

Y Response vector in RSM  

 

Greek Letters 

𝜷 Vector of coefficients in RSM  

𝜺 Vector of errors in RSM  

𝜀𝑒𝑛 Fraction of hydrolysable 

peptide bonds in the initial 

protein for endopeptidase 

 

𝜀𝑒𝑥 Fraction of hydrolysable 

peptide bonds in the initial 

protein for exopeptidase 

 

𝜽 Vector of parameters  

𝜃𝑚𝑖𝑛 Lower bound for parameter 

estimation 

 

𝜃𝑚𝑎𝑥 Upper bound for parameter 

estimation 

 

𝜉 Adjustment parameters  

𝜙𝑒𝑛 Fraction of hydrolysable bonds for endopeptidase 

𝜙𝑒𝑛 Fraction of hydrolysable bonds for exopeptidase 
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1 Introduction 

1.1 Overview   

With increasing focus on the environmental impact of the human population’s consumption, 

many new food products have been put on the market in recent years. These products often 

market the environmental benefits compared to other products, in terms of greenhouse 

emissions, water usage, land usage etc. One recent development in this area is the placing of 

the yellow mealworm (Tenebrio Molitor) on the European market as a novel food. Biofynt Aps 

is a recently founded Danish start-up that explores the possibilities of effectively including 

yellow mealworm protein in food formulations.   

An important concept for introducing protein into food formulations is the techno-functional 

properties of the protein e.g., viscosity, emulsifying activity, and oil-holding capacity. These 

are crucial properties for effective food formulations and have been shown to be manipulable 

through enzymatic hydrolysis of protein. 

This thesis project constitutes initial efforts at Biofynt to develop a mechanistic mathematical 

model that would describe the change in molecular weight distribution of the extracted 

mealworm protein as it undergoes hydrolysis in a multi-enzyme system. The long-term goal 

(not explored in this thesis) is to link the state of the protein weight distribution to several 

techno-functional properties, to improve product design. The complexity of the system creates 

a difficult modeling scenario, and the calibrated model will rely heavily on the data used. 

Limited data on the system in question exist in literature and practical limitations prevented the 

experimental work required to acquire relevant data. The focus of this thesis was therefore not 

to propose a validated model, but rather to propose a structure that could serve as a basis for 

both process understanding and further model development for practical implementation in the 

future. Synthetic data was generated based on the limited data available in the literature to 

implement the programming structure for parameter estimation and identifiability. The 

synthetic data was then utilized to calibrate the model, and these results were used to evaluate 

the potential of the model structure, in terms of prediction accuracy and parameter 



2 

 

identifiability. Additionally, a way of including temperature and pH as model inputs was briefly 

explored by response surface methodology.         

1.2  Aims 

The aims of the thesis are stated below. 

 Research literature regarding modeling enzymatic hydrolysis of protein and propose a 

mechanistic model that captures the change in molecular weight distribution of the 

protein to better understand the reaction and process dynamics. 

 Generate synthetic data to implement the programming structure for parameter 

estimation and identifiability. And to examine opportunities and issues of future model 

calibration. 

 To evaluate strengths and weaknesses regarding the structure of the model. 

 Explore the inclusion of temperature and pH as input variables in the model. 

 

1.3 Outline  

The general structure of this thesis is summarized below. 

 Chapter 2 provides the reader with relevant background information and motivates as 

to why this thesis holds relevance and could provide useful insights into the 

development of a new food product. 

 Chapter 3 goes through the necessary theoretical information that is useful in 

establishing the mathematical model. 

 Chapter 4 discusses the mathematical derivation of the model and the assumptions 

made. It continues with methods used in optimization, statistical computation, and 

response surface methodology.  

 Chapter 5 presents and discusses the results. 

 Chapter 6 summarizes the key findings of the thesis project and suggests strategies for 

future development of the model. 
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2 Background 

2.1  Insects as a Future Food  

Although the consumption of insects has had a long running place in human history, it is only 

recently that the interest in producing insects at the industrial scale for a global food source has 

sparked. The interest is likely the result of the potential nutritional and environmental 

advantages of insects compared to other food sources that have been proposed (Huis et al., 

2013). Insects could be a valuable source of protein intake in the human diet, where dry insect 

matter has shown average protein contents between 35% and 61% and with all essential amino 

acids. Further, insect production has been shown to likely be a more sustainable and 

environmentally friendly way of producing nutrients, compared to other animals, requiring less 

water, having a better feed-to-meat conversion and emitting less greenhouse gas (Lange and 

Nakamura, 2021). 

2.2  Food Applications and Techno-Functional Properties 

The development of insect protein as part of human consumption requires much research on 

the topic. To date, there is only a limited amount of research regarding the techno-functional 

properties of insect protein. Knowledge of the techno-functional properties and ways of 

manipulating them are essential for effective use of protein in food formulations (Gkinali et al., 

2022b). Examples of techno-functional properties in food applications are solubility, 

emulsifying activity, oil-holding capacity, and foam capacity.  

The degree of hydrolysis, which is a measure of the amount of peptide bonds in the protein that 

has been hydrolyzed, has been demonstrated to impact several techno-functional properties of 

insect protein when enzymes are utilized (Leni et al., 2020) (Purschke et al., 2018). Another 

characteristic of protein that has importance in food formulations is the molecular weight 

distribution, and the change of it due to hydrolysis. This has been studied in order to observe 

the degradation of allergens (García Arteaga et al., 2020), and the release of bioactive peptides 

(Rivero Pino et al., 2020). Further, Kristoffersen et al. (2020) concluded that the degree of 

hydrolysis and molecular weight distribution of protein hydrolysates offer complementary 

information and adequately describes the state of the hydrolysis process.         
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2.3 Biofynt ApS 

Biofynt ApS (a B2B start-up founded 2022) is a Danish company that is developing a high 

protein powder ingredient to enable food manufacturers to enrich the nutritional value of daily 

consumed food products without compromising the appearance, taste, or texture. In this way, 

the end-consumer can enjoy a traditional product (e.g. pasta, bread, meatballs etc) that is tasty, 

nutritional and also sustainable. 

Biofynt is exclusively focusing on mealworm, Tenebrio molitor, processing (e.g. extraction and 

purification of valuable fractions). The initial effort is on the protein fraction which is carefully 

extracted and functionalized using multi-enzyme technology to potentialize nutrition and 

sensorial experience in finished food and drink products.  
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3 Theory  

3.1 T. Molitor Protein 

The amino acid composition of the protein in yellow mealworm has been evaluated many times 

in literature, mainly from the perspective of nutritional value (Costa et al., 2020). In this thesis 

the profile of amino acids is used to compute an average molecular weight for the residues. The 

method is described in section 4.2.4. The amino acid composition according to Costa et al. 

(2020) is presented in table 3.1. Further, the water-soluble proteins in T. Molitor have 

previously been shown to mainly have molecular weights below 14 kDa (Gkinali et al., 2022a).  

Table 3.1: Amino Acid content in T. molitor Protein (Costa et al., 2020).  

 

 

3.2 Enzymes  

Using enzymes for the hydrolysis of food proteins has been developed as an alternative to 

hydrolysis by acids or alkali. Proteases, enzymes that catalyzes the cleavage of peptide bonds, 

have several advantages compared to the chemical methods. Such as lighter color and milder 

taste of the protein. Hydrolysates generated from enzymatic hydrolysis are also generally 

considered safe. Additionally, enzymes can potentially offer larger flexibility because of their 

Amino acid T. molitor  larvae (mg/g protein)

Histidine (HIS) 28,9

Isoleucine (ILE) 32,1

Leucine (LEU) 75,9

Lysine (LYS) 26,2

Threonine (THR) 54,8

Valine (VAL) 49,2

Aspartic acid (ASP) 97,4

Glutamic acid (GLU) 125,3

Serine (SER) 58,1

Glycine (GLY) 66,0

Arginine (ARG) 45,6

Alanine (ALA) 100,9

Tyrosine (TYR) 67,2

Phenylalanine (PHE) 34,3
Proline (PRO) 95,9
Total a.a. 957,8

Total e.a.a. 368,6
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specificity, which enables the user to control the outcome of the hydrolysis process. Combined 

or sequential use of different proteases have recently gained attention because of this flexibility. 

(Habinshuti et al., 2023) Two popular commercial enzyme preparations are Alcalase and 

Flavourzyme, which are discussed in more detail below. The operating conditions for these 

enzyme preparations are presented in table 3.2 (Beaubier et al., 2021). 

Table 3.2: Process condition domains for Alcalase and Flavourzyme. 

Enzyme Temperature (℃) pH E/S 

 Min Max Min Max Min Max 

Alcalase 45 75 7.0 10.0 1/150 1/15 

Flavourzyme 40 60 5.0 8.5 1/150 1/15 

      

 

3.2.1 Alcalase  

Commercially known as Alcalase, this protease is obtained from the bacteria Bacillus 

licheniformis and is an alkaline endopeptidase. Meaning that it hydrolyses peptide bonds of 

non-terminal amino acids (Chew et al., 2019). It uses a catalytic triad (Asp32, His64, Ser221) 

for the hydrolysis of the peptide bonds (Graycar et al., 2013). Alcalase has been described to 

have a preference for large uncharged residues at the site of hydrolysis but it is generally 

considered to have broad specificity and always yield high degrees of hydrolysis (Tacias-

Pascacio et al., 2020).     

3.2.2 Flavourzyme 

Flavourzyme is a commercial enzyme blend from Novozymes (Bagsvaerd, Denmark) that has 

been developed with a flavor altering properties in mind. Although it has been developed and 

is marketed towards flavor adjustments, it has been applied in several proteolysis applications 

with different purposes. Rivero Pino et al. (2020) investigated certain biological activities of 

Tenebrio Molitor protein hydrolysates. The Flavourzyme blend is derived from the fungus 

Aspergillus oryzae and comprises both endo- and exoproteases. However mostly the latter. 

Exoproteases are generally associated with hydrolysis close to the N-terminus of the peptide 
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chain. Research into what specific enzymes constitutes the mixture have previously been done 

and found eight key enzymes, which are presented in table 3.3 (Merz et al., 2015). 

Table 3.3: Different Enzyme categories within the Flavourzyme Preparation. 

Enzyme Enzyme Category 

Leucine Aminopeptidase A Aminopeptidase 

Leucine Aminopeptidase 2 Aminopeptidase 

Dipeptidyl Peptidase 4 Dipeptidyl peptidases 

Dipeptidyl Peptidase 5 Dipeptidyl peptidases 

Neutral Protease 1 Endopeptidase 

Neutral Protease 2 Endopeptidase 

Alkaline Protease 1 Endopeptidase 

Alpha-amylase A type 3 Amylase 

 

3.3 Temperature and pH dependence 

The enzymatic hydrolysis of protein is heavily impacted by the process conditions which the 

hydrolysis is performed under. The main conditions are temperature, pH, and concentrations of 

both protein substrate and enzyme. These conditions affect both the catalytic properties of the 

enzymes as well as the structure of protein. Consequently, they impact both the mechanism of 

the hydrolysis and the reaction kinetics (Beaubier et al., 2021). A common way of describing 

the effect of temperature on reaction rate constants (regardless of reaction order) is with the 

Arrhenius equation (equation 1). Where 𝑘 is the rate constant, 𝐴 is the pre-exponential factor, 

𝐸𝑎 is the activation energy, and 𝑅 is the universal gas constant (Atkins et al., 2017). 

𝑘 = 𝐴 ∗ 𝑒
−𝐸𝐴
𝑅𝑇 (1) 

Several studies have found that this relation well describes the effect of temperature on the 

reaction rate of enzymatic hydrolysis of protein (Qi and He, 2006) (Ruan et al., 2010) (Márquez 
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and Vázquez, 1999). However, the Arrhenius equation is limited to describing the effect of 

temperature on the reaction rate and other process conditions needs to remain constant when 

the parameters of equation 1 are estimated.  

As stated above, pH has an impact on the kinetic parameters when modeling the kinetic 

behavior of enzymatic proteolysis. De Pretto et al. (2022) clearly showed the influence of pH 

(at values of 8, 9, and 10) on the hydrolysis of soybean meal protein with subtilisin. Where the 

degree of hydrolysis (amount of cleaved peptide bonds) significantly varied. The impact of pH 

on the degree of hydrolysis has also been shown on the hydrolysis of egg-white protein by 

pepsin (Ruan et al., 2010). Sousa et al. (2004) had great success fitting the rate constant, the 

Michaelis-Menten constant, and the inhibition constant to bell curves in the entire experimental 

pH spectrum (6 – 11). The kinetic parameters were obtained by kinetic fitting of data from the 

hydrolysis of whey protein by Alcalase.          

A way of capturing the temperature and pH dependency of the model is through Response 

Surface Methodology (RSM). RSM provides a method to empirically derive the nature of the 

relationship between process conditions and the outcome of the process. Broadly speaking, 

RSM is not only the fitting of a surface response to independent variables, but a collection of 

techniques that can help with designing future experiments, optimization of the process, outlier 

identification, etc. (Sarabia and Ortiz, 2009). It should be noted that RSM does not rely on any 

mechanistic mathematical derivation and no theoretical knowledge of the process is included 

in the method. Therefore, the estimated coefficients lack physical meaning. But it is an simple 

and effective way of gaining insight into the process (Valencia et al., 2015). In this thesis, RSM 

is utilized to observe the impact of pH and temperature on the model parameters.   
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4 Methods in Model Construction and Evaluation 

4.1 Model Objective 

In adherence to section 2.2, the degree of hydrolysis and the molecular weight distribution of 

the hydrolysates are important factors to consider for food applications. These properties are 

therefore the main targets for the model output. “Simple” models have been developed to 

describe the degree of hydrolysis for protein by enzymatic degradation (Zhou et al., 2016) 

(Ruan et al., 2010). Predicting the molecular weight distribution have also been tried. Shi et al. 

(2005) developed a model for the hydrolysis of bovine serum albumin by trypsin. De Pretto 

(2022) utilized a neural network to predict the molecular weight distribution from the degree of 

hydrolysis of soybean meal protein with subtilisin. However, both these models output lumped 

components into “pseudo components” that include a spectrum of molecular weights.  

To the extent of my knowledge, no mechanistic model that would allow for a complete 

molecular weight distribution as output has been developed for the enzymatic hydrolysis of 

protein. However, models that describe the enzymatic hydrolysis of cellulose including a 

generated complete molecular weight distribution have been derived (Zhang and Lynd, 2006) 

(Niu et al., 2016). The work in these articles provide the basis for the model developed in this 

chapter. 

4.2 Model Assumptions 

To reasonably describe the complex hydrolysis system in mathematical terms, several 

simplifying assumptions are made. 

1) The reaction takes place in a well stirred tank. Hence, no consideration is given to 

spatial derivates, and concentrations, temperature, and pH is assumed to be 

homogenous throughout the system. Additionally, the process conditions are 

assumed to be kept at steady state by external control of pH and temperature. No 

variations in this, as a result from the hydrolysis reaction, is considered by the model.  

2) The model reduces the commercial enzyme preparations into two distinct general 

enzymes. Endopeptidase and Exopeptidase.  

3) The peptide chains are considered to have the same repeating unit, a “general” amino 

acid with the molecular weight calculated in section 4.2.4. Therefore, all bonds in the 

peptide chains are assumed to interact identically with the endopeptidase. This means 
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that when a peptide of length 𝑘 is cleaved into two peptides of length 𝑖 and 𝑗 (𝑗 ≤ 𝑖), 

the probability of the length 𝑖 being formed from the length 𝑘 is 
2

𝑘−1
 (Niu et al., 

2016). 

4) The exopeptidase is considered to only cleave the two bonds closest to the N-

terminal of a peptide chain, with equal probability of each bond being cleaved. 

Hence, a peptide of length 𝑖 can only be produced by exopeptidase reacting with a 

peptide of length 𝑘 where 𝑘 = 𝑖 + 1, 𝑖 + 2,  and the probability of length 𝑖 being 

formed from 𝑘 is 
1

2
.         

5) The quasi steady-state approximation holds for all complexes formed between 

peptides and enzymes. 

6) Peptides of lengths between one and five are assumed to not contain any cleavable 

bonds and are not consumed by any reaction. This assumption seems reasonable 

given the specificity of the enzymes and the small amount of peptide bonds within 

the short chains. 

7) Peptides with polymerization degrees less than 56 are assumed to inhibit both 

enzymes competitively. 

8) Both enzymes are assumed to interact indistinguishably with all peptide lengths 

above five. Therefore, only one rate constant, one dissociation constant, and one 

inhibition constant for each enzyme is necessary to describe the system. 

9) For the simulated process conditions and time spans, loss of enzyme activity is 

considered to be negligible. This assumption is based on the fact that conditions are 

relatively mild relative to the optimal conditions for the enzyme preparations.  

 

4.3 Mathematical Derivation    

4.3.1 Enzymatic Hydrolysis by Endopeptidase 

The hydrolysis of non-terminal peptide bonds is described by modified Michaelis-Menten 

kinetics represented in the scheme below.  

𝑃𝑖 + 𝐸𝑓
𝑒𝑛

𝐾𝑑𝑖𝑠
𝑒𝑛

↔ 〈𝐸𝑒𝑛 + 𝑃𝑖〉
𝑘𝑒𝑛

→ 𝐸𝑓
𝑒𝑛 + 𝑃𝑖−𝑗 + 𝑃𝑗   

𝑃 + 𝐸𝑓
𝑒𝑛

𝐾𝐼
𝑒𝑛

↔ 〈𝐸𝐼
𝑒𝑛 + 𝑃〉 
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Where 𝑃𝑖 is a peptide chain with the length of 𝑖 amino acids, 𝐸𝑓
𝑒𝑛 a free endopeptidase enzyme 

and 〈𝐸𝑒𝑛 + 𝑃𝑖〉 the complex of a peptide chain of length 𝑖 bound to an enzyme. 𝑃 is an inhibiting 

peptide chain and 〈𝐸𝐼
𝑒𝑛 + 𝑃〉 the inhibited enzyme complex. 𝐾𝑑𝑖𝑠

𝑒𝑛  and 𝐾𝐼
𝑒𝑛  are equilibrium 

constants and 𝑘𝑒𝑛 the reaction rate constant for the enzyme complexed peptide chains.  

The total number of peptide bonds, or substrate quantity is ∑ [(𝑛 − 1)𝑃𝑛]
𝑁
𝑛=6 , where 𝑁 is the 

largest degree of polymerization. Therefore, the dissociation constant 𝐾𝑑𝑖𝑠
𝑒𝑛  can be defined as, 

𝐾𝑑𝑖𝑠
𝑒𝑛 =

𝐸𝑓
𝑒𝑛𝜙𝑒𝑛(𝑖 − 1)𝑃𝑖
〈𝐸𝑒𝑛 + 𝑃𝑖〉

≅
𝐸𝑓
𝑒𝑛𝜙𝑒𝑛 ∑ [(𝑛 − 1)𝑃𝑛]

𝑁
𝑛=6

∑ [〈𝐸𝑒𝑛 + 𝑃𝑛〉]
𝑁
𝑛=6

(2) 

where 𝜙𝑒𝑛 is the fraction of peptide bonds that are hydrolysable by the enzyme and is defined 

in section 4.2.4. Equation 2 can be rearranged into equation 3. 

〈𝐸𝑒𝑛 + 𝑃𝑖〉 ≅
(𝑖 − 1)𝑃𝑖

∑ [(𝑛 − 1)𝑃𝑛]
𝑁
𝑛=6

∑[〈𝐸𝑒𝑛 + 𝑃𝑛〉]

𝑁

𝑛=6

(3) 

The total amount of peptide is defined as ∑ [𝑃𝑛]
𝑁
𝑛=1 , which gives the definition of 𝐾𝐼

𝑒𝑛. 

𝐾𝐼
𝑒𝑛 =

𝐸𝑓
𝑒𝑛𝑃𝑖

〈𝐸𝐼
𝑒𝑛 + 𝑃𝑖〉

≅
𝐸𝑓
𝑒𝑛 ∑ [𝑃𝑛]

𝑁
𝑛=1

∑ [〈𝐸𝐼
𝑒𝑛 + 𝑃𝑛〉]

𝑁
𝑛=1

(4) 

The total mass balance of endopeptidase enzyme is given by,  

𝐸𝑡
𝑒𝑛 = 𝐸𝑓

𝑒𝑛 +∑[〈𝐸𝑒𝑛 + 𝑃𝑛〉]

𝑁

𝑛=6

+∑[〈𝐸𝐼
𝑒𝑛 + 𝑃𝑛〉]

𝑁

𝑛=1

(5) 

where 𝐸𝑡
𝑒𝑛 is the total enzyme concentration. By rearranging equation 4 to solve for 

∑ 〈𝐸𝐼
𝑒𝑛 + 𝑃𝑛〉

𝑁
𝑛=1 , and inserting it into equation 5, the free enzyme concentration can then be 

expressed as, 

𝐸𝑓
𝑒𝑛 =

𝐸𝑡
𝑒𝑛 − ∑ [〈𝐸𝑒𝑛 + 𝑃𝑛〉]

𝑁
𝑛=6

1 +
∑ [𝑃𝑛]
𝑁
𝑛=1

𝐾𝐼
𝑒𝑛

(6)
 

Inserting equation 6 into equation 2 yields 
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𝐾𝑑𝑖𝑠
𝑒𝑛 =

𝐸𝑡
𝑒𝑛 −∑ 〈𝐸𝑒𝑛 + 𝑃𝑛〉

𝑁
𝑛=6

1 +
∑ [𝑃𝑛]
𝑁
𝑛=1

𝐾𝐼
𝑒𝑛

×
𝜙𝑒𝑛 ∑ [(𝑛 − 1)𝑃𝑛]

𝑁
𝑛=6

∑ 〈𝐸𝑒𝑛 + 𝑃𝑛〉
𝑁
𝑛=6

(7)
 

which can be rearranged into 

∑〈𝐸𝑒𝑛 + 𝑃𝑛〉

𝑁

𝑛=6

=
𝐸𝑡
𝑒𝑛𝜙𝑒𝑛 ∑ [(𝑛 − 1)𝑃𝑛]

𝑁
𝑛=6

𝐾𝑑𝑖𝑠
𝑒𝑛 (1 +

∑ [𝑃𝑛]
𝑁
𝑛=1

𝐾𝐼
𝑒𝑛 ) + 𝜙𝑒𝑛 ∑ [(𝑛 − 1)𝑃𝑛]

𝑁
𝑛=6

(8) 

The total production of 𝑃𝑖 from endopeptidase comprises of the hydrolysis reactions of the 

larger peptide chains 𝑃𝑘 (𝑘 = 𝑖 + 1, 𝑖 + 2,…𝑁) with each length 𝑘 having the probability 
2

𝑘−1
 

to result in a peptide chain of length 𝑖, as described in assumption 3. This probability, equation 

3, and equation 8 then gives the net rate of reaction for 𝑃𝑖. 

𝑟𝑃𝑖
𝑒𝑛 = 𝑘𝑒𝑛 ( ∑ [

2

𝑘 − 1
〈𝐸𝑒𝑛 + 𝑃𝑘〉] − 〈𝐸

𝑒𝑛 + 𝑃𝑖〉

𝑁

𝑘=𝑖+1

)

  

 

=
𝑘𝑒𝑛𝐸𝑡

𝑒𝑛𝜙𝑒𝑛(2∑ [𝑃𝑘] − (𝑖 − 1)𝑃𝑖) 
𝑁
𝑘=𝑖+1

𝐾𝑑𝑖𝑠
𝑒𝑛 (1 +

∑ [𝑃𝑛]
𝑁
𝑛=1

𝐾𝐼
𝑒𝑛 ) + 𝜙𝑒𝑛 ∑ [(𝑛 − 1)𝑃𝑛]

𝑁
𝑛=6

, 𝑖 ≥ 6 (9)
 

Additionally, the net rate of reaction for smaller peptides is obtained as 

  

𝑟𝑃𝑖
𝑒𝑛 = 𝑘𝑒𝑛 ( ∑ [

2

𝑘 − 1
〈𝐸𝑒𝑛 + 𝑃𝑘〉]

𝑁

𝑘=𝑖+1

)

  

 

=
𝑘𝑒𝑛𝐸𝑡

𝑒𝑛𝜙𝑒𝑛(2∑ [𝑃𝑘]) 
𝑁
𝑘=𝑖+1

𝐾𝑑𝑖𝑠
𝑒𝑛 (1 +

∑ [𝑃𝑛]
𝑁
𝑛=1

𝐾𝐼
) + 𝜙𝑒𝑛 ∑ [(𝑛 − 1)𝑃𝑛]

𝑁
𝑛=6

, 3 ≤ 𝑖 ≤ 5 (10)
 

in accordance with assumption 6. 
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4.3.2 Enzymatic Hydrolysis by Exopeptidase 

The hydrolysis of external peptide bonds is also described by Michaelis-Menten kinetics and is 

represented below. 

𝑃𝑖 + 𝐸𝑓
𝑒𝑥
𝐾𝑑𝑖𝑠
𝑒𝑥

↔ 〈𝐸𝑒𝑥 + 𝑃𝑖〉
𝑘𝑒𝑥

→ 𝐸𝑓
𝑒𝑥 + 𝑃𝑖−𝑗 + 𝑃𝑗 

𝑃 + 𝐸𝑓
𝑒𝑥
𝐾𝐼
𝑒𝑥

↔ 〈𝐸𝐼
𝑒𝑥 + 𝑃〉 

In accordance with assumption 4, only the N-terminal is cleavable by the exopeptidase. 

Therefore, the substrate quantity is equal to the number of peptides with a degree of 

polymerization above or equal to six, i.e., ∑ 𝑃𝑛
𝑁
𝑛=6 . The dissociation constant is then defined as  

𝐾𝑑𝑖𝑠
𝑒𝑥 =

𝐸𝑓
𝑒𝑥𝜙𝑒𝑥𝑃𝑖

〈𝐸𝑒𝑥 + 𝑃𝑖〉
≅
𝐸𝑒𝑥𝜙𝑒𝑥 ∑ [𝑃𝑛]

𝑁
𝑛=6

∑ [〈𝐸𝑒𝑥 + 𝑃𝑛〉
𝑁
𝑛=6 ]

(11) 

The inhibition constant and enzyme mass balance for the exopeptidase is defined analogous to 

the endopeptidase. And similar to section 4.2.2, the net reaction rate is derived as,  

𝑟𝑃𝑖
𝑒𝑥 = 𝑘𝑒𝑥 ( ∑ [

1

2
〈𝐸𝑒𝑥 + 𝑃𝑘〉] − 〈𝐸

𝑒𝑥 + 𝑃𝑖〉

𝑖+2

𝑘=𝑖+1

)

  

 

=
𝑘𝑒𝑥𝐸𝑡

𝑒𝑥𝜙𝑒𝑥(∑ [
1
2𝑃𝑘] − 𝑃𝑖) 

𝑖+2
𝑘=𝑖+1

𝐾𝑑𝑖𝑠
𝑒𝑥 (1 +

∑ [𝑃𝑛]
𝑁
𝑛=1

𝐾𝐼
𝑒𝑥 ) + 𝜙𝑒𝑥 ∑ [𝑃𝑛]

𝑁
𝑛=6

, 𝑖 ≥ 6 (12) 

and for the smaller peptides 

  

𝑟𝑃𝑖
𝑒𝑥 = 𝑘𝑒𝑥 ( ∑ [

1

2
〈𝐸𝑒𝑥 + 𝑃𝑘〉]

𝑖+2

𝑘=𝑖+1

)

  

 

=
𝑘𝑒𝑥𝐸𝑡

𝑒𝑥𝜙𝑒𝑥(∑ [
1
2𝑃𝑘]) 

𝑁
𝑘=𝑖+1

𝐾𝑑𝑖𝑠
𝑒𝑥 (1 +

∑ [𝑃𝑛]
𝑁
𝑛=1

𝐾𝐼
𝑒𝑥 ) + 𝜙𝑒𝑥 ∑ [𝑃𝑛]

𝑁
𝑛=6

, 1 ≤ 𝑖 ≤ 2 (13) 
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4.3.3 Bond Fractions 

The variables 𝜙𝑒𝑛 and 𝜙𝑒𝑥 are the fractions of hydrolysable bonds for endopeptidase and 

exopeptidase respectively. They are defined in equation 14 and 15, 

𝜙𝑒𝑛 =
𝜀𝑒𝑛∑ [(𝑛 − 𝑖)𝑃𝑛

𝑁
𝑛=6 ]|𝑡=0 −𝐻

𝑒𝑛(𝑡)

∑ [(𝑛 − 1)𝑃𝑛]
𝑁
𝑛=6 |𝑡=𝑡 

(14) 

 

𝜙𝑒𝑥 =
(𝜀𝑒𝑥 ∑ [(𝑛−1)𝑃𝑛]

𝑁
𝑛=6 |

𝑡=0
−𝐻𝑒𝑥(𝑡))

∑ [(𝑛−1)𝑃𝑛]
𝑁
𝑛=6 |

𝑡=𝑡
 

×
2∑ 𝑃𝑛

𝑁
𝑛=6 |

𝑡=𝑡

∑ [(𝑛−1)𝑃𝑛]
𝑁
𝑛=6 |

𝑡=𝑡

(15) 

where 𝜀𝑒𝑛 and 𝜀𝑒𝑥 are the fraction of the initial bonds that are hydrolysable by endopeptidase 

and exopeptidase respectively. 𝐻𝑒𝑛(𝑡) is the amount of hydrolyzed internal peptide bonds and 

𝐻𝑒𝑥(𝑡) the amount of hydrolyzed terminal bonds at time 𝑡. The fraction for endopeptidase is 

assumed to be the remaining readily hydrolysable peptide bonds divided by the total amount of 

bond left at each time step. The fraction for exopeptidase is assumed as the product of the 

remaining readily hydrolysable peptide bonds fraction, times the fraction of peptide bonds 

within two steps of the N-terminal divided by the total amount of bonds.    

4.3.4 Model Output 

To summarize, the model is composed of N ordinary differential equations, each representing 

a chain length, which are described in equation 16. 

𝑑𝑃𝑖
𝑑𝑡
= 𝑟𝑃𝑖

𝑒𝑛 + 𝑟𝑃𝑖
𝑒𝑥,        1 ≤ 𝑖 ≤ 𝑁 (16) 

Additionally, for a total of 𝑁 + 2 state variables, the “pseudo components” 𝐻𝑒𝑛(𝑡) and 𝐻𝑒𝑥(𝑡) 

are also modeled as described in equation 17 and 18 respectively. 

𝑑𝐻𝑒𝑛(𝑡)

𝑑𝑡
=∑[𝑟𝑃𝑖

𝑒𝑛]      

𝑁

𝑖=1

(17) 

𝑑𝐻𝑒𝑥(𝑡)

𝑑𝑡
=∑[𝑟𝑃𝑖

𝑒𝑥]         

𝑁

𝑖=1

(18) 

For the outputs of the model, the chain length state variables are lumped together into five 

components and described as a percentage of the total concentration according to table 4.1 and 
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equation 19. N is set to 113 for all simulations in this thesis and is motivated by the background 

theory in section 3.1 that the water-soluble protein has molecular weights mainly below 14 kDa. 

The Degree of Hydrolysis is calculated according to equation 20, 

 

Table 4.1: The division into lumped components for the model output. 

Lumped Compounds Degree of Polymerization Size (kDa) 

A(t) 56-N ≥ 6.188 

B(t) 37-55 4.0885 – 6.0775 

C(t) 19-36 2.0995 – 3.978 

D(t) 6-18 0.663 – 1.989 

E(t) 1-5 ≤ 0.5525 

 

𝑦𝐿𝑢𝑚𝑝𝑒𝑑 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 =
∑ 𝑃𝑖
𝐷𝑃𝑒𝑛𝑑
𝑖=𝐷𝑃𝑠𝑡𝑎𝑟𝑡

∑ 𝑃𝑖
𝑁
𝑖=1

× 100%, 𝐿𝑢𝑚𝑝𝑒𝑑 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 = 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 (19)  

𝐷𝐻 =
∑ [𝑃𝑛]
𝑁
𝑛=1

(
𝑐𝑃

𝑀𝐴𝐴 −𝑀𝐻2𝑂
)
× 100% (20) 

where 𝑐𝑃 is concentration of protein, 𝑀𝐴𝐴is the average molecular weight of the amino acids in 

the protein, and 𝑀𝐻2𝑂 is the molecular weight of water. 𝑀𝐴𝐴 is calculated by equation 21, 

𝑀𝐴𝐴 =∑[𝐹𝐴𝐴 ×𝑀𝑊,𝐴𝐴] (21) 

where the average molecular weight is the sum of the products between the fraction of the 

amino acid, 𝐹𝐴𝐴, and its molecular weight, 𝑀𝑊,𝐴𝐴 . The fractions were calculated from table 

3.1. 

In total the model, and the system of ordinary differential equations (ODEs) can be described 

by the following form: 
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𝑑𝑥(𝑡, 𝜃)

𝑑𝑡
= 𝑓(𝑥(𝑡, 𝜃), 𝑢, 𝜃) (22) 

𝑦(𝑥, 𝑢, 𝜃) = 𝑔(𝑥(𝑡, 𝜃), 𝑢, 𝜃) (23) 

𝑥(𝑡0) = 𝑥0(𝜃),       𝑡 ∈ [𝑡0, 𝑡𝑒𝑛𝑑] (24) 

where 𝑥 are the state variables, 𝑢 is the model inputs (initial concentrations, temperature, pH) 

and 𝜃 is the fixed parameters. 𝑓 describes the mathematical relations between the state variables 

and 𝑔 is the mathematical function computing the measurable output variables 𝑦. 𝑥0 are the 

initial values of the state variables and 𝑡 is the time between 𝑡0 and 𝑡𝑒𝑛𝑑. The explicit fourth 

order Runge-Kutta method within the SciPy package is used exclusively as the integration 

method for solving the differential equation systems in this thesis.    

 

4.4  Synthetic Data Generation 

The derived model was initially calibrated with two datasets (Rivero Pino et al., 2020). One set 

from hydrolysis of yellow mealworm protein by Alcalase, and the other by both Alcalase and 

Flavourzyme. The calibration was performed like the method described in next section but with 

a few modifications. The initial values of the chain length state-variables were estimated to get 

the best fit for the lumped compounds of the datasets. This was achieved by optimizing under 

the constraint described in equation 25, 

𝑦0
𝐴 + 𝑦0

𝐵 + 𝑦0
𝐶 + 𝑦0

𝐷 + 𝑦0
𝐸 − 𝑆0 = 0 (25) 

where 𝑦0 is the initial concentrations of each lumped component and 𝑆0 is the total protein 

concentration. Each lumped start concentration was evenly divided (in term of grams) among 

the chain length state variables of the lumped component and divided by the appropriate molar 

mass to give the initial values (in moles) for the simulations. The molar masses are calculated 

according to equation 26, 

𝑀𝑖 = 𝑖 × (𝑀𝐴𝐴 −𝑀𝐻2𝑂) (26) 

where 𝑖 is the peptide chain length and 𝑀𝐴𝐴 is calculated according to equation 21.  
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In total, the system of ODEs contains 115 differential equations, and 17 parameters were 

estimated. The parameter estimation was performed by minimizing the cost function (equation 

27) in section 4.5. To handle both the bounds and the equality constraint in equation 25, 

Sequential Quadratic Programming was used for the minimization. More specifically, the 

“SLSQP” method in the minimize function of the SciPy package (Virtanen et al., 2020). The 

“goodness of fit” is evaluated by the root-mean-square deviation calculated by equation 28 in 

section 4.5. 

After the parameter estimation, 9 synthetic datasets were generated according to a 23-factorial 

design with an added center point (see figure 4.1). The added center point can allow for better 

estimation of a curvature effect when RSM is utilized (Beg and Raza, 2021). The center point 

is the process conditions where the model was calibrated originally. The change in the 

parameters at other process conditions (temperature and pH) was conjectured based on the 

findings of Sousa Jr et al. (2004) and, Apar and Özbek (2010). The datasets were generated by 

simulating the model with the hypothesized parameters and appropriate concentrations. On top 

of the generated datapoints, artificial experimental noise was added from a gaussian distribution 

to make the data more realistically represent actual experimental data. The gaussian 

distributions mean was set to 0 and the standard deviation to the root-mean-squared deviation 

of the residuals from the parameter estimation. 
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Figure 4.1: The 23-factorial design with an added center point used for synthetic data 

generation, showing the process conditions for temperature, pH, and the enzyme-substrate 

ratio.   

 

 

4.5  Parameter Estimation 

Parameters for the model were estimated through an optimization problem described below.  

𝐽(𝜃) = ∑∑∑[(𝑦𝑖𝑗𝑘(𝑥, 𝑢, 𝜃) − 𝑦𝑖𝑗�̂�)
2]

𝑁𝑡

𝑘=1

𝑁𝑦

𝑗=1

𝑁𝐷𝑆

𝑖=1

(27) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑒𝑑 𝑡𝑜: 𝜃𝑚𝑖𝑛 ≤ 𝜃 ≤ 𝜃𝑚𝑎𝑥  

The cost function, equation 27, is minimized to estimate the optimal values of the parameters 

𝜃. A common way to set up the cost function is the sum-of-squares, which is the case here. 

Where the errors between the experimental data and the model outputs are squared and summed 

together. In equation 27, �̂� is the experimental value from dataset 𝑖, output 𝑗 at time 𝑘. 𝑁𝐷𝑆 is 

the total number of datasets for the optimization, 𝑁𝑦 the number of outputs for the model and 

𝑁𝑡 the evaluated time stamps. The optimization is bounded and the parameters each have an 

upper and lower limit during the minimization of 𝐽(𝜃). To solve the minimization problem, two 
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algorithms were tested. The Nelder-Mead, or Simplex, method is a popular direct search method 

which is efficient and does not rely on gradient evaluations. However, it does not guarantee a 

global minimum and can be very sensitive to the initial guesses of the parameters (Wang and 

Shoup, 2011). To evaluate a global minimum, the Differential Evolution algorithm (Storn and 

Price, 1997) was also tested. Both algorithms were deployed through the SciPy python package. 

The root-mean-square deviation was calculated for every optimization convergence according 

to equation 28 (Hyndman and Koehler, 2006). When the synthetic datasets were used for 

optimization, the system of ODEs contained 115 differential equations and 10 parameters were 

estimated.               

𝑅𝑀𝑆𝐷 = √
∑ ∑ ∑ (𝑦𝑖𝑗𝑘(𝑥, 𝑢, 𝜃) − 𝑦𝑖𝑗�̂�)2

𝑁𝑡
𝑘=1

𝑁𝑦
𝑗=1

𝑁𝐷𝑆
𝑖=1

𝑁𝐷𝑆 × 𝑁𝑦 × 𝑁𝑡
(28) 

 

4.6  Identifiability of Parameters 

Difficulties in estimating the parameters may arise if the model parameters display 

identifiability issues. Parameter identifiability is often divided into structural and practical 

identifiability. Structural identifiability refers to whether the parameters are uniquely 

determinable based on the formulation of the model and whether there are inherently 

indeterminable parameters. Practical identifiability issues arise from inadequate data used in 

the calibration. The main sources of practical non-identifiability are the parameters lack of 

influence on the observed output, and interdependence between the parameters (Gábor et al., 

2017). One method to get an idea of the quality of the estimation is by computing the variance-

covariance matrix and further, the correlation Matrix, of the parameters from the estimation. A 

linear approximation of the covariance matrix, 𝐶𝑜𝑣(𝜃), can be calculated according to equation 

29 (Santacoloma, 2012).     

𝐶𝑜𝑣(𝜃) =
min 𝐽(𝜃)

𝑁 − 𝑝
[(
𝜕𝑦

𝜕𝜃
)
′

(
𝜕𝑦

𝜕𝜃
)]

−1

(29) 

𝐶𝑜𝑟(𝜃𝑖𝜃𝑗) =
𝐶𝑜𝑣(𝜃𝑖𝜃𝑗)

√𝐶𝑜𝑣(𝜃𝑖𝜃𝑖) ∗ 𝐶𝑜𝑣(𝜃𝑗𝜃𝑗)

(30)
 



20 

 

In equation 29, min 𝐽(𝜃) is the minimized cost function, 𝑁 − 𝑝 is the degrees of freedom 

(datapoints minus the number of parameters), and 
𝜕𝑦

𝜕𝜃
 is the matrix of local sensitivities of the 

model outputs 𝑦 to the parameters 𝜃. In this thesis, they are calculated by numerical 

differentiation. Then, the correlation matrix, 𝐶𝑜𝑟(𝜃𝑖 , 𝜃𝑗), is computed with equation 30. The 

values in the correlation matrix can vary between -1 and 1. Off-diagonal elements close to -1 

or 1 indicate strong dependencies of parameter estimates. Essentially meaning that changing 

the parameter values can compensate for each other and have a canceling effect on the model, 

generating the same output. Hence, they would have poor identifiability (Brun et al., 2001).      

 

4.7 Temperature and pH dependency with RSM 

Following the discussion in section X, Response Surface Methodology was employed to 

describe the rate constants as functions of temperature and pH. The method follows the 

methodology described by Sarabia and Ortiz (2009). 

A complete second order multivariate polynomial was evaluated as an empirical model 

(equation 31). 

𝑦 =  𝛽0 + 𝛽1 ∗ 𝑇 + 𝛽2 ∗ 𝑝𝐻 + 𝛽3 ∗ 𝑇 ∗ 𝑝𝐻 + 𝛽4 ∗ 𝑇
2 + 𝛽5 ∗ 𝑝𝐻

2 + 𝜀 (31) 

In equation 31, 𝑦 is the response variable, the betas are the coefficients and 𝑇 and 𝑝𝐻 are the 

temperature and pH value respectively. 𝜀 is the error. 

The model matrix is given below in eq 32 and is composed of the independent variables and 

their products according to the model function and the experimental design. Where the subscript 

represents the synthetic experimental datasets. 

𝑿 =

[
 
 
 1
1
⋮
1

    

𝑇1
𝑇1
⋮
𝑇9

     

𝑝𝐻1
𝑝𝐻2
⋮
𝑝𝐻9

    

𝑇1 ∗ 𝑝𝐻1
𝑇2 ∗ 𝑝𝐻2

⋮
𝑇9 ∗ 𝑝𝐻9

    

𝑇1
2

𝑇2
2

⋮
𝑇9
2

    

𝑝𝐻1
2

𝑝𝐻2
2

⋮
𝑝𝐻9

2]
 
 
 

(32) 

With the definition of vector 𝜷 = [𝛽0 𝛽1 𝛽2  𝛽3  𝛽4  𝛽5 ]
′, the equation system may be written as 

𝒀 = 𝑿𝜷 + 𝜺 (33) 
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where 𝒀 and 𝜺 are vectors of the response values and errors respectively. Estimates of the 

coefficients by the least-squares method is then given by  

𝜷 = (𝑿′𝑿)−𝟏𝑿′𝒀 (34) 

Estimated response values, �̂� can then be obtained by �̂� = 𝜷𝑿. With 𝑁 as the number of 

response values (experimental datasets), and 𝑝 the number of coefficients the variance of the 

errors is estimated as 

 

𝑠2 =
∑[(�̂� − 𝒀)

2
]

𝑁 − 𝑝
(35) 
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5 Results and Discussion 

5.1 Synthetic Data Generation 

Initial efforts to calibrate the model yielded inadequate optimization results (data not shown) 

and the model was modified with adjusting parameters to allow for more flexibility. The 

insertion of the adjustment parameters 𝜉𝐴,  𝜉𝐵, 𝜉𝐶 , and 𝜉𝐷 into equation 10 can be seen in 

equation 36.  

𝑟𝑃𝑖
𝑒𝑛 =

𝑘𝑒𝑛𝐸𝑡
𝑒𝑛𝜙𝑒𝑛(2∑ [𝑃𝑘] − (𝑖 − 1)𝜉

𝑗𝑃𝑖) 
𝑁
𝑘=𝑖+1

𝐾𝑑𝑖𝑠
𝑒𝑛 (1 +

∑ [𝑃𝑛]
𝑁
𝑛=1

𝐾𝐼
𝑒𝑛 ) + 𝜙𝑒𝑛∑ [(𝑛 − 1)𝑃𝑛]

𝑁
𝑛=6

, 𝑖 ≥ 6, 𝑗 = 𝐴, 𝐵, 𝐶, 𝐷 (36)
 

The four different parameters are applied according to the lumped components described in 

table 4.1. It is important to note here that even though no “strict” mass balances are defined 

within the unadjusted model, the probabilities of chain lengths forming from longer chains keep 

the mass balances intact, which was confirmed as the total protein mass remain in steady state 

throughout the simulations. However, introducing the adjustment parameters to get an 

acceptable fit, creates a mass balance issue that should not be ignored in further exploration of 

the model usage.     

The estimated parameters used for generating synthetic data can be seen in table 5.1 along with 

optimization bounds and initial guesses. For the first dataset, the optimization has a root-mean-

square deviation of 2.254873, the second dataset had a value of 2.205492 and the total value 

was 2.230319. The datapoints, along with the optimized solution can be seen in figure 5.1. 

 

 

 

 

 



23 

 

Table 5.1: Lower and upper bounds, initial guesses and estimated values of parameters using 

literature data. 

Parameter Lower Bound Upper Bound Initial Guess Estimated Value 

𝒌𝒆𝒏 1e-5 1e3 3.85 3.71132 

𝒌𝒆𝒙 1e-5 100 0.68 0.540613 

𝑲𝒅𝒊𝒔
𝒆𝒏  1e-2 1e5 365 366.347 

𝑲𝒅𝒊𝒔
𝒆𝒙  1e-2 1e5 136 153.14 

𝑲𝑰
𝒆𝒏 1e-3 500 203 203.783 

𝑲𝑰
𝒆𝒙 1e--3 500 0.54 11.0813 

𝒚𝟎
𝑨 20 30 28.84 28.7115 

𝒚𝟎
𝑩 0 1 1.478e-7 2.62874e-15 

𝒚𝟎
𝑪 0 1 1.789e-7 2.64954e-14 

𝒚𝟎
𝑫 0 10 1.15 1.15734 

𝒚𝟎
𝑬 0 10 0.0078 0.131135 

𝝃𝑨 0 10 0.128 0.153993 

𝝃𝑩 0 10 6.59 6.38699 

𝝃𝑪 0 10 6.97 6.93443 

𝝃𝑫 0 10 9.58e-13 0. 386217 

𝜺𝒆𝒏 0.1 0.5 0.2 0.1 

𝜺𝒆𝒙 0.1 0.5 0.2 0.1 
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Figure 5.1: The plot on left is data and simulation results using both endo- and exopeptidase. 

On the right, only endopeptidase is used. Parameters from table 5.1 were used for the 

simulations.   

 

5.2 Parameter Estimation  

The Differential Evolution algorithm had to be discarded after initial optimization efforts. This 

was due to a lack of computational power and the algorithm required much more time than was 

reasonable regarding the time limitations of the project. All optimization results presented in 

this section are computed by the Nelder-Mead algorithm and a global minimum is therefore not 

guaranteed. For optimization of the synthetic datasets, the initial values were fixed according 

to the fractions defined by the parameters 𝑦0
𝐴, 𝑦0

𝐷, and 𝑦0
𝐸 found in the previous section. The 

initial values for the state variables within the lumped components B and C were set to zero and 

the fraction of initially hydrolysable bonds, 𝜀𝑒𝑛 and 𝜀𝑒𝑥, were fixed according to table 5.1. The 

fact that the initial values used are computed through optimization is important to consider for 

future development of the model. The output will of course rely heavily on the initial state of 

the protein and experiments to determine the molecular weight distribution before enzymatic 

hydrolysis should be performed. 

Calibration of the parameters were conducted both with each dataset individually, and in pairs 

where the temperature and pH are the same and only concentrations varied (see figure 4.1). 

Hence the kinetic parameters should have the same value for both datasets. The results of the 

estimations can be viewed in appendix A.  

Examples of the model output are visualized below. Figure 5.2 show the complete molecular 

weight distribution and how it varies over time. The yellow bars are the initial values. The graph 
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is constructed from simulation results of the “purely” mechanistic model without the adjustment 

parameters 𝜉. Figure 5.2 is a simulation with only endopeptidase. Figure 5.3 is the result of a 

simulation with both endo- and exopeptidase present. It is clear from the figures that the model 

captures the behavior of the enzymes as the introduction of exopeptidase clearly promotes the 

release of dipeptides and free amino acids.  

 

 

Figure 5.2: The molecular weight distribution of the protein over time using the un-adjusted 

model and only endopeptidase. 
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Figure 5.3: The molecular weight distribution of the protein over time using the un-adjusted 

model and both endo- and exopeptidase. 

 

 Figure 5.4 show the results from a simulation of the adjusted model calibrated with dataset 9 

and its input variables (50 ℃, pH 8.5). Figure 5.4 (right) displays the lumped components as 

fractions of the total peptide concentration and is ultimately the model output that was compared 

to the data. 
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Figure 5.4: Outputs of the adjusted model calibrated with the synthetic dataset generated at 

temperature 50 ℃ and pH 8.5. Left: Molecular weight distribution over time. Right: Lumped 

components as percentages of the total peptide concentration.  

 

The model structure appears to capture the general behavior of the process and optimizes with 

reasonable prediction errors (RMSD values ranging between 0,036 and 2,03). However, from 

the optimization results it clear that estimations are not reliable. The optimal parameter values 

vary drastically for datasets that should show similar results. Further, the rate constants for the 

enzymes does not generally capture the expected behavior of increasing with temperature and 

decreasing when operating at pH values above or below the optimal pH. This could be faulty 

due to the conjecture when the synthetic datasets were created and the stochastic nature of them. 

But it is more likely to stem from the Nelder-Mead algorithm converging in local minima and 

issues with identifiability of the parameters. This is discussed more in section 5.4.        

5.3 RSM 

The individual dataset calibrations of 𝑘𝑒𝑛 and 𝑘𝑒𝑥 were used as response variables for the RSM 

method described in section 4.6. The calculated coefficients and error variance can be seen in 

table 5.2 and the plotted surfaces in figure 5.5. 
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Table 5.2: Table of estimated coefficients and error of variance for the empirical model in the 

RSM 

Response 𝛽0 𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 𝑠2 

𝑘𝑒𝑛 24,294 -4,595 22,172 0,030129 0,043362 -1,4346 3,075147 

𝑘𝑒𝑥 4,3317 -0,79953 3,95686 0,004197 0,007266 -0,24227 0,6475311 

 

 

Figure 5.5: Surface plots of the estimated polynomials and the response variables used (blue 

dots) Left: ken. Right: kex.  

 

It is quite clear that the evaluated surface responses do not represent the expected behavior. 

Given the enzyme preparations temperature domain and the conditions in which the parameters 

are estimated, the parameters should only increase with the temperature variable. Since the 

highest temperature should not impose any loss in enzyme activity, which is further not 

included in the model structure. The “bell shape” of the pH dependency appears to be captured 

by the empirical model, however, the curve seems to be displaced when compared to what 

would be expected from real data and the enzyme preparations pH domains. The empirical 

model used would likely be able to capture the temperature and pH dependencies of the rate 

constants in a good way, given correct data. As discussed in the previous section, the parameter 

estimations do not appear to be very accurate, and hence, applying the response surface 
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methodology does not really contribute with any relevant information regarding pH and 

temperature dependencies. 

      

5.4 Identifiability of the Parameters 

As stated previously, the results of the parameter calibration indicate that there may be 

significant issues regarding the identifiability of the parameters. This is further motivated by 

the resulting correlation matrix of the estimation (see figure 5.6). As can be seen, all the absolute 

values in the off diagonals are unity (or very close to), which indicate poor identifiability among 

all parameters.  

 

Figure 5.6: Correlation Matrix of the estimated parameters in the adjusted model. 

 

This issue may arise from the fact that the data used for calibration is not the actual state-

variables of the models. But the lumped components as fractions. This additional prediction 
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treatment hides the true nature of the parameters influence on the model predictions. And it is 

entirely possible that different simulation results and molecular weight distributions would give 

the same or very similar outputs when it is compared to the data. As a comparison, a correlation 

matrix was generated from an optimization where the data represented the actual state-variables 

of the system (see figure 5.7, left). 

 

Figure 5.7: Correlation Matrices of the estimated parameters when data corresponding to the 

state-variables of the models were used. On the right, the parameter 𝐾𝐼
𝑒𝑥 was removed from 

the model.   

 

This generated a slight improvement regarding one of the adjustment parameters. The 

optimization also showed a significantly higher error on the estimation of the inhibition constant 

of the exopeptidase 𝐾𝐼
𝑒𝑥 (calculated as √𝑑𝑖𝑎𝑔(𝐶𝑜𝑣(𝜃))) compared to the other parameters. 

This indicates the parameter has may not contribute to the model. A correlation matrix resulting 

from removing this parameter and again, optimizing with data representing the actual state-

variables is shown in figure 5.7 (right). Again, a slight improvement is seen but the correlation 

coefficients are still very high, and it is difficult to determine a unique solution. Structural 

identifiability analysis may be beneficial to gain more knowledge whether it is the inherent 

model formulation, or the used data that causes the identifiability issues. Unfortunately, such 

analyses requires much computational work and are difficult to apply to large models (Gábor 

et al., 2017).    
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6  Conclusions and Future Work 

To conclude this project, a mechanistic model was developed to describe the molecular weight 

distribution changes as a protein substrate undergoes enzymatic hydrolysis. The model showed 

good possibilities of capturing the expected behavior of the multi-enzyme system, but it is hard 

to draw definitive conclusions about its usefulness without obtaining real data on the system. 

An obvious drawback is the simplification of the protein structure and its generic repeating unit. 

Different amino acids and enzyme specificity will likely cause a hydrolysis that is not evenly 

distributed, which the model assumes. But it was a necessary assumption to keep the 

mathematical complexity at a reasonable level for this project. This is likely the reason that the 

un-adjusted model didn’t have enough flexibility to get adequate calibration results. In addition, 

the assumed range for the molecular weight distribution, and the optimized initial conditions 

should be determined experimentally to create a more useful model in the future. 

The parameter estimations and identifiability analysis revealed clear issues in determining 

unique solutions for the different process conditions. Improvement of the identifiability may be 

possible by not lumping together the state-variables before comparing to data. This does 

however increase the number of terms in the cost function and can come at a computational 

cost. But since the data for the lumped components would be derived from the full molecular 

weight distribution, it should not have a significant impact on experimental work that would be 

required. Prior to conducting experimental work, structural identifiability analysis might be 

wise to apply, though difficult, to determine whether there are inherently unidentifiable 

parameters. 

Finally, the response surface method showed decent results that a complete second order 

multivariate polynomial could work as an empirical model to describe the temperature and pH 

dependencies of the rate constants. However, it is of course necessary that the responses used 

are correctly estimated.            
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8 Appendix 

Appendix A – Parameter Estimation Results 

Parameter Lower 

Bound 

Upper 

Bound 

Initial 

Guess 

Dataset(s) 

    1 5 1&5 

𝒌𝒆𝒏 1,00E-05 10 3 3,44219 2,99431 0,279347 

𝒌𝒆𝒙 1,00E-05 10 0,5 1,9561 0,001733 0,702868 

𝑲𝒅𝒊𝒔
𝒆𝒏  1,00E-05 inf 500 0,548991 898,945 8,07994 

𝑲𝒅𝒊𝒔
𝒆𝒙  1,00E-05 inf 400 279,7 0,000227 823,077 

𝑲𝑰
𝒆𝒏 1,00E-03 inf 200 0,003306 1833,52 1,98906 

𝑲𝑰
𝒆𝒙 1,00E-03 inf 20 26,5804 0,003627 46,181 

𝝃𝑨 0 inf 0,15 0,01695 0,130962 0 

𝝃𝑩 0 inf 7 7,16474 8,26311 7,71992 

𝝃𝑪 0 inf 7 4,8743 5,80905 5,64994 

𝝃𝑫 0 inf 0,4 1,02593 0,660251 0,77439 
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Parameter Lower 

Bound 

Upper 

Bound 

Initial 

Guess 

Dataset(s) 

    2 6 2&6 

𝒌𝒆𝒏 1,00E-05 10 3 0,125455 4,39179 0,205106 

𝒌𝒆𝒙 1,00E-05 10 0,5 0,117135 0,102002 0,670008 

𝑲𝒅𝒊𝒔
𝒆𝒏  1,00E-05 inf 500 3,49E-05 308,165 0,110453 

𝑲𝒅𝒊𝒔
𝒆𝒙  1,00E-05 inf 400 996,344 0,769963 510,13 

𝑲𝑰
𝒆𝒏 1,00E-03 inf 200 2704,79 812,516 422,538 

𝑲𝑰
𝒆𝒙 1,00E-03 inf 20 0,023609 48,6128 26,752 

𝝃𝑨 0 inf 0,15 0,236119 0,14101 0,149282 

𝝃𝑩 0 inf 7 6,58642 12,4976 10,2932 

𝝃𝑪 0 inf 7 7,03851 6,72048 7,0007 

𝝃𝑫 0 inf 0,4 0,413815 0,296596 0,406112 
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Parameter Lower 

Bound 

Upper 

Bound 

Initial 

Guess 

Dataset(s) 

    3 7 3&7 

𝒌𝒆𝒏 1,00E-05 10 3 0,229087 0,143777 0,18609 

𝒌𝒆𝒙 1,00E-05 10 0,5 1,10035 0,893649 0,604219 

𝑲𝒅𝒊𝒔
𝒆𝒏  1,00E-05 inf 500 0,55885 1,95004 5,30992 

𝑲𝒅𝒊𝒔
𝒆𝒙  1,00E-05 inf 400 268,668 467,099 590,028 

𝑲𝑰
𝒆𝒏 1,00E-03 inf 200 0,193837 374,522 922,494 

𝑲𝑰
𝒆𝒙 1,00E-03 inf 20 36,1845 8,88885 0,001 

𝝃𝑨 0 inf 0,15 0,020231 0,047633 0,037077 

𝝃𝑩 0 inf 7 3,47544 5,20137 4,8486 

𝝃𝑪 0 inf 7 16,7372 12,7084 13,4596 

𝝃𝑫 0 inf 0,4 0,338404 0,204584 0,225498 
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Parameter Lower 

Bound 

Upper 

Bound 

Initial 

Guess 

Dataset(s) 

    4 8 4&8 9 

𝒌𝒆𝒏 1,00E-05 10 3 1,13631 0,932848 0,627654 0,566107 

𝒌𝒆𝒙 1,00E-05 10 0,5 0,454822 0,304221 0,052517 0,434693 

𝑲𝒅𝒊𝒔
𝒆𝒏  1,00E-05 inf 500 62,6442 35,1164 19,6373 10,3386 

𝑲𝒅𝒊𝒔
𝒆𝒙  1,00E-05 inf 400 262,783 481,071 623,025 0,000533 

𝑲𝑰
𝒆𝒏 1,00E-03 inf 200 267,36 497,187 367,315 20,9379 

𝑲𝑰
𝒆𝒙 1,00E-03 inf 20 6,56711 34,9805 38,8725 0,005762 

𝝃𝑨 0 inf 0,15 0,182023 0,138681 0,14266 0,036467 

𝝃𝑩 0 inf 7 6,8228 6,78684 6,69597 4,16981 

𝝃𝑪 0 inf 7 7,70274 7,67679 7,6703 15,9476 

𝝃𝑫 0 inf 0,4 0,503301 0,307866 0,330966 0,008594 

 


