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How molecular diagnostics based on gene
expressions can improve diagnostics in Sarcoma

Alma Lennartsson (BME20), Emma Friberg (BME20)

Abstract—Sarcoma, a rare and heterogeneous cancer type,
present significant diagnostic challenges due to its numerous
subtypes. Molecular diagnostics and machine learning models
have emerged as promising tools to enhance sarcoma diagnosis.
This study, conducted at Qlucore, aims to explore the usage of
these new techniques in improving sarcoma diagnostics, with a
specific focus on soft tissue sarcomas.

The primary purpose of the study is to investigate the
classification of different subtypes of soft tissue sarcoma based on
gene expression analysis. This is performed by investigating and
evaluating various classification methods. The study also explores
alternative approaches for achieving accurate classification.

The results of this study demonstrate promising potential for
the clinical use of molecular diagnostics in accurately diagnosing
specific subtypes of sarcoma. However, certain sarcoma sub-
groups present challenges in classification. The study suggests
the adoption of hierarchical classifiers as a potential solution
for this. Furthermore, the study emphasizes that the choice of
algorithm significantly impacts classification outcomes.

I. INTRODUCTION

THE purpose of this study is to investigate how new
techniques, such as molecular diagnostics and machine

learning models, can be used to improve the diagnostics of
sarcoma. The goal is to analyze how well different subtypes
of soft tissue sarcoma can be classified based on their gene
expression, as well as investigating different ways of doing
the classification.

A. Epidemiology of sarcoma

Sarcomas are a rare type of tumour that originates from
soft tissue and bone, representing less than 1% of the cancer
malignancies worldwide. Sarcomas can be divided into over
100 different subtypes (Table I), and more are constantly
discovered [1]. In this study the focus will be on the subtypes
of soft tissue sarcomas, which corresponds to 70-80% of all
sarcomas. Soft tissue sarcomas can form almost anywhere
in the body, but most common are arms, legs, abdomen
and retroperitoneum. Soft tissue refers to muscles, tendons,
ligaments, cartilage, fat, lymph and blood vessels, and nerves
[2].

In Sweden, around 250 people develop soft tissue sarcoma
every year [3]. In the US, it is about 13 400 people every
year [4]. These numbers indicate that soft tissue sarcoma is
relatively rare worldwide. However, the survival rate for soft
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tissue sarcoma is lower than for many other cancer types. The
5-year survival rate explains what percent of people live at
least 5 years after the cancer is found. For sarcoma, it is 65%,
which is relatively low compared with, for instance, melanoma
that has a 5-year survival rate of 94%. [5]

B. Biology of sarcoma

The molecular biology of sarcomas is complicated. This
is mostly due to the very heterogeneous nature of sarcoma
tumors. The heterogeneity implies that all tumours differ,
meaning that the phenotype and the genetic type is unique in
every tumour type. Differences occur already during tumour
development where complex biological processes affect the
outcome [1].

These biological differences affect the ability to divide the
tumours into subtypes. A subtype is a smaller group within a
type of cancer, where the tumours have similar characteristics
[6]. Sarcoma subtypes are determined based on how the
tumour cells look under a microscope and are often classified
based on where in the body the cancer began. However, soft
tissue sarcoma tumors can involve multiple types of body
tissues and sometimes their exact origin is unclear. [7].

There are over 80 subtypes of soft tissue sarcoma [7].
The most common ones in adults are liposarcoma (LPS),
leiomyosarcoma (LMS) and undifferentiated pleomorphic sar-
coma (UPS) [4]. LPS and LMS are located in fat tissue re-
spectively smooth muscles, while UPS can be found anywhere
in the body [7].

Since the biology of sarcoma tumours are very hetero-
geneous, the tumours within a certain subtype can differ
as well. For instance, the subtypes liposarcoma (LPS) and
rhabdomyosarcoma (RMS) can each be divided into four
respectively five subgroups of their own [8].

C. Diagnostics

The low survival rate for patients with soft tissue sarcoma
can partly be explained by the poor diagnostics. It is hard to
determine which subtype of sarcoma a patient has, both due to
the biology of the sarcoma tumour being complicated, as well
as the lack of experience from physicians. Not being able to
correctly diagnose the tumour leads to inadequate treatment for
the patient [1]. Therefore, a solution to improve the sarcoma
diagnostics is needed.

Few cases and opportunities to work with sarcoma leads to
a lack of extensive knowledge and expertise among medical
professionals, making accurate diagnosis more difficult. This
emphasizes the importance of multidisciplinary collaboration
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Table I
GLOSSARY

Subtype A group within a type of cancer that share similar characteristics. [6]
RNA-sequencing A way to measure the amount and types of RNA molecules in a sample, which can help understand how genes

are expressed and regulated. [9]
Classifier Supervised machine learning algorithm that learns to distinguish between different groups of data by identifying

patterns, and can predict which group new data belongs to based on those patterns. [10]
PCA (Principal Component Analysis) A statistical method used to reduce the dimensions of a big data set so that it can be visualized and analyzed

easier, without losing too much information. [11]
UMAP (Uniform Manifold Approxi-
mation and Projection)

Algorithm that helps reduce high-dimensional data to a simpler form while preserving important relationships
between data points. It is often used to create visualizations of complex data that reveal patterns or clusters. [11]

kNN (k-Nearest-Neighbours) Classification algorithm that assigns a datapoint its label based on the label of the nearest neighbours/datapoints.
The value of k, representing the number of neighbours used in the classification, is a hyperparameter that can
be changed to optimize the accuracy. [10]

SVM (Support Vector Machine) Classification algorithm that finds the optimal hyperplane to separate different groups of data in a high-
dimensional feature space. The goal is to maximize the margin between the groups and separate them as accurately
as possible. [10]

Random Forest Classification algorithm that creates multiple decision trees on different random subsets of data and features,
and combines their predictions to make more accurate predictions. It’s useful when dealing with complex data
or when overfitting is a concern. [10]

Cross-validation A way to test how well a machine learning model can predict new data by splitting the available data into parts,
training the model on some parts, and testing it on other parts. This helps to ensure that the model is not just
memorizing the training data, but can generalize to new data. [12]

Confusion matrix Table that summarizes the performance of a classification model by showing the number of correct and incorrect
predictions for each class. [13]

Biomarker Measurable characteristic or molecule that is used as an indicator of normal biological processes, pathogenic
processes, or response to treatment. [14]

and expertise in sarcoma diagnosis. In Sweden, 5 different
specialized sarcoma centers are responsible for all sarcoma
diagnostics and treatments. These centers are located in
Gothenburg, Linköping, Lund, Stockholm and Umeå [3].

A basic investigation of soft tissue sarcoma include the
following steps:

• physical examination,
• tissue-based diagnostics (biopsy) that should be carried

out at a sarcoma center,
• MRI (Magnetic Resonance Imaging) of tumour site,
• CT (Computer Tomography) of thorax [3].
These diagnostic methods are extensive, seen to both money,

time and resources.

D. Treatment

Treatment options and chance of recovery are dependent on
several different factors;

• the subtype of soft tissue sarcoma,
• size, grade and stage of tumour,
• where the tumour is located in the body,
• whether the whole tumour can be removed with surgery,
• age and general health,
• whether the cancer is recurring [15].
The stage of the tumour describes whether the cancer has

spread to other parts of the body besides the soft tissue in
which it originated. The staging process includes a series of
tests and procedures. How quickly the tumour is likely to grow
and how abnormal the cancer cells look under a microscope
determines the grade of the tumour. All the gathered infor-
mation determines the stage of the disease, which in turn is
important for treatment planning. [15]

Surgery is the prime treatment option since few soft tissue
sarcomas are curable with solely radiation- or chemotherapy.
[3]. However, the surgical resection is often accompanied

by chemotherapy and/or irradiation. The chemotherapy drugs
could be administrated either before the surgery, to help reduce
the size of the tumour, or after, to destroy remaining cancer
cells. It could also be a combination of both. The optimal
choice of treatment is largely dependent on the sarcoma
subtype [1]. This highlights the need to diagnose patients with
the correct subtype. It also allows the doctors to personalize
the treatment. [7]

Personalized medicine, or precision medicine, is an advanc-
ing practice of medicine that uses the patients genetic profile
to guide decisions regarding prevention, diagnosis and treat-
ment of disease. By increasing the accuracy of diagnosis and
identifying the most effective treatment therapy, the prognosis
will increase as well [16]. Focus in this report is on how to
improve the diagnostics of sarcoma, with a particular focus on
the significant role of molecular diagnostics in achieving this
goal.

E. Molecular diagnostics

Over the last decade, molecular diagnostics have developed
significantly. Molecular diagnostics involves using gene ex-
pressions or DNA analysis to diagnose diseases. In this study,
the main focus is on the usage of gene expressions. There is
an important difference between gene expressions and whole
genome DNA analysis. The gene expressions corresponds
to the active processes in the body, since it represents the
coding of the proteins in real time. Whereas a whole genome
analysis only gives information of the DNA, but not about
what genes are activated. Accordingly, molecular diagnostics
of gene expressions is proved to be very efficient since a
specific gene expression normally can be connected to a
specific disease, which helps diagnosing correctly [17]. When
analysing gene expressions in cancer, the tumour cells are
examined. There are various ways to do this. Two commonly
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used approaches are by using either DNA-methylation or
RNA-sequencing (Table I), which are two separate methods
to study gene expressions. [18]

Using RNA-sequencing within molecular diagnostics ac-
tually refers to observing the mRNA in the tumour. The
mRNA, also known as messenger RNA, is important in the
process of producing proteins. It is transcribed from the DNA
in the cell nucleus and then transported to the cytoplasm
where the protein synthesis takes place. Since an mRNA-
strand corresponds to a specific protein, an analysis of the
mRNA-strand will provide information about the real time
processes in the cell [9]. In summary, by taking a sample of
the tumours mRNA, it is possible to determine what processes
are taking place in the tumour, which can be linked to certain
diseases.

Within soft tissue sarcoma, studies have shown that the dif-
ferent subtypes differ in gene expressions, making it possible
to distinguish a subtype based on the observed mRNA-strands
[18]. This theory extends to other cancer types as well and has
been used in several research studies to improve the cancer
diagnostics [19].

The gene expression data can either be collected from
clinical studies or from databases. The data will either way
include a large amount of samples, where each sample cor-
responds to a patient. When using RNA-sequence data, every
sample includes all the gene expressions found in the tumour
of the patient. Moreover, every sample is also labeled with
information about the patient, such as their sarcoma subtype,
age, gender, etc. All this information can then be used to
analyze the data. A large dataset is preferable since more
samples correspond to more information. Therefore, many
databases combine several different datasets to create a larger
dataset. The datasets could, for example, come from different
clinical studies, hospitals or patient groups. In this case, it is
important to take into account that there might be differences
between the data that could affect the outcome.

F. Data analysis

The second step in molecular diagnostics is the data analy-
sis, which can include both visualization with various tools
and diagrams, as well as more concrete machine learning
algorithms, such as classification (Table I). For soft tissue
sarcoma, it is of interest to determine which gene expressions
correspond to which subtypes. To visualize this, methods such
as PCA-plots and UMAP can be used (Table I). These methods
will basically cluster the samples in different groups based
on their gene expressions. Samples with more similar gene
expressions will be located closer to each other in the plot. By
coloring the samples based on their known subtype, potential
patterns can be observed.

Furthermore, classifying the sarcoma data based on the
subtype will provide more knowledge and can be used as a
diagnostic tool. A classifier can be built in several different
ways, depending on what algorithm is used. Common algo-
rithms for building a classifier are Random Forest, k-Nearest
Neighbours (kNN) and Support Vector Machine (SVM), see
Table I [10].

In this case, the main function of the classifier would be
to correctly assign an unknown tumour sample its sarcoma
subtype. The accuracy of the classifier describes how well it
pursues this task. For example, an accuracy of 0.9 means that
90% of the samples with unknown subtype were placed in
their correct subgroup and 10% were classified incorrectly.

G. Similar studies

As mentioned, the goal with this report is to investigate
how molecular diagnostics can help diagnosis of soft tissue
sarcoma. Similar studies have already been made, both for
soft tissue sarcoma and for other cancer types.

In a study from 2021, Koelsche et al. analyzed sarcoma
data using clustering algorithms, which enabled identification
of tumours sharing the same methylation pattern. Furthermore,
a classifier was built with a Random Forest algorithm. The
conclusion of the study was that molecular diagnostics can
improve the diagnostics of sarcoma. In this case, by using
DNA-methylation for the subtype classification [18].

Moreover, Qlucore have already used molecular diagnostics
to classify different subtypes of leukemia [19]. This resulted
in their newest software Qlucore Diagnostics [20], a tool to
diagnose cancer based on their gene expressions. By using the
patients data as an input, the program will determine which
subtype of leukemia the patient has. The Qlucore Diagnostics
software is still under development, with the goal to be
used clinically in the near future. Meanwhile, Qlucore are
developing similar classification tools for several other cancer
types as well.

H. Purpose

The purpose of this study is to begin the process of building
a diagnostic classifier for sarcoma. This will be done by
constructing and then evaluating different classifiers. The main
aspects that will be analyzed are the machine learning algo-
rithms and the different subtypes. Since sarcoma diagnostics
comes with many difficulties, it is crucial to do a detailed pre-
study. Therefore, this study aims to collect information from
previous studies, as well as generating new results to get one
step closer to the implementation of a diagnostic classifier.

II. METHOD

The data used in this study is from “Treehouse Childhood
Cancer Initiative at the UC Santa Cruz Genomics Institute”
which consist of pediatric cancer genomic data [21]. Since
this study cover soft tissue sarcoma, only the data labeled with
sarcoma was collected for the definitive dataset. The dataset
was downloaded as normalized log2 (TPM) and contained 826
samples and 58 581 number of variables.

The dataset was analyzed using a bioinformatic software
called Qlucore Omics Explorer [22] which provides both
visualization tools and ability to build and evaluate a classifier.
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A. Data processing

The original dataset, without any alterations, was visualized
in a PCA-plot, see Figure 1. This showed 3 samples that
stood out compared to the others. A variance this large can
for instance arise due to issues with the sample, issues in lab
or technical problems when sequencing, but the details are
unknown. Since this could affect the training of the classifier,
these 3 samples were removed.

All sub-groups with 3 or less samples were then removed
since they were assessed too few for training a classifier. The
original dataset included the subtype osteosarcoma, which is
a type of sarcoma found in bone, but since this study focuses
on soft tissue sarcoma this group was removed as well. Ewing
sarcoma can be found in both bone and soft tissue and was
therefore maintained. The dataset also included heterogeneous
subgroups of sarcoma that were ”not otherwise specified” and
could not be used to build the classifier either. A new PCA-plot
with the filtered dataset was then created, see Figure 2.

Figure 1. Principal Component Analysis (PCA) plot of gene expression data
from soft tissue sarcoma samples. Each data point represents a sample, and
their positions in the plot are determined by the underlying gene expression
values. The axes of the plot correspond to the principal components, which
are linear combinations of the gene expression variables that capture the most
significant variation in the data. The colours of the samples correspond to
their respective subtype. Original data is log2(TPM) with 826 samples and
58 581 number of variables.

B. Classification

The filtered dataset was then used to train classifiers with
three different machine learning algorithms; kNN, SVM and
Random forest (Table I). This was done in the Qlucore Omics
Explorer software. Since the algorithms differ, the result might
be affected depending on which one is used. Therefore, the
algorithms were compared and the one with the best accuracy
was chosen for further analysis. In this case it was the kNN
algorithm with a k-value of 4 that presented the highest overall
accuracy.

A classifier was then built in Python with a kNN algorithm,
using a k-value of 4 and cross-validation (Table I). The result

Figure 2. Principal Component Analysis (PCA) plot of gene expression data
from soft tissue sarcoma samples. Each data point represents a sample, and
their positions in the plot are determined by the underlying gene expression
values. The axes of the plot correspond to the principal components, which
are linear combinations of the gene expression variables that capture the most
significant variation in the data. The colours of the samples correspond to
their respective subtype. Filtered data is log2(TPM) with 546 samples and 58
581 number of variables.

was plotted in a confusion matrix (Table I), see Figure 3. The
purpose of this was to enhance the accuracy of the classifier
with the best performance. This was achieved by evaluating the
classifier’s performance on individual subtypes, which allowed
for the exploration of different options for constructing the
classifier and further improvement.

The confusion matrix showed that the classifier was not
good at predicting the right label for the group rhabdomyosar-
coma (RMS). It also showed that it often misplaced it with
more specific types of RMS, mostly alveolar or embryonal
RMS. Since the data set is a collection of data from different
studies where different labels were used, it was concluded
that the group labeled ”rhabdomyosarcoma” probably is a
heterogeneous group containing more specific types of RMS.

The confusion matrix showed that the classifier was over-
all good at predicting the right label of both alveolar and
embryonal RMS. However, not one sample of the spindle
cell/sclerosing RMS was predicted correctly and was often
confused with other RMS groups. This indicated that while
all RMS subtypes may differ from the rest of the subtypes,
it was still hard for the classifier to set them apart from each
other.

Therefore, the heterogeneous RMS group was merged with
the more specific types of RMS; alveolar-, embryonal- and
spindle cell/sclerosing RMS. The aim with this was to enhance
the accuracy of the main classifier comparing all of the
subtypes to each other. A separate classifier containing only
the three previously mentioned sub-groups of RMS was then
trained and evaluated. The idea was to first use the main
classifier to see if a sample belongs to RMS or not. If it does,
the other classifier, specific to sub-groups of RMS, would give
a new prediction of which type of RMS it is.

The final classifier, with the merged group of rhabdomyosar-
coma, was built in Qlucore Omics Explorer with a kNN algo-
rithm and a k-value of 4. Numerous k-values were evaluated
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but the k-value of 4 resulted in the highest accuracy and was
therefore chosen.

Figure 3. Confusion matrix that visualizes the performance of the classi-
fication algorithm. In this case the algorithm used was k-Nearest-Neighbour
with a k-value of 4. Each row of the matrix represents the instances of the
true class, while the columns represents the instances of the predicted class.
The values following the diagonal shows how many samples that the classifier
were able to place right, i.e. the predicted label is the same as the true label.

C. Gene analysis

For further analysis, specific genes were more thoroughly
examined. The goal of this analysis was to determine if a gene
was significantly more expressed in a certain subtype than in
others. If so, this gene could be a good biomarker (Table I)
for the subtype.

Firstly, a two group comparison was made in Qlucore Omics
Explorer. This means that the gene expressions for a specific
subtype is compared against the gene expressions of all the
other subtypes combined. Then, a statistical tool was used to
determine which genes were significantly different between the
two groups. By adjusting the significance level, it was possible
to pin point the 20 genes that differed the most between the
two groups. Lastly, some of these significant genes where
analysed individually in a scatter plot. This procedure was
repeated for several different subtypes and genes with the aim
to distinguish which subtypes has good biomarkers and which
does not.

One example of a subtype that was analyzed this way was
leiomyosarcoma (LMS). By adjusting the significance, the
gene MIR143HG was chosen for further analysis.

III. RESULTS

A. Visualization

The processed data presented in a 2D-UMAP (Table I) is
showed in Figure 4. This visualization shows that some sub-
types are more easily distinguished than others. For instance,

the groups of leiomyosarcoma (LMS), synovial sarcoma (SS),
Ewing sarcoma (ES), rhabdomyosarcoma(all) (RMS) and
uterine carcinosarcoma (UCS) are more distinctly clustered.
Other groups, like myxofibrosarcoma (MFS), are harder to
distinguish based on this plot. Overall, the UMAP gives an
indication of which groups are easier to classify than others.

Figure 4. UMAP plot of soft tissue sarcoma gene expression data. The
UMAP plot visually represents the high-dimensional gene expression data of
soft tissue sarcoma samples in a two-dimensional space. Each data point in
the plot represents a sample, and its position is determined by the similarity
of its gene expression profile to other samples. The colour of the data points
correspond to their respective subtype. The filtered data is log2(TPM) with 546
samples and 58 581 number of variables. Note that all of the RMS subgroups
have been joined together to one, ”rhabdomyosarcoma (all)”.

B. Classification

The final kNN classifier resulted in an overall accuracy of
0.87, as seen in Table II. Table II also shows the specific ac-
curacy for every subtype, which enables comparison between
the subtypes. In this case, the majority of the subtypes have
an accuracy above 0.8. Although, myxofibrosarcoma (MFS)
and undifferentiated pleomorphic sarcoma (UPS) demonstrate
a slightly lower accuracy of 0.64 and 0.60.

Table II
EVALUATION OF KNN CLASSIFIER

Class Accuracy Number
of
samples

Ewing sarcoma (ES) 0.94 85
Dedifferentiated liposarcoma (DDLS) 0.98 50
Leiomyosarcoma (LMS) 0.81 78
Myxofibrosarcoma (MFS) 0.64 17
Rhabdomyosarcoma(all) (RMS) 1 56
Synovial sarcoma (SS) 1 41
Undifferentiated pleomorphic sarcoma (UPS) 0.60 47
Uterine carcinosarcoma (UCS) 0.98 57
Total 0.87 546

The separate kNN classifier, consisting only of the merged
RMS groups, is presented in Table III. The overall accuracy
was 0.60, however the groups vary in their individual accuracy.
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Both alveolar and embryonal RMS has a relatively high
accuracy compared to spindle cell/sclerosing RMS that has
an accuracy of 0.

Table III
EVALUATION OF KNN CLASSIFIER FOR MERGED RMS SUBGROUPS

Class Accuracy Number
of
samples

Alveolar rhabdomyosarcoma (ARMS) 0.90 49
Embryonal rhabdomyosarcoma (ERMS) 0.94 61
Spindle cell/sclerosing rhabdomyosarcoma (SC-
SRMS)

0 5

Total 0.60 115

Finally, the results from the other two machine learning
algorithms is presented in Table IV and V. The kNN classifier
has the highest total accuracy, as seen in Table II. Another
observation is that the accuracy for MFS differs significantly
between the algorithms. For Random forest, the accuracy is
0 and for SVM it is 0.18. Although, for the kNN classifier,
the accuracy for MFS is much higher; 0.64. Additionally, the
accuracy for UPS differs as well. It is higher for Random
forest and SVM than it is for kNN.

Table IV
EVALUATION OF SVM CLASSIFIER

Class Accuracy Number
of
samples

Ewing sarcoma (ES) 0.95 85
Dedifferentiated liposarcoma (DDLS) 0.90 50
Leiomyosarcoma (LMS) 0.83 78
Myxofibrosarcoma (MFS) 0.18 17
Rhabdomyosarcoma(all) (RMS) 1 56
Synovial sarcoma (SS) 1 41
Undifferentiated pleomorphic sarcoma (UPS) 0.74 47
Uterine carcinosarcoma (UCS) 1 57
Total 0.83 546

Table V
EVALUATION OF RANDOM FOREST CLASSIFIER

Class Accuracy Number
of
samples

Ewing sarcoma (ES) 0.94 85
Dedifferentiated liposarcoma (DDLS) 0.90 50
Leiomyosarcoma (LMS) 0.85 78
Myxofibrosarcoma (MFS) 0 17
Rhabdomyosarcoma(all) (RMS) 1 56
Synovial sarcoma (SS) 1 41
Undifferentiated pleomorphic sarcoma (UPS) 0.89 47
Uterine carcinosarcoma (UCS) 1 57
Total 0.82 546

C. Gene analysis
An example of a gene expression connected to a certain

subtype is visualized in Figure 5. In this case it is the gene

MIR143HG which is significant for leiomyosarcoma (LMS).
It is obvious that the gene expression levels are significantly
higher for the samples within LMS than for the other subtypes.
On the other hand, not all samples within LMS has a higher
gene expressions since the field range over the lower values as
well. Although, since the majority of the samples are higher,
the overall conclusion is that MIR143HG might be a biomarker
for LMS.

Figure 5. The violin plot displays how the gene expression levels vary for
the samples within each subtype. The y-axis represents the amount of which
the gene MIR143HG is expressed. The x-axis, and the different colored fields,
represent one subtype each. The wider a colored field is at a specific place,
the more samples contain that level of gene expression. Within the colored
field, median, average value and standard deviation can also be observed.

IV. DISCUSSION

The final classifier resulted in an accuracy of 0.87 which
is a relatively high number for a classifier. It means that if a
patient was to be analysed, the chance of assigning the patient
the correct subtype is 87%. However, the accuracy is not high
enough to be used clinically, since health care requires more
reliable diagnosing.

Another aspect is the width of subtypes in the classifier. As
described, there are over 80 subtypes of soft tissue sarcoma,
although this study only handled 10 of them. This means that
only patients with one of these 10 subtypes could actually get
diagnosed using the classifier.

On the other hand, even though the classifier was only able
to classify 10 out of all the discovered subtypes of sarcoma,
it is overall good at separating the most common soft tissue
sarcomas from each other. This is under the assumption that
the dataset represents the real clinical prevalence of different
subtypes. For instance, the classifier contains some of the
most common subtypes; liposarcoma (LPS), undifferentiated
pleomorphic sarcoma (UPS) and leiomyosarcoma (LMS).
Therefore, the classifier could potentially be a first assessment
of the patient and if the tumour can not be classified, more
tests will have to be done.

Even though the conclusion is that the classifier presented
in this study is not good enough to be used clinically, there
are many ways to improve it. A bigger dataset could improve
both the width of subtypes and the accuracy of the classifier.
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As seen in Table II and III, the subtypes vary in their
individual accuracy. The subtype with the lowest accuracy,
namely 0, was spindle cell/sclerosing RMS. There were only
5 samples with this label, and it is possible that the accuracy
could be higher with an increased number of samples. The
more samples, the easier to find patterns amongst them.

However, there are also subtypes with larger amount of
samples that still has a low accuracy. For instance, both MFS
and UPS have a relatively low accuracy. This proves that some
subtypes might be more complicated to identify, based on
their gene expressions. By observing the confusion matrix in
Figure 3, it can be seen that many samples from MFS gets
assigned UPS instead and vice versa. MFS and UPS are known
to be very alike due to their similar molecular landscape [23].
Therefore it can be difficult to distinguish them from each
other [24] [17].

Additionally, both MFS and UPS are represented by com-
plex genomics, which also could explain the complications
with the classification of these subtypes [25]. The Cancer
Genome Atlas Research Network concluded in a study that
the amount of myxoid stroma is what mainly separates UPS
and MFS from each other. Therefore, analysing which genes
are connected to the myxoid stroma levels and then use
these specific genes to separate/classify MFS and UPS, was
suggested as an option [17].

Another interesting result is how the different machine
learning algorithms differ in accuracy, especially for some
specific subtypes, see Table II IV V. As mentioned, the biggest
difference is for the groups of MFS and UPS. A possible
explanation for this is overfitting. Overfitting in a classifier
occurs when the model becomes too complex and fits the
training data too closely, leading to poor performance on
new, unseen data. Essentially, the classifier is memorizing the
training data instead of learning general patterns from it. [12]
This will result in a high accuracy for the training data, but
will not be representative for other data. A theory is that the
kNN classifier is overfitted for MFS, since the accuracy is so
much higher for kNN than for SVM or Random forest. To
avoid this, bigger datasets could be used for the training of
the classifier and it would be beneficial to use an independent
validation dataset.

To summarize, the choice of algorithm impacts the result.
Not only due to the chance of overfitting, but also in terms
of the classifier outcome in general. It is of interest to use
an algorithm that generates a high and reliable accuracy.
Therefore it is crucial to test and evaluate all algorithms
before choosing which one to use. Furthermore, adjusting
the hyperparameters within each algorithm is another way of
optimizing the classifier. For example, the k-value in the kNN
algorithm can be varied to reach the best possible result.

A. Further development of classifier

A version of the classifier could, as discussed, be to first
determine if the sample belongs to rhabdomyosarcoma (RMS)
or not. If it does, the next layer of the classifier would predict
which RMS subgroup the sample belongs to. This method
could apply to myxofibrosarcoma (MFS) and undifferentiated

pleomorphic sarcoma (UPS) as well; first determine if a
sample belongs to MFS/UPS and then distinguish MFS and
UPS from each other, for instance by analysing the genes
connected to the myxoid stroma levels.

This could be extended even more. When building a clas-
sifier in Qlucore Omics Explorer, the program automatically
uses Multi-Group comparison, also called ”all vs all”. This
means that each group is compared to every other group in
the dataset. This approach is useful when studying complex
relationships or when there are multiple groups of interest that
need to be compared simultaneously. [22]

To reach a higher classification accuracy a two-group com-
parison, ”one vs all”, could be used instead. This basically
means that the classifier compares one group against all other
groups combined. It simplifies the analysis by treating it as
a binary problem: determining if the sample belongs to a
particular group or not. This could then be repeated for every
subtype, thus creating a sort of hierarchical classifier tree.
Figure 6 displays a simple illustration of the hierarchical model
in the form of a flowchart.

This type of layered classifier with two group comparisons
is how Qlucore implemented their classifier for leukemia [20].
The challenge when implementing a similar model for sarcoma
is mainly that there are extensively more subtypes to consider,
which makes the hierarchical model more complex.

When implementing a hierarchical structure like this it is
important for the system to be able to label a new sample
as ”unclassified”. In this case, ”unclassified” means that the
sample is not similar enough to the groups already included in
the classifier. There are two main reasons for this. To start with,
new subtypes are still being discovered, making it impossible
to include them all in an established, pre-trained classifier.
Additionally, even with a larger data set, it is not guaranteed
that all subtypes can be accurately classified. To ensure that
the final classifier is reliable and suitable for clinical use,
it is better to prioritize higher accuracy in predicting the
included subtypes rather than including more subtypes with
lower accuracy.

Figure 6. Flowchart of hierarchical classifier model. Note that the presented
order of the subtypes does not hold any intentional significance.
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B. Sustainable development

Sustainable development involves balancing economic
growth, social progress, and environmental protection to create
a more equitable and sustainable world. Health is essential
for sustainable development as it is a basic human right
and a significant contributor to economic growth. It does not
only improve productivity and reduce healthcare costs, it also
promotes social integration. [26]

A further developed classifier for soft tissue sarcoma sub-
types as aid in diagnosis can contribute to sustainable devel-
opment in several ways.

First and foremost, it can lead to more accurate diagnoses,
leading to better treatment plans and reducing the risk of
misdiagnosis or delayed treatment. This can improve patient
outcomes, reduce healthcare costs associated with ineffective
treatments, and minimize the burden on healthcare systems.

Furthermore, an improved classifier can aid in the develop-
ment of personalized medicine approaches, tailoring treatment
strategies based on the specific subtype of soft tissue sarcoma.
This targeted therapy can potentially lead to better treatment
responses, fewer side effects, and more efficient use of health-
care resources [16].

C. Ethics

The ethical concerns regarding a further developed classifier
for soft tissue sarcoma include privacy protection, potential
biases, accessibility and affordability, and the need for clear
communication and informed consent.

Accurate classification may require access to sensitive per-
sonal health information. As always when handling patient
data, there is a risk of privacy and confidentiality breaches.
Ensuring data protection measures and receiving informed
consent from patients becomes crucial to protect their privacy
rights.

There is also a potential for bias and discrimination if the
classifier is not validated over diverse populations. Biases in
data collection, representation, or algorithmic decision-making
can lead to differences in healthcare outcomes. Additionally,
the cost and accessibility of using the classifier need to
be considered. If the tool is expensive or inaccessible to
certain populations or regions, it could worsen existing health
inequities.

Clear communication and transparency are crucial to make
sure that patients and healthcare providers understand the
limitations, uncertainties, and potential errors associated with
the classifier.

V. CONCLUSIONS

The study findings suggest that molecular diagnostics com-
bined with machine learning algorithms have promising poten-
tial for improving sarcoma diagnosis. However, some subtypes
are more difficult to distinguish and require more complex
classification methods, such as hierarchical classifiers. The
results also highlight the importance of expanding the dataset,
including a wider range of sarcoma subtypes and optimizing
the algorithm for better accuracy.
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