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Abstract 
Landslides pose a significant risk to human life and infrastructure, especially in Italy, which 
has a high frequency of landslide occurrences. To mitigate these hazards, Landslide 
Susceptibility Mapping (LSM) is crucial for identifying risk areas and developing appropriate 
mitigation strategies. Various methodologies have been adapted to perform LSM, with 
machine learning models seeing a rise in popularity due their predictive capabilities. The aim 
of this study is to compare two ensemble tree models, Random Forest (RF) and Extreme 
Gradient Boosting (XGB), in their predictive performances for landslide susceptibility by 
type. The typical methodology for assessing landslide type is performing susceptibility 
assessments individually for every class and aggregating the results. But with the RF and 
XGB models this process can be simplified by performing one multiclass analysis. The study 
found that the RF model significantly outperformed the XGB model in multiclass 
classification, with an overall accuracy of 95.83% compared to the 74.71% of the XGB 
model. No significant difference was found in the binary classification, with both models 
having an overall accuracy over 92%. The variables considered most important by both 
models were found to differ from heuristic models, suggesting a potential bias or 
incompleteness of the landslide inventory which should be considered in future studies. In 
conclusion, the RF model demonstrated its proficiency at making maps and high accuracy 
predictions for each landslide type. 
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1. Introduction 
Landslides are one of the most destructive natural hazards, causing severe economic damages 
and can lead to loss of human life (Chaudhary & Piracha, 2021). Italy has the highest total 
area exposed to landslides and the largest population living in these exposed areas in all of 
Europe (Jaedicke et al., 2014). Since 1950, Italy has spent more than 52 billion euros on the 
damages cause by landslides and flooding, and the Ministry of Environment estimates that an 
additional 40 billion euros are necessary to mitigate all the risks posed by these natural 
hazards (Trezzini et al., 2013). The production of Landslide Susceptibility Maps (LSMs) is 
necessary to identify potentially hazardous areas to develop suitable mitigation strategies. 

It is important to differentiate between landslide types because each type has varying triggers, 
characteristics, and potential impacts on human life and infrastructure. For example, fast 
moving slides, such as rock falls and debris flows, can cause severe and sudden damage to 
infrastructure and buildings. Sudden landslides are often caused by seismic activity (Wu et 
al., 2022) or heavy precipitation events (Zêzere, 2002). Slow mass movements, such as 
creeps and rotational flows, are often the consequence of soil instability caused by prolonged 
precipitation events (Zêzere et al., 1999). Because of their difference in triggers, the 
mitigation strategies must be adapted to the type of mass movement. 

There are many different methodologies used to perform LSM (Merghadi et al., 2020; 
Pradhan & Kim, 2016; Reichenbach et al., 2018). In general, the methods of LSM can be 
divided into four categories, namely; expert-based, deterministic, statistical, and machine 
learning models (Ado et al., 2022; Merghadi et al., 2020; Pradhan & Kim, 2016; Xing et al., 
2021). Machine Learning Models (MLM) have seen a considerable increase in popularity 
over the recent years (Ado et al., 2022). Merghadi et al. (2020) did a comparative analysis of 
the binary predictive capabilities of MLM showing significant differences between popular 
models, with ensemble tree methods (e.g., Random Forest, Extreme Gradient Boosting) 
significantly outperforming the other regression models. Another benefit of using ensemble 
tree models is that they are not solely limited to binary predictions and can perform multi-
class classifications. The methodology for identifying the typology of landslides is often 
performed by doing individual assessments for each landslide type and aggregating the 
results (Clerici et al., 2006; Loche et al., 2022). Research from Taalab et al. (2018) has 
displayed the predictive capabilities of MLM to determine landslide type in the Piedmont 
region. The paper used the Random Forest (RF) model to produce high accuracy maps over 
large heterogenous areas and predict the occurrence of landslide typology, suggesting that the 
use of machine learning models can simplify the process of assessing multitype landslide 
susceptibility. 

Within the field of LSM, few studies have been conducted to determine landslide 
susceptibility by typology using MLM and, to my knowledge, no comparative analyses 
between models have been done. Just like the RF model, the Extreme Gradient Boosting 
(XGB) model is an ensemble tree model. As mentioned before, both these models performed 
similarly in terms of binary landslide mapping and studies outside of the field have shown 
similar performances in multiclass classification between the RF and XGB models (Niu et al., 
2019; Salauddin Khan et al., 2023; Wang & Liu, 2020). However, the performances of these 
models are highly dependent on the complexity of the datasets and can vary significantly 
based on their specific context.  
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Therefore, the aim of this study is to do a comparative analysis between the RF and XGB 
model, with a specific focus on their predictive performance for landslide type identification. 
This comparative analysis is expected to demonstrate similar performances in both binary and 
multiclass classification, consistent with previous studies. Due to the added complexity of 
multiclass analysis, and the region-specific context, their performances may deviate from 
those expectations in this study. Additionally, the importance of each predicting variable will 
also be calculated. Studies doing susceptibility analysis using MLMs have not displayed 
consistent results regarding the predictive capabilities of each variable. Therefore, a 
substantial variation compared to current literature is expected in the importance of each 
variable. 

 

1.1 Background 
1.1.1 Study Area 
The catchment is situated in the north of the Aosta Valley, a region located in the north-
western part of Italy. To the north it borders Switzerland, with the Alps forming a natural 
boundary. The highest point of the catchment is situated on Dent D’herens at 4,171 m a.s.l., 
and lowest point is in the south at 554 m a.s.l., where it connects with the Dora Baltea River. 
Due to its topography, there is a high degree variability of climate in the catchment. Most 
notably the precipitation, with a low in the east of 117 mm/y and a high in the west of 2,215 
mm/y. 

 
Figure 1: Elevation map of the catchment in the Aosta Valley. Overlayed are the landslide polygons 
from the IFFI inventory (Trigila et al., 2007). 
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Geologically, the Aosta Valley is complex, with several lithological units that have undergone 
intense tectonic deformation during the Alpine orogeny (Bistacchi et al., 2010; Ellero & 
Loprieno, 2018). The lithology consists of various types of sedimentary and metamorphic 
rocks, such as marls, limestones, shales, and schists. The geology of the area is characterized 
by high lithological variation and structural discontinuities, both created by the numerous 
faults and folds (Bistacchi et al., 2010; Ellero & Loprieno, 2018). The presence of weak 
lithological layers, such as marls and shales, increases the susceptibility to landslides. 
Additionally, the structural discontinuities, such as faults and joints, function as weaknesses, 
facilitating the detachment and movement of unstable masses (Bistacchi et al., 2010; Ellero & 
Loprieno, 2018).  

1.1.2 Landslide Inventory 
The IFFI (Inventario dei Fenomeni Franosi in Italia) project is Italy’s national landslide 
inventory (Trigila et al., 2007). It is a collaborate effort of geological institutions at both 
national and regional levels to identify and map landslides in Italy. The database was 
compiled using remote sensing techniques, field surveys, and historical archives (Trigila et 
al., 2007). Landslide inventories are a crucial component for landslide susceptibility 
mapping, as models relate the explanatory variables with the occurrence of landslides and 
uses these relations to predict future landslides. The inventory distinguishes between eight 
distinct types of mass movements, six of which are found within the study area. Table 1 gives 
a description of each landslide relevant to this study according to a translation of Trigila 
(2005). 

Table 1: IFFI Landslide classes and their descriptions (Trigila, 2005). 

Landslide Type Class Description 
Collapse / Rockfall C1 The mass moves predominantly through the air, by free fall, 

jumping, bouncing, and rolling, breaking into various elements of 
variable size, and is generally characterized by extremely rapid 
movement.  

Rotational / 
Translational sliding 

C2 The movement involves displacement along one or more surfaces 
where shear resistance is exceeded or within a relatively thin zone 
characterized by intense shear deformation. 

Slow creep C3 Where movements are generally characterized by low speed and 
involve terrains with high clay content and mostly low water 
content. These phenomena, even of large dimensions, mainly 
affect moderately steep slopes composed of clayey rocks or 
altered rocks with a clayey matrix. 

Fast sliding C4 movements are generally characterized by high speed and 
primarily affect loose soils with a significant water content. These 
phenomena, usually of insignificant size, are triggered by intense 
precipitation and typically involve loose covering soils of slopes 
with rather steep inclines across their entire grain size range. 

Complex  C5 The movement results from the combination of two or more of the 
previously described movements. 

Not defined C6 This class is not defined within the inventory. 
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1.1.3 Decision Trees 
RF and XGB both use an ensemble of decision trees to make predictions (Breiman et al. 
2001). Decision trees are models used for both classification and regression tasks. They are a 
visual representation of the decision-making process the algorithm undertakes, resembling a 
tree like structure with branches, exemplified in Figure 2. The root node presents an initial 
split of the dataset based on an explanatory variable. Each subsequent split at the internal 
nodes divides the dataset into smaller subsets until the leaf nodes represent a homogeneous 
subset of classification.  

 
Figure 2: Example of a single decision tree produced by the models. Note that the variable and 
associated value threshold are randomly selected. The red, orange, and green boxes indicate the root, 
internal, and leaf node, respectively. 

For classification tasks for complex problems such as LSM, a singular tree is a weak 
predictor, therefore the models aggregate the results of an ensemble of trees instead. When a 
tree becomes too complex (i.e., too many internal nodes), it can result in having a high 
variance. High variance means that the model overfits the training data, making it unable to 
perform accurate predictions on new data sets. On the other hand, when the tree becomes too 
simple, it will result in having a high bias, making the tree overgeneralize the relationship 
between the explanatory variables and the target variables. 

Most ensemble algorithms eliminate these uncertainties using two techniques: Bootstrapping 
and aggregation (the combination of these two techniques is commonly referred to as 
bagging). Bootstrapping is a technique for resampling the dataset. It creates a new dataset of 
equal size by randomly sampling observations from the original dataset with replacement, 
causing some observations to become duplicates while roughly a third of observations are 
omitted. It then builds decision trees based on the explanatory variables, runs new samples 
through every tree, and combines the results of all trees (aggregation). The aggregation and 
randomized selection reduce both the bias and variance, giving the models the ability to 
accurately make predictions on unseen data. 
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Both models use the majority vote of all trees to determine the classification. When the 
majority of the decision trees assign a particular class to the data sample (e.g., 80 out of 100 
trees determined the presence of a landslide), then the output will be classified as that 
particular class. For the probability predictions, it uses the percentage of trees that voted for 
that classification. With the example from before, if 80 out of 100 trees vote for the presence 
of a landslide, the output probability will be 80% for that instance. 

The RF model incorporates an extra element of randomness by basing the creation of 
decision trees on a random selection of explanatory variables. This prevents the algorithm 
from always selecting the same subset of variables which helps reduce overfitting and 
variance. XGB, just like RF, is a decision tree-based algorithm that incorporates bagging to 
reduce bias and variance. But unlike RF, which creates every tree independently, XGB uses a 
boosting method. Boosting means that the model trains each new tree sequentially, adjusting 
the weights of the training samples to account for misclassified occurrences. It uses a loss 
function to calculate the new weights of each sample. This causes later iterations of the trees 
to become more accurate, and the ensemble to become stronger. One problem that can arises 
from boosting, compared to the randomized nature of RF, is overfitting and high variance. To 
prevent these errors, the algorithm has regulation parameters, such as the learning rate, which 
controls the step size during the boosting process. A lower learning rate can help prevent 
overfitting by gradually adjusting the model’s weights and reducing the impact of each 
individual tree in the ensemble, leading to improved generalization performance. 
Additionally, the XGB model incorporates regression parameters such as ‘lambda’ and 
‘alpha’. These parameters control the complexity of the model by adding penalties to the loss 
function, discouraging the model from fitting irrelevant and noisy patterns present in the 
training data. With the way trees are constructed in the XGB model compared to the RF 
model, it is expected that the validation metrics will slightly favour the XGB model. 

 

2. Methodology 
2.1 Data Preparation 
To achieve the aim of this paper, the RF and XGB models related the landslide inventory to a 
set of explanatory variables. The dataset containing landslide occurrences and explanatory 
variables was split into a training dataset and a test dataset. Thus, seventy percent of the 
available data samples were used to train the model and the remaining thirty percent was used 
to evaluate its accuracy. The models for binary and multiclass predictions were trained and 
validated separately. The trained models then classified a dataset of the entire region to 
produce the LSMs.  

The relevant data was visualized and managed in GIS-software (ESRI, ArcGIS Pro 2.7.0). 
More explanatory variables were derived from the relevant data sources in ArcGIS. The 
dataset consisted of both continuous and discreet variables and was converted into raster 
format. The resolution of the grid cells has been shown to influence the accuracy of classifier 
models (Catani et al., 2013), with a 50 m resolution resulting in the highest accuracy for the 
RF model. Therefore, all conditioning variables were resampled to a 50 m resolution grid.  

The explanatory data which the models in this study were trained on can be categorized into 
four categories: Topographical (i.e. elevation, slope, curvature profile), geological (i.e. soil 
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texture, soil parent material, soil depth), hydrological (i.e. precipitation, Topographical 
Wetness Index, distance to streams), and human influence (i.e. distance to roads and land 
use). Table 2 displays information about the variables used in this study and their sources. A 
test was performed to determine each explanatory variable’s relative importance, using the 
“gain” objective. This means that it evaluates the average accuracy that is gained from the 
inclusion of a variable. Redundant features (gain < 0.5) were removed from the analysis, 
which helps decrease the complexity of the models, and in turn increases their reliability. The 
final variables used in the analysis are displayed in Table 2 below. 
 

Table 2: Explanatory variables used for the susceptibility analysis. 

Variable and 
Spatial Resolution 

Description Data source 

Elevation 
25 x 25 m  

Elevation is commonly used in LSM as it is 
related to the potential energy of landforms 
and is indicative of climate (Costanzo et al., 
2012; Dai & Lee, 2002).  

EU-DEM v1.1, Copernicus 
Land Monitoring Service, 
European Union Copernicus 
Land Monitoring Service (2016) 

Slope 
25 x 25 m 

Slope angle is typically considered the main 
determinants of slope stability. This is 
because the slope angle is directly related to 
the gravitational force acting on the surface. 
It also influences the movement of surface 
runoff.  

Derived from Copernicus DEM. 

Curvature 
25x25 m  

Curvature is the derivative of the slope and 
influences the acting forces on the hillside, 
affecting the acceleration patterns of mass 
movements (Ohlmacher, 2007). 

Derived from Copernicus DEM. 

Parent Material 
Shapefile 
(1: 1 000 000) 

The dominant parent material is considered 
as different rock types have different 
physical and chemical properties (van 
Westen et al., 2008). The classification 
made is based on the mechanical properties 
such as composition and shear strength 
(Carraraet al., 1999). 

European Soil Data Base from 
European Commission and the 
European Soil Bureau Network 
(2004)  

Soil Texture 
Shapefile  
(1: 1 000 000) 

The Soil texture determines the forces 
acting between soil particles and contributes 
to the drainage patterns of the soil (Fan & 
Or, 2016). 

European Soil Data Base from 
European Commission and the 
European Soil Bureau Network 
(2004) 

Soil Depth 
Shapefile 
(1: 1 000 000) 

Soil depth is related to the stability of slopes 
and the shear strength. It also influences 
water retention and the development of 
vegetation (Fan & Or, 2016). 

European Soil Data Base from 
European Commission and the 
European Soil Bureau Network 
(2004) 

TWI 
25 x 25 m 

TWI is the topographical wetness index and 
is an index for water accumulation patterns 
in a landscape. In LSM, it is used as a proxy 
for soil moisture conditions (Sharma, 2010). 

Derived from Copernicus DEM. 

Distance to Stream 
Shapefile 
(1: 250 000) 

The distance to a stream can be an indicator 
of the landform characteristics. Streams 
tend to follow natural drainage paths, which 
can coincide with areas of concentrated 
erosion or geologically weak zones. 

Derived from Ecrins, The 
European Environment The 
European Environment Agency 
(2012)  

Precipitation The mean annual precipitation is a trigger Derived from WorldClim2, Fick 
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1 x 1 km for landslides. It increases the gravitational 
forces on slopes as it infiltrates the soil. The 
erosion of slope material caused by 
precipitation can lower the shear strength.  

and Hijmans (2017)  

Land Use 
100 x 100 m 

Land use influences slope stability as it can 
be used as an index for vegetation cover, 
surface runoff, erosion, and human land 
modification. 

Corine Land Cover, Copernicus 
Land Monitoring Service, 
European Union Copernicus 
Land Monitoring Service (2018) 

Distance to Road 
Shapefile 
(1: 250 000) 

The distance to roads can be considered an 
explanatory variable as heavy traffic can 
cause vibrations in the hillside. Also, the 
construction of roads in mountainous 
regions often require modifications to the 
hillside and can disrupt drainage patterns 
(Collins, 2008). 

Derived from gROADSv1, 
Center for International Earth 
Science Information Network - 
CIESIN - Columbia University 
and Information Technology 
Outreach Services - ITOS - 
University of Georgia (2013)  

NDVI 
250 x 250 m 

NDVI is the Normalized Difference 
Vegetation Index and is a measure of live 
green vegetation. Roots can positively 
impact soil stability and change infiltration 
patterns (Peduzzi, 2010).  

MODIS vegetation indices, 
ORNL DAAC (2018) 

 
2.2 Sampling Methods 
The sampling points for the landslide category were extracted by converting the polygons to 
raster, where each landslide cell represented a sample point. For the non-landslide category 
there are different sampling methods, each affecting the results of the susceptibility map 
(Yilmaz, 2010). The sampling can be done completely at random, or by a heuristic selection 
of areas not susceptible to landslides as demonstrated in Gómez and Kavzoglu (2005). For 
this study, a 200 m buffer is created around landslide polygons and the non-susceptible 
samples are extracted at random outside of the buffer zone. Figure 3 illustrates the sampling 
technique used in this study. 

 

Figure 3: Distribution of the sampling points (purple). Susceptible class is sampled from inside the 
polygons. Non-susceptible class extracted from areas outside the blue buffer zones. 
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Catani et al. (2013) found that the accuracy of classifier models increased along with the 
number of sample points used. Both models need a balanced dataset to perform optimally, 
meaning that the class distribution is within 5-10% of each other. Because of this, the number 
of sampling points is limited by the landslide inventory (Petschko et al., 2014). In the study 
area, the landslide inventory identified 221 landslides of seven varying types, with sizes 
ranging from 141 m2 to 1,064,443 m2 (median 4,498 m2, total 11,839,643 m2). As landslides 
only cover 2.6% of the total catchment area, the maximum number of sample points can only 
cover 5.2% of the total area or 9,422 cells.  

 

2.3 Modelling 
From these sample cells, the values of the overlaying explanatory datasets were extracted into 
a CSV (comma-separated values) file which was accessed using the pandas library in the 
python interpreter, PyCharm (JetBrains, 2017). The RF model was trained in the python 
environment (version 3.9) using the sk-learn library (Pedregosa et al., 2011), and the XGB 
model was trained using the XGBoost library (Chen & Guestrin, 2016). Both models have 
hyperparameters (e.g., Number of trees, learning rate, and more that are expanded on in the 
Appendix) that required tuning for optimal performance. This was done by cross evaluating 
each parameter within their realistic ranges over a thousand iterations. The RF model has 
built-in optimizations for unbalanced datasets, the XGB model however does not and requires 
extra tuning. Weights were assigned to each sample based on the number of occurrences in 
their landslide classification and were considered in the modelling. After training the binary 
model and doing predictions on the training dataset, the results were filtered to minimize the 
non-susceptible class, as only samples with a probability above 0.3 were exported to a new 
training dataset for the multiclass models. The process of hyperparameter optimization was 
repeated for the multiclass model on the new training data. After training the models, a 
dataset containing the predictive variables for the entire region was processed in Python and 
subsequently exported back to ArcGIS to produce a landslide susceptibility map for the 
catchment.  

 

2.4 Evaluation Metrics  
To assess the performance of the RF and XGB models in predicting landslide susceptibility, 
several evaluation metrics were calculated. These metrics demonstrate the models’ predictive 
accuracy and their ability to identify landslide prone areas. The calculations are performed on 
the test dataset to evaluate the models’ robustness on new data.  

The evaluation metrics employed in this study are accuracy, precision, recall, and the F-1 
score. These metrics are widely used in LSM. Accuracy is the proportion of correctly 
classified samples over the number of total samples and provides an overall measure of the 
models’ correctness. Precision is the proportion of correctly predicted positive samples over 
the total predicted positive samples and is an indication of the models’ ability to correctly 
identify landslide occurrences. Recall on the other hand, is the proportion of correctly 
predicted positive samples over the total observed positive samples. In addition to these 
metrics, the kappa statistic was calculated from the confusion matrixes. It is generally 
considered more robust than the aforementioned statistics as it considers the possibility of 
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correct classifications happening by chance. The kappa value ranges from -1 to 1, where a 
value of 1 indicates perfect agreement, 0 represents agreement equivalent to chance, and -1 
denotes complete disagreement. 

The strengths and weaknesses of the models were analysed using these metrics, and the 
interpretability of the produced LSMs. The relative importance of each explanatory variable 
was also considered. The following section will present the results from this analysis. 

 

3. Results 
The LSMs produced by the models are displayed in Figures 4 (XGB) and 5 (RF). The maps 
indicate the susceptibility of landslides on a continous scale from 1 (highly susceptible) to 0 
(not susceptible). The model outputs are quite similar over the catchement and both models 
classify roughly the same areas as susceptible. XGB has higher probability values than RF.  

 

 

Figure 4: Overall susceptibility map produced by XGB model.  
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Figure 5: Overall susceptibility map produced by RF model. 

 

Tables 3 (XGB) and 4 (RF) display the confusion matrices for the models. Both models 
performed similarly with an overall accuracy of 91.00% and 91.25% respectively. The F1-
score, which represents the harmonic mean of recall and precision, exhibits a close similarity 
between the two models. For the XGB model, the F1-score is recorded at 91.11%, while the 
RF model achieves a slightly higher F1-score of 91.42%. The models also had similar kappa 
statistics, 0.82 and 0.83 for XGB and RF respectively. The models exhibited comparable 
kappa statistics, with XGB achieving a value of 0.82 and RF obtaining a slightly higher value 
of 0.83. 

 

Table 3: Confusion matrix of XGB model for the binary predictions. Average accuracy in the bottom 
right. 

 

  

XGB binary Predicted Recall Average Recall 
 Type Landslide No Landslide Total   

Observed Landslide 2096 295 2391 87.66% 91.05% 
No Landslide 129 2191 2320 94.44% 
Total 2225 2486 4711  

Precision 94.20% 88.13%  91.00% 
Average Precision 91.17% 
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Table 4: Confusion matrix of RF model for the binary predictions. Average accuracy in the bottom 
right. 

 

 

The models also calculate the importance of each explanatory variable, displayed in Figures 6 
(XGB) and 7 (RF). It ranks the variables based on the mean decrease in accuracy when a 
variable is omitted. XGB considers elevation to be the most important factor, followed by the 
soil parent material and depth, precipitation, and the distance to roads. TWI and curvature are 
considered the least important predictors according to the XGB. The RF model ranks distance 
to roads as the best predictor, followed by precipitation, elevation, and NDVI. Whereas the 
soil properties rank lowest.  

 

 
Figure 6: Importance of every feature according to the XGB model. 

RF binary Predicted Recall Average Recall 
 Type Landslide No Landslide Total   
Observed Landslide 2082 309 2391 87.08% 91.32% 

No Landslide 103 2217 2320 95.56% 
Total 2185 2526 4711  

Precision 95.29% 87.77%  91.25% 
Average Precision 91.53% 
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Figure 7: Importance of every feature according to RF model. 

 

The maps in Figures 8 (XGB) and 9 (RF) provide a visual presentation of the spatial 
distribution for the likelihood of each type of landslide occurrence. The number of cells with 
medium to high probability appear to be linked to the number of occurrences of each type, 
most notably the sparse categories C3 (Slow creep) and C4 (Fast sliding) have little presence 
on the maps. 

 
Figure 8: LSMs produced by the XGB model for each landslide type. C1) Collapse / Rockfall  
C2) Rotational / Translational sliding C3) Slow creep C4) Fast sliding C5) Complex C6) Not defined. 
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Figure 9: LSMs produced by the RF model for each landslide type. C1) Collapse / Rockfall  
C2) Rotational / Translational sliding C3) Slow creep C4) Fast sliding C5) Complex C6) Not defined. 
 
In the IFFI landslide inventory, six different landslide types were identified in the area as 
shown in table 1. XGB’s predictions done on the test dataset, return an overall accuracy, 
recall, and precision of 74.71%, 68.20%, and 79.10%, respectively. According to table 5, C1 
(Collapse / Rockfall) and C4 (Fast sliding) have the lowest recall value of 46.98% and 
34.38% respectively. And C4 (Fast sliding) having the lowest precision at 62.86%. There is 
an issue of class imbalance at play here, where the category with the highest precision of 
100% merely has ten samples. The kappa statistic calculated from table 5 was 0.61,  

 

Table 5: Confusion matrix of the test dataset by the XGB model. NLS indicated samples where no 
landslide was detected, the landslides are categorized as follows: C1) Collapse / Rockfall C2) 
Rotational / Translational sliding C3) Slow creep C4) Fast sliding C5) Complex C6) Not defined. 

 

 

Table 6 shows the confusion matrix of the RF model and has an overall accuracy, recall, and 
precision of 95.83%, 95.16% and 87.38% respectively. With the lowest recall values found in 
the C4 (Fast sliding) category with a value of 60.94%. The lowest precision is also found in 
the C4 (Fast sliding) category with 81.25%, where the model wrongly predicted no landslide 
occurrence instead of the appropriate landslide type. The kappa value came out to be 0.94. 
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Table 6: Confusion matrix of the test dataset by the RF model. NLS indicated samples where no 
landslide was detected, the landslides are categorized as follows: C1) Collapse / Rockfall C2) 
Rotational / Translational sliding C3) Slow creep C4) Fast sliding C5) Complex C6) Not defined. 

 

 

The variable of importance for the multiclass classification is displayed in Figures 10 (XGB) 
and 11 (RF). Note that the function for determining feature importance for the XGB model is 
still “gain” but in with multiple classes it no longer displays the mean decrease in accuracy 
but an F-score instead. The ranking and ratios between variables however remained 
consistent. The XGB model saw a significant increase in the importance of the parent 
material and TWI. While the most key factor in the binary classification, elevation, is shown 
to be a bad predictor of landslide type. For the RF model the rankings are very similar to the 
binary classification, with the order and scores of the four most predicting variables changing 
slightly.  

 

Figure 10: Feature importance according to the XGB model. Variables are displayed on the y-axis 
and the F-score on the x-axis. 
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Figure 11: Feature importance according to the RF model. 

 

4. Discussion 
4.1 Interpretation and Analysis 
The aim of this study was to compare the multiclass predictive capabilities of the RF and 
XGB models for the prediction of multitype landslide susceptibility. The results indicate that 
while there was a minimal difference in the evaluation metrics for the binary prediction of 
landslide presence, a notable disparity emerged when performing predictions on landslide 
typology. The RF model outperformed the XGB model, achieving an overall accuracy of 
95.83% compared to the XGB model’s accuracy of 74.71%. 

The study highlighted minimal differences between the RF and XGB models’ binary 
capabilities, aligning with previous research in the field. Multiple recent studies, such as 
Pradhan and Kim (2020), Hussain et al. (2022), and Ado et al. (2022), have reported similar 
results, with both models’ overall accuracies’ operation within few percentage points of each 
other. Along with this study, these studies also demonstrate that the XGB model identifies a 
larger proportion of susceptible areas as having a very high susceptibility, as compared to the 
RF model. This suggests that there is less variation between the ensemble of decision trees 
created by the XGB model, which could be due to the iterative nature of the construction of 
trees. Because every tree built is based on previous iterations, the likelihood of agreement 
between consecutive trees on classification is higher than the RF model, which builds every 
tree independently. 

There is a notable difference in the relative importance of each feature for each model as 
demonstrated in Figures 6, 7, 10, and 11. Figure 6 shows that the omission of elevation in the 
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dataset would result in a 19.92% decrease in accuracy, making it the most important predictor 
of landslide occurrence for the XGB model. While the ranking of importance is the same as 
the findings in Catani et al. (2013), the reasoning is contradictory. The XGB model found an 
inverse correlation between landslide occurrence and elevation, mapping the lower regions of 
the catchment as more susceptible. Following elevation in importance are the parent material, 
precipitation, distance to road, and soil depth. Both statistical and heuristic studies have also 
demonstrated the importance of the three former variables in LSM, the significance of soil 
depth however is still debated (Carrara et al., 1995; Chung et al., 1995; Corominas, 1996; 
Martelloni et al., 2012). The importance of soil depth found by the XGB model is also 
contradicted by the results of the RF model. The second least important variable according to 
XGB is curvature. Carrara et al. (1995) debates the practicality of using higher derivatives of 
elevation, such as curvature, stating that their effectiveness is highly dependent on 
methodology and regional context. The least important factor according to XGB is TWI and 
this finding is contradictory to the results from the RF model and Taalab et al. (2018). Figure 
10 shows that variables used for predicting presence of landslides do not translate to the 
prediction of landslide type for the XGB model. These high variances indicate that the 
variable selection for multiclass analysis using the XGB model could be optimized in the 
future. 

Figure 7 displays the importance of variables according to the RF model. The distance to 
roads has been used successfully used in LSM (Devkota et al., 2013) and is the best 
predicting feature for the RF model in this study. It should be noted however that there is a 
potential bias in the inventory of landslides in proximity to roads. In Europe, the parties 
responsible for the mapping of landslides are often road management companies or 
collaborate closely with them (Van Den Eeckhaut & Francisco, 2012). This can cause a shift 
in the prioritization of mapping landslides close to existing or future road infrastructure. 
While there is evidence supporting the impact of the anthropogenic influences caused by 
roads on landslides (Collins, 2008; Ramakrishnan et al., 2013), heuristic methods suggest 
other factors, mainly topographical and hydrological, to be better predictors (Bourenane et 
al., 2015; Sezer et al., 2017). This is also demonstrated by Figure 7, displaying elevation, 
NDVI, and precipitation to be the next most predicting variables. Once again, the relationship 
between landslide occurrence and elevation is inverse and in contradiction to current 
literature. The ranking of vegetation and precipitation however corresponds to the findings of 
Jaafari et al. (2014). Figure 11 demonstrates that the variables RF used for the binary 
classification are also good predictors of landslide type, with minimal differences showing 
between the importance of explanatory variables in binary and multiclass classification. 

The results for both models regarding variable importance could potentially indicate a bias in 
the landslide inventory. The northeast side of the catchment is characterized by factors (i.e., 
slope, elevation, vegetation, lithology) that heuristically would be more favourable to 
landslide occurrence than the landslide dense centre of the catchment. The inventory upon 
which the MLMs are trained however has not recorded many occurrences in the northeast, 
causing a discrepancy between the results of MLMs and typical heuristic based approaches of 
landslide susceptibility. The potential lack of recordings could be due to several reasons: 
Accessibility for field research, prioritization of infrastructure, or the area not being 
susceptible to landslides due to variables not included in this study. The incompleteness of the 
IFFI inventory is also questioned by Loche et al. (2022), who found discrepancies in 
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landslide recordings between the inventory and region specific studies. In future research, the 
validity of the landslide inventory should always be carefully considered and rectified if 
necessary, before analysis is performed. 

Figures 8 (XGB) 9 (RF) depict the LSMs for each class and show highly similar results in 
spatial distribution between the two models, with varying degrees of probability. The spatial 
distribution of complex landslides is remarkably similar to the overall susceptibility maps 
produced by the binary model. This is due to the definition and high frequency of complex 
landslides. A landslide is classified as complex when it shares characteristics or causes with at 
least two different landslide types. Therefore, it overlaps with all susceptible areas specific to 
other landslide typologies. The highest susceptibility of collapse / rockfall landslides is on the 
upper slopes surrounding the valley. These areas facilitate the occurrence of the collapse / 
rockfall type due to their topography and position above the treeline, allowing the masses to 
move freely through the air, which is the basis of their classification. The lower slopes, near 
the bottom of the valley, have the most susceptibility to rotational / translational sliding. 
Similarly, fast sliding landslides are also predicted to occur mostly on those lower slopes but 
are more concentrated. There are few occurrences in the inventory of the not defined and 
slow creep landslides, making their distributions limited to the landslide samples they were 
trained on. With an increase in samples, the “not defined” category would probably share the 
same spatial distribution as the complex category, as their causes and mechanisms are not 
specified nor region specific. 

The discrepancy found in the accuracies of the multiclass predictions is something that has 
not been shown in previous research. Not much research has been done comparing the 
performances of the models’ multiclass capabilities in the field of LSM, but outside of the 
field it was found that the models performed similarly to each other in terms of accuracy (Niu 
et al., 2019; Salauddin Khan et al., 2023; Wang & Liu, 2020). Their research focused on 
variety of different topics, from credit card fraud to microbiology, suggesting that the relative 
performance of these models can vary based on the specific context and characteristics of the 
dataset. The difference in results presented in those studies and this one, highlights that the 
efficacy of the model is dependent on the data and methods used in the research.  

The use of the majority vote in multiclass analysis by ensemble tree methods introduces 
uncertainties that should be considered. Although both models leverage the aggregation of 
multiple trees to enhance their accuracies, the majority vote concept used to predict the class 
assumes equal importance and reliability of each tree. In cases where there is an uneven 
distribution of occurrences within the classes, such as in this study, the majority vote scheme 
can lead to the dominance of the most prevalent class, lowering the overall accuracy of the 
model. The RF model has built-in optimizations to account for unbalanced class distributions, 
and weight assignment based on class frequency in the XGB model reduces the problems 
associated with an uneven dataset. Even with these optimizations the results will be inferior 
to a balanced dataset. When looking at Table 5 and 6, the main error made by the model is 
misclassifying the landslide type as the no landslide occurrence, highlighting the skewing 
towards the majority class. Also, the proportion of occurrences necessary to reach the 
majority vote decreases with an increased number of classes. This leads to instances of 
classes being predicted with less than the majority and only a plurality of the vote (e.g., a 
class has 30% of the vote and the other 70% is evenly distributed between three other classes, 
the model will predict the class with 30% even though it is 70% certain it’s a different class.). 
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The results indicate that the RF model is better at accounting for these uncertainties presented 
by the majority vote scheme and the imbalance of classes than the XGB model. 

 

4.2 Limitations 
Future studies could improve on the validation method of this study to depict the models’ 
robustness more accurately on new datasets by incorporating an independently sampled 
dataset for testing. With the method presented in this study, 30% of the sampling points are 
randomly sampled for testing purposes, meaning that both training and testing datapoints 
could potentially be extracted from the same landslide polygon with highly similar 
explanatory variables. If the test data is independently sampled in a way that entire polygons 
are omitted from the training, the validation metrics would better reflect the models’ 
capabilities to predict new landslide occurrences. This approach would offer a more reliable 
evaluation of the models’ performance on unseen data. 

In the context of LSM, the completeness of the inventory plays a vital role in ensuring the 
accuracy of the modelling process. As highlighted by Loche et al. (2022), the IFFI inventory 
is derived from 20 different sub-inventories and has been subject to discussion regarding its 
completeness. As mentioned above, there is reason to believe a spatial bias is present in the 
dataset, but further research is needed to thoroughly investigate and understand the extent of 
this spatial bias and its potential impact on the results and conclusions of the study. While 
these areas should be prioritized as mitigation measures there are the most effective to reduce 
damages to infrastructure and human life, it results in the inventory potentially displaying 
discrepancies compared to reality. The model output is only as good as the input and an 
incomplete inventory will lead to an inaccurate depiction of the reality of landslides and their 
causal factors; therefore, the validity of the inventory must be established in future research. 

Another limitation to consider is the computational power necessary to perform LSM. The 
scope of this study was severely limited by the available computational resources and time 
needed to run the algorithms. The study would have benefited from a larger number of 
samples to prevent overfitting on sparse categories. With the current sample sizes, it is 
probable that the models tend to overfit their classification. As regions where landslides occur 
are small in frequency and extent, the models become specialized and have trouble 
processing previously unseen data. An increase in area and thus sample size would likely 
result in a lower overall accuracy. This however would not necessarily entail that the model 
would be worse, as it would give a more accurate depiction of the region’s susceptibility and 
the underlying relationships between causal factors. 

 

5. Conclusion 
In conclusion, the study aimed to compare the multiclass predictive capabilities of the 
Random Forest (RF) and Extreme Gradient Boosting (XGB) models as applied to landslide 
susceptibility modelling. The results showed that both models perform similarly on binary 
classification problems, but discrepancies emerged with respect to multiclass predictions, 
where RF outperformed the XGB model with an overall accuracy of 95.83% compared to 
XGB’s 74.71%. This finding refutes my hypothesis, which expected the XGB model to 



19 
 

perform better due to tree boosting. The superior performance of RF model can be attributed 
to it being able to better manage imbalanced datasets. While the importance of certain 
variables differed from what is found in other similar studies in the literature, they 
demonstrated their efficacy in prediction not only the presence of landslides, but also their 
typology.  

While the LSMs produced for each landslide type proved useful for some categories, the 
study would have benefited from a bigger scope with more samples, as this would have 
reduced overfitting on sparse landslide categories. While a larger scope would result in lower 
accuracy metrics, it would help visualize the susceptibility to each landslide type better and 
make the results more useful for decision makers. The study could have also been improved 
by implementing independent test datasets to validate the models’ robustness on unseen data. 
The importance of complete, high resolution landslide inventories can also not be understated 
when it comes to accurately modelling real world scenarios and should be considered in 
future research. 
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Appendix 
A1: Hyperparameters used in the analysis along with a brief description of their function. Two separate sets of 
hyperparameters were used for the XGB model, and a single set for the RF model. Parameters not included in the table were 
set to default. Descriptions derived from Pedregosa et al. (2011) and Chen and Guestrin (2016). 

 

t r ee_met hod  "gpu_hist" Specifies the algorithm used to build decision trees in XGB
enabl e_cat egor i cal  True Enables categorical features in the dataset.
l ear ni ng_r at e 0.184 Controls the step size at each iteration during gradient boosting
n_est i mat or s 200.000 Number of trees used

' col sampl e_byt r ee'
0.741

Determines the fraction of features (columns) to be randomly sampled for each tree 
in the gradient boosting process

' gamma'
1.805

The gamma hyperparameter controls the minimum reduction in the loss function 
required to make a split in a decision tree during the training process of gradient 
boosting models.

' max_dept h'
17.000

Specifies the maximum depth or the maximum number of levels allowed in each 
decision tree.

' mi n_chi l d_wei ght '
1.000

Determines the minimum sum of instance weights required to create a new child 
node during tree growth

' r eg_al pha'
0.970

The L1 regularization term added to the loss function during training, also known as 
Lasso regression

' r eg_l ambda'
0.602

The L2 regularization term added to the loss function during training, also known as 
Ridge regression.

' subsampl e'
1.000

Specifies the fraction of training instances (rows) to be randomly sampled for each 
tree

obj ect i ve  "binary: Logistic" The objective hyperparameter defines the loss function to be optimized

t r ee_met hod  "gpu_hist" Specifies the algorithm used to build decision trees in XGB
enabl e_cat egor i cal  True Enables categorical features in the dataset.
' l ear ni ng_r at e' 0.175 Controls the step size at each iteration during gradient boosting
' n_est i mat or s' 350.000 Number of trees used

' col sampl e_byt r ee'
0.795

Determines the fraction of features (columns) to be randomly sampled for each tree 
in the gradient boosting process

' gamma'
1.198

The gamma hyperparameter controls the minimum reduction in the loss function 
required to make a split in a decision tree during the training process of gradient 
boosting models.

' max_dept h'
1.000

Specifies the maximum depth or the maximum number of levels allowed in each 
decision tree.

' mi n_chi l d_wei ght '
3.000

Determines the minimum sum of instance weights required to create a new child 
node during tree growth

' r eg_al pha' 0.254 The L1 regularization term added to the loss function during training.
' r eg_l ambda' 0.344 The L2 regularization term added to the loss function during training.

' subsampl e'
0.969

Specifies the fraction of training instances (rows) to be randomly sampled for each 
tree

obj ect i ve' multi:softmax' The objective hyperparameter defines the loss function to be optimized

' max_dept h'
15

Specifies the maximum depth or the maximum number of levels allowed in each 
decision tree.

' mi n_sampl es_l eaf ' 1 Sets the minimum number of samples required to be at a leaf node

' mi n_sampl es_spl i t '
2 Determines the minimum number of samples required to split an internal node

n_est i mat or s' 260 Number of trees used

mi n_wei ght _f r act i on_l eaf '
0

Sets the minimum weighted fraction of samples required to be at a leaf node, similar 
to 'min_samples_leaf' 

max_f eat ur es'
"sqrt"

Determines the maximum number of features considered for splitting at each 
decision tree node

max_l eaf _nodes' None Specifies the maximum number of leaf nodes allowed in a decision tree

RF hyperparemeters 

XGB multiclass hyperparameters

XGB binary hyperparameters
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