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Abstract

In this thesis, a Glauber Monte-Carlo event generator is developed and used to analyze
proton-Ion (p -63Cu and p -197Au) and Ion-Ion (63Cu -63Cu and 197Au -197Au) collisions.
Three different sub-collision models are implemented, the black disk, grey disk and oscil-
lating grey disk models, and their validity is compared. The predicted nucleon-nucleon
cross-sections by the different models are fitted to the experimental data and used as in-
put for the Glauber simulation of the distribution of the number of participants in such
collisions. This can be used to extract information about observables that show a high
correlation with centrality.

Popular Science Summary

Even before science acquired its name, many minds were already concerned about what
makes up the things that we see. In the search for these building blocks of nature, people
had to come up with ways to have a closer look into the world. Magnifying glasses allowed
us to see new details of our surroundings, optical microscopes enabled us to look into cells
and big bacteria, moreover, the advent of particle accelerators allowed us to look at a
completely new level of reality, bringing us closer to the indivisible.

By colliding particles at very high energies, particle accelerators allow us to study the
extremely small particles that make up everything we see and the different forces that
govern them. However, while looking through a magnifying glass is rather straightforward,
and a trained eye is enough to make clear observations with a microscope, the results that
come out of these collisions are much harder to analyse and validate or refute our theories.

Predicting the outcomes of these collisions is not a task that can be solved analytically
most of the time. Instead, we can generate artificial collisions that work accordingly to
theory and use these simulations to compare and interpret the experimental data extracted
in large-scale accelerator experiments such as the Large Hadron Collider at CERN.

The aim of this thesis work is to create a simple event generator from scratch and use it to
predict experimental observables according to different models that approximate theory in
different levels of detail. These different models are then analyzed and compared in their
capability of replicating already available data and their validity is discussed.
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1 Introduction

Throughout the past decades, many breakthroughs have been made regarding our un-
derstanding of the constituents of matter. The increase in the energy scale of particle
accelerators has allowed an increasingly detailed study of the building blocks of nature.
However, this process has not only led to the answer to previous questions but also to the
rise of many intriguing puzzles whose solutions are still waiting for the next generation of
particle colliders to unveil.

There is a number of large-scale accelerator experiments projected to come into being
during the next decades such as the Electron-Ion Collider, (EIC), at Brookhaven National
Laboratory or the Future Circular Collider, (FCC), at CERN. The upgrade in the energy
range of these accelerators will allow us to put the current theories to the test and have a
closer than ever sight at nature.

In order to interpret and compare the experimental results from the accelerators with the
current theoretical knowledge in particle physics it is necessary to have an expectation
basis for the outcomes of such collisions that captures the theory in an accurate manner.
In order to have such a basis, it is necessary to simulate particle collisions in a way that
behaves in accordance with the theoretical frameworks being tested.

In this thesis work, a Glauber Monte Carlo approach is used to build a simple event-
generator from scratch. The Glauber Model is a framework that simplifies the details of a
collision to a small number of geometric quantities (e.g., how many nucleons participate in
a proton-Ion collision, or how many nucleon-nucleon sub-collisions are there in an ion-ion
collision) and is used to predict different observables (such as the scattering cross-sections)
which can be compared with experiment [1]. To do such calculations analytically can be
extremely complex, therefore, a Monte-Carlo approach, consisting of generating a large
number of random events to infer the results from statistics is implemented. In addition,
different models are implemented to generate sub-collisions, namely the black, grey and
oscillating grey disk models. The calculated cross-section varies considerably among these
models and their limitations in reproducing reality are discussed.

This report consists of a brief overview of the thesis work developed and is organized
as follows. Firstly, the theoretical foundations are laid in section 2 introducing more
details about the Glauber model, and the Good-Walker formalism used to calculate cross-
sections and account for diffractive scattering. In section 3, the methodological approach is
described introducing the practicalities of developing the simulation, such as how different
nuclei are generated or how impact parameters are sampled. In subsection 3.3 different sub-
collision models are introduced and the differences between these are explored in the rest of
the report. Section 4 concerns the presentation and the discussion of the results regarding
proton-proton, proton-ion and ion-ion collisions. Lastly, section 5 gives an overview of this
thesis work and presents the next steps in enhancing our event-generator.
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2 Theory

In this section a brief description of the theory behind the thesis work is given, starting
with a general discussion on particle scattering and scattering cross-sections, followed by
an introduction to the Glauber Model formalism, which is the main cornerstone of our
simulation. This is followed by the presentation of the formalism necessary to calculate
the scattering cross-sections in this model, the Good Walker formalism.

2.1 Particle scattering and cross-sections

There are different ways in which particles can collide and understanding the differences and
the mechanisms that govern them is fundamental. Regarding kinetic energy conservation,
there are two types of collision, elastic and inelastic. In elastic collisions, the kinetic energy
of the system remains the same before and after the collision, whereas in inelastic collisions,
part of the kinetic energy in the system is transformed. These transformations can result
in the production of new particles or in the excitation of the particles into higher energetic
states.

An inelastic collision can occur diffractively or non-diffractively. Diffractive scattering in-
volves low momentum transfers and results in large rapidity gaps in the distributions of final
state particles [2]. It is important to differentiate diffractive and non-diffractive inelastic
collisions since the latter provides a larger contribution towards particle production.

One of the main concerns of this thesis is the calculation of the cross-sections of different
processes. The cross-section, σ, is a measure of the likelihood for a collision to happen,
more accurately, the effective area of the target to interact with a projectile [3]. Consider a
beam with a large number of incident particles, Ninc, colliding with a target with density
ntar. The number of scattered particles, Nsc, is, on average:

Nsc = Ninc ntar σ. (1)

Similarly, we can consider the cross-sections for the different scattering processes described
above:

σtot = σel + σinel = σel + σabs + σdif , (2)

,

where, σtot, σel, σinel, σabs and σdif are, respectively, the total, elastic, inelastic, absorptive
(inelastic non-diffractive) and diffractive cross-sections.

Cross-sections have units of area, typically given in barn, b. In SI units 1 b = 10−28 m2.
For the purpose of this thesis, the relevant cross-section magnitudes are on the order of
mb (1 mb=0.1 fm2).
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2.2 Glauber Model

The Glauber model is a framework that can be used to calculate geometric quantities
descriptive of a collision, such as the number of participating nucleons, Npart, and the
number of binary sub-collisions, Ncoll

1. Although these quantities cannot be directly
measured, they can be used to infer experimental observables such as the scattering cross-
sections [1].

A few different inputs must be provided to perform such calculations. These are the
nucleon-nucleon cross-section, σNN

inel , which can be measured a priori, and the nuclear charge
densities. The latter will be discussed in section 3.1. An impact parameter, b, must be
sampled from a realistic distribution and assigned to each collision. The details entailed
in this process are discussed more thoroughly in section 3.2.

This model is built upon several assumptions. Firstly, the projectile’s energy is high
enough, such that its constituents carry enough momentum to be undeflected during their
passage through the target. Secondly, the size of the target is large enough in comparison
to the range of the nucleon-nucleon interaction. And thirdly, the target’s constituents move
independently. With these assumptions, a collision between a projectile and a target can be
viewed in terms of the individual interactions between their parts. Another consideration
is that, at the high energies considered, the projectile and target are lengths contracted in
the beam direction such that they can be considered two-dimensional objects.

2.3 Good-Walker Formalism

The Good-Walker formalism allows for the calculation of the scattering cross sections for
particles with well-defined wave functions and for the inclusion of diffractive scattering
in these calculations. In the Good-Walker formalism, diffractive excitations result from
fluctuations in the nucleon’s partonic substructure [4].

Consider the nearly real amplitude operator, T̂ , related to the scattering S-matrix as
T̂ = 1 − Ŝ. In the high energy limit, the real part of the elastic amplitude, Ael, vanishes
and T = −iAel. Moreover, consider a complete set of normalized eigenstates {ψi} of T̂ (⃗b)

such that T̂ (⃗b) |ψi⟩ = Ti(⃗b) |ψi⟩.

The wavefunction of the incoming beams, |ψI⟩, can be expressed in terms of the projectile
and target’s wavefunctions |ψp, ψt⟩:

1The number of binary subcollisions, Ncoll, is the number of nucleon-nucleon subcollisions that occur
as part of a collision process. Similarly, the number of participating nucleons, Npart, is defined as the
sum of the nucleons in the target and the projectile that are involved in at least one sub collision. It is
relevant to note that, in ion-ion collisions, Npart and Ncoll might differ considerably, while in proton-ion
and electron-ion collisions these two quantities only differ by one, Npart = Ncoll + 1.
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|ψI⟩ =
Np∑
p=1

Nt∑
t=1

cpct |ψp, ψt⟩ . (3)

The scattered wavefunction, |ψS⟩, can then be inferred by applying the T̂ operator on the
incoming wavefunction:

|ψS⟩ = T̂ (⃗b) |ψI⟩ =
Np∑
p=1

Nt∑
t=1

cpctTp,t(⃗b) |ψp, ψt⟩ . (4)

Hence, it is useful to define the profile function for elastic scattering, Γel(⃗b), in impact
parameter space:

Γel(⃗b) = ⟨ψS|ψI⟩ =
∑
p,t

|cp|2|ct|2Tp,t(⃗b) ⟨ψp, ψt|ψp, ψt⟩ =

=
∑
p,t

|cp|2|ct|2Tp,t(⃗b) ≡ ⟨Tp,t(⃗b)⟩p,t,
(5)

where the last step defines the average of the eigenvalues of T̂p,t over all the target and
projectile states.

Following these definitions, the elastic profile function can be related to the elastic collision
cross-section:

dσel

d2⃗b
= |Γel(⃗b)|2 = ⟨Tp,t(⃗b)⟩2p,t → σel =

∫
d2⃗b ⟨Tp,t(⃗b)⟩2p,t. (6)

The total and elastic cross-sections can be related by using the optical theorem. In reference
[5], the optical theorem is formulated as:

Im(Ael) =
1

2

{
|Ael|2 +

∑
j

|Aj|2
}
, (7)

where Ael is the elastic scattering amplitude and the sum runs over the scattering proba-
bilities of the diffractive and non-diffractive inelastic channels. The expression inside the
brackets is the total scattering probability.

Since in the high energy limit the real part of Ael vanishes, it follows from equation 7:

dσtot

d2⃗b
= 2Γel(⃗b) = 2⟨Tp,t(⃗b)⟩p,t → σtot = 2

∫
d2⃗b ⟨Tp,t(⃗b)⟩p,t. (8)
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As can be seen above, given a ⟨Tp,t(⃗b)⟩p,t, it is possible to calculate the collision cross-
sections. However, until now, the fluctuating states in projectile and nuclei have not been
treated separately and the rest of this section aims at providing a way to do so.

Accounting for fluctuations

Since the wave functions of the target and the projectile are a superposition of eigenstates,
the projectile can fluctuate, as well as the target. It is then essential to separate the
fluctuations in the projectile and the target in order to obtain the right cross sections. In
this subsection, the framework described before is expanded to account for such effects in
accordance to reference [4].

The fluctuating projectile is assumed to be frozen in a state k during its passage through
the target. We can then write the elastic scattering profile for the projectile in a fixed state
k scattering on a target’s nucleon as:

Γk (⃗b) = ⟨ψS|ψI⟩ = |ck|2
∑
t

|ct|2Tt,k (⃗b) ⟨ψk, ψt|ψk, ψt⟩ = |ck|2
∑
t

|ct|2Tt,k (⃗b) ≡ ⟨Tt,k (⃗b)⟩t.

(9)

Averaging Γk (⃗b) over the possible projectile states during the collision recovers equation 8:

σtot = 2

∫
d2b⟨⟨Tt,k⟩p⟩t = 2

∫
d2b⟨T ⟩p,t. (10)

Since we are keen on collisions that contribute to particle production, it is more relevant
to define a cross-section for a nucleon to be wounded in an interaction which does not
account for elastic processes. Such a wounded cross-section is defined as in equation (7.7)
of reference [4]:

dσw

d2⃗b
= 2⟨⟨Tt,k⟩p⟩t − ⟨⟨Tt,k⟩2t ⟩p → σw =

∫
2⟨⟨Tt,k⟩p⟩t − ⟨⟨Tt,k⟩2t ⟩p d2b. (11)

If the models being implemented do not allow for a distinction between target and pro-
jectile excitations, the wounded cross-section is equivalent to the inelastic cross-section.
However, if the model is accurate enough to allow for such a distinction, the wounded
cross-section gives a more accurate picture of the likelihood of collisions resulting in parti-
cle production, since it accounts for the events where this results from diffractive excitation
as well. Therefore, when the inelastic and wounded cross sections are not equivalent, the
wounded cross section gives a more accurate input to the Glauber calculations.
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3 Method

This section is concerned with giving a short summary of the implementation procedure
of our Monte Carlo Glauber simulation. A deeper discussion about some of the topics
mentioned before in this document is made, such as the method for generating nuclei, the
method for sampling impact parameters, and the different collision models implemented.

3.1 Generating nuclei

The first step in creating this model is to generate the targets used in the Glauber simula-
tion. The desired targets are large nuclei such as copper or gold and their charge density
distribution ρ(r) can be approximated by the Woods-Saxon distribution, which can be
written as in reference [1] (without accounting for deviations from a spherical shape) :

ρ(r) =
ρ0

1 + e
r−R
a

, (12)

where ρ0 is the nucleon density in the centre of the nucleus, r is the distance from the
centre, R is the nuclear radius, and a is the nuclear thickness parameter.

For large nuclei with mass number A, the radius and thickness parameters in the equation
above can be inferred, when the minimum distance between nucleons is d = 0.9 fm, using
the parametrization in reference [6]:

R = 1.11A
1
3 − 0.656A− 1

3 [fm], a = 0.459 [fm]. (13)

In our implementation, the position of each nucleon is assigned as follows. First, the radial
distance is randomly assigned from the distribution ρ(r)

ρ0
r2 (more rigorously 4π ρ(r)

ρ0
r2 but

the normalization can be dropped). Then, the azimuthal angle, ϕ is assigned by selecting
a random number between 0 and 2π. Since the nucleons are uniformly distributed within
a constant radius surface of the sphere, the polar angle, θ, is assigned as the arccosine of a
random number between -1 and 1. Lastly, the condition for the minimum distance between
two nucleons is checked and if there’s no other nucleon at a distance smaller than d, the
nucleon’s position is assigned, otherwise, the process is repeated.

Figure 1 shows the normalized nucleon density ρ(r)/ρ0 as a function of the distance to
the centre of the nuclei, r, for 63Cu and 197Au. The histograms were created by com-
bining 100000 copper nuclei and 10000 gold nuclei generated with the method described
above. As can be seen for a sample size this big, the sampled nucleon density gives a close
representation of the Woods-Saxon density distribution.
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Figure 1: Monte Carlo generated nucleon density (in black) and Woods-Saxon density (in
red), for 63Cu and 197Au nuclei.

3.2 Impact parameter sampler

Another fundamental element to be able to generate collisions is an impact parameter,
b. Our event generator must be capable of randomly assigning an impact parameter to a
collision from a realistic distribution. The probability of having an impact parameter close
to 0 is much lower than having a large impact parameter on the periphery of the nucleus.
This happens since there are no preferred angles in which the target can be hit, therefore,
for a given impact parameter b any point of an infinitesimally wide annulus with radius
b is equally likely to be hit. Consequently, the probability of assigning a certain impact
parameter b is given by f(b) = dA/db = 2πb. We want to sample from this distribution in
an interval between 0 and a cutoff value bmax.

Consider a random number between 0 and 1, xR, such that:

∫ b

0

f(b) db = xR

∫ bmax

0

f(b) db. (14)

If y = F (b) is the primitive of f(b) and F−1 is its inverse, then, we have:

b = F−1 (xR F (bmax)) =
√

xR b2max . (15)

In Figure 2 the outcome of the sampling method described above is shown for 10000 events.

3.3 Sub-collision models

Different models can be used to generate sub-collisions in Glauber Monte-Carlo simulations.
These methodological contrasts produce major differences in the calculated cross-sections.
In this thesis work, some of these are implemented and briefly presented in this subsection.
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Figure 2: Histogram showing the sampled impact parameters for 10000 events
with bmax = 7 fm.

3.3.1 Black disk model

In the black disk model, a radius, rbdisk =
√
σNN
inel/π, is assigned to each of the target’s

nucleons. In the previous expression, σNN
inel is the nucleon-nucleon inelastic cross section

obtained a priori. If the projectile’s distance to a target’s nucleon is smaller than rbdisk
at any point of its passage, there is a collision between the projectile and that target’s
nucleon.

The black disk profile function for proton-proton collisions, T pp(b), is then 1 for b ≤ rbdisk
and 0 if b ≥ rbdisk, where b is now the impact parameter for a proton-proton collision. We
can express this as in reference [5]:

T pp(b) = Θ(rbdisk − b), (16)

where Θ is the Heaviside step function.

By applying equations (6) and (8) on the black disk profile function expressed above, the
expressions for the elastic and total cross-sections can be derived analytically:

σtot = 2πr2bdisk = 2σel. (17)

Despite not being the most realistic model, the implementation of the black disk model is
a fundamental step in this work due to its simplicity. Moreover, this particular implemen-
tation allows for the validation of the method in an early stage of the implementation.

3.3.2 Grey disk model

The black disk model is a specific case of the more general grey disk model. In the latter,
there is an extra parameter, α, that defines the opacity of the disk. The opacity parameter
in this model directly scales the grey disk profile function, which can then be written as:
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T pp(b) = αΘ(rbdisk − b) . (18)

Note that 0 ≤ T pp ≤ 1, therefore 0 ≤ α ≤ 1 such that unitarity is satisfied.

3.3.3 Oscillating grey disk model

Similarly to the grey disk described before there are two parameters defining this model,
a radius, rbdisk, and an opacity, α. However, in this model, when the projectile and target
are within a radius rbdisk, there is a probability α2 that the two particles collide and the
projectile is absorbed. This results in ⟨T 2

p,t(⃗b)⟩p,t = ⟨Tp,t(⃗b)⟩p,t [5].

Due to the probabilistic nature of this collision model, the scattering amplitudes fluctuate.
These fluctuations can be seen as the result of diffractive excitations in the projectile and
target. Hence, this model allows us to calculate the diffractive scattering cross-section,
σdif , for the first time.

The scattering cross-sections can be obtained as [5]:

σtot = 2

∫
d2⃗b ⟨Tp,t(⃗b)⟩p,t = 2πr2bdiskα, (19)

σel =

∫
d2⃗b ⟨Tp,t(⃗b)⟩2p,t = πr2bdiskα

2, (20)

σdif =

∫
d2⃗b ⟨T 2

p,t(⃗b)⟩p,t − ⟨Tp,t(⃗b)⟩2 = πr2bdiskα(1− α). (21)

Equation 21 represents the total diffractive cross-section. This model allows us to dif-
ferentiate between inelastic wounded nucleons and the nucleons that are wounded in non-
diffractive inelastic processes, absorptively wounded nucleons. The absorptive cross-section
is then:

σabs = σtot − σel − σdif = πr2bdiskα =
σtot
2

(22)

The choice of the cross-section to take as input for the Glauber calculations is not trivial
and can vary depending on the observables being analyzed. The fact that this model
does not allow for the separation of target and projectile excitations does not enable us to
capture the full picture of the wounded nucleons resulting in particle production in proton-
ion and ion-ion collisions. In a model separating the target and projectile’s excitations,
this could be achieved by using the definition of the wounded cross-section in equation 11.

This will be further discussed in section 4.2.
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A representation of the profile functions for the three models mentioned above is seen in
Figure 3.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
b/rbdisk

0.0

0.2

0.4

0.6

0.8

1.0
T(

b)
Tpp black disk
Tpp grey disk
Tpp osc. grey disk

Figure 3: Profile function for black disk, grey disk (α = 0.75) and oscillating grey disk
(α = 0.5).

3.3.4 On the energy dependence of the cross sections

In the models described above, the energy dependence is captured by two mechanisms.
The first is the radial expansion of the projectile with energy which is reflected in the
increase of rbdisk. The second is the increase in matter density with energy, analogous to
the increase in opacity, that eventually results in the saturation of the disk (α = 1) leading
to the black disk approximation [7].

The disk radius grows logarithmically and we parametrize it as:

rbdisk(s) = r0 + β log

(√
s

s0

)
, (23)

where s0 = 1 GeV, and r0 and β are free parameters with units of length.

The disk radius parametrization in equation (24) is justified in reference [7] where a similar
parametrization is used.

The opacity is considered to grow logarithmically:

α(s) = α0 + ω log

(√
s

s0

)
, (24)

with α0 and ω as unitless free parameters.

The two previous functions are ad-hoc parametrizations found by us to be a good approx-
imation of the experimental data and are important to perform the fitting of our models
to the data in order to capture the energy dependence of the cross sections.
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4 Results and Discussion

In this section, the results of our simulation for proton-proton, proton-ion and ion-ion
collisions are presented and discussed.

The models described in the last section are implemented and their validity is compared.

4.1 Proton-Proton collisions

Initially, the free parameters in the models described in section 3.3 are fitted to the exper-
imental data for the proton-proton total and elastic scattering cross-sections in reference
[8]. The results of the fit are shown in Table 1 and a plot of the resulting cross-sections for
the different models is shown in Figure 4.

Black Disk Grey Disk
r0 [fm] 0.541± 0.003 1.29± 0.02
β [fm] 0.0778± 0.041 0.042± 0.002
α0 - 0.17± 0.01
ω - 0.041± 0.002

Table 1: Parameters obtained by fitting the black and oscillating grey disk models to the
proton-proton cross-section data in [8].

The uncertainties in Table 1 correspond to the standard deviation of the fitted parameters.

The same fit is used for both grey disk models since the ratio σtot/σel is the same in the
two for the same opacity and radius.

102 103 104

s  [GeV]

101

102

 [m
b]

Black Disk tot
Black Disk el
Grey Disk tot
Grey disk el
Data tot
Data el

Figure 4: Plot of the energy dependence of the cross-section data in reference [8] and the
fits of the black and oscillating grey disk models.
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As can be seen in Figure 4, both the black and grey disk models give an accurate description
of the total cross-section, however, the black disk model fails to describe the elastic cross-
section. It should be noted that, for the results used in this section, the black disk model
was fit to the σtot data. However, fitting the black disk model to the σel data would result
in an accurate description of the elastic cross-section data instead. Since the ratio σtot/σel
is fixed and equal to 2 for the black disk model, the elastic and total cross sections cannot
be accurately reproduced simultaneously. On the other hand, the grey disk model gives a
good description of both the total and elastic cross-sections and their respective ratios.

From the parameterization described, we can calculate rbdisk and α for the different collision
models at any given energy. At a centre-of-mass-energy

√
s = 200 GeV, the radius of

the black disk is rbdisk = 0.953 ± 0.007 fm, whereas for the grey disk models, a radius
rbdisk = 1.51± 0.04 fm and an opacity α = 0.39± 0.03 is found. These results are used as
input to calculate the proton-proton profile functions at

√
s = 200 GeV which are plotted

as a function of impact parameter b in Figure 5.
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Figure 5: Profile functions for the black and oscillating grey disk model at
√
s = 200GeV

as a function of impact parameter b. Monte-Carlo generated with 1000 events.

As can be seen in Figure 5, for the same energy, the black disk model shows a much
narrower profile, while the grey disk model spreads into a larger radius. The elastic profile
functions are used to calculate the different scattering cross-sections as described in the
theory section. The results of this process can be seen in Table 2.

Black disk Grey disk Osc. Grey disk
σtot [mb] 57.1± 1.9 56.7± 1.9 56.7± 1.9
σel [mb] 28.6± 0.9 11.2± 0.4 11.2± 0.4
σinel [mb] 28.6± 0.9 45.5± 1.5 45.5± 1.5
σdif [mb] 0 0 17.2± 0.6

Table 2: Cross-sections obtained for the different models at
√
s = 200GeV.
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For fixed energies, the total cross-section is very close in the three models being discussed.
On the other hand, the elastic cross-section is considerably higher for the black disk than
for the grey disk models. Similarly, the inelastic cross-section is higher for the grey disk
models, being about the same for the oscillating and non-oscillating models.

Despite these similarities in the two grey disk models, they present a fundamental differ-
ence since the diffractive cross-section is non-zero for the oscillating disk. As mentioned
in section 3.3.3, for the latter model, it is possible to distinguish between inelastic and
absorptive (inelastic non-diffractive) wounded nucleons.

However, since a correct treatment of the wounded nucleons that lead to particle produc-
tion requires separating between the target and projectile’s excitations as can be seen in
equation (11), we are left with two options. Either we consider the diffractive contribu-
tion to the wounded cross-section to be negligible, and, by doing so we underestimate the
wounded cross-section. Or, we consider the total inelastic cross-section as an input to
the Glauber calculations which results in an over-estimation of the number of wounded
nucleons resulting in particle production.

A quick look at equation (22) shows that σtot = 2σabs for the oscillating grey disk model.
Moreover, the black and grey disk models’ fit to the total cross-section shows very similar
results due to reasons discussed earlier in this section. Therefore, the absorptive cross-
section in the oscillating grey disk model and the inelastic cross-section in the black disk
model have very close values. This means that if the absorptive cross section would be
used as input to the Glauber calculations, the results for the oscillating grey disk model
would be equivalent to the ones predicted by the black disk model.

On the other hand, the use of the total inelastic cross-section as input for the Glauber
calculations in the oscillating grey disk models results in the same predictions for the two
grey disk models.

With this taken into account, the two grey disk models were chosen to be treated similarly
when analyzing proton-ion and ion-ion collisions.

4.2 Proton-Ion collisions

Since the proton-proton and proton-neutron scattering cross-sections can be approximated
to be the same resulting in σNN

inel = σpp
inel, we can now use the inelastic cross-sections cal-

culated in the previous subsection as input to the Glauber calculations for proton-ion and
ion-ion collisions.

Figure 6 shows the probability distribution for the number of wounded nucleons involved
in proton-copper collisions for the black and grey disk models at different energies.

As can be seen in Figure 6, collisions with a smaller number of participants are much more
likely than collisions with a higher number of participants. Collisions with the highest
number of participants can be understood as being the most central since the copper’s
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Figure 6: Probability distribution for the number of participants in proton-63Cu collisions
at

√
snn = 200 GeV and

√
snn = 1000 GeV and for the black and grey disk model.

charge density distribution follows a Woods-Saxon distribution and is highest closer to the
centre of the nucleus as illustrated in Figure 3.1. The higher likelihood of having peripheral
collisions can be understood as a consequence of the probability of assigning higher impact
parameters being higher than assigning smaller impact parameters as illustrated in Figure
2. These two factors explain the shape of the distributions.

As can be noted in the observation above, there are close ties between the centrality and
the number number of participants in a collision.

From Table 2 we can note that the grey disk model predicts a higher inelastic cross-section
than the black disk model. This higher cross-section results in a larger disk radius since
rbdisk =

√
σinel/π, and, therefore, in a higher probability of getting a larger number of

wounded nucleons in a collision. This explains why the grey disk model shows a higher
probability for large values of Npart compared to the black disk model in Figure 6.

With an increase in the center-of-mass-energy of the collisions, there is an increase in the
average number of participant nucleons due to the increase in the radii of both models and
to the increase in opacity in the grey disk. At very high energies, as α → 1, the grey disk
picture approximates the black disk.

It is important to note that, as mentioned in the previous subsection, the choice in the
cross-section input affects the results considerably. As a consequence of this, the results
displayed for the grey disk models reflect the choice that was done to approximate σw ≈ σinel
in the oscillating grey disk model, resulting in the overestimation of the oscillating model’s
result in this section. A more accurate procedure is proposed in the conclusion section.
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4.3 Ion-Ion collisions

This subsection shows the results of our Glauber simulation for Ion-Ion collisions in 63Cu-
63Cu and 197Au-197Au collisions.

Figure 7 shows the average number of participants and sub-collisions as a function of the
impact parameter in 63Cu-63Cu and 197Au-197Au collisions at different energies.

As can be seen, for fixed energies, the average number of participants is similar between the
black and grey disk models, whereas the average number of collisions is considerably lower
for the black disk. Due to the smaller radius of the black disk, each nucleon undergoes
only a few collisions as is illustrated in Figure 7a where the ratio Ncoll/Npart is considerably
smaller than in the grey disk counterpart displayed in Figure 7b. The same can be said by
comparing Figure 7c with 7d, and Figure 7e with 7f. On the other hand, the number of
participants does not significantly dependent on energy, yet it is considerably dependent
on the centrality of the collision. As can be seen for the most central collisions it is fair to
assume that at high energies, on average, every particle will interact at least once, since
the projectile is close to fully overlapping with the target nuclei.

The growth in energy increases significantly the number of sub-collisions each participant
undergoes due to the increase in the disk’s radius. This can be seen by comparing Figure
7a with 7c and Figure 7b with 7d.

The increase in the atomic number of the colliding nuclei results in a higher number
of participants and subcollisions as can be seen in Figures 7e and 7f showing gold-gold
collisions, as expected.

Figure 8, shows the probability distribution for the number of participants simulated in
63Cu -63Cu and 197Au -197Au Collisions. Figures like these can be used to define centrality
classes, and compared with the experimentally measured charge multiplicities.

As can be seen in Figures 8a and 8c the grey disk model shows a higher probability
for higher participant numbers in the collisions than the black disk, again, due to the
larger radius of the grey disk. As can be seen in Figures 8b and 8d, the grey disk starts
approximating the black disk at higher energies as the opacity grows and the two radii get
closer to each other in size.

Figure 8 shows the probability decreasing for a larger number of participants due to a higher
probability of having peripheral events. A very high correlation between Npart and impact
parameter exists as can be seen in Figure 7, and therefore, information about observables
that show a high correlation with centrality can be extracted from these histograms.
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Figure 7: Average number of Npart and Ncol dependence on impact parameter in 63Cu-63Cu
and 197Au-197Au collisions for the black (on the left) and grey disk model (on the right) at
different centre of mass energies.
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5 Conclusion and Outlook

Summarizing the work developed in this thesis, a Monte-Carlo Glauber simulation was
developed and different sub-collision models were applied to the simulation of different
types of collisions. Firstly, the energy dependence of the proton-proton cross-sections was
fitted to experimental data for the black disk, grey disk and oscillating grey disk models.
Then, the cross-sections for proton-proton scattering were used as input to calculate the
probability distribution of the average number of participants in proton-Ion, and Ion-Ion
collisions for the different models. The framework developed can be expanded to include
more complex collision models and used to simulate γ∗-proton and electron-Ion collisions.
A brief discussion on the next steps towards the development of our simulation is discussed
in this section.

The choice of collision model critically affects the calculated cross-sections and the results of
the Glauber calculations. The black disk model shows an underestimation of the inelastic
cross-sections used as input for the Glauber calculations, outcoming a lower number of
sub-collisions than the other models as can be seen in sections 4.1, 4.2 and 4.3. Moreover,
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the grey disk model allows for a more accurate fit to the experimental data as can be seen
in section 4.1, and, its oscillating version enables us to account for diffractive scattering,
allowing us to distinguish between inelastic and absorptive wounded nucleons.

In the process of this thesis work, some first steps were done towards the inclusion of
another model that could provide more accurate results and be applied in the simulation
of electron-Ion collisions, This model consists in defining the target and projectile as a
superposition of different grey disks (in the simplest case two disks) with different radii
and opacities [5]. Each grey disk has a given weight reflecting the probability of it being
assigned in a collision. This enables us to account for the different states that the projectile
and target can be in. This separation of the excitations in projectile and target allows us
to apply the formalism in subsection 2.3 to calculate the wounded cross-section in equation
(11) and use it as an input of the Glauber calculations reflecting a more accurate picture
of the wounded nucleons that result in particle production.

Due to time limitations, it was not possible to reach the desired level of development in this
model and therefore it was left out of this report. Also, the formalism can be expanded to
treat γ∗-proton and electron-ion collisions, however, only by having a model that separates
the excitations in target and projectile, such as the one described above, it is possible to
capture such collisions accurately.

In conclusion, the event generator developed shows satisfactory results that can be refined
with the inclusion of more complex models and by accounting for deformations in the nuclei
shape not considered in our work. The guidelines for future work presented can greatly
enhance the results produced by our simulation and allow for the simulation of other types
of collisions.
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