
INDUSTRIAL MACHINE

MONITORING

REAL-TIME ANOMALOUS SOUND EVENT

DETECTION ON LOW-POWERED DEVICES

ANTON ANDERSSON, 	
ALEXANDER MAGNUSSON

Master’s thesis
2023:E58

Faculty of Engineering
Centre for Mathematical Sciences
Mathematical Statistics

C
EN

TR
U

M
SC

IEN
TIA

R
U

M
M

A
TH

EM
A

TIC
A

R
U

M

Master’s Theses in Mathematical Sciences 2023:E58
ISSN 1404-6342

LUTFMS-3485-2023

Mathematical Statistics
Centre for Mathematical Sciences

Lund University
Box 118, SE-221 00 Lund, Sweden

http://www.maths.lu.se/

Abstract

Traditionally fault detection in industrial machinery has been performed manually by experi-
enced machine operators listening to the machines. However, it is desirable to automate this
process to increase efficiency and improve the working environment of the operators. The main
challenge in this thesis is to create a system that can accurately detect when an anomalous
sound event occurs, at the same time the system may not report too many false alarms. Addi-
tionally, the system must perform the detection fast enough for the detected anomalies to still
be relevant. This thesis therefore explores lightweight machine learning approaches to anoma-
lous sound event detection such as Gaussian Mixture Models (GMM) and One-Class Support
Vector Machines (OCSVM). The experiments evaluate how low-level descriptors from the time-,
spectral- and cepstral-domain perform as features modeling the characteristics of a sound seg-
ment. Another set of experiments evaluates if it is possible to detect anomalies fast enough to
achieve real-time anomaly detection. The results indicate that it is possible to detect anomalies
of sufficient magnitude in relation to the expected signal. Furthermore, it is found that it is
possible to detect anomalies at a speed fast enough to enable real-time anomaly detection on
limited hardware such as a Raspberry Pi 4. Lastly, a real-time anomaly detection application
based on the findings is presented together with the results for a few test runs.

Contents

1 Introduction 3
1.1 Previous work . 4
1.2 Problem statement . 6

2 Theory 7
2.1 Spectrograms & Short-Time Fourier Transform (STFT) 7
2.2 Gaussian Mixture Model & EM-algorithm . 10
2.3 Support Vector Machines (SVM) . 12

2.3.1 The linear classifier . 13
2.3.2 Nonlinearly separable data . 14
2.3.3 One-Class Support Vector Machines (OCSVM) 17
2.3.4 Feature scaling . 19

2.4 Signal-to-disturbance ratio (SDR) . 19
2.5 Classification metrics . 19
2.6 Real-time factor (RTF) . 20

3 Data 21
3.1 Augmented DCASE dataset (ADCASE) . 21
3.2 Self produced recordings . 22

4 Method 24
4.1 Windowing . 24
4.2 Features . 24

4.2.1 Time-domain features . 25
4.2.2 Spectral-domain features . 25
4.2.3 Mel-frequency cepstral coefficients (MFCC) 25

4.3 Thresholding . 27

5 Evaluation 29
5.1 Experiment setup . 29

5.1.1 Anomaly detection performance . 29
5.1.2 Training & inference speed . 30

5.2 Results . 30

1

5.2.1 Anomaly detection performance . 30
5.2.2 Training & inference speed . 32

6 Real-time anomaly detection application 34

7 Discussion 38
7.1 Anomaly detection performance . 38
7.2 Training & inference speed . 40
7.3 Real-time anomaly detection application . 41

8 Conclusion 42
8.1 Future work . 43

9 Thank you 44

2

Chapter 1

Introduction

Automation of industrial machinery is an essential problem on the road to the fourth industrial
revolution. Automated fault monitoring is a key component in the quest to reach full automation,
allowing for optimized service schedules and reduced maintenance downtime. One approach to
fault monitoring is through anomaly detection. Anomaly detection is a process that aims to
detect patterns in data that do not conform to some definition of normalness. Patterns that
deviate from the normal are often of interest, as they may indicate that something is wrong.
As an example, in the application of industrial machine monitoring, an anomaly might indicate
that a machine is about to malfunction, which could stop production or potentially cause harm
both to man and machine. It is therefore desirable to detect anomalies so that the machine can
be serviced in a safe manner, reducing the impact on production.

In an industrial setting this type of anomaly detection has traditionally been done by machine
operators who - through experience - have learned how a certain machine should or should not
sound. It is however desirable to automate this process for many reasons, an automated system
could run at all hours, removing the dependency of always having an experienced operator
present. Furthermore, a lightweight, cheap and easily maneuvered anomaly detection system
scales far better than having individual operators listening for anomalies, which affords the
possibility to increase the number of machines covered at the same time. Lastly, offloading
this responsibility from the operators may also improve the working environment by reducing
their exposure to harmful noise, that could potentially damage their hearing. This thesis will
therefore focus on sound anomaly detection in an industrial setting.

On a high level, it is rather trivial to define normal behavior and classify outlying data as
anomalies. But in reality, it is much more challenging. One of the big challenges is to find labeled
anomaly data. In the context of industrial machine monitoring, anomalies could represent events
where a machine is about to malfunction, which can be assumed to be a very rare event, hence
very little data of such events exist. Furthermore, the specific machines might be few enough and
too expensive to intentionally break for data collection purposes. In contrast, data of normal
behavior is often much easier to come by, as it is assumed that a machine operates in normal
conditions most of the time.

3

Since data of normal behavior is often much more readily available than anomalous data, the
problem of anomaly detection is often approached by creating a model only using normal data.
The problem of determining whether new samples are anomalous or not is treated as a clas-
sification problem where samples that fall within some boundary around the normal behavior
determined by the model are classified as normal, while samples outside the boundary are clas-
sified as anomalies [1].

Another challenge is that of the response time of the detection system. If it takes too long to
analyze a segment of sound and flag potential anomalies, it might already be too late to take
action when the warning is raised. It is therefore important that such a system can operate in
real-time, detecting anomalies as they occur [2].

This report is divided up into two major parts, a pre-study, and an application. The pre-study
aims to evaluate whether it is feasible to separate anomalies from normal sound, and if it can be
done fast enough to achieve real-time anomaly detection. The pre-study compares two models,
one based on Gaussian Mixture Models (GMM) and one based on Support Vector Machines
(SVM). The performance of different feature sets is evaluated for both of the models in order to
find a set of features that accurately model the detection problem. The second part proposes an
application detecting anomalies and providing visual feedback in real-time using a pre-trained
model running on a Raspberry Pi.

The general steps of an anomalous sound event detection workflow is presented in Figure 1.1.
Let it serve as an overview to refer back to when reading the report.

1.1 Previous work

DCASE2020 Challenge Task 2: Unsupervised Detection of Anomalous Sounds for Machine Con-
dition Monitoring presents a related problem. The task is to train an anomaly score calculator
on ten second long normal sound segments. The calculator is trained so that a segment con-
taining an anomaly is given a large score and a segment without any anomalies gets a low score.
The calculator should also output a large anomaly score when parts of the ten second segment is
anomalous, rather than only when the whole segment is considered to be anomalous. The goal
in DCASE2020 Challenge Task 2 is thus to determine if there exists an anomaly somewhere in
a ten second segment regardless of where in the segment it is located or how large part of the
segment is considered to be anomalous [3].

In the past, sound event detection (SED) have often made use of GMMs and Hidden Markov
models (HMM), using hand-crafted time and frequency domain features [4]. In order to improve
on these models other models such as One-Class Support Vector Machines (OCSVM) and Deep
Neural Networks (DNN) have gained popularity [2].

Models based on DNNs are often mentioned in previous work. While these kinds of models offer
advantages when working with multivariate and high dimensional data and often boast impres-
sive performance, they also suffer some disadvantages. DNNs require large amounts of data for
training. Storing and processing enough data for these models may not be feasible depending on
the hardware the models should run on. Anomaly detection is commonly performed in real-time

4

a) Sound recording

A sound signal typically from a recording device that has been sampled to digital data.
For the purpose of machine monitoring this is likely to be a recording of the machine in
normal operation. Chapter 3 covers the kinds of sound we have been working with.

b) Preprocessing

Before the sound is fed to the system any modifications to the raw data are carried out.
Section 3.1 goes through how testing data is created by adding our own disturbances to
sound recordings, to help evaluate the system.

c) Windowing

The data is divided into workable chunks, called windows, as explained in Section 4.1.

d) Feature extraction

From each window of raw data a set of features are extracted. Each set represents one
data point. Section 4.2 describes how this is done and the features we use.

e) Model Training

With the training features, a model is trained to learn the characteristics
of normal sound. In Section 5.1 we go through the specifics of training two
types of models.

f) Anomaly detection

With the testing features, the trained model is able to make predictions whether new
sound is normal or abnormal. Utilizing a couple of handy metrics the model is evalu-
ated on the prediction results, as reported in Section 5.2.

Raw sound signal

Raw training data Raw testing data

Windows of raw training data Windows of raw testing data

Training features

Testing featuresTrained model

Figure 1.1: An anomalous sound event detection workflow.

5

which requires low latency. Estimating the parameters for a DNN may be too computationally
expensive to be viable [5].

1.2 Problem statement

The goal of this project is to investigate whether it is feasible to detect sound anomalies in
real-time, relieving machine operators of this duty. Since the idea is to replace human beings
as detectors we have limited the scope of this thesis to only consider sound within the human
hearing range. We want to run the application on the device that record the data in order to
reduce the complexity and logistics required to operate the application. In addition, keeping
collected data on the recorded devices simplifies the handling of data in compliance with privacy
laws. The devices that record the audio often have limited hardware capabilities, comparable
to a Raspberry Pi model 4B, we therefore consider lightweight models such as GMMs and
SVMs.

In order to reach the goals of this project, the following questions were posed:

• Is it possible to train lightweight machine learning models such as GMMs and SVMs to
detect anomalies in an environment with limited variability in background noise and types
of anomalies?

• Is either a GMM or a SVM more suitable for the detection problem, both in terms of
detection performance and speed?

• Can low-level descriptors such as time-domain, spectral-domain and cepstral-domain fea-
tures accurately model the anomaly detection problem?

• How does characteristics such as duration, frequency and magnitude of an anomaly affect
its detectability?

• Is it possible to create a fast enough application to perform anomaly detection in real-time
on hardware with limited performance, such as a Raspberry Pi?

6

Chapter 2

Theory

The following section introduces the theory that the thesis builds upon. Section 2.1 introduces
the digital signal processing concepts used to represent, analyze and visualize audio signals.
Sections 2.2 and 2.3 introduces the machine learning models used to model the anomaly detection
problem. Sections 2.4, 2.5 and 2.6 introduces the different metrics used to evaluate the proposed
models performance for the anomaly detection task.

2.1 Spectrograms & Short-Time Fourier Transform (STFT)

The Fourier transform is a useful tool to extract the frequency components of a signal. Normally
the Fourier transform analyzes a whole signal at once. However, in the application of detecting
anomalies in sound it is of interest to analyze how the frequency representation changes over
the duration of the signal.

In order to capture changes within the signal, the signal is divided up into shorter segments,
known as windows. A partial example of the windowing process can be seen in Figure 2.1, where a
signal is divided into shorter overlapping windows. The Fourier transform is then applied locally,
to each of the M windows. Figure 2.2 illustrates a partial example transforming two, consecutive
windowed segments from the time domain to the frequency domain via a Fourier transform. This
process of windowing a signal and applying the Fourier transform to the individual windows is
known as the short-time Fourier transform, or STFT. The result of the STFT can be seen as
a time-frequency distribution, where time is represented by the frame number m and the k-th
frequency bin, resulting in a N x M matrix. The STFT is defined as

X(k,m) =

N−1∑
n=0

x(n+mH)w(n)e−j 2π
N

kn, k = 0, 1, ..., N − 1 (2.1)

where N is the length of the Fourier transform, x(n) is the signal, w(n) is the window function
of length N , m is the frame number, and H is the hop-size [6].

The complex-valued result of an STFT can be visualized in a more intuitive manner by taking the
absolute value of the STFT, also known as a magnitude spectrogram in the following way,

7

S(k,m) = |X(k,m)|. (2.2)

Plotting each of the M magnitudes results in a three-dimensional image, showing how the
frequency content of the signal changes over the duration of the signal. Figure 2.3 depicts an
example of a spectrogram for a ten second segment of industrial fan sound.

(a) A two second long audio signal. (b) The signal in Figure 2.1a and the first two consec-
utive windows.

(c) The resulting windowed segments after windowing
as in Figure 2.1b

Figure 2.1: A partial example demonstrating windowing a two second long signal. The result of
extracting the first two overlapping windowed segments is shown.

8

(a) The first windowed signal from Figure 2.1c and its spectrum.

(b) The second windowed signal from Figure 2.1c and its spectrum.

Figure 2.2: A partial example showing how the windowed signals are Fourier transformed to show the
frequency content of each window.

9

Figure 2.3: By repeating the windowing process throughout the whole signal in Figure 2.1c), Fourier
transforming the windowed segments as in Figure 2.2 and aligning them on a time-axis results in the
following spectrogram.

2.2 Gaussian Mixture Model & EM-algorithm

When modelling data it is common to assume that observations of a data set originate from a
single distribution, for which we can estimate the parameters. However in a reality this is often
not the case, as data is often much more complex, with data containing multiple regions with
high probability mass. The concept of mixture models approaches this problem by assuming
that the observations come from multiple unimodal distributions, or components mixed together
[7].

A Gaussian mixture model (GMM) is a model combining K multivariate Gaussian distributions.
Each Gaussian, called a component has its own mean µk and covariance Σk as following,

p (xi | θ) =
K∑
k=1

πkpk (xi | θ) =
K∑
k=1

πkN (xi | µk,Σk) (2.3)

10

where the mixture parameter πk is the probability choosing the k-th component. Whereas the
mixture component, pk (xi | θ) represents the distribution of xi given that it originates from the
k-th component. In a dataset with I l-dimensional data points, xi, is a l-dimensional vector
representing the i-th data point such that xi = [xi,1, xi,2, ..., xi,l] [7].

A visual example of a GMM can be seen in Figure 2.4 where the left plot shows two clusters
of data points in two dimensions, and the right plot visualizes the result of a GMM with two
Gaussian components. The respective centers of the two components are marked with an X
each in the right plot. The right plot can be thought of as a density estimation of the two
point clusters from the left plot. The darker colored regions represent a higher density of points,
corresponding to a higher probablility of a data point laying in the region belonging to the
cluster. Conversely the lighter regions represent lower density regions, corresponding to a lower
probablility of a point laying in that region belonging to that cluster. When applying GMMs to
anomaly detection the goal is to draw some boundary in the right plot, with points lying outside
this boundary are to be classified as anomalies. In this example the points marked with a red
star are classified as anomalies.

Figure 2.4: The left plot shows two clusters of points in two dimensions. The right plot visually explains
how a GMM with two components is applied to the two clusters. The colored regions indicate the density
of points in the region, the darker the color, the higher the probability of a point belonging to that cluster
and vice versa. The red stars indicate points that are classified as anomalies.

The Expectation–maximization (EM) algorithm finds the maximum likelihood of the parameters
in the model depending on the latent variables z by iterating the two steps, the expectation
(E) step and the maximization (M) step. The E-step estimates a likelihood function w.r.t to
the current parameters (µ,Σ) and the M-step computes the maximum likelihood estimation
of (µ,Σ) using the likelihood function from the previous E-step. The likelihood function is as
following,

11

ℓ(θ) =
N∑
i=1

log p (xi | θ) =
N∑
i=1

log

[∑
zi

p (xi, zi | θ)

]
, (2.4)

since zi is unknown, it is not possible to compute the likelihood. Therefore the auxiliary func-
tion

Q(θ,θ(t−1)) =
∑
i

∑
k

rik log πk +
∑
i

∑
k

rik log p (xi | θk) (2.5)

is introduced. Q(θ,θ(t−1)) makes use of the previous parameters θ(t−1) in the process of esti-
mating the likelihood function. rik is the weight of point i in cluster k. The E-step is computed
as following,

rik =
πkp

(
xi | θ(t−1)

k

)
∑

k′ πk′p
(
xi | θ(t−1)

k′

) , (2.6)

which relates to πk by

πk =
1

N

∑
i

rik =
rk
N

, (2.7)

where rk is the weighted points belonging to cluster k [7].

The M-step optimizes Q with respect to, π and θk, leading to

ℓ (µk,Σk) =
∑
k

∑
i

rik log p (xi | θk) =

− 1

2

∑
i

rik

[
log |Σk|+ (xi − µk)

TΣ−1
k (xi − µk)

] (2.8)

The maximum likelihood estimation lead to the following estimations of µk and Σk

µk =

∑
i rikxi

rk
, (2.9)

Σk =

∑
i rik (xi − µk) (xi − µk)

T

rk
=

∑
i rikxix

T
i

rk
− µkµ

T
k . (2.10)

2.3 Support Vector Machines (SVM)

The section will begin with an explanation of the original linear classifier from the 1960s and
carry on to introduce the necessary extensions for the nonlinearly separable cases, and end
with the one-class classification version. For accessibility the figures are bounded to the two
dimensions of the paper, however, the properties of the SVM machinery carry over to any
dimensionality.

12

x2

x1

w
Tx+ b = 0

w
Tx+ b = 1

w
Tx+ b = −1

w

2∥
w
∥

b∥
w
∥

Figure 2.5: A maximum-margin hyperplane and margins for an SVM trained with samples from two
classes. The marked samples lie on the margin boundaries and are called support vectors.

2.3.1 The linear classifier

SVM, based on the Vapnik-Chervonenkis theory, are non-probabilistic binary linear classifiers
[8]. Given a set of labelled training samples, the SVM finds the parameters to the maximum-
margin hyperplane,

wTx+ b = 0, (2.11)

that separates the two classes in the sample space. New points are classified according to what
side of the hyperplane they belong using

ŷ = sign(wTx+ b) ŷ ∈ {−1, 1}, (2.12)

following the convention that sign(a) equals 1 for a ≥ 0 and −1 otherwise. Looking at Figure
2.5, the points are linearly separated by the hyperplane with the largest margin to the points on
either side, minimizing the generalization error. The points that fall on the margin boundary,
the dotted lines in the figure, are called support vectors and they completely determine the
hyperplane. In this case, when the points are linearly separable, the margin is called a hard-
margin, which means that no points are allowed to fall within the margin boundary.

The hard-margin duality optimization problem may be formulated as follows. Given a training
set containing M data points,

(xi, yi) yi ∈ {−1, 1} i = 1, . . . ,M,

with xi representing a sample vector and the corresponding yi being the class of the sample.
For the maximum-margin hyperplane the constraints

wTxi + b ≥ 1, if yi = 1 (2.13)

13

and
wTxi + b ≤ −1, if yi = −1 (2.14)

say that all sample points must lie on or on their side of the respective margin, as per the rules of
the hard-margin. Maximizing the margin 2

∥w∥ under constraints (2.13) and (2.14) is equivalent
with

minimize
w,b

1

2
wTw,

subject to yi(w
Txi + b) ≥ 1 ∀i ∈ {1, . . . ,M}.

(2.15)

In mathematical optimization theory (2.15) is called a primal problem and with the help of
Lagrangian multipliers under Karush-Kuhn-Tucker conditions the dual perspective is

maximize
α

L(α) =
M∑
i=1

αi −
1

2

M∑
i=1

M∑
k=1

yiykαiαkx
T
i xk,

subject to

M∑
i=1

αiyi = 0, and αi ≥ 0 ∀i ∈ {1, . . . ,M},

(2.16)

which is a convex quadratic programming problem with a standard optimization solution. αi are
called dual coefficients. From the dual formulation the relationship between α and w is

w =
M∑
i=1

αiyixi. (2.17)

αi = 0 when the point is on the correct side of the margin, otherwise when αi > 0 the point is
on the margin boundary, i.e. xi is a support vector. Consequently, w is a linear combination of
only the support vectors. b can be found by solving

ysv(w
Txsv + b) = 1 ⇐⇒ b = ysv −wTxsv ∀sv : αsv > 0, (2.18)

for any support vector xsv with label ysv. Note that if the points are not linearly separable the
path going from (2.15) to (2.16) breaks down.

2.3.2 Nonlinearly separable data

Extending SVM to handle the situation when the points are nonlinearly separable is typically
done by combining two complementing techniques. Figure 2.6 shows two types of point swarms.
In the swarm on the left all but two outlier points called nonmargin support vectors are linearly
separable, the points are slightly nonseparable. For this type of setup a hyperplane is used with
a soft-margin, allowing but penalizing margin violations, thus avoids fitting noise. A soft-margin
can be constructed using the hinge loss function

max
(
0, 1− yi(w

Txi + b)
)
. (2.19)

14

SeriouslySlightly

ξa

∥w∥

ξb

∥w∥

Figure 2.6: Two cases when points from two classes are not linearly separable. The red boundaries
illustrating the hyperplanes achieved using a soft-margin for the slightly case and a kernel method for
the seriously case. ξa, ξb > 0, is the amount of margin violation for each of the two offending points on
the left.

Incorporating the hinge loss function using the slack variable ξ in the objective function results
in the soft-margin primal,

minimize
w,b,ξ

1

2
wTw + C

M∑
i=1

ξi,

subject to yi(w
Txi + b) ≥ 1− ξi, and ξi ≥ 0 ∀i ∈ {1, . . . ,M}.

(2.20)

The penalty term C controls the strength of the penalty ξ, and acts as an upper bound for αi

in the dual problem,

maximize
α

L(α) =

M∑
i=1

αi −
1

2

M∑
i=1

M∑
k=1

yiykαiαkx
T
i xk,

subject to

M∑
i=1

αiyi = 0, and 0 ≤ αi ≤ C ∀i ∈ {1, . . . ,M}.

(2.21)

Apart from the restriction in the equality constraint, the soft-margin (2.21) is identical to the
hard-margin (2.16) dual optimization problem. After solving the quadratic programming prob-
lem of the Lagrangian, the hyperplane parameters are obtained from (2.17), and (2.18) with
the added constraint ∀sv : αsv < C, singling out the margin support vectors. Classification is
performed with (2.12).

15

φ

X -space Φ-space

Figure 2.7: A kernel machine involves solving a nonlinear problem in the X -space by utilizing a trans-
formation φ to map the input to a high-dimensional Φ-space where a linear classifier is effective. Graphic
adopted from Wikimedia Commons [9].

For the seriously swarm on the right in Figure 2.6 there is no good linear separation of the
points. However, there is a clear circular separation between the two classes, which can be
found by applying a kernel method. Figure 2.7 shows how a kernel machine can learn a nonlinear
separation by transforming the input data to a high-dimensional Φ-space where the points are
linearly separable. The computational cost of the transformation φ scales with respect to the
dimensionality of Φ-space, however there is often no need to calculate φ as in the case for SVM.
Due to exclusively needing the proper inner products of pairs of points from Φ-space it is possible
to use the kernel trick. The kernel trick relies on the kernel function,

K(xi,xk) =
〈
φ(xi), φ(xk)

〉
= φ(xi)

Tφ(xk), (2.22)

to take advantage of Φ-space while avoiding most of the expensive computational work of trans-
forming the coordinates with φ. For SVM the computational cost is instead only relative to the
number of training samples. By swapping out xi with φ(xi) in the soft-margin optimization
problem (2.21), the Lagrangian dual turns into

maximize
α

L(α) =

M∑
i=1

αi −
1

2

M∑
i=1

M∑
k=1

yiykαiαkK(xi,xk),

subject to

M∑
i=1

αiyi = 0, and 0 ≤ αi ≤ C ∀i ∈ {1, . . . ,M}.

(2.23)

16

Correspondingly with the weights,

w =
M∑
i=1

αiyiφ(xi), (2.24)

and the bias,

b = ysv −wTφ(xsv) = ysv −
M∑
i=1

αiyiK(xi,xsv) ∀sv : 0 < αsv < C, (2.25)

the classification function becomes

ŷ = sign(wTφ(x) + b) = sign

(
M∑
i=1

αiyiK(xi,x) + b

)
. (2.26)

Note that the support vectors only exist in the space that the support vector machinery is
working in. For a kernel machine it is in Φ-space, which means xsv are only pre-images of the
support vectors φ(xsv) as in Figure 2.7.

One of the most popular kernels to use with SVM is the Radial Basis Function (RBF),

KRBF (xi,xk) = exp(−γ∥xi − xk∥2), (2.27)

which implicitly operates in an infinite dimensionality without paying the computational price
for it. γ adjusts the reach of influence of a single training example and is dependent on the input
data. A rule of thumb is to scale γ according to γ = 1/(DimensionR(X) ∗Variance(x1, . . . ,xM).
Luckily, there is never a need to evaluate w in (2.24), an otherwise endless task when working
with the RBF kernel [10].

2.3.3 One-Class Support Vector Machines (OCSVM)

In its bare form SVM is a binary classifier, meaning it is capable of working with points from
two classes. Adaptations of SVM exist for Multi-Class classification, predicting for more than
2 labels, and One-Class classification, for outlier and novelty detection. Typically Multi-Class
classification is accomplished by combining multiple SVMs in a one-vs-all or one-vs-one fashion
for each combination of classes. In the One-Class version the points are separated from the origin
[11]. The parameter ν is introduced and acts as an upper bound of the fraction of training errors
and a lower bound of the fraction of support vectors. Figure 2.8 shows, for two values of ν, how
the hyperplanes might look like for the same set of samples. With the new problem formulation
the objective function looks like

minimize
w,ρ,ξ

1

2
wTw − ρ+

1

νM

M∑
i=1

ξi,

subject to wTφ(xi) ≥ ρ− ξi, and ξi ≥ 0 ∀i ∈ {1, . . . ,M},

(2.28)

17

ϕ2

ϕ1

ρ

∥w∥

ϕ2

ϕ1

ρ

∥w∥

νbνa

w
T
φ
(x
)−

ρ
=

0

w
T
φ
(x
)−

ρ
=
0

Figure 2.8: Two OCSVM hyperplanes separating the training samples from the origin illustrating the
effect of the ν parameter. 0 < νb < νa ≤ 1, meaning νb allows less outliers and the use of less support
vectors compared to νa.

and when solved for the dual Lagrangian the optimization problem emerge as

minimize
α

L(α) =
1

2

M∑
i=1

M∑
k=1

αiαkK(xi,xk),

subject to
M∑
i=1

αi = 1, and 0 ≤ αi ≤
1

νM
, ∀i ∈ {1, . . . ,M}.

(2.29)

With the parameters of the hyperplane,

w =

M∑
i=1

αiφ(xi), (2.30)

and

ρ = wTφ(xsv) =

M∑
i=1

αiK(xi,xsv) ∀sv : 0 < αsv <
1

νM
, (2.31)

novel samples are distinguished using

ŷ = sign(wTφ(x)− ρ) = sign

(
M∑
i=1

αiK(xi,x)− ρ

)
. (2.32)

18

2.3.4 Feature scaling

The SVM algorithm struggles with performance when the scaling and offset differs between
features. This is because of how the SVM works by optimizing distances to the hyperplane. A
value change from -100 to 100 could be as significant for one feature as a jump between 0 and
1 for another, but for the SVM the first change would have a stronger influence.

Therefore, scaling is applied to the samples prior to training and inference, after which the
standardized features have a mean of 0 and a unit variance scaling.

2.4 Signal-to-disturbance ratio (SDR)

The concept of SDR is introduced in order to relate the magnitude of a signal to the magnitude
of a disturbance affecting said signal, it is needed to compare how the relation between signal
and disturbance affects the detectability of an anomaly. The SDR is defined as follows,

SDR =
1
Ts

∑Ts
t=0 as(t)

2

1
Td

∑Td
t=0 ad(t)

2
, (2.33)

where Ts is the duration of the signal s, as(ts) is the amplitude of s at time t. Similarly Td is the
duration of the disturbance d, ad(td) is the amplitude of d at time t. In this definition of SDR,
a lower SDR value means that there is a lot of disturbance compared to signal, meaning that it
sbould be easier to separate the disturbance of the signal compared to the case of a higher SDR
value.

2.5 Classification metrics

The metrics Precision, Recall and F1-score were used in order to evaluate the anomaly detection
performance of the models. They are defined as follows,

Precision =
tp

tp+ fp
(2.34)

Recall =
tp

tp+ fn
(2.35)

F1 = 2 · precision · recall

precision + recall
, (2.36)

where tp is the true positives, fp is the false positives and fn is the false negatives. 0 ≤ Precision,
Recall, F1≤ 1, with a score closer to 1 being better and closer to 0 being worse.

19

2.6 Real-time factor (RTF)

In order to measure the speed of inferring whether a segment of sound is to be considered an
anomaly or not the concept real-time factor (RTF) is introduced. RTF is a metric that measures
the speed of a system by relating the processing time pt of a signal s, to the duration, Ts of s.
It is defined as follows,

RTF =
pt(s)

Ts
. (2.37)

It is useful when evaluating if a system is fast enough to process data in real-time. In order to
process data in real-time it is required that RTF ≤ 1.

20

Chapter 3

Data

The data used for the experiments is divided into two distinct sets. The first set is based on
the normal data from DCASE 2020 Challenge Task 2 that is then augmented with simulated
anomalies. The second dataset contains self produced recordings of fan sound in an office
environment.

3.1 Augmented DCASE dataset (ADCASE)

The data used was based on the DCASE 2020 Challenge Task 2 Development dataset, containing
ten second recordings of an industrial fan, with background noise from real factories mixed in,
in order to make it more realistic [12]. The sound is sampled at 16000 Hz. The data is split into
a training set and a test set. The training set only contains data of normal operating sound,
while the test set contains recordings of normal operating sound, as well as recordings containing
anomalies. In this thesis, the idea is to classify shorter segments than ten seconds and since the
test data only annotates a whole ten second segment as containing an anomaly or not, with no
information about how much of the segment is considered to be anomalous or where an anomaly
would be located, the anomalous test data is not useful.

Instead, a dataset was constructed where the normal test data from the DCASE 2020 Challenge
Task 2 dataset was augmented with simulated anomalies, henceforth known as the ADCASE
dataset. It contains examples of anomalies such as a 440 Hz sine wave at a fixed length, position,
and magnitude. This affords the possibility of labeling the augmented part as an anomaly and
everything else in the file as normal. Simulated anomalies are used in the pre-study in order to
examine whether the chosen models are able to separate an added disturbance from a normal
signal at all.

The simulations made use of normal test samples from the DCASE dataset [12]. The test
samples were modified by adding a tone in the form of a sine wave. In the resulting segment,
each frame is labeled either as anomalous - for the frames that we modified - or normal for the
frames that were unmodified. Figure 3.1 consists of four different plots (a-d), aiming to show
how a disturbance can be visualized. Figure 3.1 a) shows a normal signal from the DCASE

21

Figure 3.1: a) A signal without any anomalous disturbance. b) The spectrogram corresponding to the
signal in a). c) Signal a) augmented with a simulated anomaly. d) The spectrogram corresponding to
signal c). The anomaly is a 440 Hz sine wave in the interval [1.5, 3] seconds with an SDR of 0.4.

dataset and its spectrogram in b). In c) and d) below, the same signal and its spectrogram are
shown augmented with a disturbance between 1.5 and 3 seconds in the form of a 440 Hz sine
wave with SDR 0.4. The bottom two plots in Figure 3.1 clearly visualize the added disturbance.
In plot c), it can be seen as increasing amplitude values in the interval where the anomaly is
added. The spectrogram in Figure 3.1 d) shows the disturbance as a larger intensity in the
interval of [1.5, 3] seconds, around the frequency of the disturbance.

3.2 Self produced recordings

There were two problems that motivated the creation of an additional new dataset. While
the ADCASE dataset solved the problem of annotating where an anomaly occurred, it is not
very realistic as it is unlikely that potential anomalies would take the shape of a pure sine tone.
Furthermore, it was desired to test the models with chunks of sound shorter than the ten seconds
of the ADCASE dataset. Since there is no way of knowing where an anomaly is located in one
of the ten-second-long anomalous files, it was not possible to split them up into smaller chunks.
Hence it was decided that it would be favorable to record sound where it was possible to choose
how large chunks to process at a time and where anomalies are located. The new dataset was

22

Figure 3.2: The experiment station for sound recording and performing live trials. a) Recording device,
Jabra Speak 510. b) Computer, Raspberry Pi 4 model B 4GB. c) Computer case fans. d) Power supplies
for driving the Raspberry Pi and the fans, and spare fans. e) Disturbance invoking tools.

created by recording sound on a Raspberry Pi 4B using a Jabra Speak 510 external microphone
connected via USB, sampled at 16000 Hz. Figure 3.2 depicts the setup used to record sound.
A computer case fan - visible in Figure 3.2 c) - was used to produce sound used as a signal.
The recordings also include background noise from the office environment where the setup is
located.

23

Chapter 4

Method

The method section describes how the theory and the data presented in the previous two chapters
are used to create models for anomaly detection. Section 4.1 introduces the choice of the
windowing function used when performing the STFT. Continuing on, Section 4.2 introduces the
different feature sets that were evaluated in modeling the anomaly detection problem. Lastly,
Section 4.3 introduces the method of thresholding used to decide if an anomaly score is large
enough for the corresponding sample to be marked as an anomaly.

4.1 Windowing

The signal is split up into frames, each frame containing 1024 samples, corresponding to N =
1024 and each frame overlapping by 50%, corresponding to H = 512. The windowing function,
w(n) is the Hamming window defined as

w (n) = 0.54− 0.46 · cos
(

2πn

N − 1

)
, 0 ≤ n ≤ N − 1, (4.1)

where N is the number of samples or the width of the window [13].

4.2 Features

Six groups of features were extracted from the framed signals. The first three groups of features
are the time domain, spectral domain, and Mel-frequency cepstral coefficients (MFCC). In addi-
tion to these three groups, there is the concept of delta (∆) features. Delta features are defined
as the difference between the value of a feature in two consecutive frames. The remaining three
groups are constructed by adding the respective delta features to each of the three groups, time
domain features, spectral domain features, and MFCC features. The resulting six groups of
features, now known as Time, Time+∆, Spectral, Spectral+∆, MFCC, and MFCC+∆. These
six feature sets will be evaluated against each other in order to discern which set is most suitable
for the anomaly detection problem.

24

4.2.1 Time-domain features

The time-domain feature set consists of three metrics, zero crossing rate, energy, and energy
entropy. All of the time-domain features are extracted from the signal samples. Zero crossing
rate is a metric that measures how many times a signal crosses the x-axis within a frame. The
energy feature measures the normalized sum of square energy in a frame. Energy entropy is the
entropy of the normalized energy of subsections of a frame, it is a measure of sudden changes in
energy [14]. For each of the three metrics the delta features are also computed, corresponding to
the difference between the value of the metric for two consecutive frames, leading to two groups,
time-domain features and time-domain plus delta time-domain features respectively.

4.2.2 Spectral-domain features

The spectral-domain feature set contains five features all derived from the magnitude spectrum
of the Fourier transform of a frame. The five features are spectral centroid, spectral spread,
spectral entropy, spectral flux, and spectral roll-off. Spectral centroid is a measure of the center
of mass of a spectrum. Spectral spread measures the spread of the spectrum around the spectral
centroid. The spectral entropy of a frame is a measure of the entropy of the spectral energies over
a set of subframes. Spectral flux is a measurement of the square magnitude difference between
two consecutive frames. Spectral roll-off is the frequency where cut-off below which 90% of the
magnitude is located [14]. In addition to the five features, the delta values of each feature,
for all consecutive frames are computed, resulting in two groups, spectral-domain features and
spectral-domain plus delta spectral-domain features respectively.

4.2.3 Mel-frequency cepstral coefficients (MFCC)

MFCCs are a set of features commonly used in speaker recognition. MFCCs are based on the
mel-scale. The human perception of pitch is not linear, humans are better able to distinguish a
difference in frequency in low frequencies compared to high frequencies. The mel-scale relates
how humans perceive sound to its actual frequency in hertz, such that the perceived difference
in pitch is the same for a fixed difference in mels. While MFCCs are optimized for human speech
as opposed to industrial machines, they could still be useful as they capture an overview of the
spectral characteristics of a frame [2].

The filterbank consists of Q = 40 filters with equal area in the frequency range [133, 6854] Hz,
where Q = Qlinear + Qlog. The first 13 filters corresponding to Qlinear = 13 filters are linearly
spaced, with a step of 66.67 Hz and center frequencies (CF) in the range [200, 1000] Hz. The
following 27 filters are spaced on a logarithmic scale, with CFs in the range [1071, 6400] Hz
according to

logStep = exp

(
ln

(
fc40
1000

)
/Qlog

)
, (4.2)

where fc40 is the 40-th, and last center frequency. Qlog = 27 represents the 27 filters that are
logarithmically spaced. The filterbank consists of triangular filters computed as

25

Figure 4.1: Triangular filter spacing [15].

Hi(k) =

0 for k < fbi−1

2
(
k−fbi−1

)
(
fbi−fbi−1

)(
fbi+1

−fbi−1

) for fbi−1
≤ k ≤ fbi

2
(
fbi+1

−k
)

(
fbi+1

−fbi

)(
fbi+1

−fbi−1

) for fbi ≤ k ≤ fbi+1

0 for k > fbi+1

(4.3)

Where i is the i-th of the 40 filters, fbi represents the boundary points where a triangular filter
begins and ends. k represents the k-th frequency bin of the STFT. The factor, 2/

(
fbi+1

− fbi−1

)
,

is included in 4.3 in order to ensure that all of the filters are of equal area. The resulting filter
bank after normalization is depicted in Figure 4.2.

To get the log energies in each filter, the logarithm is computed on the result of applying the
filterbank (4.3) on the magnitude (2.2) of the STFT. The last step to acquire the MFCC is to
apply the Discrete Cosine Transform to the log energies as follows,

Cp =

Q∑
i=1

Yi · cos
(
p · (i− 1/2) · π

Q

)
, p = 1, 2, . . . , P, (4.4)

where Cp is the p-th coefficient, Q is the number of filters in the filterbank and Yi is the log-energy
in the i-th filter computed as,

Yi = log10

(
N−1∑
k=0

S(k,m) ·Hi(k)

)
, i = 1, 2, . . . , Q, (4.5)

for all of the m framed segments [16].

The first 13 coefficients are kept as features, corresponding to P = 13 [14]. In addition to the 13
MFCC, the respective delta values for coefficients of consecutive frames are computed, resulting
in two groups, MFCC features and MFCC plus delta MFCC features respectively.

26

Figure 4.2: Equal area mel filter bank containing 40 filters.

4.3 Thresholding

The frames are classified as anomalies on a frame-by-frame basis for both models. Figure 4.3
show - from top to bottom - a normal signal, that same signal with a disturbance added, and
the anomaly score of each frame together with the anomaly threshold. For the GMM-based
model, the anomaly score is the negative log-likelihood of a sample frame, and the threshold is
the 99-th percentile of the negative log-likelihood scores for the training data. For the SVM-
based models the threshold is simply the hyperplane and the score is the negative output from
the decision function, i.e. the negative of the signed Euclidean distance to the hyperplane,
−(wTφ(x) − ρ). Every frame with a score above the threshold is classified as an anomaly. An
example of thresholding for a GMM model can be seen in Figure 4.3 c), where the red dashed
line represents the threshold.

27

Figure 4.3: a) A ten-second audio signal. b) The signal in a) with an added disturbance with SDR 0.4.
c) The negative log-likelihood scores of each frame in signal from plot b) and the anomaly threshold for
a GMM-based model.

28

Chapter 5

Evaluation

This chapter focuses on evaluating the suitability of the two models, the GMM and the OCSVM,
for the anomaly detection task. The evaluation is split into two parts. The first part aims to
evaluate whether the anomaly detection performance is good enough to detect sound anomalies
in a signal, such as sound from a fan. The second part of the evaluation focuses on the speed of
the models, both in terms of RTF, but also in terms of training time.

The chapter starts out by introducing the different experiments and the conditions which the ex-
periments were conducted under, it then goes on to present the results of said experiments.

5.1 Experiment setup

The experiments are divided up into two categories. The anomaly detection performance ex-
periments investigate whether it is at all possible to distinguish anomalies from normal signals.
These experiments use the ADCASE dataset. The second category of experiments concerns real-
time anomaly detection using self-produced recordings of fan sound. These experiments first
evaluate whether the prerequisites for running real-time anomaly detection are fulfilled.

5.1.1 Anomaly detection performance

This subsection consists of experiments analyzing how SDR, frequency, and duration of a distur-
bance affect the ability of a model to separate the disturbance from the signal. The experiments
are performed on the ADCASE dataset, consisting of 100 normal ten-second segments of train-
ing data and a test dataset containing 100 ten-second segments containing anomalies. There are
three main experiments in this section, using the MFCC feature set. The first experiment varies
the SDR in the range [0.01, 100.00] while fixing the frequency and duration to 440 Hz and 1.5
s respectively. The second experiment instead fixes the SDR at 1.00 and the frequency at 440
Hz, while comparing the results of a disturbance duration between 0.05 and 1.5 s. The third
experiment fixes the SDR at 1.00 and the duration to 1.5 s, while letting the frequency take on
the values 440, 110 and 55 Hz and observing the effect on the results. In addition to the three

29

experiments, an additional experiment was conducted for the time- and spectral feature sets
with disturbances having 0.01 SDR, a duration of 1.5 s, and a frequency equal to 440 Hz.

The GMM-based models used diagonal covariance, 16 components, and 25 iterations. The
threshold is set at the 99-th percentile, meaning that all test scores outside the 99-th percentile
of normal scores are classified as anomalies by the model as seen in Figure 4.3.

The OCSVM model was trained with γ = 0.1, for the RBF kernel, and ν = 0.05, dictating the
upper bound fraction of outliers and the lower bound fraction of support vectors when finding
the hyperplane. Additionally, the cache size was set to 2000MB. Before the data is fed to the
OCSVM model it is scaled to zero mean and unit variance.

5.1.2 Training & inference speed

The real-time prerequisites are evaluated by measuring how the GMM and OCSVM models
perform on limited hardware. The evaluation is done both in terms of RTF, as well as the time
it takes to train the model. RTF and training time are compared both between models, but also
for different lengths of training data.

The first experiment, measuring RTF listens to a segment of sound. After the segment of sound
is recorded a timer starts recording the time it takes to compute the STFT of the segment,
extract MFCC features, score the features according to the model, classify as an anomaly if
the scores exceed the threshold, and lastly send the spectrogram, anomaly score, and threshold
data to a client that can visualize it. The experiment measuring the RTF is left to run for ten
minutes where all the RTF values are recorded. The segments used in the RTF measurements
are 0.256 seconds long.

The second experiment, measures the training time of both models, including the time spent
extracting MFCC features and computing the threshold.

The measurements for both RTF and training time are repeated for both the GMM and OCSVM,
both trained on both 60 and 180 seconds of data.

5.2 Results

In this section, the results of the pre-study are presented. The section is divided up into two
subsections, the first one evaluates the anomaly detection performance by measuring precision,
recall, and F1-scores as in Equations 2.34, 2.35 and 2.36, for disturbances of varying magnitude,
frequency and duration. The second subsection evaluates the training and inference speed of
the system.

5.2.1 Anomaly detection performance

This subsection consists of three experiments each for both the GMM and OCSVM models,
evaluating how the SDR, length, and frequency of a disturbance affect the possibility of detecting
said disturbance using MFCC features. An additional experiment compares the performance of
a couple of alternative feature sets, at an SDR where the performance of the MFCC features

30

starts to deteriorate. The evaluation metrics used are mean and standard deviation of precision,
recall, and F1-scores for frames labeled as anomalies.

The experiment results in Table 5.1 showcase the impact of SDR values between 0.01 and 100.00.
The frequency and disturbance duration are locked at 440 Hz and 1.5 s respectively.

SDR µPrecision σPrecision µRecall σRecall µF1 σF1

G
M
M

0.01 0.8811 0.1600 1.0000 0.0000 0.9264 0.1246
0.50 0.8778 0.1633 0.8698 0.1602 0.8496 0.1541
1.00 0.8698 0.1736 0.6050 0.2638 0.6591 0.1972
100.00 0.1125 0.1645 0.0447 0.1392 0.0393 0.0808

O
C
S
V
M

0.01 0.7788 0.1986 1.0000 0.0000 0.8590 0.1522
0.50 0.7715 0.1974 0.9046 0.1187 0.8055 0.1328
1.00 0.7332 0.1982 0.6733 0.2689 0.6361 0.1686
100.00 0.1095 0.1160 0.0844 0.1711 0.0734 0.0997

Table 5.1: Test results for different SDR values using MFCC features. The frequency is fixed at 440 Hz
and the duration of the signal is 1.5 s.

The second experiment, with results as seen in Table 5.2 evaluates the effect of changing the
duration of the disturbances. The length of the disturbances is between 0.05 s and 1.50 s, with
SDR and frequency fixed at 1.00 and 440 Hz respectively.

Duration [s] µPrecision σPrecision µRecall σRecall µF1 σF1

G
M
M

1.50 0.8698 0.1736 0.6050 0.2638 0.6591 0.1972
0.50 0.7283 0.2623 0.5859 0.2650 0.5791 0.2097
0.25 0.6424 0.2910 0.5922 0.2666 0.5310 0.2105
0.05 0.3916 0.3284 0.5000 0.2345 0.3660 0.2318

O
C
S
V
M

1.50 0.7332 0.1982 0.6733 0.2689 0.6361 0.1686
0.50 0.5209 0.2522 0.6524 0.2673 0.4881 0.1611
0.25 0.3919 0.2720 0.6456 0.2846 0.3891 0.1770
0.05 0.1984 0.2554 0.5467 0.2393 0.2200 0.1814

Table 5.2: Test results for different disturbance durations using MFCC features. The frequency and
SDR of the disturbance is fixed at 440 Hz and 1.00 respectively.

Table 5.3 shows what kind of significance three different disturbance frequencies, 440, 110 and
55 Hz, have on the detection performance. The length the disturbances are fixed to 1.5 s and
the SDRs are fixed to 1.00.

31

Frequency [Hz] µPrecision σPrecision µRecall σRecall µF1 σF1

G
M
M

440 0.8698 0.1736 0.6050 0.2638 0.6591 0.1972
110 0.7168 0.2650 0.2560 0.2666 0.2951 0.2201
55 0.1098 0.1799 0.0453 0.1431 0.0380 0.0844

O
C
S
V
M 440 0.7332 0.1982 0.6733 0.2689 0.6361 0.1686

110 0.6411 0.2085 0.4462 0.2938 0.4383 0.1987
55 0.1094 0.1179 0.0842 0.1753 0.0714 0.1008

Table 5.3: Test results for disturbances of different frequencies using MFCC features. The duration and
SDR of the disturbance are fixed at 1.5 s and 1.00 s respectively.

The results of the fourth experiment in Table 5.4 evaluate the performance of the six different
feature sets mentioned in Section 4.2. The tested disturbances are of length 1.5 s, with an SDR
of 1.00 and a frequency of 440 Hz. Each experiment is shown for both a GMM-based model and
an OCSVM-based model.

Feature set µPrecision σPrecision µRecall σRecall µF1 σF1

G
M
M

Time 0.2215 0.3283 0.0209 0.0403 0.0351 0.0614
Time+∆ 0.0316 0.1270 0.0034 0.0099 0.0053 0.0159
Spectral 0.1344 0.2792 0.0711 0.1930 0.0579 0.1228
Spectral+∆ 0.0883 0.2288 0.0385 0.1473 0.0306 0.0881
MFCC 0.8698 0.1736 0.6050 0.2638 0.6591 0.1972
MFCC+∆ 0.7101 0.2405 0.2087 0.1953 0.2764 0.1924

O
C
S
V
M

Time 0.8234 0.2173 0.6827 0.1548 0.7283 0.1623
Time+∆ 0.6363 0.2489 0.3483 0.1667 0.4256 0.1748
Spectral 0.2977 0.2792 0.1702 0.2635 0.1517 0.1725
Spectral+∆ 0.1633 0.1626 0.0992 0.1957 0.0885 0.1092
MFCC 0.7332 0.1982 0.6733 0.2689 0.6361 0.1686
MFCC+∆ 0.5624 0.1376 0.6190 0.2661 0.5433 0.1487

Table 5.4: Test results comparing the performance of the six different feature sets. The disturbance has
a duration of 1.5 s, a frequency of 440 Hz, and an SDR value of 1.00 for all six measurements.

5.2.2 Training & inference speed

The result of measuring the RTF for ten minutes resulted in the maximum and mean RTF is
shown in Table 5.5. The measurements are performed on an application running a GMM, as
well as an algorithm running an OCSVM model, both using the MFCC feature set.

32

Model Uptime (s) maxRTF µRTF

GMM 600.64 0.29583 0.04618
OCSVM 601.59 0.41050 0.04873

Table 5.5: RTF measured running the real-time application. The RTF is recorded both using a GMM
and an OCSVM, both using the MFCC feature set. The RTF was measured during an approximately
ten-minute long run of each model.

Both models, the GMM and OCSVM were compared in terms of training time (TT) (Including
extracting MFCC features), both for 60 and 180 seconds of training data (TDD), Table 5.6 shows
the resulting maximum and mean TT, as well as the ratio between mean TT and TDD.

Model TDD (s) maxTT (s) µTT (s) µTT
TDD

GMM 60 7.47 6.07 0.10
OCSVM 60 0.72 0.70 0.01
GMM 180 12.74 12.27 0.07
OCSVM 180 2.10 2.07 0.01

Table 5.6: Training time (TT) (including MFCC feature extraction) for GMM and OCSVM using 60
and 180 seconds of training data (TDD). Each model was trained ten times for each duration of training
data.

33

Chapter 6

Real-time anomaly detection
application

Based on the results from the evaluation chapter, an example of a real-time anomaly detection
application was created. The application leverages a pre-trained model, either a GMM or
OCSVM to compare an incoming segment of sound to the model by computing its anomaly
score, classifying the segment as an anomaly if the anomaly score if it exceeds the threshold.
The application runs on a headless Raspberry Pi 4 and also sends anomaly score, threshold, and
STFT data to a client able to visualize it for monitoring. If the application is able to process a
chunk before the next one arrives real-time anomaly detection is achieved.

The application consists of three Python programs.

• The first program records sound sampled at 16000 Hz, the duration of the recording is
chosen by the operator. This program is when creating a training dataset using only
normal operating sound, such as in Section 3.2.

• The second program trains either a GMM or OCSVM model on the previously recorded
training data. The trained model is saved for use in the next step. Additionally, the
threshold is computed from the training data.

• The third program is the actual real-time anomaly detection application. The application
starts by loading the pre-trained model, it then starts a loop alternating between listening
to 0.256 s long segments of sound, classifying them as anomalies or not, and then sending
the data to a receiver for monitoring.

The hardware setup used for the application is shown in Figure 3.2, it is used both to record
training data and for listening in real-time when running the application. The training data is
recorded as described in Section 3.2. When running the application and monitoring the incoming
sound, the application listens to 0.256 s long segments sampled at 16000 Hz.

Figure 6.1 shows a snapshot from a run of the real-time application trained on 180 seconds of fan
sound. It consists of three graphs showing the anomaly score for the GMM, the anomaly score

34

for the OCSVM, and a spectrogram respectively. All three graphs depict the same time segment.
The snapshot contains a few different disturbances composed from a desk situated roughly two
meters away from the experiment station in Figure 3.2. From left to right in the spectrogram
in Figure 6.1 c), at 10.24 seconds there is a short whistling sound, the anomaly score indicates
that this is anomalous as it sharply increases for the duration of the whistle as seen in both
Figures 6.1 a-b). The point of time, 8.192 seconds is surrounded by two disturbances, each 1
second in duration, with frequencies 6000, and 4000 Hz respectively. These disturbances cannot
be distinguished from either of the plotted anomaly scores in Figures 6.1 a-b). Just to the right
of 6.144 seconds, another disturbance caused by a loud bang is shown, at the corresponding time
points in Figures 6.1 a-b) this is shown as a large spike in anomaly score. Just to the left of
4.096 seconds show another disturbance, this is the sound of pressing the button to turn off the
fan on the power supply, the anomaly scores register a large peak, and as the fan winds down
the anomaly score begin to trend up over the threshold.

35

Figure 6.1: A snapshot of a real-time application run with models that were trained on 180 seconds
of data. Plot a) shows the anomaly score in blue and the anomaly threshold for the GMM model. Plot
b) shows the score and the threshold for the OCSVM model. Plot c) shows the live spectrogram of the
sound.

Figure 6.2 depict the corresponding disturbances, but this time the applications are trained on
60 seconds of fan sound. Again a whistle is followed by a 6000 and a 4000 Hz tone, a loud bang,
and turning off the fan. Similarly to the case in Figure 6.1, the whistle, the bang, and pressing
the button to turn off the fan register large peaks in anomaly score for both models. The 6000

36

and 4000 Hz tones are barely noticeable in the anomaly score plots, and after turning off the
fan the anomaly scores start trending up and oscillating around the threshold.

Figure 6.2: A snapshot of a real-time application run with models that were trained on 60 seconds of
data. Plot a) shows the anomaly score in blue and the anomaly threshold for the GMM model. Plot
b) shows the score and the threshold for the OCSVM model. Plot c) shows the live spectrogram of the
sound.

37

Chapter 7

Discussion

This chapter will start out by interpreting the results of the evaluation section, it then goes on
to discuss the findings from testing the real-time anomaly detection application introduced in
Chapter 6.

7.1 Anomaly detection performance

The results presented in Table 5.1 clearly show that it is much easier to detect an anomaly for
lower SDR values. This is unsurprising since a low SDR indicates that the segment contains a
strong disturbance in relation to the signal.

Since both models perform very well, detecting all anomalies, with high precision, for very low
values of SDR such as 0.01, it is interesting to evaluate how far we can push the SDR before the
performance breaks down. The mean recall rate when going from an SDR of 0.50 to 1.00 drops
significantly for both models. From 0.8698 to 0.6050 for the GMM model and from 0.9046 to
0.6733 for the OCSVM counterpart as shown in Table 5.1. The interpretation of this result is
that an SDR of around 1.00 represents a breaking point and is thus extra interesting. Further
experiments were therefore performed using 1.00 SDR.

According to Table 5.2, the length of the signal does not seem to have any significant effect on
the ability to recall anomalies, although it does affect the precision. The lower precision for the
shorter disturbances implies that shorter disturbances decrease the maximum possible number
of true positives, meaning that frames that are falsely marked as anomalies, or false positives
now make up a larger portion of the denominator in (2.34) lowering the precision. The drop in
precision for shorter disturbances is most visible for the OCSVM model, likely due to having
a bigger number of false positives, to begin with. One way to counteract the number of false
positives would be to decrease the ν parameter when training the OCSVM.

An important aspect to keep in mind is that the position of a disturbance affects how many
frames it is present in, and thus how many frames should be classified as an anomaly. The
example in Figure 7.1 shows two anomalies of equal duration, but positioned differently and

38

Figure 7.1: Shows two disturbances of equal duration, represented by the purple and the red lines.
Underneath the lines, three frames of equal length and 50% overlap are depicted. As the image shows,
the position of a disturbance affects the number of frames it covers. The purple line only covers two
frames, while the red line cover three frames.

thus affecting a different amount of frames. The purple anomaly covers two frames, while
the red anomaly covers three frames, thus each of the frames affected by the purple anomaly
contains a higher concentration of anomalous samples than its red counterpart. This implies
that it will be easier to detect the purple anomaly in comparison to the red one. In addition,
when comparing classification metrics such as recall the result will be affected by the amount of
frames an anomaly covers. If it was possible to recall the purple anomaly in the two frames the
recall rate would be 2

2 = 1, while detecting the red anomaly, also in two frames would mean a
recall rate of 2

3 . In all of the experiments the disturbance starts at 1.5 seconds, corresponding
to the 960-th sample in the 46-th frame.

Table 5.3 presents the results of the experiments varying the frequency of the disturbance. When
decreasing the frequency of the disturbance from 440 Hz to 110 Hz the precision deteriorates
slightly for both models, while the recall rate is more than halved for the GMM model and
reduced by 1/3 for the OCSVM model. When decreasing the frequency from 110 Hz to 55 Hz
the precision and recall ends up at 0.1098 and 0.0453 respectively for the GMM model and at
0.1094 and 0.0842 respectively for the OCSVM.

The reason for this decline is that the effect of a disturbance with a certain frequency is dependent

39

on the frequency content distribution of the background signal. The intensity of a signal is not
necessarily uniformly distributed. A disturbance with a certain SDR, duration, and frequency
might be very easy to detect, while another disturbance with the same parameters except for a
different frequency might be very hard to detect. This is because the SDR measurement does
not take frequency distribution, or frequencies at all into account. A disturbance in a frequency
band where the signal has a higher intensity will need to have a larger magnitude in order to
stand out. While another disturbance of equal disturbance affecting the same signal located in
a frequency band where the signal has lower intensity will stand out more. Figure 3.1 d) depicts
a spectrogram containing a 440 Hz disturbance. The spectrogram contains a band with high-
frequency content right below the disturbance, thus it would be harder to detect disturbances
of 110 or 55 Hz compared to a disturbance of 440 Hz with the same SDR.

Another part of the anomaly detection performance evaluation was to compare how different
feature sets compare in terms of precision, recall, and F1-score. Table 5.4 presents the results of
the six different feature sets when the SDR is set to 1.00, the disturbance duration is 1.5 s and
the disturbance frequency is 440 Hz. For the GMM MFCC is the clear winner in terms of mean
precision, recall, and F1-score. Surprisingly, for the OCSVM the Time feature set is the best
performer, the recall rate is similar to the MFCC feature set but the mean precision is much
better at 0.8234 for the Time feature set vs 0.7332 for MFCCs. Though it is important to note
that this is only measured at a value of SDR where the MFCC feature set is known to break
down. It is possible that the Time feature set will quickly deteriorate and perform worse than
MFCCs for other values of SDR.

It was expected that the MFCCs would perform best for both models, the reasoning being that
they capture the spectral distribution of the sound in a way that neither the time nor spectral
domain features do. Time domain features often look at the energy of a signal, but they do not
know how that energy is distributed over the frequencies present in the signal. The spectral
features do provide some information about where in the spectrum energy is located, but they
are aggregated metrics such as spectral centroid and spectral spread. While this should in theory
help, it may be the case that aggregating the spectral distribution into metrics such as spectral
centroid and spread discards important characteristics of the sound.

In the comparison of the different feature sets, as expected MFCCs performed very well for both
models. For the OCSVM the Time feature set surprisingly performed even better. Neither of
the ∆-feature sets improved upon their non-∆ counterparts, on the contrary, the ∆-feature sets
performed significantly worse.

7.2 Training & inference speed

The prerequisites for real-time anomaly detection is evaluated, both by measuring the RTF,
which is presented in Table 5.5 and the model training time as shown in Table 5.6. As seen in
the first row of Table 5.5 the RTF for a GMM is well below one. During a ten-minute run, the
maximum RTF is 0.29583 and the mean RTF is 0.04618. While it is an absolute requirement
that the RTF stays under one in order to enable real-time detection, in a real-world application
the target device might run multiple other services, it is therefore desirable that our application

40

leaves headroom so that it can continue to perform real-time detection under heavier load.

The training time varied greatly between the two models, the GMM was much slower than the
OCSVM, requiring on average 7-10 times longer time to complete feature extraction, training
and threshold computation. The training time is important as it may be necessary to retrain
the models if the normal behavior changes. It is possible that a machine that had a worn down
part will sound different after replacing it with a new one, which would require retraining.

7.3 Real-time anomaly detection application

The real-time anomaly detection application was tested as seen in Figures 6.1 and 6.2, comparing
training the GMM and OCSVM models on both 180 and 60 seconds of fan sound, represented
by MFCC features. As the results showed, some of the disturbances registered large anomaly
scores, over the threshold, and some did not. The disturbances caused by a whistling sound, a
loud bang, and turning off the fan all registered large enough anomaly scores to be identified as
anomalies. But the disturbances represented by a 6000 and a 4000 Hz tone do not clearly show
an increase in anomaly score during the whole duration of either of the disturbances. This is
likely due to the fact that they both only contain higher frequencies, as seen in Figure 4.2, when
subsequent filters in the MFCC computation get wider, their weight (height) decay in order
for the equal area constraint of the filters to hold. This means that they would need a larger
magnitude in order to stand out compared to a lower frequency disturbance.

41

Chapter 8

Conclusion

This section will wrap up the thesis by presenting a conclusion of the results and the discussion
in relation to the problem statement and research questions. Furthermore, a subsection on
future work will propose a few possible next steps for anyone that wishes to continue where this
thesis left off.

The model using a GMM performed best in terms of anomaly detection performance using the
MFCC feature set, with the OCSVM being very close but slightly worse. When decreasing the
duration of an added disturbance the recall of anomalous frames tapered off slowly, while the
performance degraded significantly for shorter and shorter disturbances. The GMM performed
better in terms of mean precision, while the OCSVM performed better in terms of recall, the
better precision of the GMM outweighs the worse recall when it comes to F1-score where the
GMM is the best. When varying the frequency of a disturbance the GMM wins in precision
again, but this time it is not enough to outweigh the worse recall, meaning that the OCSVM
wins in terms of F1-score. The low-frequency disturbances are harder to predict due to the
fact that they line up with the frequency band of the signal. In an application, it is therefore
important to keep the characteristics of the signal and anomalies in mind. When it comes to
speed both models perform similarly in terms of mean RTF. Neither model exceeded a maximum
RTF of one during the ten-minute measurement. The OCSVM is significantly quicker in feature
extraction and training compared to the GMM.

When it comes to the different feature sets, as expected MFCC features performed well for
both models. Surprisingly, for the OCSVM the Time feature set performed even better than
the MFCCs. Since MFCC performs very well for both models, tested with different types
of anomalies it seems that it is the most suitable feature set for now. Although it would
be interesting to examine the Time features more thoroughly for the OCSVM and see if the
performance generalizes for anomalies of varying SDR, duration and frequency.

To conclude, both the GMM and OCSVM manage to detect anomalies, the degree to which is
dependent on SDR, duration, and the frequency distribution of the anomaly. Larger disturbances
are unsurprisingly easier to detect. The duration of the disturbance does not seem to have a

42

noticeable effect on its detectability, but it does affect precision. The impact of the frequency
of a disturbance depends on the characteristics of the signal that is affected by the disturbance.
Disturbances that lie near the signal in frequency need to be stronger in order to stand out. It
also seems like - at least for MFCC features - that disturbances with all of its frequency content
above 4000 Hz are hard to detect due to the characteristics of MFCCs.

Under the tested conditions, the GMM seems to perform slightly better in terms of anomaly
detection performance. Both models perform similarly in terms of mean RTF, but the GMM
has a lower maximum RTF. But when it comes to training time the OCSVM is significantly
faster. The answer to which model is more suitable is that it seems like the GMM is favored
under the evaluated conditions.

While both models are able to perform real-time anomaly detection in the testing environment
on a Raspberry Pi 4 it is beneficial to have headroom in terms of speed. A real-world application
might be deployed on a device that has other services running simultaneously, allowing less of
the performance to be allocated to the anomaly detection algorithm, or it might be the case that
the algorithm is deployed on devices with even less performance than the Raspberry Pi 4.

8.1 Future work

It is possible that expected changes to a machine or changes to its environment result in sound
that the model will claim as anomalous when in reality it is not. This concept is known as
domain shift, a change in the characteristics of the sound which is not caused by an anomaly.
Domain shift could be caused by a machine part slowly degrading over time or drastic changes
to the background noise of the environment in which the machine operates, while different from
the training conditions, still considered normal [3].

Models which are only trained once for a limited amount of time are susceptible to performance
degradation caused by domain shifts not captured in training. A logical next step would therefore
be to incorporate adaptability into the models so that the models can be retrained when new
data reflecting changes in the environment arrives. An idea could be that every instance classified
as an anomaly will be logged and machine operators would then be able to look at each anomaly
and say if it really is an anomaly, or if it is a false positive. The false positives would then be
incorporated into the normal training data of an updated model. In a scenario where models
often are retrained on the fly, it would also be important to evaluate how much training data is
required to retrain and how long time is required to retrain a model.

This thesis has focused on emulating the abilities of human hearing. Though, it is likely that
our models miss valuable information outside of the human hearing range and in sounds not
conforming to the characteristics of human hearing. Another path forward would be to investi-
gate features that are not meant to mimic the attributes of our hearing, unlike the MFCCs, on
sounds sampled with a frequency greater than 16 kHz.

43

Chapter 9

Thank you

A big thank you to our supervisors, for your guidance and valuable feedback during the course
of our thesis project!

• Anders Sandberg, supervisor

• Rickard Jönsson, supervisor

• Maria Sandsten, principal supervisor

44

Bibliography

[1] H. Uematsu, Y. Koizumi, S. Saito, A. Nakagawa, and N. Harada, “Anomaly detection
technique in sound to detect faulty equipment,” NTT Technical Review, vol. 15, 08 2017.

[2] Z. Mnasri, S. Rovetta, and F. Masulli, “Anomalous sound event detection: A survey of
machine learning based methods and applications.” Multimedia Tools and Applications:
An International Journal, pp. 1 – 50, 2021.

[3] Y. Koizumi, Y. Kawaguchi, K. Imoto, T. Nakamura, Y. Nikaido, R. Tanabe,
H. Purohit, K. Suefusa, T. Endo, M. Yasuda, and N. Harada, “Description and
discussion on DCASE2020 challenge task2: Unsupervised anomalous sound detection
for machine condition monitoring,” in Proceedings of the Detection and Classification
of Acoustic Scenes and Events 2020 Workshop (DCASE2020), November 2020, pp. 81–
85. [Online]. Available: http://dcase.community/documents/workshop2020/proceedings/
DCASE2020Workshop Koizumi 3.pdf

[4] S. Ntalampiras, I. Potamitis, and N. Fakotakis, “Probabilistic novelty detection for acoustic
surveillance under real-world conditions,” IEEE Transactions on Multimedia, vol. 13, no. 4,
pp. 713–719, 2011.

[5] Cloudera Fast Forward Labs. (2020) Deep learning for anomaly detection. [Online].
Available: https://ff12.fastforwardlabs.com/ff12-deep-learning-for-anomaly-detection.pdf

[6] A. Ang. (2020, December) Discrete short time fourier transform. [Online]. Available:
https://angms.science/doc/SP/SP STFT.pdf

[7] K. P. Murphy, Machine Learning: A Probabilistic Perspective. The MIT Press, 2012.

[8] C. Cortes and V. Vapnik, “Support-vector networks.” Machine Learning, vol. 20, no. 3, pp.
273 – 297, 1995.

[9] Wikimedia Commons. (2011) Kernel machine. [Online]. Available: https://commons.
wikimedia.org/wiki/File:Kernel Machine.svg

[10] Scikit-learn Developers. (2023) Kernel functions. [Online]. Available: https://scikit-learn.
org/stable/modules/svm.html#kernel-functions

45

http://dcase.community/documents/workshop2020/proceedings/DCASE2020Workshop_Koizumi_3.pdf
http://dcase.community/documents/workshop2020/proceedings/DCASE2020Workshop_Koizumi_3.pdf
https://ff12.fastforwardlabs.com/ff12-deep-learning-for-anomaly-detection.pdf
https://angms.science/doc/SP/SP_STFT.pdf
https://commons.wikimedia.org/wiki/File:Kernel_Machine.svg
https://commons.wikimedia.org/wiki/File:Kernel_Machine.svg
https://scikit-learn.org/stable/modules/svm.html#kernel-functions
https://scikit-learn.org/stable/modules/svm.html#kernel-functions

[11] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson, “Estimating
the Support of a High-Dimensional Distribution,” Neural Computation, vol. 13, no. 7, pp.
1443–1471, 07 2001. [Online]. Available: https://doi.org/10.1162/089976601750264965

[12] Y. Koizumi, Y. Kawaguchi, K. Imoto, T. Nakamura, Y. Nikaido, R. Tanabe, H. Purohit,
K. Suefusa, T. Endo, M. Yasuda, and N. Harada, “Dcase 2020 challenge task 2 development
dataset,” Mar. 2020. [Online]. Available: https://doi.org/10.5281/zenodo.3678171

[13] NumPy Developers. (2022) numpy.hamming. [Online]. Available: https://numpy.org/doc/
stable/reference/generated/numpy.hamming.html

[14] T. Giannakopoulos, “pyaudioanalysis: An open-source python library for audio signal anal-
ysis,” PloS one, vol. 10, no. 12, 2015.

[15] M. Slaney, Auditory Toolbox – Version 2, 01 1998. [Online]. Available: https:
//engineering.purdue.edu/∼malcolm/interval/1998-010/

[16] T. Ganchev, N. Fakotakis, and K. George, “Comparative evaluation of various mfcc im-
plementations on the speaker verification task,” Proceedings of the SPECOM, vol. 1, 01
2005.

46

https://doi.org/10.1162/089976601750264965
https://doi.org/10.5281/zenodo.3678171
https://numpy.org/doc/stable/reference/generated/numpy.hamming.html
https://numpy.org/doc/stable/reference/generated/numpy.hamming.html
https://engineering.purdue.edu/~malcolm/interval/1998-010/
https://engineering.purdue.edu/~malcolm/interval/1998-010/

	Introduction
	Previous work
	Problem statement

	Theory
	Spectrograms & Short-Time Fourier Transform (STFT)
	Gaussian Mixture Model & EM-algorithm
	Support Vector Machines (SVM)
	The linear classifier
	Nonlinearly separable data
	One-Class Support Vector Machines (OCSVM)
	Feature scaling

	Signal-to-disturbance ratio (SDR)
	Classification metrics
	Real-time factor (RTF)

	Data
	Augmented DCASE dataset (ADCASE)
	Self produced recordings

	Method
	Windowing
	Features
	Time-domain features
	Spectral-domain features
	Mel-frequency cepstral coefficients (MFCC)

	Thresholding

	Evaluation
	Experiment setup
	Anomaly detection performance
	Training & inference speed

	Results
	Anomaly detection performance
	Training & inference speed

	Real-time anomaly detection application
	Discussion
	Anomaly detection performance
	Training & inference speed
	Real-time anomaly detection application

	Conclusion
	Future work

	Thank you

