
MASTER’S THESIS 2023

Correction of Grammatical
Errors in Swedish
Joel Ehnroth, Yoonjoo Park

ISSN 1650-2884
LU-CS-EX: 2023-29

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2023-29

Correction of Grammatical Errors in
Swedish

Korrigering av grammatiska fel på svenska

Joel Ehnroth, Yoonjoo Park

Correction of Grammatical Errors in
Swedish

Joel Ehnroth
jo3268eh-s@student.lu.se

Yoonjoo Park
yo4302pa-s@student.lu.se

June 27, 2023

Master’s thesis work carried out at NordAxon AB.

Supervisors: Filip Bolling, filip.bolling@nordaxon.com
Pierre Nugues, pierre.nugues@cs.lth.se

Examiner: Jacek Malec, jacek.malec@cs.lth.se

mailto:jo3268eh-s@student.lu.se
mailto:yo4302pa-s@student.lu.se
mailto:filip.bolling@nordaxon.com
mailto:pierre.nugues@cs.lth.se
mailto:jacek.malec@cs.lth.se

Abstract

This thesis investigates Swedish grammatical error detection and grammatical
error correction using transformer-based models. The models are evaluated on a
human-annotated parallel dataset containing incorrect-correct sentence pairs.
We explore several pre-trained large language models, both monolingual and
multilingual variants, that we fine-tune on the task-specific dataset DaLAJ-GED.
We evaluate the models’ ability to classify sentences as correct or incorrect, iden-
tify where in the sentence an error occurs and classify what type of error it is.
Furthermore, we evaluate different models’ ability to generate a corrected ver-
sion of a grammatically incorrect sentence. To this end, we propose combining
the limited human-annotated data with synthetic data to improve model perfor-
mance on these tasks. Our results show that transformer-based models outper-
form traditional rule-based methods on error detection and correction. Specif-
ically, when evaluating on the DaLAJ-GED dataset for the correction task, the
Swedish transformer model GPT-SW3 achieved 80% accuracy compared to the
52% accuracy of a leading Swedish rule-based model. Our work contributes to
the field by showing the potential of transformer-based models, and proposing
several ways for future development of these systems.

Keywords: natural language processing, transformers, grammatical error detection, gram-
matical error correction

2

Acknowledgements

We would like to express gratitude to our supervisor at NordAxon, Filip Bolling, whose valu-
able input has guided our work over the course of the project. We are also grateful to our
supervisor at Lund University, Professor Pierre Nugues, for having provided us with his aca-
demic experience which has ensured a steady progression of our work, as well as for his con-
tinuous encouragement. We also wish to thank our examiner, Jacek Malec.

Finally, we would like to thank everyone at the NordAxon office for giving us the oppor-
tunity to explore this subject matter, and for re-affirming the value of our work.

3

4

Contents

1 Introduction 7
1.1 Motivation and Goals . 7
1.2 Research Questions . 8
1.3 Scope . 9
1.4 Contributions . 9
1.5 Outline . 9

2 Datasets 11
2.1 DaLAJ v1.0 . 11
2.2 DaLAJ-GED . 13
2.3 Swedish Wikipedia . 16

3 Previous Work 17
3.1 Grammatical Error Detection . 17
3.2 Grammatical Error Correction . 18
3.3 GED and GEC for Swedish . 20
3.4 Synthetic Data . 22
3.5 Sentence Scoring . 23

4 Transformers 25
4.1 Models . 25

4.1.1 Transformers . 26
4.1.2 Pre-trained models . 29

4.2 Text and Word Representation . 33
4.2.1 Tokenization . 33
4.2.2 Word vectors and Embeddings . 34

5 Method 37
5.1 Grammatical Error Detection . 37

5.1.1 Binary Sentence Classification . 37

5

CONTENTS

5.1.2 Binary Token Classification . 39
5.1.3 Multi-label Token Classification 39

5.2 Grammatical Error Correction . 40
5.2.1 Generating Synthetic Data . 41
5.2.2 Generating Correct Sentences . 41

5.3 Evaluation . 44

6 Results 47
6.1 Grammatical Error Detection . 47

6.1.1 Binary Sentence Classification . 47
6.1.2 Binary Token Classification . 48
6.1.3 Multi-label Token Classification 49

6.2 Grammatical Error Correction . 49
6.2.1 Granska . 49
6.2.2 Encoder-decoder Models . 50
6.2.3 Decoder Models . 53
6.2.4 Comparative Analysis . 54

7 Discussion 57
7.1 Interpretations of Results . 57
7.2 Future work . 58
7.3 Conclusion . 59

References 61

6

Chapter 1

Introduction

1.1 Motivation and Goals
Written communication remains a key aspect of life in the digital age, and the ability to ex-
press oneself fluently and precisely is important, whether it is for professional letters and
reports, job applications or simple daily communication through emails or text messages.
Tools that provide grammatical feedback can play an instrumental role in helping people
achieve their goals, and this may be particularly important for second-language learners.
Unfortunately, the field of grammatical error detection (GED) and grammatical error cor-
rection (GEC) is dominated by the major languages such as English, but is comparatively
under-explored for the Swedish language.

The complexity of human languages makes the task of providing precise GEC difficult.
Our natural languages typically involve a large vocabulary of words whose meanings are
context-dependent, meaning that the semantics of a word can vary depending on what other
words surround it. There are also many different forms of sentence building blocks, called
parts of speech. These include nouns, verbs, adjectives, prepositions, pronouns and more,
and they all interbehave in different ways. Grammatical errors involving nouns can look dif-
ferent from grammatical errors involving verbs. Even within each part of speech group, there
exists a great variation.

Here is an example of an error.

Sentence: Vi flyttade i Sverige och vi bor ett hus nu.
Correction: Vi flyttade till Sverige och vi bor i ett hus nu.

In the original sentence, the preposition i after flyttade is corrected to till. On the other
hand, after the verb bor, the preposition i is added. It shows that the use of a preposition
depends on the verb.

7

1. Introduction

Here is another example.

Sentence: Vi bor i hotellet.
Correction: Vi bor på hotellet.

In the previous example, the verb bor was followed by the preposition i, but in this exam-
ple i requires the correction på, because the error now involves the noun hotellet. All of this
contributes to GEC being a difficult task to solve.

Linguists have long debated whether language can be fully described by consistent rules,
and in any case, the implementation of a sufficiently fine-tuned and complex ruleset has
proven difficult. For this reason, recent research in the field has instead turned to big data,
which is fed to machine learning models called neural networks. The hope is that, by showing
the models vast quantities of text data, they can form an internal model of the language(s)
seen in the data. Indeed this approach has proven to be able to generate convincing text, as
models like ChatGPT have shown.

Transformers are a type of neural network that have achieved state-of-the-art results on
most tasks involving natural language processing (NLP). They are used today in a wide range
of consumer-facing products, from grammar correction services to chatbots and text summa-
rizers to virtual assistants and more. Their distinguishing feature is their ability to process
sequences of data and paying attention to the entirety of the sequence whilst processing each
part of it. This is particularly important in NLP, as the semantic meaning of a word can be
determined by words that precede or follow it, hence it is important that the network can
pay attention to the words that surround a word, as it processes it. In short, the transformer
learns the importance of each word in a sentence, for every other word in the same sentence.

In this thesis, we investigate recent attempts to employ neural networks, specifically
transformer models, for the tasks of GED and GEC on Swedish texts. The former involves
detecting if a sentence contains an error, where in the sentence the error occurs, and what
type of error it is. The latter involves generating a corrected version of the sentence. We
explore current state-of-the-art methods and attempt to improve on previous approaches for
GEC of the Swedish language.

The work was carried out in collaboration with NordAxon, a company working to lever-
age the latest advancements in machine learning to give people in Sweden tools to help them
succeed in communicating effectively. Their product, Emely, is an AI-driven conversational
assistant designed in part for second-language learners of Swedish, to offer a safe environ-
ment in which users can practice communicating in the Swedish language at their own pace.
A key part of such a system could potentially be a module that reviews spelling, grammar,
punctuation and more, in the user’s input texts, and proposes changes for the identified prob-
lems.

1.2 Research Questions
This thesis aims to answer the following questions:

• What tools and resources exist for GED and GEC in Swedish, and how do they compare
to each other?

8

1.3 Scope

• Is there any merit to combining old and new techniques of NLP to improve GED and
GEC performance with a focus on precision?

• How do different types of transformer architectures perform on the task of GED and
GEC?

• Which types of grammatical errors are difficult to detect and correct? How can we
resolve these issues?

1.3 Scope
This scope of the thesis will be delimited by the following:

• We will only test a selected number of transformer models.

• We will not consider inference times or the feasibility of deployment in production.

• We will only investigate GED and GEC for the Swedish language.

1.4 Contributions
We contribute to the field of GED and GEC for the Swedish language by evaluating modern
transformer-based models trained on the latest datasets available for the Swedish language.
We incorporate recent research on synthetic data and some different approaches to GEC
based both on encoder-decoder models and pure decoder-models. Both authors have con-
tributed to every part of this thesis, working in tandem on every experiment and every part
of the report.

1.5 Outline
The thesis is structured as follows. In Chapter 2, we describe the datasets used for our exper-
iments.

In Chapter 3, we describe relevant research that has previously been done in the field of
GED and GEC, as well as work that has been done on generating synthetic data.

In Chapter 4, we present the theoretical background on transformer models needed to
understand the work that has been carried out.

In Chapter 5, we describe the setup and method for the experiments with GED and GEC
that have been carried out. We further describe our procedure for generating synthetic data
that has been used in the experiments.

In Chapter 6, we present the results from our experiments and compare the performance
of traditional methods with contemporary transformer model approaches.

In Chapter 7, we discuss the aforementioned results and highlight the advantages and
disadvantages of our methods.

In Chapter 8, we conclude the work and provide suggestions for future work and im-
provements.

9

1. Introduction

10

Chapter 2

Datasets

In this chapter, we describe the datasets used for this project. Annotated datasets specifically
intended for GED and GEC of the Swedish language are sparse. To the best of our knowledge,
only Swedish Learner Language (SweLL) and Dataset Linguistic Acceptability Judgements
for Swedish (DaLAJ) exist, with DaLAJ being derived from SweLL. In this work, we use
the DaLAJ dataset, as well as a raw corpus containing Swedish Wikipedia text entries. We
artificially insert grammatical errors into the latter, to bolster the limited human-annotated
data that exists.

2.1 DaLAJ v1.0

Table 2.1: The format of DaLAJ v1.0.

Column Example Explanation
original sentence För det andra är det nyckeln av livet.
corrected sentence För det andra är det nyckeln till livet.
error indices 29-30 String indices of the error
corrected indices 29-32 String indices of the correction
error-corr pair av-till
error label L-W
L1 Somaliska Learner’s mother tongue
Level Intermediate level of the course that learners takes

Volodina et al. presented a dataset called DaLAJ in 2021. An extended version of the
dataset, DaLAJ-GED, was later released by Volodina et al. (2023). Here, we refer to the orig-
inal version of DaLAJ as DaLAJ v1.0. The sentences in DaLAJ v1.0 are derived from the
SweLL dataset (Volodina et al., 2019), which is an error-annotated corpus comprising 502

11

2. Datasets

essays written by second language learners of Swedish. 4,798 pairs of incorrect and correct
sentences make up DaLAJ v1.0, and the sentences were manually altered by the creators to
only contain one error each. Sentences in SweLL that originally contained multiple errors
therefore occur several times in DaLAJ v1.0, each containing one of the original errors. Table
2.1 shows an example extract from DaLAJ v1.0, omitting the index and split columns.

The correction (column name: error label in the dataset) can be one of four possible
types, and examples of each error type are shown in Table 2.2.

• L-W: Lexical-Wrong word. A wrong word or phrase in the text should be replaced.

• L-Der: Lexical-Derivation. Word formation (such as suffixes) should be corrected.

• L-FL: Lexical-Foreign language. A foreign word should be corrected to Swedish.

• O-Comp: Orthographic-Compounding. Spaces or hyphens between words should be
removed or added.

Table 2.2: Examples of correction tags in DaLAJ v1.0.

Error label Original sentence Corrected sentence
L-W På kvällen går du till gym. På kvällen går du på gym.
L-Der Hur ska politikerna gå tillvägas? Hur ska politikerna gå tillväga?
L-FL De ligger på första plats i den league. De ligger på första plats i den ligan.
O-Comp Tillslut sov jag på soffan. Till slut sov jag på soffan.

Figure 2.1: The distribution of correction tags in DaLAJ v1.0.

Figure 2.1 illustrates the distribution of the correction tags in DaLAJ v1.0. According to
the figure, 72.2% of the correction tags in DaLAJ v1.0 are of type L-W. Note that the version
of DaLAJ v1.0 that we acquired through Språkbanken1 in January of 2023 contained 4,730
pairs of errorful and correct sentences.

1https://spraakbanken.gu.se/resurser

12

2.2 DaLAJ-GED

2.2 DaLAJ-GED

Table 2.3: Annotated datasets in Swedish.

Corpus Error Types Sentences Splits Sentences
DaLAJ v1.0 4 9,460 Train Incorrect: 3,841

(4,730 pairs) Validation Incorrect: 445
Test Incorrect: 444

DaLAJ-GED 5 44,654 Train Correct: 17,472
Incorrect: 18,109

Validation Correct: 2,424
Incorrect: 2,278

Test Correct: 2,219
Incorrect: 2,152

DaLAJ-GED is an extension of DaLAJ v1.0 by Volodina et al. (2023). It is made up of
44,654 sentences from the SweLL (Volodina et al., 2019) and Corpus of Coursebooks for
Swedish as a Second Language (COCTAILL) (Volodina et al., 2014) corpora. It preserves
the idea behind DaLAJ v1.0, namely that each sentence in the dataset should only contain a
single error. Unlike its predecessor, DaLAJ-GED does not contain the corrected version of
incorrect sentences. These can however be manually reconstructed using the confusion pair
and error indices. As Table 2.3 shows, DaLAJ v1.0 contains 4,730 pairs of sentences and 9,460
sentences in total, and DaLAJ-GED is about five times larger than DaLAJ v1.0.

Table 2.4 shows an incorrect entry from DaLAJ-GED. Note that the city name has been
pseudonymized to “A-stad”.

Table 2.4: The format of DaLAJ-GED.

Column Example Explanation
Sentence A-stad liger bland många fina berg.
Label incorrect
Error span 7-12
Confusion pair liger-ligger
Error label O
Education level Nybörjare Level of proficiency
L1 Arabiska Learner’s mother tongue
Data source SweLL SweLL or COCTAILL

The correction (column name: Error label in the dataset) can be one of five possible
types, and examples of each error type are shown in Table 2.5.

• P: Punctuation should be moved/added/replaced.

• O: Orthographic. Spelling errors, upper/lower case and problem with compounding
should be corrected.

13

2. Datasets

• L: Lexical. Word formation (compounding), foreign word, wrong word or phrase should
be corrected.

• M: Morphological. Morphological error such as verb/adjective/noun forms should be
corrected.

• S: Syntactical. Word order or missing word should be corrected.

Table 2.5: Examples of the correction tags in DaLAJ-GED.

Error label Original sentence Corrected sentence
P (Punctuation) Hoppas vi ses snart Hoppas vi ses snart.
O (Orthographic) Annars är alt bra. Annars är allt bra.
L (Lexical) Vi flyttade i Sverige 2016. Vi flyttade till Sverige 2016.
M (Morphological) Alla mina dag gick så dåligt. Alla mina dagar gick så dåligt.
S (Syntactical) Jag bor ett hus. Jag bor i ett hus.

Figure 2.2: The distribution of error types in DaLAJ-GED.

Figure 2.2 illustrates the distribution of correction tags in DaLAJ-GED. Compared to
DaLAJ v1.0 in Figure 2.1, the error types are more evenly distributed in DaLAJ-GED. Table
2.6 shows the most common errors of each error type.

Many sentences in DaLAJ-GED contain more than one error label. We used all sentences
without duplication or removal for the tasks of binary sentence and binary token classifica-
tion. For multi-label token classification, we duplicated the sentences containing more than
one error type, and assigned one error label per such sentence. For example, a sentence origi-
nally labeled L, M would be transformed into two sentences, one labeled L, and the other M.
Furthermore, we discarded the 10 entries that were missing error labels altogether. Therefore
the total number of sentences in Figure 2.2 is 46,287, which exceeds the size of the original
dataset.

14

2.2 DaLAJ-GED

Table 2.6: The most common errors in DaLAJ-GED. The third most
common error in S-type ([inte]) involves incorrect word order er-
rors.

Error type Rank Error Correction Number of sentences
1 [] [,] 1312

P 2 [] [.] 314
3 [,] [.] 233
1 [] [att] 450

S 2 [] [det] 212
3 [inte] [inte] 178
1 [] [en] 347

M 2 [] [ett] 199
3 [en] [ett] 107
1 [i] [på] 112

L 2 [på] [i] 93
3 [till] [för] 52
1 [jag] [Jag] 61

O 2 [det] [Det] 58
3 [har] [här] 29

Figure 2.3 illustrates the number of words in the sentences in DaLAJ-GED. According to
the figure 99% of the sentences contain fewer than 50 words. This information is used when
we set the max number of words to be generated by models in Section 3.2.

Figure 2.3: The number of words in sentences in DaLAJ-GED.

15

2. Datasets

2.3 Swedish Wikipedia
Swedish Wikipedia is a corpus released by Gothenburg University’s Språkbanken, which
comprises 29,471,436 sentences scraped from a range of Swedish Wikipedia articles. It con-
sists of mostly grammatically correct sentences of varying length. We used this raw corpus
for the generation of sentences containing artificial grammatical errors. These artificially
corrupted sentences were employed as extra training data for the models, in an attempt to
boost performance. This is further described in Section 5.2.1.

16

Chapter 3

Previous Work

In this chapter, we present some previous works in the field of GED and GEC.

3.1 Grammatical Error Detection
Grammatical error detection (GED) is the task of detecting and potentially classifying the
errors in a sentence.

The oldest and most traditional methods for GED and grammatical error correction
(GEC) are rule-based. For instance, in 1980 IBM began developing the EPISTLE system to
aid people in writing correct business letters (Miller, 1980). After parsing each word’s part
of speech, such as noun, verb and adjective, the EPISTLE system checked the input sentences
against 250 rules designed specifically for English (Heidorn et al., 1982). In this manner, rule-
based methods detect and correct errors using a parser and morphological rules. However,
there are many exceptions to a limited ruleset, and therefore new methods were ultimately
needed.

Statistical machine translation (SMT) is an approach to translating text from a source
language into a target language, and neural machine translation (NMT) uses a neural net-
work model to learn how to map source sentences to target sentences. These were first used
for GED and GEC by posing the problem of translating incorrect sentences into correct sen-
tences as a translation from an incorrect language into a correct language. These methods
were extensively used for GEC tasks, and therefore both SMT and NMT are described in
further detail in Section 3.2.

Accordingly, we will only briefly discuss some NMT-based methods for GED here. Rei
and Yannakoudakis (2016) presented one of the first neural networks designed for GED of
language learner writings. The authors investigated convolutional neural networks (CNNs),
bidirectional recurrent neural networks (Bi-RNNs) and bidirectional long short-term mem-
ory networks (Bi-LSTMs) with series of tokens as input. Among these neural networks, Bi-
LSTMs were found to perform best on the GED task. Rei and Søgaard (2018) extended the

17

3. Previous Work

Bi-LSTM model and proposed a model combining both token-level and sentence-level clas-
sification. This model outperformed Rei and Yannakoudakis (2016)’s Bi-LSTM and set new
state-of-the-art results on the FCE, CoNLL-14 and JFLEG benchmarks.

Since the transformer-based BERT model was presented in 2018, attempts have been
made to use pre-trained models for GED. Kaneko and Komachi (2019) explored applying ex-
tra attention mechanisms to each layer of BERT for a token-level GED task, and the resulting
model outperformed both BERT and the model by Rei and Søgaard (2018) mentioned ear-
lier, on FCE, JFLEG and CoNLL14-2. Yuan et al. (2021) implemented a binary classification
model based on ELECTRA (another transformer-based model) and extended it to multi-label
classification model for multi-label GED. This in turn outperformed Kaneko and Komachi
(2019).

3.2 Grammatical Error Correction
Grammatical error correction (GEC) is the task of generating a grammatically correct sen-
tence from an incorrect one.

As we mentioned in Section 3.1, statistical machine translation (SMT) translates a source
sentence into a target sentence using statistics and probability. To compute the relevant
probabilities, we first need a parallel corpus of incorrect and correct sentences. For example,
if we have an incorrect word scool, we can calculate the conditional probability that scool is
mapped to the correct word school. This is done using Bayes’ theorem:

P(school|scool) =
P(school)P(scool|school)

P(scool)
. (3.1)

In this way, the conditional probability for other corrections such as P(cool|scool) can
also be computed. The conditional probabilities for all candidate corrections are compared,
and the most probable correction is selected. One advantage of using SMT models for GEC
is that they do not require any updating of rules like rule-based models, making them easier
to develop and maintain. However, the correction is made based on statistical information
of individual words and it does not take the context of entire sentence into consideration.

Neural machine translation (NMT) also needs a parallel corpus of correct-incorrect sen-
tences, but it uses neural networks to learn how to map an incorrect sentence to a correct
sentence. Sutskever et al. (2014) presented a sequence-to-sequence learning model using a
multilayered LSTM and Cho et al. (2014b) proposed an RNN encoder-decoder model. Both
models consist of two RNNs called the encoder and decoder.

Figure 3.1 illustrates how encoder-decoder models can be adapted to GEC tasks. The
orange-colored part is the encoder that reads the input sentence and computes the hidden
states, while the blue-colored part is the decoder that generates the output sentence. An
input sentence “He drink water” is inserted, and the model reads the sentence token by token.
The hidden state of the encoder is updated as it reads each token of the input sentence and
this continues until the model reads the end-of-sentence token. The decoder is trained to
generate the next token given (1) the final hidden state of the encoder and (2) the previously
generated token.

Since Sutskever et al. (2014) and Cho et al. (2014b) showed that their models outper-
formed SMT models for translation tasks, encoder-decoder models has been actively used.

18

3.2 Grammatical Error Correction

Figure 3.1: The illustration of encoder-decoder model for GEC tasks.

Specifically, Cho et al. (2014a) indicated that RNN encoder-decoder models perform well on
short sentences, but perform worse as the length of the sentence grows. Subsequently, at-
tempts were made to improve the performance on longer sentences. For example, Bahdanau
et al. (2016) implemented a model using a bidirectional RNN encoder-decoder using scores,
while (Kalchbrenner et al., 2017; Gehring et al., 2017) used an encoder-decoder model with
CNNs. Finally, in 2017, Vaswani et al. proposed the transformer, a model that uses the atten-
tion mechanism of encoder-decoder models. This model outperformed the best previously
reported models on the WMT 2014 English-to-German translation task, and many variants
of the model have since been developed. In this thesis, we focus on transformer-based models
which will be explained in detail in Section 4.

To conclude this section we introduce two current state-of-the-art GEC models.

Figure 3.2: An illustration of how the model by Rothe et al. (2021)
is pre-trained and fine-tuned for the GEC task.

Rothe et al. (2021) present a way to train state-of-the-art GEC models by making use
of pre-trained multilingual sequence-to-sequence models. Specifically, they propose a fully
unsupervised method of pre-training the mT5 model’s weights on a large raw multilingual
corpus that has been split into sentences, 98% of which have been synthetically corrupted.
The corruptions are simple and include dropping spans of tokens and characters, token and
character swaps, character insertions and incorrectly lower-casing and upper-casing words.
Two percent of the data is left uncorrupted. Finally the model is fine-tuned on human-
annotated GEC data for each language of interest. Figure 3.2 illustrates how the model of
Rothe et al. (2021) is pre-trained and fine-tuned. This model outperformed the previous
state-of-the-art results on GEC benchmarks in English, Czech, German and Russian.

Omelianchuk et al. (2020) takes a different approach to GEC, by posing it as a sequence
tagging task instead of a sequence generation task. This allows for faster inference times

19

3. Previous Work

Figure 3.3: An illustration of how GECToR by Omelianchuk et al.
(2020) performs sequence-tagging for the GEC task. The descriptive
tags make it possible to reconstruct the correct sentence. If more
changes are required, the output sentence can be tagged and altered
again.

which can be crucial in live applications. Specifically, their system, called GECToR, involves
training a model to label sequences with e.g. KEEP, DELETE, APPEND and REPLACE tags. For
example, if the model predicts that a token should be replaced with another token x, it will
label the original token with REPLACE_{x}. For this reason, a large error tag vocabulary is
needed, and the authors use one of size 5000. Additionally, some token-independent tags are
used; among others, MERGE, which merges the tagged token with its successor, and SPLIT
which splits the current token into two new tokens. From these highly descriptive tags,
a corrected sequence can be constructed. If desired, the corrected sequence can be tagged
again, iteratively, until no more corrections are made. Figure 3.3 illustrates how the system
operates.

3.3 GED and GEC for Swedish
In the 1990s, Lingsoft carried out research on GED and GEC for the Swedish language and
Grammatifix (Arppe, 2000; Birn, 2000) was one of the early products. Grammatifix, which
uses rule-based methods, was launched with Word 2000.

KTH Royal Institute of Technology initiated the Granska project in 1994 and presented
a rule-based Swedish grammar checker called Granska (Carlberger et al., 2004). Figure 3.4
shows the structure of Granska. After tokenizing and part-of-speech tagging each sentence,
they are checked by a rule matcher which generates correction suggestions. Stava, the spelling
checker of Granska, is implemented with 1,000 suffix rules and the word lists from the
Swedish Academy and Newspaper corpora (Kann et al., 1998). There are three different
word lists:

1. a list of independent words that cannot be part of a compound,

20

3.3 GED and GEC for Swedish

Figure 3.4: The overview of Granska system, image courtesy of
Knutsson (2005).

2. a list of the words that can end a compound or be an independent word,

3. a list of the words that can be the first or middle part of a compound.

When an input word is inserted, the program checks if the word belongs to list 1) or 2). If
not, the word is reconstructed by suffix rules and the program again checks if the constructed
words belong to the lists.

Kann et al. (1998) described how Granska looks up the word poslinsdockorna in its lists
to check the spelling. Since the word does not exist in list 1) and 2), the program breaks the
word into two parts. The first part of the compound, porslins- exists in list 3), but the last
part of the compound, dockorna are still not found in any of the lists.

The suffix rule that is consulted in this case is:

-orna←− -a, -an, -or

Because the reconstructed words, docka, dockan and dockor, are found in the list 1) or
2), dockorna is considered as a legal word, and the word poslinsdockorna is also correct word
according to Granska’s spell checker.

There were also some attempts to use statistical and neural machine translation for Swedish
GEC. Bigert (2002) presented a probabilistic method for GED, Probgranska, based on the
statistics of a corpus containing correct sentences. Probgranska checks how often the part of

21

3. Previous Work

speech and form of a word follow each other, and based on this, outputs if the word is correct
or incorrect (KTH Royal Institute of Technology, 2020).

Stymne and Ahrenberg (2010) presented an SMT model for Swedish GED. They im-
proved the performance of the SMT model by combining it with Granska, whereby Granska
evaluates the outputs from the SMT models. Snålgranska (Sjöbergh and Knutsson, 2005) is
a GED model using machine learning trained on a corpus with errors.

More recently, some transformer-based models trained on Swedish corpora have been
presented. For example, the National Library of Sweden has released additional versions
of the BERT and BART models since they originally presented KB-BERT (Malmsten et al.,
2020). In 2023, AI Sweden released GPT-SW3 (Ekgren et al., 2022) which is based on the
GPT architecture. In the field of GED, Volodina et al. (2021) implemented and evaluated
an LSTM model fed with KB-BERT embeddings as input data, and Volodina et al. (2023)
fine-tuned KB-BERT on DaLAJ-GED. These experiments were conducted to evaluate the
newly created DaLAJ datasets, and demonstrating the potential for fine-tuning transformer-
models for GED and GEC tasks in Swedish. Further details on this topic are provided in
Section 4.1.2.

3.4 Synthetic Data

The recent advances in GED and GEC using neural architectures typically require large paral-
lel training data of incorrect and correct text. Such human-annotated data is scarce, especially
for a relatively low-resource language such as Swedish. For this reason, it is natural to look to
synthetic data. Several attempts to use synthetic data to improve model performance have
been done. Indeed, several state-of-the-art models make use of vast amounts of synthetic
training data. For example, the methods described by Rothe et al. (2021) and Omelianchuk
et al. (2020) that were introduced in Section 3.2.

What defines good synthetic data for GED and GEC is that it accurately reflects the
broad distribution of errors made by humans. Stahlberg and Kumar (2021) propose a novel
way of generating synthetic data that more closely aligns with the range of grammatical errors
made by humans, and indeed show that systems trained on this data can even surpass state-
of-the-art systems trained on human-annotated data. Their method involves generating an
incorrect sentence from a correct sentence given an error label from a set of 25 error labels
supported by the toolkit ERRANT (Felice et al., 2016; Bryant et al., 2017). The goal is then
to assign a single error tag to each sentence in the training data such that the distribution of
error tags matches that which is found in real data.

Casademont Moner and Volodina (2022) study the distribution of error types present in
authentic second language learner data, specifically the SweLL corpus (Volodina et al., 2019),
from which the DaLAJ-GED corpus is derived. They report what the most common error
types are and develop a corruption pipeline which inserts artificial errors into grammatical
sentences. They find that an addition of some synthetic data during the training procedure
can improve model performance, but that too much synthetic data of a specific error type
will hurt the model’s ability to classify other error types.

22

3.5 Sentence Scoring

3.5 Sentence Scoring
In the context of GEC, the likelihood of a sentence can be of interest as a measure of how cor-
rect it is. In the context of language models like BERT or GPT, one can make the assumption
that the models have been trained on mostly grammatically correct text, and will therefore
assign a higher probability to a grammatically correct sentence than an ungrammatical one.

Research in this field has employed both masked language models (MLM) such as BERT
(Salazar et al., 2020) and causal language models (CLM) such as GPT (Weng et al., 2020).
MLMs have the benefit of being able to incorporate a bidirectional context when evaluating
the probability of each token, whereas the CLMs benefit from only requiring a single forward-
pass to evaluate a whole sentence, unlike MLMs which require one pass per token in the
sentence. Attempts have been made to utilize the beneficial characteristics of both types of
language models, one example being the sliding language model by Song et al. (2022).

Furthermore, works like LM-Critic by Yasunaga et al. (2021) impose a local-neighborhood
criterion which means that, when evaluating a number of proposed corrections of a sentence,
the corrections are required to be within edit-distance 1 of the original, incorrect sentence.
LM-Critic uses language modeling to select the best, or most likely corrected sentence, among
a number of candidates that are all in the local neighborhood of the sentence that needs to
be correct.

23

3. Previous Work

24

Chapter 4

Transformers

In this thesis, we explore transformer-based models for GED and GEC. This chapter describes
the transformer architecture and its application for this work. Moreover, this chapter pro-
vides knowledge about how text and words are represented by the models, by tokenization
and embeddings.

4.1 Models
Common to most popular machine learning models used today for GED and GEC is their
immense size, and that they have been trained on vast amounts of data. These factors alone
make it difficult to train these models from scratch on consumer-grade hardware. Fortu-
nately, there exist many free and open libraries which provide pre-trained models for all to
use. Typically these models have been trained to learn an internal representation of natural
language, also called a language model. This language model can be used to great advantage
when fine-tuning on various specific tasks, such as question-answering or sentence classifi-
cation.

Fine-tuning is the process of using a pre-trained model for a specific downstream task.
This involves replacing the output layer of a pre-trained model with a new head. Figure 4.1
illustrates how we fine-tune a BERT model for example. The head is typically a small neural
network whose purpose is to be trained on a specific task. Thus, the input data first passes
through the large pre-trained model, followed by the small neural network which produces
the final output. This way, the complex language model of the pre-trained network can be
leveraged to great effect on a wide range of tasks. When training the new head, the parameters
of the pre-trained network can be frozen, meaning that they do not change. The purpose of
this is to preserve the learned knowledge of the pre-trained model. Alternatively some of the
final layers of the pre-trained model can be unfrozen and trained together with the new head.
In this thesis we investigate both approaches, for different tasks.

25

4. Transformers

Figure 4.1: An illustration of the components of a fine-tuned BERT
model.

4.1.1 Transformers
In 2017, Vaswani et al. introduced the transformer, a type of feedforward neural network
based on the concept of attention. In the years that followed, significant advances were made
in the field of GED and GEC using transformer-models (Junczys-Dowmunt et al., 2018). The
transformer, which uses an encoder-decoder architecture, enabled the training of models on
large data to create language models without the need for annotated training data. Through
the act of observing vast amounts of written text, these transformer-models can form an
internal model of language that can be leveraged for a wide range of tasks, from e.g. machine
translation to GEC or text generation. The transformer, with its encoder and decoder, was
originally designed for sequence-to-sequence tasks such as translation between languages, but
shortly after its release, different models that made use of solely the encoder or the decoder
were published. We describe some of these models in Section 4.1.2.

Attention The key feature of the transformer is its heavy reliance on the attention mech-
anism. This mechanism allows a neural network to give different weight or “attention” to each
part of a sequence. In practice, it is a mapping of key-value pairs together with a query, to an
output, all of which are vectors. The query may be the token embedding we wish to calculate
the attention for, and the keys may be all other tokens embeddings in the context around
the query token. In reality, multiple queries are processed at once, and thus we can stack
the queries, keys and values into matrices Q, K and V. We derive a query by multiplying a
query token with the matrix Q. Similarly, keys are obtained by multiplying each key token
with the matrix K, and the values by multiplying the key tokens with the matrix V. The
attention scores for our query token are then calculated by taking the dot product between
the keys and the query. Queries and keys that are similar will yield a large dot product and
thus large attention scores. These scores are then scaled with a factor

√
dk where dk is the

26

4.1 Models

Figure 4.2: The transformer architecture. The block on the left is
the encoder, and the block on the right is the decoder. Adapted
from Vaswani et al. (2017).

dimension of each key and query vector, to ensure that the attention scores all have variance
1. Additionally, they are normalized using a softmax function. Finally, the output is obtained
by multiplying the attention scores with the values. Equation 4.1 shows the derivation of the
attention.

Attention(Q,K,V) = softmax(
QKT
√

dk
)V (4.1)

Self-Attention With self-attention, the keys, values and query are all derived from the
same words, e.g. from the same written sentence. In other words, self-attention computes
how the parts of a sequence relate to each other. This mechanism allows the transformer
to process the whole context around each token without the need for a recurrent network
structure. Notably this enables parallel processing of tokens.

27

4. Transformers

Multi-Head Attention In order to create the key, query and value vectors, linear
transformations are applied to each input embedding. The parameters of these transforma-
tions are not set by the programmer, but learned from the data, together with the other
parameters of the model. Multi-head attention means having more than one set of trans-
formations for generating the key, query and value vectors. Each set of transformations is
referred to as one attention head, and each head may learn to attend to different aspects of
the tokens in the input sequences, such as how different parts of speech (PoS) interact with
one another.

The Encoder In the context of transformers, the encoder typically consists of several
stacked encoder layers. This is illustrated in the left half of Figure 4.2, where N encoder layers
are denoted by N×. The input to each encoder layer is a sequence of embeddings, to which
self-attention is applied, after which they are each fed through a fully connected feedforward
neural network. The outputs of each encoder layer is of the same size as the inputs, so that it
may be fed into the next encoder layer. As the embeddings pass through the encoder stack,
they will become increasingly contextualized.

The Decoder The transformer’s decoder consists of several stacked decoder layers,
each of which contains two attention layers. The decoder with its N decoder layers are il-
lustrated in the right half of Figure 4.2, denoted by N×. Given that the task of the decoder
is to perform next-token prediction, the masked multi-head attention attention layer masks
tokens in the right context, so that they cannot be used when predicting the current to-
ken. This is necessary to properly train the decoder on the task of next-token prediction, as
knowing the right context would correspond to cheating. The other multi-head attention
layer performs multi-headed attention on the key and value vectors output by the encoder,
using the decoder’s current representations of the sequence as queries. In other words, the
decoder learns the relations between the representations of the two different sequences, the
first one being the encoder’s output and the other being the decoder’s own output from the
previous step. This is how the decoder can learn mappings between sentences of two different
languages.

Beam Search As the decoder generates the next token, it selects the token with the
highest probability at each step by default. This is not always desirable, as greedily selecting
the most probable token at each step will not always yield the most probable sequence overall.

Beam search involves keeping track of the top-n most probable next tokens, where n is
called the number of beams. This creates n possible paths for the next token, i.e. n branches of
a search tree. This step is iterated for each branch until we reach a pre-determined maximum
sentence length, or the end of the sentence. Finally, we select the path of the search tree by
ranking the beams according to their log probabilities. Figure 4.3 illustrates the process.

28

4.1 Models

Figure 4.3: An illustration of beam search with two beams. For
brevity, not all beams are drawn. The blue color signifies the two
most likely candidate sequences. The candidate sequence with the
highest log probability score is chosen as the output.

4.1.2 Pre-trained models
As previously mentioned, the computational resources, memory and time needed to train
modern transformer-based language models means that it is not feasible to train them from
scratch for each specific use-case. Instead, it is common practice to use the outputs from
pre-trained language models as inputs to a neural network that is trained on a specific down-
stream task.

BERT. Devlin et al. (2019) introduced BERT (Bidirectional Encoder Representations
from Transformers), which consists of multiple layers of bidirectional transformer encoders.
BERT is pre-trained with two unsupervised tasks: masked language modeling and next sen-
tence prediction (NSP). Masked language modeling (MLM) is a procedure whereby 15% of all
tokens in each sequence are randomly masked and then predicted based on the surrounding
context. The NSP is a task that involves letting the model predict whether two sentences
follow each other or not. Devlin et al. (2019) showed that this task was beneficial to tasks
such as question answering.

As we briefly described in Section 4.1, the pre-trained BERT model can be fine-tuned by
adding a small number of additional layers on top, called the head, and training the head on
a dataset specific to a task. Figure 4.4 illustrates how BERT can be fine-tuned for different
tasks. For instance, example (a) in Figure 4.4 illustrates that BERT can be fed a sentence and
return an output corresponding to a classification of the sentence. For example, the sentence
can be categorized as correct or incorrect. Additionally, BERT can be fine-tuned for token-
tagging as shown in (b) of Figure 4.4, enabling the model to return a sequence of labels, one
for each token in the sentence. This makes it possible to fine-tune the model on the task of
tagging each token as correct or incorrect, or apply more specific error tags to each token.

mBERT. In 2019, Google Research released a multilingual extension of BERT, which
was conceptually identical to BERT. The 100 languages with the largest Wikipedia entries
were used for training, and the model was trained on the entire Wikipedia for each language.

29

4. Transformers

Figure 4.4: An illustration of how BERT can be fine-tuned on dif-
ferent tasks. Adapted from Devlin et al. (2019).

The vocabulary size was increased to 110K shared WordPiece embeddings, from the origi-
nal 30K WordPiece embeddings. Google Research (2019) found that the multilingual BERT
performed slightly worse than the monolingual BERT on high-resource languages such as En-
glish or Chinese, but that for low-resource languages, the effect of transfer-learning allowed
the model to outperform models trained only on data from the low-resource language.

RoBERTa. Liu et al. (2019) argued that BERT was undertrained, and to remedy this the
authors provided a modified BERT which they called RoBERTa. One of the key differences to
BERT is that RoBERTa does not perform NSP in the pre-training stage, and that RoBERTa
generates the masking pattern every time a sequence is fed to the model whereas BERT uses a
static masking. Additionally, the model was trained with approximately 10 times more data
as well as longer input sequences. As RoBERTa does not have NSP as a training objective, the
inputs are no longer sentence pairs, but full sentences with a maximum length of 512 tokens.
The authors found that RoBERTa outperformed BERT using both the GLEU and SQuAD
evaluation metrics.

XLM. Following the success of BERT, which is based on the encoder part of a transformer,
and GPT, which is based on the decoder part of a transformer, Lample and Conneau (2019)
presented a transformer intended to work for multiple languages. This required training
a model on data from multiple languages, and the training objectives were similar to the
ones used by both BERT and GPT, as well as a third objective, specifically targeting multiple
languages. This type of model was dubbed a Cross-lingual Language Model or XLM, and its
three training objectives were:

1. Causal Language Modeling (CLM) relating to predicting the next token based on the
previous tokens;

2. Masked Language Modeling (MLM) involving predicting a masked token based on
both the left- and right contexts and

3. Translation Language Modeling (TLM) which involves mixing sentences of different
languages, masking tokens, and predicting the masked tokens based on the left- and

30

4.1 Models

Figure 4.5: Masked Language Modeling (MLM) and Translation
Language Modeling (TLM). Adapted from Lample and Conneau
(2019).

right contexts (which may be in different languages).

As a result of training on multiple languages, the XLM was able to produce similar word
embeddings for the same word from multiple languages. For example, the word embeddings
for the English word ‘cat’ and the Italian word ‘gatto’ were similar. Lample and Conneau
(2019) found that the model was able to reduce perplexity for low-resource languages like
Nepali, by including training data from other languages such as Hindi and English. A model
trained on Nepali, Hindi and English was thus better at predicting Nepali, than a model that
was solely trained on Nepali.

XLM-RoBERTa. Inspired by the pre-training methods of RoBERTa, Conneau et al.
(2019) attempted to tune the concept of XLM by following suit and dropping the NSP train-
ing objective, as well as using the dynamic masking scheme from RoBERTa. Additionally,
unlike XLM, XLM-RoBERTa does not use language embeddings, which aids the model in
alternating between different languages.

31

4. Transformers

The authors found that adding more languages to the training data improved model per-
formance to a point of approximately 15 languages, especially for low-resource languages.
However, adding even more languages was found to degrade model performance, due to the
so called curse of multilinguality. As more languages are added, less of the model’s capacity
is available to learn representations for each language. This problem was partly alleviated
in XLM-RoBERTa by increasing the size of the hidden representations and increasing the
vocabulary size. As a result, XLM-RoBERTa produced state-of-the-art results on several lan-
guage tasks, especially for low-resource languages.

Swedish BERT models. There have been several projects dedicated to creating
a Swedish version of BERT. The Swedish Public Employment Service developed SweBERT
(Swedish Public Employment Service, 2020) by training the model on Swedish Wikipedia
data consisting of approximately 2 million articles. The same year, the National Library
of Sweden (KB) developed a Swedish BERT (KB-BERT) by training it on newspapers, offi-
cial reports by governments, legal e-deposits, social media as well as the Swedish Wikipedia
(Malmsten et al., 2020).

Malmsten et al. (2020) compared the performances of SweBERT and KB-BERT with
mBERT, by evaluating the models on named entity recognition (NER) and part-of-speech
tagging tasks. The results showed that KB-BERT outperformed mBERT and SweBERT for
NER tagging.

Figure 4.6: A diagram depicting T5 and its multiple training objec-
tives. Adapted from Raffel et al. (2019).

mT5. Multilingual T5 (mT5) by Xue et al. (2021) is a transformer model using the encoder-
decoder architecture. It is a multilingual extension of T5 (Raffel et al., 2019), trained using
the same training objectives as T5 on corpora covering 101 languages.

The T5 model, and consequently mT5, are pre-trained sequence-to-sequence models that
can be used for a wide range of downstream tasks. Their sequence-to-sequence nature means
that they generate output text when given an input sequence of text. As shown in Figure 4.6,
they can be used for tasks such as machine translation, text summarization and classification.
In the classification case, the models can be trained to output the name of the predicted class.

32

4.2 Text and Word Representation

The models’ training objective is masked language modeling, specifically “span-corruption”,
where a span of consecutive tokens is masked, and the model is tasked with predicting the
masked tokens.

GPT. Generative Pre-trained Transformer (GPT) by Radford et al. (2018) is a model
based on several layers of transformer decoders. Given a sequence of input tokens, GPT uses
multi-headed self-attention over the input context, feeds the results through a feedforward
neural net and produces an output distribution over possible subsequent tokens. From this
distribution, the most likely token can be sampled. This unsupervised pre-training was car-
ried out on BooksCorpus, a large unlabeled corpus comprising 11,038 unpublished books.
Specifically, GPT was trained on lengthy contiguous pieces of text, which allows the model
to take very large contexts into account during its predictions.

GPT can be fine-tuned on a number of downstream tasks, such as classification, textual
entailment, question answering and commonsense reasoning.

GPT-SW3. GPT-SW3 is a generative decoder-based model based on the GPT architec-
ture (Radford et al., 2018) developed by Ekgren et al. (2022). It is trained on a novel 100 GB
Swedish corpus consisting largely of web text data from discussion forums and news articles,
and to a lesser extent literature, subtitles and wiki data, among other things. Like other mod-
els of the GPT family, its training objective is next-token prediction. GPT-SW3 is released in
various sizes ranging from 126 million to 20 billion parameters, with more to come. The base
3.5 billion parameters model was shown to have lower perplexity than GPT2-XL (Radford
et al., 2019), Flashback-GPT (Norlund and Stenbom, 2021) and GPT-Neo (Black et al., 2021)
on Swedish corpora. Like GPT, it can be fine-tuned on various downstream tasks.

4.2 Text and Word Representation
4.2.1 Tokenization
In order for a machine-learning model to be able to process text, the text must first be con-
verted into a language the model can understand. This typically involves converting charac-
ters, words or sub-words into numbers. How many unique numbers are used is referred to
as the vocabulary size.

Word Tokenization
There are many ways of translating words into numbers, and in each case a selection must be
done in order to restrict the vocabulary size for computational reasons. Table 4.1 shows how
the words of a sentence can be converted into tokens, each represented by a numeric ID.

Table 4.1: A fabricated illustration of word tokenization of a sen-
tence.

Words Tokenization is a task in Natural Language Processing.
Token IDs 7567 254 37 678 86 476 768 3258

33

4. Transformers

Encoding each conceivable word with a unique number is unfeasible, as the number of
model parameters rapidly increases with vocabulary size. A hypothetical scenario with 1
million unique words, and model input vectors of dimension 1,000, would result in 106 ·

103 = 109 parameters just for the input mapping, which is on the scale of some of the large
transformer models on the market.

For this reason, several methods have been proposed to instead encode sub-words.

Sub-word Tokenization
Sub-word are units made up of one or several characters which can be combined to form
whole words. The benefit of using sub-words is that the same sub-word can be used flexibly
in the formation of many different words. For example, the words great, greater, greatest need
not occupy one token ID each. Instead, they can be composed of the three sub-words: the
common stem great and the two suffixes er and est. This way, the limited vocabulary size can
be put to better use, as many sub-words can be used in the formation of many words. The
vocabulary of sub-words is usually learned from a large corpus of data.

A popular method of sub-word tokenization is WordPiece (Schuster and Nakajima, 2012).
WordPiece works by initializing a word inventory of elementary characters and symbols. The
algorithm then involves forming new words by merging two units out of the word inventory.
The newly formed word is the one that maximizes the likelihood on the training corpus,
when it is added to a language model trained on the corpus. This is iterated until a predefined
vocabulary size has been reached, or the likelihood no longer increases sufficiently.

Table 4.2 illustrates the result of sub-word tokenization of a sentence. The inserted pre-
fixes ## signify that the previous character is not a whitespace, and hence the two tokens
should be merged when combining the tokens back into a string.

Table 4.2: A fabricated illustration of sub-word tokenization of a
sentence.

Sub-words Token ##ization is a task in Natural Language Process ##ing.
Token IDs 4565 12389 337 276 136 2476 1365 4852 1239 326

4.2.2 Word vectors and Embeddings
One-hot Encoding
Embeddings lend a way to work with tokens using numerical operations, whether those to-
kens are whole sentences, words, or sub-words. This is typically done by converting each
token into a vector. A simple yet widely used example is one-hot encoding, which involves
converting each token into a d-dimensional vector, where d is the size of the vocabulary. Each
token is represented as a vector consisting of zeroes in all dimensions except for one. As a
result, the vector representations of the vocabulary are all equidistant and orthogonal to one
another. One-hot encoding results in a very large and sparse vector-space.

34

4.2 Text and Word Representation

TF-IDF Vectors
Term Frequency-Inverse Document Frequency (TF-IDF) uses statistics to represent a word’s
importance in a given document. In other words, it describes a document in terms of what
words are important to the document. If a word occurs frequently in a specific document,
but infrequently overall, it is considered important to the document. To compute the TF-IDF
score of a word, first the TF(t, d)-part is calculated. This is the number of times the word (t)
occurs in a document (d). Then, DF(t), which is the number of documents (N) in which the
word occurs, is also calculated. The IDF (Inverse DF) is then calculated as follows:

IDF(t) = log(
N

1 + DF(t)
).

TF-IDF(t, d) is obtained by multiplying TF(t, d) and IDF(t). In other words, TF rep-
resents how frequently a word appears in a document and IDF reduces the weight of very
frequent words, so that TF-IDF gives less biased information about how important a word
is.

A TF-IDF vector is a vector containing the TF-IDF scores of the words in a document,
and it can be used as a vector representation of textual data when training machine learning
models. In our case, each sentence in the dataset is considered a document.

Embeddings
A downside to one-hot encoding is that the vector-space is large and sparse. For this reason,
there have been several attempts to reduce the dimensionality of the vector representations.
One successful example is Word2Vec authored by Mikolov et al. (2013), which involved learn-
ing efficient real-valued vector representations of words from a corpus of 1.6 billion words.
The results are 300-dimensional vectors which capture both syntactic and semantic meaning.
For example, Mikolov et al. (2013) found that the vector describing the word Queen, could be
obtained by:

vector(Queen) = vector(King) − vector(Man) + vector(Woman).

These vectors were created for the 30,000 most frequent words in the corpus. This suggests
that both syntactic and semantic information about 30,000 words has been captured in just
300 dimensions.

Non-contextual Embeddings Both Word2Vec (Mikolov et al., 2013) and GloVe
(Pennington et al., 2014), two successful attempts at word-vector representations, are re-
ferred to as non-contextual embeddings. Non-contextual meaning that the word vectors for
a certain word do not change depending on how the word is used in a context.

Contextual Embeddings While the Word2Vec and GloVe embeddings led to new
state-of-the-art results on many language tasks, they were still lacking a key component when
it came to describing words: context.

Contextual embeddings are as the name suggests, contextual. Using the word bank as an
example, we can imagine different uses for it in a sentence, such as “. . . financial bank .. .” and
“. . . river bank .. .”.

35

4. Transformers

As humans, we know that these refer to two different types of “bank”, thanks to the
context. This difference is however not captured by the Word2Vec or GloVe vector represen-
tations.

Recurrent neural networks (RNNs) enable the creation of embeddings which incorporate
the context that precedes a word, into the word’s vector representation. This means that
for the word bank, we could have two different vectors for the word in the two previously
described contexts.

Bi-directional Contextual Embeddings The architecture of RNNs meant
that they were unable to fully incorporate the context on both sides of a word in a sentence.
For example, again considering the word “bank” in the two contexts: “. . . river bank .. .” and “. . .
the bank of the river .. .”. In this case, we may want the word “bank” to be represented by the
same vector, as they refer to the same type of bank. In order to disambiguate “bank” from the
financial institution in this case, we must consider the context to the right as well as to the
left of the word.

The introduction of the transformer by Vaswani et al. (2017), which is described in Sec-
tion 4.1.1 meant that embeddings which incorporated the context in both directions could be
produced. Derivative transformer-models such as BERT were trained on large data to learn
to produce such embeddings.

36

Chapter 5

Method

In this chapter, we describe how the models have been used and how the experiments have
been carried out.

Broadly speaking, our work has been divided into three phases. The first involved train-
ing models to predict whether a sentence was grammatically correct or incorrect. The second
phase involved training models to predict whether each token in a sentence was correct or in-
correct. More specifically, we further trained models to predict what type of error, if any, each
incorrect token corresponded to. Lastly, the third phase involved training encoder-decoder
and decoder-based models to produce grammatically correct sentences from incorrect sen-
tences.

5.1 Grammatical Error Detection
The experiments with grammatical error detection (GED) were conducted using pre-trained
encoder-based models that were fine-tuned on the GED task. We perform baseline experi-
ments using a traditional logistic regression for later comparisons with the transformer-based
models. The pre-trained models were acquired from Hugging Face1, a platform for sharing
pre-trained machine learning models and datasets for e.g. natural language processing.

5.1.1 Binary Sentence Classification
We posed binary sentence classification as the task of classifying sentences as correct or incor-
rect. As Figure 5.1 illustrates, a model trained to perform binary sentence classification reads
a tokenized sentence and outputs a label. Both correct and incorrect sentences of the datasets
DaLAJ v1.0 and DaLAJ-GED were used to train the models for binary sentence classification,
and the datasets contain labels ‘Correct’ and ‘Incorrect’ for each entry.

1https://huggingface.co

37

5. Method

Figure 5.1: Diagram illustrating binary sentence classification.

Logistic Regression. Before conducting experiments with encoder-based models,
we performed an experiment with a traditional logistic regression classifier to serve as a base-
line for comparisons with further experiments. We created TF-IDF vectors from DaLAJ v1.0
as described in Section 4.2.2, and trained a logistic regression classifier on the TF-IDF vectors
to predict whether each sentence from the test set was correct or incorrect. We compared the
performance of the model with that of a model trained in the same way on the larger dataset
DaLAJ-GED.

Inspired by Volodina et al. (2021)’s experiment, which used BERT embeddings instead
of TF-IDF vectors in order to train a bidirectional long short-term memory (Bi-LSTM) clas-
sifier, we also trained a logistic regression classifier using BERT embeddings. To generate
BERT embeddings, we used the KB-BERT model available on the Hugging Face platform
(KB/bert-base-swedish-cased).

Specifically, we used the [CLS] embedding obtained from the final hidden layer of KB-
BERT as features. The [CLS] embedding is the first embedding output by BERT, as seen in
Figure 4.4, where it is denoted C for class label. This embedding is commonly used for sen-
tence classification tasks as it is a contextualized representation of the sequence as a whole.
We compared the performance of the logistic regression model trained on KB-BERT embed-
dings extracted from DaLAJ v1.0 with that of a model trained in the same way on KB-BERT
embeddings extracted from DaLAJ-GED.

Encoder models. In addition to the logistic regression classifier, we directly fine-
tuned several encoder-based models to classify sentences as correct and incorrect. This was
done by using pre-trained models and adding a dropout layer followed by a single dense
layer on top of the [CLS] embedding, denoted C for class label in (a) of Figure 4.4. Following
the dense layer, there is a softmax classifier that outputs the probability of each class. By
selecting the class with the highest probability, we can assign a class to each sentence. In our
case, there were only two classes, correct and incorrect. We fine-tuned BERT and RoBERTa,
as well as their multilingual counterparts, mBERT and XLM-RoBERTa. Lastly, we used a
Swedish BERT model, KB-BERT. For all models, we froze their ten first layers and trained
them with a learning rate of 10−5 for ten epochs with a batch size of 32. Table 5.1 lists the
specific models used for binary sentence classification, and their respective designations in
this thesis.

38

5.1 Grammatical Error Detection

Table 5.1: The encoder models used for binary sentence classifica-
tion.

Model designation Technical model name
BERT bert-base-cased
RoBERTa roberta-base
XLM-RoBERTa xlm-roberta-base
mBERT bert-base-multilingual-uncased
KB-BERT bert-base-swedish-cased

5.1.2 Binary Token Classification

Figure 5.2: A diagram of binary token classification.

We pose binary token classification as the task of classifying each word or token in a
sentence as either correct or incorrect. As illustrated by Figure 5.2, the model returns labels
for each token in the input sentence. We used the sentences from the training set of DaLAJ-
GED to train the models, and we labeled the tokens of each sentence in the training data
with correct or incorrect by using the error indices. Thus, each sentence is associated with a
sequence of labels, e.g. [Correct, Correct, Incorrect, ... , Correct], which are
used during the training procedure.

As can be seen in Section 6.1.1, our initial experiments with binary sentence classification
showed that monolingual English models, such as BERT and RoBERTa, performed poorly on
the task in Swedish. Therefore, for the subsequent classification tasks, we fine-tuned only the
three best-performing encoder models: mBERT, KB-BERT and XLM-RoBERTa. Addition-
ally, we observed that the results of the models trained on DaLAJ v1.0 were worse than those
trained on DaLAJ-GED. Therefore, we used only DaLAJ-GED dataset for the experiments
that followed.

The hyperparameters used for the models are shown in Table 5.2.

5.1.3 Multi-label Token Classification
We pose multi-label token classification as the task of classifying each token in a sentence as
one of the five error types in DaLAJ-GED, described in Section 2.2, as illustrated by in Figure
5.3. The tokens of each sentence in the training dataset is associated with a sequence of labels

39

5. Method

Table 5.2: Hyperparameters used for training the models on binary
token classification.

Model Learning Rate Epochs Batch Size
Nbr of

frozen layers
XLM-RoBERTA
(XLM-RoBERTa-Large) 1e-5 10 24 11 of 24

KB-BERT
(bert-base-swedish-cased) 5e-5 10 24 10 of 12

mBERT
(bert-base-multilingual-cased) 1e-4 5 64 11 of 12

Figure 5.3: A diagram of multi token classification.

as [Correct, B-M, I-M, ... , Correct]. The B- signifies that the token marks the
beginning of the error span, and I- signifies that the token is inside the error span. All other
tokens are marked as correct.

We again fine-tuned mBERT, KB-BERT and XLM-RoBERTa for the task of multi-label
token classification. More specifically, we trained one instance of each model to detect each of
the five error types in DaLAJ-GED. For example, we trained a model to detect and label spans
containing morphological errors, and another model to detect and label spans containing
syntactical errors.

We froze the ten first layers of the models, and trained them with a learning rate of 10−5

for ten epochs with a batch size of 24.

5.2 Grammatical Error Correction
The experiments with GEC were conducted using both pre-trained encoder-decoder models,
and pure decoder models, both fine-tuned on the task of GEC with the DaLAJ-GED dataset.
We performed an additional experiment using the rule-based system Granska, and compared
its results with the results of the fine-tuned transformer models. The pre-trained models were
acquired from the Hugging Face platform.

40

5.2 Grammatical Error Correction

5.2.1 Generating Synthetic Data
To generate synthetic data for the GEC task, we drew upon Table 2.6 which shows the most
common errors in DaLAJ-GED. We created a proof-of-concept synthetic dataset using the
most common errors. This synthetic data was used to extend DaLAJ-GED when fine-tuning
mT5 models, described in the next section. We used the Swedish Wikipedia corpus as the
basis for generating artificially corrupted sentences.

en-ett errors. Among the morphological errors, the articles en and ett are the most
common confusions. Therefore, we extracted 10,000 sentences containing these words from
the Swedish Wikipedia corpus and corrupted them by swapping en with ett, and vice versa,
as well as dropping instances of en and ett.

på-i errors. Among the lexical errors, the prepositions i and på are the most com-
mon confusions. Therefore, we extracted 10,000 sentences containing these words from the
Swedish Wikipedia corpus and corrupted them in the same fashion as described above.

en-ett-på-i errors. We additionally generated a synthetic dataset containing 10,000
sentences containing both the aforementioned en-ett errors and på-i errors.

pronoun-verb order errors. Casademont Moner and Volodina (2022) describe
how they generated a small synthetic errorful dataset for Swedish. According to the authors,
pronouns are the part-of-speech tag which produce the most verb order errors in the DaLAJ
corpus. Therefore, we created artificial errors by swapping positions of pronouns and verbs
in 10,000 sentences from the Swedish Wikipedia corpus.

adverb-verb order errors. In the same way, we generated 10,000 errorful sentences
by swapping positions of adverbs and verbs in sentences from the Swedish Wikipedia corpus.
This is because adverb-verb order errors are the second most common verb order errors ac-
cording to Casademont Moner and Volodina (2022). For our proof-of-concept we only used
a limited set of adverbs: aldrig, alltid, sällan, ibland, ofta, ännu, fortfarande, redan, länge, genast,
först, sist, då, nyss, förut, snart, inte, knappt, knappast, bara, nog, väl, ju, tyvärr, gärna, kanske,
möjligen.

5.2.2 Generating Correct Sentences
Granska
Granska is a program based on rule-based methods of GEC. We evaluated Granska on the test
set of DaLAJ-GED to compare its performance with the transformer-based approaches. KTH
Royal Institute of Technology provides Granska API 2 and a web page for Granska3 where
users can upload text files of input sentences. The Granska API returns a list of words without
punctuations from the input sentence. In contrast, the web page for Granska returns a list

2https://skrutten.csc.kth.se/granskaapi/spell.php
3https://www.csc.kth.se/ viggo/stava

41

5. Method

Figure 5.4: A diagram depicting how Granska corrects an input sen-
tence and removes punctuation.

of the incorrect words and suggestions for each error. Therefore, We used the web page for
Granska to obtain suggested corrections and replaced the incorrect words in the sentences. If
Granska returns more than one suggestion for a word, we selected the first one. If the input
sentences are already correct, the system should not propose any changes.

mT5

Figure 5.5: A depiction of how the mT5 model generates candidates
with beam search using ten beams.

As described in Section 4, mT5 is a pre-trained sequence-to-sequence model that can be
used for various tasks, such as machine translation. First, we fine-tuned an mT5 model on
the task of generating correct sentences from incorrect ones.

42

5.2 Grammatical Error Correction

It should be noted that “generating correct sentences” in this instance is a narrow defini-
tion meaning that the model’s output precisely matches the corresponding gold sentence in
the test set. For this reason, an output candidate sentence that is grammatically correct but
does not exactly align with the gold sentence is considered incorrect.

After loading the mT5 model (google/mt5-base) from Hugging Face and fine-tuning
it on DaLAJ-GED, we evaluated it on each sentence in the test set, by generating 10 output
sentences with beam search, using 10 beams, as shown in Figure 5.5. Specifically, we probed
how frequently the corresponding gold sentence could be found among the top 1, top 3, top
5 and top 10 output sentences.

In Section 3.2, we briefly described Rothe et al. (2021)’s work, in which mT5 was pre-
trained with a large synthetically corrupted corpus. Inspired by their work, we conducted
a similar experiment to explore if synthetic errorful data can improve model performance.
As described in Section 5.2.1, we generated five different sets of synthetic data. In total, we
fine-tuned six mT5-models on the different datasets, the detail of which are shown in Table
5.3. The table also includes the designations by which we will refer to the various models
from here on.

Table 5.3: The six mT5 models fine-tuned on DaLAJ-GED and syn-
thetic data.

Model designation Fine-tuned on
mT5 DaLAJ-GED

mT5-en-ett
Synthetic Wikipedia data containing en-ett errors

& DaLAJ-GED

mT5-på-i
Synthetic Wikipedia data containing på-i errors

& DaLAJ-GED

mT5-en-ett-på-i
Synthetic Wikipedia data containing en-ett & på-i errors

& DaLAJ-GED

mT5-pron-verb
Synthetic Wikipedia data containing pronoun-verb errors

& DaLAJ-GED

mT5-adv-verb
Synthetic Wikipedia data containing adverb-verb errors

& DaLAJ-GED

According to the statistics in Section 2.3, approximately 99 % of the sentences in DaLAJ-
GED have less than 50 tokens. Therefore, for these experiments and the following experiment
with GPT-SW3, we used only sentences in the datasets which have fewer than 50 tokens, and
set max_token_length to 128 for both the mT5 and GPT-SW3 models. We fine-tuned all
mT5 models with a learning rate of 5 · 10−4 for ten epochs with a batch size of 16.

GPT-SW3
To fine-tune GPT-SW3 for GEC, the data was prepared in a specific way. For the training
and validation data, the source and target sentences were combined with the separator ;.
The prefix korr: (“korrigera”, correct in Swedish), was added before the source sentences.
An example of the formatting of the input data for the training and validation sets is shown
below:

43

5. Method

korr: Jag flyga hem ikväll ; Jag flyger hem ikväll.

The model’s input data during the prediction step was then formatted as follows:

korr: Jag bor i en hus.

Figure 5.6: GPT-SW3 model generating output.

Figure 5.6 illustrates how GPT-SW3 is fine-tuned on the specially formatted training
data. During the fine-tuning process, the model learns to generate text consisting of a prefix,
an incorrect sentence, and a corrected sentence. Later, when an input sentence with a prefix
and an incorrect sentence is provided during the prediction step, the model generates an
output by appending the corrected sentence to the input.

Since we filtered out sentences containing more than 50 tokens, we expect the output se-
quences to contain at most approximately 100 tokens, and hence we set the max_token_length
to 128. We used the GPT-SW3 model available on the Hugging Face platform (AI-Sweden-Models/
gpt-sw3-356m), and fine-tuned it using a learning rate of 10−5 for three epochs with a batch
size of 64 and a weight decay of 0.01. For the correction generation, we used beam search with
ten beams and returned all ten output sentences.

5.3 Evaluation
The models trained on GED were evaluated with precision, recall and F1 score.

For the models trained on GEC, we compared the output sentences to the gold sentences
and computed the accuracy of the top 1, 3, 5 and 10 generated output sentences. Furthermore,
we computed the accuracy on each of the error types in DaLAJ-GED, using all 10 generated
output sentences. In other words, we studied how often the correction to each error type
could be found among the 10 output sentences.

The output sentences were also evaluated using the Generalized Language Evaluation
Understanding (GLEU) metric, which was proposed by Napoles et al. (2015). If the gold
sentence was found among the 10 output sentences, it was used. Otherwise the first output
sentence was used. GLEU is a variant of the Bilingual Evaluation Understudy (BLEU) metric
(Papineni et al., 2002), which is an evaluation method for translation tasks. In brief, a BLEU
score is calculated as follows.

44

5.3 Evaluation

Supposing that a model generated two candidates, and there are two references, as shown
below:
Candidate 1 : the the cat the the the cat.
Candidate 2 : The dog is on the mat.
Reference 1: The cat is on the mat.
Reference 2: The dogs are on the mat.

To calculate the BLEU score, we need to calculate the modified n-gram precision for each n.

Modified n-gram precision(pn) =
∑

n-gram∈Candidate Countclip(n-gram)∑
n-gram∈Candidate Count(n-gram)

Countclip = min(Count,Max_Ref_Count)

Count denotes the number of times which an n-gram appears in any of reference sentences,
and Max_Ref_Count is the largest count observed in any single reference for that n-gram. In
this example, if we calculate the bigram precision, the bigram “the cat” occurs twice in the
Candidate 1, but only once in Reference 1. Therefore, Countclip of “the cat” is min(2, 1) = 1.
The total count of bigrams in Candidate 1 is 6, so therefore the modified bigram precision of
Candidate 1 is 1

6 . Candidate 2 has 5 bigrams, and “is on”, “on the” and “the mat” appear at most
once in Reference 1 and Reference 2. Therefore, the modified bigram precision of Candidate
2 is 3

5 .

BLEU = BP × exp(
N∑

n=1

wn log pn) (5.1)

BLEU score is computed by Equation 5.1, where N is the max length of n and w is weight
for different modified n-gram precision. For the baseline BLEU, N is set to 4 and 1

4 is used
for w. BP is a brevity penalty for candidates that are shorter than the reference.

Napoles et al. (2015) noted that, specifically for the GEC task, words that do not change
between the source and target sentences are likely correct, and should therefore not con-
tribute as much to the scoring of the correction. GLEU is therefore a new metric well-suited
to GEC, which gives more weight to the correctly changed words, and less weight to the
words that should not be changed. The equation for GLEU identical to the one for BLEU,
given by Equation 5.1. However, the equation for the modified precision is different, see
Equation 5.2

pn =

∑
n-gram∈C CountR\S(n-gram) − λ(CountS\R(n-gram)) + CountR(n-gram)∑

n-gram∈C CountR\S(n-gram) +
∑

n-gram∈R\S CountR\S(n-gram)
(5.2)

Where C denotes the candidate, R the reference and S the source sentence. The parameter
λ determines by how much incorrectly changed n-grams are penalized.

45

5. Method

46

Chapter 6

Results

6.1 Grammatical Error Detection
6.1.1 Binary Sentence Classification
In this section, we present our results on the task of binary sentence classification described
in Section 5.1.1.

Logistic Regression

Table 6.1: Baseline results of the logistic regression classifier using
TF-IDF vectors and KB-BERT embeddings on the task of binary sen-
tence classification.

DaLAJ v1.0 DaLAJ-GED
Class Precision Recall F1 Precision Recall F1

TF-IDF
Incorrect 0.55 0.46 0.50 0.71 0.72 0.72
Correct 0.54 0.63 0.58 0.73 0.72 0.72
Macro 0.55 0.55 0.54 0.72 0.72 0.72

KB-BERT Incorrect 0.61 0.63 0.62 0.81 0.81 0.81
embeddings Correct 0.62 0.59 0.60 0.82 0.82 0.82

Macro 0.62 0.61 0.61 0.81 0.81 0.81

Table 6.1 shows the results of logistic regression classifier with TF-IDF vectors and KB-
BERT embeddings. When comparing the results of the TF-IDF vectors with those of the KB-
BERT embeddings, we can see that using KB-BERT embeddings yields higher F1-scores than
when using TF-IDF vectors, for both datasets. Additionally, when comparing the results of

47

6. Results

the datasets to each other, we can see that the models trained on DaLAJ-GED perform better
than those trained on DaLAJ v1.0. Therefore, the model with KB-BERT embeddings trained
on DaLAJ-GED has the best F1-score, which is 0.81.

Fine-tuned Encoder Models

Table 6.2: Results for the encoder models fine-tuned using the
DaLAJ datasets on the task of binary sentence classification.

DaLAJ v1.0 DaLAJ-GED
Class Precision Recall F1 Precision Recall F1

BERT
Incorrect 0.52 0.42 0.46 0.70 0.73 0.72
Correct 0.51 0.61 0.56 0.73 0.70 0.72
Macro 0.52 0.51 0.51 0.71 0.72 0.72

RoBERTa
Incorrect 0.52 0.63 0.57 0.68 0.80 0.73
Correct 0.52 0.41 0.46 0.77 0.64 0.69
Macro 0.52 0.52 0.52 0.72 0.72 0.71

mBERT
Incorrect 0.67 0.19 0.30 0.77 0.75 0.76
Correct 0.53 0.91 0.67 0.76 0.78 0.77
Macro 0.60 0.55 0.48 0.76 0.76 0.76

XLM-RoBERTa
Incorrect 0.73 0.30 0.43 0.80 0.79 0.79
Correct 0.56 0.89 0.69 0.80 0.80 0.80
Macro 0.65 0.60 0.56 0.80 0.80 0.80

KB-BERT
Incorrect 0.71 0.66 0.68 0.92 0.73 0.82
Correct 0.68 0.73 0.70 0.78 0.94 0.85
Macro 0.69 0.69 0.69 0.85 0.84 0.83

Table 6.2 presents the results of the encoder models that were directly fine-tuned for
binary sentence classification. First, comparing the results from DaLAJ v1.0 and DaLAJ-
GED datasets, we observe that all models performed better when trained on DaLAJ-GED. It
is worth noting that the F1-scores on DaLAJ v1.0 are all lower than 0.70, whereas those on
DaLAJ-GED are all higher than 0.70.

On DaLAJ v1.0, KB-BERT yields the highest F1 score of 0.69, followed by XLM-RoBERTa
and RoBERTa. KB-BERT performs the best on DaLAJ-GED as well, with an F1 score of 0.83,
followed by XLM-RoBERTa and mBERT.

6.1.2 Binary Token Classification
We present our results for the task of binary token classification described in Section 5.1.2.

Table 6.3 displays the performances of XLM-RoBERTa, mBERT and KB-BERT on the
task of binary token classification. The result shows that XLM-RoBERTa performs the best,
having a macro-averaged F1 score of 0.71, with KB-BERT following it with a macro F1 score
of 0.66.

48

6.2 Grammatical Error Correction

Table 6.3: Results for the encoder models fine-tuned using the
DaLAJ-GED dataset on the task of binary token classification.

XLM-RoBERTa mBERT KB-BERT

Class Precision Recall F1 Precision Recall F1 Precision Recall F1
Incorrect 0.68 0.61 0.64 0.62 0.13 0.21 0.73 0.49 0.59
Correct 0.79 0.78 0.78 0.71 0.59 0.65 0.74 0.70 0.72
Macro 0.74 0.69 0.71 0.67 0.36 0.43 0.73 0.60 0.66

6.1.3 Multi-label Token Classification
We present our results for the task of multi-label token classification, using the models de-
scribed in Section 5.1.3.

Table 6.4: Results for the encoder models fine-tuned using the
DaLAJ-GED dataset on the task of multi-label token classification.

XLM-RoBERTa mBERT KB-BERT

Class Precision Recall F1 Precision Recall F1 Precision Recall F1
P 0.43 0.66 0.52 0.88 0.33 0.48 0.78 0.41 0.54
O 0.74 0.69 0.71 0.63 0.25 0.36 0.73 0.45 0.56
L 0.48 0.32 0.38 0.11 0.00 0.00 0.63 0.06 0.11
M 0.71 0.74 0.73 0.61 0.11 0.19 0.66 0.52 0.58
S 0.50 0.48 0.49 0.64 0.05 0.10 0.55 0.25 0.34
Macro 0.57 0.58 0.57 0.57 0.15 0.23 0.67 0.34 0.50

Table 6.4 shows the performance of XLM-RoBERTa, mBERT and KB-BERT on multi-
label token classification task. Compared to the other models, XLM-RoBERTa model achieves
better recall and F1 scores on almost all classes, while KB-BERT has the highest precision. Re-
garding precision, mBERT shows the highest precision for P and S classes among the three
models, whereas KB-BERT has the highest for L class.

6.2 Grammatical Error Correction
In this section, we present our results on GEC by Granska and the encoder-decoder and
decoder models described in Section 5.2.2. We investigate not only how well the models
correct the incorrect sentences, but also how good they are at copying correct input sentences
to the output, without introducing any changes.

6.2.1 Granska
As shown in Table 6.5, it achieves a 95% accuracy on the correct sentences, meaning it falsely
interprets 5% of them as being incorrect, and suggests alterations for them. The accuracy

49

6. Results

Table 6.5: The accuracy of Granska’s GEC on the DaLAJ-GED test
set.

Sentence Type
Nbr. examples
in test data Accuracy

Correct 2,214 0.95
Incorrect 2,095 0.07
Whole test set 4,309 0.52

on incorrect sentences is 7%, meaning that Granska only produces the correct gold sentence
from 7% of the incorrect sentences.

Table 6.6: The accuracy of Granska’s GEC, grouped by DALAJ-
GED’s error types.

Error Type
Nbr. examples
in test data Accuracy

M 646 0.01
S 424 0.22
L 357 0
O 343 0.12
P 171 0
O+S 6 0.33

We studied the error types of the incorrect sentences more closely. The results are dis-
played in Table 6.6, and we can observe that Granska corrects S and O-type errors slightly
better than M-, L- and P-type errors.

The results were also evaluated by the GLEU metric. The GLEU score on whole test set
was 0.87, and 0.77 on the incorrect sentences in the test set.

6.2.2 Encoder-decoder Models
We conducted experiments on GEC using the encoder-decoder model mT5 as described in
Section 5.2.2. Table 6.7 illustrates how frequently the correct sentence can be found among
the top 1, top 3, top 5 and top 10 output sentences that were generated by the mT5 models.

We observed that the baseline mT5 model trained solely on DaLAJ-GED, manages to
generate a perfectly matched sentence 70% of the time among its top 10 outputs. However,
the most probable output sentence (i.e. the top 1) is only correct 46% of the time. Most of the
mT5 models trained on both synthetic data and DaLAJ-GED perform better for this task.
The mT5-på-i model generated the correct sentence 76% of the time among its 10 outputs,
which is higher than the performance of the baseline mT5 model. Similarly, the mT5-en-ett-
på-i model generated the gold sentence 55% of the time with its top 1 outputs, which is nearly
10% more frequently than the baseline mT5 model. Table 6.8 shows the GLEU scores for the
encoder-decoder mT5 models.

We further studied if the mT5-en-ett model performed better on sentences containing
morphological errors involving en or ett compared to the baseline mT5. The corresponding

50

6.2 Grammatical Error Correction

Table 6.7: The accuracy, i.e. how frequently the mT5 models man-
age to generate an output sentence that matches the gold sentence
among their top 1, 3, 5 and 10 generated outputs. The whole test set,
including both correct and incorrect sentences, was used for this ex-
periment.

Accuracy
1 candidate 3 candidates 5 candidates 10 candidates

mT5 0.46 0.61 0.65 0.70
mT5-en-ett 0.52 0.66 0.70 0.74
mT5-på-i 0.54 0.68 0.73 0.76
mT5-en-ett-på-i 0.55 0.68 0.71 0.75
mT5-pron-verb 0.51 0.62 0.66 0.70
mT5-adv-verb 0.40 0.54 0.58 0.63

Table 6.8: GLEU scores for the mT5 models.

Whole test set Incorrect sentences
mT5 0.91 0.87
mT5-en-ett 0.92 0.88
mT5-på-i 0.93 0.89
mT5-en-ett-på-i 0.92 0.88
mT5-pron-verb 0.89 0.86
mT5-adv-verb 0.91 0.86

Table 6.9: The hit rate of mT5 and mT5-en-ett on sentences con-
taining specific errors.

Accuracy

Error type
Nbr. examples
in test data mT5 mT5-en-ett

M-errors containing en-ett 84 0.58 0.67
Other incorrect sentences 2011 0.52 0.54
Correct sentences 2214 0.87 0.93

results are shown in Table 6.9. The baseline mT5 model has an accuracy of 58% among its top
10 output sentences, whereas the mT5-en-ett performs better, having a 67% accuracy on the
morphological errors involving en or ett. Furthermore, the accuracy on the rest of the test set
also improved for the mT5-en-ett model.

In the same way, we also studied whether the mT5-på-i model improved the performance
on sentences containing lexical and syntactical errors involving på or i. Table 6.10 shows
that the baseline mT5 entirely fails to correct these sentences in the test set, but that the
model trained on the synthetic data (mT5-på-i) corrects the sentences containing lexical er-
rors with 68% accuracy, and the sentences containing syntactical errors with 57% accuracy.
Furthermore, the mT5-på-i model performs as well as the baseline mT5 model on the rest of
the test set’s incorrect sentences, and is slightly better at reconstructing the test set’s correct
sentences.

51

6. Results

Table 6.10: The accuracy of mT5 and mT5-på-i on sentences con-
taining specific errors.

Accuracy

Error type
Nbr. examples
in test data mT5 mT5-på-i

L-errors containing på-i 19 0 0.68
S-errors containing på-i 21 0 0.57
Other incorrect sentences 2055 0.52 0.52
Correct sentences 2214 0.87 0.95

We further investigated the mT5 models’ accuracy grouped by DaLAJ-GED’s error types.
In Table 6.11, we observe that some error types are easier than others to correct. Morpho-
logical and orthographic errors are easiest to correct, followed by syntactical errors. Lexical
errors are more difficult, and most difficult are punctuation errors. Even though sentences in
DaLAJ-GED only contain one error each, the error may cover multiple error tag types. These
examples are not as common in the dataset, but the model still performs better for some of
these combinations (e.g. morphological + orthographic) than for the more difficult singular
error types.

Table 6.11: The encoder-decoder models’ accuracy, grouped by
DaLAJ-GED’s error types. Some sentences contain multiple error
types. The top 10 output sentences generated by the models were
considered in this experiment.

Accuracy

Error Type
Nbr. examples
in test data mT

5
mT
5-e
n-e
tt

mT
5-p
å-i

mT
5-e
n-e
tt-
på
-i

mT
5-p
ron
-ve
rb

mT
5-a
dv
-ve
rb

M 646 0.67 0.72 0.75 0.71 0.54 0.65
S 424 0.46 0.49 0.51 0.47 0.36 0.48
L 357 0.32 0.35 0.39 0.33 0.27 0.29
O 343 0.71 0.71 0.73 0.68 0.62 0.66
P 171 0.19 0.20 0.22 0.19 0.19 0.19
M+O 57 0.44 0.53 0.56 0.53 0.32 0.49
L+S 48 0.48 0.48 0.46 0.44 0.29 0.44
L+M 21 0.19 0.14 0.24 0.19 0.10 0.33
M+S 11 0.36 0.18 0.18 0.09 0.19 0.09
L+O 6 0.17 0.17 0.33 0.17 0.17 0.17
O+S 6 0.33 0.50 0.33 0.33 0 0.33
L+M+O 2 0 0 0 0 0 0
M+O+S 1 0 0 0 0 0 0
L+O+S 1 0 0 0 0 0 0

52

6.2 Grammatical Error Correction

6.2.3 Decoder Models
We conducted identical experiments using the decoder-based GPT-SW3 model described in
Section 5.2.2. Table 6.7 illustrates how frequently the correct sentence can be found among
the top 1, top 3, top 5 and top 10 output sentences that were generated by the GPT-SW3
model.

Table 6.12: The accuracy, i.e. how frequently the GPT-SW3 model
manages to generate an output sentence that matches the gold sen-
tence among their top 1, 3, 5 and 10 generated outputs. The whole
test set, including both correct and incorrect sentences, was used for
this experiment.

Accuracy
1 candidate 3 candidates 5 candidates 10 candidates

GPT-SW3 0.57 0.71 0.76 0.80

We observed that the GPT-SW3 model, which was trained solely on DaLAJ-GED, man-
ages to generate a perfectly matched sentence 80% of the time among its top 10 outputs, and
that the most probable output sentence (i.e. the top 1) is correct 57% of the time. Its GLEU
score was 0.93 on the whole test set, and 0.90 on the incorrect sentences of the test set.

Table 6.13: The decoder-based GPT-SW3’s accuracy, grouped by
DaLAJ-GED’s error types. The top 10 output sentences generated
by GPT-SW3 were considered in this experiment.

Accuracy

Error Type
Nbr. examples
in test data GPT-SW3

M 646 0.77
S 424 0.56
L 357 0.48
O 343 0.78
P 171 0.47
M+O 57 0.60
L+S 48 0.58
L+M 21 0.29
M+S 11 0.27
L+O 6 0.17
O+S 6 0.50
L+M+O 2 0
M+O+S 1 0
L+O+S 1 0

Analogous to the experiments with mT5, we investigated GPT-SW3’s accuracy grouped
by the DaLAJ-GED’s error types. The results are shown in Table 6.13.

53

6. Results

6.2.4 Comparative Analysis
We compare the results of the baseline mT5 model, the best mT5 models’, and those of GPT-
SW3. In Table 6.14 we see that GPT-SW3 outperforms the best mT5 models on the task of
generating the correct gold sentence, both as its most probable output, and among its top 10
beam search candidates.

Table 6.14: The table shows a comparison between the baseline mT5
model, the best mT5 models, and GPT-SW3, on how frequently they
generate an output sentence that matches the gold sentence among
their top 1, 3, 5 and 10 outputs.

Accuracy
1 candidate 3 candidates 5 candidates 10 candidates

Baseline mT5 model 0.46 0.61 0.65 0.70
Best mT5 model 0.55 0.68 0.73 0.76
GPT-SW3 0.57 0.71 0.76 0.80

Moreover, in Table 6.15 we see that GPT-SW3 performs better at correcting most error
types, with the exception of L+M, M+S and L+O. Finally, Table 6.16 shows a comparison of the
GLEU scores of the baseline mT5 model, the best mT5 model and GPT-SW3.

Table 6.15: A comparison of the accuracy of the baseline mT5
trained only on DaLAJ-GED, GPT-SW3, also trained only on
DaLAJ-GED, and the best mT5 models (grouped by DaLAJ-GED’s
error types).

Accuracy

Error Type
Nbr. examples
in test data Baseline mT5 Best mT5 model GPT-SW3

M 646 0.67 0.75 0.77
S 424 0.46 0.51 0.56
L 357 0.32 0.39 0.48
O 343 0.71 0.73 0.78
P 171 0.19 0.22 0.47
M+O 57 0.44 0.56 0.60
L+S 48 0.48 0.48 0.58
L+M 21 0.19 0.33 0.29
M+S 11 0.36 0.36 0.27
L+O 6 0.17 0.33 0.17
O+S 6 0.33 0.50 0.50
L+M+O 2 0 0 0
M+O+S 1 0 0 0
L+O+S 1 0 0 0

54

6.2 Grammatical Error Correction

Table 6.16: Comparison between GLEU scores of the baseline mT5
model, the best mT5 model and GPT-SW3.

Whole test set Incorrect sentences
Baseline mT5 model 0.91 0.87
Best mT5 model 0.93 0.89
GPT-SW3 0.93 0.90

55

6. Results

56

Chapter 7

Discussion

In this chapter, we discuss the results from our experiments and propose directions for future
work.

7.1 Interpretations of Results
In our experiments with binary sentence classification we trained models on two different
datasets, DaLAJ v1.0 and DaLAJ-GED. Since DaLAJ-GED is approximately five times larger
than DaLAJ v1.0, we anticipated that models trained on DaLAJ-GED would perform better
than those on DaLAJ v1.0. The experimental results on binary sentence classification indicate
that this hypothesis was correct.

We also performed an experiment using TF-IDF vectors and KB-BERT embeddings as
input features for training a logistic regression classifier, and compared the results. The clas-
sifier trained using KB-BERT embeddings performed better than the one trained on TF-IDF
vectors. The context of each word in a sentence is important for GED tasks, and we conclude
that KB-BERT embeddings are better at encapsulating this context and therefore improve
the model’s performance.

In addition, we also directly fine-tuned encoder models for the task of binary sentence
classification by training a small neural network classifier on top of the encoders. The multi-
lingual models such as mBERT and XLM-RoBERTa produced better results than their mono-
lingual English counterparts, BERT and RoBERTa. Interestingly, KB-BERT, which is a mono-
lingual Swedish model, performed even better than the multilingual models. This suggests
that the use of monolingual models may be beneficial for GED.

In our experiments on token classification, both binary and multi-label token classifica-
tion, we noted that XLM-RoBERTa showed better results than mBERT and KB-BERT. This
was expected because we used XLM-RoBERTa-Large, and it is the largest among the models,
with 580 million parameters compared to the BERT models’ 110 million parameters. We con-
clude that the size of the model can have a significant impact on its performance. However,

57

7. Discussion

KB-BERT exhibited a better precision than XLM-RoBERTa for multi-label token classifica-
tion despite being smaller. Precision is crucial when providing feedback to second language
learners, as imprinting incorrect information on the learner can be detrimental and lead to
confusion. XLM-RoBERTa has a high precision on O and M-type errors, but the precision of
P and L-type errors are below 0.5. On the other hand, KB-BERT yielded a precision higher
than 0.5 for all classes.

For GEC, we utilized encoder-decoder and decoder-based models to produce a correct
output sentence from input sentences. To comparatively evaluate the models’ performances,
we first studied the performance of the rule-based model, Granska. We expected that Granska
would produce good results, at least for orthographic errors, which are related to spelling er-
rors. However, it only corrected 7% of the incorrect sentences and 12% of sentences containing
orthographic errors.

The transformer-based models performed better. The baseline mT5 model fine-tuned
only on DaLAJ-GED generated a correct output sentences for 70% of the test set when beam
search with 10 beams and 10 return sequences was used. However, when using only one
beam, and producing one output sentence, it was correct for only 46% of the test set. In
other words, the sentence that the model considers to be the most probable one, is only
correct 46% of the time. GPT-SW3, when trained on DaLAJ-GED, performed even better,
achieving an 80% hit rate among its 10 beam search candidates, and a 57% hit rate among its
most probable output sentences. From this observation, we conclude that the transformer-
models are largely capable of generating corrected sentences, but that the models’ internal
language models are yet insufficient for the task of ranking the correct sentences as the most
probable ones.

We also observed that synthetic data improves GEC models’ performance. The models
mT5-en-ett, mT5-på-i and mT5-en-ett-på-i models outperformed the baseline mT5 model.
These models not only showed improved performance on the specific errors that they were
fine-tuned on, but also enhanced the performance overall. This demonstrates the potential
of using synthetic data for improving GEC models. However, mT5-pron-verb did not show
significant improvements, and the results of mT5-adv-verb were worse than the baseline mT5
model. We speculate that this is because we generated 10,000 sentences using a small list of
only 27 adverbs, which likely introduced a heavy bias to the training data, which lowered
overall performance. We believe that the performance would be better if the synthetic data
for adverb-verb errors was generated using a large lexicon of adverbs.

The GLEU scores of the models are quite high, but we conclude that this is due to the
format of the DaLAJ dataset, as each sentence in DaLAJ only contains a single error. If each
sentence contained multiple errors, there would be more work to do for the models, and
potentially more mistakes to make, which could yield lower GLEU scores.

7.2 Future work
The hyperparameters of a model, such as its learning rate, batch size, weight decay, warm-up
and number of epochs, can play a key role in determining the model’s performance. Due to
time and compute limitations, we were unable to thoroughly explore multiple options for
each hyperparameter. Ideally, one would perform a grid search to find the best parameters
by optimizing the performance on the validation data.

58

7.3 Conclusion

While we discussed the potential of using synthetic data to improve GEC models, we did
not use synthetic data for the experiments involving GED. It would be interesting to also train
GED models on synthetic data and evaluate its effect on their performance. Additionally, the
synthetic data can be generated in different ways, including adding more types of errors and
using more or less synthetic data. It is also possible to use more generic types of synthetic
errors, as Rothe et al. (2021) did, as opposed to ones involving specific words or parts of
speech, as we did. Lastly, we propose the use of Stahlberg and Kumar (2021)s method of
generating synthetic data whose distribution of errors matches that of the authentic corpus.

Since GPT-SW3 generally performed better than the mT5 models, despite being trained
only on DaLAJ-GED, it would be especially interesting to attempt to fine-tune GPT-SW3 on
synthetic data as well.

While studying mT5 and GPT-SW3 and their generation of different candidates correc-
tions, we realized the importance of having a system that proposes the correct sentence as
the top candidate. We investigated methods that could solve this problem and we found that
using a re-ranker is a promising alternative. The re-ranker would be trained to learn the
mappings between a source sentence and a list of potential candidate corrections. In a live
deployment scenario, the re-ranker would score the generated candidates, and its score would
be multiplied with the encoder-decoder or decoder-based model’s own score, to produce a
new ranking of the candidates. Options for re-rankers include Sentence BERT (Reimers and
Gurevych, 2019) and Transcormer (Song et al., 2022).

Although encoder-decoder and decoder-based models like mT5 and GPT-SW3 have shown
promising results in GEC tasks, they still have limitations. For one, the decoders can only
consider the left-hand context when evaluating each token in a sentence, which means that
valuable contextual data is lost. The models can also hallucinate unwanted outputs, so us-
ing a pure encoder model may yield more interpretable results than an encoder-decoder or
decoder-based model. Additionally, systems that perform GEC by sequence-tagging instead
of text generation, such as GECToR (Omelianchuk et al., 2020), result in much faster data
processing. A system like GECToR is largely trained on synthetic data and could be trained
for the Swedish language.

While the field of NLP has moved in the direction of auto-regressive models like GPT,
we still see a great value in encoder-based models for GEC due to the reasons mentioned
above. Furthermore, the results in Section 6.2 show that for a low-resource language like
Swedish, the multilingual sequence-to-sequence model mT5 performed fairly well compared
to a similarly sized GPT-model that was trained only on Swedish data. We believe that the
sequence-to-sequence nature of encoder-decoder models makes them well suited to the task
of NMT, and including GEC.

7.3 Conclusion
In this thesis, we investigated the resources available for GED and GEC. Swedish annotated
corpora for GED and GEC are sparse. Examples such as SweLL and DaLAJ, have been pre-
sented only in recent years, and the new dataset, DaLAJ-GED, was released in 2023. We
compared different models trained on DaLAJ v1.0 and DaLAJ-GED and observed that the
larger DaLAJ-GED dataset yielded better model performance.

The rule-based model Granska was one of the early models designed for GEC in Swedish,

59

7. Discussion

developed in the early 2000s. Since the introduction of BERT in 2018, several Swedish ver-
sion of BERT have been developed and KB-BERT is one of them. In 2023, a generative de-
coder model trained largely on Swedish data, GPT-SW3, was released. Comparisons of KB-
BERT’s performance on GED tasks with multilingual BERT models, such as mBERT and
XLM-RoBERTa, show that KB-BERT performs better on sentence classification and pro-
duced the best precision for multi-label token classification even when compared with the
much larger XLM-RoBERTa-Large. We also used GPT-SW3 to perform GEC and found that
it outperformed the multilingual mT5 model. This suggests that well-trained monolingual
models may perform well for GED and GEC.

We were interested in the possibility of combining old techniques such as rule-based
methods with new transformer-based approaches in order to improve the performance of
GED and GEC. However, we found that the rule-based system Granska was only able to
correct 7% of the incorrect sentences, and we concluded that it would not improve the per-
formance of other models even if used in an ensemble.

We specifically evaluated the models on each error type in DaLAJ-GED, in order to see
which are more difficult to detect and correct. According to Table 6.4 and Table 6.11, the
lexical and syntactical errors are more difficult to detect and correct than the morphological
and orthographic. In an attempt to alleviate this issue, we generated synthetic data contain-
ing some specific lexical and syntactical errors and observed that it did improve the model’s
performance for these error types. We propose the use of synthetic data for training the
Swedish models KB-BERT and GPT-SW3, to enhance their performance of GED and GEC
in Swedish.

While the field of GED and GEC in Swedish remains relatively underexplored and chal-
lenging, the application of innovative techniques such as machine learning show great promise.
With further research and development, we anticipate more effective and accurate models
shortly, that will likely greatly benefit both language learners and native users of the Swedish
language.

60

References

Arppe, A. (2000). Developing a grammar checker for Swedish. In Proceedings of the 12th Nordic
Conference of Computational Linguistics (NODALIDA 1999), pages 13–27, Trondheim, Norway.

Bahdanau, D., Cho, K., and Bengio, Y. (2016). Neural Machine Translation by Jointly Learn-
ing to Align and Translate. arXiv:1409.0473 [cs.CL].

Bigert, J. (2002). Robust Error Detection: A Hybrid Approach Combining Unsupervised
Error Detection and Linguistic Knowledge. In Proceedings of 2nd Workshop Robust Methods
in Analysis of Natural language Data (ROMAND’02), pages 10–19, Frascati, Italy.

Birn, J. (2000). Detecting grammar errors with Lingsoft’s Swedish grammar checker. In
Proceedings of the 12th Nordic Conference of Computational Linguistics (NODALIDA 1999), pages
28–40, Trondheim, Norway. Department of Linguistics, Norwegian University of Science
and Technology, Norway.

Black, S., Gao, L., Wang, P., Leahy, C., and Biderman, S. (2021). GPT-Neo: Large Scale
Autoregressive Language Modeling with Mesh-Tensorflow. Zenodo.

Bryant, C., Felice, M., and Briscoe, T. (2017). Automatic Annotation and Evaluation of Error
Types for Grammatical Error Correction. In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages 793–805, Vancouver,
Canada.

Carlberger, J., Domeij, R., Kann, V., and Knutsson, O. (2004). The development and perfor-
mance of a grammar checker for Swedish : A language engineering perspective. Natural
Language Engineering, 1.

Casademont Moner, J. and Volodina, E. (2022). Generation of Synthetic Error Data of Verb
Order Errors for Swedish. In Proceedings of the 17th Workshop on Innovative Use of NLP for
Building Educational Applications (BEA 2022), pages 33–38, Seattle, Washington, USA.

Cho, K., van Merrienboer, B., Bahdanau, D., and Bengio, Y. (2014a). On the Properties of
Neural Machine Translation: Encoder-Decoder Approaches. arXiv:1409.1259 [cs.CL].

61

REFERENCES

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., and
Bengio, Y. (2014b). Learning Phrase Representations using RNN Encoder-Decoder for
Statistical Machine Translation. arXiv:1406.1078 [cs.CL].

Conneau, A., Khandelwal, K., Goyal, N., Chaudhary, V., Wenzek, G., Guzmán, F., Grave, E.,
Ott, M., Zettlemoyer, L., and Stoyanov, V. (2019). Unsupervised Cross-lingual Represen-
tation Learning at Scale. arXiv:1911.02116 [cs.CL].

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. arXiv:1810.04805 [cs.CL].

Ekgren, A., Cuba Gyllensten, A., Gogoulou, E., Heiman, A., Verlinden, S., Öhman, J., Carls-
son, F., and Sahlgren, M. (2022). Lessons Learned from GPT-SW3: Building the First
Large-Scale Generative Language Model for Swedish. In Proceedings of the Thirteenth Lan-
guage Resources and Evaluation Conference, pages 3509–3518, Marseille, France.

Felice, M., Bryant, C., and Briscoe, T. (2016). Automatic Extraction of Learner Errors in ESL
Sentences Using Linguistically Enhanced Alignments. In Proceedings of COLING 2016, the
26th International Conference on Computational Linguistics: Technical Papers, pages 825–835,
Osaka, Japan.

Gehring, J., Auli, M., Grangier, D., Yarats, D., and Dauphin, Y. N. (2017). Convolutional
Sequence to Sequence Learning. arXiv:1705.03122 [cs.CL].

Google Research (2019). multilingual.md. https://github.com/google-research/
bert/blob/master/multilingual.md. GitHub ReadMe file.

Heidorn, G. E., Jensen, K., Miller, L. A., Byrd, R. J., and Chodorow, M. S. (1982). The EPIS-
TLE text-critiquing system. IBM Systems Journal, 21(3):305–326.

Junczys-Dowmunt, M., Grundkiewicz, R., Guha, S., and Heafield, K. (2018). Approaching
Neural Grammatical Error Correction as a Low-Resource Machine Translation Task. In
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 595–606, New
Orleans, Louisiana, USA.

Kalchbrenner, N., Espeholt, L., Simonyan, K., van den Oord, A., Graves, A., and
Kavukcuoglu, K. (2017). Neural Machine Translation in Linear Time. arXiv:1610.10099
[cs.CL].

Kaneko, M. and Komachi, M. (2019). Multi-Head Multi-Layer Attention to Deep Language
Representations for Grammatical Error Detection. arXiv:1904.07334 [cs.CL].

Kann, V., Domeij, R., Hollman, J., and Tillenius, M. (1998). Implementation Aspects and
Applications of a Spelling Correction Algorithm. Journal of Quantitative Linguistics.

Knutsson, O. (2005). Developing and Evaluating Language Tools for Writers and Learners of
Swedish. PhD thesis, KTH Royal Institute of Technology.

KTH Royal Institute of Technology (2020). Probgranska.
https://skrutten.csc.kth.se/granskaapi/probcheck. Accessed: 2023-05-06.

62

https://github.com/google-research/bert/blob/master/multilingual.md
https://github.com/google-research/bert/blob/master/multilingual.md

REFERENCES

Lample, G. and Conneau, A. (2019). Cross-lingual Language Model Pretraining.
arXiv:1901.07291 [cs.CL].

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L.,
and Stoyanov, V. (2019). RoBERTa: A Robustly Optimized BERT Pretraining Approach.
arXiv:1907.11692 [cs.CL].

Malmsten, M., Börjeson, L., and Haffenden, C. (2020). Playing with Words at the National
Library of Sweden – Making a Swedish BERT. arXiv:2007.01658 [cs.CL].

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient Estimation of Word Rep-
resentations in Vector Space. arXiv:1301.3781 [cs.CL].

Miller, L. (1980). Project EPISTLE: A System for the Automatic Analysis of Business Corre-
spondence. In Proceedings of the AAAI Conference on Artificial Intelligence, pages 280–282.

Napoles, C., Sakaguchi, K., Post, M., and Tetreault, J. (2015). Ground Truth for Grammatical
Error Correction Metrics. In Proceedings of the 53rd Annual Meeting of the Association for Com-
putational Linguistics and the 7th International Joint Conference on Natural Language Processing
(Volume 2: Short Papers), pages 588–593, Beijing, China.

Norlund, T. and Stenbom, A. (2021). Building a Swedish Open-Domain Conversational Lan-
guage Model. In Nordic Conference of Computational Linguistics.

Omelianchuk, K., Atrasevych, V., Chernodub, A., and Skurzhanskyi, O. (2020). GECToR–
Grammatical Error Correction: Tag, Not Rewrite. In Proceedings of the Fifteenth Workshop
on Innovative Use of NLP for Building Educational Applications, pages 163–170, Online.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002). BLEU: a Method for Automatic
Evaluation of Machine Translation. In Proceedings of the 40th Annual Meeting of the Association
for Computational Linguistics, pages 311–318, Philadelphia, Pennsylvania, USA.

Pennington, J., Socher, R., and Manning, C. (2014). GloVe: Global Vectors for Word Rep-
resentation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543, Doha, Qatar.

Radford, A., Narasimhan, K., Salimans, T., and Sutskever, I. (2018). Improv-
ing Language Understanding by Generative Pre-Training. Preprint. https:
//s3-us-west-2.amazonaws.com/openai-assets/research-covers/
language-unsupervised/language_understanding_paper.pdf.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. (2019). Language
Models are Unsupervised Multitask Learners. https://d4mucfpksywv.cloudfront.
net/better-language-models/language-models.pdf.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., and
Liu, P. J. (2019). Exploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer. arXiv:1910.10683 [cs.LG].

Rei, M. and Søgaard, A. (2018). Jointly Learning to Label Sentences and Tokens.
arXiv:1910.10683 [cs.CL].

63

https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf

REFERENCES

Rei, M. and Yannakoudakis, H. (2016). Compositional Sequence Labeling Models for Error
Detection in Learner Writing. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers).

Reimers, N. and Gurevych, I. (2019). Sentence-BERT: Sentence Embeddings using Siamese
BERT-Networks. arXiv:1908.10084 [cs.CL].

Rothe, S., Mallinson, J., Malmi, E., Krause, S., and Severyn, A. (2021). A Simple Recipe for
Multilingual Grammatical Error Correction. In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing (Volume 2: Short Papers), pages 702–707, Online.

Salazar, J., Liang, D., Nguyen, T. Q., and Kirchhoff, K. (2020). Masked Language Model Scor-
ing. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,
pages 2699–2712, Online.

Schuster, M. and Nakajima, K. (2012). Japanese and Korean Voice Search. In International
Conference on Acoustics, Speech and Signal Processing, pages 5149–5152.

Sjöbergh, J. and Knutsson, O. (2005). Faking Errors to Avoid Making Errors: Very Weakly
Supervised Learning for Error Detection in Writing. In Proceedings of RANLP 2005, page
506–512, Borovets, Bulgaria.

Song, K., Leng, Y., Tan, X., Zou, Y., Qin, T., and Li, D. (2022). Transcormer: Transformer for
Sentence Scoring with Sliding Language Modeling. arXiv:2205.12986 [cs.CL].

Stahlberg, F. and Kumar, S. (2021). Synthetic Data Generation for Grammatical Error Cor-
rection with Tagged Corruption Models. In Proceedings of the 16th Workshop on Innovative
Use of NLP for Building Educational Applications, pages 37–47, Online.

Stymne, S. and Ahrenberg, L. (2010). Using a Grammar Checker for Evaluation and Post-
processing of Statistical Machine Translation. In Proceedings of the Seventh International
Conference on Language Resources and Evaluation (LREC’10), pages 2175–2181, Valletta, Malta.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to Sequence Learning with Neural
Networks. arXiv:1409.3215 [cs.CL].

Swedish Public Employment Service (2020). Swedish BERT models. https://github.
com/af-ai-center/SweBERT. GitHub Repository.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and
Polosukhin, I. (2017). Attention is All You Need. arXiv:1706.03762 [cs.CL].

Volodina, E., Granstedt, L., Matsson, A., Megyesi, B., Pilán, I., Prentice, J., Rosén, D., Rude-
beck, L., Schenström, C.-J., Sundberg, G., and Wirén, M. (2019). The SweLL Language
Learner Corpus. In Northern European Journal of Language Technology, volume 6, pages 67–
104. Linkoping University Electronic Press.

Volodina, E., Mohammed, Y. A., Berdicevskis, A., Bouma, G., and Öhman, J. (2023). DaLAJ-
GED - a dataset for Grammatical Error Detection tasks on Swedish. In Proceedings of the
12th Workshop on Natural Language Processing for Computer-Assisted Language Learning, pages
94–101, Tórshavn, Faroe Islands.

64

https://github.com/af-ai-center/SweBERT
https://github.com/af-ai-center/SweBERT

REFERENCES

Volodina, E., Mohammed, Y. A., and Klezl, J. (2021). DaLAJ - a dataset for linguistic accept-
ability judgments for Swedish: Format, baseline, sharing. arXiv:2105.06681 [cs.CL].

Volodina, E., Pilán, I., Rødven Eide, S., and Heidarsson, H. (2014). You Get what You An-
notate: A Pedagogically Annotated Corpus of Coursebooks for Swedish as a Second Lan-
guage. In Proceedings of the third workshop on NLP for computer-assisted language learning, pages
128–144, Uppsala, Sweden.

Weng, Y., Miryala, S. S., Khatri, C., Wang, R., Zheng, H., Molino, P., Namazifar, M., Papan-
gelis, A., Williams, H., Bell, F., and Tur, G. (2020). Joint Contextual Modeling for ASR
Correction and Language Understanding. arXiv:2002.00750 [cs.CL].

Xue, L., Constant, N., Roberts, A., Kale, M., Al-Rfou, R., Siddhant, A., Barua, A., and Raffel,
C. (2021). mT5: A massively multilingual pre-trained text-to-text transformer. In Proceed-
ings of the 2021 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages 483–498, Online.

Yasunaga, M., Leskovec, J., and Liang, P. (2021). LM-Critic: Language Models for Unsuper-
vised Grammatical Error Correction. arXiv:2109.06822 [cs.CL].

Yuan, Z., Taslimipoor, S., Davis, C., and Bryant, C. (2021). Multi-Class Grammatical Error
Detection for Correction: A Tale of Two Systems. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing, pages 8722–8736, Online and Punta Cana,
Dominican Republic.

65

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2023-06-02

EXAMENSARBETE Correction of grammatical errors in Swedish
STUDENTER Joel Ehnroth, Yoonjoo Park
HANDLEDARE Pierre Nugues (LTH), Filip Bolling (NordAxon AB)
EXAMINATOR Jacek Malec (LTH)

Korrigering av grammatiska fel med
hjälp av maskininlärning

POPULÄRVETENSKAPLIG SAMMANFATTNING Joel Ehnroth, Yoonjoo Park

Verktyg som erbjuder hjälp med stavning och grammatik är viktiga i det digi-
tala samhället. I detta examensarbete presenterar vi maskininlärningsmodeller som
presterar bättre än traditionella regelbaserade system.

Detta examensarbete utforskar maskininlärn-
ingsmetoder för rättning av grammatiska fel i
svensk text, såsom stavfel, böjningsfel, felaktiga
ordval, med mera. Resultaten visar att maskinin-
lärningsmetoderna presterar lovvärt och kan kor-
rigera fel till en högre grad än tidigare regelbaser-
ade system.

System för automatisk rättning av olika fel i
skriven text har blivit en del av vardagen för
många. De återfinns i ordbehandlingsprogram,
när vi skriver epost eller SMS, eller när vi gör en
sökning via en sökmotor i webbläsaren.

Att kunna formulera sig korrekt och precist är
viktigt i dagens samhälle, och att kunna få hjälp
av ett verktyg som uppfattar felaktigheter i våra
formuleringar är därför av intresse. Särskilt rele-
vant är det möjligen för andraspråkselever som vill
underlätta lärandet på egen hand, när en mänsklig
pedagog inte finns att tillgå.

Trots att automatiska system för rättning av
språkfel har funnits i många år, domineras om-
rådet av de stora internationella språken, främst
engelskan. Detta beror i stor utsträckning på att
datatillgång är en central del vid framtagning av
maskininlärningsmodeller.

Modellerna som har utvärderats under detta ar-

bete har tränats på stora mängder text från sven-
ska webbsidor. Modellerna kan genom att ob-
servera text skapa en intern modell av hur språket
fungerar. Denna interna modell kan sedan med
fördel användas för en rad olika syften, exempelvis
rättning av grammatiska fel.

Gemensamt för maskininlärningsmodeller är
dock att de presterar dåligt på uppgifter som de
inte specifikt har tränats för. Detta innebär att
modellerna ofta måste tränas på ytterligare data
som är särskilt avsedd för den specifika uppgiften.
I detta fall är uppgiften rättning av grammatiska
fel. Att ta fram ett välfungerande system för det
svenska språket kräver alltså särskilda resurser för
just svensk grammatik, något som i dagsläget är
en bristvara. Under arbetets gång utforskas där-
för möjligheten att använda syntetisk data för att
utvidga de tillgängliga resurserna.

Sammanfattningsvis har vi under examensar-
betet tagit fram modeller som avgör om en mening
är grammatiskt korrekt eller inte, samt modeller
som markerar var i meningen fel finns och vilken
typ av fel det rör sig om. Till sist utvecklar vi
modeller som försöker korrigera felen. Modellerna
visar goda resultat och det finns stor potential till
vidare utveckling och förbättring.

	Introduction
	Motivation and Goals
	Research Questions
	Scope
	Contributions
	Outline

	Datasets
	DaLAJ v1.0
	DaLAJ-GED
	Swedish Wikipedia

	Previous Work
	Grammatical Error Detection
	Grammatical Error Correction
	GED and GEC for Swedish
	Synthetic Data
	Sentence Scoring

	Transformers
	Models
	Transformers
	Pre-trained models

	Text and Word Representation
	Tokenization
	Word vectors and Embeddings

	Method
	Grammatical Error Detection
	Binary Sentence Classification
	Binary Token Classification
	Multi-label Token Classification

	Grammatical Error Correction
	Generating Synthetic Data
	Generating Correct Sentences

	Evaluation

	Results
	Grammatical Error Detection
	Binary Sentence Classification
	Binary Token Classification
	Multi-label Token Classification

	Grammatical Error Correction
	Granska
	Encoder-decoder Models
	Decoder Models
	Comparative Analysis

	Discussion
	Interpretations of Results
	Future work
	Conclusion

	References

