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Abstract

Move-to-play is a musical instrument for persons with both cognitive and physi-
cal impairments, who would have trouble playing traditional instruments. Everyone,
no matter their abilities, are given the chance to play and control music by moving
their own body. This project is part of the MISK project, which is a collaboration
between Certec, Furuboda folkhögskola and Eldorado resurscenter. To make this
possible, a machine learning model for the detection of people and their limbs, pose
estimation, is used. This enables the translation of body movement into data used
for controlling music software, which is made as another part of the MISK project.
It runs under Max 8 by Cycling ’74. To make it easy and affordable for other cre-
ators to recreate the project, relatively cheap hardware has been used, a NVIDIA
Jetson Nano and a Raspberry Pi V2 camera. It is a system-on-module, which com-
pact size and low power consumption makes placement even in small compartments
easy. The machine learning model used is ResNet-18 pose, which proved to have ad-
equately sufficient precision and performance to track people and their limbs in real
time. It has not mattered whether a person has been standing or sitting, playing the
instrument has worked equally well in both cases. Move-to-play has some latency
however, up to about 150 ms. Users will have to be selective about what or how the
instrument should control the music, since different people have different sensitivity
to the connection between their own actions, latency and the effect of their actions
on the music.

Keywords: MISK, machine learning, ResNet-18, NVIDIA Jetson Nano, system-on-
module, Certec, Furuboda KompetensCenter, Eldorado resurcenter, pose estimation,
object detection, object tracking, Raspberry Pi V2 camera, Max 8



Sammanfattning

Move-to-play är ett musikinstrument för personer som genom såväl kognitiva som
fysiska funktionsnedsättningar skulle ha svårigheter att spela traditionella instru-
ment. Alla, ovsett förmågor, ges chansen att spela, eller påverka musik genom att
röra sin egen kropp. Det här arbetet är en del av MISK-projektet som är ett samarbete
mellan Certec, Furuboda folkhögskola och Eldorado resurscenter. För att möjlig-
göra det här används en maskininlärningsmodell för detektering av personer och
individuella lemmar, så kallad pose estimation. På så vis översätts deras rörelser
till data som kan användas för att styra ett musikprogram, utvecklat i en annan del
av MISK-projektet, som körs under Max 8 från Cycling ’74. För att göra projek-
tet enkelt och överkomligt att återskapa för andra intresserade används relativt bil-
lig hårdvara för att köra maskininlärningen på. nämligen en NVIDIA Jetson Nano
med en Raspberry Pi V2-kamera. Hårdvaran är ett modulsystem med och dess kom-
pakta storlek och låga effektförbrukning medför att den är enkel att placera även i
relativt trånga utrymmen. Den maskininlärningsmodell som används är ResNet-18
pose, vilken visade sig ha tillräckligt god precision och prestanda för att kunna spåra
personer och deras lemmar i realtid. Det har inte spelat någon roll ifall personen
som spelar har varit sittande eller stående, musicerandet har fungerat lika väl i båda
fallen. Move-to-play har dock en del fördröjning, upp till cirka 150 ms, vilket gör
att en användare får välja hur och vad instrumentet ska styra med omsorg, efter-
som olika personer är olika känsliga för kopplingen mellan deras egna handlingar,
fördröjningen och effekten handlingarna har på musiken.

Nyckelord: MISK, maskininlärning, ResNet-18, NVIDIA Jetson Nano, modulsys-
tem, Certec, Furuboda KompetensCenter, Eldorado resurscenter, pose estimation,
objektdetektering, objektspårning, Raspberry Pi V2 kamera, Max 8
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List of acronyms and abbreviations

ANN artificial neural network
COCO Common Objects in Context – a dataset used to train and benchmark computer

vision network models
CPU central processing unit
CSI Camera Serial Interface
DNN deep neural network
fps frames per second
GPU graphics processing unit
MIDI Musical Instrument Digital Interface – the original communication protocol for

communication between music devices such as synthesizers, drum machines,
effect modules, computers, tablets, etc.

MIPI Mobile Industry Processor Interface
MISK Musik, Interaktiv design, Sinnesstimulering och Kvalitet, or translated into

English; Music, Interactive design, Stimulating the senses and Quality
ML machine learning
ms milliseconds
ONNX Open Neural Network Exchange
OSC OpenSoundControl – a communication protocol for sound and music devices,

and can be seen as a complement or replacement to MIDI.
ReLU rectified linear units
RGB red green blue
SOM system-on-module
synth synthesizer
UML Universal Modelling Language. A commonly used method for modelling software.
USB Universal Serial Bus
TPU tensor processing unit
YOLO You Only Look Once – a family of network models for object detection and pose

estimation
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1 Introduction

The introduction chapter contains some background information on the project. The
background, goal, motivation for, problem statements and scope are presented, as
well as some information about the stakeholders in the project.

1.1 Background

This thesis work is part of the MISK project. It is short for Musik, Interaktiv de-
sign, Sinnesstimulering och Kvalitet, or translated into English; Music, Interactive
design, Stimulating the senses and Quality [1]. The project is a collaboration be-
tween Eldorado resource centre in Gothenburg, Furuboda folkhögskola and Certec,
the rehabilitation engineering and design branch of the Department of Design Sci-
ences at Lund University’s Faculty of Engineering. Allmäna Arvsfonden is financing
the project, which has a time frame of three years. The main reason and motivation
for this project is to make a new musical instrument for the MISK project.

The goal of the MISK project is to make multi-sensory musical instruments for peo-
ple with severe communicative, cognitive, and physical disabilities. These instru-
ments should help enable ways for musical expression, interactivity, engagement,
and communication, even for those who are not normally able to play traditional in-
struments or sing. The instruments are meant to be used in musical therapy sessions.

1.1.1 Furuboda folkhögskola

Furuboda folkhögskola is part of Föreningen Furuboda, a non-profit organisation. In
the beginning the organisation provided activities, and shortly thereafter education,
for people with disabilities. Since the official start in 1959 they have expanded their
operation to include the boarding school Furuboda folkhögskola, and education cen-
tres in Kristianstad and Malmö. Föreningen Furuboda provides language education
and help to get established in the Swedish society for newly arrived immigrants, ed-
ucation for people that never got or failed to get a Swedish high school diploma,
practical trade craft educations, several musical educations, personal assistant edu-
cation, and academic research. To get the full width of what they do, a visit to their
homepage is recommended.
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1.1.2 Eldorado resurscenter

Eldorado resurcenter is part of the services that the city of Gothenburg provides.
The centre provides cultural, musical, and other leisure activities for people with
cognitive impairments, and their assistants and family, where the importance of so-
cial community is an important part. Among the activities provided are music cafés,
musical sessions and activities in their sensory stimulation rooms, each room with
a different theme. The themes vary from relaxing to engaging. There are both open
activity days and the possibility to book individual sessions with specialised instruc-
tors, for people with severe impairments. The centre also provides education and
lectures for people that work with, or in other parts of their daily life regularly deal
with people with disabilities [12].

1.1.3 Certec

Certec, Rehabilitation Engineering and Design, is part of the Department of Design
Sciences at Lund University’s Faculty of Engineering. In addition to research, Certec
provides a wide variety of different courses within all areas of. The courses range
from theoretical to practical hand-on projects where students get to build working
prototypes and devices.

In most, if not all projects, Certec works with the principles of universal design. Here
is a short version of what they are:

• The design should be useful to people with a diverse set of abilities.

• Usage of the design should be flexible, so that it accommodates a wide range
of individual abilities and preferences.

• It should be easy to understand how to use the design, regardless of each user’s
levels of experience, knowledge, language skills or ability to concentrate on
the task at hand.

• Regardless of the user’s sensory abilities, the design should communicate nec-
essary information in an effective manner.

• There should be a minimal risk of any hazardous and adverse consequences if
a user makes any accidental or unintended actions.

• A user should not have to use much physical effort to use the design, and
its usage should be effective and comfortable and not introduce unnecessary
fatigue.

• The design itself, and its functions should be appropriately sized. A user
should be able to approach and reach all necessary controls and functions,
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and at the same time have enough space to be able to effectively manipulate
and use the design’s functionality regardless of body size, posture, or mobility.

This fits well into what this project tries to accomplish. Although, in this case prin-
ciples 4 and 6 might not as pronounced. In some cases, a Certec project sets out to
give a practical solution for a problem of an individual, or a specific group of people.
Then this solution can hopefully be generalised, transferred, and applied to a wider
variety of problems, or to fit a larger group of people. Adapting a design for an in-
dividual to become a more universal design. This has been Certec’s approach since
the start in 1988 [18].

It was Certec that provided this thesis work. The department provided the initial idea
for what went on to become the MISK-Moves application and the resources needed
for this project. Everything from hardware and support to the facilities to be able to
work on and do some preliminary testing on the MISK-Moves application.

1.1.4 An outsider’s view of an Eldorado musical session

To give some context for when and how the musical instruments created under the
MISK project are supposed to be used, a description of a music session is in order.
From observing a couple of sessions on Eldorado, this is an observer’s interpreta-
tion of how it works: A specialist music pedagog sits down together with one or
more people with fairly to very severe cognitive impairments, and their personal as-
sistants. Usually, the pedagog plays the guitar and sings, while the participants are
given different instruments that they are encouraged to use during the songs. During
the songs, the pedagog often calls out for one of the participants to respond, and
then waits for the response before continuing the song. The instruments given to
the participants are usually different rhythm instruments, large buttons that can play
different sampled sounds, or tactile noise making squeeze toys. Examples of other
instruments used in Eldorado’s daily activities [12] are push or squeezable inflatable
cones, a trampoline like area and a pushable cloth wall.

One of the driving ideas behind the MISK project is to have good sounding instru-
ments that feel responsive. Someone playing an instrument should feel in control
and be able to get that they are the one actually making the sounds, i.e., contributing
to the music.

1.2 Purpose

The initial purpose of this thesis work is to make an application where a user can use
their own body as a musical instrument, by moving their limbs, or moving around
the room. The application should interpret the movements and use them to send
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control signals to the music program Max 8. At the time of writing this, examples of
things that can be controlled in Max 8 by the currently existing version of the MISK
patcher are note pitch, volume, length, different sound filters, among several other
things. This works for both a built-in sample player and a software synthesizer in
the MISK patcher. There is also the possibility to change the quality of the sounds
coming out of the patcher, such as changing different effects like reverb, gate, chorus
effects etc., and changing filters and oscillator parameters in the software synth. The
application should be able to send a variety of values, making it possible to control
several things at the same time with the body. The application should also allow for
the interaction between two people to control the MISK patcher.

At the start of the project there were already several existing MISK instruments.
There is a pressure sensitive pillow, which lights up when pushed or squeezed. An-
other instrument that gives visual feedback is a pressure sensitive projector screen
from which the MISK patcher both receives control messages from and sends visu-
alizations to. The visualizations can be multi-coloured stars, clouds, patterns, among
other things. There is also a tactile and pressure sensitive floor mat. An instrument
similar to MISK-Moves is the FaceAR phone or tablet app, which is played by gri-
maces and face movements. MISK-Moves should provide new and different ways
of musical interaction than the other MISK instruments. This is to give the poten-
tial users as many options as possible, increasing the chances to find at least one
instrument that will work for each individual that visits them.

During the music sessions, the specialist music pedagogue should be able to pick and
choose which limbs should control the music, or interactions that suit the impaired
person the best. How much a person can move their limbs, how mobile they are, and
how much motor control they have varies between each individual. That is why it is
important to have several options for how to control the Max patch.

After the first workshop at Eldorado, it became clear that a good feature to have
was the ability to enable two people to play the instrument together. Otherwise, it
would just do about the same things as another already existing MISK instrument,
the FaceAR app, but in a less convenient way. The purpose then shifted from just
allowing one person to play, to enabling collaboration between several people.

1.3 Goal statement

The goal of this thesis work is to have a fully working application, which is able to
send control messages to Max, and preferably receive messages as well. It would be
good if the application is easy to start and manage, since the main users are music
pedagogues, not engineers. The application shall allow a person to control things in
the Max 8 MISK patcher by moving their left and/or right arm, their head, or their
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entire body. Moving around in the room, or interaction between two people should
also be possible ways, or input modes, to control the MISK patcher. As mentioned
earlier, the ability to have two or more people to play the instrument in collaboration
was added later in the project. The bodies of the users should be the instrument.

Making the source and the bill of materials available to others is important, as
this might be interesting for other habitation resource centres to recreate this
project. The hardware used should be inexpensive, or at least affordable, given that
(re)habilitation centres and institutions like that often have strict budgets and limited
resources.

To be able to use the body as an instrument, another important goal of the project
is to use computer vision and machine learning (ML) to detect a person and their
movements. To be able to run machine learning algorithms and models there are
some options: Either run the application on a personal computer (either stationary or
laptop; The operating system does not matter), a smartphone or tablet, or use some
kind of system-on-module (SOM). For this project, the use of a system-on-module
is explored.

1.4 Problem statement

To be able to solve the body as an instrument problem some questions have to be
answered, and some problems need to be solved.

• Which system-on-module is the best fit for this project?

• What kind of machine learning models and algorithms are needed to be able to
detect the movement of a person and/or their limbs? Also, can the same model
and algorithm be used to handle more than one person?

• Will pre-trained models work or is there a need for re-training an existing
model?

• Most potential users will be sitting down. Will there be a problem detecting
someone sitting down, or if there is some part of the body that is obscured in
some way?

• Will the application be able to track people and/or limbs in a reliable way, or
will it lose track, make false detections or give large value fluctuations in some
other way. Will this make it unplayable, or is there some way to smooth out
the values if there are unreliable results?
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• Will the instrument, i.e. the application, be responsive enough? For profes-
sional musicians, using professional music equipment, any amount of lag or
latency is unacceptable. Does that apply to this application as well?

• How will the finished system be deployed?

• Will the application be able to detect and track more than one person, and will
the performance be good enough when several people are tracked at the same
time?

1.5 Motivations behind the thesis work

Allowing people with mild to severe cognitive, and sometimes physical impairments
to be able to express themselves musically seems like a very worthwhile task. Mak-
ing a musical instrument that is played by the free body or limb movements of one
or several persons in a room, without having to hold or use an item is an interesting
problem to solve. Making a usable prototype application seems like a good fit for an
engineering thesis work.

A benefit to the MISK project is that there is a new instrument to try out and evaluate.
Provided that the camera and system-on-module are well placed, this instrument
allows fairly free movement, and no wires should be in the way or risk being pulled
out or stumbled upon when playing it.

Certec gets some exploration of the system-on-module and its particular quirks and
benefits out of the problem. Another benefit is that this thesis work allows for making
an instrument there would not necessarily be time and resources to make otherwise,
given that everyone involved is busy making their own instruments for the project.

The MISK-Moves application allows for collaboration in a way the other instru-
ments do not really do. The collaboration can be between either the specialist music
pedagog, and the main user, or between the personal assistant and the user. Some of
the other instruments allow for some collaboration, but not in the same way, and not
explicitly selectable in the Max 8 MISK patch in the same way.

The ultimate motivation behind this project is to provide a way, or means, to have
fun with music. It should also enable someone who in most situations is unable or
not allowed to have control over what happens to them or around them at least some
control, by playing, triggering, or modifying sounds or music by themselves through
the MISK-Moves application.
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1.6 Boundaries and limitations

The scope of this thesis work is limited to the MISK-Moves application itself. This
means that capturing a video feed, analysing it, and finally packaging and sending
the results to a host computer running generating the sound are the limits for this
project.

There are several existing, widely used ML-model implementations, and there is
no need to develop a custom one for this project. It is also not really feasible to
do any meaningful training or reinforcement training of an existing model. A large,
good quality dataset would have to be prepared. Getting access to enough potential
users, and then getting their consent to be part of a training set would be too time
consuming, given that preferably the number of different people used should be in
the hundreds, and that each person needs to be photographed from several different
angles in different environments under different lighting conditions. As an example,
the COCO (Common Objects in Context) dataset that the model in this project is
trained on, contains more than 200000 images with 250000 person instances in them,
according to the COCO Consortium themselves [4].

In the MISK project, the software that makes the different devices and instruments
sound is Max 8 by Cycling ’74. Developing the patcher that takes the input from all
the different instruments and turns it into sound is another part of the larger project,
and outside this thesis work.

Although this project is labelled as an interaction design project, the interaction de-
sign itself is very simple. All the user interface properties, behaviour, design, and
interaction in the MISK patcher belongs to another part of the MISK project.

• The user plays the instrument by moving their arms, their head or by moving
around in the room.

• Multiple users can play at the same time.

• Try to keep the input latency as low as possible, to make the instrument as
responsive as possible.

• Allow for as many methods of control as possible. Not just absolute position-
ing, but movement speed (intensity), angle, direction, etc.

Emphasis during development and testing has been on ensuring that the application
delivers expected and consistent behaviour that matches what is specified in the doc-
umentation and keeping the input latency as low as possible.
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2 Technical background

In this chapter the technology and concepts used in this thesis work will be described,
both the hardware and the machine learning models and concepts. There will also be
an explanation of what computer vision is and what some of the differences between
the different Machine learning models are.

2.1 The hardware

It was decided even before the thesis work started that the software should run on a
system-on-module. There are a couple of good reasons for choosing a SOM over an
ordinary computer. For projects like this one they are:

1. The device itself is small, which should allow for plenty of placement and
housing options. It does not need much space, and can be put in a small box,
the shelf of a bookcase, on top of a cupboard or up in the ceiling, just to name
a few possible placements. It does not take up much storage space either.

2. A system-on-module does not need much power. Typically, these kinds of sys-
tems draw somewhere between 5 Watts and 60 Watts (the Jetson Orin AGX).
A Jetson Nano, which is the SOM used in this project uses 5–10 W (low–high
power mode) [15]. The power draw from ordinary computers is usually larger.
A MacBook Pro 14 2023 M2 Pro draws 50–60 W during heavy load, when
connected to an external screen [27]. Power consumption including screen
should be higher. A desktop computer can use over 1 kW of power. A top-of-
the-line consumer GPU, NVIDIA RTX 4090 [23], alone can pull 450–600 W
(600 W is the maximum allowed power draw when overclocked), and it is pos-
sible to have several installed in a desktop computer. That is in a completely
different performance class, though.

3. A system-on-module can be fairly cheap. At the time of writing the NVIDIA
Jetson Nano 4GB development kit is $149, and a Raspberry Pi 4 is $149 –
$300, depending on memory size and whether it is a complete kit with SD
cards, casing, power supplies and other extras, or just the module itself. A
Google Coral USB Accelerator that can be used with a Raspberry Pi is about
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$145 on Amazon. A complete standalone Google Coral development board is
$175 at the same store.

4. Given the price of the modules, especially the cheaper ones, the ratio value–
performance is good for a system-on-module. All the systems mentioned can
use some kind of hardware acceleration when running machine learning work-
loads. The Jetson Nano can utilize its GPU, and the Coral devices, either stan-
dalone or connected to a Raspberry Pi, has a highly specialized TPU (tensor
processing unit) which only purpose is to run machine learning tasks.

If other makers, researchers, and activity centres, among others, want to recreate this
project, the total cost of the device and its accessories should be as low as possible,
to make it affordable for everyone.

2.1.1 Jetson Nano developer kit

NVIDIA introduced the Jetson Nano developer kit system-on-module in 2019. It
is marketed towards embedded designers, researchers, and DIY makers. The price
at the introduction was $99, but in March 2023 the typical retail price is $149 at
retailers such as Amazon, Seeed, Arrow and Sparkfun Electronics. The system was
powerful enough to run the latest ML-models at the time [15], and it can still run
some of the very latest models at the time of writing this thesis in March 2023. As an
example, it can run YOLOv8 models if the user is willing and able to customise the
software environment on the Jetson Nano [26]. YOLOv8 was introduced on January
10th 2023.

The system itself is a complete tiny computer. Its system specifications are found in
table 2.1. It comes with four USB ports, an SD card slot for the operating system and
applications, a CSI connector for connecting a MIPI CSI-2 camera, a gigabit Ether-
net port for networking and both HDMI and DisplayPort for display output. Connect
a screen, mouse and keyboard and the system works like any desktop computer or
laptop, running Ubuntu 18.04. The user gets a complete graphical desktop environ-
ment, and the possibility to install applications just like on any other personal com-
puter. This means that software development can be done without any compromises
on the device itself, since it provides a complete Ubuntu desktop environment. As
an example, in this project Microsoft Visual Studio Code with a full set of Git(hub)
and Python plugins was installed and used. The fact is that this entire thesis work
could have been done on the Jetson Nano, research, development, writing the thesis,
drawing figures, editing photos and all. The combined operating system and base
development package is called Jetpack.

The system has other expansion ports, but they are not useful in this project. As a
combined CPU/GPU it has an NVIDIA Tegra X1 chip, it is related to the system
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Table 2.1 Jetson Nano Developer Kit 4GB revision B technical specifications.

Processing

CPU ARM A57 @ 1.43GHz, four 64-bit cores
GPU 128-core @ 921MHz, NVIDIA Maxwell architecture
Memory 4GB 64-bit LPDDR4 @ 1600MHz, 25.6 GB/s transfer rate
Video Encoder 3840x2160p30, up to 2x 1920x1080p60, and up to 4x

1920x1080p30 streams
Video Decoder 3840x2160p60, up to 2x 3840x2160p30, up to 4x

1920x1080p60, and up to 8x 1920x1080p30 streams.

Interfaces

USB 4x USB 3.0 A (Host), and USB 2.0 Micro B (Device)
Camera MIPI CSI-2 (15-position Flex Connector
Display HDMI and DisplayPort
Networking Gigabit Ethernet (RJ45)
Wireless M.2 Key-E with PCIe x1
Storage MicroSD card (16GB UHS-1 recommended minimum size)
Other I/O 3x I2C, 2x SPI, UART, I2s, and GPIOs

chip that the popular games console Nintendo Switch has, but with different clock
speeds and half the number of GPU cores [19].

One of the advantages of the Jetson Nano is the large amount of supported soft-
ware, and the wide variety of tasks that can be performed on a Jetson device, as
hinted by the introduction announcement [15]. Several popular machine learning
networks such as PyTorch, TensorFlow, Caffe/Caffe2, Keras and MXNet are avail-
able with full native hardware acceleration on the Jetson Nano. Frameworks like the
open ONNX can be converted into NVIDIA’s own TensorRT framework, to take full
advantage of the device. This means that image recognition, object detection and lo-
calization/tracking, pose estimation, semantic segmentation, video enhancement and
ML-based analytics can be done on a small low power device. Jetpack comes with
several libraries that are modified and enhanced by NVIDIA to work optimally on
the Jetson:

• TensorRT and cuDNN for hardware accelerated deep learning applications.

• CUDA, NVIDIA’s GPU accelerated general compute package.

• NVIDIA Container Runtime for running Docker containers. This allows for
the Jetson to run fully hardware accelerated Docker containers.
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Figure 2.1 The Jetson Nano developer kit connected to a Raspberry Pi V2 camera mounted to
a tripod. A pen and a micro SD card are included for size comparison.

• Multimedia API, which allows the use of several different cameras, and several
different kinds of input stream encoding and decoding.

The libraries come with a set of samples and example code. Then there are several
tools and application for specifically debugging software written for the NVIDIA
libraries, and some profiling and optimization tools, to help developers run their
code as efficiently as possible on Jetson devices.

Being able to run Docker containers with full access to the hardware is a useful fea-
ture. A Docker container is a complete runtime environment. This means that instead
of having to install all the libraries and dependencies needed for a particular piece
of software, a complete Docker image can be downloaded and run as a container
instead [11]. Especially when distributing the same software to several computers or
SOMs, this saves a lot of time and effort. It works similar to a virtual machine, but
uses less resources.

Competing products can sometimes have better performance in specific tasks, as
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seen in the material [15], but none of the competing products at the time provided the
same versatility, software, and tool support. Jetson devices can be found in robots,
security systems, cars and more.

2.1.2 MIPI CSI-2 camera

MIPI (Mobile Industry Processor Interface) CSI-2 (Camera Serial Interface) is a
specification for processor – mobile camera communication, a high-speed camera
and imaging interface. Devices complying to the protocol feature high performance,
low power consumption, and have low electromagnetic interference. The interface
is typically used in high-performance applications such as high-resolution photogra-
phy, and 1080p, 4k and 8k video. MIPI CSI-2 cameras are used for virtual reality,
drones, the Internet of Things, medical devices, tablets, notebook, industrial systems
and more [20].

The CSI-2 interface on the Jetson Nano has driver support for the Sony IMX219 sen-
sor [15]. A camera module that uses this sensor is the Raspberry Pi Camera Module
2, which is the module used in this project. The sensor is backlit with a resolution of
8 megapixels [28]. At the time of writing, price listings on amazon for the camera
module varied between $28 and $35. The camera module is the small circuit board
with a lens on it mounted to the tripod in figure 2.1.

In this project the raw image feed from the camera is used. There is the possibility
to fine-tune the camera output, such as setting white balance, using different meth-
ods of noise reduction, lens distortion correction, changing brightness and saturation
among other things, to get an image quality that suits the user’s subjective prefer-
ences. However, the raw image feed worked well enough for the purpose of pose
estimation.

2.2 Max 8 – the music software

Max is a visual programming language for music and multimedia applications, and
Max 8 is the name of the current software package, i.e. the development and runtime
tool for applications using the Max language. It is made by Cycling ’74 [5]. The
software is available for Windows and MacOS.

Programming in Max is done by placing different objects. Objects can be sound
generators, filters, arithmetic or logical functions, network communication objects,
visualizers, video decoders, to name only a few examples. User interface elements
such as buttons, sliders, knobs, and displays are also objects. These objects are then
connected graphically with virtual wires. Most objects have several inputs and out-
puts that let them process things in several different ways, depending on how the
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programmer connects the different objects to each other. A Max program is called
a patcher, and a patcher can also become an object. If the set of objects that Max 8
provides is not enough, there is the possibility to use plugins, either pre-made made
by other developers or by the user themselves. Examples of what the MISK patcher
looks like are found in figure 2.2, 2.4 and 3.1, among others.

2.2.1 OSC protocol

OSC is short for Open Sound Control. It is meant to be a more flexible alternative
MIDI, a data transport specification for real-time communication among applications
and hardware. The protocol allows full user customization of the address space and
the parameters that get sent. Unlike MIDI, OSC does not need a specialized interface,
but uses standard networking hardware (e.g., Wi-Fi, Bluetooth or Ethernet). Since it
is meant for real-time music performances, it is designed to be lightweight, low
latency and highly accurate [32]. MIDI is the Musical Instrument Digital Interface
standard.

If something does not support MIDI, Max 8 uses the OSC protocol to communi-
cate with external devices and computers, or with other applications running on the
same computer as Max 8. This is what all the instruments in the MISK project use
to send and receive control messages to and from the MISK patcher. The OSC mes-
sages themselves are technically UDP packets, and Max 8 has pre-made objects for
sending and receiving such packets. They are called udpsend and udpreceive re-
spectively.

The MISK-Moves application uses the Python-osc library for its OSC communica-
tion. The library provides simple client and server python classes for easy informa-
tion packaging, sending, and receiving. The library follows the OpenSoundControl
Specification 1.0, and is unlicensed and can be used freely without any restrictions
[3].

2.2.2 MISK patcher

The MISK patcher for Max 8 is developed as another part of the MISK project. This
is the musical hub of the project. All the different instruments connect to the patcher
and can be used to control different parts of it. This is what makes the actual sounds
and music, except for the specialist music pedagog singing and playing their own
instrument. The main screen that greets the user at start-up is shown in figure 2.2.
There is a variety of functionality built into the patcher. To generate sound, it has
a sample player, a synth, and a regular music player. There is also a sequencer that
can be used to write and/or record melodies and other musical sequences, so that
they can be replayed. In addition to sound and music, the patcher can also generate
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Figure 2.2 The main tab of the MISK patcher. Two channels are active. Channel 1 is controlled
by the left wrist and channel 2 is controlled by the distance between the playing

person’s arms.

various visual effects on the host computer’s screen, or on a projector connected to
the computer.

The sample player is used for a sample pad with 12 pads, where one sample can be
connected to each pad. This allows for either quick sample selection, or for playing
a sequence of samples. Another possibility is to just trigger the pads randomly. The
MISK instruments can either trigger a sample in general, or have it trigger a specific
sample pad. Other things that can be controlled by the instruments are the pitch and
volume of the sample currently playing. The sample pad is shown in figure 2.3.

The synth, see figure 2.4 consists of three different selectable synthesizers: one with
only the basic waveforms, seen in figure 2.5, one with more advanced sound gener-
ation, as seen in figure 2.6, and the last is a sampler synth, in figure 2.7.

Here the MISK instruments can control the note played, the chord played, or control
some of the synthesizer parameters such as filters and waveforms.

The sequencer can be seen in figure2.8. Here the MISK instruments can control the
volume of the drums and the different melodies, switch pre-set melodies, change the
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Figure 2.3 The sample pad. Here channel 1 is used to control stepping through the samples and
control the volume, while channel 2 controls the sample pitch.
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complexity of the generated melodies and the dynamic range of the notes played.
Even though the melodies are seemingly randomly generated, they still follow har-
mony theory. This means that melody and base line are in the same key, and that
both follow the same chord progression.

Figure 2.4 The main synth screen, using the left wrist to play the synth and the right wrist to
control selected parameters.
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Figure 2.5 The simple synth. Here the filter cut-off is controlled by MISK-Moves.

2.3 Machine Learning and Computer Vision

Machine learning, ML, is a form of artificial intelligence, AI, where a computer
model learns to solve a specific problem (or specific set of problems) without the
solution being specifically programmed [6]. The model is fed with data, which is
used in several training steps, often called epochs, to make the model improve the
accuracy of its inferences, getting it as close as possible to reality. The problem, or
task, needs to be well defined within clearly defined boundaries. These criteria make
machine learning fall into the narrow AI category, as opposed to broad AI, which
is a theoretical model for solving any type of problems. Proper broad AI does not
exist yet, but machine learning models grow ever more popular due to their ability
to quickly analyse large amounts of data.
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Figure 2.6 The BEAP synth. Again, the filter cut-off is controlled by MISK-Moves.

Deep learning is a sub-category of machine learning [10]. The idea is to have the
deep learning algorithms and networks learn without any greater human involve-
ment. This means that there should be less need for marking up or annotating the
training data. Deep learning algorithms are well suited for unstructured data. The
algorithms find similarities and reoccurring patterns during training and usually cat-
egorizes what they find in differently numbered categories. This means that with
high quality training data a deep learning algorithm can teach itself to find objects
in pictures and videos, learn to distinguish the different words spoken in audio in-
put, or learn to detect suspicious or fraudulent behaviour in bank transactions, just
to give a few examples. If there is a need for it, the numbered categories that the
algorithms output can be translated into proper noun categories, if a human wants
to easily understand what an algorithm has concluded. The deep in deep learning

27



Figure 2.7 The sampler synth. Here VCA bypass is controlled by MISK-Moves.

refers to the layer structure. Usually, deep neural networks have a far larger number
of layers than ordinary machine learning neural networks, thus being deeper. Deep
learning models are usually very hard to interpret, given the usually large number of
layers and nodes and the autonomous unsupervised training. This makes it hard to
understand why and how a network manages to draw accurate conclusions.

Most of these models and engines are open source. The advantage of that is that if so
inclined, everyone can see exactly how a model works by reading the source code.
Several, if not most of the models have their own GitHub page with a complete set of
resources. This means that anyone can download, test them out and modify them to
fit their own use cases. Usually there are instructions on how to train, retrain and/or
do reinforcement training on the model, so it can be trained to suit a specific need.
As an example, YOLOv7 and YOLOv8, two different YOLO models from different
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Figure 2.8 The dynamics of the notes played is controlled by channel 1 and channel 2 controls
the volume of the third melody part.

authors and organizations can be found at [31] and [29] respectively.

2.3.1 Neural Network

Most machine learning is based on neural networks, or to use the correct term, Arti-
ficial Neural Networks, ANN. The inspiration for this way of processing data is the
neurons in the human brain. A neural network has multiple layers of neurons. There
is always an input layer, one or several hidden layers, and an output layer. The in-
put layer receives and prepares the input data before it passes it along to the hidden
layer(s). The output layer is responsible for the final decision based on the results
from the previous hidden layers and delivers the result of what it has concluded. It
is within the hidden layers that all the processing of the data happens. How many
neural nodes each layer consists of and how many layers there are varies from model
to model. When describing the size of a neural network the terms breadth, or width,
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and depth are used. The width refers to how many nodes there are for each layer and
the depth refers to how many layers the network consists of. A simple illustration of
an artificial neural network is found in figure 2.9.

Hidden layersInput layer Output layer

Figure 2.9 A simple illustration of an artificial neural network. The white box in the hidden
layers represents several more hidden layers.

During training data is sent through the network and the result is then compared to
some actual result from the data set. The comparison shows how accurate the con-
clusions from the network are, and the difference between the actual and concluded
results are used as feedback to the network for the next training round, or epoch.
This feedback allows for adjusting the importance of the input weights for all the
inputs of each node in the network. This process is repeated until the accuracy of the
conclusions from the network are accurate enough, and then the model is ready to
use.

Deep neural networks, or DNN, are used in deep learning. DNN is just a sub-
category of ANN. Deep refers to the fact that a DNN has multiple layers, and the
number in for example ResNet-18 or ResNet-50 refers to the number of layers in
those particular networks. Usually, a deep network takes longer to train, but the ad-
vantage is that inferencing using a model based on a deep network is both faster
and has more accurate conclusions. This makes it possible to train the model on a
powerful server, and then run the application on a far less powerful device, such as a
mobile phone or a small embedded system-on-module.

What happens during learning, such as what weights are applied and if and how any
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weights are adjusted during, or as a result of the processing, is usually not observable
from the outside, especially when it comes to DNNs.

A network model describes how the neurons are connected, i.e. what their input and
output is, how the input and output is weighted and sometimes added, what each
layer of neurons consists of, how the layers are grouped, structured and intercon-
nected, etc.

Data sent through the neural networks almost always comes in the form of tensors. A
short and simplified explanations of what tensors are is that they can be seen as multi-
dimensional matrices. As a relevant example to this project: In the case of computer
vision and pose estimation, the image can be seen as a matrix with image height (in
pixels) rows and image width columns. For colour images each pixel in the RGB
(red, green, blue) format has one value for each colour channel. An input tensor for
an RGB image would have one dimension for each, channel, i.e. three dimension.
In turn, each dimension on their own would be an (image height in pixels)x(image
width in pixels) matrix. Linear algebra is used to perform mathematical operations,
such as multiplication, transposing, calculating the dot product, convolution, etc. [8].
The reason why this is an important property in this project is that the GPU in the
Jetson Nano SOM is very well suited for performing the calculations needed. All
3D computer graphics are based on linear algebra, and GPUs are especially made
and optimized for doing such calculations. GPUs are mainly optimized for matrix
operations, but that still makes them better suited for the task than CPUs, which are
more suited for general computing tasks. In the later generations of the Jetson SOMs,
the hardware has a TPU, i.e. tensor processing unit optimized for tensor operations,
as well as a GPU. This makes the new Jetsons even better at ML tasks [24].

2.3.2 Convolutional and Residual Convolutional Neural Networks

This project uses ResNet-18, which is a residual convolutional neural network with
18 layers. Hence ResNet-18. To give some insight how the pose estimation works
this and the following sub-sections will describe ResNet, why such network models
are used, and the steps of the pose estimation process.

The invention of Convolutional Neural Networks took inspiration from and are mod-
elled after the human visual system. The input is split into several small sub-parts
which are analysed individually, and in the end are put together to complete the in-
ferencing on the whole input image. The breaking things up into smaller parts helps
reduce the dimensions and complexity of each calculation [7].

The calculations of the smallest parts of the input are done in the convolution layers.
The total performance and complexity of all the calculations depend on the size of
each part, and if there is any space between the parts, and the size of that space.
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After the convolution layers comes the pooling layer where neighbouring smaller
parts get put into pools. Now depending on application, either the average of the
parts in the pool or the maximum value of the parts is the result. This has the effect
that the model can preserve small details of characteristics from the smaller parts in
one larger part, or “pixel” if it is an image recognition application.

Finally, there is a fully connected layer that uses all the subparts and connect ev-
erything together for the final classification. Since it can use the subparts instead of
each individual original pixel, the dimensions of the input are greatly reduced which
means that it is possible to use tightly meshed layers (remember figure 2.9) without
the complexity growing out of hand.

Here is where tensors come in. The data is described using tensors on which all the
mathematical operations, such as convolution, are performed. This is the reason why
the hardware acceleration in the Jetson family of som:s make them so well-suited for
ML-tasks, especially those models that have dedicated tensor cores.

F(x)

(x) + xF

weight layer

weight layer

ReLU

ReLU

x

x
identity

Figure 2.10 A building block for ResNet showing the building block layer structure of the net-
work.

In theory, the deeper the network, it should be possible to achieve better results. The
problem is that the training error grows the deeper the network is. Most training is
dependent on backpropagation, but this causes any errors to travel through the entire
network from the back to the front. During training calculations are made to find
out how much each neuron contributes to the total error, and the method used is
to calculate the gradient. What happens is that when traversing back to front, the
neurons in the first layers will contribute very little to nothing to the final output
when calculating the gradient, and that means that neurons that could actually be
valuable risk being removed during training. This causes training errors.

To solve this problem residual networks were invented. The very short explanation
is that that such networks approximate a residual function where shortcuts are used
as identity mapping. Figure 2.10 illustrates how this works. For a more detailed
explanation, see [17]. If a layer does not contribute anything to improving the final
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Figure 2.11 The complete structure of ResNet-18.
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result it can be skipped. This means that the ResNet can have a large layer depth
without having training errors from gradient degradation. Skipping layers that do
not contribute anything also gives the ResNets the advantage of generally being less
compute intensive, and therefore being able to be trained faster, and have shorter
inference time on when running trained models.

A building block is shown in figure 2.10. ResNet-18 [17], which is used in this
project, consists of several of these building blocks. The ReLU functions, rectified
linear units [21], are the activation functions between each layer. They are used in
the network to determine whether a neuron or a layer should activate or not based on
the input. It seems like ResNet-18 uses a leaky ReLU which would look something
like this mathematically:

f =

{
x if x ≥ 0
αx if x < 0

What the entire network layer structure should look like is shown in figure 2.11

2.3.3 Framework and library

When implementing a neural network model there are several frameworks, or li-
braries, to choose from. These libraries provide tools for describing the neurons and
how the neurons are interconnected. Other provided functionality includes mathe-
matical operations (linear algebra, convolution, statistical functions, etc.), especially
tensor operations, and often various graph traversal and building functionality. The
libraries also provide tools for preparing, training, and processing data.

Some of commonly used frameworks are PyTorch, TensorFlow, Keras, and Caffe.
All these frameworks are open source. Each framework has its own way to describe
a neural network model, which means that they each have their own file formats, and
their own way to classify and specify data and output. This for example means that a
PyTorch model cannot directly be converted into a TensorFlow model. It is however
possible to convert models between different frameworks taking an intermediary
step, and something like Open Neural Network Exchange, ONNX for short, is often
used as the intermediary model conversion. This middle step makes it possible to
convert models between two otherwise incompatible frameworks.

For this project the original model was converted via ONNX to TensorRT, which
is a proprietary framework by NVIDIA, and it is optimized for NVIDIA GPUs,
just like the one in the Jetson Nano. When using the Jetson Inference package, this
conversion happens automatically the first time when a model is used in one of the
example programs.
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2.3.4 What happens during pose estimation?

Now that all of the technology behind object detection and pose estimation have
been explained, it is time to put it all together and put it to practical use.

What happens in MISK-Moves can be described using NVIDIA’s description of how
their DeepStream framework works is a really good description of how a machine
learning computer vision pipeline works [25]. The entire process is illustrated in fig-
ure 2.12. Pose estimation is just a special case of object detection. The DeepStream

Object
DetectionBatchingDecode Tracker Secondary

Classifier
Visualization

Data
Processing

Tiling,
On-screen display

Neural networks, network resolution,
tracker configuration(s), tracking interval,
batch size, etc.

Cloud / streaming

File

Screen

Figure 2.12 A typical DeepStream pipeline showing all the process stages from input to output.

workflow works like this: First there is some input. This can be an image, a video
stream from either a camera or from a file, an audio stream, text, or some other data
that needs to be analysed. A sample from the stream is grabbed. In the case of a
video stream, a frame is grabbed. This sample can be modified in some way. In the
video frame example, the image could need scaling, denoising, sharpening, have the
colour format changed, or need some other kind of image manipulation. Then the
sample is sent as input into an ml network. In DeepStream it is possible to link sev-
eral networks together. To use the well-used car example, an example application
tracks cars. The first Network is an object detector, which is set to detect cars in
general. The output from that network is cropped so that only the part of the image
that contains cars is sent to the next network. This network is trained to be able to
tell of which make a car is. The cars also need to be tracked, so the output is also
sent into an object tracker. After the inferencing chain, the results are processed, and
any calculations and analysis are done at this stage. After the processing, the next
stage is to present the results. With a video stream, the results can be combined with
the original input and sent out for viewing. This can mean that the information is
overlayed on top of the original frame, or that several frames are put side by side.
All that happens in a continuous stream, which is then encoded and sent out as a new
video stream for direct viewing, or saved to a file.

MISK-Moves does not use DeepStream, but the process is similar. It starts with cap-
turing a frame from the MIPI CSI-2 camera. The image quality from the raw feed
is enough, but on the Jetson Nano the image is scaled down to get some more per-
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formance. The frame is then sent into poseNet. This is a pre-made class from the
Jetson Inference library that NVIDIA provides. In this project, the class puts the
data through the ResNet-18 pose model, which does the inferencing. PoseNet needs
the model to be in either Caffe, UFF, or ONNX network model format, otherwise it
will not be able to use it. If the model is run for the first time, PoseNet automatically
converts the network model into the TensorRT format, to make sure it runs at opti-
mum performance on the Jetson. The result from the model then gets analysed and
post processed by PoseNet. The results from ResNet-18 comes in the form of key-
points, as defined by a topography specified by NVIDIA when the class was written.
The complete topography, with all the keypoints named and numbered is shown in
figure 2.13. Each keypoint comes with a confidence value, which shows how certain
ResNet-18 is that it in fact is the actual limb (keypoint) that it has detected. If the
confidence value from the model is below a pre-specified threshold, the post process-
ing will ignore that keypoint, and not use it in the results. The same goes for links
between keypoints. In the topography there are some links between certain pairs of
keypoints defined. The links are shown as lines between keypoints in figure 2.13. If
all the keypoints and links are found, the results will look like a complete skeleton
when drawn. When the inferencing and post processing is done PoseNet returns the
results as one ObjectPose struct per person it has found, containing all the data from
the inferencing and processing. It also outputs an image where all the keypoints and
links found are drawn as an overlay on top of the original input image. Each object
contains the x and y coordinates of where in the frame a person is, and coordinates
for all the keypoints, or limbs, it has found on each person. Each object also contains
a list of any links between keypoints found. PoseNet can detect more than one person
per frame. The processing part then consists of calculating how much each person
and each keypoint has moved, and this in turn gets sent over to the MISK patcher
running in Max 8 as OSC messages. The presentation consists of the original video
input with an overlay of a skeleton of each person found. The skeletons consist of
the keypoints and links drawn between the keypoints, as seen in figure 5.3. The out-
put video can either be viewed directly on the Jetson’s screen or remotely as a video
stream. It can also save the video as a file.
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Figure 2.13 The complete topography as defined in poseNet, showing all the keypoints and their
names. Links are shown as lines between keypoints. Additionally, the groupings of

keypoints that make up the head, left arm and right arm are shown.
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3 Method

In this chapter, the methods and development process for reaching the finished MISK-
Moves application are discussed.

3.1 Doing research

The initial instructions for this project was to make an instrument which was played
by moving around in a room. To achieve this, it was decided to use computer vision
and machine learning.

The main source for finding information about anything in this project has been
Google searches. It has been used for

• Finding information about similar musical instruments.

• Finding out what hardware to use.

• Finding suitable libraries, packages and other software development tools,
ML-models/networks/engines.

• Finding documentation for the different packages and libraries used.

• Finding solutions to the different problems that arose during development.

Another valuable source of information has been various GitHub pages. As an exam-
ple, NVIDIA’s “Hello AI world” is hosted entirely on GitHub [14]. This including
the entire Jetson Inference package, with example code, build scripts and pretrained
models. Another example is that YOLOv7 is also hosted on GitHub. Documentation,
example code, several pretrained models, benchmarks, benchmark results, academic
paper, and all. Some GitHub pages also have useful links to other GitHub pages, or
links to other useful resources.

NVIDIA’s own home pages have been an important source of information. Their
developer pages, which contain documentation about their software tools and hard-
ware. Here anything from hardware and software installation instructions, to user
manuals, to API specification and documentation, and other useful tips can be found.
NVIDIA also has their own support forum where it is possible to find solutions to a
variety of problems or ask for help if a solution does not currently exist.
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3.1.1 Finding the right computer vision and machine learning tools

When searching around for computer vision tutorials, OpenCV tutorials are among
the most common results. OpenCV, or Open Source Computer Vision Library is
a popular open source computer vision and machine learning software library un-
der the Apache 2 license. It contains algorithms for image enhancement and ma-
nipulation, producing overlays, handle video, and do some machine learning tasks.
It is used by everything from hobbyists to the some of the largest corporations
in the world such as Google, Microsoft, Intel, IBM, and Toyota. YOLOv7 [30]
uses OpenCV in their implementation, to give another example. OpenCV has C++,
Python, Java and Matlab interfaces and it can be installed on Windows, Linux, An-
droid, and Mac OS. There is also support for NVIDIA’s CUDA, which means that it
is possible to have hardware accelerated OpenCV applications on the Jetson Nano.
Doing some OpenCV tutorials seemed like a good starting point to get familiarized
with computer vision, and to understand the concepts. YOLO is short for You Only
Look Once.

Since the initial description was that a person should be able to play/control the ap-
plication by moving around in the room, some object detection and tracking tutorials
were researched and used. When searching for tutorials around the web and example
code on GitHub, most of the source code is written in Python. To give examples from
the bibliography: The Hello AI World video tutorials and YOLOv7 use Python. This
led to some quick Python documentation studies and to doing some simple Python
tutorials.

When searching for suitable object detection models and trackers, the models show-
ing the most promise were later versions of YOLO, either YOLOv4 or YOLOv7.
Looking at benchmark numbers, they provide a good combination of performance
and accuracy.

A lot of time, at least a month and a half, was spent on trying to get various ob-
ject detection models and machine learning frameworks working. There are hard-
ware accelerated versions of PyTorch and TensorFlow available for the Jetson Nano,
but at first, they would not install properly, or rather some of the dependencies for
those frameworks would not install properly. Without the proper dependencies and
libraries no example code, or implementations for any models or frameworks would
run. In the best case scenarios, there is an error message, instead of a complete lock-
up. The messages can be hundreds of lines long, leading to that it can take tens of
minutes to hours, to sort out what the root of the problem is.

A large part of the project, perhaps too much, went into searching around differ-
ent support forums for solutions. Other projects with similar problems seemed to be
helped by the solutions offered in the different discussion threads, but nothing would
work for this project. The situation got so dire that even the Jetson Inference exam-
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ples stopped working. Not only the machine learning examples, but simple video
players and camera capture applications would stop working.

However, after the Eldorado workshop it became clear that the Room Camera appli-
cation needed to use pose estimation. There are YOLO based pose estimators, but a
lot of time had been spent on trying to get any ML-model and framework to work at
all. In the end, all ideas of using the latest models were discarded. Instead the Jetson
Inference class PoseNet using a ResNet-18 pose estimation model became the basis
for the application, since that model and framework was more or less guaranteed to
work.

When the basis for MISK-Moves was decided on, the Jetson Nano received a fresh
Jetpack Install, and a Jetson Inference package install built from scratch locally on
the module, and only the necessary development tools and libraries were installed.
After that the development could progress without any problems.

After the application was mostly finished, the Jetson Nano received installations of
PyTorch, TensorFlow and YOLOv7. A CUDA accelerated version of OpenCV 4.6
was also built and installed on the module. Everything works. The original Jetpack
installation probably broke early during the exploration and research. Not fully un-
derstanding how Jetpack worked and some of the inner workings of Python in the
beginning of the project is probably the root cause. Especially how particular it is
regarding requirement, library, and dependency version compatibility. The various
solutions when trying to fix the problems probably broke things even more. Another
cause might have been a standard software update to Jetpack. Such updates also need
to be handled with caution. Like Windows and MacOS Ubuntu, which Jetpack is
based on, has the option to automatically install updates to the operating system and
any software packages installed. Not all updates support the Jetson Nano hardware
and are meant for another type of Jetson device. Automatically installing security
updates and bug fixes is generally a good idea, but not when they risk breaking the
system, so that it stops working properly.

3.1.2 Workshops

During the development of the MISK-Moves application three workshops were at-
tended: one at Eldorado in Gothenburg, and two in Lund in the Certec lab. The
Eldorado workshop was about three weeks into the project, while the workshops in
the lab were at the end of the software development process.

At Eldorado there was the opportunity to observe the environment and the context in
which the Room Camera application is to be used. The music sessions took part in
two different rooms. In the largest room group sessions were held. In these sessions
some of the sound effect patcher functionality was tested. One-on-one sessions were
held in the smaller rooms, allowing for a more intimate setting with only the special-
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ist music pedagog, the attendee and the attendee’s personal assistant were present.
In one of these rooms the MISK pillow and pressure sensitive mat were tested, and
in the other the FaceAR app was tested. Since playing the pillow and mat involves
physical activity and movement, the sessions involving those seemed the most in-
teresting to observe. To not have an extra stranger, and risk disturbing the intimate
mood or make the attendee uneasy, a camera was set up on top of a cupboard, and
the sessions were filmed. Since the lighting was turned down, the film was very dark,
blurry and grainy. It was good enough to be able to observe what was going on in the
sessions, but not good enough for much else. The group sessions were watched live.
The functionality of MISK-Moves was heavily influenced by these observations. Be-
fore the workshop it seemed like object detection and tracking was the way to go, but
after the observations it became clear that several of the attendees either had trouble
moving around in the room or could not move around at all by themselves. Most
could move an arm and/or their head. This made it clear that pose estimation was the
way to go, moving forward.

During the first Certec lab session the main goal was for one of the specialist music
pedagogues to try out and give feedback on some new functionality in the MISK
patcher, and to try out and get a feel for what possibilities are offered by the Room
Camera application. Initially there were some issues connecting the app to various
functionality in the MISK patcher. The way the OSC message decoding works in
the patcher a message to the patcher needs to be formatted in a very specific way.
This did not become clear, until the messaging problems occurred. When the inner
workings of the message decoding were shown, the solution to the problem became
clear and a fix could be implemented there, and then. After the fix connecting the
patcher and the application worked as intended, but the values from the application
seemed strange and erratic. The output from the pose estimation itself looked correct.
It was the calculated values that seemed strange. This made it hard to test out the
possibilities available. The next day during bug fixing, it turned out that it was an
error introduced when doing the quick messaging fix the day before. A basic copy-
and-paste-error made the values for the right arm mostly become 0. It the testing
had been done using any other limb, that bug might not have been found. At least
everyone got to see the pose estimation in action.

The second session in the Certec lab was a pure developer session. Before that ses-
sion, the Room Camera application was mostly finished, and the MISK patcher had
just received some new functionality. During the session, the messaging between
application and patcher were further improved. For the first time, the functionality
of MISK-Moves could be fully tested. Both solo playing and collaboration between
two people were tested out. Connecting the different control methods offered by the
application to several different kinds of functionality in the patcher was also tested
out. This workshop also gave the opportunity to test out starting the application re-
motely from another computer than the one in the lab and streaming the video output
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from the pose estimation to that computer.

After the last workshop, the software was basically finished. Only a few adjustments
to the messages sent and received were made after that by requests from the devel-
oper of the MISK patcher.

3.2 Python

Most of the time spent on the project was on Python related activities. Not only on
learning Python, but on installing different packages and libraries to fill the require-
ments for different network engines. Trying out different models, like YOLO, meant
installing PyTorch, TensorFlow, Keras, etc. Other portions of the time spent went
into understanding the workings of Python, such as how it handles threading.

Since most of the machine learning research program code is written in Python, as
well as most of the example code on GitHub, it seemed appropriate to use that pro-
gramming language to write the MISK-Moves. Python is an interpreting language,
which in theory should make it easy to make the same code run on different plat-
forms, without having to rebuild the entire project each time someone wants to run
it on a new platform. A drawback of using an interpreting language is that programs
written in such a language usually has worse performance than programs written in
a language that requires the program to be compiled before it is run, such as C and
C++.

The latest version of Jetpack that can be installed on the Jetson Nano developer kit is
based on Ubuntu 18.04. This means that the latest version of Python that is officially
supported is version 3.6.9. There are examples of Jetson Nanos running later versions
of Python and/or Ubuntu but doing so is not supported by NVIDIA. To do that, a user
will have to be willing and able to make any necessary modifications themselves at
the risk of having an unstable system. For this project, this is not a viable option,
since the main users are music pedagogues and not experienced developers and/or
system administrators.

To expand the basic functionality of Python there are plenty of ready to use packages
that can be downloaded with either Python’s own package manager pip, or by using
a third-party manager called Anaconda. Pip only installs python packages, while
Anaconda can install packages that may contain software written in other languages
than Python. Pip requires the system it runs on to have all the correct versions of
the Python compiler and other build tools installed, e.g., C compilers and necessary
libraries, since it has to build the packages. Anaconda on the other hand installs
prebuilt binaries. It also has built in support for virtual environments, which means
that a user can have one custom environment for each different project that they are
working on the same development system [2]. Each virtual environment can have its
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own Python interpreter, which means that it is possible to have one environment use
Python 3.10, and a second one use version 3.8, provided that the system supports
both versions of Python. The Anaconda repository contains several of the available
Python packages. If something is missing from the repository, there is always the
possibility install the missing package using pip instead within an Anaconda virtual
environment. Another advantage Anaconda has over pip is that it does more thorough
check to ensure that the package dependencies are met and that there are no version
incompatibilities between installed packages. The checks do take some time, though.

The Jetson Nano developer kit has to run a special lightweight version of Anaconda
called Archiconda, but the functionality and repositories are mostly the same. Even
though Archiconda is explicitly made to be optimized for CPUs like the Cortex A57
in the Jetson Nano, installing packages can take time, especially if a package install
leads to some extra packages the original one depends on also have to be installed.
On two occasions package installations have taken more than 12 hours. In both cases
the installations were left running overnight. In this project, one to two-hour installa-
tion times have not been uncommon, and times below 10 minutes have been unusual.
Note that Archiconda is only supposed to install pre-built binaries and should not
have to build anything locally. The long installation times mean that if some Python
software requires several packages to be installed, it can take a while before any-
thing can be done with the software. It also means that fixing problems that occur
can be a very time-consuming process. Either incompatibility issues, issues caused
by the wrong version of a package is installed, or packages being incompatible with
each other are problems that have occurred during the MISK-Moves project. This
is one explanation of all the time lost in the beginning. Using Archiconda was sup-
posed to be the safe way to do things and should prevent the Jetpack installation
from breaking. The unfamiliarity with both Jetson/Jetpack and Python/Archiconda
was probably in the way of the realization that Jetpack was probably broken before
the Archiconda installation.

3.3 Developing MISK-Moves

The allotted time for the project was 15 weeks, where it was expected that at least 40
hours of work would be put in for each week. Even though this has been a chaotic
project time planning wise, time budgeting for each individual week of work has
worked well, and the budget of 40 hours/week has been kept. This without resorting
to any extra crunch-time before workshops.

Timeline wise, the workshop at Eldorado can be considered to be the unofficial
proper start of the project, as that was the first time when it became clear what func-
tionality MISK-Moves needed to provide to become a working and usable tool for
the specialist music pedagogues at Eldorado.
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The first workshop at Certec can be seen as an unofficial deadline for a fully working
feature complete prototype of the application, and the second Certec workshop be-
came the unofficial deadline for the final production release of MISK-Moves. There
were 15 working weeks between the Eldorado workshop and the second Certec
workshop, which means that the project has in fact gone over budget. At least if
the writing of the thesis should fit within the budget.

This project has been more related to a hobbyist maker project than anything else.
A lot of the publicly available software and libraries for the Jetson Nano are exper-
imental and are made by enthusiasts. In many cases these are one-person projects.
This means that there are no guarantees that anything will work well for any specific
use case, or that things are well documented. The software is “as is” and anyone
using it is doing so at their own risk, the MISK patcher included. This means that
it is difficult to plan for how long certain things will take to implement. Either the
libraries and software tools work immediately as expected, or there will have to be
testing and exploring of what their actual behaviour and properties are, or something
that should be useful will not work at all, and an alternative will have to be found. It
has at times been like playing the lottery.

Another thing that makes any structured planning difficult is that the MISK patcher
is constantly changing. It did not have the same feature set and user interface at the
beginning of the project as it has now. Suddenly, the need for changes in MISK-
Moves could arise. Either because of changed functionality in the patcher or to make
it easier for future improvements to the patcher.

Initially there was a rough estimate of a time plan, but when about 40% of the allotted
time had been spent and there still was no working pose estimation model in place,
any initial plans had to be abandoned. From then on, all the activities got interwoven
into each other. Software design, documentation, development, and testing could
sometimes all be performed during the same hour.

There has been some stalling involved, so that a workshop could be attended at
about the same time as this thesis was completed. The reason for doing so is that
the workshops were the only chances to test out whether MISK-moves works as
intended or not, and if it is possible to use the application for anything useful. That
led to some small improvements to make it more convenient for the developer of the
MISK patcher to handle messages sent from MISK-Moves. That became the final
version.

3.3.1 Software design and development

Since the MISK-Moves application is a fairly small project, the need for an ex-
tensive overview of the classes involved is not that great. At the beginning of the
software development process, there was an attempt at creating a UML (Universal
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Modelling Language) diagram in the beginning. Such a diagram is usually a good
tool for overview and to quickly see how things go together and relate to each other.
At that stage there were not really any classes, except for the pre-made NVIDIA
Jetson Inference libraries and classes, and drawing a UML diagram would not really
make any sense.

An early decision was to try to implement the functionality in short iterations. This
to make it easier to find bugs and larger logical programming errors. The reasoning
was that if only a few lines of code are implemented for each iteration, it should be
easier and quicker to find bugs caused by the new code, instead of having to search
through hundreds of lines of code.

Another early decision was to use configuration and version management. Since the
MISK project already has its own private GitHub repository, Git was chosen as the
configuration management tool. During the development, the local commits were
synchronized with the GitHub repository at least once per day. The possibility to use
different branches for developing and trying out different functionality was used.
There were four development branches, before the final version got merged into the
main branch.

In the beginning there was only a main()-function, but that got refactored into being
split into more functions and classes to make the code more readable. To give an
overview of the classes involved hand how they fit together a UML class diagram
was drawn. The class diagram can also hint at the functionality of each class by
showing what methods and attributes are available. It is found in appendix A.1.

Microsoft Visual Studio Code was used as the main development tool. It is a fully
integrated development environment with plugins for quick code completion, keep-
ing track of the indentation for Python code, and extensive debugging. It also has
several plugins for GitHub integration, which means that everything during the de-
velopment of the application was tracked, and version controlled. Even though this
was a one-person project, the possibility to track all changes and to be able to roll
back to any of the previous versions was good to have as a safety.

The name of the functions, variables and classes are quite long. The reasoning behind
that is to make the code and the names as self-explanatory as possible. Someone
reading the code for the first time should hopefully be able to find out what the
various functions and classes do fairly easily.

3.3.2 Testing

Testing has mostly been unit testing. There is no test automation and no existing test
scripts, or well specified test cases. In most cases the tests that have been run were to
make sure that the program sent reasonable looking values, in that the values seemed
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to represent the output from the pose estimation. Another thing that was frequently
tested was to run the program for longer periods of time than just a couple of minutes.
This to ensure that it would not crash during long sessions, and that long run times
would not cause the program to run out of memory, or the hardware overheating.
The longest continuous run time has been about two hours.

3.3.3 Figuring out PoseNet and ObjectPose

Here is an attempt at explaining how to use PoseNet: Capture an image from a video
stream and tell PoseNet to process it. PoseNet does all the inferencing and post
processing, and when it is done it returns the results as one ObjectPose struct per
person found in the form of an array. The ObjectPose struct is defined within the
PoseNet class. This means, to access the data inferred for individual keypoints, it is
found in another struct within the ObjectPose, called Keypoint. To clarify, the x and
y coordinates for each individual limb, i.e., keypoint, resides in a struct (Keypoint)
found in an array, which resides within another struct (ObjectPose) that is found
in an array. That array is the results from the inferencing and post processing that
PoseNet returns for each time the Process() method is called. The way to do this
is not explicitly documented, but it can be found out by reading the various pieces
of source code on the Jeton Inference GitHub [14]. An attempt at describing this is
found in the UML diagram in appendix A.1, where Keypoint is marked as an inner
class in ObjectPose, and ObjectPose in turn is marked as an inner class in PoseNet.

The results from PoseNet are then used to calculate angles, directions, and move-
ment speeds. Basic trigonometry is used for the calculations. Then the results of the
calculations are sent to the MISK patcher as OSC messages.

3.4 Max 8 test patcher

To be able to see whether the application sends reasonable values, a test patcher
was built in Max. The advantage of a simple test patcher is that nothing needs to be
connected in the MISK patcher, and it is possible to quickly try out different things
without having to modify the MISK patcher. Otherwise, the message routing would
have to be changed, since there is a specific way that messages to the MISK patcher
have to be built. This means that any introduction of new functionality will lead
to changes in the patcher, which might introduce undesired behaviour. Just testing
things out in the test patcher eliminates that risk. More on how the messages have to
be constructed and the functionality of it is described in the results chapter.

The test patcher itself has grown and shrunk during the development process, de-
pending on what was needed during the different parts of the project. It has become
a patchwork of different ideas and naming schemes. The relevant part of the patcher

46



Figure 3.1 The relevant part of the test patcher. What is not shown in the example window is
basically more of the same.

can be seen in figure 3.1. What is shown has functionality for both sending and re-
ceiving OSC messages.

3.5 Source critique

The information about all the stakeholders in the introduction chapter about Eldo-
rado resurscenter, Certec and Furuboda [1, 12, 13, 18] come from the organizations
themselves. In chapter 1 there is also a citation from the COCO Consortium [4], and
this information also comes directly from the organization itself.

Most information about hardware products [15, 23, 24, 28], software libraries and
protocols [3, 11, 14, 20, 25, 32], and software applications [2, 5], comes directly
from the manufacturers, developers and creators themselves. The article about the
Nintendo Switch hardware, [19], comes from Digital Foundry, which is one of the
most renowned and respected publications for both computer and console games
hardware and software technology. The power consumption numbers come from

47



Notebookcheck, a review site that has been around for over a decade, and they give
the impression of being a thorough and serious review publication [27].

There is a lot of explanations of how all the different aspects of artificial intelligence
and machine learning works. In this thesis most of the chosen citations come from
Data Base Camp. During the research phase of the project several different explana-
tions from several different sources have been read. Data Base Camp seems no better
or worse than any other site, and in some of their explanations they have direct links
to the original academic papers. Their explanations are often easier to understand
than the original papers, and the site happens to be a convenient source since it has a
large collection of explanations for most things artificial intelligence. The citations
from Data Base Camp are: [6, 7, 8, 9, 10].

A paper still under review is the paper describing YOLOv7 [30]. The claims in
this paper are partially corroborated by the OpenCV blog post comparing YOLOv7
pose estimation with MediPipe pose [16]. As mentioned in the background chapter,
OpenCV is widely used by several multi-billion companies, which should make the
organisation trustworthy enough.

Under the machine learning section there are also citations from two academic pa-
pers. One is from the original ReLU paper [21], and one is from the original paper
about residual convolutional neural networks [17].

There are also citations from the GitHub pages for the official implementations of
YOLOv7 and YOLOv8 [29, 31]. They are as official as something on GitHub can be,
and anyone is free to read through, download and run the source code themselves.

[26] are just some install instructions. They are easy for anyone to validate; just
follow the instructions to install YOLOv8 on Jetpack 4.6.1 or later.
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4 Analysis

In this chapter some of the findings from the pre-studies and some of the choices
made will be discussed. It contains the reasoning behind why the hardware and the
software tools used were chosen.

4.1 Takeaways from the workshops

Each of the workshops shaped the project in some way. From showing what kind of
computer vision machine learning should be used and what kind of features would
be useful, to revealing programming errors and at last confirming things working as
intended.

4.1.1 The Eldorado workshop

After attending and analysing the material from the workshop, it became clear that
pose estimation was the most useful way when translating the movements of a person
into a musical instrument. It captures the movements of the entire person, as well as
the individual movement of each of the limbs as keypoints. This means that even if
a person only has control over the movements of one of the arms or the head, they
can still play the instrument.

The values that are calculated for each keypoint, such as positions, velocities, and
movement angles, were also based on the observations from the workshop. A com-
plete list of what values are available is discussed in the results chapter.

The camera placement for when setting up the hardware also became clear during
this workshop. Before the workshop, it was assumed that the camera would be placed
in the ceiling, right above the person playing MISK-Moves. The takeaway from the
workshop is that:

1. The ceiling is fairly low. This means that if the camera is mounted in the
ceiling the area captured by the camera is quite small. Something like 2x2 m
at best.
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2. Pose estimation should work better when doing inference on images taken
from an angle than on images taken from straight above, as more of the person
is usually visible when viewed from an angle.

4.1.2 The first session in the Certec lab

The most important takeaway from this session was the way the OSC messages sent
to the MISK patcher should be structured. Once the messages were formatted the
exact right way, it became easy to extract and use all the different values sent from
MISK-Moves.

There was a severe programming error found more or less by chance. The error
made the values fluctuate and jitter heavily, which lead to some strange behaviour
when trying to control the different parts of the MISK patcher. Apart from fixing the
bug, the wildly changing errors led to changing the behaviour of the application for
when a keypoint was no longer detected. Instead of setting a value to zero, which in
practice means that limb has moved to the top left corner of the image. The behaviour
now is that if a keypoint is lost from one frame to the next, it is assumed that it has
not moved and is still in the same position. This keeps the worst value spikes from
occurring.

Even so, the values can be a bit jittery. If the values jitter too much, they can be
evened out in the MISK patcher by a smoothing function.

A feature request that was brought up during the workshop and implemented was
that a person’s left and right wrist should be available specifically as a control method
choice, and not just the left and right arm. In the final version both wrists and arms
can now be used.

4.1.3 The second session in the Certec lab

The results of this session mostly led to changes in the MISK patcher. Some of the
incoming message decoding was changed, and the selection of methods (e.g., limbs,
velocities, etc.) of controlling the different functions in the patcher was expanded.
As another example, the distance between two people, how active a person is, and
the distance between a person’s wrists became valid methods of control.

During the workshop it was stressed that the program code for the Room Camera
application should be extensively commented, so other people can understand what
each section of the code does. This to be able to maintain the application and possibly
add or change functionality in the future.
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4.2 Hardware selection

As one of the motivations behind the MISK-Moves application was to implement
it on a system-on-module, what kind of hardware to use was one of the earliest
decisions that had to be made. By looking at the sheer number of hits a Google search
generates, and the number of GitHub projects, either a Raspberry Pi or an NVIDIA
Jetson seemed to be a good fit for the project. There are two reasons for choosing
a Jetson. The first is that by looking at benchmarking numbers, and given the wide
software support from NVIDIA, and the fact that the Jetson family of systems-on-
module is made for ML tasks, a Jetson is better than a Raspberry Pi for the project.
The second reason is that Certec has access to both a Jetson Nano developer kit and
a Jetson Xavier NX developer kit.

Of the two Jetson modules, the Jetson Nano was chosen. The reasons were that it
was less than 1/3 of the price of a Jetson Xavier NX. At the time of purchase, the
Jetson Nano was about $100 and the Xavier NX was about $350. Since this is more
or less a maker project, keeping the hardware cost down is a good idea, so that other
makers can afford to recreate the project.

The camera chosen for the project is the Raspberry Pi Camera Module V2. The
V1 module was supposed to be used at first, but it turns out that the sensor in that
module is not supported by any hardware drivers for the Jetson. Instead, the V2
module was chosen. The reasons to choose a Raspberry Pi Camera Module V2 over
a USB camera is that the camera module small and cheap, while still being able
to deliver good quality video with its 8-megapixel sensor. The sensor has multiple
output resolutions and framerates available. The purchase cost of the camera module
for this project was about 350 SEK, and the recommended price is $25. The size of
module itself is about 25x24x9 mm and the weight is 3 g. This makes it easy to place
the camera almost anywhere [28]. It there is a need for it, casing and mounts can be
3D-printed for it.

Why not use a smartphone? There is already another MISK instrument that runs on
a smartphone, the FaceAR app. So far, the different instruments have been imple-
mented in different ways, and one of the purposes of the Room Camera project is to
explore the use of a system-on-module. Another reason is that while a smartphone
running MediaPipe will allow fast and accurate pose estimation, as is the case with
FaceAR, there did not seem to exist any network models that could handle multi-
ple pose detection with performance equal or better than that of the Jetson Nano.
Another argument is that high performance smartphones are usually more expensive
than a Jetson Nano developer kit including camera, sd card and power supply. This
last argument could be considered invalid though, since most people already own
a personal smartphone, and either a pedagog or a personal assistant could use their
own phone.
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4.3 Installing things on the Jetson Nano

Despite the initial problems installing anything in the way of machine learning mod-
els and frameworks, it is fully possible to install and use some of the latest models
such as YOLOv7 on the Jetson Nano developer kit. The conclusion that can be drawn
from the troubled early parts of the project is that the installation of a Python package
must be done carefully and cautiously. It might be good to use a virtual environment
for the package installation, and Pip in combination with Virtualenv probably gives
shorter package installation times than Archiconda.

When installing packages, it is important to read through the lists of required pack-
ages for each of the pieces of Python software that is to be used. The requirements
often have a minimum, or a range of version numbers for the packages that the soft-
ware needs. The latest version of a package is not always compatible with some of
the Python software available. This means that when Pip installing packages, the safe
thing to do is to always specify a specific version number. Problems might arise dur-
ing package installation when Pip tries to automatically install packages that the orig-
inal package depends on. These dependencies are hidden when just reading through
a requirements list. The automatic installs can cause that either a too new version of
a package is installed, or even worse, it can cause a working package being overwrit-
ten by a newer non-working one. If an automatic installation has broken something
it can be usually be solved by installing packages in the right order, or by forcing
the installation of an older working version of a package after a too new version has
broken something. When not having full prior knowledge of all the relevant python
packages and their dependencies, the only way to go about it is trial and error. This
has been a very time-consuming part of the project.

The same applies not only to Python, but to any libraries and packages in the op-
erating system. In Ubuntu, the Linux distribution Jetpack is based on, software is
managed by a packet manager called Apt. When installing packages with Apt, the
same level of caution must be observed as when installing Python packages. Just
like with the Python packages, it is possible, and sometimes necessary, to install a
specific version of a package or library. Otherwise, there is a risk of some piece of
software no longer working due to incompatibilities.

In the Room Camera project, no virtual environment was used, and everything was
directly Pip and Apt installed directly into the operating system’s folders. Even
though some packages were built locally on the Jetson Nano, the installation process
went much quicker this way than when Archiconda was used. Observing caution,
and being careful when choosing the packages installed, and the version for each
package, everything installed now works.
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4.3.1 Docker containers

In the early stages when things failed to install, using a Docker container could
have been an option. Since a Docker image should have all the necessary libraries
and dependencies needed to run some specific software, everything should be pre-
installed when the image was built. The existing images lacked the Python-OSC
library, which means that a specific image would have had to be built for the project.
There was a failed attempt to build an image, but since the project was starting to get
short on time, the decision was not to spend any time on learning how to properly
build Docker containers. The failure was probably once again down to the fact that
the Jetpack installation was broken at the time of the build attempt.

The fact that the Jetpack install was broken meant that even running a docker con-
tainer did not work at times, as the container failed to access the camera or show
video output on screen. Normally a properly built and run Docker container has ac-
cess to all the hardware in, or connected to the Jetson. Now, on a working Jetpack
installation Docker containers run just fine.

4.4 Settling for Jetson Inference

After a whole lot of frustration and wasted time, the decision was to give the example
classes and libraries from NVIDIA’s tutorials Hello AI a second chance. Everything
is packaged into the Jetson Inference package. A user can either build the entire
package locally on their Jetson, or download and run it as a Docker container, to not
have to go through the installation and building process. The MISK-Moves project
uses the Python-OSC library/package, which is not included in the docker container.
Since previous attempts at building docker containers had failed, the decision was
to build the Jetson Inference package locally. This has worked well for both Jetpack
4.5 and 4.6.1-4.6.3. The earlier container build failures might have been down to the
broken Jetpack installation, but it felt safer not to tempt fate.

The package contains several code examples written in both C++ and Python, and
the latter is used in a series of video tutorials linked from the Hello AI GitHub pages.
The examples cover things like object categorization, object detection, semantic seg-
mentation, pose estimation and more. The reasoning behind not using the package
from the beginning was that all the video streaming, camera handling and image
processing used proprietary classes, made especially for the hardware that is in the
different Jetson modules. If someone wants to run it on a Mac or PC instead, the
source code for the package needs to at best be modified, and at worst be completely
rewritten. Something using OpenCV would support a wider variety of computers and
devices. Another potential drawback using Jetson Inference is that the models used
are not the latest and most cutting edge. To make their tutorials easy to maintain, and
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to make sure that a new user’s potentially first ML-experience works and is stable,
NVIDIA has chosen something that is tried and tested, and guaranteed to be stable.

The models that come with Jetson Inference work well enough in the Certec lab and
its bright lighting conditions, where the Jetson Nano setup has been during the de-
velopment of the application. Pose estimation does have a high-performance cost, at
least when compared to object categorization and detection. The performance from
the poseestimation.py example is around 15 fps, which means that the latency is
at least 67 ms, before any calculations and communication. This is not ideal since a
musical instrument ideally should be lag free. During testing, 67 ms was noticeable.
Note that this latency comes from the Jetson Inference poseNet class alone. Then
latency from the position, angle, distance, and velocity calculations, plus latency
for inter-device communication will be added. There does not seem to be any other
pose estimation models, or implementations that seems to be any faster on a Jetson
Nano though. Doing Google searches, it is more common to find object detection
and object tracking performance numbers than for pose estimation.

Running the Python version of the package might seem to be a potential problem.
However, when looking in the build directories after the Jetson Inference package
has been built, all the important libraries are built using C++, which should guarantee
that the performance is about as good as it can get. The ResNet-18 pose model used
is converted to a TensorRT network. It is NVIDIA’s proprietary network engine, and
it is optimized for NVIDIA hardware.

If there is a need for it, the model can be trained further to be better suited for a
specific need. In this case, it had no problems detecting both standing and sitting
persons during testing. It could also estimate where a limb would be in some cases,
even when a limb was partly or wholly obscured. There is the possibility to set the
confidence value for how high the probability needs to be, for it to report that the
model has found a limb (or rather, a keypoint). If it is below the set value, the limb
will count as not found. By default, it only needs to be 20% sure that it has found a
limb, which gives a bit too many false detections. This leads to it thinking that chairs,
bags, and jackets are limbs belonging to a person. Raising the value to 30% gives less
false detections, while still not losing track of actual limbs too easily. With this in
mind, the model should not have any difficulties detecting disabled people, without
having to retrain it. Hopefully it will work as well in future Eldorado settings as it has
done in the Certec lab during testing. It would have been a hard and time-consuming
task to gather enough high-quality training data, if there would have been a need to
do any training on the model. Ideally thousands of training images would have to be
gathered and prepared. Getting access to enough people with a sufficiently diverse
set of impairments and disabilities for the training to be relevant and of high quality
could have been problematic.

After wasting a month and a half on trying to find the best model and network im-
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plementation and trying to get different cutting-edge models to work on a Jetpack
installation that probably got broken in several ways early on in the research pro-
cess, the poseNet example from NVIDIA’s Jetson Inference was the best alternative.
It worked, it was optimized for the hardware, and it was stable.

4.4.1 A quick pose estimation test using YOLO

After MISK-Moves application was mostly finished, there was another quick look
into what DeepStream could do. This was just to be able to prepare for a discus-
sion on if it had been better to develop MISK-Moves as a DeepStream app instead.
Among the tutorial lessons were implementing a YOLOv3 object detector. Ordinary
object detection and tracking has a performance of around 13 fps. That would have
made pose estimation performance even lower, which would have made it worse than
the Jetson Inference poseNet class. Another thing that made the YOLOv3 model
worse was that the accuracy was not good, since visibly the bounding boxes for the
detected classes constantly kept dropping in and out.

YOLOv7 is now successfully installed on the Jetson Nano developer kit in the lab,
and out of curiosity the yolov7-w6-pose model was tested. The accuracy might
have been slightly better, than the ResNet-18 model used, but the frame rate was
worse. MISK-Moves will have to be modified if someone wants to change models
to YOLOv7 pose, since the numbering of the keypoints is different.

4.4.2 A reason why MediaPipe pose is not used

One of, if not the most accurate and high-performance pose estimators is MediaPipe
pose [16]. It is one of the most commonly used pose estimators, and it is used for
real-time pose estimation on systems with limited resources such as CPUs and edge
devices like mobile phones and Raspberry Pis. As shown in VIDEO it usually does a
better job tracking the limbs on one person than, as the tracking in many cases seem
more accurate and less jittery.

It is possible to install MediaPipe on the Jetpack version the Jetson Nano currently
has, and the current install should have all the libraries and packages needed in their
respective required versions. The version of each library and package is important,
and anyone installing MediaPipe has to make sure that the correct versions for each
and every package and library are installed, and that no other updates or package
installations overwrite the required installed versions. Otherwise, the MediaPipe in-
stallation will either not work to start with, or it will break after an update. At the
time when Jetson Inference PoseNet was chosen, the project was running out of time,
and it was much safer to choose something that was known to work.

Another drawback that MediaPipe has is that the pose estimation only works for one
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person at a time. PoseNet on the other hand handles multiple person pose estima-
tion. This means that using the distance between two people as a control method
in the MISK patcher would not have been possible if MISK-Moves was based on
MediaPipe. Another quirk that MISK-Moves would have had is that if MediaPipe
would have started tracking the wrong person, that person would have to go out of
the video frame, to give the model the chance to start tracking the right person. As it
works now, it is possible to select the person that is in control of the patcher if there
are more than one in the video frame. A feature like that is impossible with single
person tracking.
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5 Results

Here the results are presented. Both what the MISK-Moves application does, and
its performance can be found in this section. There will also be some reasoning
regarding why the poseNet class using a ResNet-18 model is the basis for the pose
estimation in the application.

5.1 A quick overview of MISK-Moves’s features

The most important features of MISK-Moves are the OSC messages sent containing
information about the movement of one or more persons, i.e., the player(s), and their
limbs. This can then be used to control various functions in the MISK patcher. It is
also possible to change some of the MISK-Moves settings from the MISK patcher.
The message structure and the contents are described in the sections that follows in
this chapter.

It is possible to run and shut down MISK-Moves remotely, eliminating the need for
a dedicated mouse, keyboard, and screen for the Jetson module.

5.2 Selection in the MISK patcher

To be able play music, i.e., make the MISK patcher produce sound, the user needs
to select what values sent from MISK-Moves should control which functionality in
the patcher. From the start screen in figure 2.2, the input for each channel can be
set directly. When a user clicks on the channel button, a channel selection window
pops up where all the different MISK instruments can be chosen. The output from
MISK-Moves is labelled “RoomCam” in the drop-down menu. After that the user
selects “person0” to “person4” to get the limb movement values from that person,
and “distance” to get various distance values. The pop-up window with the different
selections are shown in figure 5.1. The different input values are all remapped to
values between 0 and 127. This is an old legacy remnant from the MIDI protocol.
When the channels the user wants to use have the desired input, it is then possible
to tell the different functions in the MISK patcher what channels to use to control
the different sound generators and sequencers. The user selects the tab of the sound
generator or sequencer that is to be played, and on each tab, there are one or more
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Figure 5.1 The different input selections available.

channel selection buttons for the different functions of each module. These can be
seen in figures 2.4, 2.6, 2.5 and 2.7. Pushing the channel select button opens the
channel selection pop-up window in figure 5.2. In the channel selection pop-up win-

Figure 5.2 The channel selector in the MISK patcher. The right image shows an open drop-
down menu with all the selectable elements.

dow, there are functions for smoothing out jittery and noisy input. It is also possible
to invert the input values if that is more convenient for playing the sound or music.
As an example: Moving your hand towards the ceiling will yield lower and lower
values from MISK-Moves, while moving it towards the floor will increase the value.
If a player wants to increase the volume or pitch by raising their hands towards the
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ceiling, the invert value function will do just that.

MISK-Moves sends enough data to be able to work as a controller for all the five
available channels in the MISK patcher at the same time. This means that a person
can control several aspects of the music by moving around and doing different things
with their limbs, or that two or more persons can collaborate and control one or more
things each in the patcher.

5.3 Output from MISK-Moves.

To be able to control things in the MISK patcher MISK-Moves sends data in the
form of OSC messages. Instead of sending one message per limb found, and one for
each distance calculation, etc., all individual messages are put into an OSC bundle.
The application sends one message bundle per captured video frame. This is to keep
the number of messages sent from the application down, but the total size of the data
that gets sent is still the same as if one package per limb and distance calculation
would have been sent.

Message bundles are all sent to the OSC address /room_camera. This is the ad-
dress that the MISK patcher expects to receive messages from MISK-Moves on.
The length of the messages varies depending on what kind of message it is. Mes-
sages containing the distance between two people, or between two limbs consist of
three arguments. The longest messages are the ones for the centre position, the limbs
and various keypoints. They consist of eleven arguments.

When the MISK patcher in Max 8 receives a message from the application it always
sorts the messages by the first argument, and then the user can choose which values
to use for controlling the different instruments and effects in the patcher.

Instead of putting one message per keypoint found, only the values from five limbs
get sent. This saves a bit of processing time compared to when data from all the 18
keypoints for each person found were sent. However, calculations for all the key-
points found in each frame are still being performed allowing for instant switching
between what limb to track. Otherwise, there would be a small delay before accurate
average speed and angle values could be shown.

A peculiarity of the poseNet class is that there is no user control over how it assigns
identities to any persons found in an image. Theoretically in a worst-case scenario,
the identities can get swapped around from frame to frame. That behaviour is ex-
tremely rare, since it has not occurred yet during hours of testing, but it is a possibil-
ity. In any case, it is impossible to know which person gets assigned which identity
number. All persons found will show up in the selection menus in the MISK patcher.
The user will have to figure out which person is which. This can be done by watch-
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ing the video output, which will show all the persons detected, and by seeing which
person’s movements correspond to which input values in the MISK patcher. If there
is a need to remove a person identity from the selection, make sure that person is out
of the video frame for at least five seconds. This timeout can be set to a longer or
shorter period of time at startup.

The results of the video output are shown in figure 5.3 and 5.4. In both images any
keypoints and links are drawn forming a kind of skeleton. Where the network model
finds a pair of keypoints questionable, it does not draw a link. That is why there are
keypoints without links between them in some of the examples. In some cases, the
network model guesses where the link is, even if the limb is partially or completely
obscured, and even though a person is sitting behind a table both keypoints and links
are still being inferred. As shown in figure5.4, the model can detect a sitting person.

Figure 5.3 Streamed video output with overlay showing detections on standing poses from dif-
ferent sides.

This should mean that it is able to detect a person that uses a wheelchair. Due to
the low confidence value threshold for detections, false detections should be a larger
problem than the model not detecting a person. It should not matter whether the
person has any visible disabilities or not.

5.3.1 Person, limb and keypoint message contents

The first argument in these kinds of messages is always “person<number>”, where
<number> is the id number that the person has received by the pose estimation. The
numbers start at zero, which means that ’person1’ would be the second person, or
the pose with id = 1, found.

The second argument can have one of these values:
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Figure 5.4 Streamed video output with overlay showing detections on sitting poses.

’center’ – Each pose, i.e. person, has an invisible bounding box around them. The
bounding box is used for calculating the values representing the centre position
of the pose, i.e., person.

’head’ – The values come from where the head is supposed to be.

’left_arm’ – Values from the left arm.

’right_arm’ – Values from the right arm.

’left_wrist – Values from the left wrist.

’right_wrist’ – Values from the right wrist.

’keypoint’ – If the application sends values from a specific keypoint instead of one
of the limbs specified.

The rest of the nine values are as follows in the order of the arguments in a message:

1. The x-position in pixels.

2. The y-position in pixels.

3. The instantaneous movement speed between the last and the current video
frame in pixels.

4. The average movement speed over five video frames in pixels.

5. The length of the movement vector that is the result of adding the movement
vectors from the last five frames.
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6. The instantaneous movement direction in the current video frame in radians.
The values follow the unit circle, which means that movement along the x-axis
in the positive direction has value 0 and π/2 for movement along the positive
y-axis.

7. The instantaneous movement direction change between the current video
frame and the last in radians.

8. The average movement direction changes over the last five video frames in
radians.

9. The vector angle of the movement vector that is the result of adding the move-
ment vectors from the last five frames.

10. The head tilt angle. This value is only sent for the ’head’, and it is 0.0 for all
the other limbs.

Select one of these values to control a function in the MISK patcher. It is possible
to select multiple values from the same person to control multiple things at the same
time, or multiple values from different persons. In theory, it is possible for each
person to control ten functions each at the same time in the patcher.

5.3.2 Distance measurement messages contents

Messages containing distance measurements always have the string ’distance’ as
their first argument, to help the MISK patcher sort the messages correctly.

The second argument is a string that shows between which poses, i.e. persons, that
the distance is measured between. The strings have the format ’p<id1>p<id2>’,
where <id1> is the id number of the pose that the distance is measured from, and
<id2> is the id number of the pose that the distance is measured to. The string ’p0p1’
would mean that the distance is measured from person one (who has id= 0) to person
two (who has id = 1).

Measurements between a person’s own two arms, or between one of their arms and
their head always have the same two id numbers in the string. For the distance be-
tween the arms of person one the string would be ’p0p0’, as an example. All the
available distances calculated can be selected from a list in the MISK patcher when
selecting the control method.

The third argument in the distance messages is the measured distance value itself.
The distance is measured in pixels.
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5.4 Available settings.

It is possible to send control messages to the MISK-Moves application to change
some of the contents of what gets sent and to change what gets calculated. Here is a
list of what can be changed in the MISK-Moves application, and the OSC addresses
to send the change messages to. The emboldened text shows the exact name of the
addresses the application listens to.

/misk_room/bodypart – Use this address to change what limb gets tracked. Valid
values to send to that address are the string values:

• ’head’

• ’left_arm’

• ’right_arm’

In the final version of MISK-Moves, this has no effect since everything gets
sent to the MISK patcher where the user selects which input they want to use
directly. This way, the user interface in the MISK patcher gets less cluttered.
Not having to put an extra menu for the limb selection meant that the interface
can have a more consistent look for all the different MISK instruments in the
input selection in figure 5.1. The developer of the MISK patcher also prefers
to have all the data available at all times, at the time of writing this.

/misk_room/distance – When calculating the distance between two people the ap-
plication needs to know which limbs to calculate the distance between. A mes-
sage sent to this address needs to contain two string values. The first string is
the limb of the first person from where to start the distance calculation from.
The second string is then the limb of the second person to calculate the dis-
tance to. The valid strings are the same as for which limb to track above. By
default, it calculates the distance between the right arms of the two persons.

/misk_room/self_distance – It is also possible to set the distance calculations be-
tween a person’s own limbs. By default, the distance is calculated between the
left and the right arm, but it is also possible to calculate the distance between
the head and the left arm, and the head and the right arm. Just like when set-
ting start and endpoint for the distance between two people, two strings need
to be sent in the message. Valid strings are the same three strings as for the
limb selection.

/misk_room/head_tilt – Use this address to set whether the application should send
the head tilt angle or not. Send the string ’yes’ to turn the messages on, and
’no’ to turn them off. Head tilt messages are turned off by default. This is also
no longer in use in the release version.
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5.5 Test patcher

The currently working parts of the test patcher can be seen in figure 3.1. Packages
from the MISK-Moves application are received by a standard Max 8 udpreceive-
object, and packages to the application are sent via a standard udpsend-object. When
sending messages, the user will have to know the IP-address of the Jetson Nano,
otherwise the packages will just be sent into the void. Vice versa, the MISK-Moves
application will have to know the IP-address of the computer running Max 8, or the
messages sent will not be delivered.

Since there are several different instruments and devices that can send messages to
Max 8, the messages from MISK-Moves will have to be specifically routed. This
is done by the object route /room_camera, which selects messages from MISK-
Moves only. The messages then need to be split depending on what kind of message
it is. Currently the test patcher reads messages regarding person0, distance and head
tilt.

Max 8 has no easy way (or even a way at all?) to use wildcards as part of the argu-
ments of a route-object. This means that if there is a need for receiving messages
from more persons than person0, then they have to be added as arguments. To give
an example: If information about three persons are needed at the same time, the ar-
guments of the route object will have to be “person0 person1 person2”, and not just
“person0” as it is now.

The test patcher shows the last received message for each category. There is a lot
more information that could be shown since there are at least six messages sent for
each captured video frame. The reason not to show everything is that it would make
the test patcher even more cluttered. Each message from a limb would generate a
route argument, an unjoin-object and nine message boxes to show values in.

It is also possible to change the settings of the MISK-Moves application from the test
patcher. The first available setting is to choose between which limbs the application
should measure distance, and the second is which limb to track.

5.6 I/O classes

MISK-Moves has three running threads: The main thread, a thread listening for key-
board input, and a thread listening for messages from the MISK patcher.

It is necessary to have a separate keyboard listening thread, otherwise it would not
be possible to exit MISK-Moves by pressing the esc-key or the q-key when running
the application remotely in a terminal window. When running locally on the Jetson
Nano, keyboard input can be read by using the underlying Linux X-server. This is
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what happens when a user uses “esc” to quit any of the Jetson Inference example
applications that has a window showing the video output. When running programs
remotely from a terminal window there is no running X-server, and anything relying
on one will crash an application directly on start-up. Instead, some trickery has to be
used. There are ways to poll for keyboard presses in a terminal, but polling would
take up unnecessary processing time. Instead, the polling can be run in a separate
thread which is put to sleep until a key is pressed, thereby almost no processing time
is wasted.

The thread listening for messages from the MISK patcher is similar. There is the
possibility to use a version of the Python-osc server class that uses the built in
Python async functionality, but using that class increased the latency considerably.
The threading version of the class is not very well documented. Instead, the simple
blocking server class is used running in a separate thread. Having it run in a separate
thread means that it can block the thread until a message from the MISK patcher was
received, without blocking anything else. Since it only blocks its own thread, almost
no processing time is wasted until a message is received from the MISK patcher.
When it does receive a message, the time it takes to process the message has been
negligible in testing.

5.7 Things provided by the Jetson Inference classes

By using NVIDIA’s premade Jetson Inference classes, a couple of nice-to-have fea-
tures are in the MISK-Moves application. Each one of these features would have
taken some time and effort to develop from scratch. These features are:

Video output in several different ways. A user can choose between one or more
ways to output video. Possible output methods are:

• Playing the output video directly in a window on the Jetson Nano’s desk-
top. This is the default when running MISK-Moves. This can be turned
off by giving the command line option --headless when starting the
application.

• Saving the video as a file.

• Streaming the video over RTP to another device.

Video overlay on the output video. By default, all the keypoints and any links be-
tween keypoints are drawn as points and as a skeleton, see figures 5.3 and 5.4.

Video input can be either from a CSI camera, USB camera, file or an RTP or RTSP
video stream. The user can choose between the h264, h265, vp8, vp9, mpeg2,
mpeg4 and motion jpeg codecs

65



Different ways to encode the video output. The available codecs are the same as
for the input.

This means that the MISK-Moves application can be run without having to connect
the Jetson Nano to a display, a keyboard, and a mouse. Instead, it can be run remotely
from e.g., the computer running Max 8, and the video output can be viewed in a
video viewer such as VLC. Being able to watch the output video enables a user to
see whether a person is in the video frame or not, and to see what keypoints the
application is able to find. This can help troubleshooting and will help the user to
directly make adjustments to either the camera, the lighting conditions in the room
or the positioning of the persons in the room, to make the pose estimation work.

Another inherited feature is the possibility to change network models and to change
the confidence value threshold for keypoint detections. The threshold can be set from
0, which means that anything is a keypoint, to 1.0, which means that the network
model has to be 100% sure that something detected is a keypoint. Network models
that are accepted are Caffe and ONNX models, and the translation from keypoint
numbers to limbs has to be the same as the default ResNet-18 model. Otherwise
MISK-Moves will detect a keypoint, but it will assign the wrong limb to it.
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6 Discussion

Here is the final discussion on the current state of MISK-Moves and how it could be
improved in the future. There are also some usage recommendations.

6.1 User testing

Since there has been no opportunities for access to the users at Eldorado during the
software development period of the project, there has been no testing on users with
any severe impairments or disabilities. Any testing done have been performed on
project members or other students at the department.

There will be user testing at Eldorado after the MISK-Moves thesis work is finished.
This means that testing will be done without any support from the developer. If any-
thing important is learned during the testing and changes should be made to MISK-
Moves, someone else will have to implement the changes. Potential changes include
bug fixing, changing, adding, and improving functionality, or removing functionality
that does not work or provide anything useful in real usage.

One of the things that probably would have benefited the quality of the final version
of MISK-Moves the most is testing during real musical sessions at Eldorado. Sadly,
that was not realistic due to distance, time and resources. Hopefully the next project
gets more opportunities for test sessions at Eldorado.

One important thing learned during real life testing at Eldorado after the develop-
ment MISK-Moves was finished was about discoverability [22, Chapter 4]. It is im-
portant to have the output video stream clearly visible, otherwise MISK-Moves will
be ignored. Unlike the mat and pillow, there is nothing clearly visible in the room
that hints at anything in particular going on. Correlating moving around in the room
or moving the limbs to changes in the sounds or music playing, or to an instrument
suddenly playing different notes is hard for anyone. This regardless of whether they
have any cognitive impairments or not. Especially if there are lots of other things
going on in the room at the same time. Showing the video with the keypoints and
links will hopefully help attracting people to MISK-Moves and help them discover
that there is in fact something going on. Seeing themselves make the skeleton-like
overlay move on top of them on video will hopefully make them realise that their
movements cause changes to the sound and music playing. From a purely practical
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standpoint, there has to be enough bandwidth over the network connection between
MISK-Moves and the device running the MISK patcher for the video not to hitch and
stutter too much. The bitrate of the output video can be set at startup, and the band-
width limits will vary from location to location. It is recommended to thoroughly try
out the appropriate bitrate for each location in a couple of test runs before the actual
music sessions. Encoding the video stream with h265 instead of h264 will help keep
the bitrate down, while maintaining as high image quality as possible. This is also
selectable when starting up MISK-Moves.

6.2 Latency and precision

Pose estimation is a very compute intensive task. Just the pose estimation alone,
when running NVIDIA’s pure poseNet example application, typically takes between
67 and 83ms to process each video frame. With the calculations and OSC message
communication added by MISK-Moves, the total latency grows to between 85 and
145ms instead. The more people in the video frame, the lower the performance.
This latency causes noticeable delays in MISK-Moves’s reactions to user movement,
which means that controlling the music or playing notes can feel sluggish and unre-
sponsive. The latency, or any side effects of it, does not make MISK-Moves unstable
or increase the risk of any software crashes. It just makes it feel a bit slow.

The poseNet class does pose estimation on each video frame it receives. It does
not remember anything from the previous frame and the placement of each keypoint
can and will vary from frame to frame. This means that the values for each keypoint
jitter, and sometimes the jitter can be quite severe. Especially if a keypoint is lost,
then found, and then lost again, and so on. As mentioned in the results section, it is
possible to set the threshold for the confidence value for when the network decides
that something is a valid keypoint or not. Setting the value is a compromise between
getting too many false keypoints and the network not finding a keypoint where there
should be one. A too large threshold value also increases the jitter. Setting the value
too low during testing has shown less jitter, but has also made the network claim
that chairs, tables, jackets, and bags are persons as well. A suitable threshold value
will have to be tested out for each location a user wants to run MISK-Moves in. The
default threshold value is 0.2, i.e., 20%. During testing value of 0.3 has been a better
compromise, giving less false detections while still not making the jittering much
worse.

In the future there might be network models that are better at finding poses in a
frame, leading to more stable keypoints that do not move around as much from frame
to frame. Another good idea, if there was more processing time available would
be to add object tracking of the keypoints. This is what the previously mentioned
MediaPipe pose does. The results of that can be seen in the MISK Face-AR app,
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which produces a much less jittery output. As it is now, object tracking would add
more latency, making MISK-Moves feel even more sluggish and unresponsive than
it already feels. Faster processing time might also mean less movement between each
captured video frame, and that could potentially lead to slightly less jittering.

Another thing that could reduce jittering is to use higher input resolutions. That
means running the original Jetson Inference classes without the previously men-
tioned modification which lowers the input resolution. On faster hardware, inferenc-
ing done on higher resolution input might not have as much of a performance impact
as it has on the current hardware. Now maximum precision has been sacrificed for
performance.

When viewing the video output in VLC on a remote device, the latency seems worse
than it is. This is because of most, if not all, streaming video players have built in
added latency for stream buffering. It is to make sure that a video stream can be
viewed without any interruptions or stutters due to networking issues. Viewing the
stream is still useful to see the quality of the input video, and to see what the pose
estimation detects.

6.3 Possible software performance improvements

Some performance improvements can be done to the software. The current version
calculates and sends a lot of different values to the MISK patcher. Several of those
values might not be useful in real use cases, but that cannot be known until extensive
user testing has been done. As mentioned earlier, that fell outside the scope of this
project. A recommendation for future improvements is to remove any unnecessary
values and calculations. If allowed to speculate, that could improve the total process-
ing time for each frame by perhaps somewhere between 5 and 20 ms, depending on
how many people there are in the frame.

To improve the performance of the pose estimation another network model or imple-
mentation could be used. There might be new pose estimation network models that
are even less compute heavy and be able to detect poses better than ResNet-18 in
the future. If tracking one only person at a time is acceptable, MediaPipe pose men-
tioned in section 4.4.2, will give both better performance and more stable detections.
The currently used poseNet class itself should be well optimized, since it is made by
NVIDIA, the manufacturer of the Jetson Nano themselves. MISK-Moves is written
in Python, but the poseNet class, and all the other utility classes from NVIDIA are
written in C++ and pre-packaged for use with Python. This should make them well
optimized and run as efficiently as can be expected. Experienced NVIDIA engineers
with intimate knowledge about the hardware should be able to write more optimized
and efficient code than an engineering student.
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There might be faster and more efficient classes for OSC communication than the
Python-osc package. Turning the communication off and on only adds a couple of
milliseconds at worst, and fractions of a milliseconds at best to the total latency.
There is not a great deal of performance that can be regained here.

If the application is re-written in C or C++, there might be a performance improve-
ment. It is unlikely that an optimization like that is worth the effort. The poseNet
class causes a minimum latency of 66.7ms. On the current hardware the latency will
be in the magnitude of tens of milliseconds to between a hundred and two hundred
milliseconds. It will never be in the single digit numbers, or fractions of a millisec-
ond. The camera used will also be a limiting factor, but more on that in the next
section.

6.4 Possible hardware improvements

As of 2023 there is a new Jetson developer kit, the Jetson Orin Nano. This new SOM
has significantly higher performance. For the Bodypose Net in NVIDIA’s Jetson
benchmarking suite [24] the Orin Nano developer kit (8GB) is about 44 times faster
than the original Nano. The Orin Nano processes 133 frames per second, or fps,
while the old Nano only processes 3 fps. This implementation and network model
seems heavier than the poseNet class and ResNet-18 model used in this project
(about 12-15fps), so the performance gains might be different. The worst perfor-
mance gain in the benchmarks is about an 11 times improvement for Action Recog-
nition 2D. If the performance gain for poseNet would be about 10 times, a slightly
conservative estimation, it would mean that the latency introduced by the machine
learning part of the application would go down from about 67-83ms to 6.7-8.3ms.
Such latency would be less noticeable and would make playing MISK-Moves feel
much more responsive. The performance would come at a higher price, though. The
Jetson Orin Nano developer kit has a recommended price of $499, versus the $149
of the original Jetson Nano developer kit.

Another way to reduce the latency is to make sure that the camera is able to capture
video at a high framerate. The video capture’s contribution to the total latency should
ideally be the frame time of one video frame. The current Raspberry Pi V2 camera
can capture 120fps, at 1280x720 pixels at its fastest mode. That mode results in an
image heavily cropped down from the full sensor frame. The resulting frame has
a narrow field of view, and the camera will have to be placed far enough back to
make sure that everything fits into frame. The full sensor frame is 3264x2464 pixels
and allows for a camera placement closer up, but then the framerate is limited to 21
fps. Currently this is not a problem, since the pose estimation and processing take
longer than a frame, but when running on a Jetson Orin Nano the framerate of the
camera would be a limiting factor. 21 fps means a frame time of ≈ 47.6 ms, 60 fps a

70



frame time of ≈ 16.7 ms and 120fps a frame time of ≈ 8.3 ms. As mentioned in the
previous paragraph, the Jetson Nano Orin processes the compute heavy Bodypose
Net benchmark at 133 fps. This means that the higher framerate the camera can
capture at, the more responsive MISK-Moves will feel to the user.

6.5 Recommended usage for MISK-Moves

It is possible to play notes directly and to use MISK-Moves to trigger samples. Cur-
rently, the somewhat slow and unresponsive behaviour of the application does not
make those ways to play the best experience. Playing the drums, or just making a
cymbal crash would make the sound feel too disconnected to the movement, and the
player would risk hearing their sounds play too late to be in time with the music.
Sounds and effects would probably not activate when the player would expect them
to sound. During testing it was possible to play the “air accordion”, if the player was
slow and deliberate in their movements. To the testers it was a somewhat meaningful
way to play, or at least a novelty.

What has worked better for MISK-Moves during workshops and test sessions is to
use it to control different aspects of the sound or music being played. The most
satisfying results for the testers have been when the application has been used to
control pitch, volume, and various sound filters. The latency has not mattered as
much when the qualities and the intensity of the sound(s) and the music playing is
controlled by the player, at least during the tests. Controlling the music this way
has made MISK-Moves feel more responsive, than when playing notes directly or
when using it as a sample trigger, even though the actual latency stays the same all
the time. Examples of successfully used input values used for this has been distance
between two persons, the distance between a person’s left and right wrist, movement
velocity, x and y positions, movement direction, and average movement direction.

Another good use of the application is to use the intensity of a person’s movements
to control the intensity of the music or sound. The average velocity, and secondarily
the average direction change, represent how much a person moves, or how active
they are. To make the sound and/or music feel more or less intense a combination
of pitch and volume can be used. Usually higher frequencies, a higher tempo and a
louder volume feels more intense than something with a low frequency, low tempo
and at a lower volume. Setting different synthesizer filters can also make sounds feel
more or less intense. It is possible to make sounds sound sharper by changing the
waveform, and things like attack, decay, velocity, sustain, and other commonly used
synthesizer sound parameters can also make a sound more or less intense.

A good use for x- and y-positioning has been to activate different melodies, sound-
scapes or sound moods when entering different parts of the video frame. That kind
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of control is good to use for activating different soundscapes and/or melodies de-
pending on where a person or one of their limbs is within the frame, and how they
move around in the room.

Note that the pose estimation is only done in the two dimensions of the video frame.
Only width and height count and moving closer to or further away from the camera
has no real effect. This is where watching the streamed video output can help, as it
shows how much vertical and horizontal movement the pose detection can see at any
given moment. It also shows what keypoints the pose estimation has found for each
frame, and it can help the user to adjust the camera or move the player so that the
camera can see the action more clearly.

6.6 Ethical aspects

Ethics could have been a major issue in this project, since it is based on capturing the
users on video and sending that input through a machine learning network, to get the
desired results. None of the input is saved and it is not used for any further training
of the network either. All the processing is done locally on the Jetson Nano module,
and none of the input gets sent over any network for any kind of remote processing.

However, a user needs to be careful about what they decide to do with the different
output options. Unless the user wants to test things out on themselves, the option to
save the output video to file should not be used unless there is explicit consent from
all persons captured on camera during the session. Even then, the GDPR rules and
regulations have to be followed for any usage and storage of the material. As for the
option to stream the output video to another device, the user needs to be careful about
where they are sending the video stream. At Eldorado all the MISK instruments will
run on a private network that will not be connected to the Internet. This hopefully
means that no video output ends up where it does not belong.

If another project wants to train their own network model or do reinforcement train-
ing in the future some things would have to be taken into consideration. There would
have to be a discussion on how to obtain and store training data, and there would have
to be ethical discussions on how and where the training should be performed. As an
example; using external cloud services (i.e., Google Collab) in this case might not
be legal under the current Swedish law. Any such future issues, however, are left to
future projects.
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7 Conclusions

The final conclusions of the thesis. It sums up the most important take-aways from
the thesis and has some speculation of future use and development.

7.1 Conclusions and summaries

MISK-Moves makes it possible to use the body, or individual limbs, as a musical
instrument. It allows for individual as well as collaborative play. This is done by
having a machine learning model do pose estimation on a video feed from a cam-
era somewhere in the room. The machine learning model used for this application
is ResNet-18 pre-trained on the COCO dataset, which in testing has proven to work
very well for the intended purpose. The results of the pose estimation are then anal-
ysed and interpreted to be packaged and sent as OSC messages to some music soft-
ware that generates or makes the actual sounds and music. In the MISK project the
software is the MISK patcher, running in Max 8. The output is made with the MISK
patcher in mind, but since the messages are standard OSC messages, PlayfulMoves
can be used to control any application that accepts messages in that format as control
input. It is not locked or tied to the MISK patcher and can be used with other present
or future projects and software as well.

Primarily, MISK-Moves is meant to be run on the original NVIDIA Jetson Nano de-
veloper kit hardware, but it should be able to run on any present or future NVIDIA
Jetson family hardware. The requirement is that the hardware supports NVIDIA’s
Jetpack development and operating system environment, and that it supports the
NVIDIA Jetson Inference package. The application is built in Python 3.6, but as
long as the Jetson Inference package works correctly, it should run on later versions
of Python without any problems. The video feed can come from any camera that
is supported in Jetpack. All this means that it is possible to swap out the current
hardware for more modern or better performing Jetson modules and cameras in the
future.

The output from MISK-Moves can be a bit jittery and uneven, making controlling
the music feel and sound a bit erratic at times. There are some possible solutions
to help mitigate this behaviour. There is a smoothing function built into the MISK
patcher that can even out the worst spikes and jitters from any input data. Another
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thing that can help calm down the jitters is to try out what confidence value works
best for the pose estimation in the lighting and room conditions MISK-Moves is
currently running. ResNet-18 will only accept that it has found a pose, i.e., person,
if its confidence in that it has found a pose is above the threshold value. Some of
the jitters occurs because ResNet-18 loses track of a limb or a person. Setting the
confidence value too high means that the model loses track more easily, but setting
the value too low will increase the number of false detections. It is best to avoid it
detecting chairs, bags, strewn around items of clothing, etc. as people. What works
the best will have to be tried out from setting to setting. The last and most expensive
way to try mitigating the jitters is to run MISK-Moves on more powerful hardware. A
higher video input resolution would increase the level of detail the model has to work
with, and the ability to capture more frames per second would mean an increased
movement resolution. A higher movement resolution means that it is possible to
capture faster and smaller movements, and that things do not move around as much
from one frame to the next, as when the movement resolution is low. Especially for
fast movements. In theory, this should help ResNet-18 detect persons and limbs more
easily, leading to less jittering.

The input latency is noticeable to most people playing MISK-Moves. Typically, it
can be 83 to 150 ms, depending on the number of people in the current video frame.
This much latency means that MISK-Moves currently might not be very well suited
to play musical notes and melodies directly. When played very slow and purpose-
fully it works, but when trying to play most melodies at Adagio (perhaps even Lento)
or faster, the latency will be in the way. When playing percussion, the latency also
gets in the way, causing drums and cymbal crashes to sound too late and be off-beat.
What has worked better in testing is controlling things like intensity and the differ-
ent qualities of the music. This includes volume and different sound filters. Another
thing that works well is triggering different melodies and soundscapes depending
on there the person, or a limb, is in the room. When a looped sample, a melody
sequence, or an atmospheric soundscape is playing, controlling the pitch, filters and
volume also works well. Especially if multiple samples and/or sequences are running
at the same time. During development the resolution of the input video was lowered
and the number of OSC messages sent was kept down to optimize for as much per-
formance as possible. The way to radically lower the latency is to run MISK-Moves
on faster hardware, like the new Jetson Orin Nano developer kit.

To draw people in and make them realize that it is their movements that control
the music, it is a good idea to show the output video feed. The larger the image,
the better. Just capturing movements makes it hard for anyone to realize the cause
and effect between their movements and what sounds come out. Seeing yourself on
video with the keypoint and link overlay will hopefully give useful hints that there
is something going on in the room. Otherwise, there is nothing obvious to attract
the attention of people and to raise their curiosity. During real life testing, when
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running MISK-Moves without showing the output video, it has been ignored since
there are other things around in the room that attracts attention and interest, rather
than something that cannot be seen.

MISK-Moves is already a working instrument, but it can work better in the future
with a hardware upgrade. If the latency could be reduced, the instrument would
feel more responsive and probably be more enjoyable to play. It is fully possible
to expand on its functionality if there is a need or interest to further develop the
application as a future MISK project, or as part of another project entirely.
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A Appendix

A.1 UML diagram

Figure A.1 shows the UML diagram for the application. Note that classes from the
external classes used are not fully modelled in the diagram, and member methods and
attributes are omitted. That goes for most relations, inheritances, etc. as well. In the
Jetson Inference package, to illustrate what the relations regarding the ObjectPose
and Keypoint structs are, it is shown in which class or struct they are incorporated as
inner classes.
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KeyboardHandler

file_descriptor: str

new_terminal: List[str]

old_terminal: List[str]

+ detectHit(): bool

+ getCharacter(): str

+ setNormalTerminal()

Python-OSC

OscMessage

Dispatcher

BlockingOSCServer

SimpleUDPClient

OscBundle

Threading

Thread

Jetson Inference

poseNet

videoOutput

videoSource

ObjectPose

Keypoint

ReadKeyThread

myKeyboard: KeyboardHandler

+ run(): str

OSCReceiver

+ aDispatcher: Dispatcher

+ aServer: BlockingOSCUDPServer

+ from_bodypart: str

+ to_bodypart: str

+ head_tilting: bool

+ self_from_bodypart: str

+ self_to_bodypart: str

+ quit_called: bool

+ track_bodypart: str

+ setBodypart(str, List[str])

+ setDistance(str, List[str])

+ setSelfDistance(str, List[str])

+ setHeadTilt(str, List[str])

+ closeServer()

+ run()

FrameObject

+ center[]: [float, float]

+ height: float

+ width: float

+ columns: int

+ columWidth: float

+ rows: int

+ rowHeight: float

+ getRegion(int or float, int or float): [int, int]

+ whichHalf(int or float, int or float): int

+ whichQuadrant(int or float, int or float): int

PoseObject

+ myPose: ObjectPose

+ lastSeenAt: int

+ keypoint_names[]: [str]

+ history_length: int

+ old_keypoints_x[][]: [int, float]

+ old_keypoints_y[][]: [int, float]

+ keypoint_velocities[][]: [int, float]

+ keypoint_directions[][]: [int, float]

+ keypoint_direction_change[][]: [int, float]

+ keypoint_direction_change[][]: [int, float]

+ calculateHeadAngle(): float

+ distanceHeadToKeypoint(): float

+ distanceLeftArmToKeypoint(): float

+ distanceLeftLegToKeypoint(): float

+ distanceRightArmToKeypoint(): float

+ distanceRightLegToKeypoint(): float

+ findHead(): int

+ findLeftArm(): int

+ findLeftLeg(): int

+ findRightArm(): int

+ findRightLeg(): int

+ getHeadVectorAvg(): [float, float]

+ getHeadVelocityAvg(): [float, float]

+ getHeadVelocityFrame(): [float, float]

+ getID(): int

+ getKeypointAvgSpeed(int): [float, float]

+ getKeypointAvgSpeed3(int): [float, float]

+ getKeypointFromName(str): int

+ getKeypointIdFromIndex(int): int

+ getKeypointName(int): str

+ getKeypointVectorAvg(int): [float, float]

+ getKeypointVectorAvg(int): [float, float]

+ getKeypointVectorAvg3(int): [float, float]

+ getKeypointVelocityFrame(int): [float, float]

+ getKeypointVelocityFrame(int): [float, float]

+ getLeftArmVectorAvg(): [float, float]

+ getLeftArmVelocityAvg(): [float, float]

+ getLeftArmVelocityFrame(): [float, float]

+ getPersonSpeedAvg(): [float, float]

+ getPersonSpeedAvg3(): [float, float]

+ getPersonVelocity(): [float, float]

+ getPersonVectorAvg(): [float, float]

+ getPersonVectorAvg3(): [float, float]

+ getRightArmVectorAvg(): [float, float]

+ getRightArmVelocityAvg(): [float, float]

+ getRightArmVelocityFrame(): [float, float]

+ updatePose(ObjectPose)

room_camera.py

+ CENTER_ADDR: str

+ DIST_ADDR: str

+ FRAME_ADDR: str

+ HEAD_ADDR: str

+ KEYPT_ADDR: str

+ L_ARM_ADDR: str

+ L_WRIST_ADDR: str

+ PERS_ADDR: str

+ R_ARM_ADDR: str

+ ROOT_ADDR: str

+ R_WRIST_ADDR: str

+ height: int
+ keyboardThread: ReadKeyThread
+ myFrame: FrameObject
+ net: poseNet
+ parser: ArgumentParser
+ person_timeout: int
+ pose_list[]: PoseObject
+ receiverThread: OscReceiver
+ shouldRun: bool
+ udpSender: SimpleUDPClient
+ video_in: videoSource
+ video_out: videoOutput
+ width: int

+ main()

+ buildHeadMessage(PoseObject, int): OscMessage

+ buildKeypointMessage(PoseObject, int): OscMessage

+ buildLeftArmMessage(PoseObject, int): OscMessage

+ buildRightArmMessage(PoseObject, int): OscMessage

+ headDistanceMessage(PoseObject, int): OscMessage

+ leftArmDistanceMessage(PoseObject, int): OscMessage

+ rightArmDistanceMessage(PoseObject, int): OscMessage

1..18

1

0..*

Figure A.1 The UML diagram for the project. Note that classes made by other developers and
corporations are grouped together in the respective package that provides them.
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