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Abstract

This project leverages the core concepts of differentiable rendering to find alter-
native representation of images using geometric primitives rendered with Signed
Distance Functions. By utilising gradient-descent-based methods it is possible
to find optimal parameters of rendered primitives to create high-quality recon-
struction. Moreover, this research serves as a foundation for extending the prin-
ciples and methodologies explored to 2D space. While the project primarily fo-
cuses on 2D image representation, the insights gained can be applied to similar
tasks in the field of 3D rendering.
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Chapter 1

Introduction

Exploration of different representations of data structures allow programmers to find solu-
tions that introduce a new level of abstraction, optimise time and space complexity, conserve
required memory, or tailor structures to specific needs. This is especially vital in the field of
computer graphics, where rendering performance needs to be high, while maintaining low
memory consumption, and allow for efficient processing of complex graphical data. With this
idea in mind, we undertake the challenge of finding an alternative representation of digital
images, which play a central role in various applications such as video games, image process-
ing, and computer-aided design. In this chapter, we provide an overview of the project and
outline its scope and contributions.

1.1 Project Scope
The thesis investigates how the principles of differentiable rendering can be applied in the
process of image reconstruction using geometric primitives. To achieve this, we explore var-
ious aspects, including error metrics for measuring image reconstruction accuracy, optimi-
sation algorithms for finding optimal parameters, and the intricate characteristics of Signed
Distance Functions. By building a thorough understanding of all these components, the
project aims to enhance the quality and efficiency of the 2D image rendering by addressing
the following research questions:

• How many geometric primitives are needed to reconstruct a digital image?

• Can gradient descent be effectively utilised for finding optimal parameters of primi-
tives for such reconstruction?

By answering these questions, we want to provide insights into the feasibility and ef-
fectiveness of differentiable rendering techniques for image representation using geometric
primitives.
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1. Introduction

1.2 Contributions
Through this thesis, we hope to contribute to the advancement of alternative image rep-
resentation techniques. By utilising machine learning, different error metrics, and various
SDF characteristics, we seek to find novel ways for creating and storing computer generated
imagery, which allow for versatile rendering and visualisation possibilities.
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Chapter 2

Background

2.1 Computer Graphics
Computer graphics refer to various visual content, which is created using computer software
and hardware. They are used in a wide range of fields, including animations, visual effects,
video games, architecture, and data visualisation. In this work, we focus on 2D computer
graphics, more specifically on digital images and their representation.

2.1.1 Digital Image
Digital images can be divided into two types:

Raster images, also known as bitmap images, consist of pixels arranged in a 2D grid, where
each pixel stores colour information. Depending on the pixel format, colour data can
have a variable number of bits, which is known as colour depth. Raster images are
resolution dependent, meaning any change in scale will result in a loss of quality.

Vector images are products of mathematical equations that describe lines, shapes and colours.
With the change of resolution, these equations can be recalculated to maintain sharp
quality, unlike raster images.

2.1.2 Colour Representation
The most widely used colour representation in computer graphics is a combination of red,
green and blue values (RGB). Each colour channel is represented by 8 bits, which store val-
ues ranging from 0 to 255. This representation allows for the creation 16,581,375 unique
colours. In some cases, a fourth channel is introduced for transparency value called alpha
(then RGBA).
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2. Background

Other colour spaces, such as hue, saturation, and value (HSV), and cyan, magenta, yellow,
and key (CMYK) can also be used. Nevertheless, RGB is the most common representation
and is the one we are using in this project.

2.1.3 Colour Blending
Colour blending refers to techniques used to combine the colours of multiple layers or images.
The choice of blend mode determines the process of composition of the colours, whether
through transparency, addition, multiplication, or other operations. Different blend modes
result in varying visual effects. Presented below are concise explanations of blend methods
that are relevant to our work.

Alpha Blending
Alpha blending, as the name suggests, uses alpha value of each pixel to determine how two
layers will be combined. The alpha blending equation (Eq. 2.1), also known as the OVER
operator, calculates the weighted average of the RGB colours of the background CB and the
foreground CF layers. This implies, that when considering multiple layers, we have to evalu-
ate them in a specific order, as this is an order-dependent operation.

C = αF ·CF + (1 − αF) ·CB (2.1)

This blending technique enables the creation of smooth transitions and gradual fading be-
tween layers, making it suitable for creating transparent or semi-transparent effects (Fig. 2.1a).

Additive Blending
In additive blending the colour values of the layers are directly added together (Eq. 2.2). Each
layer’s colour contributes fully to the final colour, resulting in a brighter and more intense
image (Fig. 2.1b). Unlike alpha blending, this technique does not take into consideration
transparency information. Moreover, given that addition is commutative, this method is
order-independent.

C = CF +CB (2.2)

Additive blending is based on how humans perceive light and colours. It is commonly used
for combining elements with additive properties, such as light sources or glowing particle
effects.

2.1.4 Rasterisation
Rasterisation of 2D primitives is the process of converting the basic geometric shape, such
as lines, curves or polygons, into a raster image. This requires determining which pixels
are covered by the primitive and then assigning them colour values (Fig. 2.2). To detect
which pixels belong to the primitive, we can loop over the pixels in the image and perform
an inside-outside test. This process can be optimised by introducing Axis Aligned Bounding
Boxes, in order to minimise the amount of pixels we need to perform tests on.
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2.1 Computer Graphics

(a) (b)

Figure 2.1: Alpha (a) and additive (b) blending side by side

Figure 2.2: Pixels covered by a triangle

2.1.5 Signed Distance Functions
Signed Distance Functions, or SDFs as we will be referring to them from now on, are mathemat-
ical functions that measure the distance between a point in space and a geometric object. The
signed component refers to the fact that the distances have different signs if they are inside
(negative), outside (positive) or on the surface (zero) of the object (Fig. 2.3). The final result
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2. Background

is a field with a gradient of unit length everywhere, which means that SDFs are fully differ-
entiable. The direction of the gradient for a surface is exceptionally useful and important in
the context of rendering complex scenes, where it can be used for lighting calculations and
aligning objects to surfaces.

Figure 2.3: A visualisation of evaluated SDF for a circle

SDFs can be used to provide an implicit representation of any geometric object, that
can maintain a sharp quality with any change in scale due to the fact they are described
by mathematical equations, which can be recalculated. Moreover, they can be combined
using Boolean operations, such as union (Fig. 2.4a), subtraction (Fig. 2.4b), and intersection.
(Fig. 2.4c) It is possible to create complex shapes by fusing a set of base primitives, just like
Constructive Solid Geometry[1].

(a) (b) (c)

Figure 2.4: Examples of union (a), subtraction (b), and intersection
(c) between a circle and a box

They are also not limited to 2D space, they can be easily extended to 3D by performing
extrusion or revolution on the 2D shape representation. SDF’s versatile nature and various
benefits are what make them so intricate, and useful in many areas of computer graphics:
font rendering [2, 3], procedural modelling [4], or global illumination [5], just to mention
a few.
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2.2 Optimisation

2.2 Optimisation
An optimisation problem is a mathematical process in which the goal is to find the best
solution among all possible solutions, given a set of criteria or constraints. In other words,
we want to minimise or maximise some objective function, which is often referred to as loss
in case of minimising, or fitness in case of maximising. There are several algorithms that can
be used to solve optimisation problems, and below are brief descriptions of methods relevant
to this work.

Gradient Descent
An iterative optimisation algorithm used to minimise the value of a function by iteratively
adjusting the parameters of the function. Gradient Descent works by calculating the deriva-
tive of the function with respect to the parameters at a given point, also known as gradient.
The gradient points in the direction of the steepest increase of the function, so the negative
of the gradient points in the direction of the steepest decrease. In each iteration of the al-
gorithm, the parameters are updated by subtracting the product of the learning rate and the
gradient from the current value of the parameters. The learning rate controls the step size
taken in the direction of the negative gradient, and is typically a small positive value in the
range 0 to 1.

If the problem can not be represented with differentiable equation, the gradients can be
obtained using the finite difference method. A derivative is then approximated by the expres-
sion in the form of the difference between function at point x and x + h, and divided by h
(Eq. 2.3). Where h has a small fixed non-zero value.

d
dx

f (x) = lim
h→0

f (x + h) − f (x)
h

≈
f (x + h) − f (x)

h
=
∆h[ f ](x)

h
(2.3)

Adam
Base Gradient Descent can have trouble finding a global minimum if the learning rate is not
set properly, too small step size means slow convergence, and too big might lead to over-
shooting. Adam is a more advanced gradient descent variant that overcomes this issue by in-
corporating both momentum and adaptive learning rates, making it more efficient. It adapts
learning rates for each parameter based on their historical gradient statistics, which results
in faster convergence and better generalisation [6, 7].

2.2.1 Machine Learning Libraries
Machine Learning libraries are software tools that provide pre-built functionality that stream-
line the process of development of various machine learning models, including those to solve
optimisation problems. They typically include a collection of algorithms, data structures,
and utilities that can be used to pre-process data, train models, and make predictions on new
data. A few of the most known libraries are: TensorFlow and PyTorch. The latter, or more
specifically its C++ API libtorch, is our tool of choice for this work.
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2. Background

Tensors
Tensors are the fundamental data structure of many machine learning libraries, including
PyTorch. They can be simply thought of as multidimensional arrays, which store and pro-
cess data efficiently. They are manipulated by specialised tensor operations, which can take
advantage of the fact that modern GPUs are highly parallel multi-core processing units that
can be used for general-purpose computing (GPGPU).

Automatic Differentiation
Automatic differentiation is a method used in machine learning to efficiently compute the
derivatives of functions with respect to their input variables. In most libraries, these can be
distinguished by two main modes: forward mode and backward mode.

In forward mode, the computation is done by tracing the values and derivatives of the
function through each operation. In backward mode, the computation is done by tracing
the function’s output backwards through the operations and computing the derivatives in a
reverse order using the chain rule.

In PyTorch, automatic differentiation is called Autograd. Any tensor that is created can
be marked as requires_grad, and from now on every operation on that tensor (and every
resulting new tensor), will be tracked and kept in the Computational Graph [8].

2.3 Related Works
There have been various previous works in the field of reproducing images with geometric
primitives. One of the most prominent projects is Roger Johansson’s EvoLisa [9], in which
the famous renaissance painting Mona Lisa is reconstructed by 50 semi-transparent triangles
using a genetic algorithm. Unfortunately, today not much is known about the exact details
of Johansson’s solution and its performance.

Despite that, Evolisa to this day is a big inspiration for any project in this area, and one
of the more recent examples is Primitive by Michael Fogleman [10]. Fogleman expands on
Johansson’s idea and uses various different geometric primitives, which are drawn one by one
onto a canvas to minimize the root-mean-square error between pixel values. Instead of us-
ing a genetic algorithm, he uses hill climbing as the optimisation method. Given the greedy
nature of the algorithm, one would think this is not the best approach for such a problem.
However, Fogleman overcomes this by taking advantage of parallel computing to create mul-
tiple workers that generate many different starting points, where the best outcome out of
all is selected. Fogleman’s method is best suited for creating stylised reconstructions. While
they properly capture the contents of the original image, the result more closely resembles
a water colour painting. Our interest lies in obtaining an approximations that is as close to
the reference as possible.

A slightly different approach is taken by Matt Zucker in the Gaborˆ2 [11] project. In his
solution, the reconstructed image is a sum of 128 Gabor functions, where each parameter
was found by using a non-linear least squares solver and Hill Climbing. Additionally, extra
constraints on Gabor functions were provided in order to help with reducing high-frequency
noise, which they are prone to introduce. Finally, a user-created weight map is introduced
to help guide the reconstruction where to exactly the error should be minimised. The final

14



2.3 Related Works

result is impressively detailed, however the approach of fitting one model at a time on a CPU
results in a profound execution time.

"I let the program run on my 2013 MacBook Pro for a few days to produce the
Gaborˆ2 image...".

mentions Zucker in his personal blog entry. Eventually, the issue of lack of parallelisation was
addressed in Zucker’s second revision of the project [12], where it was rewritten to run on a
GPU by using TensorFlow, which reduced the execution time to approximately 25 minutes.
In this updated version the optimisation method is a mix between Adam and Simulated
Annealing.

Overall, the discussed projects present various approaches of reproducing images using
a sparse amount of primitives. By incorporating the strengths of the previous works, we
aim to develop a universal framework for 2D image representation, which can be potentially
extended to 3D space.
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Chapter 3

Approach

Drawing a geometric primitive onto a raster image typically requires defining values for its
translation, rotation, scale and colour. Combining a certain amount of shapes into one canvas
can give us an approximation of the reference image. The problem at hand is finding opti-
mal values for all parameters of these shapes. Therefore, the approach to the reconstruction
problem can be described by the following steps:

1. Draw a random primitive of a given shape.

2. Calculate the error compared to the reference image.

3. Minimise the error by altering the parameters of the primitive.

4. Repeat until the error is sufficiently small.

Despite the rather simple logic behind it, there are multiple approaches to consider for each
step. In this chapter, we go over our method and describe in depth the critical aspects that
require particular attention.

3.1 Optimising Algorithm
Gradient Descent based methods are commonly used in machine learning for optimisation
due to their efficiency, scalability and the possibility to apply them to a wide range of prob-
lems. In recent years we have seen tremendous developments in the field of Differentiable
Rendering, where the scene is rendered using gradient descent based optimisation methods
[13]. By computing the gradients of the rendered image with respect to the scene parameters,
it becomes possible to optimise lighting, materials, or even geometry and its location in order
to reconstruct or generate a desired scene. The core logic of this technique directly applies to
the problem we are trying to solve, hence the choice of Adam as our optimising algorithm.

17



3. Approach

3.2 Image Error Metric
Calculating the difference between the reconstruction and the reference is the most impor-
tant part of the whole process. The error holds the information on how close the current
result is to the ground truth, and that information is used as a main guiding mechanism for
all operations.

The error between two images can be simply expressed as the difference between pixel
values. Given grayscale images X and Y of a resolution HxW such error can be calculated
using the following methods:

Mean Square Error (MSE) – represents the cumulative squared difference between all pixel
values across two images.

MSE(X,Y ) =
1
H

1
W

H−1∑
y=0

W−1∑
x=0

[X(x, y) − Y (x, y)]2 (3.1)

Peak Signal To Noise Ratio (PSNR) – represents the ratio between the maximum possible
value of a signal and the power of distorting noise that affects the quality of its repre-
sentation. R here is the maximum pixel value, which for n-bit image is 2n − 1. Because
of that parameter and logarithmic scale, it is useful for comparing images of different
dynamic ranges but otherwise contains no new information relative to the MSE.

PSNR(X,Y ) = 10 log10

(
R

MSE(X,Y )

)
(3.2)

While MSE is a good indication of pixel error, it is not the best representation of human
perception when it comes to comparing images. It is possible for MSE values of differently
distorted images to be nearly identical, despite great differences in fidelity and quality [14].
Thus we decided to explore different error metrics, which are not solely based on pixel values,
and more closely relate to how humans detect differences in images.

Structural Similarity Index Measure (SSIM) – a metric based on the premise that human
perception of image quality is directly related to the perceived structural similarity
between images, which consists of three components: L - luminance, C -contrast and S -
structure. The luminance is determined by the mean of intensity, contrast is determined
by the standard deviation of intensity, and the structure is the correlation of the two
images [15].

L(X,Y ) =
2µxµy +C1

µ2
x + µ

2
y +C1

(3.3)

C(X,Y ) =
2σxσy +C2

σ2
x + σ

2
y +C2

(3.4)

S(X,Y ) =
σxy +C3

σxσy +C3
(3.5)

Where:
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3.2 Image Error Metric

• µx is the mean of pixel values of X ;

• µy is the mean of pixel values of Y ;

• σx is the standard deviation of X ;

• σy is the standard deviation of Y ;

• σxy is the covariance of X and Y ;

• C1, C2 and C3 are pre-calculated constants to stabilise the division with weak
denominator;

Final SSIM is the weighted combination of these three factors:

SSIM(X,Y ) = L(X,Y )α ·C(X,Y )β · S(X,Y )γ (3.6)

Usually the weights are set to α = β = γ = 1, and C3 =
C2
2 . C1 and C2 are products of

pixel range R and constants, k1 = 0.01 and k2 = 0.03.

C1 = (k1R)2 (3.7)

C2 = (k2R)2 (3.8)

While one could apply SSIM globally, it is useful to apply it locally and calculate the
mean between all the windows, hence the name Mean SSIM [15]. It is achieved by using
an 11x11 circular-symmetric Gaussian kernel and performing 2D convolution in order
to compute local SSIM values.

Regardless of the widespread use and indisputable merits of SSIM, there are edge cases
where few of its properties may lead to undefined behaviour, and thus using SSIM as quality
assessment measure might lead to incorrect conclusions as well [16]. That is the reason why
we also considered a more recent metric, which was created with the goal to address the
potential shortcomings of SSIM.

FLIP –a difference evaluator with a particular focus on the differences between rendered
images and corresponding ground truths. It outputs a per-pixel difference map be-
tween two images, where the differences are approximately proportional to those seen
by a human observer when flipping back and forth between the images, located in
the same position and without blanking in between [17]. FLIP relies on two parallel
pipelines (Fig. 3.1) that calculate the difference between colour and features, which are
later combined into a final value. The goal of this approach is to account for the facts
that human eyes are more sensitive to chrominance for brighter colours, perceive lumi-
nance non-linearly, and they easily pick out edges and any structural discontinuities,
especially in pixels.
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3. Approach

Figure 3.1: The FLIP pipeline [17]

3.3 Additional Constraints
However, just minimising the image error is not sufficient. Quite early in our work it be-
came apparent that some primitives would rather shrink to minimise the error, instead of
altering any other parameters. That is why we introduced additional constraints to prevent
this behaviour.

E(area) = −min
0, 1 − (

minArea
area

)2 (3.9)

The term above returns a penalty if the current area is smaller than the minimal specified
area, otherwise returns 0. The idea behind it is to not affect the optimisation if the shape is
big enough, but if it shrinks beyond the acceptable value E becomes an increasingly positive
value. Minimising it is synonymous with increasing the area of the shape. This constraint is
added to the image error and contribute to the final loss value.

3.4 Drawing Primitives
The process of rasterising geometric primitives can not be represented as a differentiable
equation, which makes computing the gradients of parameters slightly more complicated.
In our initial approach, we worked around this issue by calculating the approximation of
the derivative using finite differences. What this mean is, we slightly perturb one of the
parameters, draw the updated primitive, then calculate the new error, and finally subtract
the original from it and divide by the perturbation value. By repeating the process for each
parameter, we can calculate their gradients. However, this approach is incredibly slow, even
when we try to fit one primitive at a time, as it needs to be drawn multiple times before the
updates are applied. It would be possible to parallelise the algorithm for greater performance,
nonetheless, we still would end up using a lot of computing power on multiple renders that
do not provide any direct contribution.

Rendering primitives in a way that is fully differentiable holds much greater promise,
hence we started exploring other possible solutions that would allow us to represent various
geometric primitives. One particular approach that fulfils all the necessary conditions is the
adoption of previously mentioned SDFs. Since they represent geometric shapes with fully
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3.4 Drawing Primitives

differentiable equations, we can take advantage of PyTorch’s Autograd. By implementing
all the logic with multi-dimensional tensors and moving the computation to the GPU, we
end up with completely parallelised gradient calculation and rendering. This not only makes
the computation significantly more efficient but also allows us to obtain gradients of all
parameters with a single rendering pass thanks to Autograd’s backward mode. Additionally,
it makes it possible to evaluate multiple primitives at once, each on its separate layer, or even
multiple primitives per layer thanks to the fact that SDFs can be combined with Boolean
operations.

3.4.1 Blending
Combining these layers is another aspect worth discussing. One possible approach is to use al-
pha blending to draw semi-transparent shapes onto each other. One drawback of this method
is that it is order-dependent, meaning the colour on each successive layer is a direct product
of the OVER operator computation with its predecessor. If we want to modify the already
processed and drawn primitive, we essentially have to re-render and combine all the pre-
ceding layers, apply the modification on the current layer, and re-render all the following
layers.

We can avoid this inconvenience by using additive blending, and obtain the final result
simply by summing all the layers together. By definition, addition is an order-independent
operation, thus the layers can be combined in any order and still produce the same image.
Furthermore, there is no consideration of the alpha channel, which lets us reduce the colour
information to be just stored as RGB values.

3.4.2 Types of Primitives
We use 3 types of base geometric shapes to represent with SDFs, Circles, Boxes and Triangles
(Fig. 3.2). Additionally, we consider the Circle displaced with two convolved sine waves,
where their frequency is controlled by the current coordinates multiplied by a displacement
factor (Fig. 3.3). We choose to evaluate only the displaced Circles, since the results of such
displacement in 2D yield similar results for all considered base primitives, and the computa-
tional complexity of the Circle is the lowest.

(a) (b) (c)

Figure 3.2: Types of used base SDF primitives
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(a)
0.7

(b)
2.0

(c)
10.0

Figure 3.3: Visualisation of the Circle SDF displaced with 2 con-
volved sine waves of varying displaced factors
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Chapter 4

Implementation

The reconstruction can be thought of as a closed loop (Fig. 4.1), in which we aim to min-
imise the loss function, which is described by one of the image error metrics and additional
constraints for geometric shapes. By calculating the gradients with respect to primitives’ pa-
rameters and using gradient descent, we are able to adjust these parameters in order to reduce
the difference between the reconstruction and the reference. By iterating this process we try
to determine the best possible state for all primitives, which is the optimal approximation of
the original image.

Falloff

Shape specific
parameters

SDF Parameters

Colour

Rotation

Translation

Render Reconstruction

Ground Truth

Loss Function

Optimiser

Figure 4.1: A block diagram describing the reconstruction loop

In this chapter, we describe the steps of the reconstruction process in greater detail and go
over how it was implemented. The project’s application code is written in C++, and PyTorch
API is used for solving the optimisation problem and rendering SDFs.
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4.1 Image Storage
The first important step is to read the reference image to memory, and then transfer the pixel
data into a 4D PyTorch tensor of shape N ×C × H ×W , or just NCHW for short, where:

• N is the number of independent layers,

• C is the number of colour channels in the image,

• H is the height of the image,

• W is the width of the image.

Given an RGB image with resolution 640×480 it will be stored as a 1×3×480×640 tensor.
Once the data is converted into a tensor, we set its type to float and normalise the colour

values. The original is kept around to be used as the source for performing bilinear interpo-
lation to produce a scaled down version of the reference.

4.2 Pixel Coordinates
Once the image data is properly stored, we create a tensor of pixel coordinates based on the
resolution of the reference. Since throughout the reconstruction process we are operating at
different resolutions, these coordinates are normalised along the shortest side (Fig 4.2). This
way we avoid non-uniform scaling, which would otherwise introduce distortions. This also
ensures that the primitive drawn in the down scaled image will be placed at approximately
the same position in the full scale image without the need to remap its origin. Whenever the
resolution of the reference changes, the pixel coordinates are recalculated.

Figure 4.2: Normalised pixel coordinates
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4.3 Primitive Parameters
Next, we initialise the list of trainable parameters for the geometric primitives. We start with
common parameters, which are shared between all types of shapes, which are:

Translation - controls the position of the primitive on the image. Initially set to a random
position in the bounds of normalised pixel coordinates.

Rotation - controls the rotation of the primitive. Initially set to 0.

Colour - controls the RGB colour value of the primitive. Since we are using additive blend-
ing to mix the layers together it can be in the range (−1.0, 1.0). Initially set to 0.

Falloff - controls the falloff of colour intensity from the center of the primitive. Clamped to
be always in the range (0.01, 0.99), where minimum value means a sharp anti-aliased
shape, and maximum value results in an extremely blurred shape. Initially set to 0.5.

To unify the data representation and streamline the multidimensional operations, pa-
rameters are also created as tensors of shape NCHW , where:

• N represents the number of layers,

• C depends on parameter data type (3 for RGB, 2 for translation, 1 for rotation and
falloff),

• H and W are simply set to 1.

For example, if we are to evaluate 64 primitives, then the shapes of parameter tensors in the
list will look like the following:

• Translation - 64 × 2 × 1 × 1

• Rotation - 64 × 1 × 1 × 1

• Colour - 64 × 3 × 1 × 1

• Falloff - 64 × 1 × 1 × 1

Shape-specific parameters, e.g. radius for a circle, are created accordingly and inserted at the
end of the list.

4.4 Evaluating SDFs
We have already described what SDFs are, and why they are useful in solving the task at hand,
now let us have a closer look at how they are evaluated into 2D geometric shapes, using the
SDF for a circle as an example.

sdCricle (Lst. 1) takes two arguments, p - current point, r - radius size, and returns distance
from the point to the surface of the circle. This distance is used to determine colours on the
rendered image. If the distance is positive the pixel is set to the background colour, otherwise
it is set to the desired colour of the shape (Lst.2).
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sdCircle(p, r)
{

return length(p)-r;
}

Listing 1: Circle SDF [18]

d = sdCircle(p, r);
col = d > 0 ? bgCol : shapeCol;

Listing 2: Coloured circle SDF [18]

This will however result in a rather pixelated circle, especially for lower resolutions. The
distance can also be used to apply anti-aliasing to produce smooth edges. Instead of using the
logical operation to determine the colour, we can interpolate between the background and
the shape colour using smoothstep of the distance as the weight (Lst. 3).

col = lerp(bgCol, shapeCol, 1.0 - smoothstep(0.0, 0.01, d));

Listing 3: Coloured circle SDF (anti-aliased) [18]

Increasing the upper bound of the smoothstep term increases the band of the smoothing
operation, which allows us to achieve an effect that resembles the falloff of colour intensity
from the surface (Fig. 4.3).

(a) Falloff = 0.01 (b) Falloff = 0.99

Figure 4.3: Circles of equal radius with different falloff values

SDFs are always drawn at the origin, meaning the evaluated point needs to be transformed
to get a translated, rotated and scaled object. This can be easily achieved by multiplying
the point with the inverse of a transformation matrix. However, the non-uniform scaling
compresses or dilates space, therefore the returned distance is not exact. Since we only care
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about the visualisation of the shape this aspect can be potentially ignored. Nevertheless, we
chose to keep the exact representation, and control the size of primitives by their specific
parameters, in this case, the radius.

By rendering the primitive with SDFs we ensure that each pixel value in the resulting
image is a direct result of the fully differentiable equation. However, some information about
the gradient can be lost due to the definition of the smoothstep, as it needs to normalise the
input value to the given bounds and clamp it to range 0 to 1. If the normalised value is not in
the clamp range the resulting derivative is 0, which causes the whole gradient computation
using chain rule to be 0. To avoid this behaviour an altered sigmoid (Eq. 4.1) can be used as an
alternative smoothing function. Sigmoid, similarly to smoothstep, is used to map the value
to the range 0 to 1. Although, in its base form, the curve is much wider and centred around
Y axis (Fig. 4.4a). Altering the input to be 10x − 5 normalises the curve (Fig. 4.4b) [19].

S(x) =
1

1 + e(−x) (4.1)

(a) (b)

Figure 4.4: The comparison of base (a) and normalised (b) sigmoid
with smoothstep

4.5 Layers Composition
Passing parameters in NCHW format to SDF implemented with PyTorch makes it possible
to evaluate in parallel N different primitives, resulting in N rendered layers of individual
primitives, which are summed together to create the reconstructed image (Fig. 4.5).

Alternatively, it is possible to specify the number of shapes per layer, which will be then
blended using smooth minimum operation. The union of SDFs is achieved by taking the min-
imum of the returned distance between two functions. Smooth minimum is a special case
of the union, which behaves like the base one for the areas where the primitives are further
apart, but creates smooth transitions where their distance values are close to each other. Ad-
ditionally, it can be used to compute the mix factor which is used for the smooth blending
of the colours of the primitives (Lst. 4). There are numerous methods to accomplish this be-
haviour, but our interest lies specifically in the exponential version of the smooth minimum,
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Figure 4.5: Obtaining the reconstructed image by composition of N
layers of evaluated SDFs

as it is able to generalise more than two distances and produce the same results regardless of
the order of the operations [20]. It is derived from LogSumExp, which smoothly approximates
the maximum function by calculating a logarithm of the sum of the exponentials of the ar-
guments (Eq. 4.2). Introducing a negative factor transforms it into an approximation of the
minimum function (Eq. 4.3). In the context of blending SDFs, k can be used to control the
range of the smooth union.

SMAX(x) = LSE(x) = log
N−1∑

i=0

exi

 (4.2)

SMIN(x) = −
1
k

LSE(x) = log
N−1∑

i=1

e−kxi

 (4.3)

smin(d1, d2, k = 10.0)
{

f1 = exp2(-k, d1);
f2 = exp2(-k, d2);

return -log2(f1+f2)/k , f2;
}

Listing 4: Example of the exponential smooth minimum, which re-
turns the minimum distance and the mix factor

To achieve order-independent smooth colour mixing, we incorporate the weighted addi-
tive blending [21], and use the mix factor as a weight of individual colours of primitives. The
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final colour is then simply the weighted average of all contributing colours (Eq. 4.4). If the
primitives create an union, then their colours are blended, otherwise, they keep their original
colour.

C =
∑N−1

i=0 Ciwi∑N−1
i=0 wi

(4.4)

Figure 4.6: A smooth union between a circle and a box of different
colours

4.6 Reconstruction Phases
Now that the setup process and the rendering methods are explained, let us carry on with the
description of the reconstruction algorithm. We found that fitting primitives globally, all at
the same time, tends to yield much more promising results, than if the learning were done
in batches. Unfortunately, working with a number of primitives greater than 128 and images
of resolution bigger than 512 × 512 takes an immense toll on memory usage. After all, in
this case, we render 128 layers, each with 262,144 pixel values, which in total is 33,554,432
pixels. Moreover, PyTorch’s Adam optimiser stores a list of all the operations that contribute
to each pixel value. For that reason the reconstruction is done in two phases:

Global fitting - the working space is limited to 128×128 resolution (or equivalent, keeping
the aspect ratio of the original image). This low resolution preserves the most impor-
tant features and makes it possible to fit a massive amount of primitives at once. Run
for approximately 500-600 steps.
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Batch re-fitting - once the initial fitting at low resolution is done, the working space is
up-scaled to half of the original resolution, and the primitives are divided into equal
batches, which are further optimised given the new details of higher resolution. The
inactive batches are combined and saved to a static tensor, which is added to the eval-
uation of the active batch to produce the reconstructed image. Each batch runs for
approximately 150-250 steps.

Finally, the working space is set to the original resolution, and the primitives are drawn batch
by batch to produce the final results.

We also tried to randomly re-initialise small batches after the re-fit phase in order to try to
escape from potential local minima, fit the new set of parameters, and accept if it improves
the overall quality, or discard otherwise. However, better states of parameters for a batch
were rarely found, and if there was any improvement, it was negligible given the amount of
work it requires.
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Chapter 5

Results

In this chapter, we present and evaluate different modes of implementation. This includes
comparison of images obtained with implemented metrics, for varying amounts and different
types of primitives. All results were rendered using PyTorch (CUDA 11.7).

The final implementation includes MSE and SSIM as image error functions. Unfortu-
nately, we were unable to use FLIP as a learning loss, because the returned gradients were
always 0. Most likely due to the fact the algorithm requires many different clamp operations,
which cause the gradient information to be lost, as mentioned in Section 4.4.

However, we still use FLIP as an objective method to evaluate the results obtained both
with MSE and SSIM, as those two metrics operate in different ranges and should not be
directly compared. The final FLIP score is in range [0, 1], and is obtained by taking the mean
of the difference values. The lesser the score the closer the tested image is to the reference.
Below are presented the reconstructions (Fig. 5.2) of the reference image (Fig. 5.1), recreated
with 256 primitives of all types, for both MSE and SSIM. Results for 64, 128, 512 and 1024
shapes can be found in the appendix A.

Figure 5.1: The reference image - Woman Dark Hair 512 × 512 [22]
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Circle
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lip: 0.1757

MSE
256
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Triangle

lip: 0.1679

SSIM
256

lip: 0.1468

SSIM
256

lip: 0.1265

lip: 0.1373

lip: 0.1380

Figure 5.2: Comparison of results obtained using MSE and SSIM
for 256 primitives and their difference maps
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SDF Type

N primitives Error Metric Circle
Circle

(Displaced) Box Triangle

MSE 0.2122 0.1825 0.1948 0.1912
64

SSIM 0.2186 0.1852 0.1870 0.1721
MSE 0.2077 0.1674 0.1879 0.1811

128
SSIM 0.1776 0.1595 0.1537 0.1612
MSE 0.1757 0.1434 0.1746 0.1679

256
SSIM 0.1468 0.1265 0.1373 0.1380
MSE 0.1434 0.1081 0.1343 0.1330

512
SSIM 0.1190 0.0949 0.1060 0.1075
MSE 0.1372 0.0918 0.1277 0.1243

1024
SSIM 0.1093 0.0781 0.0993 0.0972

Table 5.1: Final scores for results obtained with MSE and SSIM

5.1 Error Metrics
Let us take a look at the final scores of the reconstructions with different configurations
(Tab. 5.1). For a lower number of primitives, there is a minor difference in perceived quality,
and between the FLIP scores of the two metrics. However, for 128 and more that difference
gradually grows, and it becomes quite clear that SSIM performs better. Looking at produced
images (Fig. A.2 - A.6) and their difference maps, we can see that MSE tends to distribute the
error across the whole image, which results in a much noisier approximation. SSIM is highly
sensitive to any inconsistencies in the structural information, which is best shown during
the learning process. The total SSIM value, used as a main component of the loss, rapidly
decreases during the initial-low resolution phase (solid line), and then visibly rises when the
new information is introduced after the increase in the resolution for the batch refitting
phase (dashed line) (Fig. 5.3b). Whereas, for MSE this rise is much less significant (Fig. 5.3a).
That being established, all the results that are discussed in the following sections relate to
the reconstructions obtained using SSIM.

5.2 Primitives
Comparing the results and their scores for different primitives it is apparent that the base
Circle performs the worst, and it requires a great number of them to produce a satisfying
reconstruction. The quality of the Box and the Triangle is notably better, and their results
are comparable to each other for almost all configurations. The Displaced Circle produces
the best results.

64 primitives are enough to capture the general structure of the reference, but not suffi-
cient to produce more detailed features, in this case, eyes, nose and mouth (Fig. A.2), although
for the Displaced Circle, they become distinguishable. There is a notable improvement with
each increase in the number of primitives. At 256 (Fig. 5.2) all the critical features are no-
table, and the results start to resemble a blurred version of the original. There are still visible
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Figure 5.3: MSE (a) and SSIM (b) values during learning

artefacts in the form of sharp edges of the primitives, which are the side effect of additive
blending. At 512 (Fig. A.5) the image is less blurry, and for the Displaced Circle, even small
details become distinct, like eyebrows, eye whites, and under-eye wrinkles. For 1024 (Fig.
A.6) the result is even sharper, and again the Displaced Circle is able to recreate even minor
details as single hair curls, or the chequered texture of the collar.

5.2.1 Smooth union
Now let us evaluate reconstructions composed of smooth unions of SDFs of the same type
compared to the individual primitives. Figure 5.4 contains the results, where on each layer
the smooth minimum of 4 primitives was calculated to create a smooth union, and Table 5.2
shows the final FLIP scores. While this approach allows for a smoother transition in colour,
most of the sharp edges are lost due the shapes being blended together. For a lower number
of primitives, the outcome resembles a smudged image. After all, if each layer contains a
union of 4 shapes, this can be thought of as N /4 unique primitives rather than N . Overall,
differences in FLIP scores between the individual and joined primitives are minor for 512 and
lower, and only for 1024 the improvement is notable, nevertheless only the smooth union of
Triangles achieves results comparable to the Displaced Circle.

SDF Type

N primitives Metric Circle
Circle
(smin) Box

Box
(smin) Triangle

Triangle
(smin)

Circle
(Disp.)

128 SSIM 0.1776 0.1881 0.1537 0.1653 0.1612 0.1735 0.1595
256 SSIM 0.1468 0.1522 0.1373 0.1305 0.1380 0.1348 0.1265
512 SSIM 0.1190 0.1107 0.1060 0.1047 0.1075 0.0995 0.0949

1024 SSIM 0.1093 0.0945 0.0993 0.0815 0.0972 0.0784 0.0781

Table 5.2: Final scores for results of all types of primitives
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Figure 5.4: Comparison of results for smooth union of 4 primitives
per layer

5.3 Additional Tests
So far for the test reference, we have been using a grayscale image with a big object occupying
most of the frame. In this section we present additional results (Fig. 5.6) for images with more
varied contents (Fig. 5.5) for the most promising configurations of the reconstruction, using
SSIM as the image error metric, and the Displaced Circle as the primitive type.

As already established, our solution can efficiently capture big objects that have a sig-
nificant change in contrast compared to the background (Fig. 5.5a, 5.5d). However, if the
scene has many complex smaller objects located far from the camera, it struggles to properly
represent those for a smaller amount of primitives, like the buildings behind the cameraman
(Fig 5.5a), or the living room furniture (Fig. 5.5b). Unfortunately, images of low contrast,
even if in colour, tend to be the hardest to reproduce, unless a great amount of primitives is
used (Fig. 5.5c).
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(a) (b) (c) (d)

Figure 5.5: Additional reference images 512 × 512 [22] - Camera-
man (a), Living room (b), F16 (c), Peppers (d)
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Figure 5.6: Additional images - Reconstructions
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5.4 Raster images
Finally, let us discuss how our approach compares to raster images with sparse pixel data.
Figure 5.7 contains side by side comparison of the original image, the reconstruction with
512 Displaced Circles, and its scaled down version of 83 × 83 resolution. To represent the
image with 512 Displaced Circles, where each primitive is described by 10 values of 32 bits
each 1, requires 163,840 bits. Whereas, the original uncompressed RGB raster image of reso-
lution 512 × 512, requires 262,144 pixels, each storing 3 colour channels of 8 bits, therefore
6,291,456 bits. A raster image of equivalent size of the reconstruction is of 83×83 resolution,
165,336 bits in total.

Although the reconstruction is not a perfect copy of the original, it is able to encompass
great details with just a fraction of the size of the reference. Despite the fact that the final
result contains noticeable noise, it is not as blurry as the low scaled version of the original.
Additionally, possibility to recalculate the primitives described by SDFs potentially allows
for performing scaling operations without the loss of quality, similar to vector graphics.

(a) (b) (c)

Figure 5.7: Comparison of images represented with equivalent
amount of pixels and geometric primitives: Original 512 × 512 (a),
512 Displaced Circles (b), Original 83 × 83 (c)

1Translation: 2, Rotation: 1, Colour: 3, Falloff: 1, Radius: 1, Displacement Factor: 2
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Chapter 6

Conclusion

In conclusion, in this thesis we explored an alternative approach to represent digital im-
ages using differentiable rendering based on Signed Distance Functions. Throughout our
investigation, we evaluated various methods that hold potential for this task, and thoroughly
discussed the most promising configurations.

In section 5.1 we conduct a comparison between the results obtained with two differ-
ent error metrics. The goal of this analysis aims to determine which metric is more suitable
for solving such problems. Reconstructions obtained with SSIM are notably of higher qual-
ity, indicating that perceptual error metrics should be considered if the goal is to achieve
detailed, and faithful reconstructions. Section 5.2 discusses the efficiency of different im-
plemented types of primitives. We assess their ability to describe natural shapes of image
contents and examined how the quality of the reconstruction is influenced by the number
of geometric primitives. In most cases, approximately 64 primitives proved to be sufficient
to capture the general structure of the image. Employing 256 or more primitives results in
increasingly more detailed outcomes. Moreover, we demonstrate that possibility of creating
new complex shapes by combining base SDFs using Boolean Operation is also a viable option
and yields promising results for greater number of primitives. In section 5.3 we present addi-
tional results for images of different types and contents, and address the shortcomings of our
approach. While it is able to properly recreate big objects in the foreground, it struggles with
background scenery and low-contrast changes. Finally, we drew a direct comparison between
the representation of images in our proposed alternative approach and the traditional raster
image representation. By doing so, we highlighted the potential advantages offered by our
proposed methodology.

Overall the presented results show that it is possible to obtain an alternative representa-
tion of the digital image by leveraging the principles of differentiable rendering and utilising
geometric primitives described by SDFs.
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6.1 Limitations
One aspect that we consider a limitation is the efficiency of how SDFs are obtained. The
current approach evaluates the distance for every pixel, which as shown can be not only
computationally demanding, but on top of that requires a lot of memory. The need to evaluate
every possible coordinate in the space leads to unnecessary calculations for very small shapes.
Much more optimal approach would be to evaluate only the pixels that are bound by its Axis
Aligned Bounding Box. However, then the resulting tensors of the evaluated SDFs would
differ in their dimensions, and due to the requirements of parallel computation in PyTorch,
tensors need to be of the same dimensions. For the same reason we were unable to explore
fitting multiple types of primitives at the same time, which could potentially lead to better
shape approximation.

Finding alternative strategies or frameworks that allow for such parallel computation
with varying tensor dimensions could enhance the evaluation of SDFs and improve the overall
efficiency of our method.

6.2 Future Work
While our project presents a successful approach to image reconstruction using 2D geometric
primitives rendered with SDFs, there are areas that could benefit from further improvement
in future works. One significant aspect for enhancement is the refinement of the algorithm to
achieve higher-quality results with a smaller number of primitives. Currently, our approach
produces satisfactory outcomes, but optimising the algorithm to reconstruct images with
fewer primitives would not only improve computational efficiency but also allow for more
concise representations of the reconstructed images.

Another area worth exploring is the alternative way of compositing the layers together.
Instead of additive blending it would be interesting to explore different methods to fully
utilise SDF’s ability to be combined with Boolean operations, which potentially could lead
to improved shape representation. While we touched upon possibility of such solution by
implementing smooth unions of primitives, extending it to take advantage of intersections
and subtractions requires an approach more reminiscent of decision trees, which are not
exactly differentiable.

Furthermore, the most exciting possibility is the extensions of our approach beyond the
reconstruction of 2D images. Given that SDFs can be used for representation of 3D objects,
the core concepts of this project can be applied to 3D model reconstruction. By either sam-
pling the reference data from renders depicting the model from different angles, or utilising
point clouds as ground truth.
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Appendix A

Images

Figure A.1: The reference image - Woman Dark Hair 512 × 512
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A. Images
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Figure A.2: Comparison of results obtained using MSE and SSIM
for 64 primitives and their difference maps
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Figure A.3: Comparison of results obtained using MSE and SSIM
for 128 primitives and their difference maps
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A. Images
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Figure A.4: Comparison of results obtained using MSE and SSIM
for 256 primitives and their difference maps
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Figure A.5: Comparison of results obtained using MSE and SSIM
for 512 primitives and their difference maps
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A. Images
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Figure A.6: Comparison of results obtained using MSE and SSIM
for 1024 primitives and their difference maps
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