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Abstract

In this report we will be working with subalgebras A of finite codimension in K[x].
It is known that such subalgebras can be expressed using a set of linear conditions
evaluated at a finite set of points called the spectrum elements of A. These conditions
are of one of two types, equality conditions or α-derivations, which in turn consists of
the values and the values of the derivations of the elements in our algebra. From this
representation we find a way to construct a polynomial, the zeros of which are exactly
the spectrum element. This polynomial, called the minimal polynomial of A, has the
property that its product with an arbitrary polynomial lies in our algebra. In order
to find subalgebras of A we can add an additional condition, namely an α-derivation,
where α lies in the spectrum of A. To find all such α-derivations, which can be written
as a linear combination of regular derivations, we find an upper limit to the order of the
derivations involved. To fully determine the derivation we also construct a method of
finding all the required restrictions on the coefficients of said linear combination.
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1 Introduction

In the last couple of years researchers in Lund have worked on a new approach to
understand polynomial algebras in one and several variables. The essential idea is to
describe subalgebras using conditions a polynomial has to fulfill in order for it to be a
member of the algebra. These conditions involves the polynomials themselves and the
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derivations of said polynomials evaluated at a finite set of points, called the spectrum
of the algebra. This thesis is centered around the minimal polynomial which has these
spectrum elements as its zeros. An additional property of this polynomial is that the
product of the minimal polynomial and an arbitrary polynomial belongs to the algebra.
We also want to find a way of finding subalgebras of the polynomial algebra, but first
we need to define relevant concepts.

2 Background

Before introducing the polynomial algebra K[x] we will use [4] to introduce what a ring
is

Definition 1. A ring is a non-empty set R with operations + and · such that for all
a, b, c ∈ R we have

• If a ∈ R and b ∈ R then a+ b ∈ R

• a+ (b+ c) = (a+ b) + c

• a+ b = b+ a

• ∃ 0 ∈ R such that a+ 0 = 0 + a = a for all a ∈ R

• for each a ∈ R ∃ x ∈ R such that a+ x = 0

• If a ∈ R and b ∈ R then a · b ∈ R

• a · (b · c) = (a · b) · c

• a · (b+ c) = a · b+ a · c, (a+ b) · c = a · c+ b · c

A ring has an identity if there exists an element 1 ∈ R such that a · 1 = 1 · a = a for
every a ∈ R.

From [1] we have

Definition 2. A K-algebra, A, is an associative ring with an identity with a K-vector
space structure such that if a, b ∈ A and λ ∈ K then we have

a(λb) = λ(ab) = (λa)b

One such type of algebra is the polynomial algebra which we will now introduce

Definition 3. A polynomial algebra K[x] can be defined as the algebra containing all
polynomials

p(x) = pnx
n + pn−1x

n−1 + . . . p1x+ p0, pi ∈ K

together with regular polynomial addition and multiplication.
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Note that this definition of K[x] satisfies the requirements of being a K-algebra. On top
of this it is also commutative when it comes to multiplication. We will also specify that
an algebra B such that B ⊆ A is called a subalgebra of A. We will more specifically
be working with subalgebras A of finite codimension in the polynomial algebra K[x].
This means that given a basis of A we can add a finite amount of basis elements to
obtain a basis of K[x]. We will also assume that K is an algebraically closed field with
char(K) = 0. The following sections of the background, unless otherwise specified, are
referenced from [3].

Example 1. We will present two subalgebras of K[x]. First is the algebra which is
generated using the polynomial x2. This algebra does not include any polynomials of odd
degree and as such it is of infinite codimension in K[x].

The second algebra which is generated using the polynomials x2 and x3, consists of poly-
nomials of degree two and above. This algebra is of codimension one in K[x], only
missing polynomials of degree one.

2.1 Representation Using a SAGBI Basis

As seen in the examples above subalgebras of K[x] are usually represented using a set of
polynomials called generators. All polynomials in the algebra can then be created though
addition and multiplication of these generators. The specific type of set of generators
we will be using is called a SAGBI-basis, which allows us to check whether an element,
f , belongs to the algebra or not. This is done by finding an element g =

∑
gkii , where

gi lies in our SAGBI basis, such deg(g) = deg(f). Then we can create f −λg, which has
a lower degree than f . We then repeatedly lower the degree of the polynomial until we
can continue no more. If the last difference is zero then f is a member of A.

Definition 4. A SAGBI basis is a set of generators G such that S = {deg(g(x)) | g(x) ∈
G} where S is a generating set of the numerical semigroup corresponding to the set
{deg(f(x)) | f(x) ∈ A}.

A SAGBI basis is called minimal if no element of the basis can be removed and have the
set still remain a SAGBI-basis.

Definition 5. The Type of a subalgebra A is defined as an ordered list of degrees in a
minimal SAGBI basis.

2.2 Representation Using Conditions

As mentioned previously, there is another way of representing these subalgebras using
conditions evaluated at points, which we call the spectrum elements of A. For example
the algebra generated by x2 and x3 can also be written as {f(x) ∈ K[x] | f ′(0) = 0},
this algebra has the spectrum element 0.

Definition 6. The spectrum of a subalgebra A, denoted Sp(A). Is elements α such
that f ′(α) = 0, ∀f ∈ A or if ∃β ∈Sp(A)\{α} such that f(α) = f(β), ∀f ∈ A.
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The definition of the spectrum gives way for a natural equivalence relation which we will
define next.

Definition 7. Given the spectrum of a subalgebra A we say two spectrum points, α, β ∈Sp(A),
belong to the same cluster if f(α) = f(β), ∀f ∈ A. We denote two elements being part
of the same cluster as α ∼ β.

Moving forward we will look at the previously mentioned conditions. The subalgebra A
is constructed as the kernel of a set of conditions each of which can belong to one of two
types. The first type we will look at is equality conditions.

Definition 8. An equivalence condition for a subalgebra A ⊂ K[x] can be defined as
a function E : A → K

E(f) = f(α)− f(β) (1)

where α ̸= β are scalars belonging to K.

The second type of condition is called a derivation

Definition 9. An α-derivation is defined as a linear function D : A → K such that
we have

D(fg) = D(f)g(α) + f(α)D(g) ∀f, g ∈ A (2)

We remark that an α-derivation is not necessarily also a β-derivation. This definition
however is not particularly easy to work with so we will introduce the following way of
expressing a derivation

Theorem 1. For α ∈ Sp(A) any α-derivation, D, can be expressed as

D(f) =
∑
αi∼α

n∑
k=1

ckf
(k)(αi) (3)

Going forward we will also be using the notation

Dα
k =

f (k)(α)

k!

Assuming that we have a function, how can we determine if it is a derivation in A?

Theorem 2. Let D : A → K be a linear map, then the following statements are equiva-
lent

• D is an α-derivation in A

• D(1) = 0 and D(f2) = 0, ∀f ∈ Mα

where Mα = {f(x) ∈ A | f(α) = 0}.

Now that we have introduced this way of expressing a subalgebra A using conditions we
will move on to the next section, in which we will define the minimal polynomial, of a
subalgebra A, which will be the main focus of this report.
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2.3 Polynomials With Spectrum Elements as Zeros

It is becoming apparent that finding the spectrum elements of a subalgebra are of inter-
est. If a subalgebra is generated by two polynomials then there is a way to construct a
polynomial, the zeros of which is exactly the spectrum points. This polynomial is called
the characteristic polynomial and will now be introduced.

Definition 10. The characteristic polynomial Xp,q of subalgebra A generated by p(x)
and q(x) is defined as

Xp,q(x) = Res
(
P (x, y), Q(x, y)

)
(4)

where P(x,y)=p(x)−p(y)
x−y and Q(x,y)= q(x)−q(y)

x−y .

From [2] we find that the resultant is defined as

Definition 11. The resultant of the two polynomials p(x) = a0+ a1x+ · · ·+ anx
n and

q(x) = b0 + b1x+ · · ·+ bmxm is the determinant of the following matrix

a0 a1 a2 . . . 0
0 a0 a1 . . . 0
. . . . . . . . . . . . . . .
0 . . . a1 . . . an
b0 b1 b2 . . . 0
0 b0 b1 . . . 0
. . . . . . . . . . . . . . .
0 . . . b1 . . . bm


Example 2. We want to find the characteristic polynomial of the algebra A generated
by the polynomials

p(x) = x2 − 1 and q(x) = x3 − x

then we have

P (x, y) =
x2 − 1− y2 + 1

x− y
= y + x, Q(x, y) =

x3 − x− y3 + y

x− y
= y2 + yx+ x2 − 1

and so we get

Xp,q(x) =

∣∣∣∣∣∣
 x 1 0

0 x 1
x2 − 1 x 1

∣∣∣∣∣∣ = x · (x− x) + (x2 − 1) · 1 = x2 − 1

Let us see some more examples of characteristic polynomials in Table 1 where we among
other things find algebras and their characteristic polynomials.

This polynomial is however difficult to find and is sometimes of a rather high degree.
And so we will choose to look for another polynomial with the spectrum elements as its
zeros. Although this is its most important property we will start our search looking at
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another property, namely that when it is multiplied with an arbitrary polynomial the
product lies in our subalgebra. It is not trivial to see that such a polynomial exists and
so we will start by introducing the following theorem

Theorem 3. Let A ⊂ K[x] have Sp(A) = {α1, α2, . . . , αn} and define πA(x) =
n∏

i=1
(x −

αi). Then there exists N > 1 such that πN
A (x) · xk ∈ A, ∀k ≥ 0.

And since such a polynomial exists then such a polynomial of minimal degree exists as
well.

Definition 12. The minimal polynomial m(x) of A, which may be denoted mA(x)
if confusion may occur, is the monic nonzero polynomial with smallest degree such that
m(x) · xk ∈ A, ∀k ∈ N.

The minimal polynomial is unique. Assume it is not and we have the minimal polyno-
mials m1(x) and m2(x), then the difference, m1(x) − m2(x), is a polynomial of lower
degree than our minimal polynomials. This is a contradiction if m1(x)−m2(x) ̸= 0 and
so we have m1(x) = m2(x). In the following table we have some examples of algebras
and their minimal polynomials

A p(x) q(x) m(x) Xp,q

{f |f(α) = f(β)} (x− α)(x− β) (x− α)(x− β)x (x− α)(x− β) (x− α)(x− β)

{f |f ′(α) = 0} (x− α)2 (x− α)2x (x− α)2 (x− α)2

{f |f ′(α) = f ′′(α) = 0} (x− α)3 (x− α)3x (x− α)3 (x− α)6

Table 1: Some subalgebras generated by {p(x), q(x)} together with their minimal poly-
nomial, m(x), and characteristic polynomial, Xp,q.

Note that an algebra is not uniquely determined by its minimal polynomial, both
{f |f(α) = f(β), f ′(α) + f ′(β) = 0} and {f |f(α) = f(β), f ′(α) = 0, f ′(β) = 0}
have m(x) = (x − α)2(x − β)2 as their minimal polynomial. This polynomial is of in-
terest because similarly to the characteristic polynomial its zeros also consists of the
spectrum elements.

Theorem 4. Denote the minimal polynomial of A as m(x) then the following is equiv-
alent

α ∈ Sp(A) ⇐⇒ m(α) = 0

Proof. (Theorem 4):
We will start by showing that α ∈Sp(A) =⇒ m(α) = 0.

If there exists a β ̸= α such that β ∈ Sp(A) and f(α) = f(β), ∀f ∈ A, we then use that
m(x) ∈ A to get

m(α) = m(β)
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and m(x)x ∈ A to get

m(α)α = m(β)β =⇒ m(α)(α− β) = 0

where we use α ̸= β to get m(α) = m(β) = 0

Next take α ∈ Sp(A) such that f ′(α) = 0 for all f ∈ A. Then m(x) ∈ A gives

m′(α) = 0

and m(x)x ∈ A gives(
m(x) · x

)′
(α) = m′(α) · α+m(α) = m(α) = 0

and so we can conclude that for any α ∈ Sp(A) we have m(α) = 0.

Next we will show thatm(α) = 0 =⇒ α ∈ Sp(A). Sincem(x) is the minimal polynomial

we know that it has a lower degree than the polynomial πN
A (x) =

n∏
i=1

(x − αi)
N defined

in Theorem 3. Using polynomial division we can then write

πN
A (x) = q(x) ·m(x) + r(x)

where deg
(
r(x)

)
< deg

(
m(x)

)
. We then get r(x) · xk =

(
πN
A (x)− q(x) ·m(x)

)
· xk ∈ A,

∀k ≥ 0. However since m(x) is the minimal polynomial with this property we obtain
that r(x) = 0. This means m(x) | πN

A (x) and so any zeros of m(x) must also be zeros of
πN
A (x) and as a result are in the spectrum of A.

Before moving on to find an explicit expression of the minimal polynomial we will show
one final property of this polynomial.

Theorem 5. Given a subalgebra B ⊆ A ⊆ K[x] of finite codimension we denote the
minimal polynomials of A and B by mA(x) and mB(x) respectively. Then we have
mA(x) | mB(x)

Proof. (Theorem 5):
We have mB(x) · xk ∈ B ⊆ A, ∀k ≥ 0 and since mA(x) is the minimal polynomial with
this property we have deg

(
mA(x)

)
≤ deg

(
mB(x)

)
. Using polynomial division we rewrite

mB(x) = q(x) ·mA(x) + r(x)

where deg
(
r(x)

)
< deg

(
mA(x)

)
. Due to minimality we have r(x) = 0 and somA(x) | mB(x).

3 Constructing the Minimal Polynomial of A

In this section we will explain a simple way to obtain the minimal polynomial of a
subalgebra A ⊆ K[x], if it is expressed using conditions. For example the algebra {f(α) =
f(β), f ′(α) = 0} have the minimal polynomial m(x) = (x− α)2(x− β) but how did we
find this polynomial?
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3.1 Effect of an Equality Condition

First we will start by looking at how the minimal polynomial is affected by an equality
condition.

Theorem 6. If one of the conditions of subalgebra A ⊆ K[x] is the equality condition
f(α) = f(β), ∀f ∈ A , where α, β are distinct spectrum elements, we have that

(x− α)(x− β) | mA(x)

where mA(x) is the minimal polynomial of A.

Proof. (Theorem 6):
In Theorem 4 we found that since α and β are in the spectrum of A we have m(α) =
m(β) = 0. From the fact that m(x) is nonzero, and α ̸= β, we use the factor theorem
to obtain that (x− α)(x− β) | mA(x).

3.2 Effect of a Derivation

As the proof for the effect an arbitrary derivation is rather convoluted we will state the
theorem and leave the proof for later once we have familiarized ourselves with the ideas
required for the proof.

Theorem 7. If one of the conditions of subalgebra is a derivation originating from a
cluster of size M, αi ∼ αj ∀i, j ∈ {1, 2, . . . ,M}, where we can write the derivation as

D(f) =
M∑
j=1

Nj∑
i=1

sj,if
(i)(αj)

where sj,Nj ̸= 0. Then
N∏
j=1

(x− αj)
Nj+1 is a factor of the minimal polynomial.

3.2.1 Cluster of Size 1

We will start by looking at the case when the spectrum of our subalgebra consists of a
single element, denoted α.

Theorem 8. Assume our subalgebra A, has spectrum Sp(A) = {α} and one of its

conditions is the derivation D(f) =
N∑
i=1

aif
(i)(α), where aN ̸= 0. Then (x − α)N+1 is a

factor of the minimal polynomial m(x), of A.

By the definition of the minimal polynomial, m(x) which moving forward will be short-
ened to m for convenience, we have mxk lies in A for all k ≥ 0, and so D(mxk) = 0.
This will be the foundation of our proofs moving forward. Starting off we will introduce
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the following notation

S(α)k,n =
N∑
i=k

ai
i!

(i− k)!
(mxn)(i−k)(α)

for 0 ≤ k ≤ N , n ≥ 0, and for k = 0, n ≥ 0 we have

S(α)0,n =

N∑
i=1

ai(mxn)(i)(α) = D(mxn)

We also define S(α)k,n = 0 for k > N . The product rule for derivation gives us

(mxn−1 · x)(i) = x(mxn−1)(i) + i(mxn−1)(i−1)

which we can rewrite using our new notations to obtain

S(α)k,n = α · S(α)k,n−1 + S(α)k+1,n−1 for n ≥ 1 (5)

Example 3. Assume we have a subalgebra A with spectrum Sp(A) = {α}. One of the
conditions of A can be expressed as following

D(f) = a1f
′(α) + a2f

′′(α) = 0, ∀ f ∈ A

where a2 ̸= 0. Our goal is to show that (x− α)3 | m(x). We will then rewrite D(m) = 0
as

D(m) = a1m
′(α) + a2m

′′(α) =
2∑

i=1
aim

(i)(α) = S(α)0,0

from which we get S(α)0,0 = 0. Then we rewrite D(mx) = 0

D(mx) = a1(mx)′(α) + a2(mx)′′(α) =
2∑

i=1
ai(mx)(i)(α) = S(α)0,1 =

= α
(
a1m

′(α) + a2m
′′(α)

)
+
(
a1m(α) + 2a2m

′(α)
)
=

= α
2∑

i=1
aim

(i)(α) +
2∑

i=1
aiim

(i−1)(α) = αS(α)0,0 + S(α)1,0

from which we get S(α)0,1 = S(α)1,0 = 0. Lastly we rewrite D(mx2) = 0

D(mx2) = a1(mx2)′(α) + a2(mx2)′′(α) =
2∑

i=1
ai(mx2)(i)(α) = S(α)0,2 =

= α
(
a1(mx)′(α) + a2(mx)′′(α)

)
+
(
a1(mx)(α) + 2a2(mx)′(α)

)
=

= α
2∑

i=1
ai(mx)(i)(α) +

2∑
i=1

aii(mx)(i−1)(α) = αS(α)0,1 + S(α)1,1 =

= α2
(
a1m

′(α) + a2m
′′(α)

)
+ 2α

(
a1m(α) + 2a2m

′(α)
)
+ 2a2m(α) =

= α2
2∑

i=1
aim

(i)(α) + 2α
2∑

i=1
aiim

(i)(α) +
2∑

i=2
aii(i− 1)m(i−2)(α) =

= α2S(α)0,0 + 2αS(α)1,0 + S(α)2,0
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from which we get S(α)0,2 = S(α)1,1 = S(α)2,0 = 0. That (x − α)3 | m(x) is equivalent
to showing that m(α) = m′(α) = m′′(α), and so we write

S(α)2,0 = 0 =⇒ 2a2m(α) = 0 =⇒ m(α) = 0
S(α)1,0 = 0 =⇒ a1m(α) + 2a2m

′(α) = 0 =⇒ m′(α) = 0
S(α)0,0 = 0 =⇒ a1m

′(α) + a2m
′′(α) = 0 =⇒ m′′(α) = 0

where we have used a2 ̸= 0 to conclude our example.

In Example 3 we begin to see patterns which we want to prove in general, one of which
is

Lemma 1. For any k ≥ 0, n ≥ 0 we have

k∑
i=0

αk−i

(
k

i

)
S(α)i,n = 0

We will denote this equation as Kk,n.

Lemma 2. From D(mxp) = 0 we obtain that

k∑
i=0

αk−i

(
k

i

)
S(α)i,p−k = 0

holds true for 0 ≤ k ≤ p. Which is equivalent to Kk,p−k holding true for 0 ≤ k ≤ p.

Proof. (Lemma 2):
For our proof we will be using induction, first note that by definition we have

D(mxn) = S(α)0,n = 0 (6)

This means we have D(mx0) = S(α)0,0 = 0, and thus the lemma holds for p = 0. Then
we assume the lemma to be true for up to and including an arbitrary p ≥ 0. From
D(mxp+1) = 0 and Equation 6 we know that K0,p+1 holds true. If we assume Kt,p+1−t

is true for an arbitrary 0 ≤ t < p , then we have

t∑
i=0

αt−i

(
t

i

)
S(α)i,p+1−t = 0

which together with equation (5) we can rewrite as
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t∑
i=0

αt−i
(
t
i

)
S(α)i,p+1−t

=
t∑

i=0
αt+1−i

(
t
i

)
S(α)i,p+1−(t+1) +

t∑
i=0

αt−i
(
t
i

)
S(α)i+1,p+1−(t+1) =

=
t∑

i=0
αt+1−i

(
t
i

)
S(α)i,p+1−(t+1) +

t+1∑
i=1

αt+1−i
(

t
i−1

)
S(α)i,p+1−(t+1) =

= αt+1
(
t
0

)
S(α)0,p+1−(t+1) + α0

(
t
t

)
S(α)t+1,p+1−(t+1)

+
t∑

i=1
αt+1−i

((
t
i

)
+
(

t
i−1

))
S(α)i,p+1−(t+1) =

=
t+1∑
i=0

α(t+1)−i
(
t+1
i

)
S(α)i,p+1−(t+1) =

and so we have shown that it also holds for Kt+1,p+1−(t+1), and so by induction Kt,p+1−t

holds for all t. By induction our lemma holds for all p and so we have reached the
conclusion of the proof.

Proof. (Lemma 1):
Take an arbitrary Kk,n such that k, n ≥ 0 then using Lemma 2 with p = k + n we have
our statement as k ≤ k + n = p and n = (k + n)− k = p− k.

Lemma 3. For all k ≥ 0 we have

S(α)k,0 = 0

Proof. (Lemma 3):
We will be using induction, for k = 0 we have D(m) = S(α)0,0 = 0. Next assume we
have S(α)k,0 = 0 for 0 ≤ k ≤ p, then we have

0 =

p+1∑
i=0

αp+1−i

(
p+ 1

i

)
S(α)i,0 = α0

(
p+ 1

p+ 1

)
S(α)p+1,0 = S(α)p+1,0

Proof. (Theorem 8):
We will show that m(n)(α) = 0 for n = 0, 1, . . . , N . For n = 0 we take

S(α)N,0 = aN ·N ! ·m(0)(α) = 0 =⇒ m(0)(α) = 0 since aN ̸= 0

Assume m(n)(α) = 0 for n = 0, 1, . . . , p for a 0 ≤ p < N then from the definition of
S(α)k,n we have

S(α)N−(p+1),0 =
N∑

i=N−(p+1)

ai
i!

(i−N + p+ 1)!
m(i−N+(p+1))(α) = aN · N !

(p+ 1)!
·m(p+1)(α) = 0

12



and so we get m(p+1)(α) = 0. By induction we get m(n)(α) = 0 for n = 0, 1, . . . , N which
is equivalent to (x− α)N+1 | m(x), and our proof has concluded.

3.2.2 Cluster of Size 2

Theorem 9. Assume one of the conditions of our subalgebra, A, is a derivation origi-
nating from a cluster of size two, α ∼ β, where we can write the derivation as

D(f) =
N∑
i=1

aif
(i)(α) +

M∑
i=1

bif
(i)(β), where aN ̸= 0, bM ̸= 0

Then (x− α)N+1(x− β)M+1 is a factor of the minimal polynomial, m(x), of A.

The proof will be provided later. First we will extend our previous notations to also
include

S(β)k,n =
M∑
i=k

bi
i!

(i− k)!
(mxn)(i−k)(β)

for 0 < k ≤ M and n ≥ 0. And for k = 0 and n ≥ 0 we have

S(β)0,n =
M∑
i=1

bi(mxn)(i)(β)

We also define S(β)k,n = 0 for k > M .

Similarly to before we also have

S(β)k,n = β · S(β)k,n−1 + S(β)k+1,n−1 for n ≥ 1 (7)

since (mxn)(i) = x(mxn−1)(i) + i(mxn−1)(i−1).

Before we work towards proving Theorem 9 we will look at the following example

Example 4. Assume we have a subalgebra A with spectrum Sp(A)={α, β}, α ∼ β. One
of the conditions of A can be expressed as follows

D(f) = a1f
′(α) + a2f

′′(α) + b1f
′(β) = 0, ∀ f ∈ A

where a2, b1 ̸= 0. We will now show that (x − α)3(x − β)2 | m(x). Already in the case
of one spectrum element the calculations were quite extensive and so in this example we
will make use of the following table, which holds true for any α-derivation.

13



D(m) = S(α)0,0 + S(β)0,0
D(mx) = S(α)0,1 + S(β)0,1

= S(α)1,0 + (β − α)S(β)0,0 + S(β)1,0
D(mx2) = S(α)0,2 + S(β)0,2

= S(α)1,1 + (β − α)S(β)0,1 + S(β)1,1
= (α− β)S(α)1,0 + S(α)2,0 + (β − α)S(β)1,0 + S(β)2,0

D(mx3) = S(α)0,3 + S(β)0,3
= S(α)1,2 + (β − α)S(β)0,2 + S(β)1,2
= (α− β)S(α)1,1 + S(α)2,1 + (β − α)S(β)1,1 + S(β)2,1
= (α− β)S(α)2,0 + S(α)3,0 + (β − α)2S(β)1,0 + 2(β − α)S(β)2,0 + S(β)3,0

D(mx4) = S(α)0,4 + S(β)0,4
= S(α)1,3 + (β − α)S(β)0,3 + S(β)1,3
= (α− β)S(α)1,2 + S(α)2,2 + (β − α)S(β)1,2 + S(β)2,2
= (α− β)S(α)2,1 + S(α)3,1 + (β − α)2S(β)1,1 + 2(β − α)S(β)2,1 + S(β)3,1
= (α− β)2S(α)2,0 + 2(α− β)S(α)3,0 + S(α)4,0
+(β − α)2S(β)2,0 + 2(β − α)S(β)3,0 + S(β)4,0

In our case we have S(α)k,n = 0 for k > 2 and S(β)k,n = 0 for k > 1. And so looking
only at n = 0 we can rewrite the table as

D(m) = S(α)0,0 + S(β)0,0
D(mx) = S(α)1,0 + (β − α)S(β)0,0 + S(β)1,0
D(mx2) = (α− β)S(α)1,0 + S(α)2,0 + (β − α)S(β)1,0
D(mx3) = (α− β)S(α)2,0 + (β − α)2S(β)1,0
D(mx4) = (α− β)2S(α)2,0

Using α ̸= β we get

D(mx4) = 0 =⇒ (α− β)2S(α)2,0 = 0 =⇒ S(α)2,0 = 0
D(mx3) = 0 =⇒ (β − α)2S(β)1,0 = 0 =⇒ S(β)1,0 = 0
D(mx2) = 0 =⇒ (α− β)S(α)1,0 = 0 =⇒ S(α)1,0 = 0
D(mx) = 0 =⇒ (β − α)S(β)0,0 = 0 =⇒ S(β)0,0 = 0
D(m) = 0 =⇒ S(α)0,0 = 0

We then use the definition of S(α)k,n to get

S(α)2,0 = 0 =⇒ 2a2m(α) = 0 =⇒ m(α) = 0
S(α)1,0 = 0 =⇒ 2a2m

′(α) = 0 =⇒ m′(α) = 0
S(α)0,0 = 0 =⇒ a2m

′′(α) = 0 =⇒ m′′(α) = 0

where we have used a2 ̸= 0. Similarly we use the definition of S(β)k,n to get
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S(β)1,0 = 0 =⇒ b1m(β) = 0 =⇒ m(β) = 0
S(β)0,0 = 0 =⇒ b1m

′(β) = 0 =⇒ m′(β) = 0

where we use b1 ̸= 0. Which together means we have (x− α)3(x− β)2 | m(x).

Lemma 4. The following statements are true for all k, n ≥ 0.

k∑
i=0

(
k

i

)
(α− β)k−iS(α)k+i,n +

k∑
i=0

(
k

i

)
(β − α)k−iS(β)k+i,n = 0 (8)

k∑
i=0

(
k

i

)
(α− β)k−iS(α)k+i+1,n +

k+1∑
i=0

(
k + 1

i

)
(β − α)k+1−iS(β)k+i,n = 0 (9)

which moving forward we will denote K0
k,n and K1

k,n respectively.

From these equations we can trivially tell that we have K0
0,n = S(α)0,n + S(β)0,n =

D(mxn) = 0.

Lemma 5. We have the following implications

• K0
k,n+1 and K0

k,n holds =⇒ K1
k,n holds

• K1
k,n+1 and K1

k,n holds =⇒ K0
k+1,n holds

Proof. (Lemma 5):
Assume we have K0

k,n+1 and K0
k,n. We will rewrite K0

k,n+1 using Equation 7 and then

substitute using K0
k,n

k∑
i=0

(
k
i

)
(α− β)k−iS(α)k+i,n+1 +

k∑
i=0

(
k
i

)
(β − α)k−iS(β)k+i,n+1 =

= α
k∑

i=0

(
k
i

)
(α− β)k−iS(α)k+i,n +

k∑
i=0

(
k
i

)
(α− β)k−iS(α)k+i+1,n

+β
k∑

i=0

(
k
i

)
(β − α)k−iS(β)k+i,n +

k∑
i=0

(
k
i

)
(β − α)k−iS(β)k+i+1,n =

=
k∑

i=0

(
k
i

)
(α− β)k−iS(α)k+i+1,n +

k∑
i=0

(
k
i

)
(β − α)k−i+1S(β)k+i,n

+
k∑

i=0

(
k
i

)
(β − α)k−iS(β)k+i+1,n =

=
k∑

i=0

(
k
i

)
(α− β)k−iS(α)k+i+1,n +

(
k
0

)
(β − α)k+1S(β)k,n

+
k∑

i=1

((
k
i

)
+
(

k
i−1

))
(β − α)k−i+1S(β)k+i,n +

(
k
k

)
(β − α)0S(β)2k+1,n =

=
k∑

i=0

(
k
i

)
(α− β)k−iS(α)k+i+1,n +

k+1∑
i=0

(
k+1
i

)
(β − α)k−i+1S(β)k+i,n = 0
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where we have used
(
k
i

)
+
(

k
i−1

)
=
(
k+1
i

)
. And so we have shown the first statement of

the lemma. Next we assume to have K1
k,n+1 and K1

k,n. Similarly we will rewrite K1
k,n+1

using Equation 7 and then substitute using K1
k,n

k∑
i=0

(
k
i

)
(α− β)k−iS(α)k+i+1,n+1 +

k+1∑
i=0

(
k+1
i

)
(β − α)k+1−iS(β)k+i,n+1 =

= α
k∑

i=0

(
k
i

)
(α− β)k−iS(α)k+i+1,n +

k∑
i=0

(
k
i

)
(α− β)k−iS(α)k+i+2,n

+β
k+1∑
i=0

(
k+1
i

)
(β − α)k+1−iS(β)k+i,n +

k+1∑
i=0

(
k+1
i

)
(β − α)k+1−iS(β)k+i+1,n =

=
k∑

i=0

(
k
i

)
(α− β)k−i+1S(α)k+i+1,n +

k∑
i=0

(
k
i

)
(α− β)k−iS(α)k+i+2,n

+
k+1∑
i=0

(
k+1
i

)
(β − α)k+1−iS(β)k+i+1,n =

=
(
k
0

)
(α− β)k+1S(α)k+1,n +

k∑
i=1

((
k
i

)
+
(

k
i−1

))
(α− β)k−i+1S(α)k+i+1,n

+
(
k
k

)
(α− β)0S(α)2k+2,n +

k+1∑
i=0

(
k+1
i

)
(β − α)k+1−iS(β)k+i+1,n =

=
(k+1)∑
i=0

(
(k+1)

i

)
(α− β)(k+1)−iS(α)(k+1)+i,n +

(k+1)∑
i=0

(
(k+1)

i

)
(β − α)(k+1)−iS(β)(k+1)+i,n = 0

Lemma 6. From D(mxp) = 0, where p = 2q+r ≥ 0 and r ∈ {0, 1}, we get K r̂
q̂,2(q−q̂)+(r−r̂),

for 0 ≤ 2q̂ + r̂ ≤ p.

Proof. (Lemma 6):
For p = 0 we need K0

0,0 which can be written as S(α)0,0 + S(β)0,0 = D(m) = 0 which
we know since previously. Next we assume the lemma to be true for up to and including
an arbitrary p ≥ 0. We want to show that this statement also holds true for p + 1. By
definition we have D(mxp+1) = S(α)p+1,0+S(β)p+1,0 = 0 which is equivalent to K0

0,p+1.

Assuming that we have K r̂
q̂,2(q−q̂)+(r−r̂) for 0 ≤ 2q̂ + r̂ ≤ t for some t = 2q̃ + r̃, where

r̂, r̃ ∈ {0, 1}. Then we will use Lemma 5.

If r̃ = 0 we have K0
q̃,2(q−q̃)+r and K0

q̃,2(q−q̃)+r−1 and so we also have K1
q̃,2(q−q̃)+r−1.

If r̃ = 1 we have K1
q̃,2(q−q̃)+(r−1) and K1

q̃,2(q−q̃)+(r−1)−1 and so we also have

K0
q̃+1,2(q−q̃)+(r−1)−1 = K0

q̃+1,2(q−q̃−1)+r.

This is equivalent to K r̂
q̂,2(q−q̂)+(r−r̂) being true for 0 ≤ 2q̂+r̂ ≤ t+1. We have now shown

that our statement holds for p+ 1, so using induction we have finished our proof.

Proof. (Lemma 4):
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Pick arbitrary a, b, c such that a, b ≥ 0 and c ∈ {0, 1}, we want to show that Kc
a,b holds.

Then using Lemma (6) with p = 2a+b+c = 2q+r where r ∈ {0, 1}, q̂ = a, and r̂ = c we
have 2(q− q̂)+(r− r̂) = p−2a−c = b which together with 2q̂+ r̂ = 2a+c ≤ 2a+b+c = p
concludes our proof.

Lemma 7. For all k ≥ 0 we have

S(α)k,0 = S(β)k,0 = 0

Proof. (Lemma 7):

By definition S(α)k,0 = 0 for k > N and S(β)k,0 = 0 for k > M . We will rewrite
Equations 8 and 9 as

(α− β)kS(α)k,n = −
k∑

i=1

(
k

i

)
(α− β)k−iS(α)k+i,n −

k∑
i=0

(
k

i

)
(β − α)k−iS(β)k+i,n (10)

(β−α)k+1S(β)k,n = −
k∑

i=0

(
k

i

)
(α−β)k−iS(α)k+i+1,n−

k+1∑
i=1

(
k + 1

i

)
(β−α)k+1−iS(β)k+i,n

(11)

In particular this is true for n = 0. Assume we have S(α)t,0 = S(β)t,0 = 0 for all t ≥ p
for some p > 0. Then from Equation 11 with k = t− 1 we get

(β − α)k+1S(β)t−1,0 = 0 =⇒ S(β)t−1,0 = 0

and from Equation 10 we get

(α− β)kS(α)t−1,0 = 0 =⇒ S(α)t−1,0 = 0

By induction we finish our proof.

Proof. (Theorem 9):
Starting with S(β)M,0 = 0 we get bM · M ! · m(β) = 0 =⇒ m(β) = 0, since bM ̸= 0.
Assume m(t)(β) = 0 for all t such that 0 ≤ t ≤ p, where p is an arbitrary number
0 ≤ p < M . Then

S(β)M−p−1,0 = 0 =⇒ bM · M !

(p+ 1)!
·m(p+1)(β) = 0

and so m(p+1)(β) = 0. By induction we have m(β) = m′(β) = · · · = m(M)(β) = 0.
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Similarly we will look at S(α)N,0 = 0 to get aN · N ! ·m(α) = 0 =⇒ m(α) = 0, since
aN ̸= 0. Assume m(t)(α) = 0 for all t, such that 0 ≤ t ≤ p, where p is an arbitrary
number 0 ≤ p < N . Then

S(α)N−p−1,0 = 0 =⇒ bN · N !

(p+ 1)!
·m(p+1)(α) = 0

and so m(p+1)(α) = 0. By induction we have m(α) = m′(α) = · · · = m(N)(α) = 0.

These two statements together gives us (x− α)N+1(x− β)M+1 | m(x).

3.2.3 Cluster of Size M

In this section we will finally provide the proof for Theorem 7. We will start by intro-
ducing the following notations

S(αj)k,n =

Nj∑
i=k

sj,i
i!

(i− k)!
(mxn)(i−k)(αj)

for 0 < k ≤ Nj and n ≥ 0. And for k = 0 and n ≥ 0 we have

S(αj)0,n =

Nj∑
i=1

sj,i(mxn)(i)(αj)

we also define S(αj)k,n = 0 for k > Nj . Similar to before we also introduce the following
equation

S(αj)k,n = αjS(αj)k,n−1 + S(αj)k+1,n−1 for n ≥ 1 (12)

which holds since (mxn)(i) = x(mxn−1)(i) + i(mxn−1)(i−1).

When we are working with M spectrum elements we will have some patterns which are
similar to the ones in the 2 spectrum elements case. We will now look at the behavior
of 3 spectrum elements to demonstrate the one behaviour which is not apparent in the
case of 2 spectrum elements. Due to the length of these expressions we will introduce
some temporary notations

Ak = S(α)k,0 Bk = S(β)k,0 Ck = S(γ)k,0

α1 = 0 α2 = α− β α3 = α− γ
β1 = β − α β2 = 0 β3 = β − γ
γ1 = γ − α γ2 = γ − β γ3 = 0

As these notations hint at we will only look at the case when n = 0, but similar patterns
appear for n > 0. As the definitions above might suggest α1, α2, α3 will not refer to the
spectrum elements of A whilst we are looking at the case of |Sp(A)| = 3.

18



D(m) = A0 +B0 + C0

D(mx) = β1B0 + γ1C0 +A1 +B1 + C1

D(mx2) = γ1γ2C0 + α2A1 + β1B1 + (γ1 + γ2)C1 +A2 +B2 + C2

Looking at D(mx2) we find that C0 has coefficient γ1γ2 then the coefficient in front of
C1 is (γ1+ γ2) which is a sum of all permutations of γ1γ2 where we have removed one of
either γ1 or γ2, and similarly the coefficient in front of C2 is the sum of all permutations
of γ1γ2 where we have removed two of either γ1 or γ2, namely 1. Next we will look at
the following three examples, where we will not only see this pattern reoccur but we will
also take a look at what the initial coefficient looks like, which in the previous case we
looked at was γ1γ2.

D(mx3) = α2α3A1 + (α2 + α3)A2 +A3

+ β1β3B1 + (β1 + β3)B2 +B3

+ γ1γ2C1 + (γ1 + γ2)C2 + C3

D(mx4) = β2
1β3B1 + (β2

1 + 2β1β3)B2 + (2β1 + β3)B3 +B4

+ γ21γ2C1 + (γ21 + 2γ1γ2)C2 + (2γ1 + γ2)C3 + C4

+ α2α3A2 + (α2 + α3)A3 +A4

D(mx5) = γ21γ
2
2C1 + (2γ21γ2 + 2γ1γ

2
2)C2 + (γ21 + 4γ1γ2 + γ22)C3 + (2γ1 + 2γ2)C4 + C5

+ α2
2α3A2 + (α2

2 + 2α2α3)A3 + (2α2 + α3)A4 +A5

+ β2
1β3B2 + (β2

1 + 2β1β3)B3 + (2β1 + β3)B4 +B5

Assume we are looking at D(mxp) where p = 3q + r, r ∈ {0, 1, 2}, then we find that the
initial coefficient in front of A, B, and C respectively is

A B C
αq
2 · α

q
3 βq

1 · β
q
3 γq1 · γ

q
2 if r = 0

αq
2 · α

q
3 βq+1

1 · βq
3 γq+1

1 · γq2 if r = 1

αq+1
2 · αq

3 βq+1
1 · βq

3 γq+1
1 · γq+1

2 if r = 2

we can see a cyclical behavior with period 3, there is a similar cyclical behavior when
we have M spectrum elements however then the period is M. Looking at only at the
C/γ-part we get

γq1γ
q
2Cq +

((
q
q

)(
q

q−1

)
γq1γ

q−1
2 +

(
q

q−1

)(
q
q

)
γq−1
1 γq2

)
Cq+1+

· · ·+ (q γ1 + q γ2)C2q−1 + C2q if r = 0

γq+1
1 γq2Cq +

((
q+1
q+1

)(
q

q−1

)
γq+1
1 γq−1

2 +
(
q+1
q

)(
q
q

)
γq1γ

q
2

)
Cq+1+

· · ·+ ((q + 1) γ1 + q γ2)C2q + C2q+1 if r = 1

γq+1
1 γq+1

2 Cq +
((

q+1
q+1

)(
q+1
q

)
γq+1
1 γq2 +

(
q+1
q

)(
q+1
q+1

)
γq1γ

q+1
2

)
Cq+1+

· · ·+ ((q + 1) γ1 + (q + 1) γ2)C2q+1 + C2q+2 if r = 2

19



which combined into a single equation becomes

∑
a1,a2...,ar∈{0,1,...,q+1}
ar+1,ar+2...,a3∈{0,1,...,q}

(
r∏

i=1

γaii

(
q + 1

ai

))
·

(
3∏

i=r+1

γaii

(
q

ai

))
C∆

where ∆ = a3 +
r∑

i=1
(q + 1 − ai) +

3∑
i=r+1

(q − ai), note that in all nonzero terms we have

a3 = 0 since a3 ̸= 0 implies γ3 = 0 is a factor of the term. In order to get the equations
for α and β we only need to change γi to αi or βi as well as change the a3 in ∆ to a1
and a2 respectively. Now that we hopefully have a better understanding of what our
equations looks like we will go back to the general case where we have M spectrum
elements.

Lemma 8. The following statement is true for all k, n ≥ 0 and 0 ≤ u ≤ M − 1.

M∑
j=1

 ∑
a1,a2...,au∈{0,1,...,k+1}

au+1,au+2...,aM∈{0,1,...,k}

(
u∏

i=1

(αj − αi)
ai

(
k + 1

ai

))( M∏
i=u+1

(αj − αi)
ai

(
k

ai

))
S(αj)∆j ,n

 = 0

where ∆j = aj +
u∑

i=1
(k+1− ai)+

M∑
i=u+1

(k− ai). Going forward we will denote these this

equation by Ku
k,n.

Lemma 9. We have the following implications

• Ku
k,n+1 and Ku

k,n holds =⇒ Ku+1
k,n holds

• KM−1
k,n+1 and KM−1

k,n holds =⇒ K0
k+1,n holds

where 0 ≤ u ≤ M-2 and n ≥ 0.

Proof. (Lemma 9):
We will rewrite Ku

k,n+1 using Equation 12 and then substitute using Ku
k,n to get the

following
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M∑
j=1

 ∑
a1,a2...,au∈{0,1,...,k+1}

au+1,au+2...,aM∈{0,1,...,k}

(
u∏

i=1
(αj − αi)

ai
(
k+1
ai

))( M∏
i=u+1

(αj − αi)
ai
(
k
ai

))
S(αj)∆j ,n+1

 =

=
M∑
j=1

αj

 ∑
a1,a2...,au∈{0,1,...,k+1}

au+1,au+2...,aM∈{0,1,...,k}

(
u∏

i=1
(αj − αi)

ai
(
k+1
ai

))( M∏
i=u+1

(αj − αi)
ai
(
k
ai

))
S(αj)∆j ,n


+

M∑
j=1

 ∑
a1,a2...,au∈{0,1,...,k+1}

au+1,au+2...,aM∈{0,1,...,k}

(
u∏

i=1
(αj − αi)

ai
(
k+1
ai

))( M∏
i=u+1

(αj − αi)
ai
(
k
ai

))
S(αj)∆j+1,n

 =

=
M∑
j=1

j ̸=u+1

(αj − αu+1)

 ∑
a1,a2...,au∈{0,1,...,k+1}

au+1,au+2...,aM∈{0,1,...,k}

(
u∏

i=1
(αj − αi)

ai
(
k+1
ai

))( M∏
i=u+1

(αj − αi)
ai
(
k
ai

))
S(αj)∆j ,n


+

M∑
j=1

 ∑
a1,a2...,au∈{0,1,...,k+1}

au+1,au+2...,aM∈{0,1,...,k}

(
u∏

i=1
(αj − αi)

ai
(
k+1
ai

))( M∏
i=u+1

(αj − αi)
ai
(
k
ai

))
S(αj)∆j+1,n

 =

=
M∑
j=1

j ̸=u+1

( ∑
a1,a2...,au∈{0,1,...,k+1}

au+1∈{1,2,...,k+1}
au+2,au+3...,aM∈{0,1,...,k}

(
u∏

i=1
(αj − αi)

ai
(
k+1
ai

))
·
(
(αj − αu+1)

au+1
(

k
au+1−1

))

·
(

M∏
i=u+2

(αj − αi)
ai
(
k
ai

))
S(αj)∆j+1,n

)

+
M∑
j=1

 ∑
a1,a2...,au∈{0,1,...,k+1}

au+1,au+2...,aM∈{0,1,...,k}

(
u∏

i=1
(αj − αi)

ai
(
k+1
ai

))( M∏
i=u+1

(αj − αi)
ai
(
k
ai

))
S(αj)∆j+1,n

 =

=
M∑
j=1

j ̸=u+1

( ∑
a1,a2...,au∈{0,1,...,k+1}

au+1∈{1,2,...,k}
au+2,au+3...,aM∈{0,1,...,k}

(
u∏

i=1
(αj − αi)

ai
(
k+1
ai

))
·
(
(αj − αu+1)

au+1

((
k

au+1−1

)
+
(

k
au+1

)))

·
(

M∏
i=u+2

(αj − αi)
ai
(
k
ai

))
S(αj)∆j+1,n

)
=

=
M∑
j=1

j ̸=u+1

( ∑
a1,a2...,au∈{0,1,...,k+1}

au+2,au+3...,aM∈{0,1,...,k}

(
u∏

i=1
(αj − αi)

ai
(
k+1
ai

))
·
(
(αj − αu+1)

k+1
(
k
k

))

·
(

M∏
i=u+2

(αj − αi)
ai
(
k
ai

))
S(αj)∆j+1,n

)

+
M∑
j=1

 ∑
a1,a2...,au∈{0,1,...,k+1}

au+2,au+3...,aM∈{0,1,...,k}

(
u∏

i=1
(αj − αi)

ai
(
k+1
ai

))( M∏
i=u+2

(αj − αi)
ai
(
k
ai

))
S(αj)∆j+1,n


+

∑
a1,a2...,au∈{0,1,...,k+1}

au+1,au+2...,aM∈{0,1,...,k}

(
u∏

i=1
(αu+1 − αi)

ai
(
k+1
ai

))( M∏
i=u+1

(αu+1 − αi)
ai
(
k
ai

))
S(αu+1)∆u+1+1,n =
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=
M∑
j=1

j ̸=u+1

( ∑
a1,a2...,au+1∈{0,1,...,k+1}
au+2,au+3...,aM∈{0,1,...,k}

(
u+1∏
i=1

(αj − αi)
ai
(
k+1
ai

))
·
(

M∏
i=u+2

(αj − αi)
ai
(
k
ai

))
S(αj)∆j+1,n

)

+
∑

a1,a2...,au∈{0,1,...,k+1}
au+1,au+2...,aM∈{0,1,...,k}

(
u∏

i=1
(αu+1 − αi)

ai
(
k+1
ai

))( M∏
i=u+1

(αu+1 − αi)
ai
(
k
ai

))
S(αu+1)∆u+1+1,n =

=
M∑
j=1

( ∑
a1,a2...,au+1∈{0,1,...,k+1}
au+2,au+3...,aM∈{0,1,...,k}

(
u+1∏
i=1

(αj − αi)
ai
(
k+1
ai

))
·
(

M∏
i=u+2

(αj − αi)
ai
(
k
ai

))
S(αj)∆j+1,n

)

Assuming that 0 ≤ u ≤ M − 2 this last statement is obviously Ku+1
k,n . However if

u = M − 1 it can be written as

M∑
j=1

( ∑
a1,a2...,aM∈{0,1,...,k+1}

(
M∏
i=1

(αj − αi)
ai

(
(k + 1)

ai

))
S(αj)∆j+1,n

)

which is the same as K0
k+1,n and thus we have finished the proof of Lemma 9.

Lemma 10. D(mxp) = 0, p = Mq+ r, 0 ≤ r ≤ M − 1, is equivalent to K r̂
q̂,M(q−q̂)+(r−r̂)

holding when 0 ≤ Mq̂ + r̂ ≤ p.

Proof. (Lemma 10):
We will be using induction. First we make note that by definition we have

D(mxn) =

M∑
j=1

S(αj)0,n = 0 (13)

Our lemma holding for p = 0 is equivalent to K0
0,0 which we get from Equation 13 with

n = 0. Next let us assume our lemma holds up to and including an arbitrary p ≥ 0 and
try to prove it holds for p+ 1. We get K0

0,p+1 from Equation 13. If we then assume we

have K r̂
q̂,M(q−q̂)+(r−r̂) for all 0 ≤ Mq̂ + r̂ ≤ t = Mq̃ + r̃, for some t ≥ 0. Then we have

K r̃
q̃,M(q−q̃)+(r−r̃) and K r̃

q̃,M(q−q̃)+(r−r̃)−1 which with Lemma 9 gives us K r̃+1
q̃,M(q−q̃)+(r−r̃)−1

at which point we have K r̂
q̂,M(q−q̂)+(r−r̂) for all 0 ≤ Mq̂ + r̂ ≤ t + 1. And so using

induction we find that our lemma holds for p+1 and thus our proof has concluded.

Proof. (Lemma 8):
Take arbitrary a, b, c where a, b ≥ 0 and 0 ≤ c ≤ M − 1, we want to show that Kc

a,b

holds. Then using Lemma 10 with p = Ma+ b+ c = Mq + r, 0 ≤ r ≤ M − 1. Then we
take q̂ = a and r̂ = c and we get M(q− q̂) + (r− r̂) = p−Ma− c = b which is what we
wanted and so our proof is concluded, since Ma+ c ≤ Ma+ b+ c = p.
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Lemma 11. For all k ≥ 0 and j ∈ {1, 2, . . . ,M} we have

S(αj)k,0 = 0

Proof. (Lemma 11):
By definition we know that S(αj)k,n = 0 for k > Nj . So all that is left to prove it for
0 ≤ k ≤ Nj . If we take N = max(Nj) we get a number for which all S(αj)k,n = 0 for
k > N . If we then take an arbitrary p > 0 and assume that S(αj)k,n = 0 for k > p then
we want to that this is also true for p− 1. To start we will take a look at the following
equation from Lemma 8, in the case when n = 0

M∑
j=1

 ∑
a1,a2...,au∈{0,1,...,k+1}

au+1,au+2...,aM∈{0,1,...,k}

(
u∏

i=1

(αj − αi)
ai

(
k + 1

ai

))( M∏
i=u+1

(αj − αi)
ai

(
k

ai

))
S(αj)∆j ,0

 = 0

From this equation we will specifically be looking at the term(
u∏

i=1

(αu+1 − αi)
k+1 ·

M∏
i=u+2

(αu+1 − αi)
k

)
S(αu+1)k,0

Under the assumption that

S(αj)t,0 = 0 for

{
t > k if 0 ≤ j ≤ u+ 1
t ≥ k if u+ 2 ≤ j ≤ M − 1

this is the only term which is nonzero since if we look at ∆j which is expressed as

∆j = aj +
u∑

i=1

(k + 1− ai) +
M∑

i=u+1

(k − ai)

we have

min(∆j) =


min

(
k + 1 +

u∑
i=1
i ̸=j

(k + 1− ai) +
M∑

i=u+1
(k − ai)

)
= k + 1 if 0 ≤ j ≤ u

min
(
k +

u∑
i=1

(k + 1− ai) +
M∑

i=u+1
i ̸=j

(k − ai)
)
= k if u+ 1 ≤ j ≤ M − 1

These assumptions are true in the case where we have u = 0 and k = p. Together with
αj ̸= α1 for all j ̸= 1 this gives us S(α1)p,0 = 0. If we now assume that S(αr)p,0 = 0
for 1 ≤ r ≤ t for a 1 ≤ t ≤ M − 1 then by the explanation above we get S(αt+1)p,0 = 0
and by induction S(αj)k,n = 0 for all k > p− 1 and all j. This completes our induction
proof and so we have S(αj)k,n = 0 for k ≥ 0.
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Proof. (Theorem 7):
We will take S(αj)Nj ,0 = 0 which implies sj,Nj ·Nj ! ·m(αj) = 0, since sj,Nj ̸= 0 we get

m(αj) = 0. If we assume that m(t)(αj) = 0 for all 0 ≤ t ≤ p for some 0 ≤ p < Nj . Then
we take

S(αj)Nj−t−1,0 = 0 =⇒ sj,Nj ·
Nj !

(p+ 1)!
·m(t+1)(αj) = 0 =⇒ m(t+1)(αj) = 0

Using induction we end up with m(αj) = m′(αj) = · · · = m(Nj)(αj) = 0 for all j which

gives us the result of our theorem, namely
N∏
j=1

(x − αj)
Nj+1 is a factor of the minimal

polynomial.

3.3 Determining the Minimal Polynomial of A

Now that we know how equality conditions and derivations affect the minimal polynomial
it is time to construct the minimal polynomial for a given algebra, A, with a set of
arbitrary conditions. Looking at the previous discoveries we reach the conclusion that

the minimal polynomial, of A, is a product
N∏
i=1

(x − αi)
Ni+1, where αi ∈ Sp(A) and Ni

is the largest order derivative, evaluated at αi, which occurs in our conditions. This is
what we will express in the following theorem

Theorem 10. Given a subalgebra A of finite codimension in K[x], which is constructed
using the conditions {Li | i = 1, 2 . . . ,M}. We have the following minimal polynomial

m(x) =
N∏
j=1

(x− αj)
max

i
(Ni,j)+1

where Sp(A)={αj | j = 1, 2, . . . , N} and we define Ni,j as follows

*If Li is an equality condition Ni,j = 0 if αj is included and Ni,j = −1 if it is not included.

*If Li is a derivation condition Ni,j is the order of largest derivative included, which is
evaluated at αj, if no such derivative is included Ni,j = −1

Proof. (Theorem 10):
Let m(x) be the minimal polynomial of A and look at condition Li, depending on what
type of condition Li is we look at either Theorem 6 or Theorem 7 and from there we
have

N∏
j=1

(x− αj)
Ni,j+1 | m(x) (14)

Looking at a specific spectrum element αk we have (x−αk)
Ni,j+1 | m(x) for all i, j. And

so the largest power of (x− αk) which divides the minimal polynomial is
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(x− αk)
max

i
(Ni,j)+1

. Combined we get

S(x) =

N∏
j=1

(x− αj)
max

i
(Ni,j)+1

| m(x) (15)

All that remains is to show that S(x) satisfies the properties of a minimal polynomial
i.e. f(x) = S(x) ·xk ∈ A for all k. We note that all equality conditions hold as f(αj) = 0
for any αj . Looking at derivations we find

f (t)(αj) =

t∑
i=0

(
t

i

)
· S(i)(αj) · (xk)(t−i)(αj) = 0 for 0 ≤ t ≤ max

i
(Ni,j) (16)

since m(i)(αj) = 0 for 0 ≤ i ≤ max
i

(Ni,j). By the definition of Ni,j we find that

Li

(
S(x)xk

)
= 0 for all k and so it satisfies the conditions necessary to be the minimal

polynomial. From Equation 15 we also find that no polynomial of lower degree, which
satisfies these conditions, can exist.

Next we will look at an example where we will construct the minimal polynomial given
the set of conditions of the algebra.

Example 5. We want to construct the minimal polynomial m(x) of the subalgebra, A,
which is constructed using the conditions

L1 : f(α)− f(β) = 0
L2 : f(β)− f(γ) = 0
L3 : f ′(α) = 0
L4 : f ′(β) = 0
L5 : f ′(δ) = 0

L6 : f ′′(α) + 2f (3)(α) = 0

We see that our spectrum is {α, β, γ, δ}, then we will look at what order of derivations
occur. The highest derivative of α occurs in L6 and is 3, the highest derivative of β and
δ is 1 and occurs in L4 and L5 respectively. γ only occurs in the equality condition L2

and as such its highest derivative is 0. Combined with Theorem 10 we obtain

m(x) = (x− α)4(x− β)2(x− γ)(x− δ)2

But if we have two subalgebras A and B, what is the minimal polynomial of their
intersection?

Theorem 11. Assume we have two subalgebras A and B of finite codimension in K[x]
with Sp(A ∩ B) = Sp(A) ∪ Sp(B) = {αi | i = 1, 2, . . . , n} and the minimal polynomials
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mA(x) =
n∏

i=1
(x − αi)

ai and mB(x) =
n∏

i=1
(x − αi)

bi. Then the intersection have the

minimal polynomial

mA∩B(x) =

n∏
i=1

(x− αi)
max{ai,bi}

Proof. (Theorem 11):
The conditions of A∩B is the union of the conditions of A and B, label these Lk. Then
by Theorem 10 we get a minimal polynomial

mA∩B(x) =
n∏

i=1

(x− αi)
ci

ci, it is the largest order of a derivative, evaluated at αi, in {Lk}, let us say this occurs
in condition Lp. This condition is then either in A or B. Assume WLOG it is in A,
then ai = ci. If not then there must exist a condition of A with a larger order derivative,
evaluated at αi which contradicts how we created ci. By a similar argument we find that
bi ≤ ci and so ci = ai = max{ai, bi}, which concludes our proof.

4 Adding an Additional Derivation to a Subalgebra

Given a subalgebra A in K[x] we can create additional subalgebras by taking the kernel
of an additional condition, for example a derivation of A. But given an algebra A what
does the non-trivial derivations look like? That is what we will look at in this section.
We will start by explaining the method of finding derivations in A before we show some
examples.

4.1 Upper Limit for Additional Derivations

From Theorem 1 we find that there exists an upper limit to how high of an order of
derivation we have in any given α-derivation. We will dedicate this section to finding
such a limit given a specific subalgebra A. First we will look at the case where we only
use the minimal polynomial and the spectrum of A.

Theorem 12. Assume we have a subalgebra A ⊂ K[x] of finite codimension with min-

imal polynomial m(x) =
M∏
i=1

(x − αi)
ai. Assume we want to add a new α-derivation,

written

D(f) =
∑
αj∼α

Nj∑
i=1

ci,jf
(i)(αj)

Then, for any k, we have cb,k = 0 for b ≥ 2ak.
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Example 6. Assume we have A = {f(α) = f(β), f ′(α) = f ′′(α) = 0, α ̸= β} with
minimal polynomial m(x) = (x − α)3(x − β). Then any additional derivation can be
written as

D(f) =

N1∑
i=1

aif
(i)(α) +

N2∑
i=1

bif
(i)(β)

We are going to show that ai = 0 for i ≥ 6 and bi = 0 for i ≥ 2.

For this we want to use elements of A on the form m2(x) ·f(x). Looking at the definition
of an α-derivation we have

D
(
m(x) ·m(x)f(x)

)
= D

(
m(x)

)
·m(α)f(α) +m(α) ·D

(
m(x)f(x)

)
= 0

where we have used m(α) = 0. We will construct

ut(x) = m2(x) · (x− β)N2+1 · (x− α)t, vt(x) = m2(x) · (x− α)N1+1 · (x− β)t

with t ≥ 0, we can then write

D(ut) =
N1∑
i=1

aiu
(i)
t (α) = 0 and D(vt) =

N2∑
i=1

biv
(i)
t (β) = 0

since (x− β)N2+1 | ut and (x− α)N1+1 | vt.

We will use induction, to start we have

D(uN1−6) = aN1 ·N1! · (α− β)N2+3 = 0 =⇒ aN1 = 0

assuming ar = 0 for r > R for some R ≥ 6 we have

D(uR−6) = aR ·R! · (α− β)N2+3 = 0 =⇒ aR = 0

and so by induction we get ai = 0 for i ≥ 6 similarly we have

D(vN2−2) = bN2 ·N2! · (β − α)N1+7 = 0 =⇒ bN2 = 0

assuming br = 0 for r > R for some R ≥ 2 we have

D(vR−2) = bR ·R! · (β − α)N1+7 = 0 =⇒ bR = 0

and so by induction we have bi = 0 for i ≥ 2, we conclude that, in this case, we can
write any α-derivation in A as

D(f) =
5∑

i=1

aif
(i)(α) + b1f

′(β)

and with this we we are ready to prove Theorem 12.
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Proof. (Theorem 12):
Take an arbitrary k and assume that Nk ≥ 2ak and then define

S := max
{
max

j
{Nj + 1}, max

1≤i≤M
{2ai}

}
(17)

then we define

qt(x) = (x− αk)
t ·

M∏
i=1
i ̸=k

(x− αi)
S (18)

Since S ≥ Nj + 1 for all j we have

D(qt) =

Nk∑
i=1

ci,kq
(i)
t (αk)

for t ≥ 0, and as long as t ≥ 2ak we have m(x)2 | qt(x), since S ≥ 2ai ∀i, and so we
can rewrite qt(x) = m(x) ·m(x) · q(x), where q(x) ̸≡ 0. Both m(x) and m(x) · q(x) are
in A and have αk as a zero since αk ∈ Sp(A) =⇒ m(αk) = 0. Since αk ∼ α D is an
αk-derivation and we have

D
(
qt(x)

)
= D

(
m(x)

)
m(αk)q(αk) +m(αk)D

(
m(x)q(x)

)
= 0 (19)

Using this we get

D(qNk
) = cNk,k ·Nk! ·

M∏
i=1
i ̸=k

(αk − αi)
S = 0 =⇒ cNk,k = 0

since αi ̸= αj if i ̸= j. If we then assume cb,k = 0 for all b ≥ s for some 2ak < s ≤ Nk.
Then we get

D(qs−1) = cs−1,k · (s− 1)! ·
M∏
i=1
i ̸=k

(αk − αi)
S = 0 =⇒ cs−1,k = 0 (20)

and so we have cb,k = 0 for all b ≥ s− 1. Using induction we get cb,k = 0 for all b ≥ 2ak,
which concludes our proof.

This theorem relies on m(x) and m(x) · q(x) being elements in A with αk as a zero. So
in order to improve our result we will exchange the first m(x) with another element in
A with this same property.

28



Theorem 13. Assume we have a subalgebra A of finite codimension in K[x] with min-

imal polynomial m(x) =
M∏
i=1

(x − αi)
ai. Assuming we want to add a new α-derivation,

written

D(f) =
∑
αj∼α

Nj∑
i=1

ci,jf
(i)(αj)

and the conditions of A can be rewritten such that they include Dαk
1 = Dαk

2 = · · · =
Dαk

p = 0 but not Dαk
p+1 = 0, where αk ∼ α. Then we have cb,k = 0 for b ≥ ak + p+ 1.

Proof. (Theorem 13):
Any element in A can be written as g(x) = (x− αk)

p+1r(x), for at least one element in
A we have r(αk) ̸= 0, if this is not the case we would have Dαk

p+1 = 0 for all elements in
A, which leads to a contradiction since we would end up with A ⊆ ker(Dαk

p+1). Next we
will introduce the large number

S := max
{
max

j
{Nj + 1}, max

1≤i≤M
{ai}

}
(21)

and then we will define

qt(x) = r(x) · (x− αk)
t ·

M∏
i=1
i ̸=k

(x− αi)
S (22)

Since S ≥ Nj + 1 for all j we have

D(qt) =

Nk∑
i=1

ci,kq
(i)
t (αk)

for t ≥ 0, and as long as t ≥ ak + p+ 1 we can rewrite qt(x) = g(x) ·m(x) · q(x) where
q(x) ̸≡ 0, since S ≥ ai ∀i. Both g(x) and m(x) · q(x) are in A and have α as a zero, since
g(α) = g(αk) = 0. D is an αk-derivation and so we have

D
(
qt(x)

)
= D

(
g(x)

)
m(αk)q(αk) + g(αk)D

(
m(x)q(x)

)
= 0 (23)

and so for t = Nk we get

D(qNk
) = cNk,k ·Nk! · r(αk) ·

M∏
i=1
i ̸=k

(αk − αi)
S = 0 =⇒ cNk,k = 0

since αi ̸= αj if i ̸= j, and r(αk) ̸= 0. If we then assume cb,k = 0 for all b ≥ s for some
ak + p+ 1 < s ≤ Nk. Then we get

D(qs−1) = cs−1,k · (s− 1)! · r(αk) ·
M∏
i=1
i ̸=k

(αk − αi)
S = 0 =⇒ cs−1,k = 0 (24)

and so we have cb,k = 0 for all b ≥ s − 1. Using induction we get cb,k = 0 for all
b ≥ ak + p+ 1
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4.2 Method for Finding Derivations

Now that we have found our upper limits we will explain our method for finding deriva-
tions which is based on Theorem 2. This Theorem says that if we have D(f2) = 0 for
every f ∈ Mα then D is a α-derivation in A. Logically this means we want to start by
finding a way to express the elements in Mα and so we will look for a SAGBI basis, {vi}
with the properties

• vi(α) = 0, ∀vi

• if deg(vi) ≥ deg(m(x)) then m(x) | vi

Such a basis can always be found. We know a finite SAGBI basis can always be found,
so when creating our basis we start by taking an arbitrary SAGBI basis {ûi(x)}. Then
the first property can be achieved by creating the new basis {ũi(x) | ûi(x) − ûi(α)}.
In order to obtain the second property we write ũi(x) = qi(x) · m(x) + ri(x) where
deg
(
ri(x)

)
< deg

(
m(x)

)
and so we can create our final SAGBI basis which consists of

the sets {ri(x)} and {qi(x) ·m(x)}, which we denote V1 and V2 respectively. Note that
this means that V2 consists of all basis elements such that deg(vi) ≥ deg

(
m(x)

)
and V1

of all for which deg(vi) < deg
(
m(x)

)
.

We are going to show that V2 is unnecessary and we need only work with the set V1

when finding derivations. More specifically we will show that it is sufficient to ensure
that D(vk11 vk22 . . . v

kn−1

n−1 vknn ) = 0, for all vi ∈ V1 and ki ≥ 0, where
∑
i
ki ≥ 2. It is trivial

to see that

vtk ∈ Mα =⇒ we need to check D(v2tk ) = 0 for all k and t > 0
vtk + vk ∈ Mα =⇒ we need to check D((vtk + vk)

2) = 0 for all k and t > 0

Assuming we have D(v2tk ) = 0 for all t > 0 and k we can rewrite

D((vtk + vk)
2) = D(v2tk ) + 2D(vt+1

k ) +D(v2k) = 2D(vt+1
k ) = 0 =⇒ D(vt+1

k ) = 0

and so it is necessary to ensure that D(vti) = 0 for all t ≥ 2. Next we will look at the
product of different elements in V1.

vk11 vk22 . . . v
kn−1

n−1 vknn ∈ Mα =⇒ D
(
v2k11 v2k22 . . . v

2kn−1

n−1 v2knn

)
= 0 for all ki ≥ 0 and

∑
ki ≥ 1

So our original assertions hold true for all even powers. Next we will show that this is
also true when we have odd powers. We have

vk + vj ∈ Mα =⇒ we need to check D((vk + vj)
2) = 0 for all k and j

which can be rewritten

D((vk + vj)
2) = D(v2k) + 2D(vkvj) +D(v2j ) = 2D(vkvj) = 0 =⇒ D(vk · vj) = 0
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and through a similar argument, where we assume kr > 0, we have

vk11 vk22 . . . vkr−1
r . . . v

kn−1

n−1 vknn + vr ∈ Mα =⇒

we need to check D

((
vk11 vk22 . . . vkr−1

r . . . v
kn−1

n−1 vknn + vr

)2)
= 0 for all ki ≥ 0 and vi, 1 ≤ i ≤ n

which, assuming products with even powers have already been checked, can be rewritten
as

D

((
vk11 vk22 . . . vkr−1

r . . . v
kn−1

n−1 vknn + vr

)2)
= · · · = 2D

(
vk11 vk22 . . . v

kn−1

n−1 vknn

)
= 0

for all ki ≥ 0, where
∑
i
ki ≥ 2.

Next we will show that this is sufficient in order to determine that D is a derivation in
A. Take any αk ∈ Sp(A) and assume that the conditions of A can be rewritten such
that they include Dαk

1 = Dαk
2 = · · · = Dαk

pk
= 0 but not Dαk

pk+1 = 0. Then if we take an
arbitrary û ∈ V2, and an arbitrary element f(x) ∈ A we get

(x− αk)
ak+pk+1|f(x) · û =⇒ (f(x) · û)(t)(αk) = 0 for 0 ≤ t ≤ ak + pk

Combining this with the result of Theorem 13 we obtain D
(
f(x) · û

)
= 0 without any

further restrictions on D. Denote V2 = {ui}i∈I . Then we will take an arbitrary element
g(x) ∈ A which we then divide into two parts g(x) = g1(x) + g2(x) where g1(x) can be
written as

g1(x) =
∑
d

v
k1,d
1 v

k2,d
2 . . . v

kn,d
n

and g2(x) can be written as a sum where every term is divisible by some element in V2.
Then we find that

D
(
g(x)2

)
= D

(
(g1(x)+g2(x))

2
)
= D(g1(x)

2)+2D(g1(x)g2(x))+D(g2(x)
2) = D(g1(x)

2) = 0

where we have used that D
(
f(x) · û

)
= 0 for arbitrary f(x) ∈ A, û ∈ V2, without

additional restrictions on D. Then all that is left to check is D
(
g1(x)

2
)
= 0. Us-

ing the linearity of D we find that this is a sum where each term can be written as
D
(
vk11 vk22 . . . v

kn−1

n−1 vknn
)
for ki ≥ 0,

∑
i
ki ≥ 2, and vi ∈ V1, each of which we have de-

termined is necessary to ensure is zero. And so we have shown that it is sufficient to
ensure D

(
vk11 vk22 . . . v

kn−1

n−1 vknn
)
= 0, for all ki ≥ 0, where

∑
i
ki ≥ 2, in order for D to be

an α-derivation in A.

This will result in a finite amount of calculations since, by construction, we have vi(αj) =

0 for all αj ∼ α. Which means that if
n∑

i=1
ki > max{aj + pj} we have

∏
αj∼α

(x− αj)
max{aj+pj}+1 | vk11 vk22 . . . v

kn−1

n−1 vknn
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and so D
(
vk11 vk22 . . . v

kn−1

n−1 vknn
)
= 0 according to Theorem 13.

Now that we have presented the method we will use we will show an example of where we
find derivations before we present a list of algebras and their corresponding derivations.

Example 7. We want to find all α-derivations of the algebra

A = { f | f(α) = f(β), Dα
1 (f) = 0, Dβ

1 (f)− (α− β)2 ·Dα
3 (f) = 0 }

which has minimal polynomial m(x) = (x − α)4(x − β)2. First we will find V1. From
our first two conditions we know that any element in A can be written as

f(x) = (x− α)2(x− β)r(x) + c

for some polynomial r(x) and constant c, however we will only be working with f(x)
where c = 0. First we start by looking at whether A has a polynomial of degree three or
not. Such a polynomial would look like

f(x) = (x− α)2(x− β). Then Dβ
1 (f)− (α− β)2 ·Dα

3 (f) = 0

and so (x − α)2(x − β) ∈ A. Next will look for a polynomial of degree four, such a
polynomial must be of the form

f(x) = (x− α)2(x− β)(x− d), Dβ
1 (f)− (α− β)2 ·Dα

3 (f) = −2(α− β)3 ̸= 0

for some constant d. We find that since we have α ̸= β it is not possible to have a
polynomial of degree four in A. Lastly we look for a polynomial of degree five, we start
of looking for a polynomial of the form

f(x) = (x− α)3(x− β)(x− d), Dβ
1 (f)− (α− β)2 ·Dα

3 (f) = −(α− β)3(α+ β − 2d) = 0

and find that such a polynomial exists if we set d = α+β
2 we get (x−α)3(x−β)(x− α+β

2 ) ∈
A. Next we use Theorem 13 to determine that the highest order of a derivation evaluated
at α and β is five and two respectively. We will use the following notation

u(x) = (x− α)3(x− β)

(
x− α+ β

2

)
, v(x) = (x− α)2(x− β)

and write

D(f) = b1D
β
1 (f) + b2D

β
2 (f) + a1D

α
1 (f) + a2D

α
2 (f) + a3D

α
3 (f) + a4D

α
4 (f) + a5D

α
5 (f)

Looking at u(x) and v(x) and find that it is sufficient to ensure that D is zero evaluated
at u(x)2, u(x) · v(x), and v(x)2 since any other product is divisible by (x − α)6(x − β)3

and so D(f) = 0 regardless of the constants ai, bi. After some calculations we obtain
the following table
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Dβ
1 Dβ

2 Dα
1 Dα

2 Dα
3 Dα

4 Dα
5

u(x)2 0 1
4(α− β)8 0 0 0 0 0

u(x) · v(x) 0 1
2(α− β)6 0 0 0 0 1

2(α− β)3

v(x)2 0 (α− β)4 0 0 0 (α− β)2 2(α− β)

which when used results in

b1 · 0 + b2 · 1
4(α− β)8 + a1 · 0 + a2 · 0 + a3 · 0 + a4 · 0 + a5 · 0 = 0 =⇒ b2 = 0

b1 · 0 + b2 · 1
2(α− β)6 + a1 · 0 + a2 · 0 + a3 · 0 + a4 · 0 + a5 · 1

2(α− β)3 = 0 =⇒ a5 = 0
b1 · 0 + b2 · (α− β)4 + a1 · 0 + a2 · 0 + a3 · 0 + a4 · (α− β)2 + a5 · 2(α− β) = 0 =⇒ a4 = 0

where we have used α ̸= β. And so we must have b2 = a4 = a5 = 0, whilst we are free
to pick the constants b1, a1, a2, and a3 arbitrarily. Taking the previous conditions of A
into account we end up with derivations which look like

D(f) = b1D
β
1 (f) + a2D

α
2 (f)

where b1 and a2 are arbitrary constants, but not both zero.

4.3 Examples of Derivations

This sections will consist of tables of algebras and all their derivations. We will restrict
ourselves to subalgebras with a spectrum containing exactly two elements, α, β, which
are in the same cluster. For these algebras there exists a symmetry which we will make
use of, for example { f | f(α) = f(β), f ′(α) = 0 } and { f | f(α) = f(β), f ′(β) = 0 }
can be considered the same, and so we will only include one of them in the following
tables. This is because α and β are simply notations of the two spectrum elements and
can therefore be switched with each other. Below is an example of what the tables will
look like

Condition Type Derivations

Dα
1 (3,4,5) Dβ

1 , D
α
2 , D

α
3

In this example we have the algebra { f | f(α) = f(β), Dα
1 (f) = 0}. A consisting of two

conditions means it is of codimension two in K[x] and since it has type (3,4,5) we can
tell that the degrees missing are one and two. The derivations of A can then be written
as a linear combination of Dβ

1 , D
α
2 , and Dα

3 .

4.3.1 f(α) = f(β)

In the tables in this section the algebras consists of the f(α) = f(β) as well as the
condition in the column ”Condition”.
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Condition Type Derivations

- (2,3) Dα
1 , D

β
1

Condition Type Derivations

Dα
1 (3,4,5) Dβ

1 , D
α
2 , D

α
3

Dα
1 + bDβ

1 , b=1 (2,5) Dβ
1 , D

α
2 − b2Dβ

2

Dα
1 + bDβ

1 , b /∈ {0, 1} (3,4,5) Dα
1 , D

α
2 − b2Dβ

2

4.3.2 f(α) = f(β), Dα
1

In this section the algebras in the table consists of the equality condition f(α) = f(β),
the derivation Dα

1 , and condition in the column ”Condition”.

Condition Type Derivations

Dβ
1 (4,5,6,7) Dα

2 , D
β
2 , D

α
3 , D

β
3

Dα
2 (4,5,6,7) Dβ

1 , D
α
3 , D

α
4 , D

α
5

Dα
3 (4,5,6,7) Dβ

1 , D
α
2 , D

α
5

Dβ
1 + cDα

2 , c = β − α (3,5,7) Dα
2 , D

α
3 , D

β
2 − c2Dα

4

Dβ
1 + cDα

2 , c /∈ {0, β − α} (4,5,6,7) Dα
2 , D

α
3 , D

β
2 − c2Dα

4

Dα
2 + cDα

3 , c = β − α (3,5,7) Dβ
1 , D

α
2 , 2D

α
4 + cDα

5

Dα
2 + cDα

3 , c /∈ {0, β − α} (4,5,6,7) Dβ
1 , D

α
2 , 2D

α
4 + cDα

5

Dβ
1 + cDα

3 , c = −(α− β)2 (3,5,7) Dβ
1 , D

α
2

Dβ
1 + cDα

3 , c /∈ {0,−(α− β)2} (4,5,6,7) Dβ
1 , D

α
2

Dβ
1 + cDα

2 + dDα
3 , c = 2(β − α), d = (β − α)2 (3,4) Dβ

1 , D
α
2

Dβ
1 + cDα

2 + dDα
3 , c /∈ {0, 2(β − α)}, d = c(β − α)− (β − α)2 ̸= 0 (3,5,7) Dβ

1 , D
α
2

Dβ
1 + cDα

2 + dDα
3 , c ̸= 0, d ̸= c(β − α)− (β − α)2, d ̸= 0 (4,5,6,7) Dβ

1 , D
α
2

4.3.3 f(α) = f(β), Dα
1 , D

α
2

In this section the algebras in the table consists of the equality condition f(α) = f(β),
the derivations Dα

1 and Dα
2 , as well as the condition in the column ”Condition”.
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Condition Type Derivations

Dβ
1 (5,6,7,8,9) Dβ

2 , D
β
3 , D

α
3 , D

α
4 , D

α
5

Dα
3 (5,6,7,8,9) Dβ

1 , D
α
4 , D

α
5 , D

α
6 , D

α
7

Dα
4 (5,6,7,8,9) Dβ

1 , D
α
3 , D

α
5 , D

α
7

Dα
5 (4,6,7,9) Dβ

1 , D
α
3 , D

α
4

Dβ
1 + cDα

3 , c = (β − α)2 (4,6,7,9) Dβ
1 , D

α
4 , D

α
5 , D

β
2 − c2Dα

6

Dβ
1 + cDα

3 , c ̸= (β − α)2 (5,6,7,8,9) Dβ
1 , D

α
4 , D

α
5 , D

β
2 − c2Dα

6

Dβ
1 + cDα

4 , c = (α− β)3 (4,6,7,9) Dβ
1 , D

α
3 , D

α
5

Dβ
1 + cDα

4 , c /∈ {0, (α− β)3} (5,6,7,8,9) Dβ
1 , D

α
3 , D

α
5

Dβ
1 + cDα

5 , c ̸= 0 (5,6,7,8,9) Dβ
1 , D

α
3 , D

α
4

Dα
3 + cDα

4 , c = β − α (4,6,7,9) Dβ
1 , D

α
3 , D

α
5 , 2D

α
6 + cDα

7

Dα
3 + cDα

4 , c /∈ {0, β − α} (5,6,7,8,9) Dβ
1 , D

α
3 , D

α
5 , 2D

α
6 + cDα

7

Dα
3 + cDα

5 , c ̸= 0 (5,6,7,8,9) Dβ
1 , D

α
3 , D

α
4

Dα
4 + cDα

5 , c ̸= 0 (5,6,7,8,9) Dβ
1 , D

α
3 , D

α
4

Dα
3 + cDα

4 + dDα
5 , c = β − α, d = (β − α)2 (4,5,7) Dβ

1 , D
α
3 , D

α
4

Dα
3 + cDα

4 + dDα
5 , c = β − α, d /∈ {0, (β − α)2} (4,6,7,9) Dβ

1 , D
α
3 , D

α
4

Dα
3 + cDα

4 + dDα
5 , c /∈ {0, (β − α)}, d ̸= 0 (5,6,7,8,9) Dβ

1 , D
α
3 , D

α
4

Dβ
1 + cDα

3 + dDα
4 , d = (β − α)3, c = 2(β − α)2 (4,5,7) Dβ

1 , D
α
3 , D

α
5

Dβ
1 + cDα

3 + dDα
4 (4,6,7,9) Dβ

1 , D
α
3 , D

α
5

d = −(β − α)3 − (β − α)c, c /∈ {0, 2(β − α)2}
Dβ

1 + cDα
3 + dDα

4 , d /∈ {0,−(β − α)3 − (β − α)c}c ̸= 0 (5,6,7,8,9) Dβ
1 , D

α
3 , D

α
5

Dβ
1 + cDα

4 + dDα
5 , d = −2(β − α)4, c = (α− β)3 (4,5,6) Dβ

1 , D
α
3 , D

α
4

Dβ
1 + cDα

4 + dDα
5 , d /∈ {0,−2(α− β)4}, c = (α− β)3 (4,6,7,9) Dβ

1 , D
α
3 , D

α
4

Dβ
1 + cDα

4 + dDα
5 , d /∈ {0,−(β − α)3 − (β − α)c}c ̸= 0 (5,6,7,8,9) Dβ

1 , D
α
3 , D

α
4 ∗

Table 2: * is mostly checked except for some special cases.

As can be seen Table 2 there are algebras which consists of the equality condition
f(α) = f(β), the derivations Dα

1 and Dα
2 , and one additional α-derivation which is

not included, due to lack of time as well as complicated computations. These are the
algebras containing the derivations
Dα

1 , D
α
2 , D

β
1 + cDα

3 + dDα
5 and

Dα
1 , D

α
2 , D

β
1 + cDα

3 + dDα
4 + eDα

5 .

4.3.4 f(α) = f(β), Extras

This section contains some additional cases which might be of interest for the reader,
but does not fit in the previous sections. These algebras only consists of the equality
condition f(α) = f(β) and the conditions in the column ”Conditions”.
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Conditions Type Derivations

Dα
1 , D

α
3 , D

β
1 (5,6,7,8,9) Dβ

2 , D
β
3 , D

α
2 , D

α
5

Dα
1 , D

α
2 , D

α
3 , D

α
4 (6,7,8,9,10,11) Dβ

1 , D
α
5 , D

α
6 , D

α
7 , D

α
8 , D

α
9

Dβ
1 , D

α
1 , D

α
2 , D

α
3 (6,7,8,9,10,11) Dβ

2 , D
β
3 , D

α
4 , D

α
5 , D

α
6 , D

α
7

Dα
1 , D

α
3 , D

β
1 + cDα

2 , c /∈ {0, 2(β − α)} (5,6,7,8,9) Dβ
1 , D

α
5 , g(D

β
2 , D

α
4 )

Dα
1 , D

α
3 , D

β
1 + cDα

2 , c = 2(β − α) (4,6,7,9) Dβ
1 , D

α
5 , D

β
2 − c2Dα

4

Dα
1 , D

α
3 , D

β
1 + cDα

2 , c /∈ {0, 2(β − α)} (5,6,7,8,9) Dβ
1 , D

α
5 , D

β
2 − c2Dα

4

Dβ
1 , D

β
2 , D

α
1 , D

α
2 , D

α
3 (8,10,11,12, Dβ

3 , D
β
4 , D

β
5 , D

α
6

Dα
4 , D

β
3 + cDα

5 , c = (β − α)2 13,14,15,17) Dα
7 , D

α
8 , D

α
9 , D

β
6 − c2Dα

10

Dβ
1 , D

β
2 , D

α
1 , D

α
2 , D

α
3 , D

α
4 (9,10,11,12,13, Dβ

3 , D
β
4 , D

β
5 , D

α
6

Dβ
3 + cDα

5 , c /∈ {0, (β − α)2} 14,15,16,17) Dα
7 , D

α
8 , D

α
9 , D

β
6 − c2Dα

10

Dα
1 + bDβ

1 , D
α
2 − b2Dβ

2 , b
2 − b+ 1 = 0 (3,5,7) Dβ

1 , D
α
3 + b3Dβ

3

Dα
1 + bDβ

1 , D
α
2 − b2Dβ

2 , b ̸= 0, b2 − b+ 1 ̸= 0 (4,5,6,7) Dβ
1 , D

α
3 + b3Dβ

3

Dα
1 +Dβ

1 , D
α
1 + c(Dα

2 −Dβ
2 ) (4,5,6,7) Dα

1 , c1D
α
2 + c2D

β
2 + c c1+c2

2 (Dα
3 +Dβ

3 )

Dα
1 , D

β
1 + cDα

2 , D
α
2 + dDα

3 (3,7,8) Dβ
1 , c1D

β
2 + c2D

α
4

c = d = β − α −1
2

(
(α− β)3c1 + (α− β)c2

)
Dα

5

Dβ
1 , D

α
1 , D

α
2 + cDα

3 , c ̸= 0 (4,6,7,9) Dβ
2 , D

β
3 , D

α
2 , 4D

α
4 + (β − α)Dα

5

c=−
(
α2+4αβ+β2−12α−12β+24

2(α−β)

)
Table 3: Where g is some function.

Looking at all these tables we find some interesting patterns. First we take note of the
fact that when our previous conditions includes a non-zero constant the structure of the
derivations in A stays the same regardless of the value of the constant, unlike the type
which can change for specific values.

If we look at Table 2 we find that if our new condition is a single derivation then the
higher the order of this derivation the less options we have to pick from for our next
derivation.

Similarly if our new condition is a linear combination of derivations then we will, in
most cases end up with the same set of derivations as in our previous algebra. There are
however two conditions which keep appearing, namely Dβ

2M+2− c2Dα
2N+2 and 2Dα

2N+2+
cDα

2N+3 for some positive integers N andM . Although these are the two most commonly
occurring conditions in the algebras we have looked at above it can be seen in Table 3
that this is likely not true in general. We will now take a closer look at the algebras
where these two conditions appear.
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4.4 Specific Algebras

4.4.1 Algebra: Dα
i , i = 1, 2, . . . , N, Dβ

j , j = 1, 2, . . . ,M, Dα
N+1 + cDβ

M+1

Let us look at the subalgebra A which consists, exclusively, of the following conditions

f(α) = f(β), Dα
i , i = 1, 2, . . . , N, Dβ

j , j = 1, 2, . . . ,M, Dα
N+1 + cDβ

M+1, where c ̸= 0

This subalgebra has the minimal polynomialm(x) = (x−α)N+2(x−β)M+2. By Theorem
13 we have that the largest order of a derivative, in our α-derivative, evaluated at α and
β, are 2N + 2 and 2M + 2 respectively.

Looking at the conditions of A we know that any f(x) ∈ A can be written as

f(x) = (x− α)N+1 · (x− β)M+1 · p(x)

for some polynomial p(x). This means that when creating a SAGBI basis we will exclude
the degrees 1, 2, 3, . . . ,M + N + 1. The codimension of A in K[x] is N + M + 2, and
so we only need to find one basis vector of degree lower than the degree of the minimal
polynomial. Going forward we will assume n ≥ m. We will divide this problem in two
cases depending on the value of c.

In the first case we have c = (−1)N (α − β)N−M . In this case the basis element we are
looking for is

q(x) = (x− α)N+1(x− β)M+1

And so we end up with A having the type (M +N +2,M +N +4,M +N +5,. . . , 2M +
2N + 2, 2M + 2N + 3, 2M + 2N + 5).

To determine what derivations, D, we have in A we only need to ensure that D(q2) = 0.
And so we have {

Dα
2N+2(q

2) = (α− β)2(M+1)

Dβ
2M+2(q

2) = (β − α)2(N+1)

all other derivations are either 0 or irrelevant. We end up with the requirement a2N+2 =
−(α−β)2(N−M)b2M+2. As a conclusion all α-derivations in A can be written as a linear
combination of the following derivations

Dβ
2M+2− c2Dα

2N+2 D
α
i , i = N +2, N +3, . . . , 2N +1, Dβ

j , j = M +1,M +2, . . . , 2M +1

In the second case we have c ̸= (−1)N (α − β)N−M . In this case the basis element can
be written

q(x) = (x− α)N+1(x− β)M+1(x− d), d =
(−1)N+1(α− β)N−Mβ + cα

(−1)N+1(α− β)N−M + c

In this case we have type (M + N + 3,M + N + 4, . . . , 2M + 2N + 4, 2M + 2N + 5).
Same as before we only need to ensure that D(q2) = 0. We have{

Dα
2N+2(q

2) = (α− β)2(M+1) · (α− d)2

Dβ
2M+2(q

2) = (β − α)2(N+1) · (β − d)2
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and all other derivations are either 0 or irrelevant. We end up with the requirement
a2N+2 = −c2b2M+2. As a conclusion any α-derivation in A can be written as a linear
combination of the following derivations

Dβ
2M+2− c2Dα

2N+2 D
α
i , i = N +2, N +3, . . . , 2N +1, Dβ

j , j = M +1,M +2, . . . , 2M +1

Note that the derivations in both cases look the same.

4.4.2 Algebra: Dα
i , i = 1, 2, . . . , N, Dβ

j , j = 1, 2, . . . ,M, Dα
N+1 + cDα

N+2

Next we will look at the subalgebra A which consists, exclusively, of the following con-
ditions

f(α) = f(β), Dα
i , i = 1, 2, . . . , N, Dβ

j , j = 1, 2, . . . ,M, Dα
N+1 + cDα

N+2, where c ̸= 0

This subalgebra has the minimal polynomial m(x) = (x − α)N+3(x − β)M+1 Using
Theorem 13, we can tell that the highest order of a derivative, in our α-derivative, are
2N + 3 and 2M + 1 evaluated at α and β respectively.

We know that any f(x) ∈ A can be written as

f(x) = (x− α)N+1 · (x− β)M+1 · p(x)

for some polynomial p(x). A is missing the degrees 1, 2, 3,. . . , N +M + 1 and together
with the codimension being N +M +2 we find that we only need one basis element, the
degree of which is less than the degree of the minimal polynomial. Similarly to before
we will divide this problem into two cases. We start by looking at the special case where
we have c = β−α

M+1 . Then we find our basis element to be

q(x) = (x− α)N+1(x− β)M+1

and so our algebra is of type (N +M +2, N +M +4, N +M +5, . . . , 2N +2M +2, 2N +
2M + 3, 2N + 2M + 5). In order for D to be a derivation in A we only need to ensure
that D(q2) = 0 and so we have

{
Dα

2N+2(q
2) = (α− β)2M+2

Dα
2N+3(q

2) = 2(M + 1)(α− β)2M+1

all other derivations are either 0 or irrelevant and so we end up with the requirement
a2N+2(α− β) + 2(M +1)a2N+3 = 0. All α-derivations in A can therefor be written as a
linear combination of the following derivations

2Dα
2N+2+ cDα

2N+3 D
α
i , i = N +2, N +3, . . . , 2N +1, Dβ

j , j = M +1,M +2, . . . , 2M +1
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In the second case where c /∈ {0, β−α
M+1} our basis element looks like

q(x) = (x− α)N+1(x− β)M+1(x− d)

where we have

d =
(α− β)α+ c(M + 1)α+ c(α− β)

α− β + (M + 1)c

This algebra is of type (M + N + 3,M + N + 4,. . . , 2M + 2N + 4, 2M + 2N + 5). As
before we only need to ensure that D(q2) = 0 and so we look at

{
Dα

2N+2(q
2) = (α− β)2(M+1)(α− d)2

Dα
2N+3(q

2) = (α− β)2M+1
(
2(M + 1)(α− d)2 + 2(α− β)(α− d)

)
which gives us the requirement −ca2N+2 + 2a2N+3 = 0 and all α-derivations in A can
be written as a linear combination of

2Dα
2N+2+ cDα

2N+3 D
α
i , i = N +2, N +3, . . . , 2N +1, Dβ

j , j = M +1,M +2, . . . , 2M +1

Note that as in the previous example the derivations in both cases look the same.

5 Future Areas of Study

This is the end of the report where we have managed to constructed the minimal poly-
nomial and found a method to determine the α-derivations of our algebra A. Lastly
we have taken a look at some examples and determined that there seems to be some
interesting patterns in what α-derivations we can find in a given algebra. In the future
it would also be of great interest to find a method to construct the minimal polynomial
of an algebra which is not given on condition form. This because it would allow us to
find the spectrum elements of A.
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