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Abstract

This thesis provides a comprehensive study of profinite groups, which
are fascinating mathematical objects that have attracted significant inter-
est in modern algebraic research. Profinite groups are infinite generaliza-
tions of finite groups and share many similarities with them. They are en-
dowed with a topology that makes them compact and totally disconnected,
which is the foundation from which we draw conclusions on their structure.
In this thesis, we introduce the basic concepts of profinite groups and their
relationship with finite groups. We then generalize Lagrange’s theorem
and the Sylow theorems to profinite groups, which are crucial for under-
standing their structure and subgroups. We also provide a generalization
of the Fundamental Theorem of Galois Theory to profinite groups, which
has important implications for the study of number theory and algebraic
geometry. We conclude with examples of infinite Galois groups, including
the Galois group of the algebraic closure of finite fields, and some infinite
Galois extensions of the rational numbers, which illustrate the power of
profinite groups in studying the structure of infinite Galois groups.
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Popular Scientific Summary

This thesis provides a comprehensive study of a special kind of
topological groups. Topological groups are sets with a notion of
“closeness” defined by their topological structure, and with a binary
operation between the elements in the set (an operation that takes
two elements in the set to a new element in the set) that satisfies
a compatibility condition that makes the binary operation map
“close” elements to “close” elements. These concepts serve as a
bridge between fields of study in mathematics such as topology and
geometry, and are used to describe and analyze physical systems in
quantum mechanics and particle physics, being key to understanding
continuous symmetries.

Profinite groups are a special type of possibly infinite abstract
topological groups. These groups are constructed from collections of
finite groups in such a way that many of the properties related to
the finite groups in a collection are inherited by their profinite group.
This construction is called an inverse limit, which is a mathematical
structure that allows us to “glue” together the finite groups to form
a possibly infinite group.

Due to this relationship between finite groups and profinite groups
many theorems relating finite groups can be extended to profinite
groups. One such theorem —and the motivation from which profinite
groups arose— is the Fundamental Theorem of Galois Theory, an
extremely powerful result that establishes a deep connection between
group theory and field theory.

In this thesis we explore all of these concepts and topics in
hopes of gaining a better understanding of these mathematical struc-
tures. We study profinite groups as inverse limits of finite groups; as
topological groups with specific properties, namely compactness and
total disconnectedness; and as Galois groups, the object of study of
Galois Theory.

v



vi



Contents

Index of Notation ix

Introduction xi

1 Profinite Groups 1
1.1 Inverse Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Profinite Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Lagrange, Sylow and Galois Theorems 17
2.1 Index and Order of Profinite Groups . . . . . . . . . . . . . . . . . . 17
2.2 Lagrange and Sylow Theorems for Profinite Groups . . . . . . . . . . 19
2.3 Galois Theory on Profinite Groups . . . . . . . . . . . . . . . . . . . 24

3 Examples of Infinite Galois Groups over Q 33

A Background Knowledge 41

B Additional Information 44

vii



viii
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≤ subgroup

≤o open subgroup
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Introduction

Profinite groups are incredible mathematical objects that are of great interest in
modern algebraic research. They are in essence generalizations of finite groups
that can be infinite and behave in many ways like finite groups do. As such, these
groups are particularly useful for extending theorems on finite groups to the in-
finite realm. Profinite groups are groups endowed with a topology that makes
them compact and totally disconnected. As will be shown in this thesis these very
strong properties are the foundation from which we will draw conclusions on the
structure of the groups. In this thesis the main focus will be on the generalization
of finite group theorems and specifically on the Fundamental Theorem of Galois
Theory, but profinite groups are also intimately connected with number theory,
algebraic geometry, homology theory and representation theory, and have found
applications in many areas of mathematics and theoretical physics.

The emergence of the theory of profinite groups is tightly connected to the ad-
vancement of topological groups and the exploration of infinite Galois theory.
This field traces its roots to the 1920s, when the mathematician Wolfgang Krull
formulated what is now recognized as the Krull topology, which we will later see is
crucial to understanding infinite Galois groups as profinite groups. The first thor-
ough examination of profinite groups was presented in Jean-Pierre Serre’s book
‘Cohomologie Galoisienne’ in 1964. Although Michel Lazard, Claude Chevalley
and Kurt Hirsch laid the groundwork for this area of study, Serre was the first
to introduce the term and systematically develop the theory of profinite groups.
Many papers and books have been written on this topic, but the most compre-
hensive introductory literature are the books titled ‘Profinite Groups’ written by
Luis Ribes and Pavel Zalesskii, and John S. Wilson, the two main sources of
information for this thesis.

This thesis provides a comprehensive study of profinite groups and their proper-
ties. We assume the reader has a solid understanding of finite Galois theory, as
well as key concepts from basic group theory and algebraic structures. To aid the
reader in their understanding, we reference the books ‘Fields and Galois Theory’
by John M. Howie and ‘Algebra’ by Serge Lang, both of which provide excellent
sources of information on the prerequisites for this thesis. Additionally, the first
appendix includes a list of important lemmas and theorems that are expected to
be familiar to the reader.

The thesis is structured into three sections. The first section lays the founda-
tions for topological groups and inverse limits, building up to the definition of
profinite groups and introducing some of the key concepts and ideas that will
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help us understand their relationship to finite groups.

In the second section we generalize Lagrange’s Theorem, the Sylow Theorems
and the Fundamental Theorem of Galois Theory to the profinite group setting.
For the proof of the generalized versions of Lagrange’s Theorem and the Sylow
Theorems we introduce a new notion of index of profinite groups that relies on
the idea of using supernatural numbers to represent different infinities. On the
other hand, the subsection on the generalization of the Fundamental Theorem
of Galois Theory helps us understand the relationship between infinite profinite
groups and infinite Galois groups.

Finally, we present a short lemma original to the thesis and we provide some
examples of infinite Galois groups over the rationals that serve to illustrate the
power of the said lemma in studying the structure of infinite Galois groups.
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1 Profinite Groups

1.1 Inverse Limits

The notions of an inverse system and an inverse limit can be broadly defined for
any category. However, in the context of this project, we will limit our definitions
to the category of topological groups with continuous group homomorphisms.

For this purpose we will start by first defining topological groups and their be-
haviour both as topological spaces and as groups. This will serve as a foundation
for our subsequent discussion on inverse systems and inverse limits.

Definition 1.1.1 (Topological Group). A topological group G is a set that is
both a topological space and a group, satisfying that the group operation and
the inversion maps are continuous, i.e. B : (x, y) 7→ xy and i : x 7→ x−1 are
continuous.

Example 1.1.2. An example of a topological group is any group G under the
discrete topology. To show that this is indeed a topological group we must prove
that this topology is compatible with the group structure, i.e. the maps B and i
are continuous under this topology. This is clearly true for any group under the
discrete topology since i−1 maps subsets of G to subsets of G and every subset
in the discrete topology is open, and B−1 maps subsets of G to the product of
subsets of G, i.e. open sets in the product topology of discrete spaces. These
topological groups are sometimes called discrete groups.

It is worth noting that not all topologies are compatible with every group struc-
ture. However, the discrete topology is an exception to this rule. As we will
explore further, discrete groups are in fact the building blocks from which profi-
nite groups are constructed.

Example 1.1.3. Another not so trivial example of a topological group would
be the group Q × Q, where Q represents the additive group on the rational
numbers together with the Euclidean topology. The product of groups induces a
new group in which the binary operation is given by the componentwise addition
of elements. Again, to prove compatibility of the topology we must show that
B and i are continuous. The map i is clearly continuous since it is continuous
componentwise because it maps open intervals in Q to symmetric intervals around
0 in Q, which are clearly open. On the other hand, the map B is continuous
because B((x1, y1), (x2, y2)) = (x1 +x2, y1 + y2) = (B(x1, x2),B(y1, y2)) where the
map B : Q×Q→ Q is defined by B : (x, y) 7→ x + y, i.e. B is a product of
continuous functions (B is continuous because the addition of coordinates on the
Euclidean plane R2 is continuous, and the restriction of a continuous function to
a subspace is continuous).
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The topological and group structure on a topological group G give rise to a series
of interesting properties on the subsets and subgroups of G.

Lemma 1.1.4. [5, Lemma 0.3.1] Given a topological group G the following hold:

(a) If H ⊆o G (respectively ⊆c) =⇒ Hg, gH ⊆o G (respectively ⊆c) ∀g ∈ G.

(b) If H ≤o G =⇒ H ≤c G.

(c) If H ≤c G and [G : H] <∞ =⇒ H ≤o G.

(d) If H ≤o G and G is compact =⇒ [G : H] <∞.

(e) If H ≤ G and S ⊆o G such that ∅ 6= S ⊆ H =⇒ H ≤o G.

(f) The group G is Hausdorff ⇐⇒ {e} ⊆c G.

(g) If H ≤ G =⇒ H ≤ G.

Proof. (a) The maps α : x 7→ xg and β : x 7→ gx are continuous since
they are a composition of continuous maps, IdG : x 7→ x (the identity) and
cg : x 7→ g (a constant map), and the continuous map B : (x, y) 7→ xy. Indeed
α(x) = B(IdG(x), cg(x)) and similarly for β(x). Moreover, using the same
argument, we see that the maps α−1 : x 7→ xg−1 and the map β−1 : x 7→ g−1x
are also continuous and they are inverses to α and β respectively, so these are
homeomorphisms, and so they are open and closed maps.

(b) If H ≤o G then by (a) Hg ⊆o G, which implies that
⋃
g/∈H

Hg is open.

Furthermore, by Lemma A.0.9 the following equality holds
⋃
g/∈H

Hg = Hc,

therefore the subgroup H is closed in G.

(c) If [G : H] < ∞ then the number of distinct right cosets is finite, therefore
the union

⋃
g/∈H

Hg is a finite union of cosets by Lemma A.0.9. Now, by (a) we

have that H being closed in G implies that Hg ⊆c G for all g ∈ G, so the set
Hc =

⋃
g/∈H

Hg is a union of finitely many closed cosets, meaning that the set Hc

is closed, i.e. H ≤o G.

(d) Since G =
⋃
g∈C

Hg, where C is a set with a representative from each

coset of G, is a disjoint union by Lemma A.0.9, if G is compact and H ≤o G
then

⋃
g∈C

Hg is an open cover, so there is a finite subcover, i.e. there are finitely

many distinct right cosets of H, so [G : H] <∞.

2



(e) Since S is open, by (a) the set Sh is open ∀h ∈ H, and since H =
⋃
h∈H

Sh

then the subgroup H is open.

(f) (⇒) If G is Hausdorff, then {g} ⊆c G ∀g ∈ G by Lemma B.0.1, so
{e} ⊆c G.
(⇐) Let {e} ⊆c G and take x, y ∈ G such that x 6= y we want to prove that there
exist disjoint open neighbourhoods of x and y. First we notice that the map
φ : (x, y) 7→ xy−1 is continuous since it is the composition of two continuous maps
(φ(x, y) = B(x, i(y))), so φ−1(G\{e}) is open (since {e} is closed). Furthermore,
clearly (x, y) ∈ φ−1(G \ {e}), so, by the way open sets are constructed in the
product topology, ∃ Ux and Uy such that Ux × Uy ⊆ φ−1(G \ {e}). Finally, to
prove that Ux ∩ Uy = ∅ we assume the contrary, therefore ∃ p ∈ Ux ∩ Uy, i.e.
(p, p) ∈ Ux × Uy ⊆ φ−1(G \ {e}), but φ(p, p) = e, so (p, p) /∈ φ−1(G \ {e}), which
is a contradiction.

(g) For any x, y ∈ H if x−1 /∈ H then there is a Ux−1 such that
Ux−1 ∩ H = ∅, but the inversion map i in a topological group is continu-
ous by definition, thus the set i(Ux−1) is an open neighbourhood of x and
i(Ux−1) ∩ H = i(Ux−1) ∩ i(H) = i(Ux−1 ∩ H) = ∅, which is a contradiction
to the fact that x ∈ H. Similarly, if xy /∈ H then there would be an open
neighbourhood Uxy such that Uxy ∩ H = ∅, but, by the continuity of the group
operation map B and the construction of the product space, we know there exist
open neighbourhoods Ux and Uy such that Ux × Uy ⊆ B−1(Uxy). Since x, y ∈ H
we have (Ux × Uy) ∩ (H ×H) 6= ∅, meaning that B((Ux × Uy) ∩ (H ×H)) 6= ∅,
but B((Ux × Uy) ∩ (H ×H)) ⊆ B(Ux × Uy) ∩ B(H ×H) ⊆ Uxy ∩H = ∅, which
is a contradiction.

Lemma 1.1.5. [5, Lemmas 0.1.1(c) and 0.3.2] Given U ⊆o G where G is a
compact and totally disconnected topological group and e ∈ U there exists a normal
subgroup N Eo G such that N ⊆ U .

Proof. Using Lemma B.0.5 we know that ∀y ∈ G with y 6= e there is a subset Fy
that is clopen such that e ∈ Fy and y /∈ Fy. We first prove that there is a set
F clopen in U . Clearly G = U ∪ (

⋃
y 6=e

(G \ Fy)). By compactness of G there is a

finite subcover G = U ∪ (
⋃n

1 (G \ Fyi)) and so e ∈ F =
⋂n

1 Fyi ⊆ U where the set
F is clearly clopen.

Finally, we prove that ∃N Eo G with N ⊆ F . Since the group operation
map, B : G × G → G, is continuous by Definition 1.1.1, and because of the
way the product space is constructed ∃Ve,We ⊆o G such that (e, e) ∈ Ve ×We
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and B(Ve,We) = VeWe ⊆ F . Then the set S = Ve ∩We is such that S ⊆o G,
e ∈ S and S = S{e} ⊆ SS ⊆ VeWe ⊆ F . If we now denote T = S ∩ S−1

where S−1 := {g ∈ G | g−1 ∈ S}, clearly T is open in G since the set S−1

is open by the continuity of i : G → G given in Definition 1.1.1. Moreover,
T = T−1 and e ∈ T . For all x ∈ F we have F ⊆

⋃
x∈F

Sx is an open cover and

F is compact since it is closed, so F ⊆
⋃k

1 Sxi is a finite subcover so we have

SF ⊆
⋃k

1 SSxi ⊆
⋃k

1 Fxi ⊆ F , meaning that TF ⊆ F , which by induction gives
us that T n ⊆ F ∀n ∈ N and so the set H =

⋃∞
1 T n ⊆ F and it is open since it is

a union of sets of the form Ty, which by Lemma 1.1.4 are open because the set
T is. Furthermore, H is a subgroup since e ∈ H because e ∈ S, and for any two
elements h, g ∈ H we must have h ∈ T n and g ∈ Tm for some n,m ∈ N, meaning
that h = t1 · · · tn for some ti ∈ T , which implies that h−1 = t−1

n · · · t−1
1 ∈ T n ⊆ H,

and hg ∈ T n+m ⊆ H. Finally, from Lemma 1.1.4 H is of finite index, so the
group N =

⋂
g∈G

gHg−1 is an intersection of finitely many open sets, so it is open

and clearly N ⊆ F since N =
⋂
g∈G

gHg−1 ⊆ eHe−1 = H ⊆ F . The subgroup N

is in fact normal since ∀g ∈ G and ∀n ∈ N we have gng−1 ∈ g(
⋂
h∈G

hHh−1)g−1 =⋂
h∈G

ghHh−1g−1 ⊆ N .

Having established the concept of a topological group and the impact of its topo-
logical and group structure compatibility on the properties of its subgroups and
open subsets, we can now introduce the notion of inverse limits of inverse systems
of topological groups.

For this purpose we will first explain what is meant by an inverse system of
topological groups and then proceed to provide a comprehensive example that
illustrates the construction of this mathematical structure.

Definition 1.1.6 (Directed Poset). A directed poset is a set I together with a
binary relation ≤ satisfying the following:

(a) i ≤ i ∀i ∈ I.

(b) i ≤ j and j ≤ k =⇒ i ≤ k ∀i, j, k ∈ I.

(c) i ≤ j and j ≤ i =⇒ i = j ∀i, j ∈ I.

(d) ∀i, j ∈ I ∃ k ∈ I such that i ≤ k and j ≤ k.

Definition 1.1.7 (Inverse System). An inverse system is a collection {Gi}i∈I of
topological groups indexed by a directed poset I with a collection of continu-
ous group homomorphisms {φij : Gi → Gj} defined whenever i ≥ j such that
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whenever i ≥ j ≥ k, the following diagram commutes

Gi Gk

Gj

φik

φij

φjk

An inverse system is denoted {Gi, φij, I}. The maps φii are just the identity maps
on Gi.

Example 1.1.8. An example of an inverse system of topological groups is the
system {Zn, φnm,N} where Zn represents the group of integers modulo n under
addition with the discrete topology, N is a directed poset with respect to the
divisibility relation n | m, and φnm : Zn → Zm is given by φnm : [z]n 7→ [z]m
whenever m | n. The maps φnm are clearly continuous since they are maps
between discrete spaces, and they are homomorphisms since

φnm([x]n + [y]n) = φnm([x+ y]n)

= [x+ y]m
= [x]m + [y]m
= φnm([x]n) + φnm([y]n)

for any x, y ∈ Z.

Building upon the concept of an inverse system, we can create yet another math-
ematical construct known as the inverse limit, which is a topological group that
is a composition —via the continuous group homomorphisms— of the topological
groups of an inverse system. This structure is in fact unique up to topological
and group isomorphism.

Definition 1.1.9 (Compatible maps). A family of compatible maps is a collection
{πi : H → Gi}i∈I of continuous group homomorphisms from a topological group
H to an inverse system {Gi, φij, I}, satisfying that φijπi = πj.

Definition 1.1.10 (Inverse Limit). An inverse limit of an inverse system, say
{Gi, φij, I}, is a topological group G together with compatible mappings {πi}
satisfying the following universal property: given any other topological group H
with compatible mappings {ψi}, there is a map θ : H → G that is a unique
continuous homomorphism satisfying πiθ = ψi ∀i ∈ I. The inverse limit is
denoted by lim←−Gi = G. The compatible mappings are usually called projections.

Proposition 1.1.11. [4, Proposition 1.1.1] Given an inverse system {Gi, φij, I}
the following hold:
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(a) There is an inverse limit to the inverse system.

(b) The inverse limit is unique up to topological and group isomorphism.

Proof. (a) Let G := {(gi) ∈
∏

i∈I Gi | φij(gi) = gj whenever i ≥ j}, then the
set G is a subgroup of

∏
Gi. This is because (e) ∈ G and (xi)(yi)

−1 ∈ G for
all (xi), (yi) ∈ G since {φij} are homomorphisms, meaning they map e 7→ e and
they map xiy

−1
i 7→ φij(xiy

−1
i ) = φij(xi)φij(yi)

−1 = xjy
−1
j . Let {πi : G → Gi} be

given by πi : (gi) 7→ gi, then clearly {πi} are continuous homomorphisms since
they are simply the canonical projections restricted to G, so they are compatible
maps. Finally, assuming there is another topological group H with compatible
maps {ψi}, the map θ : H →

∏
Gi given by θ : h 7→ (ψi(h)) is a continuous

homomorphism since it is the product of continuous homomorphisms, and since
{ψi} are compatible maps, they satisfy φijψi = ψj, so θ(H) ⊆ G, i.e. θ : H → G.
Note that the specific construction of θ implies it is induced by the compatible
mappings {ψi} and πiθ : h 7→ ψi(h), so πiθ = ψi, therefore all the conditions are
satisfied and G = lim←−Gi.

(b) Say there are two inverse limits {G, πi} and {H,ψi}. From the definition
of the inverse limit ∃ θ : H → G and ∃ θ−1 : G → H that are continuous homo-
morphisms satisfying πiθ = ψi and ψiθ

−1 = πi, so θθ−1 = IdG and θ−1θ = IdH ,
meaning that θ is a bijective homeomorphism and homomorphism, i.e. a topo-
logical and group isomorphism.

Example 1.1.12. The most trivial example of an inverse limit is that of a trivial
inverse system, i.e. an inverse system of topological groups {Gi, IdG, I} where
Gi = G for all i ∈ I. In this case the inverse limit is clearly just lim←−Gi = G since
the map θ : lim←−Gi → G by θ : (g) 7→ g is clearly a bijective homomorphism and
a homeomorphism no matter the topology.

Example 1.1.13. Another example of a limit of an inverse system that can be
finite is that of a stabilizing inverse system, i.e. a system {Gi, φij, I} in which
there is an N ∈ I such that Gi = GN ∀i ≥ N and φij = IdGN whenever j ≥ N .
Clearly, the inverse limit in this case is lim←−Gi = GN since θ : GN → lim←−Gi given
by θ : g → (φNj(g)) is again a bijective homomorphism and a homeomorphism.

Example 1.1.14. Sometimes the inverse limit of a non-trivial inverse system
can in fact be trivial. This is the case for the inverse system {Gn, φnm, I} where
Gn = nZ for all n ∈ N, i.e. Gn is the additive group nZ with the discrete topology,
φnm : g 7→ g whenever m | n, and I is the poset N with the binary relation ‘|’.
Clearly, for any (gi) ∈ lim←−Gn we have gn = gm whenever m | n, i.e. gm ∈ nZ.
As a result, we see that for any i ∈ N we have gi ∈ kiZ for any k ∈ N, meaning
that gi ∈

⋂
k∈N

kiZ = {0}, so the only possible element in this inverse limit is the

identity element.
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Example 1.1.15. A simple example of an infinite inverse limit would be
that of the following inverse system {

∏n
i=1G, φnm,N}, where

∏n
i=1G is just

the product of a group G with the discrete topology n times, φnm are just
the natural continuous surjective homomorphisms given by the projections
φnm((x

(n)
1 , . . . , x

(n)
n )) = (x

(n)
1 , . . . , x

(n)
m ) (where (x

(n)
1 , . . . , x

(n)
n ) ∈

∏n
i=1 G), and N

is seen as a directed poset with respect to the relation ≤. Then the inverse limit
is given by lim←−

∏n
i=1G

∼=
∏∞

i=1 G. This is obvious, since the inverse limit is

lim←−

n∏
i=1

G =
{(

(x
(k)
1 , . . . , x

(k)
k )
)∞
k=1
∈
∞∏
k=1

k∏
i=1

G | φnm((x
(n)
i )ni=1) = (x

(m)
i )mi=1 when n ≥ m

}
=
{

(x
(k)
i ) ∈

∞∏
k=1

k∏
i=1

G | (x(n)
i )mi=1 = (x

(m)
i )mi=1 when n ≥ m

}
∼=
∞∏
k=1

G.

There are different approaches to gaining a better understanding of the inverse
limit. While finding isomorphisms is one way to obtain information, we can also
derive more general insights from the properties of the inverse system itself. The
following lemmas provide us with further insights into the structure of the inverse
limit that can be inferred from the structure of the inverse system.

Lemma 1.1.16. [5, Proposition 1.1.5][4, Lemma 1.1.2, Propositions 1.1.3–1.1.4]
Given an inverse limit lim←−Gi = G of an inverse system {Gi, φij, I} the following
hold:

(a) If Gi is Hausdorff ∀i ∈ I =⇒ G is Hausdorff.

(b) If Gi is totally disconnected ∀i ∈ I =⇒ G is totally disconnected.

(c) If Gi is Hausdorff ∀i ∈ I =⇒ G ≤c
∏
Gi.

(d) If Gi is compact and Hausdorff ∀i ∈ I =⇒ G is compact.

(e) If Gi is non-empty, compact and Hausdorff ∀i ∈ I =⇒ G is non-empty.

Proof. (a) The product of Hausdorff spaces is Hausdorff.

(b) The product of totally disconnected spaces is totally disconnected.

(c) Let (gi) ∈ (
∏
Gi \ lim←−Gi) then ∃ r, s ∈ I such that φrs(gr) 6= gs. Let

Ur′ = Uφrs(gr) ⊆ Gs and Us = Ugs ⊆ Gs be disjoint (this can be done due to
Hausdorffness), and let Ur = Ugr be such that φrs(Ur) ⊆ Ur′ (this can be done
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due to the continuity of φrs). Then
∏
Ui, where Ui = Gi ∀i 6= r, s is an open

neighbourhood of (gi) contained in (
∏
Gi \ lim←−Gi), so lim←−Gi is closed.

(d) By Tychonoff’s Theorem the product of compact spaces is compact, and
from (c) G is closed, so it is a closed subgroup of a compact group, meaning it is
compact.

(e) Defining Xj ∀j ∈ I as subsets of
∏
Gi satisfying φjk(gj) = gk for all k ≤ j,

we see that G =
⋂
Xj. Furthermore, using the same argument as in (c) ap-

plied to each Xj we see that these are closed subsets, and by the axiom of choice
they are non-empty, and since Xj ⊆ Xj′ when j ≥ j′, they satisfy the finite
intersection property (finite intersections are non-empty). Finally, since

∏
Gi is

compact
⋂
Xj is non-empty, otherwise the following would be an infinite open

cover
⋃
Xc
j which would have a finite subcover say

⋃
j∈F X

c
j =

∏
Gi, meaning

that
⋂
j∈F Xj = ∅, which contradicts the finite intersection property.

It is worth highlighting an important result that pertains to the commutativity of
inverse limits. As we will see, commutativity of a double inverse limit on a system
of doubly-indexed topological groups is guaranteed whenever certain properties
on the homomorphisms between the groups are satisfied. Furthermore, a doubly
indexed inverse limit can be expressed as a double inverse limit.

Proposition 1.1.17. [Author’s work] Given a collection of topological
groups {Gi

n}i∈In∈N with two indices and two sets of inverse systems on
it, namely {Gi

n, φ
i
nm, N} for any fixed i ∈ I and {Gi

n, φ
ij
n , I} for any

fixed n ∈ N such that φjnmφ
ij
n = φijmφ

i
nm, the following inverse sys-

tems arrise: {lim←−nG
i
n, φ

ij = (φijn )n∈N , I}, {lim←−iG
i
n, φnm = (φinm)i∈I , N} and

{Gi
n, φ

ij
nm = φijmφ

i
nm, N × I}. Furthermore, we have that the double inverse limits

commute and are isomorphic to the inverse limit indexed by N × I, i.e.

lim←−
n

lim←−
i

Gi
n
∼= lim←−

(n,i)

Gi
n
∼= lim←−

i

lim←−
n

Gi
n.

Proof. Using the description of the inverse limit given in Proposition 1.1.11(a),
and by the commutativity of the lattice of topological groups we have that

lim←−
n

lim←−
i

Gi
n = {(xin) ∈

∏
n∈N

lim←−
i

Gi
n | φnm((xin)i∈I) = (xim)i∈I}

= {(xin) ∈
∏
n∈N

∏
i∈I

Gi
n | φinm(xin) = xim and φijn (xin) = (xjn)}

= {(xin) ∈
∏
n∈N

∏
i∈I

Gi
n | φijmφinm(xin) = xjm}
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= lim←−
(n,i)

Gi
n

∼= {(xin) ∈
∏
i∈I

∏
n∈N

Gi
n | φijmφinm(xin) = xjm}

= {(xin) ∈
∏
i∈I

lim←−
n

Gi
n | φij((xin)n∈N) = (xjn)n∈N}

= lim←−
i

lim←−
n

Gi
n.

The following proposition demonstrates that every inverse limit of an inverse
system can be regarded as an inverse limit of a corresponding surjective inverse
system. Therefore, whenever we consider an inverse limit, we can always view it
in terms of a surjective inverse system.

Proposition 1.1.18. (Inspired by [4, Corollary 1.1.8(a)]) The inverse limit
{G, πi} of an inverse system {Gi, φij, I} of topological groups is isomorphic to
the inverse limit of a surjective inverse system, i.e. an inverse system with sur-
jective mappings φij.

Proof. We claim that the surjective inverse system we are looking for is the one
given by {πi(G), φij|πi(G), I}. First, we define the maps ψi : G→ πi(G) given by
ψi : (gk) 7→ πi((gk)) = gi, which are clearly well-defined compatible surjections,
hence by the universal property of the inverse limit they induce a continuous
homomorphism θ : G→ lim←− πi(G) given by θ : (gk) 7→ (ψi((gk))), which is clearly
the identity map, so it is an isomorphism. Finally, we note that this is indeed
a surjective inverse system since the mappings φij|πi(G) satisfy φij|πi(G)(πi(G)) =
φij(πi(G)) = πj(G) by the compatibility of the projections.

Just like we saw in the proposition above, we can have different inverse systems
having the same inverse limit. It turns out that for certain inverse systems, more
specifically those with compact Hausdorff topological groups, a similar kind of
result can be obtained. By restricting —following certain restriction rules— the
number of topological groups composing an inverse system we can find ”reduced”
inverse systems with the same inverse limit as our original inverse system. This
reduction is what we will call finding a cofinal subsystem to an inverse system.

Definition 1.1.19 (Cofinal Subset). A cofinal subset is a subset I ′ ⊆ I of a
directed poset that is also a directed poset and satisfies that ∀i ∈ I there is
an element i′ ∈ I ′ such that i ≤ i′. Given an inverse system with poset I the
subsystem with poset I ′ is called a cofinal subsystem.

Example 1.1.20. An example of a cofinal subset of N with the relation ≤ is the
subset of all even natural numbers.
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Lemma 1.1.21. [4, Lemma 1.1.9] Given an inverse system {Gi, φij, I} of com-
pact Hausdorff topological groups, and a cofinal subsystem {Gi, φij, I

′}, we have
that lim←− Gi

∼= lim←−Gi′ (topological and group isomorphism).

Proof. Define ψi : lim←−Gi′ → Gi as ψi = φi′iπi′ , where πi′ are the projections
of lim←−Gi′ . Then, since {ψi} are well-defined and compatible, by the universal
property of the inverse limit and from Proposition 1.1.11, these maps induce a
continuous homomorphism θ : lim←−Gi′ → lim←−Gi by θ : (gi′) 7→ (ψi((gi′))), which
we claim is a bijection. To prove injectivity, let (xi′), (yi′) ∈ lim←−Gi′ such that
θ((xi′)) = θ((yi′)) then ∀i ∈ I

ψi((xi′)) = ψi((yi′)) =⇒ φi′iπi′((xi′)) = φi′iπi′((yi′)) =⇒ xi = yi

i.e. (xi′) = (yi′). Now, for surjectivity we take an arbitrary (yi) ∈ lim←−Gi and see
that the element (xi′) ∈ lim←−Gi′ satisfying xi′ = yi′ ∀i′ ∈ I ′ is such that

θ((xi′)) = (ψi((xi′))) = (φi′iπi′((xi′))) = (φi′i(xi′)) = (φi′i(yi′)) = (yi).

Since θ is a bijective homomorphism it is a group isomorphism, so all that is left to
prove is that it is a topological isomorphism, i.e. a homeomorphism. Since the Gi

are compact and Hausdorff, by Lemma 1.1.16(a),(d) the domain and codomain of
θ are compact Hausdorff, meaning that θ is a closed map (because a closed subset
of a compact space is compact and continuous maps map compact sets to compact
sets, so the image of a closed subset is compact), and every compact subset in a
Hausdorff space is closed, meaning that θ sends closed sets to closed sets, which is
equivalent to its inverse being continuous, thus θ is indeed a homeomorphism.

The lemma mentioned above, which allows for reduction of inverse systems,
will prove to be particularly valuable in our forthcoming discussions of profinite
groups. Since profinite groups are instances of inverse limits of compact Hausdorff
inverse systems, we can utilize this lemma to obtain more explicit expressions for
certain profinite groups that we will be investigating. Moreover, these compact
and Hausdorff properties of the inverse systems composing profinite groups al-
low us to draw conclusions regarding the surjectivity of the projections when the
continuous homomorphisms between the topological groups are surjective.

Proposition 1.1.22. [4, Proposition 1.1.10] Given a non-empty compact Haus-
dorff inverse system {Gi, φij, I} where φij are surjective maps, the projections of
the inverse limit {lim←−Gi, πi} are also surjective.

Proof. For any k ∈ I and any g ∈ Gk, following the proof of Lemma 1.1.16(e) with
the sets Xj defined as Xj := {(gi) ∈

∏
Gi | gj ∈ φ−1

jk (g) and gi = φji(gj) ∀i ≤ j}
(which we know are non-empty by the use of Zorn’s Lemma and the fact that φjk
are surjective) we arrive at the conclusion that

⋂
j∈I
Xj 6= ∅, and clearly

⋂
j∈I
Xj ⊆

lim←−Gi, so for any (gi) ∈
⋂
j∈I
Xj we have (gi) ∈ lim←−Gi and πk((gi)) = g.
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1.2 Profinite Groups

In the following section we will explore the concept of profinite groups to better
understand the properties associated with them that make them so useful for
generalizing finite group theory to the infinite case.

Definition 1.2.1 (Profinite Group). A profinite group is a topological group
that is the inverse limit of a surjective inverse system of finite discrete topological
groups.

Given Proposition 1.1.18 the surjectivity condition on the construction of a profi-
nite group may be disregarded, but it is included in the definition here because
this is the way it is usually presented in the literature.

Example 1.2.2. We have already seen the construction of a profinite group given
in Example 1.1.15.

Example 1.2.3. The p-adic integers Zp̂ are an important and useful example of
profinite groups. Given the inverse system {Zpn , φnm,N} where Zpn are simply the
additive groups of integers modulo pn with the discrete topology, the maps φnm
are given by the natural surjective homomorphisms φnm : [z]pn 7→ [z]pm whenever
n ≥ m and the directed poset N is given by the relation ≤. Then, following the
construction presented in Proposition 1.1.11(a) we see that the inverse limit is
given by

lim←−Zpn := {(zi) ∈
∞∏
1

Zpn | zi ≡ zj (mod pi) whenever i ≤ j},

which is precisely the definition of the p-adic integers, i.e. Zp̂ = lim←−Zpn .

Example 1.2.4. A typical example of a profinite group is also the inverse limit
of the inverse system {Zn, φnm,N} where Zn are the additive groups of inte-
gers modulo n and φnm are the natural surjective homomorphisms given by
φnm : [z]n 7→ [[z]n]m whenever m | n. This group is sometimes called the profi-

nite completion of the integers and it is denoted Ẑ. We can then show that
this group is in fact isomorphic to

∏
p prime

Zp̂. By the Chinese Remainder Theo-

rem (see Theorem A.0.1), given a number n ∈ N and its factor decomposition

n = p
kp1 (n)
1 · · · pkpr (n)

r we can construct an isomorphism

Zn ∼= Z
p
kp1 (n)

1

× · · · × Z
p
kpr (n)
r

=
∏

p prime
p|n

Zpkp(n) .
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As a result we have that

Ẑ = lim←−Zn ∼= lim←−
n

∏
p prime
p|n

Zpkp(n) ,

which we can see is the inverse limit of a cofinal subsystem of the system of groups{ ∏
p prime
p|n

Zpkp(m)

}
(n,m)∈N×M

.

With this we can reexpress the inverse limit as a double inverse limit (using
Proposition 1.1.17 and Lemma 1.1.21)

lim←−
n

∏
p prime
p|n

Zpkp(n) ∼= lim←−
(n,m)

∏
p prime
p|n

Zpkp(m)
∼= lim←−

m

lim←−
n

∏
p prime
p|n

Zpkp(m) .

Then, using Proposition 1.1.17 and Example 1.1.15 we get that

lim←−
m

lim←−
n

∏
p prime
p|n

Zpkp(m)
∼= lim←−

n

∏
p prime
p|n

lim←−
m

Zpkp(m)
∼=

∏
p prime

lim←−Zpkp(n) .

Finally, the inverse limit lim←−Zpn is isomorphic to lim←−Zpkp(n) by Lemma 1.1.21
since it is the inverse limit of a cofinal subsystem, so∏

p prime

lim←−Zpkp(n) ∼=
∏

p prime

lim←−Zpn =
∏

p prime

Zp̂,

meaning that the profinite completion of the integers Ẑ is isomorphic to
∏

p prime

Zp̂.

Example 1.2.5. The subset of the set of integers modulo n, i.e. Zn, comprised
of those elements coprime to n can be seen as a multiplicative group. This group
is called the group of units of the integers modulo n (ring theoretical name that
expresses the idea of this being a subset of elements with multiplicative inverses),
denoted Z×n . From this idea we may construct the multiplicative group of the
p-adic integers as a profinite group from the inverse system {Z×pn , φnm,N}, where
φnm are defined as restrictions of the maps in the example above (these are still
clear homomorphisms under multiplication and they are well defined between
the sets of units because under these maps coprimes of n in Zpn are mapped to
coprimes of m in Zpm whenever m ≤ n). As a result, we have that lim←−Z×pn = Z×p̂ .

We can also define profinite groups in terms of some of their topological and
group properties. In fact, it turns out that these properties that fully characterize
profinite groups are not as restrictive as one might intuitively think.
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Lemma 1.2.6. [5, Corollary 1.2.4] Let G be a topological group. The following
are equivalent:

(a) The group G is a profinite group.

(b) The group G is isomorphic to some H ≤c
∏
Gi, where {Gi} are finite

discrete topological groups.

(c) The group G is compact and
⋂

NEoG
N = {e}.

(d) The group G is compact and totally disconnected.

Proof. (a)⇒(b) This follows from Lemma 1.1.16(c).

(b)⇒(c) Compactness comes from the fact that G is isomorphic to a closed
subset of the compact space

∏
Gi, i.e. it is isomorphic to a compact set. Now,

denoting by Ki := ker(πi) the kernel of πi (where πi :
∏
Gn → Gi are the

canonical projections) we can construct the sets Ni = Ki ∩ G. Clearly Ki are
open in

∏
Gi since the canonical projections are continuous, and so Ni are

open in the subspace topology of G. Finally, ∀g ∈ G we have gNig
−1 ∈ Ki

since πi(gNig
−1) = πi(g)eπi(g)−1 = e and gNig

−1 ∈ G therefore we have that
gNig

−1 ∈ Ni, so Ni Eo G, and
⋂
Ki = {e}, so

⋂
Ni = {e}, meaning that⋂

NEoG
N = {e}.

(c)⇒(a) Let I := {N | N Eo G} and let Ni = i ∈ I, then by Lemma 1.1.4(d)
G/Ni are finite ∀i ∈ I. Given the partial ordering on I by i ≤ j ⇐⇒ Ni ≥ Nj,
the following surjective continuous homomorphisms can be constructed
φij : Nig 7→ NjNig whenever i ≥ j, so {G/Ni, φij, I} is a surjective inverse
system of finite groups which we can endow with the discrete topology. Finally,
we prove the existence of an isomorphism of topological groups between G and
the inverse limit of said inverse system. We construct the following compatible
maps ψi : G→ G/Ni by ψi : g 7→ Nig, and then by the universal property of the
inverse limit these maps induce a continuous homomorphism θ : G → lim←−G/Ni

by θ(g) = (ψi(g)). Now we claim ker(θ) =
⋂
Ni, which is true since

g ∈ ker(θ) ⇐⇒ Ng = N ∀N ∈ I ⇐⇒ g ∈
⋂

Ni

so ker(θ) = {e}, i.e. θ is injective since it is a homomorphism with trivial
kernel. It is also surjective since it is induced by clearly surjective mappings, so
it is a bijection, hence, just like in the proof of Lemma 1.1.21, the map θ is an
isomorphism of topological groups, so G is a profinite group.
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(a)⇒(d) This follows from Lemma 1.1.16(a),(b).

(d)⇒(c) We will first prove that for any closed subset C ⊆c G we have
that C =

⋂
NEoG

NC. If x /∈ C then x ∈ Cc open, so Ccx−1 is an open set

by Lemma 1.1.4(a) and it clearly contains e, meaning that we can apply
Lemma 1.1.5, so ∃N Eo G such that N ⊆ Ccx−1, so Nx ⊆ Cc therefore
Nx ∩ C = ∅, i.e. the element x /∈ NC. As a result we gather that

⋂
NEoG

NC ⊆ C

and the other inclusion comes from the fact that C being closed implies it is
its own closure, i.e. it is the intersection of all closed sets containing it, and
NC is closed ∀N Eo G because it is open NC =

⋃
c∈C

Nc by Lemma 1.1.4(a),(b).

Finally, since G is compact and totally disconnected, using Lemma B.0.5 we see
that for any g ∈ G the set (G \ {g}) =

⋃
h∈(G\{g})

Uh —where Uh are clopen sets

not containing g— is a union of open sets, meaning that {g} is closed, therefore
{e} =

⋂
NEoG

N .

Corollary 1.2.7. [4, Proposition 2.2.1] The inverse limit of an inverse system
of profinite groups is a profinite group.

Proof. This follows from the lemma above together with Lemma 1.1.16.

Corollary 1.2.8. A subgroup of a profinite group is closed if and only if it is a
profinite group.

Proof. (⇒) Follows from the above lemma and the fact that closed subgroups in
compact spaces are compact.
(⇐) By the lemma above given a profinite group G with a subgroup H that is
also a profinite group we have that both are compact totally disconnected spaces.
Now, using Lemma B.0.5 we see that for any x ∈ Hc there is an open cover⋃
h∈H

Fh of H composed of clopen sets Fh satisfying that h ∈ Fh and x /∈ Fh.

By the compactness of H there must be a finite subcover H ⊆ F =
⋃n

1 Fi.
As a result, F is a closed subset of G —since it is the finite union of clopen
sets—, and x ∈ F c ⊆ Hc, meaning that for any point x ∈ Hc we can find an
open neighbourhood of x contained in Hc, i.e. Hc is open and so H must be
closed.

Profinite groups possess a remarkable attribute in that they can never be count-
ably infinite. This distinguishing feature arises directly from their topological
properties as compact totally disconnected spaces.

Proposition 1.2.9. [4, Proposition 2.3.1] Every profinite group is either finite
or uncountable.
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Proof. Assume G is infinite, we will first show that G 6=
⋃∞

1 Ci where Ci are
non-empty closed sets with empty interior. We search for a contradiction to the
statement G =

⋃∞
1 Ci. Then Di = (G \Ci) are dense open subsets. Then taking

U0 to be any non-empty open subset, clearly U0 ∩ D1 is a non-empty open set,
so by the same argument as in the first part of the proof in Lemma 1.1.5, there
exists U1 ⊆ U0 ∩D1 that is clopen and non-empty. But then, U1 ∩D2 is an open
non-empty subset, so we can find U2 ⊆ U1∩D2 that is clopen. By continuing this
process we get a descending chain of clopen sets U0 ⊇ U1 ⊇ U2 ⊇ · · · . Clearly
these sets Ui have the finite intersection property, and since G is compact we
have

⋂
Ui 6= ∅, but on the other hand

⋂
Ui ⊆

⋂
Di ⊆ (G \

⋃
Ci) = ∅, which is a

contradiction, so G 6=
⋃∞

1 Ci.
Finally, since G is a profinite group, by Lemma 1.2.6(d) we know it is compact
and totally disconnected, so using Lemma B.0.5 we see that for any g ∈ G the
set (G \ {g}) =

⋃
h∈(G\{g})

Uh —where Uh are clopen sets not containing g— is a

union of open sets, meaning that {g} is closed. As a result we see that if G were
countable then G =

⋃∞
1 {gi} where {gi} are non-empty closed sets with empty

interior, which is a contradiction, thus G is uncountable.
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2 Lagrange, Sylow and Galois Theorems

2.1 Index and Order of Profinite Groups

The notion of index of finite groups as the number of distinct right cosets of a
subgroup becomes too limiting if we only allow said numbers to be finite ones,
especially when considering infinite profinite groups. In order to circumvent this
problem a —not necessarily finite— notion of the index is introduced, and for
that the concept of supernatural numbers is utilized.

Definition 2.1.1 (Supernatural Numbers). A supernatural number is a num-
ber n that is the formal product of all primes to a non-negative (possibly infinite)
power, i.e.

n =
∏

p prime

pn(p) where n(p) ∈ N∞ .

Example 2.1.2. An example of a supernatural number is any natural number.
This is trivially true since natural numbers can be decomposed into prime factors.
The importance of supernatural numbers comes when distinguishing the factors
of different types of infinity. The supernatural number 2∞ is clearly not divisible
by the supernatural number 3∞, since they do not share any common factors, but
both numbers are infinite ones in the sense that they are an infinite power of a
natural number. This distinction is what we will later use to distinguish profinite
groups of infinite order that are constructed from finite groups of prime power
orders.

Under this definition the least common multiple of supernatural numbers is de-
fined as follows.

Definition 2.1.3 (Least Common Multiple). Given a set of supernatural num-
bers {ni}i∈I the least common multiple is

lcm{ni}i∈I =
∏

p prime

pn(p) where n(p) = max
i∈I
{ni(p)} .

Example 2.1.4. The least common multiple of the two supernatural numbers
n = 25611201013 and m = 3∞72112 is lcm{n,m} = 2563∞7211201013.

Now we are ready to introduce the idea of the index and order of a profinite
group.

Definition 2.1.5 (Index). The index of a closed subgroup H of a profinite
group G is (G : H) = lcm{[G : U ] | H ≤ U ≤o G}.
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Remark 2.1.6. Clearly this is a well-defined expression since it is induced by the
notion of index of finite groups. Notice that [G : U ] is finite by Lemma 1.1.4(d).
Furthermore, lcm{[G : U ] | H ≤ U ≤o G} = lcm{[G : NH] | N Eo G} since by
Lemma 1.1.5 for any U ≤o G such that H ≤ U , there exists N Eo G such that
NH ≤ U , meaning that [G : U ] | [G : NH].

Example 2.1.7. The subgroup H =
∏n

1{e} ×
∏∞

n C2 of the profinite group
G =

∏∞
1 C2 given as in Example 1.1.15 is clearly an open subgroup in its product

topology since it is a product with only finitely many open strict subgroups of the
group C2, so (G : H) = [G : H] and the number of distinct right cosets of H is
exactly 2n since there are 2n distinct elements in

∏n
1 C2, therefore (G : H) = 2n.

With the new definition of index, we can now express the infinite index of the
identity element of an infinite profinite group in terms of supernatural numbers.

Example 2.1.8. Taking our infinite profinite group to be G =
∏∞

1 C2 as in
Example 1.1.15, and since from Example 2.1.7 we know that the chain of open
subgroups Un =

∏n
1{e} ×

∏∞
n C2 satisfying that Un ⊇ Un+1 and Un ⊃ {e} for all

n ∈ N is such that [G : Un] = 2n, we have that

[G : {e}] = lcm{[G : U ] | {e} ≤ U ≤o G} = lim
n→∞

[G : Un] = lim
n→∞

2n = 2∞.

Proposition 2.1.9. [4, Proposition 2.3.2] Given H ≤c G where G is a profinite
group, then (G : H) <∞ if and only if H ≤o G.

Proof. (⇐) If H is an open subgroup of G then

(G : H) = lcm{[G : U ] | H ≤ U ≤o G} = [G : H] ,

and by Lemma 1.1.4(d) we have that [G : H] <∞, so (G : H) <∞.

(⇒) If the index is finite, i.e. (G : H) < ∞, then, since by Remark 2.1.6 we
have (G : H) = lcm{[G : NH] | N Eo G} and for any two N,M Eo G we have
that N ∩M Eo G then;

(G : H) = lcm{[G : NiH] | Ni Eo G, Ni+1 ≤ Ni} <∞.

As a result, we see that there is a k ∈ N such that Ni = Ni+1 ∀i > k, so
⋂
NiH is

a finite intersection of open sets, and using the same argument as in Lemma 1.2.6
proof (d)⇒(c) we see that H =

⋂
NiH, so H ≤o G.

Corollary 2.1.10. The index of a closed subgroup of a profinite group is finite
if and only if it has finitely many distinct cosets.

Proof. Follows from the proposition above together with Lemma 1.1.4.
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Remark 2.1.11. From this corollary we see that this new notion of index aligns
—in the finite case— with the idea of the index of a subgroup as the number
of distinct cosets of the subgroup, so from this point forward we shall denote
both notions of index by [G : H]. It is also important to point out that the
restriction in the definition of the index that makes the subgroup necessarily
closed is indeed essential to this alignment of concepts since it is required for the
proof of Proposition 2.1.9.

Following this new definition of index a natural definition of order of a group
arises as well.

Definition 2.1.12 (Order). The order of a profinite group G is |G| = [G : {e}].

Example 2.1.13. As shown in Example 2.1.8, the profinite group G =
∏∞

1 C2

is a group of order |G| = 2∞.

2.2 Lagrange and Sylow Theorems for Profinite Groups

In this section we will use the tools and concepts developed up to this point
to generalize Lagrange’s Theorem and the Sylow Theorems to profinite groups,
which, as we know, will be a generalization beyond the classical finite constitution
of these theorems.

Theorem 2.2.1 (Lagrange’s Theorem for Profinite Groups.). [5, Proposi-
tion 2.1.2] Given K ≤c H ≤c G where G is a profinite group then

[G : K] = [G : H] [H : K] .

Proof. First we notice that for any S ≤ G and any N Eo G, the set NS is open
in G because NS =

⋃
s∈S
Ns and Ns ⊆o G by Lemma 1.1.4(a). As a result, by

Lemma 1.1.4(d), we have that [G : NK] <∞ so we can use Lagrange’s Theorem
for Finite Groups (see Theorem A.0.2) to see that

[G : NK] = [G : NH] [NH : NK] = [G : NH] [H : (N ∩H)K] (∗)

(here the second equality is satisfied by the use of the First Isomorphism Theorem
(see Theorem A.0.3) on the homomorphism H → NH/NK given by h 7→ hNK
which has ker = H ∩NK).
Then we see that, by Remark 2.1.6, we have

[G : H] [H : K] = lcm{[G : NH] | N Eo G}lcm{[H : NK] | N Eo H}
= lcm{[G : N1H] [H : N2K] | N1 Eo G, N2 Eo H}.
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As a result, since in (∗) the subgroup (N ∩H) is a normal open subgroup in H,
we immediately get

[G : K] = lcm{[G : NK] | N Eo G} = lcm{[G : NH] [H : (N ∩H)K] | N Eo G}

divides

lcm{[G : N1H] [H : N2K] | N1 Eo G, N2 Eo H} = [G : H] [H : K] .

Now, if N1 Eo G and N2 Eo H then N2 is the intersection of H and an open
subset of G, so using Lemma 1.1.5 ∃M Eo G such that (M ∩H) ≤ N2. Finally,
letting N = M ∩ N1 and using (∗) we get that [G : N1H] [H : N2K] divides
[G : NH] [H : (N ∩H)K] = [G : NK], which implies that

[G : H] [H : K] = lcm{[G : N1H] [H : N2K] | N1 Eo G, N2 Eo H}

divides
lcm{[G : NH] [H : (N ∩H)K] | N Eo G} = [G : K] ,

meaning that [G : H] [H : K] = [G : K].

Now that we have an equivalent theorem to Lagrange’s concerning profinite groups
we can tackle the idea of extending the Sylow Theorems to profinite groups as
well. For this purpose we shall start by defining pro-p subgroups and p-Sylow
subgroups.

Definition 2.2.2 (Pro-p Subgroup). A pro-p subgroup is a closed subgroup H
of a profinite group G whose order |H| is a power of p.

Lemma 2.2.3. [5, Comment pg 35, Proposition 1.2.1] The following are equiv-
alent:

(a) The group G is a pro-p subgroup of a profinite group.

(b) The quotient G/N has p-power order for every N Eo G.

(c) The group G is the inverse limit of an inverse system of finite groups of
order a power of p.

Proof. (a)⇔(b) We have |G| = [G : {e}] = lcm{[G : N ] | N Eo G} = pn(p) for
some n(p) ∈ N∞ ⇐⇒ [G : N ] = pnN for some nN ∈ N, ∀N Eo G.

(a)⇒(c) The group G being a pro-p subgroup implies it is a closed subgroup
of a profinite group, and so, by Corollary 1.2.8, it is a profinite group. Finally,
following the same construction of an inverse system as in Lemma 1.2.6, proof of
(c)⇒(a), we see that G is an inverse limit to the inverse system of finite groups
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{G/N | N Eo G}, which by (b) are of p-power order.

(c)⇒(b) Since G is an inverse limit of an inverse system of finite groups of p-power
order, say {Gi}i∈I , it must have projection mappings say {πi}. Then we notice
that since {eGi} ≤c Gi (under the discrete topology every subset is clopen) and
{πi} are continuous homomorphism, we have ker(πi) Ec G (normality comes from
the fact that the kernel of a homomorphism is always a normal subgroup) and by
the First Isomorphism Theorem (see Theorem A.0.3) G/ ker(πi) ∼= πi(G) ≤ Gi,
hence [G : ker(πi)] <∞, therefore by Lemma 1.1.4(c) we have that ker(πi) Eo G.

We now claim that, given any N Eo G, ∃ k ∈ I such that ker(πk) ≤ N . To
prove this claim we start by noticing that

⋂
i∈I

ker(πi) = e, this is true since for any

g 6= e, expressing the element as a sequence g = (gi) ∈
∏
Gi, we see that there

must be some n ∈ I such that gn 6= e ∈ Gn, which implies that (gi) /∈ ker(πn),
meaning that g /∈

⋂
i∈I

ker(πi). Then N c is compact since it is a closed subset of

a compact set (here G is compact by Lemma 1.1.16) and
⋃
i∈I

ker(πi)
c is an open

cover of it since e =
⋂
i∈I

ker(πi) ⊆ N , meaning that there exists a finite subcover⋃
i∈F

ker(πi)
c for some F ⊆ I with |F | <∞ such that

⋂
i∈F

ker(πi) ⊆ N . Since I is a

directed poset there must be some k ∈ I such that k ≥ i for all i ∈ F and since
ker(πi) ≤ ker(πj) whenever i ≥ j, we must have ker(πk) ≤

⋂
i∈F

ker(πi) ≤ N . As a

result, using Lagrange, we get that

|G/N | = |G/ ker(πk)|
|N/ ker(πk)|

∣∣∣∣ |Gk|
|N/ ker(πk)|

hence |G/N | is a divisor of a p-power, so it is a p-power itself.

Example 2.2.4. An easy example of a pro-p group is the profinite group given
in Example 2.1.8. This group is indeed a pro-2 group since it is the inverse limit
of an inverse system of finite groups of order 2n.

Example 2.2.5. Another example we have seen of pro-p groups are the groups
of p-adic integers Zp̂ since, as seen in Example 1.2.3, they are constructed from
finite groups of order pn.

Definition 2.2.6 (p-Sylow Subgroup). A p-Sylow subgroup is a closed subgroup
H ≤ G of a profinite group G that is a maximal pro-p subgroup in the sense that
[G : H] is coprime to p.

Example 2.2.7. The subgroup (Zq̂ ×
∏

p prime
p6=q

{eZp̂}) (where eZp̂ is the identity in

the group Zp̂) of the group Ẑ given in Example 1.2.4 is a p-Sylow subgroup.
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It is important to note that both pro-p subgroups and p-Sylow subgroups could
still have infinite order, as demonstrated in the preceding example. Based on our
definition of supernatural numbers, as well as the definitions of index and order
that follow, these subgroups may potentially have orders that are infinite powers
of p.

Before proving the Sylow Theorems for profinite groups we need to introduce
a lemma concerning the index of intersections of chains of closed subgoups.

Lemma 2.2.8. [5, Lemma 2.1.3] Given a family of closed subgroups {Hj}j∈J of
a profinite group G that is a descending directed poset with respect to inclusion,
the following holds [

G :
⋂

Hj

]
= lcm{[G : Hj]}j∈J .

Proof. Clearly, by Lagrange lcm{[G : Hj]}j∈J divides [G :
⋂
Hj]. Now, given U

such that
⋂
Hj ≤ U ≤o G, it is true that

⋃
Hc
j is an open cover for U c which is

clearly compact since it is a closed subgroup in a compact space (here G is com-
pact by Lemma 1.2.6), meaning that there is a finite subset F ⊆ J such that

⋃
j∈F

Hc
j

is a finite subcover for U c, which implies that
⋂
j∈F

Hj ≤ U . Finally, since {Hj}j∈J is

a directed poset there is some k ∈ J such that Hk ≤ Hj for all j ∈ F , i.e. Hk ≤ U ,
so [G : U ] | [G : Hk], meaning that [G :

⋂
Hj] = lcm{[G : U ] |

⋂
Hj ≤ U ≤o G}

divides lcm{[G : Hj]}j∈J .

The subsequent theorem will present and establish the two generalizations of the
Sylow Theorems - the existence theorem and the conjugate theorem.

Theorem 2.2.9 (Sylow Theorems for Profinite Groups). [5, Proposition 2.2.2][4,
Corollary 2.3.6] Given a profinite group G and a prime p the following hold:

(a) The group G has p-Sylow subgroups.

(b) The p-Sylow subgroups of G are conjugate to each other.

Proof. (a) We first note that the set I of all subgroups of G of index coprime
to p is a non-empty (since G ∈ I) poset with the inclusion relation. Now, by
Lemma 2.2.8 we see that any chain of subgroups in I, i.e. any totally ordered
(and thus directed) subset of I, say {Hj}j∈J satisfies that

⋂
Hj ∈ I, i.e. has a

lower bound, so using Zorn’s Lemma (see Theorem A.0.7) there must be a mini-
mal element in I say P . The index [G : P ] is coprime to p, so proving that the set
P is a pro-p group is enough to prove that P is a p-Sylow subgroup. Assume for a
contradiction that P is not a pro-p group, then by Lemma 2.2.3 there exists some
N Eo G such that |P/N | is not a power of p. But, by the First Sylow Theorem
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for Finite Groups (see Theorem A.0.5) there is a p-Sylow subgroup Q/N < P/N .
Finally, Q is closed since it is the union of finitely many closed cosets of N by
Lemma 1.1.4(b),(a), so we can use Lagrange’s Theorem on the index of Q and
see that [G : Q] = [G : P ] [P : Q], meaning that [G : Q] is coprime to p, which
contradicts the minimality of P , so P must be a pro-p group.

(b) We shall prove this by proving that every pro-p subgroup T ≤ G is a subgroup
of a conjugate of a p-Sylow subgroup P ≤ G, i.e. T ≤ gPg−1 for some element
g ∈ G. First, take any N Eo G, then (N ∩ P ) Eo P and NP/N ∼= P/(N ∩ P )
by the Second Isomorphism Theorem for groups (see Theorem A.0.4), so using
Lagrange’s Theorem |P/(N ∩ P )||N ∩ P | = |P |, meaning that |NP/N | | |P |,
i.e. NP/N is a pro-p subgroup, and by the same argument NT/N is a pro-p
subgroup too. Furthermore, from Remark 2.1.6 we see that [G : NP ] | [G : P ]
and by Lagrange’s Theorem

[G : NP ] =
[G : N ]

[NP : N ]
=
|G/N |
|NP/N |

= [G/N : NP/N ]

so [G/N : NP/N ] is coprime to p, meaning that NP/N is a p-Sylow subgroup
of G/N . Now, using the Second Sylow Theorem for Finite Groups (see Theo-
rem A.0.6) (we know these groups are finite because the quotient group G/N is
finite by Lemma 1.1.4(d)) we see that the following set is non-empty

R(N) :=
⋃{

gN ∈ G

N
| (gN)−1NT

N
(gN) ≤ NP

N

}
= {g ∈ G | g−1NTg ≤ NP}

and it is closed since it is the union of closed cosets of N by Lemma 1.1.4(a).
Moreover, for M ≤ N , R(M) ⊆ R(N) because given the natural surjective
homomorphism φ : G/M → G/N given by φ : gM 7→ gN for any g ∈ R(M) we
have (gM)−1MT

M
(gM) ≤ MP

M
and so

(gN)−1NT

N
(gN) = φ

(
(gM)−1MT

M
(gM)

)
≤ φ

(MP

M

)
=
NP

N
,

meaning that g ∈ R(N). As a result we have that {R(N)}NEoG has the finite
intersection property because

R(Ni) ∩ · · · ∩R(Nk) ⊇ R(N1 ∩ · · · ∩Nk) 6= ∅

which, by compactness of G implies that
⋂

NEoG
R(N) 6= ∅, so there is an element

g ∈ G such that g−1NTg ≤ NP for all N Eo G. But then g−1Tg ≤ g−1NTg,
meaning that g−1Tg ≤

⋂
NEoG

NP and using the same argument as in Lemma 1.2.6

proof (d)⇒(c) we see that
⋂

NEoG
NP = P , so g−1Tg ≤ P as required.
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2.3 Galois Theory on Profinite Groups

As we have seen throughout the previous section, the topology on the profinite
groups is key to generalizing some of the most fundamental theorems on finite
groups to profinite groups. As such, in this section we will study the topology
of profinite groups this time looking at it from the perspective of Galois Theory.
We will construct Galois groups of infinite extensions as inverse limits of finite
Galois groups and we will reconstruct the Galois correspondence for these infi-
nite extensions generalizing the Fundamental Theorem of Galois Theory to these
profinite groups. Finally, we will show that, in fact, every profinite group can be
expressed as a Galois group, thus making Galois groups and profinite groups one
and the same.

We will start by first defining the field extensions on which the Galois corre-
spondence can be drawn, i.e. Galois extensions, and the corresponding Galois
groups.

Definition 2.3.1 (Galois Extension). A Galois extension is a field extension F/K
that is normal and separable (see Definitions A.0.13, A.0.15), i.e. the number of
distinct roots of any irreducible polynomial k ∈ K[t] in F is either 0 or exactly
the degree of k.

Example 2.3.2. A very simple example of a Galois extension is the extension
Q(i)/Q. This extension is normal since it is the splitting field of the polynomial
t2 +1 ∈ Q[t] and it is separable since it is an extension of a field of characteristic 0
[1, Theorem 7.22].

Example 2.3.3. Another more interesting example of a Galois extension is the
algebraic closure of any finite field F denoted Falg/F, where the algebraic closure
is the extension of all algebraic elements over F. This extension is clearly normal
since it is the splitting field of all the irreducible polynomials over F[t] and it is
separable because it is an algebraic extension over a finite field [1, Theorem 7.25].

Example 2.3.4. An example of another infinite Galois extension is that of
the compositum of all nth cyclotomic extensions over Q, i.e. the extension
Q(ζ1, ζ2, . . .) of all nth primitive roots of unity ζn. This extension, that we will
denote by Q(Ω), is clearly a normal extension since it is the splitting field of all
the polynomials tn− 1 ∈ Q[t], and again it is separable because it is an extension
of a field of characteristic 0.

Definition 2.3.5 (Galois Group). The Galois group of a Galois extension F/K
is the group of all automorphisms of F that fix K, i.e. K-automorphisms of F .
It is usually denoted Gal(F/K).
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Example 2.3.6. The Galois extension given in Example 2.3.2 is a finite extension
since it is a simple algebraic extension, and since it is a splitting field for the
polynomial t2 + 1 ∈ Q[t], by [1, Theorem 7.9], every element in Gal(Q(i)/Q) is
such that it permutes the roots of t2 + 1. Clearly there are only two possible
permutations i 7→ i and i 7→ −i, and the elements of Gal(Q(i)/Q) are fully
characterized by these two permutations —meaning that these are the only two
elements in the group—, so Gal(Q(i)/Q) ∼= C2.

As previously mentioned, establishing a correspondence between subgroups of a
Galois group and intermediate field extensions of the Galois extension necessitates
introducing a topological structure on the Galois group when dealing with infinite
extensions. The name of the specific topology required is the Krull topology.

Definition 2.3.7 (Krull Topology). The Krull topology on the Galois group of
a Galois extension F/K is the topology on which

F := {Gal(F/L) | L/K is a finite Galois extension}

forms a base of open neighbourhoods of e ∈ Gal(F/K).

Remark 2.3.8. Notice that the definition above indeed describes a topology
on Gal(F/K) compatible with its group structure. Since the maps B and
i from Definition 1.1.1 are continuous, which we know because the inverse
images of the open sets in F , B−1(Gal(F/L)) = Gal(F/L)×Gal(F/L) and
i−1(Gal(F/L)) = Gal(F/L) (where L/K is a finite Galois extension), are clearly
open sets in their respective topologies, the Krull topology is indeed compati-
ble. Furthermore, any base of neighbourhoods around the identity fully defines a
topology on a group since the left and right translation maps (x 7→ gx and x 7→ xg
respectively) are topological isomorphisms, meaning that a base of neighbour-
hoods of e automatically describes a base of neighbourhoods of g for any element
g in the group, i.e. a basis for a compatible topology is fully characterized by any
base of neighbourhoods of e.

Remark 2.3.9. It is also noteworthy to point out that the Krull topology on a finite
Galois group, Gal(F/K), is just the discrete topology. This is true because we
have that {e} = Gal(F/F ) ≤o Gal(F/K) ⇐⇒ F/K is a finite Galois extension,
and by finite Galois theory F/K is a finite Galois extension when Gal(F/K) is a
finite Galois group.

As it turns out, Galois groups with the Krull topology can be expressed as in-
verse limits of inverse systems of finite Galois groups with the discrete topology,
meaning that this newly defined topology is the same as the subspace topology of
the inverse limit with respect to the product topology of the finite Galois groups
composing the inverse system.

25



Lemma 2.3.10. [5, Lemma 3.1.1] Every Galois group Gal(F/K) with the Krull
topology is isomorphic to a profinite group.

Proof. Letting I := {Li | Li/K is a finite Galois extension and Li ⊆ F} with
the binary relation i ≤ j ⇐⇒ Li ⊆ Lj we see that this forms a directed
poset on the finite groups {Gal(Li/K)}i∈I . Furthermore, we can construct the
following continuous surjective homomorphisms φij : Gal(Li/K) → Gal(Lj/K)
by φij : σ 7→ σ|Lj whenever i ≥ j (surjectivity comes from the fact that isomor-
phisms of fields can be extended to isomorphisms of extensions when the said
extensions are finite splitting fields, see [1, Theorem 5.3]), so we have a surjective
inverse system of finite groups given by {Gal(Li/K), φij, I} (it is important to
note that by Proposition 1.1.22, the projections of the inverse limit of this inverse
system are also surjective). We now claim that the inverse limit of the said in-
verse system is isomorphic as a topological group to Gal(F/K) under the Krull
topology. The maps ψi : Gal(F/K)→ Gal(Li/K) by ψi : σ 7→ σ|Li form a family
of compatible mappings (continuity comes from the fact that the base of open
neighbourhoods of e ∈ Gal(Li/K) under the discrete topology is just {e}, and

ψ−1
i ({e}) = {σ ∈ Gal(F/K) | σ|Li ∈ {e} ⊆ Gal(Li/K)} = Gal(F/Li),

which is clearly an element in the base of neighbourhoods of e ∈ Gal(F/K)
under the Krull topology), therefore by the universal property of the inverse
limit there is a continuous homomorphism θ : Gal(F/K)→ lim←−Gal(Li/K) given
by θ : σ 7→ (ψi(σ)). Finally, given θ−1 : lim←−Gal(Li/K) → Gal(F/K) by
θ−1 : (σi) 7→ α where α(x) = σi(x) whenever x ∈ Li ∈ I, the map θ−1 is clearly
an inverse map to θ and it is also continuous since given an element of the
base of open neighbourhoods of e ∈ Gal(F/K) described in Definition 2.3.7,
say H = Gal(F/L), then we have that

θ(H) = {(σ|Li) ∈ lim←−Gal(Li/K) | σL = IdL} = π−1
L ({eGal(L/K)})

where eGal(L/K) is the identity in Gal(L/K) and πL is the projection of the inverse
limit to Gal(L/K), i.e. θ(H) is open in lim←−Gal(Li/K) since the projection πL is
continuous, meaning that θ is a topological isomorphism.

Corollary 2.3.11. Infinite countable subgroups of a Galois group are never closed.

Proof. This follows from the above lemma together with Corollary 1.2.8 and
Proposition 1.2.9.

With Lemma 2.3.10 we are now ready to construct some explicit examples of
infinite Galois groups. As demonstrated in the proof of the lemma, if we can
explicitly describe the Galois groups of every finite intermediate Galois extension
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—or a cofinal subset of these with respect to inclusion— of an infinite Galois
extension then we can describe the infinite Galois group as an inverse limit of
these finite groups.

Example 2.3.12. In the case of Example 2.3.3, the Galois group Gal(Falg/F)
turns out to be isomorphic to the profinite completion of the integers Ẑ given
in Example 1.2.4. This can be easily seen by first understanding what the finite
intermediate Galois extensions are. It can be proven, as given in [1, Theorem
6.2], that every finite field is of prime power order and that finite fields of same
order are isomorphic to each other. As a result, without loss of generality, we may
assume that F = Fpn where Fpn is a finite field of order pn. Then, for any finite
field extension F/Fpn with [F : Fpn ] = k, we have F ∼= (Fpn)k ∼= Fpnk . Moreover,
we know that for any m such that n | m, the extension Fpm/Fpn is normal since
by [1, Theorem 6.2] Fpm is a splitting field for the polynomial tp

m − t ∈ Fp[t].
Finally, as shown in [1, Theorem 6.3], the group Gal(Fpm/Fp) is cyclic, so using
finite Galois theory we see that Gal(Fpm/Fpn) ∼= Cm/n ∼= Zm/n and so, using
Lemma 1.1.21 and following the construction of the Galois group given in the
proof of Lemma 2.3.10 we get the following description of the infinite Galois
group Gal(Falg

pn /Fpn) ∼= lim←−Zn = Ẑ.

One final result is needed for the proof of the Fundamental Theorem. This result
helps us prove the surjectivity of the natural map between the Galois group of an
extension and the Galois group of an intermediate extension when the extensions
are possibly infinite.

Lemma 2.3.13. [Author’s work] Given a Galois extension F/K and an inter-
mediate Galois extension M/K, for any element σ ∈ Gal(M/K) there is some
element τ ∈ Gal(F/K) such that τ |M = σ.

Proof. Using the isomorphism from Lemma 2.3.10 the result is proved if we can
find some element (τi) ∈ lim←−Gal(Li/K) such that τi = σ|Li whenever Li ⊆ M
(every element in M is in some finite Galois extension Li ⊆M). Clearly, any ele-
ment in the set

⋂
Li⊆M
Li∈F

π−1
i ({σ|Li}) (where F is the set of finite intermediate Galois

extensions of F/K, and πn are the projections from lim←−Gal(Li/K) to Gal(Ln/K))
satisfies this condition, thus showing that this set is non-empty is enough to prove
the result. Indeed this set is non-empty since it is an intersection of closed sets
with the finite intersection property in a compact space. The sets π−1

i ({σ|Li})
are closed by the continuity of the projections. The finite intersection property
comes from the fact that any finite intersection

⋂
Li∈{Li}n1

π−1
i ({σ|Li}) contains the

set π−1
(Li)n1

({σ|(Li)n1 }) where (Li)
n
1 is the compositum of the extensions {Li}n1 and
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π(Li)n1
is the projection to Gal((Li)

n
1/K), which is clearly non-empty by the sur-

jectivity of π(Li)n1
(this containment holds because π−1

i ({σ|Li}) ⊆ π−1
j ({σ|Lj})

whenever Li ⊇ Lj). Finally, compactness comes from Lemma 1.2.6.

At last, we have reached the point where we can prove the Fundamental The-
orem of Galois Theory for profinite groups. However, this generalization of the
finite theorem comes with an important caveat. Specifically, the correspondence
between subgroups of the Galois group and the intermediate fields of the Galois
extension is not a bijective correspondence with all subgroups, but rather only
with those that are closed. This naturally makes sense, since, as we saw in Corol-
lary 1.2.8, the correspondence is with the subgroups that can also be expressed
as inverse limits of inverse systems of finite Galois groups.

Theorem 2.3.14 (FTGT for Infinite Extensions). [4, Theorem 2.11.3][5,
Theorem 3.2.1] Given a Galois extension F/K the map Φ : F→ G given by
Φ : M 7→ Gal(F/M) where

F := {M ⊆ F |M is an intermediate field extension} ; G := {H ≤c Gal(F/K)}

is an inclusion reversing bijection.

Proof. First we note that this map is indeed well defined since for any M ∈ F,
the group Gal(F/M) is a profinite group by Lemma 2.3.10 and so, using
Corollary 1.2.8, we see that this is indeed a closed subgroup of G = Gal(F/K).

In order to show Φ is a bijection we will show that Ψ : G → F given by
Ψ : H 7→ FH where FH := {x ∈ F | σ(x) = x, ∀σ ∈ H} (FH is called the fixed
field of H) is an inverse to Φ.

We claim that ΨΦ(M) = FGal(F/M) = M . Clearly FGal(F/M) ⊇ M by def-
inition of FGal(F/M). Now, ∀x ∈ FGal(F/M) we claim that the minimal polynomial
m of x over M is of degree 1, i.e. x ∈ M . If ∂m > 1 then ∃y ∈ F \M such
that y 6= x and m(y) = 0, but then M(x) ∼= M(y) (using [1, Corollary 3.24] an
isomorphism of fields that fixes M and sends x 7→ y can be constructed). Then,
given the splitting field of m say Sm we have that the isomorphism M(x) ∼= M(y)
can be extended to an M -automorphism of Sm say σ ∈ Gal(Sm/M) (using [1,
Theorem 5.3]), that sends x 7→ y. Then, using Lemma 2.3.13 we see that σ can
be extended to an element of Gal(F/M), say τ , such that τ(x) = y, meaning
that x /∈ FGal(F/M), which is a contradiction.

Next, we claim that ΦΨ(H) = Gal(F/FH) = H. Clearly, we have that
Gal(F/FH) ≥ H by the definition of FH . To prove Gal(F/FH) = H we will
show that H is dense in Gal(F/FH), i.e. for any τ ∈ Gal(F/FH) any element
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in the base of open neighbourhood of τ , say τGal(F/L) where L/FH is a finite
Galois extension, is such that τGal(F/L) ∩ H 6= ∅. Since ∀σ ∈ H we have
σ(L) = L (given any normal extension L/FH and any τ ∈ Gal(F/FH) for any
x ∈ L with minimal polynomial m ∈ FH [t] we have that m(τ(x)) = τ(m(x)) = 0,
i.e. τ(x) is a root of m, so τ(x) ∈ L, i.e. τ(L) ⊆ L, and since τ is a bijection
τ(L) = L), this clearly implies that S = {σ|L | σ ∈ H} ≤ Gal(L/FH). We
claim that S = Gal(L/FH), which —by finite Galois theory— we know is true if
and only if LS = FH . Since S ≤ Gal(L/FH) we obviously have FH ⊆ LS ⊆ L
and for every x ∈ LS = {x ∈ L | σ|L(x) = x, ∀σ ∈ H} we have x ∈ L ⊆ F
and σ(x) = x ∀σ ∈ H, thus x ∈ FH , meaning that LS ⊆ FH . As a result
τ |L ∈ Gal(L/FH) = S = {σ|L | σ ∈ H}, meaning that there is σ ∈ H
such that σ|L = τ |L, i.e. τ−1σ ∈ Gal(F/L), so σ ∈ τGal(F/L) ∩ H, hence
Gal(F/FH) = H = H.

Corollary 2.3.15. A closed subgroup H of a Galois group Gal(F/K) is of the
form H = Gal(F/FH).

Proof. By the above theorem since H = ΦΦ−1(H) = Gal(F/FH).

Proposition 2.3.16. [3, Proposition 7.12] For any subgroup of a Galois group
H ≤ Gal(F/K) we have that H = Gal(F/FH).

Proof. First we notice thatH ≤ Gal(F/FH) by the definition of the fixed field and
Gal(F/FH) is closed since it is isomorphic to a profinite group by Lemma 2.3.10,
meaning it is closed by Corollary 1.2.8. As a result H ⊆ Gal(F/FH). Now, since
the setH is a closed subgroup by Lemma 1.1.4(g) and by Corollary 2.3.15 we know

that H = Gal(F/FH) and since FH ⊇ FH we have Gal(F/FH) ≤ Gal(F/FH),
and so H ≤ Gal(F/FH) ≤ H, meaning that H = Gal(F/FH).

Lemma 2.3.17 (FTGT for Normal Extensions). [4, Theorem 2.11.3][5, Proposi-
tion 3.2.2] Given an intermediate field extension M of F/K, the extension M/K
is normal if and only if Φ(M) E Gal(F/K). Furthermore, if Φ(M) E Gal(F/K)
then Gal(M/K) ∼= Gal(F/K)/Φ(M).

Proof. To prove this we will first show that M/K is normal iff τ(M) = M for
all τ ∈ Gal(F/K). Given any τ ∈ Gal(F/K) and any x ∈ M with minimal
polynomial m ∈ K[t] we have that m(τ(x)) = τ(m(x)) = 0, i.e. τ permutes
the roots of m, so if the extension M/K is normal then τ(x) is a root of m, so
τ(x) ∈ M , i.e. τ(M) ⊆ M , and since τ is a bijection τ(M) = M . On the other
hand, if for any τ ∈ Gal(F/K) we have that τ(M) = M then for any x ∈ M
with minimal polynomial m ∈ K[t] such that ∂m > 1, given any other root y of
m such that y 6= x we can construct an element of Gal(F/K) (following the same
procedure as in paragraph 3 in the proof of Theorem 2.3.14), say σ, that satisfies
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that σ(x) = y, but then, from the assumption σ(M) = M , so y ∈ M , meaning
that M/K is normal.

Now, clearly, if M/K is a normal extension then for any τ ∈ Gal(F/K) we have
that τ(M) = M , so given σ ∈ Φ(M) = Gal(F/M) we have that τ−1στ ∈ Φ(M),
i.e. the subgroup Φ(M) is normal. Moreover, if Φ(M) E Gal(F/K) then for any
τ ∈ Gal(F/K) we have that τ−1στ ∈ Gal(F/M) ∀σ ∈ Gal(F/M). So, if for some
x ∈ M we have τ(x) /∈ M then ∃α ∈ Φ(M) such that α(τ(x)) 6= τ(x) (otherwise
τ(x) ∈ FΦ(M), τ(x) /∈ M , which contradicts M = Φ−1Φ(M) = FΦ(M)), meaning
that τ−1ατ(x) 6= x, i.e. τ−1ατ |M 6= IdM , which contradicts the fact that the ele-
ment τ−1ατ ∈ Gal(F/M), so τ(x) ∈ M , i.e. τ(M) = M . Therefore, M/K must
be a normal extension.

Finally, if Φ(M) E Gal(F/K) then by the above τ(M) = M ∀τ ∈ Gal(F/K), so
the map λ : Gal(F/K)→ Gal(M/K) by λ : σ 7→ σ|M is a well-defined surjective
homomorphism, and ker(λ) = Gal(F/M) = Φ(M), so using the First Isomor-
phism Theorem (see Theorem A.0.3) we get that Gal(M/K) ∼= Gal(F/K)/Φ(M).

As we mentioned at the beginning of this section, every profinite group can in
fact be expressed as the Galois group of some extension. The following proof
will show a way of constructing such a Galois extension, but, as we will see, this
construction does not allow us to freely choose the base field of the extension.
It turns out that expressing finite groups as Galois groups of an extension of a
given base field is an ongoing problem mathematicians have been working on for
centuries. The so called Inverse Galois Problem, devised in the 19th century, that
asks whether every finite group can be expressed as a Galois group of a Galois
extension over the base field Q is an open question yet to be answered.

Lemma 2.3.18. [5, Theorem 3.3.2][4, Theorem 2.11.5] Every profinite group is
a Galois group.

Proof. To prove this we will show that for any profinite group G we can construct
a Galois field extension such that the Galois group of the said field extension is
precisely G. In order to do this we will first start by taking an arbitrary field K
and denote by F := K(T ) the compositum of the field extensions of K with the
transcendentals in T , where T =

⋃
NEoG

G/N . Now, G acts on T in a natural way

G×T → T by (g, hN) 7→ ghN . This action permutes the elements of T , so G can
be seen as a set of K-automorphisms on F , and in fact this set of automorphisms
is a subgroup of AutK(F ). Finally, we claim that F/FG is a Galois extension and
that Gal(F/FG) = G.
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To prove that F/FG is a Galois extension we take an arbitrary element f ∈ F .
Now, letting Gf := {g ∈ G | g(f) = f}, i.e. the stabilizer of f , then, since the
element f can be expressed as an element in the K-vector space F = K(T ), it
can be expressed as a finite linear combination of elements in T , say {ti}n1 , where
ti ∈ G/Ni for all i ∈ I = {1, . . . , n}, given any g ∈

⋂n
1 Ni we have that g(ti) = ti

for all elements i ∈ I, so g(f) = f , i.e. g ∈ Gf , meaning that
⋂n

1 Ni ⊆ Gf and⋂n
1 Ni is open since it is a finite intersection of open sets, so by Lemma 1.1.4(e)

we have that Gf ≤o G. Now, since Gf is open, by Lemma 1.1.4(d) we gather
that [G : Gf ] < ∞, so the orbit of f , Gf := {g(f) ∈ F | g ∈ G}, is finite by
the Orbit-Stabilizer Theorem (see Theorem A.0.8). Finally, we will prove that f
is algebraic over FG and that it is separable and then we will show that F/FG

is normal. Since |Gf | < ∞ we may assume, without loss of generality, that
Gf = {fi}r1 for some fi ∈ F where f1 = f , and we may construct the polynomial

p(x) =
r∏
1

(x− fi) = urx
r + · · ·+ u1x+ u0

where {ui}r1 lie in a splitting field of p. Then p is such that for any g ∈ G we have

g(p(x)) =g(
r∏
1

(x− fi)) =
r∏
1

g(x− fi)

=
r∏
1

(g(x)− g(fi)) =
r∏
1

(g(x)− fi) = p(g(x)),

so the coefficients of p must be in FG (otherwise if ui /∈ FG for some i ∈ {0, . . . , r}
then ∃g ∈ G such that g(ui) 6= ui, so g(p(x)) 6= p(g(x))), i.e. p(x) ∈ FG [x], so f
is algebraic over FG. Now, since p has non-repeated roots, the minimal polyno-
mial of f is separable over FG, i.e. F/FG is separable. Moreover, the extension
FG({fi}r1)/FG is a normal extension (this is because it is a splitting field of p over
FG) and clearly F is the compositum of all such extensions ∀f ∈ F , so F is the
compositum of normal extensions over FG, meaning that it is a normal extension
over FG (the compositum of splitting fields of polynomials is a splitting field for
the union of the polynomials). As a result F/FG is a normal and separable ex-
tension and therefore a Galois extension.

Now, to prove that Gal(F/FG) = G we notice that if G ≤c Gal(F/FG) then,
by the FTGT for Infinite Extensions, G = ΦΦ−1(G) = Gal(F/FG), so all we
need to prove is that G is closed in Gal(F/FG). First we claim that the inclu-
sion mapping α : G → Gal(F/FG) is continuous. We will prove this by showing
that the inverse image of any element in the base of open neighbourhoods of
e ∈ Gal(F/FG) is open in G. Any element in the base of open neighbourhoods of
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e in the Krull topology is of the form Gal(F/M) where M/FG is a finite Galois
extension. Since M/FG is normal and finite, it is a splitting field for a poly-
nomial with roots {ai}s1 ⊆ F , so we may write M as M = FG({ai}s1). Then,
for any g ∈

⋂s
1Gai , g(M) = IdM , i.e. g ∈ Φ(M) = Gal(F/M) and g ∈ G,

so g ∈ G ∩ Gal(F/M), hence
⋂s

1Gai ⊆ G ∩ Gal(F/M) and since
⋂s

1Gai is a
finite intersection of open sets in G, by Lemma 1.1.4(e) we have that the set
G ∩ Gal(F/M) is open in G, proving that α is continuous. Now that we have
that α is continuous it is straightforward to see that, since G is compact α(G) is
compact and so it is a compact subset in a Hausdorff space Gal(F/FG) (where
Gal(F/FG) is Hausdorff because it is a profinite group by Lemma 2.3.10 and
profinite groups are Hausdorff by Lemma 1.1.16(a)), so α(G) = G is closed in
Gal(F/FG).
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3 Examples of Infinite Galois Groups over Q
In this section we will explore two examples of Galois groups of infinite Galois
extensions over the base field Q and an example that illustrates the existence of
subgroups of infinite Galois groups that are closed but not open under the Krull
topology. In order to construct these examples the following lemma by the author
will be utilized.

Lemma 3.0.1. [Author’s work] Given a Galois extension KF/K where KF is a
splitting field for a countable family of polynomials F = {pi}i∈N in K[t] we have
that

Gal(KF/K) ∼= lim←−Gal(Kn/K)

where Kn is a splitting field for the polynomials {pi}n1 over K.

Proof. From Lemma 2.3.10 we know that Gal(KF/K) ∼= lim←−Gal(M/K) where
M/K are intermediate finite Galois extensions. We claim that the subcollection
of extensions {Kn}n∈N forms a cofinal subsystem of the inverse system of interme-
diate finite Galois extensions. To prove this all we need to show is that for any M
in the inverse system there is some n ∈ N such that M ⊆ Kn. Since the extension
M/K is a finite Galois extension it can be expressed as M = K(a1, . . . , ar) for
some ai ∈ KF . Now, since KF = K(RF) where RF is the set of roots of the poly-
nomials in F andK(RF) can be seen as a vector space over the fieldK with a basis
{el}l∈L ⊆ RF where L is just an indexing set, we may express the elements ai in
terms of finitely many basis elements. As a result we see that M ⊆ K({el}l∈LM )
for some finite subset LM ⊆ L. Finally, M is now clearly seen to be contained in
a splitting field of some finite subfamily of F , which in turn must be contained in
some Kn for large enough n, so {Kn}n∈N does indeed form a cofinal subsystem,
which by Lemma 1.1.21 proves that Gal(KF/K) ∼= lim←−Gal(Kn/K).

The following propositions will also help us construct our first example. Note
that the isomorphism in the first proposition is just a group isomorphism, not
necessarily a topological isomorphism.

Proposition 3.0.2. [5, Exercise 3.4 1a)] Given a Galois extension N/K and
another extension M/K (not necessarily Galois) the extension NM/M , where
NM is the compositum of both extensions, is a Galois extension. Furthermore,
there is a group isomorphism Gal(NM/M) ∼= Gal(N/(N ∩M)).

Proof. As we saw in the proof of Lemma 2.3.17, any intermediate extension L/T
of the Galois extension T alg/T is normal iff σ(L) = L for all σ ∈ Gal(T alg/T ).
Now, since for any α ∈ Gal(Malg/M) we have α(NM) = α(N)α(M) and the
extension N/K being normal implies that α ∈ Gal(Malg/M) ⊆ Gal(Kalg/K)
(here the containment is satisfied by Lemma B.0.3) is such that α(N) = N ,
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so α(NM) = α(N)α(M) = NIdM(M) = NM , meaning that the extension
NM/M is normal. To prove separability we see that, since the extension N/K
is separable, meaning that every element of N is separable over the field K,
which implies that every element of N is separable over M since M ⊇ K, and
MN = M(N), for any S ⊆ N such that |S| <∞ the elements of S are separable
over M , so every finite intermediate extension of MN/M is separable, meaning
that the extension M(N)/M is separable.

Finally, to prove the existence of the isomorphism we notice that the map
α : Gal(NM/M)→ Gal(N/N ∩M) given by the restriction α : σ 7→ σ|N is a clear
homomorphism of groups. Moreover, the map β : Gal(N/N∩M)→ Gal(NM/M)
given by β : σ 7→ φ where for any x ∈ NM (x can be expressed in terms of a
basis {ni}i∈I ⊆ N of the vector space M(N) over the field M as a finite sum
x =

∑
mini) the automorphism φ is given by φ(x) =

∑
miσ(ni), is a clear

inverse to α, meaning that it is a bijective homomorphism, and so a group
isomorphism.

Proposition 3.0.3. [5, Exercise 3.4 1b)] Given two Galois extensions N/K and
M/K the extension NM/(N ∩ M), where NM is the compositum of both ex-
tensions, is a Galois extension. Furthermore, there is a group and topological
isomorphism Gal(NM/(N ∩M)) ∼= Gal(N/(N ∩M))×Gal(M/(N ∩M)).

Proof. As we saw in the proof of Lemma 2.3.17, any intermediate extension L/T
of the Galois extension T alg/T is normal iff σ(L) = L for all σ ∈ Gal(T alg/T ).
Now, since for any α ∈ Gal(Kalg/K) we have α(NM) = α(N)α(M) and N/K,
M/K being normal implies that α(N) = N , and α(M) = M , we gather that
α(NM) = α(N)α(M) = NM , meaning that NM/K is normal, which implies
that NM/(N ∩M) is normal. To prove separability we see that, since N = K(N)
and M = K(M), we may express NM as NM = K(N,M) = K(N ∪M). Fur-
thermore, since N/K and M/K are separable over K, we have that for any subset
S ⊆ N ∪M such that |S| < ∞, the elements of S are separable over K, mean-
ing that the extension NM/K is separable, which implies that NM/(N ∩M) is
separable.

Now, to show the existence of the isomorphism we see that the following map α :
Gal(NM/(N ∩M))→ Gal(N/(N ∩M))×Gal(M/(N ∩M)) given by the restric-
tions α : σ 7→ (σ|N , σ|M) is a clear homomorphism. Moreover, we can construct
a map β : Gal(N/(N ∩M))×Gal(M/(N ∩M))→ Gal(NM/(N ∩M)) given by
β : (σ, τ) 7→ φ where for any x ∈ NM = M(N) (x can be expressed in terms of
a basis {ni}i∈I ⊆ N of the vector space M(N) over the field M as a finite sum
x =

∑
mini) φ(x) =

∑
σ(mi)τ(ni). The map β is a clear inverse to α, meaning

that α is a bijective homomorphism, i.e. a group isomorphism.

34



The map α maps open sets to open sets. The openness of this map comes
from the fact that given any element in the base of open neighbourhoods of
e ∈ Gal(NM/(N ∩M)), say Gal(NM/L) where L/(N ∩M) is a finite Galois
extension, we have that

α(Gal(NM/L)) ={(g|N , g|M) | g ∈ Gal(NM/L)}
=Gal(N/L)×Gal(M/L)

(clearly {(g|N , g|M) | g ∈ Gal(NM/L)} ⊆ Gal(N/L)×Gal(M/L), and, for
any (σ, τ) ∈ Gal(N/L)×Gal(M/L), the element g ∈ Gal(NM/L) given by
g(x) =

∑
σ(mi)τ(ni), where x =

∑
mini is the representation of the element

x ∈ NM in terms of a basis of the vector space NM , is such that g|N = σ and
g|M = τ , so {(g|N , g|M) | g ∈ Gal(NM/L)} ⊇ Gal(N/L)×Gal(M/L)), and so el-
ements in the base of open neighbourhoods of e ∈ Gal(NM/(N∩M)) are mapped
to the product of elements in the open neighbourhoods of e ∈ Gal(N/(N ∩M))
and e ∈ Gal(M/(N ∩M)).

Finally, since α is an open map, β is continuous and Gal(NM/(N ∩ M))
is compact and Hausdorff by Lemma 2.3.10 and Lemma 1.2.6, and by the same
reasoning Gal(N/(N ∩M))×Gal(M/(N ∩M)) is also compact and Hausdorff
since it is a product of compact Hausdorff spaces, we have that β is a closed
map (closed subsets in a compact space are compact and continuous maps
map compact subsets to compact subsets, and compact subsets in a Hausdorff
space are closed), i.e. α is continuous bijective map between compact Hausdorff
spaces, so it is closed, and so β is a bijective homeomorphism, in other words a
topological isomorphism.

The following example is one that is normally found in the literature, but that is
usually proved using the much more powerful Kronecker-Weber Theorem. This
theorem asserts that every finite Galois extension of the rational numbers with
abelian Galois group is a subfield of a cyclotomic extension. Unfortunately, the
proof of this theorem falls outside the scope of what is contained in this thesis.
We will instead use the lemma given at the beginning of this section, to keep this
thesis as self-contained as possible.

Example 3.0.4. We will now find a more explicit representation of the Galois
group of the extension given in Example 2.3.4. This Galois group can be shown to
be Gal(Q(Ω)/Q) ∼= Ẑ×. In order to show this we will make use of Lemma 3.0.1 and
some results on cyclotomic extensions. We start by noticing that for any n ∈ N
we have Q({ζi}n1 ) = Q(ζlcm{1,...,n}) by Lemma B.0.4. Now, using Lemma 3.0.1, we
see that

Gal(Q(Ω)/Q) ∼= lim←−Gal(Q({ζi}n1 )/Q) = lim←−Gal(Q(ζlcm{1,...,n})/Q).
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But {Gal(Q(ζlcm{1,...,n})/Q)}n∈N is clearly just a cofinal subsystem of the inverse
system given by the family of topological groups {Gal(Q(ζn)/Q)}n∈N, so, using
Lemma 1.1.21, we have

lim←−Gal(Q(ζlcm{1,...,n})/Q) ∼= lim←−Gal(Q(ζn)/Q).

Finally, by Lemma B.0.2 we know that Gal(Q(ζn)/Q) ∼= Z×n , meaning that
Gal(Q(Ω)/Q) ∼= lim←−Z×n = Ẑ×.

It is important, and not so trivial, to point out that not every subgroup of a Galois
group is closed. This can be seen by looking at the example of the integers Z,
which are a countably infinite subgroup of the additive group Zp̂, which is a Galois
group by Lemma 2.3.18, therefore following Corollary 2.3.11 Z is not closed.
This means that the Galois correspondence for infinite Galois extensions does
not always correlate all the subgroups of a Galois group to all the intermediate
extensions of its Galois extension the way the finite Galois correspondence does.
Some information is indeed lost when studying the correspondence in the infinite
case.

Example 3.0.5. The same way there are subgroups in a Galois group that are not
closed there are also subgroups that are closed but not open, these are precisely
the closed subgroups of infinite index (as shown by Lemma 1.1.4(c),(d)). One
such example is the subgroup Gal(Q(Ω)/Q({ζp}p∈P )) ≤c Gal(Q(Ω)/Q) (where P
represents the set of prime numbers), which is closed by Corollary 1.2.8 and it is of
infinite index since, by Lemma 2.3.17, its index is equal to |Gal(Q({ζp}p∈P )/Q)|,
which we will see is an infinite group.

We will now try to find more explicit formulations for both these groups. We
will start with the group Gal(Q({ζp}p∈P )/Q). Using Lemma B.0.4 we see that
given Pn := {p ∈ P | p ≤ n}, we have Q(ζq) ∩ Q({ζp}p∈(Pn\{q})) = Q for any
q ∈ Pn. This together with Proposition 3.0.3 and induction on the order of the
subset Pn leads us to the isomorphism

Gal(Q({ζp}p∈Pn)/Q) ∼=
∏
p∈Pn

Gal(Q(ζp)/Q).

Now, using Lemma 3.0.1, we see that

Gal(Q({ζp}p∈P )/Q) ∼= lim←−Gal(Q({ζp}p∈Pn)/Q) ∼= lim←−
∏
p∈Pn

Gal(Q(ζp)/Q),

which, as shown in Example 1.1.15, gives

Gal(Q({ζp}p∈P )/Q) ∼=
∏
p∈P

Gal(Q(ζp)/Q).
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Finally, using Lemma B.0.2 we arrive at the isomorphism

Gal(Q({ζp}p∈P )/Q) ∼=
∏
p∈P

Z×p .

Now, for the group Gal(Q(Ω)/Q({ζp}p∈P )), using again Lemma 3.0.1 we see that

Gal(Q(Ω)/Q({ζp}p∈P )) ∼= lim←−Gal(Q(Ωn)({ζp}p∈P )/Q({ζp}p∈P ))

where Ωn := {ζi | i ≤ n}. Then, by Proposition 3.0.2 we know that this in-
verse limit is in fact isomorphic to lim←−Gal(Q(Ωn)/Q({ζp}p∈Pn)). Now, using
Lemma B.0.4 with induction on |Ωn| we see that

Q({ζqk}k∈Kn(q))({ζp}p∈Pn) ∩Q({ζpk}p∈Pn\{q}
k∈Kn(p)

)({ζp}p∈Pn) = Q({ζp}p∈Pn)

for any q ∈ Pn, where Kn(p) := {k ∈ N | pk ≤ n}. With this we can now use
Proposition 3.0.3 to find that

lim←−Gal(Q(Ωn)/Q({ζp}p∈Pn))

∼=

lim←−
∏
q∈Pn

Gal(Q({ζqk}k∈Kn(q))({ζp}p∈Pn)/Q({ζp}p∈Pn)).

After this step we can use Proposition 3.0.2 one more time to get

lim←−
∏
q∈Pn

Gal(Q({ζqk}k∈Kn(q))({ζp}p∈Pn)/Q({ζp}p∈Pn))

∼=

lim←−
∏
q∈Pn

Gal(Q({ζqk}k∈Kn(q))/Q(ζq)).

Finally, we claim that

Gal(Q({ζqk}k∈Kn(q))/Q(ζq)) ∼= {z ∈ Z×
qmn(q) | z ≡ 1 (mod q)}

where mn(q) = max{k ∈ Kn(q)}. This last claim is true since, using Ga-
lois theory, we know that this Galois group is a subgroup of the Galois group
Gal(Q({ζqk}k∈Kn(q))/Q), which we know is isomorphic to Z×

qmn(q) by Lemma B.0.4

and Lemma B.0.2. Furthermore, Gal(Q({ζqk}k∈Kn(q))/Q(ζq)) is the subgroup
whose automorphisms fix ζq. Since, as seen in the construction of the isomorphism
in Lemma B.0.2, the automorphisms of the Galois group Gal(Q(ζqmn(q))/Q) can
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be given by ζqmn(q) 7→ ζj
qmn(q) for some j ∈ Z×

qmn(q) , the automorphism of j ∈ Z×
qmn(q)

is such that that ζq = ζq
m−1

qm 7→ ζjq
m−1

qm (here for simplicity we use m = mn(q)).

As a result, we see that ζq
m−1

qm = e
2πi(qm−1+kqm

qm
) = e

2πijqm−1

qm = ζjq
m−1

qm if and only if

qm−1 + kqm = jqm−1

1 + kq = j,

i.e. the js such that ζq 7→ ζq are precisely those congruent to 1 (mod q). Finally,
we have that

lim←−
∏
q∈Pn

Gal(Q({ζqk}k∈Kn(q))/Q(ζq)) ∼= lim←−
∏
q∈Pn

{z ∈ Z×
qmn(q) | z ≡ 1 (mod q)}

and, using Lemma 1.1.21 together with Proposition 1.1.17 (just like we did in
Example 1.2.4), this can be expressed (in terms of an isomorphism) as a double
inverse limit

lim←−
m

lim←−
n

∏
q∈Pn

{z ∈ Z×qm | z ≡ 1 (mod q)},

which following Example 1.1.15 and Example 1.2.5 can be solved to give us

lim←−
m

lim←−
n

∏
q∈Pn

{z ∈ Z×qm | z ≡ 1 (mod q)} ∼=
∏
q∈P

{z ∈ Z×q̂ | z ≡ 1 (mod q)},

so
Gal(Q(Ω)/Q({ζp}p∈P )) ∼=

∏
q∈P

{(zi) ∈ Z×q̂ | zi ≡ 1 (mod q)}.

As a result, by Lemma 2.3.17, we see that∏
q∈P

Z×q̂∏
q∈P
{(zi) ∈ Z×q̂ | zi ≡ 1 (mod q)}

∼=
∏
q∈P

Z×q .

We will finish this thesis with a very original example that proves that the Galois
group of an extension of the rationals that is a splitting field for all its polynomials
of degree at most 2 is in fact the infinite product of groups of order 2.

Example 3.0.6. For this example we will denote by F the family of irreducible
polynomials of degree 2 in Q[t] indexed by N (we can do this since Q[t] is a
countable set), and by QF the splitting field of all the polynomials in F . We shall
also denote by Qn the splitting field of the polynomials {fi}n1 where {fi}i∈N = F .
Using Lemma 3.0.1 we know that Gal(QF/Q) ∼= lim←−Gal(Qn/Q)).
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Now, Qn = Q(x1, . . . , xr), where {xi}r1 are the roots of the polynomi-
als {fi}n1 , and the roots of these polynomials are given by the formula
−ai±
√
a2i−4bi

2
for some ai, bi ∈ Q, but −ai/2 ∈ Q and −

√
a2
i − 4bi/2 is

just the additive inverse of
√
a2
i − 4bi/2, so denoting by di = a2

i /4 − bi
the extension Q({xi}r1) can also be expressed as Q({

√
di}r1). For any

d ∈ Q we know that
√
d =

√
u/
√
v for some u, v ∈ Z, so we have that

Q({
√
di}r1) ⊆ Q({√ui}r1, {

√
vi}r1) for some ui, vi ∈ Z. Finally, for any z ∈ Z

we can decompose z into prime factors so that z = (±)pk11 · · · pkss which al-

lows us to express
√
z as

√
z =

√
(±)pk11 · · · pkss . As a result we get that

Q({√ui}r1, {
√
vi}r1) ⊆ Q({√p}p∈Q) for some Q ⊆ P ∪ {−1} where P is the set of

prime numbers and |Q| <∞. Clearly Q({√p}p∈Q) ⊆ Q(
√
−1,
√
p1, . . . ,

√
pk) for

large enough k ∈ N (where pi are the indexed primes), so the collection of Galois
groups {Gal(Q(

√
−1,
√
p1, . . . ,

√
pk)/Q)}k∈N forms a cofinal subsystem, meaning

that, by Lemma 1.1.21, Gal(QF/Q) ∼= lim←−Gal(Q(
√
−1,
√
p1, . . . ,

√
pn)/Q).

All that is left to prove is that Gal(Q(
√
−1,
√
p1, . . . ,

√
pn)/Q) ∼=

∏n
0 Z2

and for this we will make use of Proposition 3.0.3. We first need to show that
given a non-empty finite set S = {

√
−1,
√
p1, . . . ,

√
pn} the following holds

Q(
√
q) ∩ Q(S \ {√q}) = Q for any

√
q ∈ S. We will show this by induction

on the order of S. First we see that for |S| = 1 this is trivially true since√
q is a root of the degree 2 polynomial t2 − q ∈ Q[t], which is irreducible in

Q[t] for any q ∈ P ∪ {−1} by the rational root test. Assuming the hypothesis
holds for |Sn| = n, if for |Sn+1| = n + 1 we have that for some

√
q ∈ Sn+1

Q(
√
q) ∩Q(Sn+1 \ {

√
q}) 6= Q, then

√
q ∈ Q(Sn+1 \ {

√
q}) = Q(Sn \ {

√
p})(√p)

for some
√
p ∈ Sn = Sn+1 \ {q}, which (by seeing Q(Sn \ {

√
p})(√p) as a vector

space over Q(Sn \ {
√
p})) implies that

√
q = a + b

√
p (since {1,√p} is a basis

for the mentioned vector space) for some a, b ∈ Q(Sn \ {
√
p}), but then squaring

we get that q = a2 + 2ab
√
p + b2p, which implies that

√
p ∈ Q(Sn \ {

√
p}),

which is a contradiction to the induction hypothesis, so we must have that
Q(
√
q) ∩Q(Sn+1 \ {

√
q}) = Q for all

√
q ∈ Sn+1.

Finally we are ready to use Proposition 3.0.3 and so we see that

Gal(Q(
√
−1,
√
p1, . . . ,

√
pn)/Q) ∼=

n∏
i=0

Gal(Q(
√
pi)/Q)

where p0 = −1. Clearly Gal(Q(
√
pi)/Q) ∼= Z2 since Q(

√
pi)/Q is a degree 2

extension, which from finite Galois theory we know implies that its Galois group
is of order 2. As a result we get that Gal(QF/Q) ∼= lim←−

∏n
0 Z2, which as seen in

Example 1.1.15 proves that Gal(QF/Q) ∼=
∏∞

0 Z2.
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Appendix A Background Knowledge

Theorem A.0.1 (Chinese Remainder Theorem). Given a set of numbers {ni}s1
coprime to each other and a set of integers {ai}s1, the system of congruences given
by

x ≡ a1 (mod n1)

...

x ≡ as (mod ns)

has a unique solution congruent modulo n1n2 · · ·ns.

Theorem A.0.2 (Lagrange’s Theorem for Finite Groups). Given a finite group
G and a subgroup H ≤ G the following holds

|G| = [G : H] |H|.

Theorem A.0.3 (First Isomorphism Theorem). Given a homomorphism α : G→ H
between groups then G/ ker(α) ∼= α(G).

Theorem A.0.4 (Second Isomorphism Theorem). Given a group G and sub-
groups H ≤ G and N E G then (HN)/N ∼= H/(H ∩N).

Theorem A.0.5 (First Sylow Theorem). Given a finite group G and a prime p
such that p | |G| there is a Sylow p-subgroup.

Theorem A.0.6 (Second Sylow Theorem). Given a finite group G and a prime
p all the Sylow p-subgroups of G are conjugate to each other.

Theorem A.0.7 (Zorn’s Lemma). Given a poset in which every chain of ordered
elements has an upper (respectively lower) bound, there is a maximal (respectively
minimal) element in the set.

Theorem A.0.8 (Orbit Stabilizer Theorem). Given a finite group G acting on
a set S the following holds

|G| = |Gs| × |Gs|

where Gs represents the orbit of s and Gs represents the stabilizer of s for some
s ∈ S.

Lemma A.0.9. Given a group G and a subgroup H ≤ G the set of right (or left)
cosets of H form a set of equivalence classes.

Definition A.0.10 (Totally disconnected). A totally disconnected topological
space is a space in which the only connected subsets are the singletons.
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Definition A.0.11 (Splitting field). A splitting field of a family of polynomials
F ⊆ K[t] is an extension L/K such that every polynomial in F splits into linear
factors in L and L is minimal in the sense that no proper subfield of L satisfies
the first condition.

Remark A.0.12. [2, pg 236] A splitting field L/F of a family of polynomials
F ⊆ K[t] is always of the form L = K(RF) where RF is the set of roots of the
polynomials in F .

Proof. Clearly, the polynomials in F split over K(RF), and since K(RF) is the
field generated by the roots of the polynomials in F it is the smallest field con-
taining all those roots, so the minimality condition is satisfied.

Definition A.0.13 (Normal extension). A normal extension F/K is an algebraic
extension that satisfies that every irreducible polynomial in K[t] with a root in
F splits over F .

Remark A.0.14. [2, Theorem V.3.3] A normal extension F/K is a splitting field
of a family of polynomials in K[t].

Proof. If F/K is normal then for every x ∈ F the minimal polynomial of x,
say mx ∈ K[t], is such that it splits over F , so the splitting field K(Rmx) is
contained in F (here Rmx represents the set of roots of mx). As a result we
have that F = (K(Rmx))x∈F = K(

⋃
x∈F

Rmx) (here (K(Rmx))x∈F represents the

compositum of the extensions {K(Rmx)}x∈F )), i.e. F is a splitting field for the
minimal polynomials of its elements.
If F/K is a splitting field for a family of polynomials F then F = K(RF).
Now, for any irreducible polynomial p ∈ K[t] with a root x in F , p must be a
multiple of the minimal polynomial of x, so it must have the same roots. Now,
since x ∈ F we must have x ∈ K(a1, . . . , an) for some a1, . . . , an ∈ RF , and
K(a1, . . . , an) ⊆ K(RT ) where T is a set of n polynomials in F each with some
ai as a root. Finally, K(RT ) ⊆ K(RF) is a finite splitting field, so, as seen in [1,
Theorem 7.13], it is normal meaning that the minimal polynomial x splits over
it, and so p does too.

Definition A.0.15 (Separable extension). A separable extension F/K is an ex-
tension in which the minimal polynomial of every element in F over K has no
multiple roots.

Remark A.0.16. [2, pg 241] An infinite separable extension F/K is an extension
satisfying that any finite intermediate extension is separable.
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Proof. If F/K is separable then given any intermediate extension M and any
x ∈ M we have that x ∈ F , so the minimal polynomial of x has no multiple
roots, meaning that M/K is separable.
Now, if every finite intermediate extension of F/K is separable, then given some
x ∈ F we have x ∈ K(x), which is a finite extension, thus the mininmal polyno-
mial of x has no multiple roots by the separability of K(x)
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Appendix B Additional Information

Lemma B.0.1. If G is a Hausdorff topological group then {g} ≤c G ∀g ∈ G.

Proof. Take an arbitrary element g ∈ G then (G \ {g}) =
⋃

h∈(G\{g})
{h}. Now, by

Hausdorffness we can find {Uh}h∈(G\{g}) such that Uh ∩ Ug = ∅ ∀h ∈ (G \ {g}),
therefore (G \ {g}) =

⋃
h∈(G\{g})

Uh, i.e. (G \ {g}) is equal to a union of open sets,

so it is open hence {g} must be closed.

Lemma B.0.2. [1, Theorem 8.13] The Galois group of any cyclotomic extension
Gal(Q(ζn)/Q) has order ϕ(n) (this is Euler’s totient function counting the number
of integers smaller than n relatively prime to n) and is isomorphic to Z×n .

Proof. The map θ : Gal(Q(ζn)/Q) → Z×n given by θ : σ 7→ α where α is the
power of ζn to which σ sends ζn is a well-defined injective homomorphism. Now
we claim that |Gal(Q(ζn)/Q)| = |Z×n |, i.e. θ is surjective. Since Q(ζn)/Q is a
simple algebraic extension, it must have [Q(ζn) : Q] = ∂(mζn) where mζn is the
minimal polynomial of ζn over Q. We now want to prove that for any prime
number p ≤ n that does not divide n the element ζpn (which is also a primitive
nth root of unity) is a root of mζn , i.e. since any primitive nth root of unity is a
succession of prime powers of ζn with primes ≤ n not dividing n, every primitive
nth root of unity is a root of mζn , meaning that ∂(mζn) ≥ ϕ(n). We will show this
by assuming the contrary, that ζpn is not a root of mζn . Then, since ζpn is a root
of tn− 1, it must be a root of some polynomial f ∈ Q[t] such that tn− 1 = mζnf .
As a result, ζn is a root of the polynomial f(tp), so mζn(t) | f(tp). Now, since
ap ≡ a (mod p) and f,mζn ∈ Z[t] by Gauss Lemma, using the notation g to
represent the reduction of any polynomial g ∈ Z[t] modulo p, using multinomial

decomposition we would see that f(tp) = f(t)
p
, so mζn | f(t)

p
, meaning that

mζn and f(t) have a common factor, contradicting the fact that mζnf(t) = tn − 1
has no multiple roots (which is obvious since we know that the roots of this
polynomial in C[t] are precisely the elements e2πim/n for m ∈ {1, . . . , n}). Finally,
since ∂(mζn) ≥ ϕ(n) we have that [Q(ζn) : Q] ≥ ϕ(n), but from finite Galois
theory we know that the degree of the extension is the order of its Galois group,
so |Gal(Q(ζn)/Q)| ≥ ϕ(n). Furthermore, Z×n = {x ∈ Zn | gcd(x, n) = 1}, so
|Z×n | = ϕ(n), meaning that θ is surjective and so it is a topological and group
isomorphism (if we consider the domain and codomain as Discrete topological
spaces).

Lemma B.0.3. Given an algebraic extension M/K the algebraic closures of both
fields satisfy Malg = Kalg.
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Proof. Clearly Malg ⊇ Kalg, so all we need to prove is that Malg ⊆ Kalg. For
any x ∈ Malg there is a polynomial px ∈ M [t] such that px(x) = 0 where
px(t) = ant

n + · · · + a1t + a0 for some ai ∈ M . Then px ∈ K({ai}n0 )[t], so
[K({ai}n0 )(x) : K({ai}n0 )] ≤ ∂px and clearly [K({ai}n0 ) : K] ≤ n, so using La-
grange’s Theorem we clearly have that [K({ai}n0 )(x) : K] < ∞, which implies
(as shown in [1, Theorem 3.12]) that K({ai}n0 )(x)/K is an algebraic extension,
meaning that x ∈ Kalg.

Lemma B.0.4. Given two numbers n,m ∈ N with gcd(n,m) = d and
lcm(n,m) = f the nth and mth cyclotomic extensions satify

Q(ζn)Q(ζm) = Q(ζf )

and
Q(ζn) ∩Q(ζm) = Q(ζd).

Proof. To prove the first equality we first notice that since
ζ
f/n
f = e2πi(f/n)/f = e2πi/n = ζn we have Q(ζn) ⊆ Q(ζf ) and similarly for
ζm, meaning that Q(ζn)Q(ζm) ⊆ Q(ζf ). Now, since mn = df and we can find
a, b ∈ N such that an+ bm = d, dividing the left side by mn and the right side by
df we get that a/m+b/n = 1/f , meaning that ζamζ

b
n = e2πia/me2πib/n = e2πi/f = ζf ,

i.e. Q(ζn)Q(ζm) ⊇ Q(ζf ), and so Q(ζn)Q(ζm) = Q(ζf ).

For the second inequality we can clearly see that ζd = ζ
n/d
n = ζ

m/d
m , mean-

ing that Q(ζd) ⊆ Q(ζn)∩Q(ζm). Now, since Euler’s totient function can be given
as ϕ(x) =

∏
pki−1
i (pi−1) where pi are the prime factors of x and ki are the powers

of the prime factors, i.e. x =
∏
pkii , we see that gcd(ϕ(n), ϕ(m)) = ϕ(gcd(n,m)),

and using Lemma B.0.2 together with Lagrange’s theorem we see that
[Q(ζn) ∩Q(ζm) : Q] must divide [Q(ζn) : Q] = ϕ(n) and [Q(ζm) : Q] = ϕ(m),
meaning that [Q(ζn) ∩Q(ζm) : Q] | ϕ(d) = [Q(ζd) : Q], but we saw that
Q(ζd) ⊆ Q(ζn) ∩Q(ζm), so we must have Q(ζd) = Q(ζn) ∩Q(ζm).

Lemma B.0.5. [5, Lemma 0.1.1] In a compact totally disconnected space X
given two points x, y ∈ X with x 6= y there exists a clopen set Ux containing x
but not y.

Proof. First we need to define the following relation: ∀a, b ∈ X we say a ∼ b
iff @Ua, Ub such that Ua ∩ Ub = ∅ and Ua ∪ Ub = X. This relation is in fact an
equivalence relation since ∀a ∈ X we clearly have a ∼ a, and for any a, b ∈ X
such that a ∼ b clearly b ∼ a, and furthermore, if we have a ∼ b and b ∼ c
for some a, b, c ∈ X then a ∼ c since if there was some disjoint Ua, Uc such
that Ua ∪ Uc = X then either b ∈ Ua which contradicts b ∼ c or b ∈ Uc which
contradicts a ∼ b. As a result we see that this relation forms a set of equivalence
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classes that we will call the quasicomponents. The quasicomponent Qa of a point
a ∈ X is just the intersection of all the clopen sets in X containing a. This is true
since ∀x ∈ Qa given any clopen set F containing a, the sets F and (X \ F ) form
a separation of X, but since x ∼ a we must have x ∈ F , meaning that x ∈

⋂
Fi

(the intersection of all clopen sets containing a), furthermore, ∀x ∈
⋂
Fi given a

separation of X say U , V with a ∈ U , since U is clopen x ∈ U , meaning that x
is in the same side of any separation of X as a, i.e. x ∈ Qa.
Clearly, the connected component Ca (maximal connected set containing the
point) of any point a ∈ X is in its quasicomponent Qa since for any x ∈ Ca we
must have x ∼ a, i.e. x ∈ Qa, otherwise there would exist disjoint Ux, Ua such
that Ux ∪ Ua = X, which would imply that (Ca ∩ Ux) and (Ca ∩ Ua) are two
non-empty disjoint open (with respect to the subspace topology of Ca) subsets
satisfying that (Ca ∩ Ux) ∪ (Ca ∩ Ua) = Ca, which is a contradiction to the fact
that Ca is connected. We now claim that in a compact topological space Ca = Qa

for all a ∈ X. If we can prove that Qa is connected for every a ∈ X the claim
will be satisfied. We will do this by assuming Qa is not connected, i.e. there
are open sets U and V such that U ∪ V ⊇ Qa and U ∩ V = ∅, then since X
is compact and the set (U ∪ V )c is closed it is a compact set. Furthermore,
since Qa =

⋂
Fi ⊆ (U ∪ V ) (where Fi are the clopen sets containing a) we

have Qc
a =

⋃
F c
i ⊇ (U ∪ V )c,i.e.

⋃
F c
i is an open cover of (U ∪ V )c, which by

compactness implies there exists a finite subcover such that
⋃n

1 F
c
i ⊇ (U ∪ V )c,

meaning that Qa ⊆ F =
⋂n

1 Fi ⊆ (U ∪ V ). Finally, F is clearly clopen and
U ∩ F ⊆ U ∩F = U ∩ ((U ∪V )∩F ) = (U ∩ (U ∪V ))∩F = U ∩F , meaning that
U ∩F is clopen. Now, without loss of generality we may assume a ∈ U , implying
that Qa ⊆ U∩F , but then V ∩Qa ⊆ Qa ⊆ U∩F ⊆ U , which by the disjointness of
U and V implies that V ∩Qa = ∅, proving that Qa is connected, i.e. Qa = Ca. As
a result —and since the connected components in a totally disconnected space
are the singletons—, given two points x, y ∈ X with x 6= y both points lie in
different quasicomponents, meaning that there exists a separation of X say Ux,
Uy in which Ux is clearly a clopen set containing x but not y.
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