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ABSTRACT 

Surface soil moisture (SM) is an essential climate variable that plays a key role in ecosystems 

and the energy, water, and carbon cycles. SM can be accurately measured using in situ 

measurements. However, these measurements are globally not densely located over large areas, 

which would be required for accurate large-scale SM estimation due to the high spatial 

variability of SM. Instead, global atmospheric models and satellite remote sensing in the 

microwave range are commonly utilised for large-scale SM monitoring. Both model and 

satellite approaches have resulted in multiple gridded SM products at regional or global scales 

at various spatial resolutions (typically between 1 and 40 km). The accuracy of the gridded 

products varies over different regions, climates, and land covers, necessitating their evaluation. 

Evaluation with in situ data is limited to areas where measurements are available. Over the past 

15 years, triple collocation analysis (TCA) has been extensively applied to evaluate gridded 

SM products among different geophysical variables, as it can estimate the error structure of 

three independent datasets without the need for in situ measurements. TCA has also been used 

to successfully merge gridded products to generate more accurate SM estimates. This study 

evaluated and ranked eight gridded SM products, including SMOS L4, SMAP L3E, SMAP L4, 

Sentinel-1, ASCAT, ESA CCI SM, ERA5-Land, and GLDAS Noah, using in situ measurements 

of SM taken during 2020-2021 from the Integrated Carbon Observation System (ICOS) station 

network. SMAP L4 and ERA5-Land generally performed the best with similar statistical 

scores. When comparing the products against absolute SM on collocated dates, SMAP L4 had 

a median ubRMSD of ca 0.047 m3/m3 and a median correlation coefficient of 0.73. ESA CCI 

SM and SMAP L3 gave slightly worse scores, while GLDAS Noah showed a relatively poor 

correlation against short-term SM anomalies. Sentinel-1 generally had the worst performance, 

together with ASCAT and SMOS L4. In addition, TCA was performed using a triplet consisting 

of SMAP L3E, ASCAT, and GLDAS Noah. The TCA reinforced the results of the in situ-based 

evaluation, with the lowest ubRMSE and highest SNR found for SMAP L3E among the three 

products. The TCA of this triplet was also used to produce a weighted merged dataset of SM 

estimates. When compared to ICOS measurements, the merged product performed better than 

GLDAS Noah and ASCAT but similar to or worse than SMAP L3E. Additionally, the TCA-

weighted product performed similarly to a simple arithmetic mean, indicating the merging 

process was not worthwhile in the study area. 

 

 

 

 

 

 

Keywords: evaluation, soil moisture, remote sensing, ICOS, triple collocation analysis, 

drought monitoring 



Table of Contents 

1. Introduction ............................................................................................................................ 1 

2. Background ............................................................................................................................ 3 

2.1. General introduction to soil moisture .............................................................................. 3 

2.2. Remote sensing of soil moisture ..................................................................................... 3 

2.2.1. General principles of remote sensing of soil moisture ............................................. 3 

2.2.2. Passive microwave remote sensing of soil moisture ................................................ 4 

2.2.3. Active microwave remote sensing of soil moisture .................................................. 4 

2.3. Reanalysis products ......................................................................................................... 5 

2.4. Evaluation of SM products .............................................................................................. 5 

2.4.1. Background to in situ measurements and related evaluation ................................... 5 

2.4.2. Triple collocation-based evaluation .......................................................................... 6 

3. Data ........................................................................................................................................ 7 

3.1. Gridded soil moisture products ....................................................................................... 7 

3.1.1. Sentinel-1 .................................................................................................................. 7 

3.1.2. SMAP L3E and SMAP L4 ........................................................................................ 7 

3.1.3. SMOS L4 .................................................................................................................. 8 

3.1.4. ASCAT ...................................................................................................................... 8 

3.1.5. ESA CCI SM ............................................................................................................ 9 

3.1.6. ERA5-Land ............................................................................................................... 9 

3.1.7. GLDAS Noah ......................................................................................................... 10 

3.2. In situ measurements from ICOS .................................................................................. 10 

4. Methodology ........................................................................................................................ 12 

4.1. In situ measurement-based evaluation .......................................................................... 12 

4.1.1. General workflow and pre-processing .................................................................... 12 

4.1.2. Anomalies and evaluation metrics .......................................................................... 14 

4.2. Triple collocation-based evaluation .............................................................................. 16 

4.2.1. Workflow and triplet selection ................................................................................ 16 

4.2.2. Pre-processing ........................................................................................................ 16 

4.2.3. Evaluation metrics for the TCA .............................................................................. 17 

4.2.4. Merging of the triplet products ............................................................................... 18 

5. Results .................................................................................................................................. 20 

5.1. Evaluation with in situ measurements ........................................................................... 20 

5.1.1. Results without considering temporal collocation.................................................. 20 

5.1.2. Results considering temporal collocation ............................................................... 23 



5.2. Evaluation with triple collocation analysis (TCA) and results of merging ................... 26 

5.2.1. Results of TCA ....................................................................................................... 26 

5.2.2. Merging multiple products based on TCA ............................................................. 26 

5.2.3. Comparison of merged product with other products .............................................. 29 

6. Discussion ............................................................................................................................ 31 

6.1. Evaluation of products with in situ measurements........................................................ 31 

6.2. Evaluation with the triple collocation analysis and merging ........................................ 36 

6.3. Limitations of this study and recommendations for future studies ............................... 38 

7. Conclusions .......................................................................................................................... 39 

References ................................................................................................................................ 40 

Appendices ............................................................................................................................... 50 

 

Abbreviations 

ASCAT Advanced Scatterometer 

BEC Barcelona Expert Center 

CCI Climate Change Initiative 

ECMWF European Centre for Medium-Range Weather Forecasts 

ESA European Space Agency 

EUMETSAT European Organisation for the Exploitation of Meteorological Satellites 

GLDAS Global Land Data Assimilation System 

ICOS Integrated Carbon Observation System 

NSIDC National Snow and Ice Data Center 

SM Soil Moisture 

SMAP Soil Moisture Active Passive 

SMOS Soil Moisture Ocean Salinity 

SNR Signal to Noise Ratio 

TCA Triple Collocation Analysis 

ubRMSD Un-biased Root-Mean-Squared-Deviation 

ubRMSE Un-biased Root-Mean-Squared-Error 

 

 

 

 

  



1 

 

1. Introduction 

Surface soil moisture (SM) plays a vital role in the water (Jung et al., 2010), carbon (Trugman 

et al., 2018), and energy cycles (Seneviratne et al., 2010) and is classified as an Essential 

Climate Variable (GCOS, n.d.). Europe is a densely populated region of the world, with strong 

dependence on soil water, and droughts are predicted to increase across the continent due to 

climate change (Grillakis, 2019). Thus, monitoring of surface soil moisture is considered vital, 

particularly within the context of soil water stress (Bogena et al., 2022).  

Currently, three main approaches, namely in situ measurements, satellite remote sensing, and 

atmospheric reanalysis models are widely used for estimating SM. In situ measurements are 

usually considered as the most accurate (Babaeian et al., 2019; Gruber & Peng, 2022). Some 

stations and station networks have been harmonized into databases, e.g., the global scale 

International Soil Moisture Network (ISMN) (Dorigo et al., 2011), but installing stations is 

expensive and many parts of the world lack a comprehensive coverage (Babaeian et al., 2019). 

Therefore, using only in situ measurements cannot well monitor the spatial and temporal 

variability of SM at a regional or global scale. 

Satellite remote sensing can estimate SM in large spatial and long temporal scales. This 

approach is based on measuring the surface’s emission and backscattering of electromagnetic 

(EM) signals, particularly in the microwave domain (Dorigo et al., 2017). The retrieval by the 

microwave signals can be conducted via passive (radiometers) or active (real-aperture radar, 

synthetic-aperture radar) systems (Gruber & Peng, 2022). Sensors on satellite missions such as 

Sentinel-1, Soil Moisture and Ocean Salinity (SMOS), and Soil Moisture Active Passive 

(SMAP) allow for the generation of several regularly released gridded SM products (Babaeian 

et al., 2019). In addition, various data, including environmental and meteorological variables, 

can be merged for generating gridded reanalysis products, e.g., ERA5-Land (Albergel et al., 

2018).  

As gridded SM products have been found to vary in quality depending on location (Al-Yaari 

et al., 2019; Cammalleri et al., 2017), the products need to be evaluated according to the user’s 

desired utilization. Evaluation also benefits the products themselves by providing guidance 

toward their improvement (Dorigo et al., 2021). Despite SM’s high spatial variability, in situ 

measurements are commonly used for evaluating the coarse gridded SM products (Louvet et 

al., 2015; Zheng et al., 2022) through sparse networks (Chen et al., 2018). As denser 

observation networks lead to more reliable evaluation, efforts have been made to upscale the 

sparse stations (Crow et al., 2012). 

Evaluation of SM products using in situ measurements have been conducted over various areas 

and scales, from regional to global (Louvet et al., 2015; Ma et al., 2023; Stillman & Zeng, 

2018; Zeng et al., 2015; Zheng et al., 2022). The in situ measurements utilized in this type of 

study have often been from the ISMN (Al-Yaari et al., 2019), or from designated core 

validation sites for the specific SM product to be evaluated (Colliander et al., 2017). The 

Integrated Carbon Observation System (ICOS) manages a sparse network of ecosystem 

stations across Europe that, among other environmental variables, measure SM. The network 

has the advantage that all measurements are relatively standardised and the ICOS infrastructure 
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employs rigorous measurement quality controls (ICOS, n.d.), while being spread over a large 

part of Europe. Given that much ICOS data were made available in just recent years, ICOS 

data have not previously been used for bias correction in the generation of gridded SM 

products, meaning that the SM products and ICOS measurements are independent from 

existing products and allow for performing a fair evaluation. To the author’s knowledge, there 

are no previously published studies that have evaluated SM products primarily using ICOS 

data. 

Evaluation of gridded products with situ observations cannot be performed for regions where 

no measurements exist. An alternative method is using Triple Collocation Analysis (TCA) 

which evaluates the error structure of three data sets simultaneously without requiring 

additional validation data (Scipal et al., 2008). Previous studies employing TCA have resulted 

in performance evaluation and ranking of SM products, e.g., over China (Wu et al., 2020). 

There have also been efforts to merge multiple pre-existing gridded products based on their TC 

estimated errors (Gruber et al., 2017). 

Studies have previously been made on comparing several SM products over Europe, using 

either evaluation with ISMN stations (Al-Yaari et al., 2019), just TCA (Cammalleri et al., 2017; 

Fascetti, Pierdicca, Pulvirenti, & Crapolicchio, 2014; Pierdicca et al., 2015), or both in situ-

based evaluation and TCA (Brocca et al., 2011; Xu et al., 2021). These studies have either been 

limited to Europe (Brocca et al., 2011; Fascetti, Pierdicca, Pulvirenti, Crapolicchio, et al., 2014; 

Pierdicca et al., 2015), or included the area as part of a multi-region or global assessment (Al-

Yaari et al., 2019; Cammalleri et al., 2017; Xu et al., 2021). However, in the global studies, 

results are generally not reported with high detail for Europe. Further, developments are 

regularly made to products, and to the author’s knowledge, no published studies have evaluated 

these products with a particular focus on Europe in recent years. In addition, previous studies 

have generally employed in situ data from the ISMN, which lacks sites in certain areas of 

Europe, that however do have coverage by ICOS sites, e.g., in Sweden. Moreover, to the 

author’s knowledge, TCA based merging of soil moisture has not previously been attempted 

over large European areas. 

The aim of this study is to evaluate and compare the performance of multiple current and widely 

used gridded soil moisture products, that employ different technologies and data, to identify 

the best-performing products in Europe. This study further aims to investigate if merging of 

multiple products can generate a new improved product. To achieve the aims of this study, the 

evaluation is conducted using ICOS measurements, and Triple Collocation Analysis (TCA) 

This study will answer the following three research questions: 

1) Which gridded SM products perform the best based on evaluation with new in situ 

measurements from ICOS? 

2) Among a selection of independent products, which SM products exhibit the best 

performance based on TCA evaluation? 

3) Can existing SM products be merged to produce an improved SM product using TCA? 
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2. Background 

2.1. General introduction to soil moisture 

Soil moisture is commonly defined as the water content of the unsaturated (vadose) zone of the 

soil (Seneviratne et al., 2010). The SM unit varies is usually either gravimetric, volumetric, 

i.e., m3
water/m

3
soil, or relative, based on the saturation of the soil in %. Conversion between 

saturation and volumetric data requires information on the porosity of the soil. This study 

focuses on surface SM, normally roughly referring to the top 5 cm, as opposed to root zone SM 

(ca 0-100 cm). 

At the surface, the soil connects the terrestrial and atmospheric components of the hydrological 

cycle (Daly & Porporato, 2005). Water mainly enters the soil though precipitation and leaves 

through evapotranspiration and runoff, with SM affecting the processes that occur the processes 

in between (Ochsner et al., 2013). Water is essential to most plants and SM has been shown to 

be a controller of local environmental niches (Silvertown, 2004). Additionally, SM has been 

classified as a controller of net primary productivity which can be limited by drought induced 

soil water stress (Moyano et al., 2013; Trugman et al., 2018). Consequently, SM also strongly 

influences agriculture and food production, as well as soil’s role as a global carbon pool/sink. 

Anthropogenic climate change is predicted to increase the temporal variability in soil moisture 

(Taylor et al., 2013), for example via droughts. This will have a strong impact on the soil 

processes (Grillakis, 2019). Although, it has been indicated that there is large uncertainty in 

model prediction on the effect of soil moisture changes on soil carbon storage (Falloon et al., 

2011). Besides its importance for the natural environment and agriculture, SM also affects 

infrastructure development (Nguyen et al., 2023). 

2.2. Remote sensing of soil moisture 

2.2.1. General principles of remote sensing of soil moisture 

Remote sensing, i.e., retrieval of information on objects from a distance, is within the field of 

Earth Observation mainly based on the different responses of different surface features to 

electromagnetic energy as it backscatters or is emitted from the Earth surface objects (Gruber 

& Peng, 2022). Commonly, the information is collected by sensors on sun-synchronous polar 

orbiting satellites (Entekhabi et al., 2010; Kerr et al., 2010). SM was first estimated using 

satellite data in the mid-1980’s, with the first dedicated missions being launched in the late 00’s 

(Gruber & Peng, 2022). The advancements have been numerous since then, in issues ranging 

from accuracy to resolution and spatial coverage (Liu & Yang, 2022). Besides moisture, other 

soil properties such as organic carbon, iron, and carbonate can also be retrieved using remote 

sensing techniques (Mulder et al., 2011). 

Remote sensing of soil moisture is predominantly based on the soil’s response to 

electromagnetic energy in the microwave range due to the dielectric properties of the soil 

materials in this range (Gruber & Peng, 2022; Louvet et al., 2015). Microwave frequencies 

range from 0.3 GHz to 300 GHz, and SM specific sensors normally employ the L- (1-2 GHz) 

or C-(4-8 GHz) bands (Gruber & Peng, 2022; Ochsner et al., 2013). In addition to efficiently 
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capturing the soil’s dielectric properties, microwave frequencies are mostly unaffected by 

atmospheric conditions, and the signals can reach depths of 5 cm into the soil. However, 

microwave signals have the drawback of low spatial resolution, it generally being in the range 

of tens of kilometres (Gruber & Peng, 2022; Liu & Yang, 2022). Higher frequency results in 

higher spatial resolution but is also more affected by disturbance, such as vegetation, while 

lower frequencies can penetrate deeper into the soil, but result in coarser spatial resolution 

(Gruber & Peng, 2022; Ochsner et al., 2013). There have been attempts to employ significantly 

higher frequencies in order to increase the spatial resolution, such as visible-near infrared and 

shortwave-infrared waves (Lobell & Asner, 2002), but these are currently not widespread in 

use. There are two main methods of signal retrieval: passive and active. The are further detailed 

in the subsequent sections. 

2.2.2. Passive microwave remote sensing of soil moisture 

Passive remote sensing of soil moisture, which is based on the soil’s naturally emitted signals, 

generally utilizes radiometers active in the L-band, commonly at ca 1.4 GHz (Wigneron et al., 

1998). The large-scale possibility to use these microwave wavelengths for capturing the 

dielectric soil properties was presented by Jackson (1993). The passive models are generally 

based on retrieving the dielectric permittivity of the soil through brightness temperature values 

of the radiometer, but the specifics vary by model, which generally include several parameters, 

including considerations for roughness (Entekhabi et al., 2010; Gruber & Peng, 2022; Mironov 

et al., 2013; Wigneron et al., 1998). Compared to radars, radiometers have the advantage of 

being relatively cheap, having high temporal resolution, and utilizing the high SM-sensitivity 

at the low frequencies (Edokossi et al., 2020) 

The main passive soil moisture retrieval missions of today include Soil Moisture Active Passive 

(SMAP) (Entekhabi et al., 2010) and Soil Moisture Ocean Salinity (SMOS) (Kerr et al., 2010). 

These missions are described further in section 3.  

2.2.3. Active microwave remote sensing of soil moisture 

Active remote sensing is based on artificially emitted EM pulses, with real-aperture- (Gruber 

& Peng, 2022) or synthetic-aperture radars (SAR) (Ulaby et al., 1996). As opposed to the L-

bands of the radiometers, radar sensors usually utilize the C-band, for example the Advanced 

Scatterometer (ASCAT), which operates at 5.255 GHz. Instead of brightness temperature 

retrieval, radars retrieve the backscatter coefficient, i.e., change in magnitude of the emitted 

signal at return to sensor (Gruber & Peng, 2022).  

Compared to passive sensors, active SM retrieval has the advantage of having higher spatial 

resolution (~100 m), but it is less sensitive to SM and require relatively complex data 

processing (Edokossi et al., 2020). SAR data is known to have limitations, still needing 

improvements regarding incidence angle, surface roughness, and vegetation, especially for 

further downsampling applications (Gruber & Peng, 2022). Active missions included in this 

study are Sentinel-1 and ASCAT, which are further detailed in section 3.  
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2.3. Reanalysis products 

Reanalysis products provide extensive temporal and spatial coverage of numerous 

environmental variables and are mainly based on atmospheric model components coupled with 

ground-based measurements, and can further assimilate satellite information, including 

microwave data (Sabater et al., 2008; Sawada et al., 2015). That the models use various  data 

sources allows for high temporal resolution, e.g., hourly as in ERA5-Land, with practically 

gap-filled spatial coverage. Reanalysis products have potential of being as reliable as in situ 

observations (Tarek et al., 2020). This study includes ERA5-Land (Hersbach et al., 2020) and 

GLDAS Noah (Rodell et al., 2004). Another common reanalysis product not included in this 

study is MERRA from NASA (Gelaro et al., 2017).  

Note that in this study, the reanalysis products are treated the same as the satellite based gridded 

products and are evaluated against the ICOS measurements. However, due to their commonly 

high accuracy and similar spatial support to the satellite-based products, they can be used for 

comparisons with gridded SM estimates, as long as they are independently generated from the 

SM product that is being evaluated (Al-Yaari et al., 2014). 

2.4. Evaluation of SM products 

2.4.1. Background to in situ measurements and related evaluation 

Traditionally, SM product validation is done by comparing the product estimates to various 

types of in situ measurements that are assumed to represent the true soil moisture. There are a 

few different methods of directly measuring SM. Besides gravimetric measurements, which 

involve collection of samples, drying, and weighting, which is very labour intensive and mainly 

done for calibration purposes (Dorigo et al., 2011), it is common to use dielectric probes placed 

a few centimetres into the soil (Mortl et al., 2011; Seyfried et al., 2005). The instruments 

generally provide accurate measurements, even if they have the risk of degrading over time or 

can be affected by soil disturbances (Dorigo et al., 2011). 

The networks that the measurement stations belong to are either dense or sparse. Dense 

networks have several stations per gridded product cell, which allows for spatial interpolation 

of SM values. Sparse networks generally only have one point measurement in a gridded SM 

product cell (Gruber et al., 2020). Many of the networks included in the ISMN, as well as 

ICOS, are sparse. The main problem associated with using sparse networks in evaluation 

studies is the unknown representativeness of the point-based measurement for the coarser area 

(in this study up to ~25 km by ~25 km) represented by the gridded product cell, especially 

considering the high spatial variability of SM (Crow et al., 2012). While the representativeness 

might particularly affect the differences in magnitude of SM, it has also been shown that 

temporal dynamics at point-based stations remain relatively similar to that at the larger 

surrounding area, even at coarse scales (Brocca et al., 2011). This advises which evaluation 

metrics were employed (see section 4). The relatively homogeneity in temporal dynamics 

means that at the least the Pearson correlation coefficient R can be justified (Brocca et al., 2009; 

Ma et al., 2019; Vachaud et al., 1985), and  sparse networks are commonly used for evaluation 

(e.g., Dorigo et al., 2015; Högström et al., 2018; Hu et al., 2022). 
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Nevertheless, the representativeness issue causes a large degree of uncertainty to the in situ-

measurement-based evaluation results. Further attention is given to it throughout the study, in 

particular via discussions on land cover heterogeneity which is known to be related to SM 

variability and product error (Panciera, 2009). Due to the unknown uncertainty of large-scale 

representativeness of ICOS, the results from the in situ observation-based evaluation are 

particularly interesting to compare with the results from TCA, which is independent of the SM 

measurement issues (see section 2.4.2.). 

It should be noted that there are, in addition to the in-soil instrument point measurements, 

cosmic-ray neutron measurements which are non-invasive, i.e., not placed in the soil itself 

(Zreda et al., 2008). They provide measurements on a scale of hundreds of metres, which 

generally means that they avoid some of the representativeness issues of point-based 

measurements (Zreda et al., 2012). One network of such measurements is COSMOS-Europe 

(Bogena et al., 2022), but it was not included in this study. 

The methods employed for the in situ-measurement-based evaluation are further explained in 

section 4. 

2.4.2. Triple collocation-based evaluation 

Triple collocation analysis (TCA) was first used for wind modelling, introduced by Stoffelen 

(1998). It was later brought into soil moisture research through Scipal et al. (2008). Since then, 

it has become a staple method for gridded SM product evaluation (F. Chen et al., 2018; Gruber, 

Su, Zwieback, et al., 2016). TCA has also been used for other environmental variables, 

including evapotranspiration (Li et al., 2023), and precipitation (Alemohammad et al., 2015; 

Dong et al., 2020). 

TCA utilizes three temporally and spatially collocated independent sets of data to perform error 

estimation. Within SM product TCA error estimation, it is common practice that the product 

triplet consists of one passive, one active, and one independent product, such as a land surface 

model, or in situ measurements (Gruber, Su, Zwieback, et al., 2016). 

The common notation of the TCA error model is in accordance with Eq. 1 below (Gruber, Su, 

Zwieback, et al., 2016). 

𝑖 =  𝛼𝑖 + 𝛽𝑖𝛩 +  𝜀𝑖 (1) 

where 𝑖 represents the dataset value, 𝛩 is the true SM, 𝛼𝑖 is the additive bias, 𝛽𝑖 is the 

multiplicative bias, and 𝜀𝑖 represents the random error, which has a mean of 0. From three 

products assumed to have this error structure, the aim of triple collocation is to estimate the 

individual parts, in particular the random error (Stoffelen, 1998). 

For triple collocation to be valid, the following requirements/assumptions need to be true (F. 

Chen et al., 2018; Gruber, Su, Zwieback, et al., 2016; Peng et al., 2021): 

i. All datasets have a linear relationship to the true SM 

ii. Errors and true SM are not correlated 

iii. Errors of all three datasets are independent of each other 
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iv. There is stationarity in the error statistics and signal 

For full error retrieval and TCA, see formulas in section 4.2. 

The data sets in the triplet can be merged using a weighted mean, with the weights determined 

by the TCA estimated errors. It has been shown that TCA merged gridded products can 

outperform the parent data  (Peng et al., 2021). The method has been employed by the European 

Space Agency (ESA), for the ESA CCI SM product (Dorigo et al., 2017) which can be 

considered a benchmark TCA based merging product. 

Further, there are additional techniques which are based on similar assumptions as triple 

collocation, which have also become common for cross-error estimation of products. These 

approaches include Extended Collocation (Gruber, Su, Crow, et al., 2016), Quadruple 

Collocation (Min et al., 2022), and Extended Double Instrumental Variable (Kim et al., 2021). 

3. Data 

3.1. Gridded soil moisture products 

3.1.1. Sentinel-1 

The Sentinel-1 SM product is part of ESA’s Copernicus program. The product is based on C-

band SAR data at 5.405 Hz from the two Sentinel-1 satellites Sentinel-1A and Sentinel-1B, that 

were launched in April 2014 and April 2016, respectively (Bauer-Marschallinger et al., 2019). 

Thus, data for April 2014 and onwards is available. The SM retrieval from the raw SAR data 

is based on the change detection algorithm developed by TU Wien (Wagner et al., 1999). After 

calibration, it is downsampled to 1 km resolution for all of Europe. The revisit frequency is 

approximately 1.5 – 4 days, with SM values representing days, and the product represents SM 

in the top 5 cm of the soil (Bauer-Marschallinger et al., 2019). 

The provided SM unit is degree of saturation (%). Thus, the data was converted to volumetric 

soil water content (m3/m3) using the global 0.25° GLDAS Land Surface Model porosity dataset, 

derived from Reynolds et al. (2000) (Rodell et al., 2004). The porosity dataset was  retrieved 

at https://ldas.gsfc.nasa.gov/gldas/soils (LDAS, n.d.). Sentinel-1’s recommended quality 

masking was applied. This included removing for flags of extreme slopes, dry extremes, wet 

extremes, water surfaces, and low sensitivity. The Sentinel-1 SM product was retrieved from 

the ESA Copernicus Global Land Service portal 

(https://land.copernicus.eu/global/products/ssm). 

3.1.2. SMAP L3E and SMAP L4 

The Soil Moisture Active Passive (SMAP) satellite was launched by NASA in January 2015. 

The satellite carries both an L-band radar sensor, at 1.26 GHz, and an L-band radiometer, at 

1.41 GHz (Entekhabi et al., 2010). However, only the radiometer was functioning during the 

study period, meaning that SMAP was classified as a passive product in this study. From the 

radiometer brightness temperatures, several products are generated (Colliander et al., 2017), 

two of which were selected for this study. 

https://ldas.gsfc.nasa.gov/gldas/soils
https://land.copernicus.eu/global/products/ssm


8 

 

The SMAP Level 3 Enhanced product (SMAP L3E) (version 5) is a daily composite of the 

SMAP Level-2 SM (O'Neill et al., 2021). From the approximate 36 km radiometer resolution, 

the product employs the Backus-Gilbert optimal interpolation algorithm to resample it to a 9 

km grid. Temporally, SMAP L3E has SM estimates at AM and PM. These were averaged to 

get the daily SM value. General recommendations were followed for the quality masking. 

Snow, permanent ice, frozen ground, and static water pixels were all filtered out. However, 

several ICOS stations were located on pixels that were flagged for other reasons, in particular 

vegetation density, and to keep the validation data, pixels with these flags were not masked out. 

SMAP L4 (version 7), assimilates the SMAP sensor data in a geophysical land surface model 

(Reichle et al., 2022a; Reichle et al., 2022b; Reichle et al., 2022c). The assimilation model is 

based on the GEOS-5 land data assimilation system (LDAS) and includes precipitation 

observations and GEOS-5 surface meteorology in addition to the SMAP brightness 

temperatures (Reichle et al., 2017). The quality flagging and filtering is done within the 

assimilation, and pixels with unfavourable flags for snow cover, frozen ground, vegetation 

density etc. are filtered out. The model gives output 3-hourly at the 9 km grid. The 8 daily 

values were averaged for one daily mean value that was used in the evaluation. 

Both SMAP L3E  and SMAP L4 represents the SM in the top 5 cm of the soil and have coverage 

from March 2015 and onwards. The data were retrieved from the National Snow and Ice Data 

Center (NSIDC) (O'Neill et al., 2021) (https://nsidc.org/data/spl3smp_e/versions/5, 

https://nsidc.org/data/spl4smgp/versions/7). 

3.1.3. SMOS L4 

ESA launched the Soil Moisture Ocean Salinity (SMOS) mission in 2009 to monitor SM over 

land and salinity at the ocean surface (Kerr et al., 2010; Pablos et al., 2022). The satellite 

employs a radiometer in the L-band at 1.4 GHz. The level 4 product, used in this study, was 

generated via algorithms from the Barcelona Expert Center that downscaled the raw data, at a 

10s of km scale, to a fine resolution of 1 km. Besides L-band brightness temperature, the 

downscaled SM is obtained from land surface temperature (LST) data from the European 

Centre For Medium-Range Weather Forecasts (ECMWF) model and Normalized Difference 

Vegetation Index (NDVI) data from the Terra Moderate Resolution Imaging Spectroradiometer 

(MODIS) to perform the downsampling (Pablos et al., 2022; Piles et al., 2011). 

SMOS L4 is released with daily values for ascending and descending overpass, these were 

averaged to get daily SM values. Only excellent quality data was used. Barcelona Expert Center 

(BEC) provided the product via their portal at https://www.catds.fr/Products/Available-

products-from-CEC-SM/L4-Land-research-products. 

3.1.4. ASCAT 

ASCAT is an active product and is produced within the European Organisation for the 

Exploitation of Meteorological Satellites (EUMETSAT) H SAF soil moisture project. Various 

versions of the ASCAT product exists, this study used version ASCAT SSM CDR v5 EXT 

12.5 km, H116.  

https://nsidc.org/data/spl3smp_e/versions/5
https://nsidc.org/data/spl4smgp/versions/7
https://www.catds.fr/Products/Available-products-from-CEC-SM/L4-Land-research-products
https://www.catds.fr/Products/Available-products-from-CEC-SM/L4-Land-research-products
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The mission is based on the Metop-satellites (A, B, and C) which contain the Advanced 

Scatterometer (ASCAT). ASCAT uses the C-band, at 5.255 GHz to retrieve the backscatter 

information. The TU-Wien developed algorithm from Wagner et al. (1999) is then used in order 

to generate the surface soil moisture from backscatter data. The H116 version is resampled to 

12.5 km from original resolution of 25-34 km. The product contains descending and ascending 

values that are averaged for daily SM. The data is released as degree of saturation (%) in the 

top 5 cm. It was converted to VSWC (m3/m3) using the same data as for Sentinel-1 (see section 

3.1.1). Quality flag wise, the confidence flag “0” was used, i.e., indicating no data issues. The 

ASCAT data was retrieved from the EUMETSAT portal 

(https://navigator.eumetsat.int/product/EO:EUM:DAT:0308). 

3.1.5. ESA CCI SM 

The ESA Climate Change Initiative (CCI) SM product (Dorigo et al., 2017; Gruber et al., 2019) 

project began in 2010, and exists within the broader aim to collect of long-term climate data 

records. A new version is released yearly. This study used the daily images combined version, 

v.07.1, which has released SM estimates covering 1978 to 2021. The product includes both 

passive and active SM retrievals, using data from, among other sensors; ASCAT, SMOS, and 

SMAP. However, inclusion of sensors vary over time depending on their availability. 12 passive 

and 5 active sensors are used at different points in time. Data from the sensors are merged, 

partly using triple collocation analysis (EODC, 2022). Further, ESA CCI SM also uses the 

reanalysis GLDAS-Noah, both as a scaling reference and for uncertainty estimation (Gruber et 

al., 2019). The product is resampled to a  0.25° grid and has daily values. The unit is VSMC 

(m3/m3). Only recommended quality flags were kept, meaning that estimates flagged for snow, 

frozen soil, or dense vegetation were filtered out. While different sensors have different soil 

sensing depths, the product has been considered to represent the top 5 cm of the soil in previous 

research (Wu et al., 2020). 

The data was retrieved from the ESA SM CCI website (https://www.esa-soilmoisture-

cci.org/data). 

3.1.6. ERA5-Land 

The European Centre for Medium-Range Weather Forecasts (ECMWF) produces the global 

atmospheric product ERA5 (Hersbach et al., 2020; Muñoz-Sabater et al., 2021) within the 

Copernicus Climate Change Service (C3S). ERA5 merges meteorological models with various 

measurements. In this study, ERA5-Land (Muñoz Sabater, 2019) was used. ERA5-Land is  

produced from a replay of the land component of ERA5 and is resampled to an enhanced 

horizontal resolution of 0.1°. The temporal coverage is from 1950 to present. The hourly data 

version was used in this study, with values averaged to daily values. The shallowest available 

depth was used, at 0-7 cm.  

The data was accessed at the Climate Data Store and Copernicus Climate Change Service (C3S, 

2022)(https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.e2161bac?tab=overvi

ew).  

https://navigator.eumetsat.int/product/EO:EUM:DAT:0308
https://www.esa-soilmoisture-cci.org/data
https://www.esa-soilmoisture-cci.org/data
https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.e2161bac?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.e2161bac?tab=overview
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3.1.7. GLDAS Noah 

The second reanalysis dataset included in this study was GLDAS-Noah v.2.1 (Beaudoing & 

Rodell, 2020). It is part of the Global Land Data Assimilation System (GLDAS) (Rodell et al., 

2004), and uses Noah Model 3.6 to produce a global estimate of environmental variables at 

0.25° spatial resolution with a temporal resolution of 3 hours. The soil moisture between 0-10 

cm was selected and the 3-hourly data were averaged to create daily values. It contains data 

from 1978 to present. The product was retrieved at the NASA Earth data portal 

(https://disc.gsfc.nasa.gov/datasets/GLDAS_NOAH025_3H_2.1/summary). 

Table 1. The Gridded Soil Moisture Products 

Gridded 

product 

Grid 

resolution 

Temporal coverage Coverage Sampling depth 

(cm) 

Frequency 

(GHz) 

Sentinel-1 1 km April 2014 – present Europe 0-5  5.405 (C) 

SMAP L3E 9 km March 2015 – present Global 0-5  1.41 (L) 

SMAP L4 9 km March 2015 – present Global 0-5  1.41 (L) 

SMOS L4 1 km June-2010 – present Europe 0-5  1.4 (L) 

ASCAT 12.5 km January 2019 – present Global 0-5  5.255 (C) 

ESA CCI SM 0.25° January 1978 - December 2021 Global 0-5 Various  

ERA5-Land 0.1° January 1950 – present Global 0-7  - 

GLDAS Noah 0.25° January 2000 - present Global 0-10  - 

 

3.2. In situ measurements from ICOS 

The Integrated Carbon Observation System (ICOS) is a European collaboration and 

infrastructure to monitor the carbon cycle. ICOS hosts atmosphere stations, ocean stations, and 

ecosystem stations. This study uses data from the ecosystem stations, of which there are 

currently 87. However, many of these stations do not have coverage during 2020 and 2021. 

Instead, only 38 ICOS stations were found to provide SM data for most of the study period (see 

Table A1 in appendices for detailed station information). Geographically, the stations are 

located from northern Finland and Sweden, through central and western Europe, to southern 

France and northern Italy (Figure 1). ICOS coverage is lacking in the Iberian Peninsula, 

Iceland, Great Britain, and Eastern Europe. 

ICOS utilizes dielectric sensors to measure the SM and the top SM measurement, which is 

what was used in this study, is instructed to be fixed at 5 cm (De Beeck et al., 2018). The data 

is collected half-hourly by ICOS and were averaged to provide a daily value which could be 

compared with the daily gridded SM estimates. All ICOS data was retrieved from the ICOS 

Data Portal (https://data.icos-cp.eu/portal/). 

https://disc.gsfc.nasa.gov/datasets/GLDAS_NOAH025_3H_2.1/summary
https://data.icos-cp.eu/portal/
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The representativeness of the land cover that the ICOS stations were located on within the 

surrounding area was investigated using 1 and 9 km horizontal squares, the pixel sizes of the 

SMOS and SMAP products respectively, centred on each station. The 2018 100 m CORINE 

Land Cover (CLC) dataset v.2020_20u1, was used (Copernicus, 2020). The CLC data indicated 

that SE-Svb was surrounded by 100% coniferous forest in the 1 km square, and 85% coniferous 

forest in the 9 km square, while SE-Deg was surrounded by 73% peat bog in the 1 km square 

and only 5% in the 9 km square, see Figure 2 below and Table A1 in the appendices.  

Figure 1. Map of the 38 ICOS stations. Inset for the stations in Belgium and central 

Germany. Made with Natural Earth. 
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4. Methodology 

4.1. In situ measurement-based evaluation 

4.1.1. General workflow and pre-processing 

The in situ measurement-based evaluation mainly follows the guidelines and framework set by 

(Gruber et al., 2020), including data acquisition, spatial and temporal collocation of 

measurements and gridded data, masking of flagged retrievals, decomposition, i.e., retrieval of 

anomalies, rescaling, and metric calculation. 

The general workflow, from data collection to metric calculation is displayed in Figure 3. 

 

Figure 2. Corine Land Cover around 6 selected ICOS stations with 1 km horizontal square 

(solid outline) and 9 km horizontal square (dashed outline). 
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Data management were mainly handled in Python using standard packages, while the open-

access program the Python Toolbox for the Evaluation of Soil Moisture Observations, Pytesmo 

(https://doi.org/10.5281/zenodo.596422), was employed for much of the analysis. 

Gridded product data and ICOS data were spatially matched via a nearest neighbour operation, 

i.e., by using the SM value of the gridded product-cell that the ICOS-station was located inside. 

The selected grid cell SM could then be compared to the in situ SM, following standard practice 

(Dorigo et al., 2015; Gruber et al., 2020). As the stations were sparsely located, there was no 

need to interpolate SM from different in situ measurements. In Germany and Finland, some 

pixels contained several (2 or 3) ICOS stations at the coarser grids. One method to deal with 

this issue is to only use the station that is assumed to be the most representative over the grid 

cell, this being the station with the highest mean correlation at the pixel for several products 

(Dorigo et al., 2017; Xu et al., 2021). However, as the products, besides SMAP L4 and SMAP 

L3E, did not use the same grids or grid sizes, it was decided to select and keep the station which 

had the highest correlation coefficient with the gridded data, for each product individually. The 

only exception was between SMAP L3E and SMAP L4, where the station with the highest 

mean correlation between both products was kept.  

Each instance of a removed station is shown in Table 2, but no more than two stations were 

removed for a single product, meaning that the removal method likely did not have a major 

impact on the results. 

 

 

Figure 3. General workflow of the in situ-measurement based evaluation. 

https://doi.org/10.5281/zenodo.596422
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Table 2. The removed stations for each product in the in situ measurement-based evaluation.  

Gridded product Removed stations 

ASCAT DE-Tha, FI-Sii 

ERA5-Land None 

ESA CCI SM DE-Tha, DE-Kli 

GLDAS Noah DE-Tha, DE-Kli 

Sentinel 1 None 

SMAP L3E DE-Kli 

SMAP L4 DE-Kli 

SMOS None 

 

To give a most fair representation of each products’ individual performance as released, they 

were not resampled to the same grid. Thus, the impact of resampling artifacts on the result was 

avoided. 

Temporal collocation of measurements was done to facilitate comparisons only done for dates 

that all products had data for at a station. Data was converted to being daily for all products 

where necessary, and then matched between ICOS and products.  

The products’ respective quality flags were used to filter out unreliable data (see section 3 for 

quality filtering employed for each product). However, as all products had different quality 

flags it is not certain that the same thresholds were used. This is a well-known issue when 

comparing different product and needs to be considered (Gruber et al., 2020).  However, as the 

bulk of inter-product comparisons was done for collocated dates, i.e., dates with values for all 

products after quality flag filtering at each of them, it can be assumed that most of the data with 

significant uncertainty was consistently filtered out.  

To further ensure avoidance of frozen soil, for which satellite retrieval is not possible (Babaeian 

et al., 2019), the dates were further filtered by ICOS soil temperature measurements,  removing 

dates with below 0 °C soil temperature.  

4.1.2. Anomalies and evaluation metrics 

Short-term SM-anomalies represent the high frequency dry and wet events, i.e., brief 

fluctuations in the SM, and were calculated to enable evaluation of gridded SM product’s skill 

at capturing these variations (Gruber et al., 2020). Anomalies were calculated using the same 

method as Peng et al. (2021), using a 35-day moving mean. The anomaly 𝐴 on day 𝑖 for product 

𝑃’s measurement over the 35-day mean 𝑃̅ is presented in Eq. 2 (Peng et al., 2021). 

𝐴𝑖 =  𝑃𝑖 − 𝑃̅  (2) 

Gruber et al. (2020) suggested a threshold requiring at least 25% valid data within the window 

for the anomalies to be calculated (i.e., 8.75 days in a 35-day window) but as there was a lot of 

missing gridded product data for many periods, it was decided to use a 7-day threshold instead. 

A mean consisting of only 7 values is not necessarily representative of the conditions during 

the 35-day period but was a necessary compromise. Also note that when calculating anomalies, 
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only data from collocated dates between ICOS and the products were included to ensure that 

gaps in temporal coverage for the gridded product SM did not affect the scores.  

The main metrics that are used in in situ measurement-based evaluation, and that are suggested 

by Gruber et al. (2020), are the linear Pearson correlation R (eq. 5), Root-Mean-Squared-

Deviation (RMSD), and bias. It is also recommended to use the scaled versions of the metrics 

when comparing absolute soil moisture data, i.e., with removal of inherent product bias. Thus, 

for RMSD, the unbiased RMSD (ubRMSD) was used instead (eq. 6). Further, following 

recommendations, bias was not presented in this study as the footprints of compared 

measurements were different (Gruber et al., 2020).  

Statistical metrics were only calculated when there were more than 30 dates available, resulting 

in exclusion of some stations for specific products. The equations for the statistical metrics as 

well as variance and covariance follow below. Overbars represent the temporal mean, 𝑛 

represents the total number of measurements, 𝑖 represents a day or a single measurement: 

Variance 𝜎𝑋
2, which represents dispersion of data from product X, was calculated according to 

Eq. 3. 

𝜎𝑋
2 =

∑(𝑋𝑖 −  𝑋̅)2

𝑛 − 1
 

(3) 

Covariance 𝜎𝑋𝑌, which represents direction and size of relationship between X and Y, was 

calculated from Eq. 4. 

𝜎𝑋𝑌 =
∑(𝑋𝑖 − 𝑋̅)(𝑌𝑖 − 𝑌̅)

𝑛 − 1
 

(4) 

Pearson’s correlation coefficient 𝑅 between data sets X and Y, was calculated from Eq. 5 

(Gruber et al., 2020). 

𝑅𝑋𝑌 =
𝜎𝑋𝑌

𝜎𝑋  𝜎𝑌
 (5) 

The Un-biased Root-Mean-Squared-Deviation 𝑢𝑏𝑅𝑀𝑆𝐷, was derived from Eq. 6 (Gruber et 

al. 2020). 

𝑢𝑏𝑅𝑀𝑆𝐷 =  √𝜎𝑋
2 + 𝜎𝑌

2 − 2𝜎𝑋𝑌 
(6) 

The R simply shows the correlation between the two datasets being compared. A perfect 

product would have a linear correlation with a dataset assumed to have a perfect match with 

the ground reality, which would result in an R of 1. ubRMSD shows how much the difference 

generally is between the product and ground reality, i.e., lower ubRMSD is closer to the 

reference data set and can be assumed to have lower error and lower uncertainty.  
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4.2. Triple collocation-based evaluation 

4.2.1. Workflow and triplet selection 

The triple collocation analysis workflow started with pre-processing, including data quality 

filtering, resampling the gridded products to the same grid, removing data when estimated soil 

temperatures were below 0 °C, and temporal collocation. Once this was done, the three data 

sets were acquired, and the TC metrics could be calculated (Figure 4). 

 

 

The independent products selected to be used in the TC triplet were GLDAS Noah, ASCAT 

and SMAP L3E . ASCAT has been used in triplets together with SMAP previously, indicating 

that they should be independent (Al-Yaari et al., 2014; F. Chen et al., 2018; Peng et al., 2021). 

It is also standard practice to select one active and one passive product together with a 

reanalysis product for the TC-based evaluation (Gruber et al., 2017). As mentioned previously, 

SMAP L3E only employed its radiometer during the study period, thus effectively being a 

passive product. These three products are as independent as gridded SM products can 

practically be.  

4.2.2. Pre-processing 

All quality flag filtering that was performed for each of the products in the in situ-measurement 

based evaluation was also conducted for the triple collocation. In addition, modelled soil 

temperature was used to filter out days with below 0 °C soil temperatures, i.e. This data came 

from ERA5-Land or GLDAS Noah respectively depending on resampling type, further detailed 

below. It is also common to filter out data with potential snow cover in the area (Gruber et al., 

2019; Gruber, Su, Zwieback, et al., 2016). However, due to increased computer processing 

times that this brought, it had to be avoided. Note that many of the potential snow dates were 

Figure 4. General workflow of the triple collocation (TC)-based evaluation. 
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already excluded in the removal of below 0 °C soil temperatures, in addition to already being 

removed from the quality flag filters of the actual products. 

For the TCA, it was necessary to resample the products to the same grid, as the products were 

evaluated on a pixel-by-pixel basis. There are several approaches for how to do this, the 

preferred method depending on factors such as the difference in grid cell size between different 

products, and the original satellite retrieval footprint size. The methods include area weighted 

averaging (Wu et al., 2020), which is an ideal method for upscaling products (Gruber et al. 

2020), nearest neighbour interpolation (Al-Yaari et al., 2014) which is appropriate for similar 

sized grids (F. Chen et al., 2018), and bilinear interpolation (Hu et al., 2022). The selected 

approach was to interpolate the GLDAS Noah, SMAP L3E, and ASCAT products to the 0.1° 

ERA5-Land grid using the nearest neighbour interpolation to facilitate comparisons against 

ERA5-Land. 0.1°  is on a similar scale to SMAP and ASCAT, thus, nearest neighbour retains a 

lot of information, largely avoiding artifacts (F. Chen et al., 2018). However, the grid resolution 

is significantly higher than the GLDAS Noah grid (0.25°), meaning that GLDAS  Noah could 

be more strongly affected. Further, both ASCAT and SMAP’s original satellite retrieval 

footprints were on a larger scale, at 25 km and 36 km scale respectively, meaning that the 

algorithmic downscaling methods of these products also affect the final product values. 

To investigate if the difference in resolution between GLDAS Noah and the others, as well as 

the resampling method, make a significant difference in the TCA evaluation results, another 

approach of resampling was performed in addition to the nearest neighbour method. The second 

selected approach was to resample SMAP L3E and ASCAT to the 0.25° GLDAS Noah grid 

using inverse-distance-weighting (IDW). IDW has previously been used by F. Chen et al., 

(2018) that found it to be a good approach for ASCAT. With this method, the GLDAS Noah 

product remained unchanged, but there may have been resampling artifacts for SMAP and 

ASCAT respectively. 

4.2.3. Evaluation metrics for the TCA 

The products were compared on a pixel-by-pixel basis, for each of the three products. Using 

the assumed error structure of the data, as presented in section 2.4.2., the triple collocation 

could be workflow and formulas follow below. 

From the series of SM values from each product, the signal to noise ratio (SNR) with decibel 

(dB) units was calculated. The SNR is directly related to the correlation to the assumed true 

SM, with higher SNR being preferable. Within TCA evaluation, EUMETSAT H SAF has 

specified three different levels of SNR based on their desirability: 0: threshold, 3: target, 6: 

optimal (Gruber et al., 2020). 

For three products, indicated by M: model (GLDAS Noah), A: active (ASCAT), and P: passive 

(ASCAT), the estimated unbiased root mean squared error, the rescaled general difference from 

the true SM, also known as error standard deviation, ubRMSE 𝜎𝜀𝑋 of each product were 

calculated according to Equations 7 to 9 (Peng et al., 2021). 
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𝜎𝜀𝑀 =  √𝜎𝑀
2 −

𝜎𝑀𝐴𝜎𝑀𝑃

𝜎𝐴𝑃
 

(7) 

𝜎𝜀𝐴 =  √𝜎𝐴
2 −

𝜎𝐴𝑀𝜎𝐴𝑃

𝜎𝑀𝑃
 

(8) 

𝜎𝜀𝑃 =  √𝜎𝑃
2 −

𝜎𝑃𝑀𝜎𝑃𝐴

𝜎𝑀𝐴
 

(9) 

Further, the 𝑆𝑁𝑅𝑋 for each product was calculated according to Eqs. 10 to 12 (Peng et al., 

2021). 

𝑆𝑁𝑅𝑀 =  −10 log(
𝜎𝑀

2 𝜎𝐴𝑃

𝜎𝑀𝐴𝜎𝑀𝑃
− 1) 

(10) 

𝑆𝑁𝑅𝐴 =  −10 log(
𝜎𝐴

2𝜎𝑀𝑃

𝜎𝐴𝑀𝜎𝐴𝑃
− 1) 

(11) 

𝑆𝑁𝑅𝑃 =  −10 log(
𝜎𝑃

2𝜎𝑀𝐴

𝜎𝑃𝑀𝜎𝑃𝐴
− 1) 

(12) 

Note, that when presenting values for each of the three products in the results, only the pixels 

which also had ICOS stations were included instead of all processed pixels. This was done to 

avoid spatial bias when comparing the inter-product ranking in TCA to the inter-product 

ranking of the in situ observation-based evaluation.  

4.2.4. Merging of the triplet products 

Before the merging could be conducted, the bias of GLDAS Noah and ASCAT against SMAP 

L3E as baseline was calculated to facilitate rescaling of GLDAS Noah and ASCAT to SMAP 

L3E, with rescaling coefficients 𝛽𝑋 (Eq. 13 to 15) (Gruber, Su, Zwieback, et al., 2016). SMAP 

L3E was selected as reference product as it was the better performing microwave-based 

product.  

𝛽𝑀 =
𝜎𝑃𝐴

𝜎𝑀𝐴
 (13) 

𝛽𝑃 = 1  (14) 

𝛽𝐴 =
𝜎𝑃𝑀

𝜎𝐴𝑀
 (15) 

With the rescaling coefficients, GLDAS Noah and ASCAT could be adjusted to the SMAP 

L3E baseline as 𝑀𝑟𝑒𝑠𝑐𝑎𝑙𝑒𝑑, and 𝐴𝑟𝑒𝑠𝑐𝑎𝑙𝑒𝑑 respectively (Eqs. 16 and 17) (Peng et al., 2021). 

𝑀𝑟𝑒𝑠𝑐𝑎𝑙𝑒𝑑 =  𝛽𝑀 ∗ (𝑀 −  𝑀̅) +  𝑃̅ (16) 
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𝐴𝑟𝑒𝑠𝑐𝑎𝑙𝑒𝑑 =  𝛽𝐴 ∗ (𝐴 −  𝐴̅) +  𝑃̅ (17) 

The weight for each product, 𝑊𝑋 , in the TCA merging, was then calculated according to Eqs. 

18 to 20 (Peng et al., 2021). 

𝑊𝑀 =
𝜎𝑃

2𝜎𝐴
2

𝜎𝑀
2 𝜎𝑃

2 +  𝜎𝑀
2 𝜎𝐴

2 +  𝜎𝑃
2𝜎𝐴

2 
(18) 

𝑊𝑃 =
𝜎𝑀

2 𝜎𝐴
2

𝜎𝑃
2𝜎𝑀

2 +  𝜎𝑃
2𝜎𝐴

2 +  𝜎𝑀
2 𝜎𝐴

2 
(19) 

𝑊𝐴 =
𝜎𝑀

2 𝜎𝑃
2

𝜎𝐴
2𝜎𝑀

2 +  𝜎𝐴
2𝜎𝑃

2 + 𝜎𝑀
2 𝜎𝑃

2 
(20) 

The weighted merged SM estimate was then produced from Eq. 21. 

𝑆𝑀𝑖 = 𝑀𝑖 ∗ 𝑊𝑀 + 𝑃𝑖 ∗  𝑊𝑃 +  𝐴𝑖 ∗  𝑊𝐴 (21) 

The simple arithmetic mean between the products was calculated according to Eq. 22. 

𝑀𝑒𝑎𝑛 𝑆𝑀𝑖 =
𝑀𝑖 + 𝑃𝑖 +  𝐴𝑖

3
 

(22) 

Further, via a one-tailed student’s t-test, the p-values of each duo of products were calculated, 

i.e., the duos being SMAP with GLDAS, SMAP with ASCAT, and GLDAS with ASCAT. The 

merging method chosen for the pixel was based on these p-values, according to the scheme 

proposed by Gruber et al. (2017), in particular the version used by (Peng et al., 2021), and it 

was done in order to increase the temporal coverage (Table 3). What merging method was used 

for each grid cell, as well as how many collocated dates there were at each grid cell, can be 

found in Figure A1, in the appendices. 

Table 3. The TCA based merging scheme based on t-test p-values. Adapted from Peng et al. 

(2021) and Gruber et al. (2017). M represents the reanalysis GLDAS Noah, P represents the 

passive product SMAP L3E, and A represents the active product ASCAT. The number in 

parenthesis represents the merging method in Figure A1. 

M - P p < 0.05 M - A p < 0.05 P - A p < 0.05 Merging method 

Yes Yes Yes TCA-weighted (0) 

Yes Yes No M (1) 

No Yes Yes P (2) 

Yes No Yes A (3) 

Yes No No Mean (M, P) (4) 

No Yes No Mean (M, A) (5) 

No No Yes Mean (P, A) (6) 

No No No No merging (7) 
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The TCA was only conducted where there were at least 100 common dates as recommended 

by previous studies (Dorigo et al., 2010; Scipal et al., 2008). In addition, any pixels that had 

data which statistically violated the TC assumptions were discarded.  

5. Results 

5.1. Evaluation with in situ measurements 

5.1.1. Results without considering temporal collocation 

Figure 5 displays Pearson's R and ubRMSD for the absolute SM of each product against ICOS 

measurements. This gives an indication of individual performance for each product but should 

not be used as a primary source to rank inter-product performance as the data is not collocated 

by dates or stations.  

All products generally showed positive correlations with ICOS measurements, although for 

most products a few stations had R values of 0 or even negative. The lowest R value was 

approximately -0.3.  The median R for the products ranged from 0.25 at Sentinel-1 to 0.71 at 

SMAP L4, with all products except Sentinel 1 and ASCAT having a highest correlation above 

0.8. Most products had a median unbiased root-mean-squared-deviation (ubRMSD) at the 

stations of around 0.05 m3/m3, with some outliers reaching 0.20 m3/m3 and higher. Note that 

the target error, or required accuracy for many products is 0.04 m3/m3 (Gruber et al., 2020; Kerr 

et al., 2010) which the products generally fell slightly short of, even if it was reached by some 

products at individual stations.  

ASCAT had medium to large correlation to ICOS data at most stations, with R values being 

generally between 0.3 and 0.6, and even higher correlation coefficients at some stations, for 

example at BE-Lcr and FR-Aur (Figure 6). The median R was 0.47. ASCAT’s ubRMSD was 

under 0.14 m3/m3 at all stations with a median of 0.074 m3/m3. Sentinel-1 had a median of 0.25, 

with several stations significantly below 0. Its median ubRMSD was 0.068 m3/m3 and it had 

an outlier above 0.20 m3/m3. SMOS had most of its R values in the range between 0.4 and 0.8, 

with over 0.8 at FR-Aur and FR-Mej. The ubRMSD for SMOS L4 was in a relatively narrow 

range between 0.05 and 0.10 m3/m3, with a few higher outliers.  

SMAP L3E had several large correlations with ICOS stations, with R values over 0.8, for 

example at DE-RuR, BE-Maa, and FR-Tou. Its median R was approximately 0.65. However, 

it showed high variability, as it also produced some negative Rs, such as at CH-Dav, and SE-

Deg. As for ubRMSD, SMAP L3E mostly produced errors of around 0.05 m3/m3, but just as 

for most products, there were some higher outliers. SMAP L4 contained a large median R, at 

over 0.71, and had a consistently high performance with R values at most stations being 

between 0.6 and 0.8. The median ubRMSD for SMAP L4 was 0.044 m3/m3. ESA CCI SM had 

a median R of ca 0.66 but a wide range of values, including one negative outlier of nearly -0.2 

at SE-Deg. Generally, the R was in between 0.5 and 0.8. The median ubRMSD was 0.045 

m3/m3,  with relatively small outliers.   

As for the pure reanalysis products, ERA5-Land mostly had medium to large correlations, with 

R values between 0.55 and 0.8, and a median of ca 0.68. The ERA5-Land median ubRMSD 
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was approximately 0.049 m3/m3. GLDAS Noah had a median R of 0.63, with a relatively large 

range of values. Likewise, the ubRMSD had a range from 0.02 m3/m3 to 0.12 m3/m3 when 

excluding the outliers, with a median of ca 0.057 m3/m3.  

 

 

Figure 6 displays the R for each product at each of the 38 ICOS stations based on the absolute 

SM. There was a large variation between the different products and stations. For some sites, 

such as FR-Mej, all products had a relatively large correlation (>0.7), while there were other 

stations such as FR-LGt and DE-Tha where all product’s correlations were close to 0, or even 

negative. The stations where all correlations were low might be indicative of measurement 

stations that are less representative for the SM on the product grid cell scale.  

 

Figure 5. The evaluation metrics R (a) and ubRMSD (b) for each SM product at the ICOS 

stations. The values were calculated based on absolute SM and non-collocated dates between 

products. 
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Product correlation with short-term anomalies is displayed in Figure 7. Across all products, the 

R values were toward 0.1 lower than for the absolute SM. Some products, such as GLDAS 

Noah, showed even larger differences in correlation compared to the absolute SM. Most 

products and stations seemed to have a medium correlation for short-term anomalies. As for 

the ubRMSD, five out of eight products’ median was below 0.04 m3/m3. 

 

 

Figure 6. The evaluation metric R for each SM product at each of the ICOS stations. The 

values were calculated based on absolute SM and all available dates for each product. 
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5.1.2. Results considering temporal collocation 

Figure 8 shows the performance of the products as calculated for common dates for each ICOS 

station, and only stations that all products have data for, thus allowing for a fair inter-product 

comparison. Out of the eight products, ASCAT, Sentinel 1, and SMOS L4 had the lowest three 

R values while the remaining five products consistently seemed to produce higher correlations.  

Sentinel-1 seemed to have the lowest scores of the three poorer products as it generally 

produced lower R values than ASCAT and SMOS L4, even if it had similar ubRMSD to 

ASCAT. SMOS had a higher median ubRMSD (0.072 m3/m3) than ASCAT (0.077 m3/m3) and 

Sentinel-1 which otherwise had a larger, and nearly identical range of values. 

The five better performing products had similar values both for R and ubRMSD, excluding 

outliers, and it is difficult to say which ones performed better with certainty. The highest median 

R for the collocated dates was found in ESA CCI SM (and GLDAS Noah), at over 0.9. 

However, ESA CCI SM and GLDAS had lower medians for R than SMAP L4 and ERA5-Land. 

In addition, ERA5-Land was the only product with no R-values below 0. As for the ubRMSD, 

SMAP L4 had the lowest median, ca 0.044 m3/m3, while it was highest for SMAP L3E, at ca 

0.052 m3/m3. 

Figure 7. The evaluation metrics R (a) and ubRMSD (b) for each SM product at the ICOS 

stations. The values were calculated based on anomalies and all available dates for each 

product. 
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The five better performing products were temporally collocated to increase the underlying data 

without considering the three lower products, resulting in Figure 9. With the increased temporal 

coverage for the comparison, all five products had similar median R values to the previous 

comparison, perhaps with the main exception of GLDAS Noah which saw a slight increase. 

The range of values seemingly increased in the lower end for SMAP L4, ESA CCI SM, and 

ERA5-Land. SMAP L4 had the highest median R, and some of the higher lowest values of R. 

Further, SMAP L4 had the lowest median ubRMSD out of the five products, but all products 

had similar values, except for SMAP L3E which had a slightly higher median but a smaller 

range of values than the other four products. 

 

 

Figure 9. The evaluation metrics R (a) and ubRMSD (b) for each SM product at the ICOS 

stations. The values were calculated based on absolute SM and collocated dates between 

the five products in the figure (23 common stations). 

Figure 8. The evaluation metrics R (a) and ubRMSD (b) for each SM product at the ICOS 

stations. The values were calculated based on absolute SM and collocated dates between 

all eight products, and at the same stations where all products had valid data (23 common 

stations). 
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As for short-term SM anomalies, GLDAS Noah generally captured these poorly compared to 

the others, with a low R, the median just above 0.4 (Figure 10). ERA5-Land had the highest 

median R by some margin and seemed to have the highest correlation overall, even if the lower 

end was quite low, while SMAP L3E and SMAP L4 performed relatively similarly in terms of 

R, L3E having higher median. ESA CCI SM had lower R values than the SMAP products. For 

ubRMSD, SMAP L3E had the highest values, while ESA CCI SM and GLDAS Noah had the 

lowest medians. Although, GLDAS Noah had a large range of values, while for example ERA 

had a much more consistent performance in terms of the errors.  

 

 

In general, GLDAS Noah performed similarly to the other four products for absolute SM but 

was clearly lacking terms of capturing SM variability with the anomalies compared to the other 

five products. While SMAP L3E showed comparable performance to the other products in 

terms of the correlation, it had the highest median ubRMSD both for absolute SM and 

anomalies. For absolute SM this was because SMAP L3E did not have any stations with 

ubRMSD below 0.03 m3/m3, unlike the other products. ESA CCI SM had much lower 

correlation with anomalies than ERA5-Land, while SMAP L4 was the only product to 

consistently perform in the top 2-3 for every metric considered. SMAP L4 and ERA5-Land 

performed similarly. The ranking of the products can vary depending on subjective 

prioritization factors such as consistency, statistical scores, temporal and spatial coverage, 

among others. However, if we consider a ranking based solely on their general statistical scores, 

it could be presented as follows (1 means the best): 

1. SMAP L4, 2. ERA5-Land, 3. ESA CCI SM, 4. SMAP L3E, 5. GLDAS Noah, 6. SMOS L4, 

7. ASCAT L4, 8. Sentinel-1. 

Figure 10. The evaluation metrics R (a) and ubRMSD (b) for each product at the ICOS 

stations. The values were calculated based on SM anomalies and collocated dates between 

the five products in the figure (at 29 common stations). 
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5.2. Evaluation with triple collocation analysis (TCA) and results of merging  

5.2.1. Results of TCA 

The results presented in this section are valid for the locations of the ICOS stations, which was 

done in order to minimize spatial bias when comparing the results to those of the in situ 

measurement-based evaluation. Out of the three gridded products, SMAP L3E showed the 

highest SNR and lowest ubRMSE for both grid sizes / resampling methods at the ICOS sites. 

SMAP L3E was estimated to have a median SNR of 5.4 for the 0.25 ° resampling and 6.9 for 

the 0.1° resampling, as well as a ubRMSE of ca 0.10 m3/m3. That SMAP L3E performed better 

than ASCAT and GLDAS Noah at the ICOS site locations is in line with the results from the 

traditional evaluation. ASCAT and GLDAS Noah seemed to perform similarly according to the 

TCA (Figure 11). The threshold of 0 SNR was breached at least one station for all products, 

but the median was above the target of 3 for five of them, only ASCAT at the 0.25° size falling 

slightly short.  

 

 

5.2.2. Merging multiple products based on TCA 

Due to limited time and data processing capabilities, it was not possible to perform the TCA 

based merging over all of Europe. Instead, it was done for southern Scandinavia, including 

Denmark, southern Sweden and Gotland, and southwestern Norway. This is an area with 

several land use types: large agricultural areas, especially in Denmark, large forests in much of 

Sweden and eastern Norway, and strong topography and high altitudes in the western 

Norwegian parts. Figure 12 shows the SM distribution for each of the parent products, the 

TCA-weighted merge, the arithmetic mean of the parent products, and ERA5-Land as a 

reference product, averaged over July 2021. Firstly, note the blank regions for the TCA-

weighted merge, particularly in western Norway. Here, the TCA based merging was not 

conducted due invalid TCA conditions in the three parent products. Considering the large 

Figure 11. SNR (a) and ubRMSE (b) at each of the ICOS stations for the three products, 

and both using the ERA 0.1° grid and the GLDAS 0.25° grid. Calculations done on 

absolute SM. 
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topographical gradients and cold conditions at high altitudes, this was not unexpected. Besides 

southwestern Norway, the TCA-weighted merging was skipped at several locations in Sweden, 

especially in Värmland County, north of Lake Vänern. 

Pattern wise, the TCA-weighted merge was most similar to SMAP L3E. Both SMAP L3E and 

the TCA-weighted merged model indicated relatively dry conditions, in this case SM of 

between 0.15 m3/m3 and 0.25 m3/m3 in predominantly agricultural regions such as Denmark, 

Skåne County, Gotland, as well as in between the lakes Vänern and Vättern. The rest of the 

area was mostly estimated to have wet conditions, with SM estimates generally above 0.40 

m3/m3. 

GLDAS Noah estimated dry conditions over much of the area with very minor spatial variation, 

and SM values consistently between 0.15 and 0.25 m3/m3. ASCAT seemed to produce SM 

values somewhere between SMAP L3E and GLDAS Noah, from 0.25 m3/m3 to 0.35 m3/m3. In 

fact, the arithmetic mean intuitively appeared to have similar estimates to the ASCAT. 

Most of Denmark appeared to have relatively high soil moisture according to ERA5-Land, 

which was the opposite of what the other products indicated. In fact, ERA5-Land’s pattern 

generally seemed to be inverted compared to SMAP L3E and the TCA-weighted merge, with 

relatively higher SM in the areas where the TCA-weighted SM was low, and vice versa.  

Note that the descriptions for the spatial SM pattern in Figure 12 are only valid for July 2021, 

and might not be representative of the whole study period. See appendix Figure A1 for a further 

figure on which merging method was selected for each pixel. 
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The merging model was also run over all the ICOS sites, allowing for it to be compared with 

the other gridded products. Figure 13 shows the R and ubRMSD for each of the merged/mean 

products absolute SM against ICOS for all available dates at all available stations. It should be 

noted that the dates used are essentially the same for the four merged products with maximum 

a few differences in dates per station, as a result of the resampling. Note that due to TCA 

violation over several ICOS stations, only ca 20 stations per product could be included.  

The TC merge at 0.25° had the highest R values, with a median of circa 0.718, while R was 

generally lowest for the 0.1° mean product. 0.1° TC weighted merging and 0.25° means gave 

similar R values. For both 0.1° and 0.25° however, the TC weighted merging gave slightly 

higher correlations than the arithmetic means, but the difference was small. 0.1° mean had the 

lowest median ubRMSD, at ca 0.045 m3/m3. However, the ubRMSD was very similar across 

all products, between 0.04 and 0.05 m3/m3.  

Figure 12. Comparison of SM estimates from three parent products (SMAP L3E, GLDAS 

Noah, ASCAT), TCA-weighted merged, the arithmetic mean of the three parent datasets, 

and ERA5-Land over southern Scandinavia. The values were calculated over the 0.1° grid 

and averaged over July 2021.   
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As for the anomalies, the order of performance for R was nearly the same as for the absolute 

SM, with the highest correlation being found for the 0.25° TC weighted merging, at ca 0.6 

(Figure 14). ubRMSD was slightly lower for the arithmetic mean produced products, but the 

difference was very small. 

 

 

5.2.3. Comparison of merged product with other products 

When comparing the TCA-weighted and mean products with the pre-existing products on 

collocated dates (Figure 15), only 13 stations could be used, hence why the inter-product 

Figure 14. The evaluation metrics R (a) and ubRMSD (b) for the merged SM estimates 

using TC-based merging (denoted as TC merge) and using simple mean method (denoted 

mean) at the ICOS stations. The values were calculated based on short-term anomalies. 

Figure 13. The evaluation metrics R (a) and ubRMSD (b) for the merged SM estimates 

using TC-based merging (denoted as TC merge) and using simple mean method (denoted 

mean) at the ICOS stations. The values were calculated based on the absolute SM. 
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rankings are slightly different from previous comparisons. While the median R for the 0.1° 

weighted product was similar to GLDAS Noah, the rest of the distribution suggested that both 

0.1° TC weighted, 0.1° mean, 0.25° TC weighted, and 0.25° mean, had larger correlations with 

absolute SM than both GLDAS Noah and in particular ASCAT. For the four created products, 

the correlation was similar to that of SMAP L3E, as well as the other three products included 

(SMAP L4, ESA CCI SM, ERA5). As for the ubRMSD for absolute SM, it was on the same 

scale for the new products as for the pre-existing ones, besides a clear improvement on ASCAT.  

 

For SM anomalies (Figure 16), the median correlation of all four created products was clearly 

higher than for GLDAS Noah and ASCAT. The 0.25° TC weighted merge also seemingly had 

slightly lower correlation than SMAP L3E and ERA5, but higher than SMAP L4. Overall, 

(Figures 15 and 16), there did not appear to be a clear difference in performance between the 

TCA-weighted merge, and the arithmetic mean of the three products. 

 

 

Figure 15. The evaluation metrics R (a) and ubRMSD (b) for the merged and mean 

products, as well as pre-existing products, against ICOS measurements. The values were 

calculated based on absolute SM and collocated dates.  
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6. Discussion 

6.1. Evaluation of products with in situ measurements 

Firstly, it should be noted that when comparing the results of this study to results of other 

studies, location and time of the data used is different, which might account for any differences 

and always needs to be considered. On the results, it was directly relatively clear that the 

products could be grouped into a better performing group, which included the SMAP-products, 

ESA CCI SM, ERA5-Land, and GLDAS Noah, as well as group that had significantly lower 

statistical scores, consisting of Sentinel-1, SMOS L4, and ASCAT.  

The two gridded products with 1 km resolution, SMOS L4 and Sentinel-1, seemingly 

performed worse than the coarser products in the in situ measurement-based evaluation. The 

smaller difference in scale between grid cell and in situ measurement could have been assumed 

to give ICOS measurements more representativeness over the product cell footprint, 

considering that the proportions of the land cover are generally higher over the 1 km square 

than the larger square, but this advantage was seemingly outweighed by other factors. 

In previous validation studies of SMOS L4, its performance has varied, with Spatafora et al. 

(2020) finding satisfactory correlations at the REMEDHUS network in Spain that were larger 

than those found in this study. However, it can be noted that the better scores in the study by 

Spatafora were particularly found for SM only derived from ascending passes, with lower 

correlations and higher errors for SM derived from descending passes, which might account 

for some of the difference to this study in which equal weights were given to the two overpass 

times. 

Portal et al. (2020) found relatively consistent and good performance between SMOS and 

SMAP’s downsampled versions, including strong performance for SMOS L4 at the 

Figure 16. The evaluation metrics R (a) and ubRMSD (b) for the merged and mean 

products, as well as pre-existing products, against ICOS measurements. The values were 

calculated based on SM anomalies and collocated dates.  
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REMEDHUS network. However, when compared to SMAP products over Great Britain, as 

done by Peng et al. (2021), SMOS L4 were shown to perform significantly worse than the 

sensor-wise comparable, but less significantly downsampled SMAP products. This difference 

in performance was attributed to the comparably poor radio frequency interference filtering 

(RFI) of SMOS (Peng et al., 2021), as well as the downscaling method and additional input 

data, including MODIS NDVI, as the input data had issues stemming from varying sensing 

depths (Lamptey et al., 2021). Ideally, SMOS L4 would also have been compared to the lower 

level SMOS products in this study for further estimation of the magnitude of differences caused 

by downsampling. 

Peng et al. (2021) also found relatively low correlation and high ubRMSD for Sentinel-1 in 

Great Britain when compared to other products, i.e., their results for both Sentinel-1 and SMOS 

L4 were similar to those of this study, albeit with slightly better scores. Although, it should be 

noted that that was against cosmic-ray COSMOS measurements, which are assumed to be more 

consistent with reality over the 1 km cell than point measurements (Bogena et al., 2022) such 

as ICOS. Sentinel-1 is also currently missing a dynamic vegetation correction, an addition of 

which would potentially enhance its performance (Bauer-Marschallinger et al., 2019). 

SAR C-bands, employed by Sentinel-1 and ASCAT, are less sensitive to SM than the 

radiometer L-bands of SMOS and SMAP (Edokossi et al., 2020). It is assumed that that is why 

ASCAT also showed relatively poor performance. Previously, ASCAT has been shown to 

perform better against in situ data than Sentinel-1 in Italy (Bauer-Marschallinger et al., 2019) 

and Great Britain (Peng et al., 2021). However, El Hajj et al. (2018) found Sentinel-1 to have 

significantly higher correlations against the SMOSMANIA network in southwestern France. 

In fact, El Hajj found the correlations to be higher than ASCAT. This indicates that performance 

of Sentinel-1 might have strong regional variability, perhaps caused by the absence of dynamic 

vegetation correction. The average R found for ASCAT by Hajj et al. (2018), was 0.44, which 

was close well to the median R of 0.47 it had to ICOS in this study. In fact, if using the average 

of station R values instead of the median, ASCAT’s R was 0.44 against ICOS as well. Both 

Sentinel-1 and ASCAT needed to be converted from degree of saturation (%) to volumetric soil 

water content, using a coarse porosity dataset, which further may have increased the magnitude 

of errors.  

The SMAP-products produced strong scores for essentially all investigated metrics, further 

confirming that the L-band successfully can be used to consistently produce relatively reliable 

SM estimates, which has also indicated by previous studies (Beck et al., 2021; Ma et al., 2019). 

SMAP L4, which assimilates the radiometer data with meteorological data in a geophysical 

model, seemed to perform particularly well, and it produced arguably the best scores out of any 

gridded products included in this study, together with ERA5-Land. 

Al-Yaari et al. (2019) found the non-enhanced SMAP L3 to have higher correlations against 

ground-based measurements than ESA CCI SM in Europe, followed by ASCAT. This is 

consistent with the findings in this study, as SMAP L3E and ESA CCI SM perform better than 

ASCAT. However, SMAP L3E produced slightly inferior statistical scores than ESA CCI SM 

against the ICOS measurements. As for SMAP L3E, El Hajj et al. (2018) found its mean station 

correlation to be 0.65 which is also consistent with the results in this study.  
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ESA CCI SM performed considerably better than SMOS L4, Sentinel-1, and ASCAT, slightly 

better than SMAP L3E and slightly worse than SMAP L4 and ERA5-Land. Overall, the scores 

indicated that ESA CCI SM is relatively successful. That it performs better than ASCAT, and 

low level SMAP and SMOS products was also shown by Zheng et al. (2022) for the Shandian 

River Basin. Zheng et al. reported R values for ESA CCI SM at ca 0.6 which was similar to 

what was found against ICOS stations in this study, whereas ESA CCI SM produced a median 

of 0.66. However, Zheng et al. found a quite low ubRMSE, at below 0.03 m3/m3, compared to 

the 0.045 m3/m3 found against ICOS. ESA CCI SM has previously also been shown to perform 

well globally in relation to the comparable, blended SMOPS product (Wang et al., 2021), 

which, joint with the results presented here, further indicates that it can be considered to 

represent the current state of the art among merged SM products. 

GLDAS Noah showed clear issues in capturing short-term SM variability despite producing 

good scores for most other metrics. ERA5-Land performed clearly better for the anomalies 

than GLDAS Noah, indicating that it is more sensitive to SM variation. In fact, ERA5-Land 

scored relatively highly for most metrics. Beck et al. (2021) as well as Zheng et al. (2022) also 

found ERA5-Land to outperform GLDAS Noah, with Zheng et al. also highlighting GLDAS 

Noah’s issues with the short-time SM changes. This issue may be partly caused by GLDAS 

Noah estimating SM in the top 10 cm instead of the top 5 cm, as deeper soil is less susceptible 

to strong, sudden SM variations. 

The ranking in descending order of performance: SMAP L4, ERA5-Land, ESA CCI SM, and 

GLDAS Noah, was in similar agreement with what Fan et al. (2022) found in Jiangsu Province, 

China, for correlation with in situ measurements, that however had ESA CCI behind both 

GLDAS Noah and ASCAT. Fan et al. (2022) also found that ASCAT performed better than 

SMAP L3, which goes against the findings of this study. 

Overall, the findings were relatively consistent with other studies in the field, with similar R-

values, and slightly higher ubRMSD-values. It can be noted that the three best performing 

products had different approaches, specifically: the assimilation of satellite data in a 

geophysical model of SMAP L4, the fully model-based ERA5-Land, and the various satellite 

data blending of ESA CCI SM. The conclusion from this is that there are several different ways 

and no definitive best method for generating accurate SM estimates in Europe.  

Further, the relative similarity to scores found in literature indicates that the ICOS 

measurements are promising for use in future validation studies. That ubRMSD was generally 

above the target of 0.04 m3/m3 for the products is assumed to be an effect of representativeness 

issues for the in situ measurements compared to the coarse grid of the products (Al-Yaari et al., 

2019).  

The suitability of specific ICOS stations for the study is assumed to vary, as the inter-station 

variability in product performance was significant, with some stations seemingly having high 

correlations and low errors for all stations, and all product performance being poor at other 

stations. Examples of stations for which the differences against the gridded products were 

generally around or below 0.05 m3/m3 included BE-Maa, DE-Tha, and FR-Aur while stations 

with differences generally above 0.10 m3/m3 included FI-Sii, SE-Deg, and DE-Gri (Figure 17). 
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The pattern is similar to the stations that showed high and low correlations, respectively, 

indicating that station wise ubRMSD and R are related (see Figure 6 in section 5.1.1.).  

 

 

The direct correlation between SM and land surface properties has been thoroughly 

investigated within the field, with studies finding various effects of land cover and spatial 

heterogeneity on soil moisture and SM product errors (Al-Yaari et al., 2014; Venkatesh et al., 

2011; Wang et al., 2021). The consensus is that there is a relatively clear direct relationship 

(Chen et al., 2009; Hu et al., 2022; Panciera, 2009). Lakhankar et al. (2009) showed that sub-

pixel heterogeneity in vegetation cover reduced microwave derived SM data accuracy. In 

particular vegetation density has an effect on the performance of the product (Ma et al., 2019).  

To investigate this issue further, the correlation for SMAP L3E was grouped over different 

ICOS land covers. There was a large spread in correlation at evergreen deciduous forests, while 

it performed well over deciduous forests, croplands, and grasslands and poorly over wetlands 

(Figure 18). Wetlands have consistently different soil moisture to surrounding land cover types, 

not following the overarching temporal dynamics, which explains the poor performance here. 

High wetland proportion within the pixels is known to make retrieval more uncertain (Leroux 

et al., 2013). Thus, the suitability of wetland station in evaluation studies is dubious. However, 

it should be mentioned that wetland sites have been included in ISMN and validation studies 

previously, e.g., for product calibration (Dorigo et al., 2011; Marczewski et al., 2010).  

Figure 17. The evaluation metric ubRMSD for each SM at each of the ICOS stations. The 

values were calculated based on absolute SM and all available dates for each product. 
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A brief look at the performance of SMAP L3E at ICOS stations with different levels of land 

cover proportion within a 9 km horizontal square seemed to indicate that a higher proportion 

of the station land cover class in the surrounding area generally led to higher correlations 

(Figure 19), at least up to a certain point between 0.5 and 0.7, although there is a low sample 

size. Note that the land cover and representativeness in themselves are linked and related, and 

that no adjustment has been done to account for this due to the low sample size. To further 

illustrate this point, wetlands generally made up a small portion of the proportion while 

evergreen forest generally made up for a large part of the proportion in the square (see Table 

A1 in appendices for the land cover and its representativeness at each station).  

 

 

Figure 18. The evaluation metric R at each station for SMAP L3E, grouped by ICOS site. 

type (land cover) 

Figure 19. The average of the metric R for SMAP L3E at ICOS stations for different 

proportions of the station land cover in a 9 km horizontal square centered on the station. 
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6.2. Evaluation with the triple collocation analysis and merging  

For ubRMSE, TCA reinforced the results from the in situ-observation based evaluation, that 

SMAP L3E performed better than ASCAT and GLDAS Noah. However, the ubRMSE were 

several orders of magnitude above the target of 0.04 m3/m3 for all three products, indicating 

that the targets errors were not reached for of them. While GLDAS Noah had markedly lower 

ubRMSD in the in situ measurement-based evaluation, the difference between ASCAT and 

GLDAS Noah was negligible in regard to TC estimated ubRMSE. However, the results from 

the presented TCA analysis were only done over the ICOS stations. When looking at error 

variance, i.e., ubRMSE squared, over southern Scandinavia instead (Figure 20), it seemed like 

the errors were more pronounced for ASCAT than GLDAS Noah over many regions, in 

particular south-eastern Sweden, but GLDAS Noah had larger relative error variance in 

southern Denmark, and Värmland County, Sweden. This further illustrates the spatial 

variability of performance of different products. 

 

 

The relative SNR was in line with the ubRMSE values for the products, with relatively high 

signals from SMAP L3E and minor differences between ASCAT and GLDAS Noah. For SMAP 

L3E, several locations showed SNR at above the optimal target threshold of 6, and seemingly, 

SNR was higher than in comparable study by Peng et al. (2021) which used a similar triplet. 

However, the retrieved ubRMSE was also significantly higher in this study. As the errors are 

still relatively high, the validity of the high SNR of SMAP L3E is assumed to be less robust. 

For that reason, it would be encouraged to further produce confidence interval estimation, 

based on bootstrapping methods (F. Chen et al., 2018; Gruber et al., 2020). However, due to 

time limitations, it was not done in this study. SNR is directly linked to the R between the 

product and the assumed true SM. The presentation of SNR allows for a comprehensive 

assessment of actual data quality, which provides an additional perspective to that of the TC-

based error variances. 

The reasons for the ranking in performance for SNR can likely be derived to much the same 

reasons as for the in situ observation-based evaluation, i.e., that the L-band radiometer, as well 

as the algorithms which SMAP L3E employ has advantages to SM, that in this region outweigh 

Figure 20. The error variance at each of the pixels for each product in Southern 

Scandinavia according to TCA of the triplet at the 0.1° grid. 
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the resolution and model advantages, compared to the C-band in ASCAT and the model aspects 

of GLDAS Noah, respectively. As for GLDAS Noah, the relatively poor performance is likely 

explained by it struggling with the short-term temporal variations, which further confirms that 

its SM sensitivity is relatively low.  

Looking at the distribution of weight assignment for the merging (Figure 21), which is directly 

related to the inter-product relations of error variance, SMAP L3E did not seem to have 

significantly higher weight assignments in southern Scandinavia than the other products, 

besides in the agricultural dominated region in Denmark. Note that this not necessarily true for 

the rest ICOS stations, for which the product statistics were shown for previously, e.g., many 

of them were on agriculture land covers.   

 

However, note that for a relatively large proportion of the area in Denmark, the selected 

merging method was not based on the TCA estimated weights but instead of the arithmetic 

mean of SMAP L3E and ASCAT or of SMAP L3E and GLDAS Noah (see Figure A1 in 

appendices), according to the merging scheme. As explained by Peng et al. (2021), this might 

have caused a decrease in accuracy in the product compared to a purely TCA-weighted merge, 

but it will have increased the coverage of the product, which is an important considerations for 

the product application, especially if one of the parent products has poor temporal coverage. It 

would have been interesting to also conduct this analysis without the merging scheme to further 

draw conclusions on the relationship between accuracy, selection of merging method, and 

temporal coverage. 

The aim was that the merged product should perform better than all the parent products. 

Instead, it could not be said with certainty that the merged products even performed better than 

the arithmetic mean of the parent datasets. This has also occurred in previous studies (Peng et 

al., 2021; Yilmaz et al., 2012). It could be argued that it is worthwhile to pursue the merging 

regardless, as the merged product still performs well in relation to other products, while 

reducing the uncertainty due to the involvement of more data sources (Yilmaz et al., 2012). 

However, for most applications it is probably more convenient to simply use pre-existing 

products, such as ESA CCI SM. The failure to produce an improved product relative to the 

Figure 21. The weight assigned to each parent product at each of the pixels. 
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parents, in particular against the best performing parent, SMAP L3E, is likely linked to the 

relatively poor performances of GLDAS Noah and ASCAT compared to SMAP L3E. 

Zheng et al. (2022) raised the possibility of using a triplet consisting of a low level SMAP 

product, ASCAT, and ERA5-Land, instead of GLDAS Noah. This is suggested for future 

studies. Considering that ERA5-Land scored significantly better than GLDAS Noah for the in 

situ measurement-based evaluation, it is expected that a triplet including ERA-Land would 

perform better than the triplet employed in this study. 

It should also be noted that the performance of the TCA merged product was better when using 

the IDW resampling of ASCAT and SMAP L3E to the coarse GLDAS Noah 0.25° grid rather 

than nearest neighbour interpolation to the finer 0.1°ERA5-Land  grid. This indicates that a 

higher proportion of the relevant information was kept from the original products using the 

IDW interpolation, which agrees with Fan Chen et al. (2018) that suggested IDW to be 

appropriate for ASCAT. 

6.3. Limitations of this study and recommendations for future studies 

Because of the short time span of ICOS SM measurements, it was not possible to assess product 

performance for long-term anomalies, which is another important product-property (Gruber et 

al., 2020). Further, if expanding on the use of ICOS sites as common for SM validation, more 

research should be conducted on investigating each site’s SM representativeness on the grid 

cell scale. This could for example be done by taking regular field measurements in the areas 

surrounding each station. Additionally, for more a more comprehensive estimate of SM product 

performance over Europe, larger coverage over the region is needed, e.g., in Iberia and Eastern 

Europe. Ideally, statistics on confidence should also be added to increase the reliability of the 

results (Gruber et al., 2020). 

In general, a more comprehensive error-cross correlation analysis should be conducted to guide 

the selection of suitable triplets in the triplet collocation analysis. Another TCA-related 

limitation is that the datasets have varying level of coverage, which led to the usage of the t-

test based merging scheme and occasional selection of alternate merging method to the TCA-

weighted mean, which is assumed to be ideal. Future studies should explore alternative 

methods to address data coverage variations and determine the most appropriate merging 

scheme. The TCA requirements of independence also limit the potential of the TC approach 

and application as many SM products are related.   

Practical limitations included the time limitations associated with the brief project period, 

which resulted in compromises being made regarding areas selected for TCA processing and 

filtering. For example, the study did not account for potential snow cover or include product-

external surface roughness masking, as done in other studies (Kim et al., 2015). Future studies 

should consider these practical limitations and incorporate relevant factors to improve the 

overall analysis. 
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7. Conclusions 

In this thesis, eight gridded SM products: SMAP L4, SMAP L3E, SMOS L4, Sentinel-1, 

ASCAT, ESA CCI SM, ERA5-Land, and GLDAS Noah were evaluated against in situ 

measurements from the relatively new European measurement network ICOS. The SMAP L4 

product was found to have strong correlations with the ICOS measurements and relatively low 

errors and was potentially the product with best scores overall, together with the reanalysis 

ERA5-Land. ESA CCI SM, and SMAP L3E also produced high statistical scores, while 

GLDAS Noah performed poorly in capturing short-term SM anomalies. Overall, SMOS L4, 

ASCAT, and Sentinel-1 exhibited the poorest performance among the evaluated soil moisture 

products, receiving the lowest scores in descending order. 

The ICOS stations seemed promising for future validation studies as the results were generally 

in line with previous research. ICOS is expected to be even more suitable in a few years when 

the temporal coverage is longer than it was for this study. It is recommended  to conduct further 

research on the spatial variability of SM in the areas surrounding each ICOS station to guide 

the selection of appropriate stations for future studies. 

Further, triple collocation analysis was performed with a triplet that included SMAP L3E, 

GLDAS Noah, and ASCAT. It mainly corroborated the results of the ICOS measurement-based 

evaluation, with SMAP L3E exhibiting a better signal- to- noise ratio and unbiased root mean 

square error compared to GLDAS Noah and ASCAT.  

Triple collocation analysis was also used to estimate weights for merging of SMAP L3E, 

ASCAT, and GLDAS Noah. The merged product scored better statistically than ASCAT and 

GLDAS Noah, but similarly to SMAP L3E. Thus, pursuing the merging of this specific triplet 

using triple collocation was deemed unnecessary, as it in addition did not outperform a simple 

arithmetic mean between the three parent datasets. However, there is potential for exploring 

other combinations of products, and further efforts to achieve an improved TCA-weighted 

merging approach are encouraged. 
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Appendices 

Table A1. The ICOS stations used for evaluating the gridded products with location, SM 

retrieval start date, ICOS site type, CORINE land cover type, and proportion of the CORINE 

land cover type for boxes at 1 km and 9 km size around the site.  

Site-

ID 

Lon. Lat. SM start 

date  

ICOS site type CORINE 

land cover 

Prop. 9 

km 

Prop. 1 

km 

Dataset  

BE-

Bra 

4.5198 51.3076 2020-10-

26 

evergreen 

needleleaf 

forests 

mixed 

forests 

0.21 0.71 Janssens et 

al. (2022) 

 

BE-

Lcr 

3.8504 51.1122 2019-01-

01 

deciduous 

broadleaf forests 

complex 

cultivation 

patterns 

0.38 0.66 De 

Meulder et 

al. (2022) 

 

BE-

Lon 

4.7462 50.5516 2018-08-

03 

croplands non-

irrigated 

arable land 

0.55 0.89 Dumont et 

al. (2022) 

 

BE-

Maa 

5.6319 50.9799 2020-05-

04 

closed 

shrublands 

moors and 

heathland 

0.07 0.97 Roland et 

al. (2022) 

 

BE-

Vie 

5.9981 50.3050 2020-10-

26 

mixed forests mixed 

forest 

0.49 0.84 Vincke et 

al. (2022) 

 

CH-

Dav 

9.8559 46.8153 2019-11-

18 

evergreen 

needleleaf 

forests 

coniferous 

forest 

0.27 0.61 Gharun et 

al. (2022) 

 

CZ-

Wet 

14.7704 49.0247 2020-01-

01 

permanent 

wetlands 

inland 

marshes 

0.03 0.39 Dusek et 

al. (2022) 

 

DE-

Geb 

10.9146 51.0997 2020-10-

26 

croplands non-

irrigated 

arable land 

0.88 1 Brümmer 

et al. 

(2022) 

 

DE-

Gri 

13.5126 50.9500 2017-01-

01 

grasslands pastures 0.09 0.73 Bernhofer 

et al. 

(2022a) 

 

DE-

Hai 

10.4521 51.0794 2019-01-

01 

deciduous 

broadleaf forests 

broad-

leaved 

forest 

0.66 1 Knohl et 

al. (2022) 

 

DE-

HoH 

11.2224 52.0866 2019-01-

17 

deciduous 

broadleaf forests 

broad-

leaved 

forest 

0.19 1 Rebmann 

et al. 

(2023) 

 

DE-

Kli 

13.5224 50.8931 2018-05-

07 

croplands non- 

irrigated 

arable land 

0.57 0.76 Bernhofer 

et al. 

(2022b) 

 

DE-

RuR 

6.3041 50.6219 2011-05-

13 

grasslands pastures 0.46 0.97 Schmidt et 

al. (2022a) 
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DE-

RuS 

6.4471 50.8659 2019-04-

29 

croplands non-

irrigated 

arable land 

0.54 1 Schmidt et 

al. (2022b) 

 

DE-

Tha 

13.5652 50.9626 2020-10-

26 

evergreen 

needleleaf 

forests 

coniferous 

forest 

0.07 0.99 Bernhofer 

et al. 

(2023) 

 

DK-

Gds 

9.3341 56.0737 2021-03-

12 

evergreen 

needleleaf 

forests 

coniferous 

forest 

0.50 1 Friborg et 

al. (2022a) 

 

DK-

Skj 

8.4048 55.9127 2021-05-

11 

permanent 

wetlands 

inland 

marshes 

0.09 0.99 Friborg et 

al. (2022b) 

 

DK-

Vng 

9.1607 56.0375 2020-10-

26 

croplands non-

irrigated 

arable land 

0.45 0.82 Friborg et 

al. (2022c) 

 

FI-

Hyy 

24.2948 61.8474 2018-11-

06 

evergreen 

needleleaf 

forests 

coniferous 

forest 

0.73 0.94 Mammarel

la et al. 

(2022) 

 

FI-

Ken 

24.2430 67.9872 2020-01-

01 

evergreen 

needleleaf 

forests 

coniferous 

forest 

0.64 1 Laurila et 

al. (2022) 

 

FI-Sii 24.1929 61.8327 2019-02-

27 

permanent 

wetlands 

peat bogs 0.14 0.59 Tuittila et 

al. (2022) 

 

FI-

Var 

29.6100 67.7549 2017-01-

01 

evergreen 

needleleaf 

forests 

coniferous 

forest 

0.86 1 Kolari et 

al. (2022) 

 

FR-

Aur 

1.1061 43.5497 2019-01-

01 

croplands non-

irrigated 

arable land 

0.70 0.84 Tallec et 

al. (2022) 

 

FR-

Bil 

-0.9561 44.4937 2019-10-

28 

evergreen 

needleleaf 

forests 

coniferous 

forest 

0.38 0.53 Loustau et 

al. (2023) 

 

FR-

EM2 

3.0207 49.8721 2018-12-

31 

croplands non-

irrigated 

arable land 

0.87 0.69 Leonard et 

al. (2022) 

 

FR-

Fon 

2.7801 48.4764 2019-10-

28 

deciduous 

broadleaf forests 

broad-

leaved 

forest 

0.37 1 Berveiller 

et al. 

(2022) 

 

FR-

Lam 

1.2379 43.4964 2020-10-

26 

croplands non-

irrigated 

arable land 

0.61 0.84 Brut et al. 

(2022) 

 

FR-

LGt 

2.2841 47.3229 2017-01-

01 

permanent 

wetlands 

inland 

marshes 

0.00 0.23 Jacotot et 

al. (2022) 
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FR-

Mej 

-1.7964 48.1184 2019-02-

05 

grasslands complex 

cultivation 

patterns 

0.23 0.81 Flechard et 

al. (2022) 

 

FR-

Tou 

1.3747 43.5729 2018-01-

01 

grasslands complex 

cultivation 

patterns 

0.04 0.59 Calvet et 

al. (2022) 

 

IT-

BFt 

10.7420 45.1978 2019-01-

01 

deciduous 

broadleaf forests 

broad-

leaved 

forest 

0.04 0.95 Gerosa et 

al. (2022) 

 

IT-

Lsn 

12.7503 45.7405 2016-01-

01 

open shrublands vineyards 0.27 0.78 Pitacco et 

al. (2022) 

 

IT-

SR2 

10.2909 43.7320 2019-10-

28 

evergreen 

needleleaf 

forests 

coniferous 

forest 

0.10 0.79 Arriga et 

al. (2023) 

 

IT-

Tor 

7.5781 45.8444 2016-01-

01 

grasslands natural 

grasslands 

0.02 0.34 Cremonese 

et al. 

(2022) 

 

SE-

Deg 

19.5565 64.1820 2019-11-

04 

permanent 

wetlands 

peat bogs 0.05 0.74 Nilsson et 

al. (2022) 

 

SE-

Htm 

13.4190 56.0976 2018-04-

19 

evergreen 

needleleaf 

forests 

coniferous 

forest 

0.55 0.98 Heliasz et 

al. (2022) 

 

SE-

Nor 

17.4795 60.0865 2018-11-

06 

evergreen 

needleleaf 

forests 

coniferous 

forest 

0.65 0.93 Mölder et 

al. (2022) 

 

SE-

Svb 

19.7745 64.2561 2019-04-

30 

evergreen 

needleleaf 

forests 

coniferous 

forest 

0.85 1 Peichl et 

al. (2022) 
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Figure A1. The number of collocated dates between parent products included in the TCA 

analysis for each pixel (a), and (b) the merging method for each pixel based on the 

merging scheme: 0: TCA-weighted mean, 1:Only GLDAS Noah, 2: Only SMAP L3E, 3: 

Only ASCAT, 4: Mean of GLDAS Noah and SMAP L3E, 5: Mean of GLDAS Noah and 

ASCAT, 6: Mean of SMAP L3E and ASCAT. 


