Profile Based Access Control Model Using
JSON Web Tokens

MUSTAFA ALBAYATI & ASLAN MURJAN

MASTER’S THESIS

DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Profile Based Access Control Model Using
JSON Web Tokens

Mustafa Albayati Aslan Murjan
albayati.mustafal@outlook.com
aslan.turkman31l@gmail.com

Department of Electrical and Information Technology

Lund University
Supervisors:
Ben Smeets Johnny Wahnstrom
Lund University Axis Communications

Examiner: Thomas Johansson

June 21, 2023

© 2023
Printed in Sweden
Tryckeriet i E-huset, Lund

Abstract

Currently at Axis, a local role-based access control system is used in devices,
which forces the user credentials to be directly installed on the individual devices
and the limited selection of roles does not allow for fine-grained access rights.
This creates an administrative nightmare in a large scale network and leads to
elevated privileges. Instead of this approach a profile based access control can be
used.

The goal of this thesis work was to design an access control system for profile
based access control, utilizing JSON Web Tokens (JWT) for distribution. How pro-
file based access control works was investigated and the possibilities of enforcing
dynamic, user defined and distributed profiles were explored in contrast to static
access tables. This system allows an admin to create custom access control pro-
files depending on the use case, instead of being limited by the roles or profiles
preinstalled on the device. Open ID Connect was used for user authentication
and authorization of profiles.

The system’s design was implemented through an ambitious Proof-of-Concept
(PoC) that encompassed numerous components with the primary objective of
evaluating the feasibility of incorporating the proposed idea into an actual pro-
duction system. The innovative features of the resulting system design have been
condensed and included in a patent application, which was subsequently filed by
Axis.

ii

Acknowledgement

We would like to express our sincere gratitude to Axis Communications and the
hiring manager Robert Svensson, for providing us with the opportunity to con-
duct this research and for their support throughout this study. We are particularly
grateful to Johnny Wahnstrom at Axis for supervising this project and providing
invaluable guidance and feedback that helped us to achieve our goals.

We would like to thank Ben Smeets for supervising this thesis at the Depart-
ment of Electrical and Information Technology, at Faculty of Engineering of Lund
University. His expert advice, encouragement, and support were instrumental in
completing this study successfully.

We would also like to thank Boman Axelsson for the help with the filing of a
patent application under European patent application number 22214794.4.

Finally, we would like to express our deepest gratitude to our families for
their unwavering support and encouragement throughout our academic career.
Without their love and support, we would not have been able to achieve our goals
and complete this thesis.

iii

iv

Table of Contents

1

Introduction 1
1.1 ProblemandGoal 2
1.2 Examplescenarios 2
1.3 Limitations and boundary conditions 3
1.3.1 System 3
1.3.2 Open Source
1.3.3 Clients 4
1.4 RelatedWork e 4
1.5 Contributions 5
1.6 Workdivision e 6
Background Theory 7
21 AccessProfile 7
22 JSONWebTokens 7
2.3 Identity Provider 8
24 OAuth2.0 e 8
2.4.1 Client Authentication 8
2.4.2 Implicit Flow 10
2.4.3 Authorization Code Flow 10
244 Client Credential Flow 12
2.4.5 Device Code Flow 13
2.4.6 Refresh Token Rotation 13
25 OpeniIDConnect 13
26 CGl. . . . e 14
27 Apache 14
28 Systemd 14
29 D-Bus e 14
2.10 VirtualMachine 15
2.11 Containerization 15
2111 Docker 15
Approach 17
3.1 Literature Study 17

3.2 DesignPhase
3.3 lterative Demonstration & Feedback

Solution

4.1 Network Architecture o oL
42 ProofOfConceptSetup.
421 Identity and Access Management (IAM)
422 Containerization
423 Device Virtualization
424 System Architecture
425 Aim of the POC
4.3 OACS Architecture e
4.3.1 OACS Resources
432 liboacs
44 DataStructures
441 Profile
442 Zones
443 ACLs
4.4.4 User
45 \VersionManagement Lo
4.6 Feature Definitions
47 ExampleofUse
48 ServiceTicket
49 TaskObject
410 OACS Gatewayot
4.10.1 OACS Gateway Configuration
411 TicketUse e
4111 Task Authorization (Legacy)

Discussion

5.1 Limitations
5.2 Thesecurity evaluation L
5.2.1 Threat modelling
5.2.2 Design
53 ComparisontoRBAC
5.4 Advantages ofthe solution L.

5.4.1 Customized access profiles
5.4.2 Temporary access to profiles.
5.4.3 Centralized authentication.

5.4.4 Single sign on
545 Task Authorization
5.4.6 Flexible privileges
5.5 Disadvantages of the solution.
5.5.1 Network connection
55.2 Manual Register
5.5.3 One Client
554 Synchronization Problem

vi

21
21
23
23
23
23
23
24
26
27
29
31
31
32
32
33
33
34
35
36
37
38
39
40
41

43
44
45
45
52
54
54
54
55
55
55
55
55
56
56
56
56
56

5.6 Possibilities and Futurework oL L. 57

5.7 ReflectiononThisWork 57
Appendix 63
Al liboacs e 64
A2 LoginFlow 67
A.3 Ticket Authorization 71
A.4 Token RevocationFlow 75

vii

viii

Definitions

ACL: Access-control list.

Forward Proxy: A server that pass requests from isolated network to a
public internet.

CGI: Common Gateway Interface is a middle-ware that passes data be-
tween the web-server and CGI applications. These applications are small
scripts or compiled programs.

IdP: A system that creates and manages identity information of users.

IoT: Internet of Things are devices that can connect and exchange data with
other devices and systems over the internet or other communication net-
works.

OACS: OACS is the deliberation of OIDC Access Control System, which is
the name used for the final solution of this thesis work.

OAuth 2.0: An industry-standard protocol for authorization.
JWT: JSON Web Token.

OIDC: Open ID Connect, identity layer on top of OAuth 2.0 protocol for
authentication and authorization.

RBAC: Role-based access control. Access rights are associated with differ-
ent roles that defines a type of user. These roles are assigned to users to
give them a certain level of access.

RoT: Root of Trust, A cryptographic device that can securely store keys and
sign data, such as a TPM or Secure Element (SE).

TLS: Transport Layer Security

Claim: A claim is a statement about a user associated with a scope. It can
be dynamically using user attributes defined by the identity provider or
statically mapped data.

Scope: A grouping of claims.

User-agent: Any external client that communicates with the device on the
users behalf.

ix

External Service: Any service that can be accessed from outside the device.

OIDC Client: A registered software that is authorized to communicate
with the provider on behalf of the user to handle user authentication and
authorization.

OIDC Client id: A unique user (admin) defined name to identify the OIDC
client registered on the provider.

OIDC Client secret: A predefined secret for client authentication.

OIDC Client key: A private key used to sign single use authentication
tokens instead of a client secret.

OACS: OIDC Access Control System, A library and D-Bus service solu-
tion that makes up a profile based access control solution using JSON Web
Tokens (JWT).

D-Bus: An interprocess communication protocol.

Profile: A set of features defined as a scope in OAuth 2.0 with the targeted
OACS version.

Access Token: Represents authorization to a specific resource.

Refresh Token: Represents authorization to retrieve a new access token
from the provider without user interaction. This allows providers to use
short lived access tokens without having to involve the user when they
expire.

Zone: A group of regionally related devices.

List of Figures

21 JWTFormat 7
2.2 ClientAccessToken i 9
2.3 Proof Key for Code Exchange 11
3.1 Overview Of Project Process. 19
4.1 Network Architecture o oL 21
42 POCArchitecture o 24
4.3 OACSArchitecture e 26
44 1iboacs 29
45 DataStructures 31
46 ExampleofUse 35
47 ServiceTicket 36
4.8 TaskObjectStructure 37
49 RequestServiceTicket 38
4.10 Access Authorization Service o . 40
411 Task Authorization 41
5.1 Attack Tree for Prevent Access Control 47
5.2 Attack Tree for Register Unauthorized Profile 50
A1 liboacs/gateway.h 64
A2 liboacs/client.h 65
A3 liboacs/access.h 65
A4 liboacs/permissions.h oo oo 66
A5 LoginFlow 67
A6 LoginProcess1 69
A7 LoginProcess2 70
A.8 Ticket Authorization 71
A.9 Ticket Authorization Sequence - Correctdevice 73
A.10 Ticket Authorization Sequence - Wrong device 74
A11 Token Revocation 75
A.12 Revoketokensequence 77

xi

xii

Chapter 1

Introduction

The need for improved access control methodologies increases over time to limit
the actions or operations that a legitimate computer system user can perform.
Large IoT networks introduce additional challenges that cannot always be satis-
fied with current solutions. This thesis work is about designing a profile based
access control system using open sourced technologies, for a network of devices
(in this case Axis devices), using JSON Web Tokens (JWT) to achieve an autho-
rized access to many devices.

Currently a local role-based access control (RBAC) system is enforced by the
devices. RBAC is a security model that is designed to restrict system access to
authorized users based on their roles within an organization. This means that in-
dividuals or groups are only given access to resources that are required for them
to perform their specific job functions.

The RBAC model is used to help organizations control access to information
and resources in a way that minimizes the risk of unauthorized access or data
breaches. This is especially important in organizations where sensitive data or
valuable intellectual property is stored, or where regulatory compliance is re-
quired.

The RBAC model is based on the principle that access to resources should be
granted based on the roles that individuals or groups hold within an organiza-
tion. This ensures that individuals are only given access to the resources that they
need to perform their job functions, and nothing more. But this model also cre-
ates an administrative nightmare in a large scale network. RBAC main weakness
is inherent in reliance on manual input, and its constant need for maintenance
[34]. Instead of this approach a profile based access control can be used.

2 Introduction

1.1 Problem and Goal

Currently, the Axis system utilizes a local RBAC mechanism that requires user
credentials to be directly installed on individual devices see Section 1. However,
the limited number of available roles in this system results in inadequate fine-
grained access control. As a result, this mechanism presents an administrative
challenge for large-scale networks.

How a profile-based access control using JWT works in such a system will
be investigated. The possibilities of enforcing dynamic, user-defined, and dis-
tributed profiles will be explored in contrast to static access tables. The system
will allow the admin to create custom access control profiles depending on the
use case instead of being limited by the roles or profiles preinstalled on the de-
vice.

These access control profiles will provide a high level abstraction of what a
user is allowed to do on the device. They will be stored in a central server where
user authentication will take place before authorization is provided. The signed
JWTs that contain the profile will then be verified and handled by the individual
device, eliminating the need to manage user credentials and rights on individual
devices.

The following questions will be answered:
* How to create and handle the profiles?

— What rights can be assigned? How to identify them?

— How can a role be expressed by a profile, in all details?
* Where should the JWTs be verified and the profile enforced?

— By the server, on entry?
- Behind the server, by an API?

— On a lower level, so that it can be used by other protocols that don’t
use HTTP?

+ Such as WebSocket, MQTT and GraphQL.3. How should the re-
vocation of access rights be handled?

1.2 Example scenarios

The following example scenarios illustrate some of the core issues that this thesis
project aims to address.

Scenario 1. Handling user credentials

Background: A user is the operator (an underprivileged user with permission
to operate the device) of a network of 200 networked loudspeakers. The user’s

Introduction 3

password has been compromised or in accordance with the company’s policy, the
password needs to be replaced.

Problem: As an representation of the user credentials that are installed on the
individual devices. The password needs to be changed on all the devices, indi-
vidually.

Proposed solution: The user credentials are stored in a central server which han-
dles authentication and authorizes signed tokens with access control profiles that
can be verified and enforced by the individual device.

Scenario 2. Individual Access Rights

Background: A device provides a set of roles that can be assigned to a user. These
roles are not always able to meet the requirements of the user.

Problem: To overcome this limitation, a user will then be assigned a role with
higher privileges than what is required.

Proposed solution: With personalized access profiles, a user can be assigned
rights to the resources needed to perform their job. For instance, a user that needs
resources with higher privileges than what’s allowed for an operator doesn’t need
to be assigned an admin role (the only higher privileged role in this scenario), but
can instead be explicitly assigned the required rights.

Scenario 3. Temporarily Access Rights

Background: A technician needs temporary access to one or more devices.
Problem: Currently there is no solution to provide temporary access. A tempo-
rary user needs to be added to the individual devices manually and then removed
afterward. Which requires administrative work.

Proposed solution: With a centralized authentication solution and the ability to
create custom access profiles. It will be possible to create profiles with an expira-
tion time, which can be used to give users temporary access.

1.3 Limitations and boundary conditions

These are some additional conditions applied to the work due to system require-
ments and future expectations of service deployment.

1.3.1 System

The devices are running on an embedded Linux environment based on the Yocto
project. The solution should be suitable to apply to this type of environment
with reasonable work. The Yocto project provides a reference distribution called
Poky, which contains the OpenEmbedded build system. OpenEmbedded is a
build framework for embedded Linux that offers a cross-compile environment
for developers to create complete Linux firmware for embedded systems. The
necessary changes are expected to be made on the OpenEmbedded Core layer in
order to use system daemon (systemd) as the init daemon. This allows for the use

4 Introduction

of systemd units that can perform tasks and be managed by the system daemon.
Systemd units can be configured to activate on startup or on D-Bus (see Section
2.9) requests. The solution must exhibit a sufficiently low level of performance
and memory overhead to be considered an acceptable trade-off.

1.3.2 Open Source

The proposal solution should be based on open-source technologies. Technolo-
gies based on proprietary tools should not be included. This is to avoid licence
limitations and other limitations put on the customer. Different organizations
have different requirements on their infrastructure. Some may prefer using a
managed service from service providers such as Microsoft and Google, while oth-
ers may have no trust in external parties and want to have total control of their
system. This level of flexibility will be provided with open source protocols and
technologies.

OpenlID Connect is used for authentication and authorization, and is a base
of the final solution. This will allow the customer to use any arbitrarily OpenID
Connect provider from service providers or a self hosted server.

1.3.3 Clients

The solution is expected to work on a diverse set of clients, such as CLI tools, web
applications and PC software. It’s therefore expected by the proposed solution to
operate in a way that is suitable for these kinds of clients.

1.4 Related Work

This section provides an overview of a selection of literature and research related
to the topic:

1. The paper titled "Token-Based Access Control" [37] describes how to profile-
based access control can be applied to a network of devices by recording
the credential information inside blockchain-based smart contracts. A brief
description of the general data structure of the access control token is pro-
vided.

2. The article titled "A User Profile Based Access Control Model and Architec-
ture" [25] acknowledges the importance of personalization in access control
to provide services dependent on the user’s need and the lack of adapt-
ability in current access control models. The authors propose an adaptable
access control model and the related architecture-based security policies
dependent on the user’s profile.

3. The paper titled "Profile based access control model in cloud computing
environment" paper [26] provides solutions for challenges like high access
time, high searching cost, and the problem of data redundancy. Access con-
trol models based on profile tokens deliver the solutions for this demand.
This article also provides valuable information on handling resource rights

Introduction 5

without the resource owner being online (available). The suggested solu-
tions in this paper will be taken into consideration.

4. The article titled "A Revised Model for RBAC" [15] provides information
about RBAC. The core features are explained together with the role hierar-
chy and the dynamic/static resources.

5. The publication titled "JSON Web Token (JWT)" [17] specification from the
internet engineering task force.

The related works section of this thesis sheds light on the diverse range of re-
search conducted in the field of access control systems. Upon reflection, it is evi-
dent that access control is a critical aspect of security for both physical and digital
systems, ensuring that only authorized individuals are granted access to specific
resources or areas while preventing unauthorized access.

One of the observations from this section is the emphasis on the need for
flexible and adaptable access control systems. Several reviewed studies highlight
the limitations of traditional access control systems, which can be inflexible and
challenging to update. As technology evolves, access control systems must keep
pace, with the ability to adapt to new threats and access requirements.

Overall, the related works section provides a valuable overview of the current
state of research in access control systems. This information will serve as a useful
reference point for this thesis work research and for the development of practical
access control solution.

1.5 Contributions

This thesis explores the potential of utilizing a profile-based access control mech-
anism employing JSON Web Tokens (JWT) in the context of managing user space
services on an IoT device. The current local RBAC mechanism in the Axis system
suffers from limitations in fine-grained access control, making it challenging to
administer large-scale networks. As an alternative to static access tables, the the-
sis investigates the feasibility of enforcing dynamic, user-defined, and distributed
profiles to overcome this limitation.

The thesis proposes a solution that empowers administrators to create cus-
tomized access control profiles based on specific use cases. These profiles abstract
the high-level user permissions on the device. The profiles are stored in a central-
ized server, and user authentication takes place before granting authorization.
The signed JWTs that encapsulate the profile are then verified and processed by
the individual device, obviating the need to manage user credentials and access
rights on individual devices.

To implement this solution, the thesis addresses several questions related to
the creation and handling of profiles, assignment of rights, expression of roles,
and profile verification and enforcement. In particular, the thesis examines where
the JWTs should be verified and the profile enforced, as well as the revocation of
access rights.

The proposed solution enables more flexible and scalable access control that
can better adapt to evolving requirements in large-scale networks. By allowing

6 Introduction

administrators to define more precise user access through customized access con-
trol profiles, the solution enhances security and reduces administrative overhead.
This thesis can serve as a resource for organizations that are interested in adopt-
ing a profile-based access control mechanism using JWTs.

1.6 Work division

The contributions to this study were equally distributed between the two authors.
Both authors collaborated on designing, researching, and validating the results to
ensure quality. To facilitate parallel work, a few tasks were carried out individ-
ually. Aslan Murjan was primarily responsible for conducting a comprehensive
background study and gathering relevant information related to the problem at
hand, While Mustafa Albayati had a primary focus on designing the architecture,
implementing the proof of concept, and testing tools that were tailored to the
proposed solution. Both authors also participated in evaluating the solution and
monitoring the results. Regarding the report, both authors contributed equally to
documenting this case study.

Chapter 2

Background Theory

In this section, we present a comprehensive overview of the key theoretical con-
cepts and frameworks that make up the foundation of this thesis.

2.1 Access Profile

An Access Profile is an association between a user and a list of protected objects
that the user may fully or partially access. Objects such as protected endpoints,
functionality and documents on the file-system. In Chapter 4.4 we review why
access profile is useful for our system.

2.2 JSON Web Tokens

JSON Web Tokens or JWT is a standard for transmitting information as JSON
object between network entities in an organized and secure way, the technical
specifications and organizational notes about JWT are written in RFC 7519 [2].

The information that is sent using JWT is verifiable and immutable because it
is digitally signed by a secret or by a public/private key pair.

JWT has an essential role in this project. A JWT token is used in every subsequent
request between the servers to authorize the user to access resources and services
or exchange permitted data [2].

Every JWT token consists of three parts, the header, the body, and the signature,
and all three parts are encoded in base64. The token looks like shown in Figure
2.1.

{ encodeBaseb64().encodeBase64().encodeBase64()}

Figure 2.1: JWT Format

8 Background Theory

¢ The header contains the token type and an identifier of the signing algo-
rithm.

* The payload consists of claims about the user and additional data.

¢ The signature is created by digesting and encrypting a dot separated string
of the base 64 encoded header concatenated with the base 64 encoded body.

2.3 ldentity Provider

An identity provider(IdP) is a server that contains and maintains the identity
information of the system’s users. It also provides an authentication mechanism
for the clients such as mobile and web applications. It is also used to provide an
5SSO (single-sign-on) service in OIDC system [28]. In Chapter 4.3 we review why
an identity provider is useful for our system.

2.4 OAuth 2.0

The OAuth 2.0 Authorization protocol is an Internet Standards Track protocol
that enables obtaining controlled access to an HTTP service by third-party appli-
cations. The application uses the "Scope" parameter to specify the access rights
it needs, such as user information and Home Address. The authorization server
responds with the granted access rights (if the granted access rights differ from
the requested access rights) using the "Scope" parameter [13].

OAuth 2.0 introduces an authorization layer, a mechanism in which the client
requests access to resources controlled by the resource owner and hosted by the
resource provider [13].

In this project, the resource server and an authorization server are the same
server, but they exist as different endpoints on that server. The authorization
grant denotes the client’s entitlement to request access or refresh tokens. The
resource owner authorizes the authorization process through their user consent.
surely

2.4.1 Client Authentication

Client authentication is a mechanism meant to prevent unauthorized OIDC clients
from communicating with the provider [3]. Client authentication prevents a ma-
licious third party from consuming the resources of the provider or obtaining
potentially sensitive information by pretending to be the client (see Section 2.4.4).

Client Secret

The client secret is a String-type data that serves to authenticate, via a proof of
possession, the OIDC client in the authorization server. The secret must be chal-
lenging enough to make guessing improbable, and it is recommended that a 256-
bit value converted to hexadecimal representation be used as the client’s secret.

Background Theory 9

Mutual TLS authentication

Two-way authentication is the principle that defines the mechanism of two par-
ties authenticating each other. Mutual authentication in TLS is accomplished by
using public key cryptography and certifications. TLS is used to transmit sensi-
tive data and to ensure the security of the data [3].

Signed JWT authentication

OpenlD Connect (OIDC) clients are authenticated using the JWT Bearer Token,
which is a form of token applied for authentication and authorization in web-
based systems. This mechanism constitutes the authorization grant type for OAuth
2.0. This method is another client authentication mechanism that utilizes public
key infrastructure in addition to mutual TLS authentication. A single use JWT is
generated to represent the client with a unique id and signed with the client de-
vice’s private key. The OIDC provider can then verify the token using the public
key and grant access if successful. This approach was preferred over mutual TLS
authentication because of the requirements and limitations put on the transport
layer. Figure 2.2 describes the process of generating the client access token [17].

header

"alg": <signature alg=>

payload Y

access token

r

"jti" :=unigue token id set by the clients, L ;

"ls uh“:{cﬁent ey L Basefd().Base64(payload).Base64(signature)
"iss":=client id>, 'y
"aud":<token endpoint=,
"exp":=expiration date-time in seconds>,
"lat":<issuing date-time in seconds=

|

signature
> SignAlg(Baseé4(header).Base64(payload))

Figure 2.2: Client Access Token

10 Background Theory

2.4.2 Implicit Flow

The Implicit flow, as a method of obtaining an access token in OAuth 2.0, is an
open standard for authorization. It is primarily utilized for client-side applica-
tions in which the confidentiality of the client’s secret cannot be maintained, and
the use of the so-called Authorization Code flow(see Section 2.4.3) is not feasible.

In the Implicit flow, the client application redirects the user’s browser to the
authorization server. The authorization server subsequently redirects the user’s
browser back to the client application with an access token located within the
URL fragment (the portion following the "#" in the URL). The access token is
subsequently extracted from the URL and utilized to gain access to protected re-
sources [12].

Additionally, it is noteworthy that the Implicit flow is currently considered
less secure due to the fact that it does not provide the client with a refresh token.
Furthermore, the access token is returned within the URL fragment, which is not
accessible to the server side and can only be accessed by the client side, thereby
limiting its functionality. In Appendix A.2 we review how this flow is used in our
system

2.4.3 Authorization Code Flow

Authorization Code Flow is the primary authorization method in OAuth 2.0 for
server side applications. Unlike the Implicit Flow, it requires that there is a back-
end were the client secret can be kept and exchanged securely. It is a redirect
based method.

The login process is initiated by the backend with a request to the autho-
rization server. User authenticates using an available authentication option and
provides consent to the requested resources. The authorization server redirects
the user back to the application together with an authorization code that can only
be used once. Unlike the Implicit Flow, the access token isn’t retrieved directly.
Instead, the authorization code is sent back to the authorization server together
with client id and client secret.

If the provided client id, client secret and the authorization code are all valid,
the authorization server will respond with an ID token, Access token and an op-
tional Refresh Token. The Refresh Token can be stored in a HTTP only secure
token on the client side or in a server session. It can be used to retrieve new ac-
cess tokens without requiring the user to interfere. This allows for shorter lived
access tokens compared to the Implicit Flow [12].

Authorization Code Flow with Proof Key Code Exchange

Proof Key Code Exchange (PKCE) is an extension to Authorization Code Flow
which provides an alternative method for client side application instead of the
implicit flow. Storing a client secret on the client is still not a propper option, as it
can be extracted one way or another. Instead, PKCE provides a way for the client

Background Theory

application to give proof that the authorization code belongs to it.

PKCE introduces three new parameters, "code_challenge", "code_verfier" and
"code_challenge_method". The client will request an authorization code, how-
ever instead of a client secret, a random code_challenge will be sent together
with a code_challenge_method which states the method used to transform the
code_verifier to the code_challenge and retrieve an authorization code. The code

is then sent to the authorization server together with the code_verifier.

User

Clicks on login button

App

Generate Code Challenge and Code) Verifier

Redirect to login/authorization page

Autharization Code Request with Code Challenge_

Authorization
Server

Authenticate and Consent

Response

Authorization Code

Authorization Code with Code Verifier

Validate Code Challenge with Code

Verifier

ID Token + Access Token + Refresh Token

Figure 2.3: Proof Key for Code Exchange

12 Background Theory

The authorization server can use the code_challenge_method to transform
the code_verifier and confirm that the code_challenge provided by the applica-
tion to retrieve the authorization code belongs to the application now requesting
an access token using that authorization code. This method is recommended for
single-page web-applications and mobile applications [33].

2.4.4 Client Credential Flow

The Client Credentials flow, as a method of obtaining an access token in OAuth
2.0, is utilized for accessing protected resources on behalf of a client rather than an
individual user. It is a machine-to-machine authentication mechanism commonly
employed in server-to-server communication, where the client is a server-side ap-
plication [12].

In the Client Credentials flow, the client initiates a request to the authorization
server, providing its client ID and secret (or a client assertion). In exchange, the
authorization server issues an access token, which can be utilized to access the
protected resources on behalf of the client. In Appendix A.3 we review how this
flow is used in our system

Background Theory 13

2.4.5 Device Code Flow

Device Code Flow is an OAuth 2.0 method meant for input restrained devices and
clients, An input-restrained device is a device that has limitations or restrictions
on the types of input it can accept for example cameras. This can refer to a vari-
ety of devices, such as electronic devices, computer peripherals, or even physical
machines.). Unlike redirect based methods like implicit flow and authorization
code flow, device code flow is a decoupled method. Rather than directly authen-
ticating the user, the user is asked to visit a link on another device and authorize
the device. The authorization server responds to an authorization request with
a "user_code", "device_code", "verification_url", "expires_in" (expiration time for
the codes) and "interval" (the pooling interval).

The user is instructed to visit the verification link and use the "user_code" in
order to be authenticated and authorized access to the device. Meanwhile, the
device will be using the "device_code" while pooling the authorization server for
the authorized token as instructed by the authorization server. The device will
then obtain an access token and an optional refresh token. It can use the refresh
token to keep the user logged in for a longer period of time instead of using
short-lived access tokens. This reduces the possibility of a leaked access token to
be reused for malicious intent [4]. In Appendix A.2 we review how this flow is
used in our system

2.4.6 Refresh Token Rotation

Refresh tokens are commonly employed to acquire new access tokens follow-
ing the expiration of short-lived access tokens, and they typically have a longer
lifespan. Native mobile applications often utilize refresh tokens in conjunction
with short-lived access tokens to facilitate a seamless user experience, without
the need to generate long-lived access tokens [12].

With refresh token rotation enabled, every time an application exchanges a
refresh token to get a new access token, a new refresh token is also issued, inval-
idating the previous one. Thus securing the long-lived refresh token that, if com-
promised, could provide illegitimate access to resources. As refresh tokens are
continually exchanged and invalidated, the threat is reduced [24]. In Appendix
A .4 we review how this flow is used in our system

2.5 Open ID Connect

OpenID Connect or OIDC is a protocol that defines how the client can verify the
end-user’s identity by authenticating the user using an authorization server. It
also defines how to obtain the profile information about the end user in the form
of JWT [27]. The OIDC is responsible for requesting and receiving information
about the authenticated end-user. OpenID Connect is built on top of the OAuth
2.0 protocol, which allows using web authorization codes flow, like Device code
flow and client credentials code flow used in this project [12].

14 Background Theory

2.6 CGl

CGI or Common Gateway Interface is used by the servers to run an external pro-
gram remotely on other servers. Usually, this file is saved with an extension (.cgi)
and is written in C or Perl programming languages. When a client, a web server,
or a user requests a URL address that contains a CGI directory, it will be executed
by the HTTP server and send back the output to the user [32]. The CGI files are
entry points to the system services.

2.7 Apache

The Apache software platform is an open-source initiative that is maintained and
developed by an open community. The software is released under Apache Li-
cense 2.0. The project’s version of Apache operates on the Linux distribution and
serves as a flexible, highly configurable, and extensible web server, which renders
it a compelling option for embedded projects. Additionally, Apache can utilize
CGI endpoints for enhanced functionality [10]

2.8 Systemd

System daemon (systemd) is a service and system manager for Linux operating
system, designed especially for Linux kernels. This service runs as the first pro-
cess on boot (PID 1). In other words, it becomes an init system that starts user
space services later. It provides features like the parallel startup of system ser-
vices at boot time, on-demand starting of daemons, and processes tracking using
Linux control groups. Systemd offers the concept of "systemd units". These units
are services represented by configuration files that are located in Systemd Unit
Files Locations and contain all information about the services, sockets, and ob-
jects that are associated with init system [30].

2.9 D-Bus

D-Bus or desktop bus is an inter-processor communication protocol (IPC). It is a
way of communication between applications to talk to each other or to allow mul-
tiple processes that are running on the same host to exchange data in a regulated
way [29]. The D-Bus protocol ensures that the processes aren’t communicated
with unsuitable services by specifying how to exchange the data and what meta-
data is available to exchange. As well as offered introspection of services and the
ability to trace the message traffic [14].

It carries messages as discrete items instead of continuous data streams. Both
one-to-one messaging and broadcast to subscribed clients is possible. D-Bus deals
with data in binary form and can reject ill-formed messages. Exchange on the bus
requires a communication endpoint on one end, that is called an object. Objects

Background Theory 15

are created by client processes and exist within the context of the client’s connec-
tion to the bus. A client can create any number of objects.

Objects contain members such as methods and signals specified in interfaces.
Methods are specific named actions. They can have optional input and output pa-
rameters, and are declared in the interface with the expected data types. Methods
are one-to-one, request-response based calls between two clients over the bus.
Clients may on the other hand subscribe to signals exposed by another client.
When an object emits a signal, all subscribed clients will receive a copy of the sig-
nal. The signal may carry parameters like a method invocation, however, there
are no replies to signals. An object may contain multiple interfaces [19].

2.10 Virtual Machine

A virtual machine (VM) is a software emulation of a physical computer. It allows
multiple operating systems to run on the same physical machine, each with its
own virtual resources such as CPU, memory, and storage [11].

2.11 Containerization

The process of bundling together all the resources required to run software on
any infrastructure that we use is called containerization. As the Keycloak server
would be running locally in a development environment, a containerization solu-
tion was approached allowing us to easily deploy the complete server on different
environments and perverse the expected behavior.

2.11.1 Docker

An open-source platform that enables developers to construct and refine a system
or tools, and execute them within distinct containers. These containers operate
as namespace-isolated runtime environments, sharing the use of the host’s kernel
and providing the dependencies required to run the code [5].

16

Background Theory

Chapter 3

Approach

In this chapter, we summarize the approach of our thesis project. The thesis work
started with a brief introduction to the problem by Axis Communications. The
first look at the problem happened via a short description from the supervising
engineer at the workplace.

3.1 Literature Study

After the initial problem description, we performed a literature study. First, an
initial set of related literature and data was gathered on the subject. This study
was used to explore and find research questions from an academic aspect, look
in Section 1.1. The resources were evaluated and only reputable publications
and information from the official authorities were utilized. Scientific articles and
thesis works published by others proved to be a good way to understand the
problem better. These papers were found in Google Scholar engine search and
LUBsearch database. This study was essential to highlight how similar problems
were solved, look in Section 1.4, which helped us determine the project’s priori-
ties and formulate the solution.

3.2 Design Phase

The next phase, the design phase(see Figure 3.1), started with a set of prepara-
tions. The first step was to identify the best tools to solve the problem based on
the limitations and goals of the project. The next step was to define the concept
of profile as a data structure, which is the cornerstone of the access token system.
The description of the profile can be found in Section 4.4. The proper code flow
was then determined to provide confidentiality, authenticity, and integrity to the
system.

The last step of preparation was to create a low-level design(see Figure 3.1)
that takes the access token and distributes it to all needed services securely.
Following the preparations, a solution design is produced and analysed inter-
nally. Complete design solutions were reviewed together with our supervisors.

17

18 Approach

The final solution was refined through several design iterations after supervisors
feedback.

3.3 lterative Demonstration & Feedback

During this phase, a series of meetings were conducted with LTH department su-
pervisor and experienced engineers from Axis company to gather feedback on the
proposed solution and OIDC. Based on the feedback received from these groups,
a model modification process was initiated to align the proposed solution with
the desired outcome. This iterative step was repeated multiple times until the
intended outcome was achieved.

Lastly a proof of concept was produced and presented internally at Axis
Communications, before the thesis project was finalized with a thesis paper and
final presentation.

Approach

Identify the Problem & Requirements

‘ Literature Study ‘ ‘

Implementation

F

NS T

Define The Solution

l¢

I

Thesis Paper

Presentation

=

Figure 3.1: Overview Of Project Process.

Design Phase

Preparation
JWT Data Structure
Define the profile &
access token
" Findthebest |
authorization flow
between client and
L server)
| Design the device |
level user access
management

. S

Solution Design

Review & Feedback

Iteration

20

Approach

Chapter 4

Solution

This chapter will detail the design solution of this thesis work. It starts with the
network architecture’s big picture, then diving into the choice of technologies and
SW components, design decisions and code flows used in this thesis, in addition
to profile data structure and client access token. This section will also introduce
and describe a service ticket that will be used to authorize tasks. The resulting
system is named OIDC Access Control System (OACS). The deliberation OACS
will be used throughout the remainder of the thesis report.

4.1 Network Architecture

Admin LAN

®— 2

.?:
¥
P

oy L N Proxy
S
ADM/ACS

0IDG
Provider

Figure 4.1: Network Architecture

Figure 4.1 depicts the network architecture of the solution proposal. A local
network consists of cameras, some kind of management software (Axis Device
Manager, Axis Camera Station, ...), a forward proxy to communicate with the
OIDC provider and end users. Each camera acts as its own OIDC client using the
same OIDC Client id and OIDC Client key. The id and key need to be installed on

21

22 Solution

the devices during setup before use, otherwise the client authentication against
the OIDC provider will fail. The client key needs to be stored in a tamper-resistant
device to establish a root of trust. With devices as clients, the tokens will travel
less over the local network and also, there will be no central server acting as an
OIDC Client back-end, that can become a potential single point of failure or a bot-
tleneck that congests the traffic to the devices. Each device should be configured
to protect the external communications with HTTP over TLS in order to prevent
tokens from being leaked.

Solution 23

4.2 Proof Of Concept Setup

In this section, we summarize the choices made for the setup of the proof of con-
cept (POC).

4.2.1 Identity and Access Management (IAM)

We needed a solution for an Identity and Access Management tool, in order to
configure and experiment with an OpenID Connect 1.0 compatible client. Key-
cloak was one of such tools that provided us with a certified client with the con-
vience of a built-in identity provider, where mock users can easily be generated
and deployed into the ecosystem.

Keycloak is an open source project licensed with Apache License 2.0, written by
Red Hat. It is used for "Identity and Access Management". It can be configured
to work with industry standard protocols like OAuth 2.0 and OpenID Connect.

Keycloak is deployed as an independent server for authenticating users with the
application by saving the users’ identity and their roles, permissions, and profiles
in a database (in keycloak) in order to send it when needed in the form of JSON
tokens [20].

4.2.2 Containerization

Docker was chosen as the containerization solution as Keycloak provided a ready
to use Docker image for development purposes as well as production [31].

4.2.3 Device Virtualization

The Yocto project uses an implementation of Quick EMUlator (QEMU) open source
emulation software as part of its development tool-set. This utility was used to
virtualize an arbitrarily ARM based machine to run a compatible firmware com-
piled with OpenEmbedded build system. This firmware was built on top of the
Poky reference distribution provided by Yocto. The proof of concept was built as
a layer and tested in the virtualized environment.

4.2.4 System Architecture

This is the final architecture used for the proof of concept. The Keycloak AIM is
acting as an OIDC provider running inside a docker container isolated by the run-
time environment. An arbitrarily ARM based device is virtualized by a QEMU
virtual machine running the Linux distribution housing the device side of the
solution.

A cryptographic device such as TPM (Trusted Platform Module) or SE (Se-
cure Element) was not used in the proof of concept. As the proper use of these

24 Solution

Host Machine

Docker Runtime Environment

Docker Container

Keycloak

Network 1AM

Interface

OIDC Provider

Docker Virtual
Network

A

QEMU Virtual
Network

. Host .
" Network

QEMU Virtual
Machine
MNetwork

Linux Interface

Distribution

Figure 4.2: POC Architecture

devices are already well known and not interesting for this study. We are assum-
ing that for this solution to work, one of these devices are properly implemented.

The virtual devices and the containers are located on two different virtual
networks accessible via the network stack of the host machine. More details about
the device side implementation and the role of the provider are explained later in
Section 4.3.

4.2.5 Aim of the POC

The aim of the proof of concept is to demonstrate that the central principles of
an access control system as described in this chapter are possible to implement
and apply in a real life scenario. Already well established technologies such as
HTTPS, TPM, and a physical network are excluded as the presence of these tech-
nologies won’t produce new knowledge. The following acceptance criteria will
be used to assess the completeness of the solution.

Solution 25

1. Demonstrate that an arbitrarily user can be authenticated and authorized
access to necessary resources through an OIDC provider.

2. Demonstrate that an arbitrarily device service can be utilized by an authen-
ticated user with correct access rights.

3. Demonstrate that the same service is unavailable when the required per-
mission is not provided.

4. Demonstrate the life-cycle of the authorization object(s). When are they
created? Where are they used? When are they disposed of?

26 Solution

4.3 OACS Architecture

Device
Network Service Endpoint for network APls
liboacs “{==ccancnoasaassssccccszzzzzaaa
| et | o
client.h
€% signs OIDC client ‘
OIDC Client | £ il foccooceoa » OIDC Provider
Key T
A 4
Network
OACS Gatewa 7% Interface
A A y :
1 1 .
1 1 - -
i 1 Service Ticket OACS e SN User Agent
i 1 Validation Cont Legacy -l
| ememmmmm-a > Profiles 0 =
i ° 2
1 - .
‘ OACS Gateway | Ticket 5 °
| Start execution with Key Whitelist 0 s
\ authorized task object - l:l
"""""" e - A A Do
' 1= . . "
! 2 - Acts as OIDC Client R
! B8 obso055065000000: -8
Y 25 - | |
c S w
Service 58 OAGS Client 18
25 13
liboacs g, liboacs : ——
R :
1 -
o GO > < Socket
Network
e
Secure
Channel 7

Figure 4.3: OACS Architecture

OACS utilizes four different public endpoints by using the OACS Client, in
order to handle login, get refresh token, authorize ticket, and revocation of the
refresh token. The proof of concept includes four CGI endpoints for this purpose.
These CGI endpoints are resolvers that make use of the liboacs library to commu-
nicate with the OACS Gateway over D-Bus to serve requests as shown in Figure
4.3.

The OACS Gateway further communicates with the Root of Trust (RoT) hard-
ware device to sign client authentication tokens as previously defined. The RoT
protects the private key used for client authentication. The OACS Gateway com-
municates directly with the OIDC Provider. All logic and functionalities are pro-
vided by the OACS Gateway (see Section 4.10). The CGI endpoints only act as
entry points and potentially translate or in other way handle response from the
gateway.

The OACS Client will only act as a relying party to establish communication

Solution o7

with the OACS Gateway. The OACS Gateway D-Bus service will only be allowed
to be used by the "oacs" group on the host OS. Thus, only external entry points in
the system can process user access as intended, reducing the chances of exposure
to a rogue service under the control of a malicious user.

The user login is handled through a slightly modified form of OAuth 2.0 De-
vice authorization flow, where the device code (Section 2.4.5) is kept by the re-
questing user agent, instead of the device. A detailed description of the login
flow can be found in the appendix, under Section A.2. Device code flow was cho-
sen for OAuth 2.0 authorization as a decoupled process, unlike the redirect-based
authorization code flow as described in Section 2.4.3 or the extended version uti-
lizing Proof Key for Code Exchange (PKCE) mentioned in Section 2.4.3. Autho-
rization code flow with PKCE is the industry standard, however, it’s designed for
web-clients that can handle an HTTP redirect response as defined by RFC-7231
[9]. Device code flow, on the other hand, is designed for input restrained devices
and is therefore favourable for this thesis work, as the solution is meant to be
used by restrained clients, such as Command Line Interface (CLI) applications,
that would otherwise not be able to handle the OAuth 2.0 authorization.

User logout is handled through standard OAuth 2.0 token revocation. A re-
fresh token is revoked in order to prevent more access tokens from being issued.
A detailed description of the token revocation can be found in the appendix, un-
der Section A.4. Observe that Single Sign-Out is not used, as logout in the OACS
refers to ending the session with a device and not completely invalidating the
users session with the identity provider.

4.3.1 OACS Resources

In this section, we describe the resources that OACS consists of and their roles.
Here, resources refer to the entities, data structures, and documents required to
build this proof of concept.

OIDC Provider:

A OpenlD Connect 1.0 certified service provider.

liboacs:

A C library used by the gateway to handle authentication of users and autho-
rization of profiles. Also used by services to verify access rights and by external
services to handle communication with OACS Gateway.

OACS Gateway:

A D-Bus service provides user authentication, profile authorization, and service
tickets. Does not have any logic of It is own but uses the gateway header found
in the OACS library to perform the tasks.

28 Solution

OACS Conf:

The configuration file used by OACS Gateway to connect to the OIDC Provider
and verify the access token.

OACS Gateway key:

A temporary symmetric key generated on runtime to sign service tickets.

Service Ticket:

Data structures required by the gateway to authorize a task. It is a base64 encoded
JWT. See Section 4.8 for a more detailed description.

Ticket Whitelist:

The ticket whitelist is a runtime register of tickets issued by the OACS Gateway.
Tickets are registered by id in order to keep track of the authorized tickets and
prevent reuse.

Task Object:

A JSON data structure that represents the unpacked service ticket after successful
validation. This representation is used by services to determine if the action is
permitted. See Section 4.9 for a more detailed description.

Legacy Profiles:

These are JSON files that represents the traditional user roles through OACS ac-
cess profiles

OIDC Client Key:

A persistent private key used to sign tokens for OIDC client authentication. The
public key is registered for the client by the OIDC provider.

RoT:

A cryptographic device, such as a TPM or a Secure Element (SE) to securely store
the OIDC Client Key and sign client access tokens.

OACS Client:

A set of web APIs that are used to authenticate user and authorize service tickets.

Network Service:

Any network service with external API endpoints that can process requests.

Solution 29

Service:

Any service that provides functionality that can be expressed as described under
Section 4.6.

4.3.2 liboacs
]
liboacs
1
I_ _______ gatewayh | _ |- — _ _ _ _ _ _ _ _ _ _ _ _
|
| T 1T |
L [T S , |
I | W L
| access.h | . | |
: T : I — — — | — =llibjansson libglib libcjose
| =] T R
\Ir‘ | I | | |
v e il |
permissions.h - a |
) | 4 :
I — — — _ cienth |~ [~~~ 77

Figure 4.4: liboacs

The library liboacs uses a set of header files. The relationship between these
headers is as visualized in Figure 4.4. In addition to the internal dependencies,
there are also dependencies for external resources. Such as the "jansson" library
that provides functionality for encoding, decoding, and manipulation of JSON
data. The "cjose" library provides an implementation of JavaScript Object Signing
and Encryption (JOSE) and the "glib" library that is a portable general-purpose
utility library with many useful data types and functionality.

¢ gateway.h: Has functions to initiate the internal OIDC Client and set pa-
rameters necessary for verification of access tokens. The gateway functions
uses OAuth flows through HTTP API calls to handle user authentication
and profile authorization. Additional functions exist for verification of ac-
cess tokens, generation of service ticket and verification of service tickets.
See Figure A.1 for a more detailed description of the header.

* client.h: An abstraction layer to handle communication with the gateway
service. Defines a communication handler function pointer, that is used by

30

Solution

the functions in "client.h" to relay requests to the gateway. The client func-
tions crafts request objects that are then serialized for transfer over any
inter process communication protocol using a corresponding communica-
tion handler function. See Figure A.2 for a more detailed description of the
header.

access.h: Used by services to verify access rights using the Task Object and
predefined authorization requirements. See Section 4.11 for more details.
See Figure A.3 for a more detailed description of the header.

permissions.h: Definition of the permission type and permission flags
used by "gateway.h", "client.h" and "access.h". Services will use these flags
to define authorization requirements for their APIs. See Figure A4 for a
more detailed description of the header.

Solution 31

4.4 Data Structures

profile.<profile_name=
version: <Major=.<Mid=.<Minor=
target: <target machine=
<feature_names=: [run,conf,priv]

Zone.<name:= acl.<S/MN=.<profile_name=

aud: "<name=" <email=: "[expr time]"

User

email

Figure 4.5: Data Structures

The entities in Figure 4.5 are represented by scopes with static claim map-
pings, in the OIDC provider. They are further defined below.

441 Profile

A profile is an abstract set of features that the device can perform together with
one or more permitted actions assigned to each. These features can be native
features provided directly by a service, pseudo features defined by a specific use
of another native feature or composite features that are a combination of two or
more features.

A native feature in this case could be to play an audio resource in a network
speaker or start recording video in a security camera. While a pseudo feature
can be for that network speaker to play the sound of a fire siren as a fire_alarm
feature. No combination of features should occur. If a procedure would require
the use of two or more features, then a new composite feature should be defined.
This way, the service can allow access to single features without the concern of all
the possible combinations. The profile will also contain the target OACS version.
See version management below.

Each feature will have one or more of the following permissions, "run" and

32 Solution

"conf". This permission expresses the action of using the feature of configuring it.
The association between a feature and action is called a task. Tasks are authorized
to users through profiles. If the user sends a request to perform a task, then the
request must include the run permission to use the feature, while "conf" is used to
configure it. The "priv" flag can be used in combination with "run" and "conf" for
elevated privilege requirements, such as privileged executions or configurations.
The permissions are represented as a JSON list of strings.

An optional "target" field exists in the profile to determine the target platform
of the profile. As different features exist for cameras and speakers. Or the same
feature could have different uses depending on the target platform. Because of
this ambiguity, the target field should be used in order to prevent malicious mis-
use, as a feature on a speaker could potentially result in elevated access on a cam-
era. If features are deemed platform specific or unique enough, then this field can
be opt out.

The profile abstraction was chosen as a way of re-visioning access control
from the consumers perspective. Access control is traditionally a machine-centered
process where the system uses a strict set of highly technical, predefined rules,
with limited exposure to the consumer. However, as the system opens up and the
consumer becomes a central part of it, the needs of the person must be satisfied.
The high level of abstractions described in this section allow for the consumer to
fulfill their access control needs without knowledge of the inner workings of the
system.

442 Zones

The zones are definitions regarding a group of devices. The zones utilizes the
"aud" claim defined by OAuth 2.0 to target a specific audience. The audience
can be a specific application or service when used with cloud services. In our
case, the audience claim refers to a zone defined by the system admin. The "aud"
option is added to the configuration when setting up the device. The system
admin can create a new zone by creating a new zone scope and then configuring
a set of devices to accept that zone as the intended audience. When a user then
logs in on a device in a particular zone, the device will insert its zone into the
authorization request as a scope. After a successful authentication, a refresh token
will be authorized with a profile intended for that audience. This refresh token
will only be accepted in that zone, isolating different zone from each other.

443 ACLs

An ACL is included in the access token as a scope, that can be used by the device
to determine the profiles a user is authorized to use on that particular device.
Defining the ACL as a scope enables for a convenient way of managing and cus-
tomizing existing profiles as well as creating new ones, at a central server without
involving the device itself. To add a profile to a device, such a scope is created
using the device’s serial number and the profile scopes name, in order to bind the

Solution 33

two of them together.

The entries in these scopes are the "email" of the users, which correspond
to the email claim in the default email scope, acting as the user identify, paired
with expiration date-times for access to the profile. This way, an elevated access
profile, such as "technician" can be assigned for a few hours to days and be inac-
cessible for the user when expired. Or an empty string can be used for persistent
access to the profile. If the wildcard user "*" is used in a profile, any user can
use that profile on that device without being explicitly assigned. In that case, any
user added to the list will instead get black-listed.

An ACL can also be defined for a zone, in order to assign a profile and au-
thorize users for a group of devices, instead of configuring individual ACLs. For
instance a "m_building" zone can be defined to include all the devices in that
building. The devices would then be configured with "m_building" as audience
during setup. The ACL would be bound to a profile that would then either in-
dividually authorize users for all the devices on that building or everyone using
the wildcard user.

4.4.4 User

The user is just the regular OIDC user. The only needed entry here is the email
claim in the email scope.

4.5 Version Management

The OACS version is used to assess the compatibility of the defined profile, and
the feature set device services have been developed for. The version number
consists of three parts. A major version, a mid version, and a minor version. The
minor version defines bug fixes or performance improvements that do not impact
the features. In this case, a profile defined for the same major and mid version as
the service will be accepted.

The mid version will define constructive changes. A larger mid version means
that new features have been added. Thus, if the profile is defined for a higher mid
version, then the service will potentially use features not supported by the service
with a lesser mid version, given that the major versions match. The OACS library
will then generate and log a warning for debugging purposes. The service could
define a white list of mid versions if the feature set used by the service overlaps
several mid versions in order to silence unnecessary warnings and false nega-
tives. If the mid version of the profile is less than what’s used by the target ser-
vice, no warnings are generated as the profile uses a subset of the features that are
supported by the service. Mid versions should only include constructive changes
without removing functionality of features from a previous set of the same major
version, for backwards compatibility purposes.

34 Solution

Major versions define breaking changes. It can be a destructive feature change
that removes or mutates the behavior of a feature or other breaking changes to
how the access control system behaves. The major version should not change if
neither of these conditions is met.

4.6 Feature Definitions

Feature sets should be defined for each major-mid version combination, defining
the expected behavior of the features. The services should be developed based on
these definitions. The developer of a user-agent can then use this API documen-
tation to configure their own services with the required permissions. The external
services targeting users should further include these features in their documenta-
tion with a target OACS version specification, in order to specify which features
are required for API use. As the user interacts with a user-agent, the developer of
the user-agent should provide documentation for which features are required for
their services. So that the IT admin of an organization can tailor custom profiles.

For instance, a pseudo feature, "fire_alarm”, can be defined as mentioned pre-
viously. The feature set would include the expected behavior of the feature. Then
the developers of the external service would create an API to use this feature,
together with documentation describing the required permissions. In this partic-
ular case, the API could be called with a "trigger" option requiring "run" permis-
sion in order to trigger the "fire_alarm". While the "priv" permission is required to
use the "disable" option to disable the alarm. The developer of a user-agent, such
as a mobile application, could then provide a service to trigger the fire_alarm us-
ing the phone. And would implement the API request with the required feature
and permissions according to the documentation. The admin of the organization
using these services could then add the required feature and permission to use
this user-agent, into an existing profile or create a new one. In this case, the ad-
min chooses to create a "fire_alarm" profile with "fire_alarm" feature and "run"
permission, assigned to the wildcard user "*" of dedicated devices. The "conf"
and "priv" permissions are added to the admin profile. Thus any user can use the
mobile application to trigger the alarm, but only the admin can disable it. The
proof of concept will be based on this scenario.

Solution 35

4.7 Example of Use

In this section we give three use-case examples.

profile.fire_alarm -
profile.fire_alarm

profile.operator version: 1.1.0
version: 1.1.0
version: 1.1.0 target: speaker
target: speaker
target: speaker fire_alarm: [run]
— fire_alarm: [run]
audio_playback: [run,conf] 1

1

1 1
1

acl.02428800863e.operator acl.02428800863e.fire_alarm

acl.m_building.fire_alarm

john@doe.com: ** john@doe.com:

jane@doe.com: "30/10/2022 14.00:00"

User Zone.default Zone.m_building

email aud: "default" aud: "m_building"

Figure 4.6: Example of Use

The first example demonstrates an operator profile defined after the OACS
1.1.0 feature set definitions (this is just an arbitrarily version) targeting speak-
ers, with an audio_playback feature set to "run" and "conf" permissions. This
profile can thus be used to run and or configure an audio playback task. It’s
however unauthorized to perform privileged elevated tasks, as the "priv" permis-
sion is missing. An ACL is also present for this profile defined on a device with
"'02428800863¢" as serial number. A user with email address "john@doe.com" has
been given access using an empty string, which means persistent access, while
the user "jane@doe.com" has a temporary access until 30th of November. This
profile is thus explicitly assigned to that particular device. A default zone is de-
fined and can be used by devices that are configured to accept "default” as the
intended audience.

The second example demonstrates a fire alarm profile with the "fire_alarm"
pseudo feature set to "run" permission. Together with a ACL for the profile on
a device with "02428800863e" as serial number. This profile ACL assigns a user
with email address "john@doe.com", persistent access to the "fire_alarm" profile.
This user can now use the "fire_alarm" profile to trigger the fire alarm. This ex-
ample is demonstrated by the proof of concept demo.

36 Solution

The third example is another approach to the second one. In this case, the
"fire_alarm" profile is assigned to the entire "m_building" zone without creating
an explicit ACL for each device. Together with the wildcard user, any authorized
user can start the fire alarm on any device in that zone.

4.8 Service Ticket

header

{

"alg": <signature alg=

payload v
{ service ticket
m:smrir:‘i:lajob.dﬂib.qmnorb, | Basesd|).Base6d(payload).Base64(signature)
"permissions™: [112] 4], A

"feature™: <name>,

"iss" =device S/N=>,

"azp":=device S/MN=,

"aud":<device SiN>,

"exp":<expiration date-time in seconds=,

v
signature

> SignAlg(Baseé4(header).Base64(payload))

Figure 4.7: Service Ticket

A service ticket is an authorization by the OACS Gateway (see Section 4.10)

to perform a task given that the user has the right permissions. The "id" key is
a string used to identify the ticket and make sure that the ticket is used once.
The "version" key is used to assess the compatibility of the defined profile with
device services. "feature" is the request feature defined in the target feature set.
The "permissions” key is used to determine the authorized permission for the
requested feature. If the user is authorized to perform the task, a new short-lived
service ticket is generated, as shown in the chart above.
The ticket will be bound by the serial number of the device that authorized the
use, given by the "iss", "azp" and "aud" claims together with an expiration time.
The ticket is then signed by the device and added to a ticket whitelist, binding it
and limiting its use to a single feature on a single device.

Solution 37

4.9 Task Object

Task Object

{
"version™: <Major=.<Mid>.<Minor=,
"permissions™ [1 | 2| 4],
"feature™: <name=x,

]

Figure 4.8: Task Object Structure

In Figure 4.8, a task object is utilized to represent the unpacked ticket, which
is produced once a ticket is processed and approved. This simplified form of
the ticket is utilized by services for access control purposes and is considered to
be an unprotected data structure. The transformation of the service ticket to the
task object signifies the transition to a trusted environment, wherein the system
is entrusted with the responsibility of maintaining the integrity of the task object.

38 Solution

410 OACS Gateway

External Client

f

Request Service Ticket

MNetwork s—
DEBUS = = = = = = = j

Ticket API

OACS Client Device

Ty
M iy

ReqTicket(refreshToken: string, feature: string, permission: int) -->
ticket: string

OACS Gateway

Figure 4.9: Request Service Ticket

The OACS Gateway is a systemd service that starts at system initialization
and acts as a D-Bus server. At initialization, the service will read the configura-
tion file (see Section 4.10.1) and generate a temporally symmetric key. This key is
used to bind a service ticket to a specific device, limiting the use of an authorized
ticket to the device that authorized it. As the keys are randomly generated on
each device, a compromised key won't affect other devices. The key is a 256 bit
secret that is updated once every hour. This is to ensure perfect forward secrecy.
A more frequent update rate could increase the chances of a race condition due
to use of tickets generated before the key update.

The user will be able to use the external Ticket API to request a service ticket
to use a device feature with authorized permissions, see Section A.3 for a more
detailed explanation of the authorization process of a ticket request. A process
belonging to the "oacs" group will be allowed to request the ticket from OACS
Gateway, on behalf of the user, with the user’s refresh token, the requested fea-
ture, and permissions for that requested feature. The refresh token will be used to
request a new access token with the authorized access profile. The access rights
to a profile will be verified by confirming that the user exists in the access control
list for the authorized profile, on the target device or the zone that the device be-
longs to. If the user is authorized to use the requested feature with the expected

Solution 39

permissions, a new service ticket will be issued by the device signed using the
symmetric key of OACS Gateway together with a new refresh token using re-
fresh token rotation.

4.10.1 OACS Gateway Configuration

"iss": "https://server/realms/axis",

"aud": "default",

llazplI: "OaCS",

"client_key": "<a key handle or other kind of id>",

"provider_ca": "/etc/oacs/oidc/ca/provider_ca.pem"

Listing 1: OACS Gateway configuration

This Listing 1 is the structure of the OACS configuration file. The device
admin configures these fields. The "iss" option is the issuer URL pointing to the
OIDC provider and the target realm. The "aud" option refers to the intended
zone, and "azp" is the authorized party (client id). The "provider_ca" is the CA
certificate of the server. These options are necessary to ensure the integrity of the
access token. The "client_key" is a reference to the private key in the RoT device.
It is loaded and configured by the device admin.

40 Solution

411 Ticket Use

‘ External Client ‘

Arbitrarily Request to a network

NEtWO K —— Service with service Ticket
DBUS = === ===
e ™
Entry API .
Arbitrarily Network Device
Service (ANS)
A A
I VerifyTicket(ticket: string) !
]]
I = 1 I a
: AnyReq(task: string, args...) :
\ 4 v
OACS Gateway Playback Service

Figure 4.10: Access Authorization Service

As it is shown in Figure 4.10, the process of using a ticket starts when an
external service APl is called. The service ticket is passed with the request. Once
the single use service ticket is validated by the OACS Gateway, it’s unpacked to
a task object. The task object is forwarded to the next service as a string. Each
service does a permission check on the task object, at the beginning of a serving
API call, expecting one of a set of approved features and permissions required to
use that APL. Every OACS feature set version is checked according to Section 4.5.

An entry service can confirm the validity of the ticket by sending it to OACS
Gateway over D-Bus. The integrity of the ticket is first confirmed by checking the
ticket whitelist after its ticket id. Tickets that are not previously whitelisted by
the OACS Gateway are considered unauthorized and immediately invalidated,
under the suspicions of ticket reuse. If the ticket is whitelisted, the signature of
the token and the expiration time is verified. If the ticket is valid, the gateway will
unpack the ticket to a task object and return it with an confirmation of validity. If
the ticket is invalid, the authorization will fail and the OACS Gateway will return
an error, terminating the API call. If the task object has the right permissions, then
the API call will resume, and the task object will be passed to the next service.
Otherwise, the API will break out with an error.

Solution 41

4.11.1 Task Authorization (Legacy)

External Client

f

Bequest
MEtWork —
DBUS = = = = = = = j
Any API
OACS Client { i ‘ Device

string

OACS Gateway

Operator Profile

Figure 4.11: Task Authorization

The OACS requires changes to the existing clients in order to handle profiles
and service tickets. A OIDC provider is also required, which is not suitable for
all environments. The task authorization exists to provide backwards compati-
bility with existing ecosystems. This will still require some changes to the CGI
endpoints to make them aware of the feature based access control system. OACS
Gateway is provided with static legacy profiles. These are JSON files that repre-
sents the traditional user roles through OACS access profiles.

The user is authenticated through existing means, such as HTTP Basic and Di-
gest authentication mechanisms. A representation of the user credentials exist on
the device. Once the user is authenticated and user roles have been determined,
the OACS Gateway can be used to authorize a task object.

The request will have to be evaluated at the CGI endpoint in order to deter-

42 Solution

mine the required feature and permission. A task object can then be authorized
by requesting authorization for the feature and its permission using the estab-
lished roles. If a legacy profile exists for the role and the task is authorized by it,
a task object is generated and returned. If none of the roles assigned to the user
permits the requested task, authorization fails.

Chapter 5

Discussion

In this chapter, the challenges encountered during the work of this thesis work
will be discussed. Additionally, limitations that may have impacted the research
outcome will be discussed as well. Furthermore, the security evaluation of the
system will be expounded upon using the attack tree analysis methodology. The
design of the system will also be assessed from a security perspective, highlight-
ing potential vulnerabilities and strengths. Subsequently, the advantages and
disadvantages of the proposed solution will be analyzed. Finally, suggestions for
future research endeavors will be proposed.

The proposed solution provided a definition of the mechanism underlying
the OACS system. This mechanism is primarily composed of two main com-
ponents, namely the functions assigned to the services, and the access permis-
sions granted to each user through profiles. Additionally, the user-device and the
device-profile relationship play a key role in enabling the assignment of employ-
ees to specific permissions on designated devices.

Furthermore, the proposed solution underlines that the process of assigning
permissions has become exceptionally specific, thanks to the ability to pinpoint
target devices and grant specific types of permissions, such as the authorization
to run or configure a specific service functionality, with or without elevated priv-
ileges as defined under Section 4.4.1.

It is noteworthy that access rights are not allocated directly to individual
users; rather, they are defined within profiles, which are then assigned to users.
As a result, ensuring that access rights are accurately and appropriately granted
to individuals has become a matter of assigning the correct profiles to the appro-
priate users, alongside the opportunity to create new profiles as the need arises.
In order to achieve the desired goal of these access rights, service functionalities,
so called features were paired with two types of actions expressed through per-
missions, as explained in Section 4.4.1. The "run" permission allows the feature
to be used, the conf (configuration) permission allows for the feature to be con-
figured, and the priv flag added together with one or both of these permission
allows for elevated privileges when a task is consumed.

The utilization of a locally deployed OpenID Connect 1.0 certified provider
enhanced the convenience of development and experimentation to a significant

43

44 Discussion

extent.

The ability to construct and execute a virtual machine image based on open
embedded core facilitated the development of a proof of concept without being
constrained by the proprietary technologies and solutions employed by theAxis
OS. As a result, we were able to realize the required modifications without con-
sideration for their effect on the remainder of the system. This approach was im-
plemented as a meta-layer, which was readily portable into and usable by theAxis
os.

5.1 Limitations

No additional features aside from what’s defined within the scope of OIDC 1.0
were utilized. As this solution aimed to be compatible with all OIDC providers,
the system, therefore, did not used a server-side access solution through the Key-
cloak IAM. Access control to the ACL, profile and zone scopes had to be moved
to application level.

The proposed solution relies exclusively on the information and data ex-
pressed within the access profiles and ACLs to deduce the privileges that have
been delegated to the users. Therefore, systems” admins must prepare these pro-
files in the form shown in the design chapter. The main way to do this job is the
traditional method, i.e., manually creating it and storing it on the provider side
in a way that suits the design of the provider, knowing that there may be auto-
matic ways or tools to do this task and may help reduce a large amount of work
required for the creation of all the profiles in the system. Still, such automation
tools arenot discussed or mentioned in the project because it is outside the scope
of the study.

The profile access control lists (ACLs) of a device comprises a list of users
who have been granted access to the device, as expressed by the access profile.
Users are identified through their email addresses in the ACLs. This is due to
administrative advantages. As email addresses are unique and predictable. The
ACLs can be generated even before the user account is created. Removing a hard
dependency on the user entity. Unlike using abstract identities such as Univer-
sal Unique IDs (UUIDs) [22], emails are easier for the human administrator to
manage.

The user’s service ticket is converted by the OACS Gateway to a task object
on entry, with the name of the associated feature in addition to the permissions
granted to the user. See Section 4.9. At this stage, it was necessary to choose be-
tween two different designs to determine how the ticket would be dealt with. The
first choice was to maintain the integrity of the service ticket between services,
enforcing integrity controls at each step, and the second was to reduce the over-
head and assume the system as a trusted environment in which a unprotected
task object can flow within. The present design is primarily aimed at embedded
systems with limited resources. As a result, it is imperative to efficiently manage
the available resources.

In order to ensure the integrity of the service ticket, the signature control will

Discussion 45

always provide a high level of trust within the system. However, this proce-
dure places an increased computational load on the device’s resources, especially
on the CPU. The ticket could be verified through the use of public-private key
pair. Where the ticket is signed by the OACS Gateway during authorization and
then validated by each service using the associated private key. There are two
issues with this approach. The first one is the computation overhead. Asymmet-
ric encryption has significantly higher computational load than the symmetric
approach proposed in this paper. The other issue is with the decentralised na-
ture of public key infrastructure. If the system is deemed untrustworthy, then an
attacker could forge a service ticket and then change the public key used for sig-
nature validation. Thus, rendering this approach unreasonable. Either way, trust
in the system needs to exist for the solution to work.

Another way would be to keep the symmetric key as proposed by this paper,
where the key is kept secure within the process of the OACS Gateway service.
Each service would then be required to ask the OACS Gateway for ticket valida-
tion, where OACS Gateway acts as a trusted third party while the communication
is protected by the D-Bus session. However, this approach introduces overhead
in the form of D-Bus method calls which are deemed inappropriate by the super-
vising engineer at Axis Communications.

Hence, it was necessary to opt for the second solution, which assumes that the
environment where the object will reside is reliable, specifically between services,
and that it is responsible for maintaining the object’s integrity [35].

Clients are being installed and configured inside the device instead of in-
stalling one on a separate server within the local network. All devices contain
the same client, that is, the same key and the same client identity. Doing so, re-
moved the dependency of a third-party computer and the requirement network
setup. Utilization of a third party API back-end to handle interactions with the
OIDC provider would create a single point of failure. Server downtime would
cause all the devices to be unusable. Such a server would also become a bottle-
neck on the network, potentially causing congestion and scale-ability issues. On
the other hand, the use of a OIDC client in all devices may result in increased
overhead. It requires the capability of running and installing the OIDC client in
the devices containing the client. Therefore, the system may require high-cost
devices to run efficiently.

5.2 The security evaluation

The objective of this section is to analyze and interpret the resulting findings.
The section is structured in the following manner: we start with a presentation,
examples of threat models are presented, followed by an evaluation of the design.

5.2.1 Threat modelling

This section aims to provide an account of potential cyber-attacks that have the
chance to compromise our proposed solution, according to specific circumstances
and conditions. In order to analyze the security of the system, the attack tree

46 Discussion

methodology is utilized, see Figures 6.1 and 6.2. This approach is commonly used
to describe a system’s security by testing different types of attacks and structur-
ing them in a tree graph format. The attack tree begins with a root that represents
the ultimate goal of the attack, with various threats branching out from it that can
lead to the achievement of this goal [7].

We start by describing potential security weaknesses in a system that could
lead to preventing the user from having access control.

Discussion 47

Prevent access control

|
s R J

Prevent a_ccess I Modify profile Tamper the device
provider
~_ @@ ~ @@ ~ @@
—
— —
Denial of Service i i
Get access to identity Delete all data
provider

~_ @@ ~— @@

—_— Yy

Occupy server Manipulaied Access admin Access to file system

verification link console
~_ @@
Stolen credentials Social engineering Privilege elevation

— IS ~

Fake admin console Threaten admin Bribe admin Phishing attack
~ 0@ . J
Y Ty

DNS poisoning Fake customer
~ @@ ~_ @@

Figure 5.1: Attack Tree for Prevent Access Control

48

Discussion

The following enumeration aims to identify the different ways in which each
attack scenario depicted in the attack tree model (see Figure 5.1) could potentially
undermine the user’s access control:

1.

Occupy server:

An access control to the system can be hindered by a denial-of-service at-
tack aimed at occupying the server resources and preventing access to the
Identity Provider (IdP).

To prevent this attack, the IdP must have a protection mechanism to detect
and block malicious traffic coming from multiple sources.

Manipulated verification link:

If a denial of server attack is being carried out to manipulate the verification
link and prevent access to the IdP, it can lead to a prevention of access
control to the system.

To prevent this attack the solution in (Occupy server)is recommended and
using a multi-factor authentication method to increase the security of the
verification process.

. DNS poisoning:

If a fake admin console is created with stolen administrator credentials by
running a DNS poisoning attack on the domain to make changes on profiles
in the identity provider, access control to the system can be prevented.

To prevent this attack, it is recommended to update and patch the DNS
servers to prevent them from being vulnerable to attacks, and it is impor-
tant to regularly monitor and audit administrator access and activity to
detect any unauthorized access or changes to profiles.

Threaten admin:

This attack can block access control to the system through a social engi-
neering attack that threatens the administrator to take control of the admin
console and make changes to the profiles in the identity provider.

To prevent this attack, a security awareness training and testing can help

ensure that employees remain vigilant and informed about the latest secu-
rity threats and best practices.

. Bribe admin:

This attack can block access control to the system through the use of a so-
cial engineering attack to bribe the admin to take control over the admin
console and make changes to profiles in the identity provider.

To prevent this attack the same recommendation is needed in Threaten ad-
min.
Fake customer:

This attack can block access control to the system by using a phishing attack
while imitating a customer to manipulate the system administrator into
making changes to profiles in the identity provider.

To prevent this attack the same recommendation is needed in Threaten ad-
min.

Discussion 49

7. Privilege elevation:

This attack can block access control to the system if a privilege elevation is
exploited to gain access to the file system and delete essential data through
tampering with the device.

In order to prevent this attack, it is recommended that the device has a ro-
bust encryption method to protect the important data. Additionally, our so-
lution provides software security measures by restricting access privileges
to specific tasks and only authorizing designated users to access them.

Defense mechanisms against such attacks or threats have not been imple-
mented in the proof of concept due to time constraints and its non-essential na-
ture to complete the proof. Nevertheless, it is strongly recommended to consider
incorporating appropriate defense mechanisms to prevent such attacks or threats
in future real implementations. Its aim is to highlight the weaknesses that accom-
pany this solution.

50 Discussion

Register A Unauthorized Profile

Wrong administrative

Creato faka profile profile registration

Ty ' R ' ™y
Get access to identity Admin expand Missing update of
provider permissions profiles
e . J . J
Ty ' R ' ™y
Accees admin Human error Human error
console
e . J . J
s Y ' T /—lﬁ
Weak password Software Flaws Social Engineering
A - b | A : :
g ™y ' R
Dictionary attack Exploit Vulnerability Phishing
L r . | ry : :
4 I ' N
Brute force Remots E]ode Baiting
Execution
L. o b & e "y

Figure 5.2: Attack Tree for Register Unauthorized Profile

Discussion 51

The following enumeration aims to identify the different ways in which each
attack scenario depicted in the attack tree(see Figure 5.2) model could potentially
undermine the registration of an authorized profile:

1. Human error:

This security weakness can result in the registration of an unauthorized
profile if a human error expands the permissions incorrectly during the
registration of a profile.

Implementing proper training and awareness programs to educate users
about the importance of accurate profile registration and the potential con-
sequences of human errors can help to prevent this weakness.

2. Brute Force :

This attack may result in the registration of an unauthorized profile, as a
brute force attack, or similarly a dictionary attack can be used to break a
weak password and gain access to the admin console.

To prevent this attack, it is recommended to use strong passwords and en-
able multi-factor authentication on the admin console.

3. Remote Code Execution:

This attack may result in the registration of an unauthorized profile. A
remote code execution can occur by exploiting an existing vulnerability
in the system to gain access to the admin console, leading to a failure to
update the profiles and permissions, which results in incorrect registration
of a profile.

To prevent this attack, it is important to regularly update the system with
the latest security patches and fixes to address any known vulnerabilities

4. Baiting:
This attack can potentially result in the unauthorized registration of a pro-
file. A baiting attack is executed through a phishing attempt that utilizes
social engineering techniques to gain access to the admin console. This can

lead to a failure to update the profiles and permissions, ultimately resulting
in incorrect registration of a profile.

The same recommendation in Human error weakness (number 1) can help
to fix this vulnerability.

Defense mechanisms against the above attacks or threats have not been im-
plemented in the proof of concept due to time constraints and its non-essential
nature to complete the proof. Nevertheless, it is strongly recommended to con-
sider incorporating appropriate defense mechanisms to prevent such attacks or
threats in future real implementations. Its aim is to highlight the weaknesses that
accompany this solution.

52 Discussion

5.2.2 Design

This section aims to discuss how we solved some problems related to some de-
pendencies like the Idp, OIDC client, signatures, and tokens.

Single OIDC Client

All devices equipped with the OACS gateway service utilize a singular OIDC
client with an identical configuration and an asymmetric elliptic curve key
(prime256v1). Such a mechanism may heighten the probability of key disclosure.
To address this issue, our solution mandates that each device possesses a trusted
platform root and stores the keys in a secure manner.

Single point of failure

Our solution depends on our IdP to authenticate the user in the login phase. Ad-
ditionally, the authorization server it utilizes to request a refresh token and re-
voke the refresh token. The generation of service tickets is also dependent on the
authorization server for the access tokens. The dependency on external entities
leads to a single point of failure problem (SPOF), and it makes the system prone to
provider downtime. Inaccessibility to any of these entities will prevent access to
the provider will lead to system failure, such as a denial of service attack (DDoS).

Integrity of provider

Another problem related to the dependency on IdP is the integrity of the provider.
A compromised server attack could take place on the provider side, which would
compromise it’s integrity. The integrity of the provider is crucial to the proposed
solution.

Trust in the system

The secure environment inside the system is built on the trust between the gate-
way, system services, and the network services. The gateway acts as a validation
zone that checks the validity of a token or ticket before letting it through. The
remaining parts of the system need to be trusted with preserving the integrity of
the task object.

Signatures

Two types of signatures are used in the system: the Elliptic Curve Digital Sig-
nature Algorithm (ECDSA) based ES256, algorithm using the secp256k1 curve
defined in Standards for Efficient Cryptography (SEC), and the Hash-based Mes-
sage Authentication Code using SHA-256 (HS256). ES256 signatures are used to
sign the tokens from the provider and the client access token generated in OACS
Gateway. ES256 signatures for current industry standard that is recommended
as best practice. ECDSA provides the same level of security for much smaller

Discussion 53

key sizes. This is an attractive feature in resources-constrained execution envi-
ronments [16]. Unlike ES256, HS256 is a symmetric key-based algorithm. It’s not
possible for another entity to verify the signature without having prior knowl-
edge of the secret. As the same secret is used to sign the token as to verify, this
method is not suitable when signature needs to be verified elsewhere. As the
secret needs to be shared and can be used to forge tokens. HS256 is used as
a message authentication code between the gateway and the network services to
verify the authenticity of service tickets. The secret is thus kept in one place in the
system and not shared with any other party. Together with the temporary nature
of the secret and the speed of the algorithm, HS256 was deemed suitable for this
purpose without compromising on security. H5256 is recommended to be used
alongside ES256 in order to provide a more robust authentication mechanism for
the system, as each algorithm provides complementary security properties [18].

Leaked refresh token

The refresh token is one of the essential parts of the system, and it is used by the
OACS gateway to request access tokens from the provider. In other words, it sub-
stitutes the session between the client and provider. This will allow unauthorized
users to use the system by compromising the refresh token. Since the refresh to-
ken is an essential component of the solution, security best practices were applied
according to RFC-6819 [23].

One of the best practices is token rotation. Refresh tokens should be rotated
frequently to reduce the risk of them being stolen or compromised. This can be
achieved by revoking and issuing new refresh tokens periodically.

Another best practice is token revocation. In case of a suspected or con-
firmed breach, it is important to have the ability to revoke refresh tokens im-
mediately. This can help prevent further unauthorized access and mitigate the
damage caused by a potential breach.

The system addresses this issue through the use of refresh token rotation,
where a new refresh token is issued together with each access token that is re-
trieved seamlessly through refresh token flow. This mechanism provides auto-
matic reuse detection and prevention, as the previous refresh tokens are invali-
dated. When a refresh token is reused, the provider can detect this transgression
allowing for appropriate measures to take place.

54 Discussion

5.3 Comparison to RBAC

The proposed solution and RBAC mechanism serve the same primary purpose.
Which is to manage user access rights. Instead of RBAC, this report presents a
dynamic solution where the system admin has the option to customize access
profiles or create completely new ones as the need arises. RBAC on the other
hand provides static access roles which limits administrative options.

One of the essential problems that OACS solves is the massive manual admin-
istrative work that is required when assigning user permissions. The proper role
needs to be selected or created carefully to avoid elevated privileges, which adds
to the complexity of the workflow. This phenomenon is called "role explosion”
and is a consequence of complex access control requirements associated with to-
day’s dynamic workforce [6] [21]. A user will have to be assigned a more priv-
ileged role when the need arises, which can involve changes to several devices,
as the roles need to be assigned on individual devices. This is not a sustainable
solution nor is it always possible as the rest of the system needs to be modified ac-
cordingly. These roles would then have to be removed from the user, as it would
go against the least privilege principle and give the user higher privilege than
necessary. A left over role could also be exploited to gain higher privileges than
what’s appropriate at the moment.

OACS addresses the Role Explosion issue by defining user-manageable cus-
tom profiles. These profiles represent set of device features as defined in Section
4.4 that together with the "run" and "conf" permissions, alongside the optional
"priv" flag, composes a task that can be allowed for a user on a device by associ-
ation with the profile it is defined in. Thus, new profiles can be created after user
requirements and assigned to devices or zones and the users authorized to use
it for limited or unlimited time. The system admin can easily modify an access
profile after necessity or create completely new profiles.

5.4 Advantages of the solution

5.4.1 Customized access profiles

Contrary to the RBAC system, that needs to create specific roles for users to access
specific data, the solution customizes access rights for each user in a specific way.
For example, a profile can be specified to only grant access to a single feature on a
device, thereby restricting access control to device resources. Profiles such as the
technician profile mentioned by scenario 3 in introduction. A customised profile
can satisfy the users needs without over assigning them privileges as with RBAC.
This eliminates the problem of role explosion (see Section 4.4) [8].

Discussion 55

5.4.2 Temporary access to profiles.

According to the profile data structure (see Section 4.4), the profile contains an
"exp" key that determines the lifetime for each user to use this profile, this makes
permissions that are given to the user temporary if necessary. This ensures that
old authorizations are forgotten in the system, which could otherwise lead to
unauthorized permission for the same user that no longer needs this profile.
One more benefit for temporary access is that the stolen token may have a limited
impact on the system’s integrity.

5.4.3 Centralized authentication.

The users have no registered accounts on the devices, but they must verify their
identity by validating their credentials against the IdP, a service that provides
user authentication [1]. In this case, the user must complete an authentication
process against the IdP to obtain a refresh token.

5.4.4 Single sign on

The proposed solution employs the use of Single Sign-On(SSO) [28], which is a
term commonly used to describe a scenario where a user utilizes identical login
credentials to access various domains or devices. To authenticate with the sys-
tem, the user must login once using the verification link provided on one of the
devices. Subsequently, upon obtaining a valid refresh token, the user gains ac-
cess to all devices registered on the system. However, it should be noted that the
user’s profile must first be authorized through Access Control Lists (ACLs), as
previously explained.

5.45 Task Authorization

By only granting access to specific tasks through temporary, single-use, service
tickets, the risk of unauthorized access to sensitive data or functionality is re-
duced. Single-task authorization allows for fine-grained control over who can
perform actions which makes it easier to delegate tasks and manage access rights.
Single-task authorization makes it easier to track and audit who and when per-
formed a specific action, which can be useful for compliance and incident re-
sponse. By granting access to specific tasks, the user interface can be tailored to
the user’s rights, making it more user-friendly and less cluttered. Single-task au-
thorization allows for more efficient use of resources and cost reduction by only
providing access to what is needed. Better risk management, by limiting the ac-
cess to certain actions, the risk of malicious actions can be reduced, which leads
to better risk management.

5.4.6 Flexible privileges

Admin can assign necessary privileges through profile. New features can always
be added on the run, or new profiles with additional features can be created and

56 Discussion

injected into the system.

5.5 Disadvantages of the solution.

551 Network connection

Our system requires a network connection at all times. The system needs to be
connected to the external entities to request the necessary data, such as user au-
thentication, access tokens or refresh tokens. If the connection is lost for any rea-
son, the system will no longer be available to the user, but the devices will keep
functioning locally on their own.

5.5.2 Manual Register

The other access control systems that are in use today, including the updated
RBAC model, require significant administrative work, such as registering users,
organizing them into groups, and granting the necessary permissions to each
user. This work involves a lot of time and effort on the part of the access ad-
ministrator [34] [36]. The solution also requires this kind of administrative work
because the IdP must contain user accounts and their data, profiles needs to be
created and each user must be manually associated with profiles through ACLs.
However, this is an initial setup work. The most significant cost is the generation
of the access profiles. However, it can be easily automated using tools and prede-
fined templates. Once created, these profiles are available on demand and don’t
require any additional work on the device side. User-device-profile bindings can
also be simplified through the use of tools that conveniently visualise the rela-
tionships. Credential administration is also improved through the use of single
global identities instead of localized instances on each device. The resulting sys-
tem scales better than the other localized systems, due to the centralised nature
of the data.

5.5.3 One Client

All devices are OIDC clients and need to be configured with the necessary infor-
mation and a client key. This configuration creates significant labour especially
with in a large network with significant amount of devices. The same client ID
and client key are used in all devices, which creates a potential opportunity for
key leaks to the public.

5.5.4 Synchronization Problem

The proof of concept revealed that refresh token rotation can cause race condi-
tions in the system, when parallel connections are used to request service tickets.
When more then one request arrive to the servers request queue, only the first

Discussion 57

one will be served, as the refresh token is updated, the other requests will be in-
validated.

One simple solution to this problem is to synchronize all requests and wait
for consequent responses. However, this could have severe performance issues.

The other more reliable solution is to reuse the access token until it expires.
When requesting a service ticket, the user agent would first check if the access
token has expired. If expired, it will halt all requests until a new access token
can be retrieved from the device, using the refresh token. The new access token
would then be used against the device, instead of the refresh token, to authorize
service tickets. As the access token isn’t rotated like the refresh token, parallel
connections won't be an issue. It would also reduce the overhead imposed by
constantly requesting a new access token from the provider over the internet. The
network round-trip time is the most significant time cost in access control process.
The short lived nature of the access token is also suitable, as the time-frame of
malicious use is smaller, in the case of a leaked access token. As the refresh token
is rotated when the access token expires, refresh token reuse is still detectable.
The proposed modification would however open up for a time-frame equal to the
life-time of the access token, during which a refresh token can be reused without
any knowledge. The time-frame can be shrunk further by probing the OAuth 2.0
introspection endpoint for the validity of the refresh token in shorter intervals, in
order to respond earlier to a refresh token reuse.

5.6 Possibilities and Future work

The system is based on an idea that is still in the early stages of development, and
there are numerous prospects for future improvement. One area for further de-
velopment could be the authentication mechanism used to enhance the trust and
security of the data provider’s login process. A possible approach for achieving
this could be the implementation of a two-factor authentication protocol, which
would provide an additional layer of security and confirm the user’s identity in
a more robust manner.

It is also possible to research or develop tools that help to solve the problem
of manual registration of user data and profiles. These tools will greatly help re-
duce the burden on admins and will contribute to reducing the area of human
error when registration of data.

5.7 Reflection on This Work

In this project, we set out to answer some interesting questions and find a solu-
tion to the problem presented by Axis company. We aimed to improve upon the
existing access control system based on roles by making privileged access easier

58 Discussion

and more flexible.

Our approach involved collecting data from peer-reviewed sources and test-
ing various solutions to arrive at the best possible outcome. We received valuable
feedback from our supervisors during the iterative process, which helped us im-
prove the solution.

Upon reflection, we have identified both advantages and disadvantages of
the solution. On the one hand, the solution provides a good approach to dis-
tributing roles in the system, with the added benefits of using OIDC protocol for
customized access control, temporary access to resources, centralized authoriza-
tion, and flexibility of distributing privileges. On the other hand, there are some
limitations to the solution, such as having only one client for all devices and no
offline mode for the system.

Overall, we believe that this project has helped us to develop our critical
thinking and analytical skills, and we have learned a great deal about access
control systems and their applications. We also recognize the potential for fur-
ther research in this area, particularly in addressing the limitations of the current
solution.

When we look back at the process of developing and submitting a patent
application for the solution presented in this thesis, we realize how important
it is to protect our intellectual property. Our solution is a new and innovative
way to solve the problem we set out to address, and the patent application we
submitted to the European Patent Office with the help of an Axis patent engineer
is a way to protect the unique aspects of our solution.

Looking back on this experience, we are grateful for the chance to engage
in the innovation process and develop skills in research, entrepreneurship, and
intellectual property protection. We are excited to see how the patent application
for our solution will contribute to ongoing research and development in the field,
and how it could potentially have a positive impact on society.

Bibliography

[1] amazon.com. Creating OpenlD Connect (OIDC) identity providers. URL:
https://docs.aws.amazon.com/IAM/latest/UserGuide/
id_roles_providers_create_oidc.html. (accessed: 15.09.2022).

[2] authO.com. [WT.IO - JSON Web Tokens Introduction. URL: https://
jwt.io/introduction. (accessed: 14.07.2022).

[3] B. Campbell et al. OAuth 2.0 Mutual-TLS Client Authentication and
Certificate-Bound Access Tokens. RFC 8705. RFC Editor, Feb. 2020.

[4] W. Denniss et al. OAuth 2.0 Device Authorization Grant. REC 8628.
RFC Editor, Aug. 2019.

[5] Docker. Docker overview. URL: https://docs.docker.com/get—
started/overview/. (accessed: 6.10.2022).

[6] A. Elliott and S. Knight. “Role Explosion: Acknowledging the Prob-
lem.” In: Software Engineering research and
practice. Citeseer. 2010, pp. 349-355.

[7] G. Falco, A. Viswanathan, and A. Santangelo. “Cubesat security at-
tack tree analysis”. In: 2021 IEEE 8th International Conference on Space
Mission Challenges for Information Technology (SMC-IT). IEEE. 2021,
pp- 68-76.

[8] A.Fatima etal. “Towards Attribute-Centric Access Control: an ABAC
versus RBAC argument”. In: Security and Communication Networks
9.16 (2016), pp. 3152-3166. (accessed: 15.09.2022).

[9] Roy T. Fielding and Julian Reschke. Hypertext Transfer Protocol
(HTTP/1.1): Semantics and Content. REC 7231. June 2014. DOI: 10 .
17487/RFC7231. URL: https://www.rfc-editor.org/info/
rfc7231.

59

60 BIBLIOGRAPHY

[10] The Apache Software Foundation. The Apache Software Foundation
celebrates 15 years of open source innovation and community leadership.
Nov. 2014. URL: https : / /www . globenewswire . com/news —
release/2014/11/19/684497/10108887/en/The—-Apache-
Software-Foundation—-Celebrates-15-Years-of-Open-
Source-Innovation-and-Community-Leadership.html.

[11] Robert P. Goldberg. “Survey of virtual machine research”. In: Com-
puter 7.6 (1974), pp. 34—45. DOI: 10.1109/MC.1974.6323581.

[12] D. Hardt. The OAuth 2.0 Authorization Framework. RFC 6749. http:
//www.rfc—editor.org/rfc/rfc6749.txt. REC Editor, Oct.
2012. URL: http://www.rfc—editor.org/rfc/rfc6749.txt.

[13] D. Hardt, A. Parecki, and T. Lodderstedt. The OAuth 2.1 Authoriza-
tion Framework. URL: https://www.ietf.org/archive/id/
draft-ietf-oauth-v2-1-04.html. (accessed: 2.10.2022).

[14] P Havoc et al. D-Bus Specification. Tech. rep. freedesktop_org, Revi-
sion 0.40 2022-10-05.

[15] W Jansen. “A Revised Model for Role-Based Access Control”. In:
NIST Interagency/Internal Report (NISTIR), National Institute of Stan-
dards and Technology, Gaithersburg, MD 5 (1998), pp. 171-181. DOI:
https://doi.org/10.6028/NIST.IR. 6192. (accessed:
01.06.2022).

[16] M. Jones. JSON Web Algorithms (JWA). RFC 7518. REC Editor, May
2015.

[17] M. Jones, J. Bradley, and N. Sakimura. [SON Web Token (JWT). REC
7519. http://www.rfc-editor.org/rfc/rfc7519.txt. REC
Editor, May 2015. URL: http://www.rfc-editor.org/rfc/
rfc7519.txt.

[18] M. Jones, J. Bradley, and N. Sakimura. [SON Web Token (JWT). REC
7519. http://www.rfc—editor.org/rfc/rfc7519.txt. RFC
Editor, May 2015. URL: http://www.rfc-editor.org/rfc/
rfc7519.txt.

[19] T.Kaskinen. Introduction to D-Bus. URL: https://www. freedesktop.
org/wiki/IntroductionToDBus/. (accessed: 13.07.2022).

[20] keycloak_org. Server Administration Guide. URL: https : / / www .

keycloak . org/docs / latest / server _admin/. (accessed:
06.10.2022).

[21] D Richard Kuhn, Edward] Coyne, Timothy R Weil, et al. “Adding
attributes to role-based access control”. In: Computer 43.6 (2010), pp. 79—
81. (accessed: 15.09.2022).

BIBLIOGRAPHY 61

[22]

[26]

Paul J. Leach, Michael Mealling, and Rich Salz. A Universally Unique
IDentifier (UUID) URN Namespace. REC 4122. http://www.rfc-
editor.org/rfc/rfc4122 . txt. RFC Editor, July 2005. URL:
http://www.rfc-editor.org/rfc/rfcdl22.txt.

T. Lodderstedt, M. McGloin, and P. Hunt. OAuth 2.0 Threat Model
and Security Considerations. RFC 6819. RFC Editor, Jan. 2013.

T. Lodderstedt et al. OAuth 2.0 Security Best Current Practice. Internet-
Draft draft-ietf-oauth-security-topics-21. Work in Progress. Internet
Engineering Task Force, Sept. 2022. 56 pp. URL: https://datatracker.
ietf.org/doc/draft-ietf-oauth-security-topics/

21/.

M. Zerkouk; A. M'Hamed; B. Messabih. “A User Profile Based Ac-
cess Control Model and Architecture”. In: International journal of Com-
puter Networks Communications 5 (2013-1-31), pp. 171-181. DOI: 10.

5121/ijcnc.2013.5112. (accessed: 01.06.2022).

S.Namasudra, S. Nath, and A. Majumder. “Profile based access con-
trol model in cloud computing environment”. In: 2014 International
Conference on Green Computing Communication and Electrical Engineer-
ing (ICGCCEE). 2014, pp. 1-5. DOI: 10 . 1109/ ICGCCEE . 2014 .
6921420. (accessed: 01.06.2022).

openid.net. Welcome to OpenID Connect. URL: https: //openid.

net / specs/openid-connect —core—-1_0. html. (accessed:
14.07.2022).

V. Radha and D. Hitha Reddy. “A Survey on Single Sign-On Tech-
niques”. In: Procedia Technology 4 (2012). 2nd International Confer-
ence on Computer, Communication, Control and Information Tech-
nology(C3IT-2012) on February 25 - 26, 2012, pp. 134-139. ISSN:
2212-0173. DOI: https://doi.org/10.1016/j.protcy.2012.
05.019. URL: https://www.sciencedirect.com/science/
article/pii/S$2212017312002988.

J. Rayhawk. What is D-Bus? URL: https://www . freedesktop.
org/wiki/Software/dbus/. (accessed: 12.07.2022).

redhat.com. Chapter 10. Managing Services with systemd. URL: https :
/ /access .redhat .com/documentation/en—-us/red%5C_
hat $5C_enterprise$5C_linux/ 7 /html /system% 5C_
administrators%5C_guide/chap-managing%5C_services$
5C_with%5C_systemd. (accessed: 02.08.2022).

62 BIBLIOGRAPHY

[31] D. Reis et al. “Developing Docker and Docker-Compose Specifica-
tions: A Developers” Survey”. In: IEEE Access 10 (2022), pp. 2318-
2329.DOI1: 10.1109/ACCESS.2021.3137671.

[32] D. Robinson and K. Coar. The Common Gateway Interface (CGI) Ver-
sion 1.1. RFC 3875. http: / /www . rfc - editor . org/ rfc/
rfc3875. txt. RFC Editor, Oct. 2004. URL: http://www.rfc-
editor.org/rfc/rfc3875.txt.

[33] N.Sakimura, J. Bradley, and N. Agarwal. Proof Key for Code Exchange
by OAuth Public Clients. RFC 7636. RFC Editor, Sept. 2015.

[34] RaviS. Sandhu. “Role-based Access Controll1Portions of this chap-
ter have been published earlier in Sandhu et al. (1996), Sandhu (1996),
Sandhu and Bhamidipati (1997), Sandhu et al. (1997) and Sandhu
and Feinstein (1994).” In: ed. by Marvin V. Zelkowitz. Vol. 46. Ad-
vances in Computers. Elsevier, 1998, pp. 237-286. DOI: https://
doi.org/10.1016/S0065-2458(08) 60206—-5. URL: https:
//www.sciencedirect.com/science/article/pii/%5C%
5Cs0065245808602065.

[35] Aneta Vulgarakis and Cristina Seceleanu. “Embedded Systems Re-
sources: Views on Modeling and Analysis”. In: Malardalen University
(). (accessed: 27.09.2022).

[36] E. Yuan and J. Tong. “Attributed based access control (ABAC) for
Web services”. In: IEEE International Conference on Web Services (ICWS'05).
2005, p. 569. DOI: 10.1109/ICWS.2005.25.

[37] G.Gan;E. Chen; Z. Zhou; Y. Zhu. “Token-Based Access Control”. In:
IEEE Access 322.8 (2020), pp. 54189-54199. DOI: 10.1109/ACCESS.
2020.2979746. (accessed: 01.06.2022).

Appendix l \

Appendix

63

64 Appendix

A.1 liboacs

Bellow are the different header files that together with the external dependen-
cies as described in Section 4.3.2, composes the OACS library, defining the core
functionalities of the access control system.

1
gateway.h Model

<<BNUM>>

OACS_ERROR_NCNE

OACS_ERROR_PROFILE_MISSING «typedefs L =
OACS_ERRCOR_PROFILE_UNAUTHORIZED oacs_error_t
OACS_ERROR_TASK_UNAUTHORIZED l equivalent to int, one of the error

OACS_ERROR_INVALID_TICKET — values in the enum
OACS_ERROR_UNAUTHORIZED_TICKET

gateway.h

- SN: const char*
- gateway_key: cjose_jwk_t *

- tickets: json_t *

+ pacs_gateway_iniiiconst char® SN): bool

+ 0acs_gateway _clear(): void

+ 0acs_gateway_request_token{const char* profile): json_t *

+ oacs_gateway_get_foken{const char” device_code): json_t

+ 0acs_gateway ticket_new(const char® refresh_token, const char® feature, oacs_permissions_t permissions): json_t *

+ acs_gafeway_verify_lickeficonst char® ticket): json_t *

+ 0acs_gateway_revoke_token(const char* refresh_token): json_t *

Figure A.1: liboacs/gateway.h

Appendix

65

1
client.h Model
«typedef» =
ComHandler a A function pointer that takes a
= 2 JSON request object and returns
a JSON response object
<<ENlM:>
OACS_CLIENT_ERROR_NONE «typedef. L
OACS_CLIENT_ERROR_MISSING_PARAMS oacs_client_error_t I .
equivalent to int, one of the error
—_ values in the enum

client.h

+ oacs_client_is_errjson_t *resp). bool

+ oacs_client_resp_clearijson_t *resp): void

+ 0acs_client_request_tokenconst char” profile, ComHandler handier): json_t *

+ oacs_client_get_token(const char” device_code, ComMandler handler): json_t *

+ oacs_client_ticket_new(const char” refresh_token, const char® feature, cacs_permissions_t permissions, ComHandler handler): json_t ©
+ oacs_client_verify_ticketiconst char* ficket, ComHandler handler): json_t *

+ oacs_client_revoke_foken(const char® refresh_token, ComHandler handler): json_t *

Figure A.2: liboacs/client.h

1

access.h Model

access.h

+ 0acs_authorize(const char® task, json_t “authorization_requirement): bool

Figure A.3: liboacs/access.h

66

Appendix

1

permissions.h Model

<<EMM>>

OACS_PERMISSIONS_NONE =0
OACS_PERMISSIONS_RUN =1
OACS_PERMISSIONS_CONF =2
OACS_PERMISSIONS_PRIV = 4

«typedefs

oacs_permissions_t

A4

equivalent to int, one of the
permission values in the enum

Figure A.4: liboacs/permissions.h

Appendix 67

A.2 Login Flow

Device
4. Signature
RoT
o -
SR AT 0IDG Provider
i
N -
. QACS Network
OACSClient o= = = = s e = = = = = = = = = = .
« 5. Retrieve device_code and Gateway < P Interface
>) verification_url
! Ll
A ! 9. Request token ".‘ 1
' Lecooocooooooooooo s
: :
: 10. Retrieve refresh_token u
H 0 Trusted
....................... L
11. Relay the refresh token Semi-Trusted
Public
6. Forward device_code and
sereston it
1. Login requesting a
profile
| SOCKEL + s v v o v
8. Fetch fresh token Network
N DBUS =====~
Frontend 7. Login and authorize scopes se
cure
Q Chanmal

A

Gustomer

Figure A.5: Login Flow

The entire login flow shown in Figure A.5 has the following steps, for more
details see the Appendixes A.6 and A.7 :

1. Login requesting a profile
The front-end requests to login with a specific profile from the Authoriza-
tion endpoint.

2. Request Authorization
OACS Client requests the OACS Gateway to initiate the device code flow
procedure by sending an authorization request to the device authoriza-
tion endpoint with the requested profile, the devices corresponding profile
ACL, the configured zone and the profile ACL of that zone, as scopes.

3. Sign JWT
The client authentication tokens header and payload are constructed by the
OACS Gateway and defined as previously described. A base64 encoded
representation from the header and payload of the client authentication
token is generated, which is then signed by the RoT device.

4. Signature
The signature is returned and the signed JWT is assembled. This token can
now be used to authenticate the internal OIDC client of the OACS Gateway,
towards the OIDC provider.

68

Appendix

10.

11.

. Retrieve device_code and verification_url

If the client is successfully authenticated, the OIDC provider’s response
will contain a device_code and verification_url. The verification_url has an
embedded user_code which is paired with the device_code connects to the
same session.

. Forward device_code and verification_url

The verification_url is forwarded to the front-end for authentication of user
together with the device_code which will later be used to retrieve the is-
sued refresh token.

Login and authorize scopes

Front-end is used to convey the verification_url to the user, which can be
opened on any browser. This provides single-sign-on capabilities for head-
less IoT devices, as the user is kept logged in via cookies set on the device
used for authentication. The user_code and device_code are only valid for
a short time period. After authentication, user consent is given for the re-
quested scopes.

Fetch fresh token
After successful user authentication the front-end will request a refresh to-
ken authorizing the requested profile, using the device_code.

. Request token

The access_token and refresh_token are requested from the OIDC provider,
by the device, using the device_code provided by the front-end. Repeat
steps 3 and 4 to generate the client authentication token.

Retrieve the refresh_token

A access_token and refresh_token is retrieved from the OIDC provider. The
user access right to the requested profile is confirmed by checking the de-
vice and zone ACLs for the profile. If the user has a valid entry in at least
one of them, then the profile is permitted and the refresh_token is returned.
Otherwise an error message is returned.

Relay the refresh token
The response is relayed to the user-agent.

69

Appendix

Authorization Device (any
device with a browser)

User agent (any
type of front-end)

Request Login [profile]

Relay response from client

OACS Client

Start Device Code Flow

Relay respense from provider

OACS Gateway

OIDC Provider

generate client access token

https://<device_authorization_endpoint>
Form-encoded Post request
Fields
scope=device_acl,profile,zone,zone_acl,
client_assertion,
client_assertion_type=<jwt-bearers

authenticate client and process request
JSON Response:
{device_code, verification_url, user_code}

A

wverification_url

Sign In

_m:ﬁjmszoma user and authorize scopes

Process 1

in

Log

Figure A.6

Appendix

70

Authorization Device (any
device with a browser)

User agent (any

type of front-end) OACS Client OACS Gateway 0IDC Provider

Request Profile [device_code]

" Request Token [device code]
ki generate client access token

https://<device_authorization_endpoint>
Form-encoded Post request
Fields:
device_code,
client_assertion_type=<jwt-bearers,
grant_type=<device_code>

authenticate client and process request

! JSON Response:
{access_toke, refresh_token}

check for profile right on device

Relay refresh token from gateway

4

Relay response from client

Process 2

in

Log

Figure A.7

Appendix 71

A.3

Ticket Authorization

>

Device
4. Signature

RoT

3. Sign JWT QIDC Provider

i
i 2. Request new service ticket
I

OACS Client -,
L)

Network
Interface

i
1 5. Retrieve service ticket and
[refresh_token i

RPN~ - L

&
=1
5
@

Trusted

Semi-Trusted

Public
6. Forward service ticket and

refresh_token

c
El
=
=l
i

1. Request new
service ticket

| Socket s ee s

Frontend

Q Channel

A

Customer

Figure A.8: Ticket Authorization

The entire ticket authorization flow shown in Figure A.8 has the following

steps,

1.

for more details see the Appendix Figures A.9 and A.10:

Request new service ticket
The front-end requests a new ticket for a specific feature and permission,
using it’s refresh token.

Request new service ticket
OACS Client requests the OACS Gateway to issue the service ticket. First,
the profile and ACLs needs to be retrieved.

Sign JWT

The OACS Gateway generates a base64 encoded representation from the
client authentication tokens header and payload, which is then signed by
the RoT device.

Signature
The signature is returned and the signed JWT is assembled. This token can
now be used to authenticate the client towards the OIDC provider.

. Retrieve service ticket and refresh_token

If the refresh token was originally intended for the target device (autho-
rized by user during login), then it will contain the profile ACL of the de-
vice. In that case, a new access token is requested from the OIDC Provider

72

Appendix

and the feature permissions are verified. If authorized, the new service
ticket is signed and returned together with a new refresh token using re-
fresh token rotation.

If the devices isn’t the originally intended target, OACS Gateway will use
Client Credential Flow to fetch the profile ACL of the target device. If the
user have the right to use the authorized profile on the target device, the
process precedes as in the previous case and the ticket authorization is per-
formed. If the user isn’t explicitly blacklisted on the device, the zone profile
ACL is checked as a fallback. If successful, a new service ticket is generated
and issued.

The id of the newly generated service ticket is added to a ticket whitelist to
keep track of the issued tickets and prevent reuse.

. Forward service ticket and refresh_token

The ticket and refresh token is forwarded to the user-agent.

73

Appendix

User agent (any

type of front-end)

Request Ticket(s) [refresh_token, feature, permissions]

OACS Client

Fetch new ticket

QACS Gateway

Send ticket or error

generate client access token

hitps://<token_endpoint=
Form-encoded Post request
Fields:
refresh_token=<refresh_token=,
grant_type=<refresh_token=,
client_assertion=<client token=,
client_assertion_type=<jwt-bearer=

check if acl is authorized for device or request new

JSON Response:
{access_token, refresh_token}

H_n:mnw it profile exists on device
A||_ check if profile assigned to zone
H_n:mnw it userin profile_acl
A||_ check if task authorized

generate ticket [feature, permissions]

Relay response from client

OIDC Provider

authenticate client and process request

Ticket Authorization Sequence - Correct device

Figure A.9

Appendix

74

OACS Gateway 0OIDC Provider

_aozmsﬂm client access token

https://<token_endpoint>
Form-encoded Post request
Fields:
scope, grant_type=<client_credentials>,
client_assertion=<client token=, scope=device_acl
client_assertion_type=<jwt-bearer=

% authenticate client and process request

JSON Response:
{access_token, refresh_token}

A

Ticket Authorization Sequence - Wrong device

Figure A.10

Appendix 75

A.4 Token Revocation Flow

Device
4. Signature
RoT
e e v
3. Sign JWT il 0IDC Provider
Fooooonocooonononog P
y 4 Revoke refresh_token Y :Vv
'
0IDC re
Authorization <, OIDG Client o - - g Network
Service Interface
> :
: 5. HTTP response code T
____________________ '
6. Response
1. Logout
| SOCKEL « - e s e
Network
DBUS === ===
Frontend
Secure ..
Q Channel
Customer

Figure A.11: Token Revocation

The entire token revocation flow shown in Figure A.11 has the following
steps, for more details see the Appendix Figure A.12:

1. Logout
The front-end requests to log out.

2. Revoke refresh_token
OACS Client requests the OACS Gateway to initiated the token revocation
flow using the refresh token provided by the front-end.

3. Sign JWT
The OACS Gateway generates a base64 encoded representation from the

client authentication tokens header and payload, which is then signed by
the RoT device.

4. Signature
The signature is returned and the signed JWT is assembled. This token can
now be used to authenticate the client towards the OIDC provider.

76

Appendix

5. HTTP response code
The OIDC provider will respond with a HTTP response code 200 for suc-
cess and any other response is considered a failure and the token is not
revoked.

6. Response
An arbitrarily response message is returned to inform about the result. The
now revoked token can not be used to get a new access_token and thus the
user is considered to be logged out.

77

Appendix

User agent (any

type of front-end)

Request Logout

OIDC Authorization

Service

F

Relay response from client

Revoke Refresh Token

QOIDC Client

»

Relay response from provider

generate client access token

https:/<token_endpoint>
Form-encoded Post request
Fields:
token
client_assertion,
client_assertion_type=<jwt-bearer>

HTTP 200 or unknown

Y

OIDC Provider

authenticate client and process request

Revoke token sequence

Figure A.12

UNIVERSITY

Series of Master’s theses
Department of Electrical and Information Technology
LU/LTH-EIT 2023-936
http://www.eit.Ith.se

€207 punt 19sny-3 1 13L3A1L Aq paruld

