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Abstract

The digital platform Airbnb has gained popularity in a number of countries particu-
larly in the Maltese islands. Striking a balance in setting a price that is competitive
and also renders a good profit can be a challenge. In this thesis a model is de-
veloped to predict the price of a listing in the Maltese islands for September 2022
through a machine learning approach whereby five types of models are considered.
K Nearest Neighbours sets a baseline, while linear regression, a random forest, gra-
dient boosted trees and neural networks are assessed in search of the model that is
most generalisable beyond training data. Findings from this research conclude that
gradient boosting specifically CatBoost model gives the best performance achieving
an R2 of 0.77.

Additionally the same models are re-fitted but incorporating additional walkable
distance features to carefully identified points of interest namely historical sites,
beaches, nightclubs, the capital city and bus stops. The results attained indicate
that none of of the walkable distance features heavily contribute to explain any
variance in the price of listings in the Maltese islands and only a slight improve-
ment in model performance in some of the models considered is reported. Further
to this, while retaining the additional distance features, training of the neural net-
work is leveraged by pre-training the model on data that corresponds to another
Mediterranean touristic island of Crete and a slight improvement is reported in
model performance over the model solely trained on data for Malta from an R2 of
0.66 to 0.67. This result opens a window for further research that seek to reap the
benefits of transfer learning.

Keywords: Airbnb, Maltese Islands, Machine Learning, Geospatial Data, Transfer
Learning

2



Acknowledgements

Resilience is a trait this research and a number of people throughout this experience
have particularly taught me. I would like to express my appreciation for the contin-
uous valuable guidance of my supervisor Simon Reese. I would like to also show my
gratitude to my family and friends who have supported me throughout this learning
experience. Finally I would like to thank the contributors of the free open map data
source at OpenStreetMap(OSM) utilised in this research.

3



  

 

 

 

 

  

 

 

 

 

 

 

 

The research work disclosed in this publication is partially funded by the Endeavour II Scholarship 

Scheme.  The project may be co-funded by the ESF+ 2021-2027 

 



Contents

1 Introduction 8

1.1 Research Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Literature Review 10

2.1 Price Determinants of Sharing Economy based Accommodations . . . 10

2.2 Price Prediction Models . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Enhancing models with Spatial Information . . . . . . . . . . 11

2.2.2 Enhancing models through Transfer Learning . . . . . . . . . 12

3 Methodology 14

3.1 Geospatial Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Prediction Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.1 K-Nearest Neighbours Algorithm . . . . . . . . . . . . . . . . 16

3.2.2 Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.3 Random Forests . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.4 Gradient Boosted Decision Trees . . . . . . . . . . . . . . . . 17

3.2.5 Feed-Forward Neural Network (NN) . . . . . . . . . . . . . . . 20

3.2.6 Neural Network Based Transfer Learning . . . . . . . . . . . . 21

3.3 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Data 23

4.1 Listings Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1.1 Handling of Missing Data . . . . . . . . . . . . . . . . . . . . 24

4.1.2 Feature Transformations . . . . . . . . . . . . . . . . . . . . . 25

4.2 Additional Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 Preliminary Analysis of Data for Malta and Crete . . . . . . . . . . . 31

5 Empirical Analysis 33

5.1 Results from adding Geospatial Data . . . . . . . . . . . . . . . . . . 33

5.2 Performance Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6 Conclusion 45

6.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.2 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

References 46

4



A Further Data Details 53

B Further Modelling Details 60

5



List of Figures

3.1 Street Network of the Maltese Islands . . . . . . . . . . . . . . . . . . 15
3.2 Polygon Data Representation . . . . . . . . . . . . . . . . . . . . . . 16
3.3 An oblivious tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1 Listings Data Pre-processing Workflow . . . . . . . . . . . . . . . . . 23
4.2 Amenties Filters for Guests when browsing on Airbnb for listings in

Malta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 Count of listings by property type in raw data set . . . . . . . . . . . 27
4.4 Count of listings by property type in modified data set . . . . . . . . 27
4.5 Count of listings by region in raw data set . . . . . . . . . . . . . . . 28
4.6 Count of listings by region in modified data set . . . . . . . . . . . . 29
4.7 Listings Price Distribution in the Maltese Islands . . . . . . . . . . . 29
4.8 Taginfo Screenshot for most popular tags in OpenStreetMap corre-

sponding to museums . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.9 Probability density of lnPrice for the source domain (Crete) and tar-

get domain (Malta) as at September 2022 . . . . . . . . . . . . . . . 31

5.1 Plot of cross validation error versus number of neighbours in KNN
model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2 Feature Importance for Ridge Regularization Model . . . . . . . . . . 34
5.3 Features with top 10 absolute coefficient values post Lasso Penalization 35
5.4 Shapley values random forest . . . . . . . . . . . . . . . . . . . . . . 36
5.5 Partial Dependence Plot of Shapley values for walkable distance historical

by Room Type: Entire Property indicator as color . . . . . . . . . . . 37
5.6 Shapley values XGBoost . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.7 Shapley values Catboost . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.8 Shapley values for room type grouped by category . . . . . . . . . . . 40
5.9 Architecture of Best Performing Neural Networks . . . . . . . . . . . 40
5.10 Neural Network with Geospatial data for Crete . . . . . . . . . . . . 41

A.1 Count of listings by property type in raw data set for Crete . . . . . 58
A.2 Count of listings by property type in modified data set for Crete . . 59

6



List of Tables

4.1 Missing data in Maltese Listings Data . . . . . . . . . . . . . . . . . . 24
4.2 Summary Statistics for Target Variable . . . . . . . . . . . . . . . . . 29
4.3 Summary Statistics for ln (Target Variable) for Crete and Malta . . . 32

5.1 Optimal regularization parameters for Linear Regression . . . . . . . 34
5.2 Optimal Parameters for Random Forest . . . . . . . . . . . . . . . . . 35
5.3 Order of categories in categorical variables for Ordinal Encoding . . . 37
5.4 Optimal Parameters for XGBoost . . . . . . . . . . . . . . . . . . . . 37
5.5 Optimal Parameters for Catboost . . . . . . . . . . . . . . . . . . . . 39
5.6 Optimal Parameters for Fully-Connected Feed Forward Neural Net-

work fitted on Data for Malta . . . . . . . . . . . . . . . . . . . . . . 40
5.7 Optimal Parameters for Fully-Connected Feed Forward Neural Net-

work fitted on Crete Data . . . . . . . . . . . . . . . . . . . . . . . . 41
5.8 Summary of results comparing R-Squared value on test data . . . . . 42

A.1 Listing Data variables post data cleaning and pre-processing . . . . . 53
A.2 Correlation of features with Price in Crete and Malta Data . . . . . . 56

B.1 Python packages used for Modelling . . . . . . . . . . . . . . . . . . . 60
B.2 Grid of parameters for Grid Search for Linear Regression Models . . . 60
B.3 Random Forest tuned parameters . . . . . . . . . . . . . . . . . . . . 61
B.4 XGBoost tuned parameters . . . . . . . . . . . . . . . . . . . . . . . 62
B.5 Catboost tuned parameters . . . . . . . . . . . . . . . . . . . . . . . 63
B.6 Neural Network tuned parameters for Malta Data . . . . . . . . . . . 64
B.7 Neural Network tuned parameters for Crete Data . . . . . . . . . . . 65

7



1

Introduction

The tourism industry is a key contributor to the Maltese economy. In fact, prior the
pandemic, in 2019 , it is claimed that the tourism industry contributed to 16.9 % of
total jobs in the islands (OECD, 2022). Despite the pandemic, in 2022, tourism ex-
penditure in Malta rebounded quickly (European Commission, 2023) getting very
close to pre-pandemic levels and amounting to a 91% recovery from €2.2Bn in
tourism expenditure in 2019 to €2Bn in 2022 (NSOMalta, 2023) and yearly tourist
arrivals reached 83% of pre-pandemic levels (Deloitte, 2023).

In recent years, the establishment of peer-to-peer accommodation digital plat-
forms such as Airbnb have taken by a storm the accommodation sector in the tourism
and hospitality industry in a number of countries. Platform such as Airbnb operate
based on the so-called Sharing Economy business model which involves the peer-
to-peer provision or sharing of goods or services through community-based online
platforms (Hamari et al., 2016). Airbnb is a leading global online platform allowing
individuals to advertise and rent a variety of property types ranging from an entire
property unit (such as an apartment or a villa) to just a room within a property.
This platform has been rapidly expanding across hundreds of different countries
particularly in small European touristic destinations including the Maltese islands.
In fact, from a study carried out in 2019 across 167 countries, the Maltese islands
reported the second highest number of Airbnb listings per capita (Adamiak, 2019).

Considering both the popularity of Airbnb listings in the Maltese islands and
the economic implications of the tourism industry to the Maltese Economy this the-
sis develops a pricing tool that predicts with reasonable accuracy the nightly price
of an Airbnb unit in Malta. The nightly price of an accommodation is key both
to the host profitability and the choices made by a potential tenant (Gibbs et al.,
2017). On Airbnb, hosts are free to set the nightly price as they deem appropriate.
Nevertheless, setting prices that strike a balance between rendering a good flow of
revenue and being competitive requires domain expertise and extensive experience
(Kanakaris and Karacapilidis, 2023). Airbnb currently aids hosts by offering a smart
pricing tool whereby a host sets a minimum and a maximum price for its listing and
a price within these bounds are suggested based on a dynamic adjustment based
on an estimated fluctuating demand (such as due to seasonality, yearly events and
others). Nevertheless, the host still needs to make an informed decision on the min-
imum and maximum price bounds and there is still room for improvement for such
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tool (Yang, 2021). Further to this, there are always prospective investors who are
looking in making an investment in acquiring or renovating a property and are in
search for some key features of a property that maximizes their potential profits
(Yang, 2021).

The pricing tool developed in this thesis is the first up to the best of the author’s
knowledge explicitly targeting the Maltese islands that utilises a machine learning
approach. Consequently, multiple machine learning models will be fitted and tested
on performance to predict nightly price. Two main techniques will be considered to
enhance the performance of the models fitted namely including geospatial distances
to potential places of interest and public transportation as well as considering a
transfer learning approach by leveraging a pre-trained model trained on Airbnb
listings in Crete: A competing Mediterranean holiday island destination.

1.1 Research Problem

The main research problem in this thesis is to set up a model that predicts reliable
prices of Airbnb listings in the Maltese islands. As a result the focus of this research
revolves around three main questions:

1. How effective is a machine learning approach to predict the nightly price of
Airbnb listings in the Maltese islands?

2. Does the walkable distance to places of interest and public transport have an
effect on the price of listings?

3. Can the transfer of knowledge from data relating to a similar touristic island
to Malta be beneficial to enhance model training and predictions of Airbnb
prices in Malta?

1.2 Outline of the Thesis

In Chapter 2 we will present an overview of the existing literature revolving around
our research. In Chapter 3 a review of the methodological concepts of the Geospatial
extension undertaken in this research and the prediction algorithms implemented to
tackle our research question will be provided. Then in following chapter, Chapter 4,
the data utilised in this research will be described and data pre-processing steps will
be outlined. This research results are then presented in Chapter 5 and discussed in
light of existing literature. Lastly, in Chapter 6, concluding remarks of this research,
limitations and potential future extensions are highlighted.

9



2

Literature Review

2.1 Price Determinants of Sharing Economy based

Accommodations

Within the accommodation sector in the hospitality industry, price has been consid-
ered as crucial since early days (Gibbs et al., 2017). As claimed by Gutentag (2013),
Airbnb has shaken up the traditional market for accommodation in the tourism in-
dustry up to a point leading conventional incumbent hotels in certain regions to
drop their prices (Zervas et al., 2017). Although existing literature studying the
price determinants of Airbnb listings in a variety of approaches in large urban cities
around the world is abundant (Chen and Xie (2017), Gibbs et al. (2017), Teubner
et al. (2017), Gunter and Önder (2018), Toader et al. (2022), Bernardi and Guidolin
(2023)), existing literature specifically focusing on Airbnb price prediction models
for Airbnb listings in well-known touristic leisure areas is rather scarce and even
more scarce for Airbnb listings in touristic islands. Nevertheless, leisure tourism
areas in particular in Southern Europe are among the most popular with Airbnb
hosts as claimed by Adamiak (2018).

In reviewing the limited literature within specifically leisure touristic islands
of researchers who in the past have attempted to better understand what drives
the nightly price of an Airbnb accommodation, two main groups of Airbnb listings
price determinants are identified namely: Property characteristics and Host char-
acteristics. Lorde et al. (2019) who carried out a study among the islands of the
Caribbean in North America and Suárez-Vega and Hernández (2020) who carried
a similar study but on price determinants of listings in the Southern European is-
land of Gran Canaria both confirm that property attributes such as the number of
bedrooms, the number of bathrooms, air conditioning and pool facilities have a rel-
evant impact on the price of listings. Additionally, Lorde et al. (2019) identify host
attributes particularly having a Superhost status, host response time and review
ratings as significant price determinants of Airbnb listings in the touristic leisure
islands of the Caribbean while Suárez-Vega and Hernández (2020) spot the count
of listings managed by a host to have a remarkable impact on price. Existing liter-
ature on Airbnb listings in the Maltese Islands (Ellul, 2019; Fearne, 2022), focus on
identifying price-characteristic patterns of listings and identify the number of people
a listing can accommodate, number of bedrooms, pool facilities and sea-view avail-
ability as main drivers of price. Further to this, Fearne (2022) identifies that prices
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of listings corresponding to an entire property, having bed and breakfast service and
located in the Southern Harbour which includes the capital Valletta are on average
higher.

2.2 Price Prediction Models

Such findings in previous literature just discussed are derived in a variety of ap-
proaches that evolved over time. Earliest research concerning the price of Airbnb
listings concerned setting up models to specifically examine the effect of a variety of
attributes on the price of Airbnb listings. A widely implemented approach for such
studies undertook a hedonic regression approach (Chen and Xie, 2017; Deboosere
et al., 2019; Gibbs et al., 2017; Liang et al., 2019; Lorde et al., 2019; Önder et al.,
2019; Teubner et al., 2017). This also applies to the two existing studies on Maltese
Airbnb listings (Ellul, 2019; Fearne, 2022). Other researchers started to look into
other ways of modelling Airbnb price listings such as through a Machine Learning
Approach. The shift from hedonic regression models to alternative approaches such
as machine learning is stimulated by the greater ability of the latter approach to
explain variability in the dependent variable (Sainaghi, 2021). Furthermore, hedonic
regression methods have a weaker ability in handling outliers and feature engineer-
ing is human-based giving rise to potential bias in the model (Yazdani, 2021).

Liu (2021) studied and compared the performance of a number of price predic-
tion models based on property and host attributes namely KNN, Multiple Linear
Regression, Lasso regression, Ridge regression, random forest and gradient boost-
ing methods to predict the price of Airbnb listings in Amsterdam and identified
XGBoost as the model with best performance with an R2 score of 0.6321. Yang
(2021) considered property attributes and host attributes to develop a price predic-
tion model for Airbnb listings in Beijing through a machine learning approach by
considering XGBoost and Neural Network as potential price prediction models and
also identified XGBoost as the best performing model with an R2 score of 0.6549.
Other researchers in addition to property and host attributes incorporate the use of
textual data by extracting features from guest reviews when taking on a machine
learning approach. For example, Rezazadeh et al. (2021) extract features through a
sentiment analysis on guest reviews and consider linear regression, K-Means cluster-
ing, Support Vector Regression, Neural Networks and tree-based models to deduce
a price prediction model for Airbnb listings in New York City and identified the
Support Vector Regression model to achieve the best performance, reporting an R2

score of 0.6901.

2.2.1 Enhancing models with Spatial Information

A number of researchers have set eye on the potential use of spatial information
to explain house prices (Cellmer et al., 2019; Hill and Scholz, 2017; Mathur, 2020)
in the sphere of real estate. This incorporation of spatial information has been
extrapolated to the tourism industry (Chica-Olmo et al., 2020) whereby literature
has shown that the location of an accommodation such as its proximity to points
of interest, access to public transportation and proximity to the airport plays an
important role in the stay experience of a guest (Yang et al., 2018). Researchers
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have incorporated geospatial data in their studies in explaining Airbnb price listing
in a variety of ways. Some researchers undertake a spatial econometrics approach
(Ellul, 2019; Gyódi and Nawaro, 2021) to account for spatial auto-correlation be-
tween listings based on their geographical proximity by considering a spatial lag in
the hedonic price model constructed and confirmed that prices of Airbnb listings
are spatially dependent on the prices of neighbouring listings. Others, (Chica-Olmo
et al., 2020; Dudás et al., 2017; Gyódi and Nawaro, 2021), take on a different ap-
proach to incorporate geo-spatial data in predicting Airbnb prices. In the article by
Dudás et al. (2017) the impact of proximity to the city centre on Airbnb listings
in Budapest is studied through multi-band raster maps by incorporating a distance
variable computed based on the Manhattan distance and it is concluded that price
of listings is not correlated with its proximity to the city centre. Chica-Olmo et al.
(2020) studied the impact of location related variables on Airbnb price listings in
Málaga, Spain by incorporating distance variables from the Airbnb listing to the
city centre, the beach and nearest place of interest and reported an improvement in
variance in the listing price explained by the Ordinary Least Squares(OLS) regres-
sion model by incorporating distance variance over the OLS regression model that
did not include distance variables. Further to this, including proximity to points of
interest in terms of Euclidean distances is also very common in the literature (Ay-
ouba et al., 2020; Crisci et al., 2022; Gyódi and Nawaro, 2021; Jiao and Bai, 2020;
Yang, 2021). In particular, Gyódi and Nawaro (2021) have considered incorporating
location variables based on Euclidean distances in an OLS model for each listing to
a central point in the city centre and the nearest metro station and concluded that
distance to the city centre has a significant impact on listing prices on six out of
ten European urban cities the study was carried out in while distance to the nearest
metro station had a significant impact on price in four cities. Due to the differences
that exist between different cities, clearly there is no common consensus whether
proximity to certain attractions and centrality of a listing influences the price.

Another approach to incorporate geospatial data is a network-based approach.
Schwarzová (2020) considered the street graph network in the urban city of Prague,
Czech Republic to compute the walkable distance from Airbnb listings to the nearest
restaurant, park, supermarket and public transportation station. More recently,
Sun et al. (2022) also considered a network based approach to determine factors
that influence the spatial distribution of Airbnb listing in Suzhou, China. Both
Schwarzová (2020) and Sun et al. (2022) justify the choice of this approach by
claiming that walkable distance is more realistic then considering a direct distance
based on some metric such as Euclidean distance. In this thesis a similar network-
based approach is undertaken with some modifications by selecting amenities that
are more sought after by a tourist visiting a holiday island rich in history and well
sought after its beaches.

2.2.2 Enhancing models through Transfer Learning

Transfer learning is the process of having a machine learning algorithm that boosts
its performance in a target task by learning from one or multiple similar application
scenarios. Implementation of transfer learning has been experimented with by a
variety of researchers in a variety of fields (Pan and Yang, 2010). Reviewing imple-
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mentation of transfer learning in the tourism sector a common approach of transfer
learning implementation is to utilise an open source established pre-trained model
and fine tune it to your area of study. Such approach is widely implemented par-
ticularly in text classification tasks to analyse guest reviews (Ambolkar et al., 2022;
Mousavi and Zhao, 2022) and image classification tasks to analyse listing images
(Nguyen et al., 2018; Zhang et al., 2022). Apart from well established open source
pre-trained models another approach is to perform pre-training on some available
data from a domain that is similar to the domain under study. Existing literature
undertaking this approach across differing markets to attain a final model to predict
Airbnb prices in a market of interest is not found up to the author’s knowledge at the
time of writing. However a similar approach in predicting Electricity prices through
a transfer leaning approach between different markets across different countries is
identified in a number of studies. For example, Gunduz et al. (2023) pre-train a neu-
ral network on day-ahead electricity price data within one country to predict day-
ahead electricity in another country across 4 different markets; Germany, France,
Belgium and Nordics and report an improvement in model performance within all
4 markets over models trained and tested on a single market. Similarly, Van den
Hurk (2021) undertakes a transfer learning approach based on Neural Networks to
predict house prices between prices in an existing housing market and prices withing
a newly constructed housing market which also reported an improvement in model
performance through knowledge transfer. A similar approach will be employed in
this study.

13



3

Methodology

In this section a theoretical overview of the methodological concepts employed in
this thesis will be provided.

3.1 Geospatial Data

One of the primary ideas explored in this thesis is to investigate the potential ben-
efits of integrating geospatial data to enhance the predictive ability of the Machine
Learning models that will be implemented. Distances are calculated based on a GIS
(Geographical Information System) Street Network rather than through a standard
distance measure such as Euclidean distance. We therefore first provide an overview
of this Network-Based approach to compute distances.

The Maltese islands are well-known for their beaches, nightclubs, and historical
sites, according to the Trip Advisor website1. Taking this into account and general
domain expertise, information of how far an Airbnb listing is located from the near-
est beach, nearest historical site and nearest nightclub are considered. Furthermore
distance to the nearest bus stop and to the Capital City are also considered as po-
tential information relating to the accessibility and centrality respectively of a listing.

Distances to an Airbnb listing are computed based on a road network of the
islands. For each Airbnb listing, we have available the longitude and latitude. Im-
plementation of this road-network approach to calculate distances is based on the
OSMnx library in Python (Boeing, 2017). Road network for any city in the World
can be accessed via the graph module within OSMnx that is linked to an API of
OpenStreetMap. Further information on the latter is provided in Chapter 4. Being
represented by a graph, the street network consists of nodes and edges where nodes
represent street junctions and edges (a collection of nodes linked together) represent
streets. Furthermore, when retrieving the street network, the user can specify the
type of network, namely drivable, walkable or bikable network. A walkable net-
work is selected on the basis that the Maltese islands are rather small and walkable
distance would be a more meaningful choice. Similarly for comparison, walkable dis-
tance is considered for the island of Crete. Being a walkable network the direction
of edges (streets) is not integrated within the network. To better visualise a road

1https://www.tripadvisor.com/Tourism-g190311-Malta-Vacations.html accessed on 5 April
2023.
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network, the road network for the Maltese islands is illustrated in Figure 3.1 where
nodes are displayed in red and edges are displayed in white.

Figure 3.1: Street Network of the Maltese Islands

The walkable street network is combined with location data on points of interest
also extracted from an API of OpenStreetMap. Further details on extraction of
location data is provided in Chapter 4. A point of interest can be extracted in the
form of a node or edge. An edge does not require to be linear but can also be in
the form of an enclosed shape referred to as a polygon. A polygon is a collection of
nodes that enclose an area for example a beach. When the location data on a point
of interest is available in terms of a polygon the centroid of the polygon is computed
as a representation location point of this amenity. To better visualise this concept
of a polygon, on the left Figure 3.2 illustrate a bay in Malta (’il-Bajja tal-Balluta’).
Location data is available as a polygon that covers the area of the bay as shown in
the middle figure. The figure on the right displays the raw nodes that illustrate the
boundary of the polygon in red and the computed centroid in yellow.

Given the location data of points of interest the shortest walkable route between
any particular point of interest and any Airbnb listing can be computed. For that
purpose, firstly a node on the street network that is closest to this centroid of a
point of interest is found. The same applies when a point of interest is provided as
a node. The function nearest nodes from the distance module in OSMnx package
is used for this purpose. Similarly, for each Airbnb listing the nearest nodes on
the street network is also computed. Once we have each amenity of interest and
each Airbnb listing represented by a node on the network then the shortest walkable
distance between them is computed using the shortest path function also found in
the distance module. Shortest distance is computed based on the Dijkstra algorithm.
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(a) Bay as illustrated in
OpenStreetMap.

(b) Polygon representation of
Bay as illustrated in Open-
StreetMap.

(c) Raw Coordinates of Poly-
gon and Centroid.

Figure 3.2: Polygon Data Representation

3.2 Prediction Algorithms

In order to determine the most effective model for a regression task aimed at predict-
ing the nightly price of Airbnb listings in the Maltese Islands, a variety of machine
learning models will be explored. The ”No Free Lunch Theorem” is a well known
concept in the field of Machine Learning and highlights that there is no machine
learning model that performs best across all problems and more than one model
should be experimented with to identify the best performing model for the particu-
lar problem at hand (Kuhn and Johnson, 2013). The approach undertaken in this
thesis is thus an experimental one whereby a variety of models are fitted, experi-
mented with and compared on the basis of their performance. In total, 5 different
models: A K-Nearest Neighbour model (KNN), a Linear Regression (3 variations), a
Random Forest, a gradient boosted decision tree (2 variations) and a Feed-Forward
Neural Network (2 variations) are considered. An overview of the methodology of
each of these models will now be presented.

3.2.1 K-Nearest Neighbours Algorithm

KNN is the benchmark model that is selected in our research to which the perfor-
mance of other algorithms can be compared. This model is selected as a benchmark
model as it is a relatively simple model (Lindholm et al., 2022).

In order to accommodate both quantitative and qualitative input variables in our
data, the Gower distance (Gower, 1971) is used to calculate the distance between
the input vectors of two data points. That is, the distance between two listings
(observations) a and b is given by:

d(xa, xb) = 1 − | xa − xb |
max(xi) −min(xi)

for i = 1, ..., n (3.1)

for a numerical predictor X where n is the number of observations and
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d(xa, xb) =

{
0, if xa = xb

1, otherwise.
(3.2)

for qualitative variables. The distance between two listings, a and b is then de-
termined by computing an average of all distances for all numerical and categorical
predictors between the two listings. Unlike traditional KNN models based on Eu-
clidean distance that require input normalisation, the Gower distance formulation
computes the normalised distance for numerical features and hence input normali-
sation is not required.

3.2.2 Linear Regression

Linear regression is also used despite its simplicity since it can be considered as a
stepping stone to more advanced models (Lindholm et al., 2022). In order to address
over fitting concerns, both l1 and l2 penalized versions (henceforth referred to as
Lasso and Ridge regression) of linear regression are also considered. While when
fitting standard linear regression model with no regularization input normalization is
not performed as it is not required, when regularized models were implemented input
normalisation is opted for to ensure that penalisation effect due to regularization is
consistent across all input features irrelevant of their value range.

3.2.3 Random Forests

So far, individual basic models trained on the entire training data have been dis-
cussed. As a next step, we consider a model from the set of so-called ensemble
models which take advantage of what Lindholm et al. (2022) refer to as the ’wisdom
of the crowds’ by combining the output of multiple individual basic models. A ran-
dom forest regression is picked for the next step of our modelling phase particularly
because of this bagging feature that declines the variance in predicted values (Kuhn
and Johnson, 2013). A number of parameters can be specified when fitting a ran-
dom forest. The parameters selected for tuning via random search followed by a grid
search are detailed in Appendix B Table B.3. It is important to highlight that the
default parameter value for ′max features′ is equivalent to considering all features
when in search for the best split which is equivalent to just bagging. Additionally,
the total count/3 was specifically selected in the random search for ’max features’
since it stands for a third of the total number of features provided to the model based
on the suggestion by (Liaw and Wiener, 2014). As a further means of regularization
apart from considering specifying the maximum depth a base model tree can grow
through ’max depth’, the parameter min samples leaf which specifies the minimum
number of observations for a further split in the base models to be considered is also
specified as a means to avoid over fitting .

3.2.4 Gradient Boosted Decision Trees

As reviewed in the Literature Review earlier, a number of researchers who exper-
imented with different Machine Learning models to attain a prediction model for
Airbnb listings prices in other cities around the World reported gradient boosting
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decision tree models to triumph among other machine learning models. Inspired by
promising results from existing literature two variations of gradient boosting deci-
sion tree models will be considered and discussed. The general concepts underlying
gradient boosting will be outlined based on the framework set by Lindholm et al.
(2022) and Wallin (2022). Let us suppose we have a regression task with the set
of inputs and output denoted by {xi, yi}ni=1 and the goal is to find function m(X)
such that the cost function denoted by J and evaluated as:

J(m(X)) =
1

n

n∑
i=1

ℓ(yi,m(xi)) (3.3)

is minimised. This is achieved such that at each iteration a new base model is
constructed sequentially on the basis of previous base models such that at iteration
say b the base model is given by:

m(b)(X) =
b∑

k=1

α(k)m̃(k)(X) (3.4)

where m̃(k)(X) are basis functions and α(k) is the weighting assigned to each
respective base model. The key concept behind gradient boosting is to minimise the
cost function in a way that imitates the gradient descent algorithm. This is attained
such that at iteration say b the negative gradient of the cost function evaluated for
predictions attained from the previous model, b − 1 is computed and denoted as
follows:

db = −∇cJ(c)|c=m(b−1)(X). (3.5)

Elements resulting in db are then used to fit a regression where the inputs are
the initial xi and outputs are the corresponding elements in db, dbi . The derived
regression is m̃(b) and the new updated boosted model is now denoted by:

mb = mb−1 + γαbm̃(b). (3.6)

In this way iteration b is completed. One of the most popular implementations
of gradient boosting is XGBoost. This algorithm additionally supports regularized
gradient boosting and parallelization and will be one of the employed candidate
model in this thesis. As part of the parameter tuning exercise undertaken in fit-
ting the XGBoost model several means of regularization are considered. These
include considering a lasso and ridge regularization on the weights through param-
eters reg alpha and reg lambda respectively, a limit on the depth of each of the
set up base models through parameter max depth, random selection of observations
prior training per base model through the parameter subsample and a random se-
lection of features considered for training per tree that is set through the parameter
colsample bytree.

Further to this another variation of boosted decision trees will be considered
namely, CatBoost. CatBoost was developed after the widely implemented gradient
boosting algorithm XGBoost (Chen and Guestrin, 2016) with two major improve-
ments that will be discussed in detail in the next section.
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CatBoost

CatBoost stands for categorical boosting and as the name suggests it is best known
for its support to categorical features in the data. In tree-based models a common
way of handling categorical features is by one-hot encoding (Prokhorenkova et al.,
2018) such as XGBoost and random forests. However, one-hot encoding is not ideal
when having categorical features as this approach induces sparsity and potentially
negatively impacts model performance. In fact, Hastie et al. (2009) claims cate-
gorical variables especially with a large number of levels should be avoided with
tree-based models. Apart from sparsity another issue with categorical variables
and tree based models is that each category in a categorical variable is considered
independent from the other categories in the same categorical variable and when
a tree-based model makes a choice of feature selection, dummy variables resulting
from one hot encoded categorical variables are less likely to be selected than other
numerical variables especially at the initial levels of the tree due to one-hot encod-
ing. This will in fact be seen in our empirical results in Chapter 5. Moreover, Hastie
et al. (2009) states that if factor variables with high number of categories are used
as is, then this may result in splits that fit the training data excessively well and
hence lead to overfitting.

CatBoost is a variation of gradient boosted decision trees that does not require
categorical variables to be one-hot encoded. This algorithm handles categorical vari-
ables by a technique called Ordinal Target Encoding. It transforms each category
into a numerical value in a way such that categories with similar target value dis-
tribution are assigned similar numerical values while categories with different target
distributions are assigned more differing numerical values. This technique helps
transforming categorical features into numerical variables with minimal information
loss (Prokhorenkova et al., 2018). This is the first major advancement of CatBoost
over traditional XGBoost.

To explain the concept of Ordinal Target Encoding employed by CatBoost on
the basis of the theoratical framework set up by Prokhorenkova et al. (2018), let D
be the original data set and similarly as before let the input and target variables
be denoted by {xi, yi} for i ∈ {1, ..., n} observations. Let ℓ(yi,m

b(xi)) denote the
loss function where mb is the function constructed iteratively at the bth iteration
in the gradient boosting algorithm that attempts to predict y. At iteration b + 1
we are after finding new function mb+1 such that mb+1 = mb + m̃b+1(x) where
m̃b+1 = arg min

m̃∈M
E[ℓ(y,mb+1)] where M is the set of potential decision trees and

m̃b+1 is the one that minimizes the expected loss. Firstly, observations in D are
randomly permuted to attain permutation say σ. Suppose that the kth element of
σ is denoted by σ(k) and let Dk = x1,x2, ...,xk−1 be the inputs for observations
prior the kth observation in σ. Suppose that the ith variable xi is a categorical
variable. Then the categorical value of the variable i for observation k denoted by
xi
k is transformed into a numerical feature by CatBoost using the following equation:

x̂i
k =

∑
xj∈Dk

1{xi
j=xi

k}yj + ap∑
xj∈Dk

1{xi
j=xi

k} + a
(3.7)

where p is the average value of the target variable (Micci-Barreca, 2001) and
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a > 0 is a parameter set by the user. In this way computation of the target statistic
x̂i
k excludes yk and overcomes the issue of so-called target leakage (Prokhorenkova

et al., 2018) and consequently over fitting. On the other hand when it comes to
determine if decision tree m̃b+1 minimises the expected loss, dataset D is utilised.

An further modification in CatBoost is the implementation of the so called ’Or-
dered Boosting Technique’ instead of the classical gradient boosting technique. In
traditional gradient boosting when computing the leaf value in tree building this is
dependent on all observations in this leaf leading to bias since these observations
were initially used to train (build) the model so far on. To overcome this issue ran-
dom permutation is again considered. Then models are created based on differing
training data say for example Model Mj is trained on all observations that are listed
before the jth observation in the attained random permutation such that when it
comes to compute the residual for observation j, this is computed based on a model
Mj that was not trained using this observation.

Furthermore another differing feature of CatBoost from other boosting algo-
rithms is that trees are built in a symmetric manner such that nodes at the same
depth of the tree have the same set threshold for splitting. An example of a sym-
metric tree is displayed in Figure 3.3. This makes the algorithm computationally
faster. Such trees are termed ’oblivious’ trees in literature (Prokhorenkova et al.,
2018).

Figure 3.3: An oblivious tree

Additionally, CatBoost at tree-level employs a minimal-variance sampling tech-
nique on observations for which different probability of selection is assigned to dif-
ferent observations on the basis of assigning higher probabilities to observations that
are more informative such that accuracy at split level is maximised. Further details
on this technique can be found in Ibragimov and Gusev (2019).

3.2.5 Feed-Forward Neural Network (NN)

The final machine learning model used in this thesis is a fully-connected neural net-
work (NN) model from the deep learning field. The architecture of a NN consists
of a chain of linear regression models and activation functions that inject an ele-
ment of non-linearity to the model. Inputs are normalised prior fitting the NN to
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avoid having some weights being updated at different rates since the learning speed
is proportional to input magnitude. During the experimentation phase of the NN
architecture, we began by considering a single hidden layer, then added a second
and eventually a third. However, we found that one hidden layer was the most
appropriate for our regression task by observing validation loss.

While experimenting with NNs it is observed that the model is overfitting to
the training data and some regularization is incorporated in the model. Dropout is
applied to the hidden layer as it regarded a powerful regularization technique that
is computationally cheap (Goodfellow et al., 2016).

With regards to the activation function applied to the hidden layer there is no
common consensus which works best and a researcher is encouraged to undertake a
trial and error approach to identify the activation functions leading to best model
performance (Goodfellow et al., 2016). Therefore two different activation functions
are considered and experimented with. Furthermore, since we are handling a re-
gression task the linear activation function is considered for the output layer. A
linear activation function for the output is particularly ideal as it does not saturate
while complementing well gradient optimization algorithms for learning (Goodfellow
et al., 2016).

3.2.6 Neural Network Based Transfer Learning

The success of machine learning models has been accelerated with the era of ’Big
Data’ (Goodfellow et al., 2016). Deep learning models such as neural networks are
well known to generalise better to unseen data when availed with a larger training
data (Gunduz et al., 2023) and data dependence is a burden to deep learning mod-
els when compered to more simple traditional machine learning models (Tan et al.,
2018) such as the ones previously discussed in this Section.

So far we have discussed machine learning models for which models are trained
and tested on data that pertains to a single source: in our study data pertaining
to the Maltese islands. Given that the data set for the Maltese Islands is relatively
small a transfer learning approach is explored in attempt to better the performance
of a neural network fitted and tested on data from a single source.

To better understand the concept of transfer learning the foundations of the
theoretical framework behind transfer learning will be outlined on the basis of the
framework outlined by Pan and Yang (2010). Transfer learning can be regarded as
the transfer of information from one domain (scenario) which is referred to as the
source domain to another domain which is referred to as the target domain. Let
us denote by DS, the source domain and DT the target domain. Each domain is
composed of two elements, input features, X and a marginal probability distribution
P (X). Each domain has a corresponding so-called task which consists of the output
and and learned predictive function. The source task and the target task are de-
noted by TS and TT respectively while the learned predictive functions are denoted
by fS and fT . Then formally transfer learning can be defined as the learning of fT
in DT utilising information captured in DS and TS.
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The most difficult question to answer in the sphere of transfer learning is which
scenarios are capable of reaping the benefits of transfer learning without falling in
the pitfall of so called negative transfer (Pan and Yang, 2010) which occurs when
transfer learning has a negative impact on the performance of the model in the tar-
get domain. Selection of Crete data is made on the basis that Crete just like the
Maltese islands is a well-known touristic island with common natural characteristics
like climate and beaches (Vladimirova, 2011). Furthermore, as claimed by (Ellul,
2019) Crete is identified as a competing holiday destination to the Maltese islands.
Further to this we performed some initial explanatory data analysis to identify sim-
ilarities in the two domains found in Section 4.3.

In our case we decide to perform what is termed in literature (Pan and Yang,
2010) as parameter-based transfer where a model trained on the source domain is
re-utilised for the target domain. An important claim must be made here that
in this implementation an assumption that parameters pertaining to the learnined
predictive function in the source domain, fS are relevant for predictions in the
target domain, DT . Firstly, a feed forward NN is trained on the data for Crete
which is identified as our source domain. The best architecture of the network is
determined in a similar approach as outlined earlier when initially fitting a NN on
data for Malta whereby 1 hidden layer is first considered, followed by 2 and later by
3 hidden layers. Based on the mean squared error performance on test data a model
with two hidden layers is selected. Hyperparameter tuning is then performed to
find the optimal parameters for the NN with 2 hidden layers. For transfer learning
purposes, a NN can have some layers whose corresponding weights are frozen and
others are not. The main struggle in this approach is to identify which part of the
trained model captures knowledge that is of potential use to our target task (Yang
et al., 2020). Having said that literature suggests that the earlier layers are are the
most generalisable and potentially contain the most potential transferable knowledge
(Tan et al., 2018). Based on these suggestions, the first layer in the trained NN on
Crete data is accordingly ’frozen’ to retain information learned during training on
the data set for Crete. The term ’freezing’ is used in the sphere of transfer learning
to refer to the case when the weights in a layer are not trained during the learning
phase of a NN (not updated during back propagation) but are kept fixed. Then we
proceed to fine tune this NN having its first layer frozen on data for Malta which is
identified as our target domain, DT .

3.3 Metrics

In light of metrics evaluated in previous related literature and hence to facilitate
comparison of our results the R2 value is deemed as a suitable evaluation metric
throughout our studies to assess model performance of models investigated.
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4

Data

We will next discuss and provide a preliminary analysis of the data utilised.

4.1 Listings Data

Airbnb listings data for Malta is attained from insideairbnb.com which is an or-
ganisation that collects Airbnb data for multiple cities worldwide on a quarterly
basis with the purpose of advocating the impact of peer-to-peer accommodations
on residential communities. Data available for the Maltese islands is rather limited
and corresponds to only data scraped at a one point in time in September, 2022.
This limited data availability is a challenge and for this reason we consider utilising
a data set of listings corresponding to the island of Crete in Greece to implement
a transfer learning model as discussed in Chapter 2&3. Listings data for Crete is
available at a quarterly basis from March 2022 till March 2023. Airbnb listings data
for Crete is also acquired from insideairbnb.com. Listings data set for each of the
islands describes physical features of each Airbnb listing, location details of the list-
ing as well as features concerning the host of the listing. A complete list of variables
in the listings data set post data cleaning and pre-processing can be found in the
Appendix A in Table A.1. The total number of listings in Malta and Crete is 8,505
and 113,891 respectively. The data pre-process of the listings data is summarised in
Figure 4.1 and explained in further detail below.

Figure 4.1: Listings Data Pre-processing Workflow
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4.1.1 Handling of Missing Data

Our initial listings data both for Malta and Crete contained missing data. Missing
data frequency for listings data in Malta is shown in Table 4.1.

Variable Name Data Type Missing Data
Count

Missing Data
Percentage

Host response time Categorical 866 10.18%
Host response rate Numerical 866 10.18%
Host acceptance rate Numerical 515 6.06%
bedrooms Numerical 266 3.12%
beds Numerical 165 1.94%
Number of baths Numerical 24 0.28%
review scores rating Numerical 1469 17.27%
review scores accuracy Numerical 1492 17.27%
review scores cleanliness Numerical 1492 17.27%
review scores checkin Numerical 1492 17.27%
review scores communication Numerical 1492 17.27%
review scores location Numerical 1492 17.27%
review scores value Numerical 1492 17.27%

Table 4.1: Missing data in Maltese Listings Data

When proportion of missing data is small applying traditional imputation meth-
ods such as mean imputation is a sensible choice (Bennett, 2001). However, Ben-
nett (2001) continues to claim than when missing data percentage exceeds 10%, this
might lead to biased analysis. Since some of our variables have more than 10% of
missing data, we consider a tree-based model as an alternative to perform impu-
tation of missing data as suggested by Hastie et al. (2009) specifically a random
forest imputation based method. Waljee et al. (2013) have claimed that random
forest imputation performed better than traditional imputation methods such as
mean imputation, K nearest neighbour imputation and multivariate imputation by
chained equations when data is missing completely at random 1, while Tang and
Ishwaran (2017) further claimed that performance of random forest imputation is
better when compared with other imputation methods even for data missing not
at random2. From further analysis it is deduced that in our scenario missing data
in variables relating to review scores corresponds to listings with no guest reviews
in the last 12 months. There could be various reasons a listing is not yet reviewed
perhaps the listing has a price which is too high and is not being booked in which
case data is not missing completely at random among others. No knowledge on
missing data of other variables is known. On the basis of this limited knowledge on
missing data a random forest Imputation is deemed suitable.

Prior to performing this imputation an ordinal encoding is performed for the
categorical variable host response time. This is suitable since this variable has a
reasonable ordering in its categories. Then random forest imputation consists of an
iterative process and works as follows. To start off the imputation algorithm, the

1Missing data is independent of observed data as well as unobserved missing data values.
2Missing data is correlated with the value of the missing values.
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mean value of each variable with missing data is computed and imputed in place of
the missing data. Now note, that since our data set has multiple variables with miss-
ing data, imputation is performed in ascending order of missingness starting with
the variable that has the lowest percentage of missing data say variable X1.Then a
random forest is trained on all observations that do not have missing values in vari-
able X1 and the target variable of the random forest is the variable X1. The trained
random forest is then used to perform predictions of variable X1 for observations
with missing values in this variable. In other words, the training data consist of
observations that do not have missing observations in X1 while the test data are
observations that have missing values in X1. At this point there are no observations
with missing values in variable X1. Next we repeat the same procedure for the
variable with the second least missing values. This is repeated for all variables with
missing values. At this stage one iteration of the random forest imputation algo-
rithm is complete. This whole procedure explained is repeated until some stopping
criterion is met or a the number of iterations pre-specified is met. In the upcoming
iterations the random forests for say variable X1 are trained on original data and
imputed data for missing values of other variables such that at each iteration the
random forests are trained in attempt to beat the quality of the imputation for that
variable in the previous iteration. Missing data in the Crete data set is also handled
with this approach. Random forest imputation is implemented in Python using the
MissForest package.

4.1.2 Feature Transformations

Physical Properties of Listings

In the raw data set information about bathrooms within listings is provided by a sin-
gle text variable ’bathrooms text’ where a host specifies the number of bathrooms and
whether it is shared (eg.’1 shared bath’, ’1 bath’,’2 shared baths’, ’2 baths’ etc...).
Variable ′bathrooms text′ is split into two new variables: one specifying whether
bathroom/s available is/are shared or not, namely (′bathroom shared′), and another
variable indicating the count of bathroom/s available, namely Number of Baths.

The amenities of a listing are provided in the raw data set as a list in a single
variable. Airbnb provides each host the opportunity to select amenities that it offers
at its listing out of a standard list of amenities. On top of this, the host can add
further custom free-text amenities. Hence the number of unique amenities specified
is quite large (1,198 for Malta and 3,388 for Crete). At this point it is decided to
create boolean variables for each amenity that the Airbnb filtering tool on the site
allows potential guests to select that are specifically relevant for listings in Malta.
These amenities on the Airbnb filtering tool are grouped into 5 categories namely:
’Popular in Malta’, ’Essentials’, ’Features’, ’Location’ and ’Safety’ and a snapshot of
the filtering tool for potential guests is displayed in Figure 4.2. Each of the ameni-
ties displayed in Figure 4.2 is represented by a boolean variable indicating whether
a listing has this amenity or not. The only exception is that both safety features
are grouped into one boolean variable indicating the availability of at least one of
a smoke alarm or a carbon monoxide alarm. The reason this is done is since indi-
vidual boolean would have been not so informative. Furthermore, only one listing
allowed smoking within its premises and hence this boolean variable is deemed non
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Figure 4.2: Amenties Filters for Guests when browsing on Airbnb for listings in Malta

informative and dropped from the data set. The amenities suggested in the filtering
tool for listings in Malta coincides with that of Crete. Thus a similar approach is
undertaken to represent amenity information for listings in Crete.

Additionally, in the raw data set a categorical variable property type is provided
with 65 categories however some categories in this variable are not so informative
since for example the most popular category for Malta is Entire rental unit and con-
sists of 3,610 listings as shown in Figure 4.3. Other categories such as ’Entire villa’
are considered as informative and retained as is. On the rest of the listings with
unclear property type an exercise is performed in attempt to gain valuable informa-
tion on the type of property a listing is found in by analysing two free text variables
initially presented in the raw data set namely name and description whereby a host
is free to provide a name and a description to the listing. To give an example a
search is made among listings whose name or description contains the word apart-
ment or flat and property type is then identified apartment. The final categories for
property type are apartment, maisonette, house, villa, hotel, guesthouse bed and
breakfast and other as shown in Figure 4.4. A similar modification is applied for
data on listings in Crete. From Figure 4.4 it is observed that apartments are the
most popular type of properties found advertised on Airbnb for listings in Malta.
Same claim is made by Ellul (2019) for listings data in Malta for May, 2019. A
similar exercise is performed for the variable property type for data on listings in
Crete. The corresponding plots of counts prior and post modification of the variable
can be found in Appendix A Figures A.1 and A.2.
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Figure 4.3: Count of listings by property type in raw data set

Figure 4.4: Count of listings by property type in modified data set
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Host Features

In the raw data set we are provided with information on the specific day a host
signed up as a host with Airbnb. This information is transformed into a new vari-
able namely host no days active which is the number of days between the day the
host signed up with Airbnb and the day the data is scraped.

Additionally in the raw data set the modes utilised by hosts for verification
purposes are provided as a list of modes for each listing in terms of sing variable. The
possible modes of verification are email, work email and phone or a combination of
these. This information is transformed into two boolean variable email indicating
whether host has provided an email (work or personal) for verification and another
boolean variable phone indicating whether phone is provided. The latter variable is
however dropped since only 8 listings did not provide a phone for verification and
hence variable is not very informative.

Location Feature

Information concerning the locality in which a listing is located is provided as a
categorical variable with initially 68 localities. Some localities are less popular than
others as shown in Figure 4.5. A choice is made to group localities with less than
150 listings by region of where they are located in the Maltese islands indicating the
location of the variable at region level instead. The count of listings for the resulting
variable which is named region name is displayed in Figure 4.6. From Figure 4.6
it is observed that the most popular location for Airbnb listings is Sliema. Ellul
(2019) also claims that Sliema is the most popular locality for Airbnb listings when
analysing data for listings scraped in May, 2019. A similar exercise is not required
for data of listings in Crete since the variable capturing region information is non-
informative for transfer learning purposes.

Figure 4.5: Count of listings by region in raw data set

One-hot encoding

Most machine learning algorithms do not accept categorical variables as input fea-
tures. Therefore, unless otherwise specified one-hot encoding is performed on cat-
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Figure 4.6: Count of listings by region in modified data set

egorical variables property type, room type, region name and host response time
as part of the pre processing of the data.

Target Variable Transformation

In Figure 4.7 we display the initial distribution of the target variable nightly price.
It is clearly observed that the distribution is positively skewed and hence log trans-
formation is applied to help diminish the effect on performance of outlying values.

Figure 4.7: Listings Price Distribution in the Maltese Islands

We also observe summary statistics for the target value prior log transformation
in Table 4.2.

Variable
Name

Mean Standard De-
viation

Minimum
Price

Maximum
Price

Price 114.26 128.43 9.00 5,000

Table 4.2: Summary Statistics for Target Variable
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4.2 Additional Data

Additionally to the listings data we consider incorporating distance of listings to
potential amenities of interest as explained earlier in Chapters 2 and 3. To compute
these distances we acquire location data of amenities namely beaches, historical
sites, bus stops and nightclubs from an API of OpenStreetMap namely Overpass
Turbo. The OpenStreetMap database comprises of two main elements: nodes and
edges. Every node and edge is assigned a Tag in Overpass Turbo by the contributors
of the community and consequently this Tag is used to query a point of interest.
Each Tag consists of two components: a key and a value. The key refers to a larger
group a point of interest belongs to while the value is more specific. For example
the tag for a museum can be as follows: ’tourism=museum’ where tourism is the
key and museum is the value. Contributors are free to give a Tag as they deem
most appropriate and it is difficult to identify all the tags assigned by different
contributors for say museums. However, Taginfo3 is a site linked to OpenStreetMap
data that provides statistics that are updated daily on tags in OpenStreetMap. This
site is used to determine the best tags to use when querying each of the places of
interest. For example when ’museum’ is queried in Taginfo as shown in Figure 4.8
the most commonly used tags for museums are displayed.

Figure 4.8: Taginfo Screenshot for most popular tags in OpenStreetMap corresponding to
museums

Choice of tags to query points of interest in OpenStreetMap are thus based on
statistics from Taginfo. To compute distances of Airbnb listings to the capital city
a prominent fixed point (node) in the city is selected for the Maltese Islands (Malta
and Gozo) and similarly for Crete and distances from Airbnb listings were computed
accordingly. Within the main island in Malta, the fixed point selected in Valletta
is the Tritons’ Fountain while within the smaller island, Gozo, the Cathedral of As-
sumption is taken as a fixed point in the capital city Rabat (Victoria). In Crete, the
Heraklion Archaeological Museum in the capital city, Heraklion, is taken as a fixed
point in the city. Choice of the latter is made based on the fact that this museum
is located in the main square of the city, Eleftherias Square.

Furthermore, ethnicity data by locality for Malta is collected from the National
Statistics Office in Malta and corresponds to data collected during the 2021 Popu-
lation Census. Similar data for the island of Crete is requested from the Hellenic
Statistical Authority in Greece however at the time of writing the Authority claimed
that such data for 2021 Census population is not yet available. Data for Malta is
provided in terms counts of residents by locality by ethnical background and total
population counts by locality. This data is used to to compute a percentage pro-
portion of non-Caucasian residents by locality and create a new variable within our

3https://taginfo.openstreetmap.org/
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models that captures this information name Residential Ethnicity.

Therefore final data set following pre-processing consists of three main compo-
nents: Listings Data, Geospatial Data and Ethnicity Data. In total data is composed
of 62 variables of which 30 are numerical, 28 are boolean and 4 are categorical.

4.3 Preliminary Analysis of Data for Malta and

Crete

We perform a simple preliminary analysis to compare data for Malta and Crete. In
Figure 4.9 we present a probability density of lnprice for Malta and Crete whereby
listings for Crete are filtered for listings data scraped only in September 2022 for bet-
ter comparability. Some similarity in the price distribution can be clearly observed
although distribution for Malta is more symmetric around the mean. Furthermore,
a table of summary statistics of the lnprice variable for the two domains is displayed
in Table 4.3. In addition in Appendix A Table A.2 a table of correlation between
lnprice and each of the variables is also provided for both Malta and Crete. We iden-
tify some variables to have very similar correlation with lnprice such as the number
of bedrooms having a correlation of 0.53 for both Malta and Crete and the number
of people a listing accommodates having a correlation of 0.54 for both islands too.
Other variables such as the walkable distance to historical places has a differing
correlation having a correlation of 0.12 and −0.02 for Crete and Malta respectively
and the listing being a private room having a correlation of 0.008 and −0.37 for
Crete and Malta respectively.

The variables in each of the data sets are the same both including listings data
and additional geospatial distance data. However residential ethnicity variable will
be excluded since as stated earlier data for Crete is still unavailable at the time of
writing.

Figure 4.9: Probability density of lnPrice for the source domain (Crete) and target domain
(Malta) as at September 2022
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Crete (Source) Malta (Target)

Count of Observations 113,891 8,505
Mean 4.69 4.46
Standard Deviation 0.99 0.70
minimum 2.07 2.19
maximum 11.51 8.85

Table 4.3: Summary Statistics for ln (Target Variable) for Crete and Malta
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5

Empirical Analysis

We will now outline the main findings of this research. For each model considered
data was split into Training Data (80%) and Test Data(20%). No prior feature
selection is made but rather we rely on intrinsic feature selection mainly regular-
ization and tree based models. Intrinsic feature selection is a quick approach and
enables the user to make feature selection taking into account the model objective
for each model considered to strike a balance between feature sparsity and predictive
performance of the model (Kuhn and Johnson, 2013).

5.1 Results from adding Geospatial Data

The initial findings of this research involve evaluating and comparing the predictive
performance of various machine learning models using two types of data. The first
type of data does not include distance features to nearby amenities of interest, while
the second type includes distance features related to beaches, historical sites, the
capital city, nightclubs, and bus stops. The objective was to analyze the impact of
including these distance features on the predictive ability of the models. In total
8 distinct models have been fitted on each of the two types of data sets: KNN,
Linear Regression, Ridge Regression, Lasso Regression, Random Forest, XGBoost,
CatBoost, and a Neural Network. All models were implemented in Python using
the libraries and modules specified in Appendix B Table B.1.

For KNN, the optimal number of neighbours, K, for this model is found to be 5
for both data sets considered. Selection of the optimal K is made based on a plot
of cross-validation error versus number of neighbours shown in Figure 5.1.

Moving to linear regression models, when fitting initial linear regression model
without regularization an issue can be identified where the model is struggling to
identify categories in the same categorical variable setting very similar coefficient
values to categories belonging to the same categorical variable. As a result, both
Ridge and Lasso regularisation are explored and the optimal regularization param-
eters are found in Table 5.1. Parameter choice is made via a 5-fold cross validation
on the basis of a grid search. Parameter grids considered are detailed in Appendix
B Table B.2. Additionally, in Figure 5.2 a plot of the top 10 features with the
highest absolute coefficient value following ridge regularization is illustrated. The
same features have the highest absolute coefficient value for both data sets and sim-
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Figure 5.1: Plot of cross validation error versus number of neighbours in KNN model

Data Ridge Regularization Pa-
rameter

Lasso Regularization Pa-
rameter

Without Geospatial fea-
tures

0.5001 0.0001

With Geospatial Features 0.5001 0.0001

Table 5.1: Optimal regularization parameters for Linear Regression

ilar coefficient values with identical order by coefficient value is attained. None of
the additional geospatial features are identified of excessive importance for price of
a listing however the most important geospatial feature out of all the additional
geospatial features is walkable distance to the capital with a coefficient of -0.27.

(a) Features with Top 10 absolute coeffi-
cient value post Ridge Regularization on
data with no additional distance features

(b) Features with Top 10 absolute coeffi-
cient value post Ridge Regularization on
data with additional distance features

Figure 5.2: Feature Importance for Ridge Regularization Model

Since Lasso regularization favours sparse models implicit feature selection is per-
formed. In Figure 5.3 the top 10 features with the highest absolute coefficient value
for both when geospatial data is excluded and included are displayed. Feature selec-
tion is almost identical on both data sets and similar coefficient values are assigned.
For both datasets, variables capturing information concerning the number of days
still available for booking in the next 90 days on the day the data was scraped,
the number of days a host has been active and whether a listing is located in the
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locality ’San Gwann’ have been deemed irrelevant and have coefficients set to zero
in both model fittings. Additionally, for the model fitted on the data set without
additional geospatial features, the variables longitude and whether a listing is lo-
cated in the locality ’Mellieha’ and locality ’ Swieqi’ are also deemed irrelevant to
price prediction, while for the model with additional geospatial features whether the
room type is private is additionally considered as irrelevant. None of the additional
geospatial features are set to zero by lasso. Having said that none of them have a
remarkably high importance to the model with the most important distance feature
being walkable distance to the capital with a coefficient value of -0.22.

(a) Model without additional Geospatial
Features

(b) Model with additional Geospatial Fea-
tures

Figure 5.3: Features with top 10 absolute coefficient values post Lasso Penalization

Next we look into insights from the fitted random forest regression model. Ini-
tially just like other previously mentioned machine learning models, categorical vari-
ables are one hot encoded at first. Once again hyper parameters are determined via
a 5 fold cross validation based on a random search followed by a grid search. The op-
timal parameters following parameter tuning are found in Table 5.2. Further details
on the parameter ranges considered during the searches can be found in Appendix
B Table B.3.

Parameter Without Geospatial Data With Geospatial Data

n estimators 819 995
max depth None None
max features 28 29
min samples leaf 2 2

Table 5.2: Optimal Parameters for Random Forest

In Figure 5.4, the 20 important features on the basis of Shapley values are at-
tained for the model fitted on the data set without (Left) and with (right) geospatial
features. It is clear that high number of bedrooms, high accommodation capacity,
presence of a pool in the listing and the number of bathrooms has a high and positive
relationship with the price of a listing. On the contrary, listings with a shared bath-
room have a remarkable negative relationship on the price of a listing. Analysing
further the Shapley values for the extended model with geospatial data it is observed
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that one of the additional distance features walkable distance historical also is con-
sidered among the top 20 important feature but surprisingly walkable distance to a
historical site is positively correlated with price meaning that listings further away
from a historical site are more likely to have a higher price. Looking into this fur-
ther it is found that the variable indicating whether a listing is an entire property
or not, Room Type: Entire property has an interesting relation with walkable dis-
tance to historical sites as shown in Figure 5.5. Firstly, the u-shape is an indication
that listings super close to historical sites and listings very far away from historical
sites have higher listing prices. Secondly, from this plot we derive an interesting
insight that being a listing that is an entire property lowers the impact of proxim-
ity to a historical site on price while being a listing that is a hotel room, a shared
room or a private room increases the impact of proximity to a historical site on price.

(a) Top 20 important features based on
Shapley values for Random Forest fitted on
data with no additional distance features

(b) Top 20 important features based on
based on the Shapley values for Random For-
est fitted on data with additional distance
features

Figure 5.4: Shapley values random forest

Being a tree based model, we further examine the performance of random for-
est by transforming categorical variables host response time, property type and
room type into ordinally encoded variables based on the author’s rationale. Order
of categories that is deemed suitable is displayed in Table 5.3. No rational order for
region name is deemed suitable and instead target encoding is considered whereby
each region name category is replaced by the mean of the price of listings in the
training data in that particular region. To avoid any data leakage from the test data
the mean is only computed on data within the training data set. Unfortunately, no
improvement in model performance is observed when performing ordinal and target
encoding. Therefore one-hot encoded categorical variables give best performance
when fitting a random forest.
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Figure 5.5: Partial Dependence Plot of Shapley values for walkable distance historical
by Room Type: Entire Property indicator as color

Categorical Variable Order of Categories

host response time ’within an hour’, ’within a few hours’, ’within a day’, ’a
few days or more’

Property Type ’other’,’apartment’,’maisonette’,’house’,
’bed and breakfast’,’guesthouse’,’hotel’,’villa’

Room Type ’Shared room’,’Private room’, ’Hotel room’,’Entire
Property’

Table 5.3: Order of categories in categorical variables for Ordinal Encoding

We further examined this regression task problem with the use of a gradient
boosting algorithms. First we consider fitting an XGBoost model. In Table 5.4 we
present a list of optimal parameters that were tuned via random search followed by
a grid search based on a 5-fold cross validation. The optimal parameters are listed in
the Table 5.4 too. For further details on the range of parameters considered during
the search exercise see Table B.4 in Appendix B.

Parameters Without Geospatial Data With Geospatial Data

n estimators 683 967
max depth 5 5
learning rate 0.41 0.48
reg alpha 1 1
reg lambda 0 0
objective reg:squarederror reg:squarederror
subsample 0.88 0.88
colsample bytree 0.11 0.13

Table 5.4: Optimal Parameters for XGBoost

We present the top 20 important features on the basis of Shapley values for
the XGBoost model fit in Figure 5.6. Similarly to random forest, higher capacity
of a listing, higher number of bedrooms and the presence of a pool are associated
with higher Shapley values and hence higher price of listings for both data sets. In
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contrast to random forest the feature providing information whether the listing has
shared bathrooms or not is not considered as important for XGBoost. XGBoost
identifies the walkable distance to the capital to have the highest contribution to
the price of a listing among all additional walkable distance features and similar to
the linear regression model with applied Ridge and Lasso regularization earlier iden-
tifies listings with a short walkable distance to the capital to have higher positive
contribution on price (higher prices) although some exceptions are also present as
shown below.

(a) Top 20 important features based on
Shapley values for XGBoost fitted on data
with no additional distance features

(b) Top 20 important features based on
based on the Shapley values for XGBoost fit-
ted on data with additional distance features

Figure 5.6: Shapley values XGBoost

Next we review findings from another boosted tree model, CatBoost. Once again
parameter tuning of parameters is carried out via 5 fold cross validation on the basis
of a random search followed by a grid search. The optimal parameters are displayed
in Table 5.5. For further details on the grids where parameters tuning was per-
formed see Appendix B Table B.5. As a means of regularization, l2 regularization
through the parameter l2 leaf reg is considered together with injecting some ran-
domness in the scores of potential splits at each iteration through the parameter
′random strength′. This randomness initialises as noise with mean 0 and variance
1 ×′ random strength′ and the set variance then declines with the number of itera-
tions.

In Figure 5.7 we present a plot of the Top 20 important features via the Shapley
values in the CatBoost models fitted on the two data sets. Similar to results from
random forest fitting and XGBoost, the availability of a pool, the capacity of a list-
ing and the number of baths in a listing are considered as prominent contributors
to price listings having a positive relationship with price. However in contrast to
previous model fittings here categorical variables are not one hot encoded as ex-
plained in the Methodology Section and corresponding Shapley values are shown in
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Parameters Without Geospatial Data With Geospatial Data

iterations 625 950
depth 9 9
learning rate 0.1 0.1
l2 leaf reg 6 3
random strength 3 3

Table 5.5: Optimal Parameters for Catboost

grey for these variables. Comparing the models fitted on the two different data sets
the top 20 important features for Catboost are very similar with minor differences.
In fact, only one feature walkable distance historical from the additional distance
features makes it to the top 20 list of most important features in Catboost and is
rather at the bottom of the list implying minor importance to the model. Another
remark to make is that the room type is considered as the most important feature.
This contrasts the results attained in Figure 5.4 for random forest and Figure 5.6
for XGBoost. Recall that in random forest model fitting and XGBoost we stick
to one hot encoding unlike in Catboost. This confirms that the importance of one
hot encoded variables in tree based models when one hot encoded is underestimated.

(a) Top 20 important features based on
Shapley values for Catboost fitted on data
with no additional distance features

(b) Top 20 important features based on
based on the Shapley values for Catboost fit-
ted on data with additional distance features

Figure 5.7: Shapley values Catboost

Looking into the Shapley values for CatBoost grouped by category for the most
important feature room type for the model fitted on Geospatial data in Figure 5.8 we
can deduce some expected insights. It is observed that listings for entire places are
associated with higher Shapley values and hence higher nightly listing prices while
shared rooms are associated with lower Shapley values and hence lower nightly list-
ing prices.
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Figure 5.8: Shapley values for room type grouped by category

As a final model a NN is considered. The architecture of the best performing
NN is displayed in Figure 5.9.

(a) Neural Network fitted to data without
additional Geospatial features

(b) Neural Network fitted to data with ad-
ditional Geospatial features

Figure 5.9: Architecture of Best Performing Neural Networks

We deduce that a fully connected NN with 1 hidden layer and ReLU activation
function applied to the hidden layer is the best. The ADAM optimizer is found to
be best optimizer when compared with RMSprop while mean squared error is the
loss opted for. Furthermore, as a means of regularization dropout is experimented
with. In Table 5.6 we highlight the optimal parameters derived from tuning. For
further details on the ranges of parameters considered during search see Table B.6
in Appendix B.

Parameters Without Geospatial Data With Geospatial Data

activation function (for
hidden layer)

ReLU ReLU

learning rate 0.0001 0.01
dropout rate 0.07 0.33
epochs 200 150
batch size 64 128

Table 5.6: Optimal Parameters for Fully-Connected Feed Forward Neural Network fitted
on Data for Malta

As can be seen in the next Section, the NN with optimal parameters performed
particularly poorly in comparison to advanced machine learning models such as
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random forest and boosting based algorithms. We consider modifying the fitted NN
by considering a transfer learning approach by first fitting a NN to data from the
island of Crete and completely excluding data for listings in Malta. The optimal
architecture of the NN fitted is shown in Figure 5.10. Also note that here we drop
the variables longitude and latitude and region name variables since this is not
valuable transferable knowledge from one domain to the other. Optimal parameters
for this NN are identified through an 8 fold cross-validation via random search and
grid search. More folds are considered here since the data set is larger for Crete.
The optimal parameters attained are shown in Table 5.7. For parameter ranges
considered in the search see Table B.7. The best performing model is found to
have 2 hidden layers whereby ADAM optimizer is found to be the best optimizer
and mean squared error is once again considered as a loss function. The activation
function on the output layer is also once again taken to be ’linear’.

Parameters With Geospatial Data

activation function (for hidden layer) ReLU
learning rate 0.0001
dropout rate 0.1
epochs 350
batch size 64

Table 5.7: Optimal Parameters for Fully-Connected Feed Forward Neural Network fitted
on Crete Data

Next we consider freezing the first hidden layer and re train the rest of the model
with data for Malta and consequently perform predictions on the the data for Malta.
Architecture of the NN fitted is displayed in 5.10.

Figure 5.10: Neural Network with Geospatial data for Crete
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5.2 Performance Overview

In Table 5.8 we display the R2 obtained on test data for each of the models consid-
ered on both data containing no additional geospatial features and data containing
additional geospatial features. CatBoost is seen to be the model with the highest R2

on test data for both type of data sets achieving an R2 of 0.7662 for the model fitted
on data without distance features and 0.7700 for model with additional features.
Compared to the KNN benchmark model an improvement in model performance on
test data is observed for both data sets by all models fitted a posteriori. However,
only a minor difference in performance can be observed between models fitted to
the data set without additional geospatial features and models fitted to the data
set with additional geospatial features. All linear regression models fitted reported
a minor improvement when model is fitted to data set including additional geospa-
tial features. Recall that none of the additional geospatial features were set to have
coefficients zero by the Lasso and very similar performance is observed for all regres-
sion models. Similarly, CatBoost and the NN (without transfer learning) report a
slight improvement in performance by the model including geospatial data features.
Moreover when modifying the neural network to be pre-trained on data for Crete a
slight improvement can be observed reporting an R2 of 0.6662 over the performance
of the neural network trained solely on data for Malta reporting an R2 of 0.6561.
Having said that, CatBoost model still remains the best performing model.

Model Without Geospatial Data
R2

With Geospatial Data R2

KNN (benchmark) 0.6200 0.6193
Linear Regression(No
Regularization)

0.6331 0.6359

Ridge Regression 0.6336 0.6356
Lasso Regression 0.6334 0.6344
Random Forest Regres-
sion

0.7358 0.7319

XGBoost 0.7086 0.6957
CatBoost 0.7662 0.7700
Neural Network without
Transfer Learning

0.6489 0.6561

Neural Network with
Transfer Learning

- 0.6662

Table 5.8: Summary of results comparing R-Squared value on test data
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5.3 Discussion

In this thesis we set off our research with the aim to derive a price prediction model
for Airbnb listing prices in the Maltese islands through a machine learning approach.
As is seen, the boosting algorithm, Catboost, triumph among other machine learn-
ing models considered. This result is expected as from existing literature analyzing
listings in other cities through a machine learning approach boosting algorithms
mainly XGBoost are declared as the best performing models such as Liu (2021)
and Yang (2021) as reported earlier in the Literature Review. Having said that,
by experimenting and considering a modification of XGBoost, namley CatBoost
great improvements in model performance are observed over XGBoost. Further-
more, with regards to studies carried out for Airbnb listings in the Maltese islands
a drastic improvement is achieved in model performance when compared to other
literature analysing Airbnb price listings in Malta through different approaches as
discussed earlier in the Literature Review reporting a best R2 of 0.51 (Fearne, 2022))
and 0.38 (Ellul, 2019). Our best model achieved an R2 of 0.77.

Looking into the feature importances identified in our research by the best per-
forming algorithm, CatBoost, features of importance such as whether a property
is an entire place or not are in line with those outlined by Fearne (2022) where
the latter identified this feature as having the highest absolute regression coefficient
in an OLS regression claiming that being an entire property contributes to a raise
of 70% in nightly price over listings corresponding to a room within a property.
However, Fearne (2022) also claims that for each additional bathroom the price per
night drops. This is in contrast to our findings and a potential reason for this is that
in our research an additional variable is engineered and considered to account for
whether the bathrooms available are shared or not. Furthermore, Fearne (2022) also
identifies pool availability as the amenity that leads to the highest price rise which
is in line with our findings claiming that pool availability is the most important
feature contributing to price.

Consequently, when analysing the feature importance for each model considered,
we conclude none of the additional distance features in any model considered are
identified as relatively important features. Having said that, all linear regression
models reported a slight improvement for when the model is fitted with additional
geospatial features whereby both linear regression models with applied regulariza-
tion (ridge and lasso) are at a common consensus that that the walkable distance
to the capital is the most important feature out of all additional walkable distance
features reporting a negative coefficient of −0.27 and −0.22 respectively indicating
longer walkable distances to the capital are associated with lower prices. Similar
to linear regression models, Catboost also reported a slight improvement in model
performance when adding geospatial distance features, but also did not identify any
of the additional distance features of remarkable importance based on our analysis
of the Shapley values. However, the walkable distance to historical sites is consid-
ered as the variable with the greatest contribution to nightly price of Airbnb listings
out of all geospatial distance variables added. To our surprise the walkable distance
to the beach is considered of very little importance to explain the price of Airbnb
listings across all models fitted. This contradicts the findings by Chica-Olmo et al.
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(2020) which identified distance to the beach as the most important feature for ex-
plaining Airbnb prices when compared with distance to the centre and distance to
the nearest place of interest for the coastal city Malaga. Similarly, in our research
walkable distance to bus stops are not relatively important to any of the models
fitted. A similar finding is outlined by Schwarzová (2020) who claims that walkable
distance to train station is not relatively important to explain variation in Airbnb
price listings in Prague. Proximity to nightclubs is also not relatively important to
any of the models fitted in our research.

Another interesting finding drawn from this research is that by considering list-
ings data as well as geospatial data for Crete which is a also a touristic island
with similar natural characteristics like Malta, the performance of the deep learning
model fitted is improved over the model solely trained on data for Malta. This
improvement highlights that transferring knowledge from one island to the other
proved to be beneficial and domains are similar enough for knowledge transfer to
have a positive impact on model performance.
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6

Conclusion

In conclusion an extensive experimentation exercise with various machine learning
models have been considered to predict Airbnb listing prices for the Maltese islands.
The CatBoost algorithm is shown to have the best performance by being the most
generalisable model beyond training data. Further to this we identified a number
of characteristics of a listing that are bound to more likely push the nightly price of
a listing. Based on the feature importance of the best performing model, whether
a listing corresponds to an entire property or a room within a property is the most
influential feature on the price of a listing. Furthermore the presence of a pool is
identified as the most influential amenity within a listing on price. Additionally,
in this research we concluded that including additional geospatial distance features
of most popular attractions in Malta as well as distance to public transportation
amenities does not lead to a remarkable improvement in model performance and
hence come to a conclusion that proximity of an Airbnb listing to places of interest
and public transportation access does not have remarkable implications on price. Fi-
nally, from this research we conclude that pre-training a deep learning model (NN)
on data for a similar touristic island to Malta such as Crete did slightly improve
model performance on prediction for our market of interest however this improve-
ment is not enough to beat the performance of the boosting algorithm considered.

6.1 Limitations

A number of limitations revolve around this research. The first is that data for
Malta is very limited in terms of number of observations due to the nature of the
size of the islands as well the fact that data available is scraped at one point in time.
Further to this, since data is only available at one point in time this eliminates any
potential to investigate seasonality aspect within the data. Further to this, time
constraints to further refine and experiment with the transfer learning approach is
also considered a main limitation in this study.

6.2 Future Research

This research serves as a good starting point for further research studies of Airbnb
listings within the Maltese islands through a machine learning approach. A further
extension to this research would be to undertake an ensemble stacking approach
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whereby multiple machine learning models fitted in this research are taken as base
models of a final model. Further to this, another addition to this research would be
to consider a density index of commercial establishments such as restaurants within
say 500m radius of a listing. Moreover, future potential research could also be done
by considering an instance based transfer learning approach whereby a weighting
procedure can be considered to weight observations in the source domain such that
data in the source domain that is considered more valuable for the target domain is
given more weight than other data.
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Appendix A

Further Data Details

Table A.1: Listing Data variables post data cleaning and pre-processing

Variable Name Description of Variable Data Type
Accommodates The capacity of the list-

ing
Numerical

Bedrooms Count of Bedrooms in
the Listing

Numerical

Beds Count of Beds in the
Listing

Numerical

Number of Baths Count of Baths in the
Listing

Numerical

bathroom shared Are the bathrooms avail-
able shared ?

Boolean

room type Type of listing Categorical:Entire
home, Hotel Room,
Private Room, Shared
Room

property type Type of property listing
is located in

Categorical:Apartment,
maisonette, house,
villa,bed and breakfast,
hotel, guesthouse,
other

region name Region or Locality list-
ing is located in

Categorical:Sliema,
San Giljan, San Pawl
il Bahar,Valletta,
Gzira, Mellieha,
Swieqi, Msida,
Marsascala, Xaghra,
Zebbug(Ghawdex),
San Gwann,
North Western Other,
South Eastern Other,
Gozo Comino Other

Latitude Latitude of Listing Numerical
Longitude Longitude of Listing Numerical

Continued on next page
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Table A.1 – continued from previous page
Variable Name Description of Variable Data Type

minimum nights The lowest number of
nights the listing can be
booked for

Numerical

maximum nights The highest number of
nights the listing can be
booked for

Numerical

availability 30 The number of days list-
ing is available in the
next 30 days

Numerical

availability 60 The number of days list-
ing is available in the
next 60 days

Numerical

availability 90 The number of days list-
ing is available in the
next 90 days

Numerical

availability 365 The number of days list-
ing is available in the
next 365 days

Numerical

number of reviews ltm The number of guest re-
views of listing in the
past 12 months

Numerical

review scores rating Average of guest review
rating on the whole ex-
perience during stay

Numerical

review scores accuracy Average of guest review
rating on accuracy of
listing details on Airbnb
site

Numerical

review scores cleanliness Average of guest review
rating on hygiene of list-
ing

Numerical

review scores checkin Average of guest review
rating on check-in expe-
rience

Numerical

review scores communication Average of guest review
rating on host respon-
siveness

Numerical

review scores location Average of guest review
rating on listing location

Numerical

review scores value Average of guest re-
view rating on experi-
ence worthiness

Numerical

Continued on next page
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Table A.1 – continued from previous page
Variable Name Description of Variable Data Type

instant bookable Can a potential guest
make an instant booking
or a prior request needs
to be made to host?

Boolean

host no days active The count of days a host
has been active on the
day data is scraped

Numerical

host is superhost Is the host of the listing
a superhost0?

Boolean

host response time The response time on
average of a host

Categorical: Within
an hour, Within a few
hours, Within a day,
A few days or more;

host response rate The rate at which a host
replies to booking re-
quests

Numerical

host acceptance rate The rate a host accepts a
booking when a request
is made for non instant
bookable listings

Numerical

host has profile pic Does the host have a
profile picture?

Boolean

host identity verified Did the host verify its
identity?

Boolean

host email Did the host provide
email address?

Boolean

calculated host listings count The number of listings a
host runs

Numerical

beachfront Is the listing at the
beachfront?

Boolean

pool Is a pool available at the
listing?

Boolean

wifi Is wifi available at the
listing?

Boolean

kitchen Is a kitchen available at
the listing?

Boolean

AC Is an Air Conditioning
available at the listing?

Boolean

washer Is a washer available at
the listing?

Boolean

dryer Is a dryer available at
the listing?

Boolean

Continued on next page

0A superhost is a badge given by Airbnb after meeting a set of criteria based on guest rating,
experience, reliability and responsiveness. Specific details on criteria can be found here: https:

//www.airbnb.com/help/article/829

55

https://www.airbnb.com/help/article/829
https://www.airbnb.com/help/article/829


Table A.1 – continued from previous page
Variable Name Description of Variable Data Type

heating Is heating available at
the listing?

Boolean

dedicated workspace Is a workspace available
at the listing?

Boolean

TV Is a TV available at the
listing?

Boolean

hair dryer Is a hair dryer available
at the listing?

Boolean

iron Is a clothing iron avail-
able at the listing?

Boolean

hot tub Is a hot tub available at
the listing?

Boolean

parking Is parking available at
the listing?

Boolean

ev charger Is an electric vehicle
charger available at the
listing?

Boolean

crib Is a baby crib available
at the listing?

Boolean

gym Is a gym available at the
listing?

Boolean

BBQ Grill Is a BBQ available at the
listing?

Boolean

breakfast Is a breakfast provided
at the listing?

Boolean

indoor fireplace Is fireplace provided at
the listing?

Boolean

waterfront Is listing located at the
waterfront?

Boolean

safety Is a safety alarm or car-
bon monoxide alarm or
both available at the list-
ing?

Boolean

Price The nightly price in
Euro as advertised on
the Airbnb site when the
data is scraped

Numerical

Table A.2: Correlation of features with Price in Crete and Malta Data

Variable Name Crete Malta
Number of Baths 0.53 0.43
bedrooms 0.53 0.53
accommodates 0.54 0.54
onehotencoder x1 villa 0.50 0.27

Continued on next page
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Table A.2 – continued from previous page
Variable Name Crete Malta

pool 0.47 0.38
beds 0.42 0.37
calculated host listings count 0.28 0.19
BBQ Grill 0.26 0.19
hot tub 0.24 0.11
indoor fireplace 0.23 0.17
gym 0.19 0.07
crib 0.18 0.27
washer 0.17 0.06
TV 0.16 0.24
walkable distance historical 0.12 -0.02
iron 0.11 0.06
AC 0.11 0.29
breakfast 0.10 -0.02
latitude 0.10 0.14
host identity verified 0.09 -0.05
host email 0.098 0.05
onehotencoder x1 hotel 0.08 0.07
dryer 0.08 0.09
waterfront 0.08 0.05
walkable distance capital 0.07 -0.03
hair dryer 0.07 0.11
safety 0.06 0.08
host is superhost 0.05 -0.03
wifi 0.05 0.02
dedicated workspace 0.05 -0.00
heating 0.04 0.14
host no days active 0.04 0.02
onehotencoder x2 Hotel room 0.04 0.006
onehotencoder x0 within a day 0.04 0.07
minimum nights 0.03 0.00
onehotencoder x0 within a few hours 0.03 0.05
ev charger 0.01 0.003
host has profile pic 0.01 -0.02
beachfront 0.01 0.04
maximum nights 0.01 0.06
onehotencoder x2 Private room 0.01 -0.37
instant bookable -0.00 0.04
kitchen -0.011 0.04
onehotencoder x0 a few days or more -0.01 0.01
onehotencoder x1 bed and breakfast -0.01 -0.03
walkable distance beach -0.01 -0.04
walkable distance bus stop -0.01 0.06
onehotencoder x2 Entire home/apt -0.02 0.44
onehotencoder x1 maisonette -0.02 -0.02

Continued on next page
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Table A.2 – continued from previous page
Variable Name Crete Malta

host response rate -0.02 -0.05
host acceptance rate -0.02 -0.01
bathroom shared -0.03 -0.45
review scores cleanliness -0.04 -0.09
onehotencoder x0 within an hour -0.04 -0.09
onehotencoder x1 guesthouse -0.05 -0.01
onehotencoder x2 Shared room -0.06 -0.29
review scores rating -0.07 -0.12
availability 60 -0.07 0.16
availability 30 -0.07 0.17
longitude -0.08 -0.12
availability 90 -0.08 0.16
availability 365 -0.08 0.12
review scores value -0.08 -0.14
onehotencoder x1 other -0.09 -0.13
review scores accuracy -0.09 -0.12
review scores checkin -0.09 -0.12
onehotencoder x1 house -0.09 -0.08
review scores location -0.10 -0.09
review scores communication -0.12 -0.13
number of reviews ltm -0.17 -0.15
onehotencoder x1 apartment -0.37 -0.05

Figure A.1: Count of listings by property type in raw data set for Crete
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Figure A.2: Count of listings by property type in modified data set for Crete
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Appendix B

Further Modelling Details

Model Python Package Module

KNN scikit learn KNeighborsRegressor
Linear Regression (No
Regularization)

scikitlearn linear model

Ridge Regression scikitlearn linear model
Lasso Regression scikitlearn linear model
Random Forest Regres-
sion

scikitlearn RandomForestRegressor

XGBoost scikitlearn XGBRegressor
Catboost catboost CatBoostRegressor
Neural Networks tensorflow keras

Table B.1: Python packages used for Modelling

Parameter Grid Search Range

Ridge Regression Regularization Pa-
rameter

[0.0001,10] stepsize:0.1

Lasso Regression Regularization Pa-
rameter

[0.0001,10] stepsize:0.1

Table B.2: Grid of parameters for Grid Search for Linear Regression Models
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Parameter Description Range of Parameters
(Random Search)

Range of Parameters
(Grid Search) without
Geo data

Range of Parameters
(Grid Search) with Geo
data

n estimators The maximum number of
trees in the forest

50 random samples from
the range [100,1000]

[805,820]:stepsize 1 [980,1000]:stepsize 1

max depth The maximum depth of a
base model tree

[5,10,20,30,None] None None

max features The number of features
sampled at each split

[’sqrt’,’log2’,total count/3] total count/3=28 total count=29

min samples leaf The smallest number of
observations for a further
split

[2,5,10,15] [2,3,4] [2,3,4]

Table B.3: Random Forest tuned parameters
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Parameter Description Range of Parameters
(Random Search)

Range of Parameters
(Grid Search) without
Geo data

Range of Parameters
(Grid Search) with Geo
data

n estimators Count of boosted trees 50 random samples from
the range [100,1000]

[680,681,682,683,684] [965,967,968,969,970]

max depth The maximum depth of
base models

[2,6,10,None] [5,6,7] [5,6,7]

learning rate Weights step size shrink-
age

[0.1,1]:stepsize:0.1 [0.4,0.5]:stepsize:0.01 [0.48,0.52]:stepsize:0.01

reg alpha L1 penalization term on
weights

[0,0.5,1] 1 1

reg lambda L2 penalization term on
weights

[0,0.5,1] 0 0

objective Problem specification
and objective function
of learning

reg:squarederror reg:squarederror reg:squarederror

subsample fraction of observations
that are randomly sam-
pled prior training per
tree

[0.1,1]: stepsize:0.1 [0.85,0.9]: stepsize:0.01 [0.85,0.9]: stepsize:0.01

colsample bytree fraction of features that
are randomly sampled
per tree

[0.1,1]: stepsize:0.1 [0.1,0.15]:stepsize:0.01 [0.1,0.15]:stepsize:0.01

Table B.4: XGBoost tuned parameters

62



Parameter Description Range of Parameters
(Random Search)

Range of Parameters
(Grid Search) without
Geo data

Range of Parameters
(Grid Search) with Geo
data

iterations The maximum number
of boosted trees that
can be sequentially con-
structed

50 random samples from
the range [100,1000]

[621,622,623,624,625] [948,949,950,951,951]

learning rate Controls the size of the
step in the optimization
process

[0.1,1]: stepsize 0.1 [0.01,0.1] stepsize:0.01 [0.01,0.1] stepsize:0.01

l2 leaf reg Coefficient of L2 regu-
larization applied to the
loss function

[1,3,5,7,9] [4,5,6] [2,3,4]

depth The maximum depth of
weak learners

[2,10]:stepsize 1 9 9

random strength Adds randomness to the
score value of potential
splits

[1,8]:stepsize 1 [2,3,4] [2,3,4]

Table B.5: Catboost tuned parameters
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Parameter Description Range of Parameters
(Random Search)

Range of Parameters
(Grid Search) without
Geo Data

Range of Parameters
(Grid Search) with Geo
Data

Activation Function (for
hidden layer)

Non-Linear Function
applied to the first
hidden layer

ReLU, tanh ReLU ReLU

learning rate Controls the size of the
step in the optimization
process

30 equally spaced values
in the range [0.0001,0.3]

[0.0001,0.1] stepsize:0.01 [0.01,0.03] stepsize:0.001

dropout rate The proportion of neu-
rons to be dropped out
in the hidden layer at
each training iteration

20 equally spaced values
in the range [0.01-0.5]

[0.05,0.15] stepsize:0.01 [0.3,0.4] stepsize:0.01

batch size The number of obser-
vations in each batch
where the number of
batches is equivalent to
the number of gradient
updates

[64,128,256] 64 128

Epochs Count of instances when
the neural network is
trained on the entire
training data set

[50,100,150,200,250] 200 150

Table B.6: Neural Network tuned parameters for Malta Data
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Parameter Range of Parameters (Random Search) Range of Parameters (Grid Search)

Activation Function (for hidden layer) ReLU, tanh ReLU
learning rate 30 equally spaced values between

[0.0001,0.3]
[0.0001,0.1]:stepsize 0.01

dropout rate 20 equally spaced values in the range
[0.01,0.5]

[0.1,0.2]:stepsize 0.02

batch size [64,128,256,512] 64
Epochs [100,500]:stepsize 50 350

Table B.7: Neural Network tuned parameters for Crete Data
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