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Abstract

With the development of cloud computing it becomes increasingly popular with
applications which are hosted on the cloud and used over the internet. In order
to keep the system operational and prevent loss of data in case of failure, many
systems adapt fault tolerance. Fault tolerance is defined as a system’s ability to
continue operating without loss of functionality when one or more of its com-
ponents fail. Therefore, it becomes essential to be able to detect and predict
when a system is at risk of losing fault tolerance. Every anomalous behaviour in
a system is a potential cause to an incident that can lead to the system losing this
quality. By detecting anomalies that can contribute to fault intolerance, this can
be prevented.

In this thesis the authors have researched the area of conducting efficient
anomaly detection using metrics that monitor a cloud database service in pro-
duction. The authors used two different approaches to determine which metrics
could be of interest. On the chosen metrics, two different machine learning
models were implemented and evaluated on its success of identifying anomalies
correlating to fault intolerance.

The authors found that the error of the connection rate to HAProxy was the
only metric that exhibited a reasonable correlation, and neither model proved
effective in predicting when a database would be at risk of becoming fault intol-
erant. The models used were the statistical method HBOS and a neural network
LSTM-based autoencoder, where HBOS performed marginally better.

Keywords: Fault tolerance, anomaly detection, metrics, machine learning
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Chapter 1

Introduction

1.1 Background
Cloud computing has with its on-demand and easy access via the internet grown in popular-
ity among businesses over the past years. The advancement in cloud technology has in turn
paved the way for SaaS, software as a service, a delivery model where the application is hosted
on the cloud and used over the internet. Today, SaaS has become the most common service
hosted on the public cloud and the dominant software delivery model. [29]

One of the companies that has adapted this model, is the graph database provider Neo4j.
In November 2019, Neo4j Inc. announced the first fully managed graph Database as a Ser-
vice, Neo4j Aura. This new system requires a complex infrastructure consisting of almost 50
micro-services taking care of everything from incoming web requests to monitoring of the
database. As customers rely on the database staying operational it becomes essential to be
able to predict when the databases are at risk of failure.

To understand what this entails, it is important to understand the distinction between fault,
failure and error. A fault can be described as an unusual hardware or software condition.
There are many causes that can result in a fault, for example network overflow, processor or
memory damage, as well as mistakes made in the software specification or implementation.
A fault can further be considered active if it produces an error in the system, and inactive if
not. This means that if we have a fault it is not certain it will lead to an error in the system,
the fault may be out of the boundaries of the system functionality. If an error is produced
as a result of an active fault, it will cause a deviation from the expected result in the system
which in turn results in a failure. [47]

To reduce the risk of failure it has become common for systems to adapt fault tolerance.
Fault tolerance is defined as a system’s ability to continue operating without loss of function-
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1. Introduction

ality when one or more of its components fail. In a fault tolerant system the use of backup
components ensures that in case of component failure, the backup component can take its
place and therefore endure no loss of service. Component backup can come in many differ-
ent forms, the most common are: multiple hardware systems, where for example two databases
can be located on two different servers; multiple instances of software where traffic can be re-
routed to another instance if one instance encounters an error or goes offline; and finally
backup sources of power, such as generators. [17]

Every anomalous behaviour in a system is a potential cause to an incident that can lead to a
failure and compromise the quality of the service. [39]. Due to the complexity of large-scale
applications in cloud environments, these systems often experience a high percentage of op-
erational failures. The application constantly becomes subjected to regular changes as a result
of sporadic operations, such as on-demand scaling, upgrade, migration and reconfiguration.
In order to detect anomalies systems are often monitored by metrics.

To oversee the state of the system, metrics can be used to monitor different processes such
as memory usage and CPU usage. When monitoring the system based on metrics, the issue
becomes that the system operators have to track multiple monitoring metrics and therefore
receive too much monitoring information. This results in many false warnings and alerts
which distracts the system operators from critical abnormal situations in the system. In
the worst case, this has caused system operators to disable system monitoring. The exces-
sive amount of metric information also complicates as well as delays the process of detecting
anomalies, making the operator unaware of an issue at critical times in the system. Therefore,
it becomes necessary to select a subset of monitoring metrics that is relevant for a distinct
monitoring requirement. Today, this is done mainly manually by system operators, based on
their knowledge of the domain. It is not only time consuming, but also becoming more and
more difficult as the number of resource type cloud environments are ever growing as well as
the variety of associated metrics. [18] It therefore becomes essential to be able to efficiently
identify relevant metrics that can be used to detect anomalies in a system.

1.2 Project Objective

The aim of this thesis is to examine whether anomaly detection using monitoring metrics can
be employed to alert when a database cluster is predicted to lose fault tolerance. The objective
of this thesis is to collect metric data, identify relevant metrics in regard to fault intolerance
as well as exploring, evaluating, and comparing different anomaly detection models. The
evaluation will be conducted with regard to evaluation metrics such as precision, recall and
F1-score.
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1.3 Research Questions

1.3 Research Questions
From the problems clearly formulated we can establish motivated research questions. The
data that is going to be used is metric data collected from the monitored system, Neo4j Au-
raDB. Therefore, our research questions aim to address both the challenges of data selection,
as well as the anomaly detection problem. The research questions are summarised as follows:

• RQ1: Can we identify metrics that correlate with the event of a database becoming
fault intolerant.

• RQ2: Based on the metrics identified in RQ1, can we determine, through anomaly
detection, when a database is at risk of becoming fault intolerant?

1.3.1 Our Contribution
This thesis addresses the gap in knowledge regarding how anomaly detection with high-
dimensional big data can be applied in a complex distributed system. Specifically, it evaluates
diverse approaches to evaluating metrics as well as various models for anomaly detection. Fi-
nally, it proposes a novel method to generate a HBOS model that incorporates temporal
information.

1.4 Individual Contributions
This thesis was done with a high amount of collaboration between the authors. While many
steps were implemented together, Evelina had more responsibility of data collection and the
LSTM based autoencoder, while Lisa took more responsibility of data preprocessing, SMA
,and EMA. HBOS and evaluation of the model was done in collaboration between the authors.
Additionally, the authors contributed equally in writing the thesis.

1.5 Thesis Outline
This thesis will begin with an introduction where the background of the problem is pre-
sented along with the project’s objectives. Chapter 2 will define cloud computing along with
containerisation and how such an application can be managed with Kubernetes. This infor-
mation is necessary to understand the system in which the experiments of this thesis were
conducted. Chapter 2 continues to explain the system and how fault tolerance is reflected
in it. The thesis moves on to theory regarding anomaly detection and AI in Chapter 3. The
theoretical background to anomaly detection is described along with the models that will be
used in the next part of the thesis. Chapter 4 aspires to disclose the progress of the thesis
including data collection, data preprocessing, metric selection, applying anomaly detection,
and how the results were evaluated. The results of the experiments are found in Chapter 5
and is followed by a discussion of said result in Chapter 6. The thesis is concluded with the
conclusions that could be drawn in Chapter 7.
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1. Introduction

1.6 Related Work
Anomaly detection has been used for decades across various domains, and cloud computing
is no exception for this type of application. There has been a lot of research done regard-
ing anomaly detection techniques in cloud computing systems. Moreover, the complexity of
cloud systems as well as its immense monitoring tools results in high-dimensional big data.
Therefore, being able to apply anomaly detection on high-dimensional data is becoming cru-
cial. In this section we will present related work on both evaluating anomaly techniques and
on how to handle high-dimensional data.

Many studies have been made in order to compare different anomaly detection algorithms.
The authors in [23] conducted a comparative evaluation of 10 different algorithms for anomaly
detection. The algorithms were evaluated both in regard to speed and accuracy. The algo-
rithms analysed could be grouped into clustering based algorithms, nearest-neighbour al-
gorithms and Histogram-based Outlier Score (HBOS). In HBOS an univariate histogram is
constructed displaying the frequency distribution of each feature. This method will be im-
plemented and used in this thesis, and will therefore be described in detail in Section 3.3.3.
The authors found HBOS to be up to 5 times faster than clustering based algorithms and
up to 7 times faster than nearest-neighbour algorithms. Additionally, they concluded that
HBOS performed as reliable as state-of-the-art algorithms when detecting global anomalies,
i.e. anomalies that fall outside the normal range for the entirety of the data set, but unsatis-
factory on anomalies that diverge from the normal range of the surrounding data set.

In addition, the authors in [16] conducted a survey of existing anomaly detection techniques.
It divides the techniques into different categories based on the underlying approach of the
technique and identifies each category’s advantages and disadvantages. The categories anal-
ysed are defined as: classification based, nearest neighbour, clustering based, statistical, infor-
mation theoretic and spectral. In this thesis the techniques implemented belong to classifi-
cation based anomaly detection and statistical anomaly detection, and can be read in further
detail in Sections 3.3.1 3.3.3.

In [48] the authors outline classical methods of anomaly detection such as clustering, isolation
forest or using statistical anomaly detection with gaussian distribution. In these methods the
anomalies are identified based on the value of a single data point, the previous points are not
taken into account. Therefore, these algorithms are often unsuited for detecting anomalies in
time-series data. Instead, they propose the use of LSTM-Based autoencoders. Autoencoders
are made up of two modules: encoder and decoder. While the encoder learns the underlying
features the decoder recreate the original data based on the features. In a LSTM-based au-
toencoder, the autoencoder is built on LSTM layers. This theory is further explained in this
thesis in Section 3.3.2.

Another paper that employed this approach is the work by the authors in [44], where they
constructed an LSTM-based autoencoder to detect anomalies in network data. By training
their model only on normal data, they could model normal data. In case of an anomaly, the
reconstruction error, the difference between the input of the encoder and output of the de-
coder, would be greater. What is unique in this paper was that the authors found that if
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the normal and anomalous data was too similar the difference in reconstruction error could
be too small and result in miss-classifications. In order to improve the models detection
rate, they trained the data from the encoder on the one-class SVM algorithm to improve
the anomaly classification. They found that their proposed model efficiently could detect
anomalies presented in the data.

The authors in [21] argue that continuous monitoring of a cloud system leads to an over-
whelming volume of data, and together with a large number of performance metrics, results
in an extremely complex data model. They further state that because of this, the selection
of appropriate performance metrics is crucial for the effectiveness of anomaly detection sys-
tems. The unique challenges brought by both high dimensionality and big data problems
are identified and discussed in [52]. The authors define and discuss the limitations of both
traditional approaches as well as the state-of-the-art when working with high-dimensional
and big data.

Traditionally, euclidean distance is used in anomaly detection methods in order to estimate
the similarity within the data set as it is considered the most common distance metric. How-
ever, this is based on low-dimensional data sets. In [49] the authors discuss how similarity
calculated with euclidean distance would perform if used for high-dimensional data sets. The
authors found that the Euclidean distance between two similar data observations and the dis-
tance between two dissimilar data observations in multiple dimensions can be almost equal.
Therefore, the authors concluded that euclidean distance was unsuited to find similarity in
high-dimensional data.

Different state-of-the-art methods for feature selection are addressed in [54]. The methods
suggested are divided into filter methods, wrapper methods and embedded methods. The fil-
ter method is based on ranking the features according to some criteria in order to determine
the most important features, this is done independently of the target variable. Examples of
filter methods that handles the features independently include gain ratio [45] and chi-square
[37] while minimum redundancy maximum relevance (mRMR) [43] is used as an example
where the interactions among features are taken into account. While, filter methods per-
form well on smaller sets of features it does not scale well when the number of features exceed
tens of thousands. The authors additionally propose wrapper and embedded methods when
working on large feature sizes, i.e. exceeding tens of thousands. They concluded that feature
selection implemented with support vector machine (SVM) works well on high-dimensional
classification problems. Hermes and Buhmann [28] found that with applied SVM they could
reduce features without significant loss in classification accuracy.

Further, the authors in [18] propose a method for improving anomaly detection in cloud
systems using log and metric correlation analysis. The authors argue that existing anomaly
detection methods based solely on metrics are not sufficient for detecting complex issues
in cloud systems, and that analysing the correlation between logs and metrics can provide
additional insight into system behaviour. The proposed method involves selecting relevant
metrics and logs, computing their correlation through regression analysis, and using ma-
chine learning techniques to identify anomalies based on the relevant metrics and logs. The
authors suggest that their method could be used to improve cloud system operations and re-
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duce downtime.

In the final paper studied [21], the authors argues that with the use of mutual information
(MI), a method to measure the importance and redundancy of performance metrics, an incre-
mental search algorithm is employed for selecting the most relevant metrics, and principal
component analysis (PCA) is used to reduce the metric dimension. The authors also propose
a semi-supervised decision tree classifier to detect anomalies by exploring the most impor-
tant metrics and labelled data. The author found that their proposed methods can reduce
metric dimensions and identify anomalies effectively.

12



Chapter 2

Cloud Systems

This chapter will start by presenting all related theory of cloud computing and how Kuber-
netes help manage containerised applications. After this, graph databases will be explained
before moving on to the system on which the experiments are conducted. The system will be
explained in detail, both on a high and on a low level. Further, fault tolerance and common
causes that lead to loss of fault tolerance will be defined and explained. Finally, the charac-
teristics of the actual data from the system and how it can be collected will be disclosed.
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2. Cloud Systems

2.1 Cloud Computing

The term cloud computing comes from its ability to access information remotely in the cloud
or a virtual space. It enables the users to store information such as files and applications on
remote servers and access it regardless of geographical position. The term refers to both the
services delivered through the Internet as well as the hardware and system software in the
data centres that enable these services. [20] Examples of these services include email, backup,
and data retrieval. In contrast, when talking about a cloud, it is only the data centre’s hard-
ware and software that we are referring to [8].

The advancement in cloud technology has in turn paved the way for software as a service
(SaaS), a delivery model where the application software is hosted on the cloud. The user can
access and integrate with the software through a web browser, desktop client or API. The
service can be hosted on its own infrastructure or, the more common option, with a cloud
service provider such as amazon web services, google cloud or microsoft azure. Today, SaaS
has become the most common service hosted on the public cloud and the dominant software
delivery model. [29, 1]

The benefits and advantages that SaaS offers to the customers are many, one of the most
important being the low-to-non management overhead. It is the SaaS service provider that
is responsible for managing and maintaining the service to meet the performance, availability,
and data protection standards specified in the service level agreement (SLA). SaaS applica-
tions are also protected from data loss as the application data is stored in the cloud, meaning
the data will not be lost if the user’s device crashes or breaks. [29].

SaaS has several categories in turn, one of them being Database-as-a-Service (DBaaS). This
cloud computing service offers a cloud database system, saving the user from purchasing
and setting up their own hardware, installing the database software or manage the database
themselves.[2] As a SaaS service the provider has the same managing and maintaining respon-
sibility, DBaaS is quickly gaining popularity and is being adapted by companies. [4]

A SaaS solution can adopt different cloud architectures called single-tenant and multi-tenant.
In a single-tenant cloud architecture a single instance of the software and its supporting in-
frastructure provide for a single customer. This means that each customer has its own in-
stance of the software, no sharing of software or resources happen between customers. In
a multi-tenant cloud architecture the instance of software and supporting infrastructure is
instead used by several customers. Here, the customers share the software, although each cus-
tomer’s data is isolated and remains hidden from the other customers. [13] Each architecture
type comes with different benefits and drawbacks. The biggest advantage of single-tenant
is data security as each customer’s data is isolated in different instances, in case of a data
breach only the breached instance would be affected. The largest disadvantage, that also is
the largest advantage for multi-tenant, is resource usage. In single-tenant resources often be-
come underutilised as they can only be accessed by one customer while in multi-tenant the
resources can be better utilised as they are accessible by several customers.[13, 22]
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2.1 Cloud Computing

2.1.1 Containerisation
Before, when applications ran on physical servers there was no way to share resources or
define resource boundaries with other servers. This caused resource allocation issues, for ex-
ample if several applications were running on a physical server, there was no way to divide the
resources between them. Therefore, it could result in one application taking up most of the
available resources causing the other applications to underperform. To solve this problem,
containerisation was introduced. Containerisation is the technique of packing an application
including its dependencies into a container giving it the following characteristics: lightweight,
isolated, portable and enables resource efficiency. Each container has its own file system, network
interfaces, and resources, this allows applications to run independently of each other. In this
way containers provide process-level isolation. Additionally, containers are highly portable
as it allows applications to run consistently across different environments, for example devel-
opment machines, testing environments, and production servers. Containers are considered
lightweight when compared to virtual machines (VM), which is a software emulation of a
physical computer system. While VMs run complete and separated Operation Systems (OS)
instances, containers instead share the system’s OS kernel, eliminating the need for duplicat-
ing an entire OS for each container. Finally, containers can increase resource efficiency. By
sharing the system’s resources, such as CPU, memory, and disk space, its resource utilisation
is optimised. [33]

Containers provide a great way to bundle as well as run the application. It further makes
a distributed system more scalable, portable and resilient, as it allows the application to be
packed once and be run consistently across the different components of the system. How-
ever, the containers need to be managed in order to ensure there is no downtime. Downtime
refers to a system or service becoming unavailable or not functioning as expected. For ex-
ample, in the case of one of the containers going down, another would need to start. Here
is where Kubernetes comes into play; in what way will be explained in the following section.
[26, 32, 33]

Kubernetes
Kubernetes is an orchestration system to help manage containerised applications. Kuber-
netes provides a framework for running distributed systems with resilience. It takes care of
essential tasks such as scaling and failover for the application. Failover refers to the process
of transferring the workload and functionality to a secondary system if the primary system
experiences failure. When Kubernetes is deployed, it results in a Kubernetes cluster.

Kubernetes Cluster
A Kubernetes cluster is a set of nodes that are used to run containerised applications. Each
node is a physical or virtual machine, together operating as part of one system. A cluster must
consist of one master node and at least one worker node to be operational. The master node is
responsible for managing the state of the cluster, this includes scheduling workloads, scaling
applications, implementing updates and maintaining the desired state of the cluster. The
worker nodes host the pods which run the containers that constitute the application. The
pods are run based on the instructions received from the master node. These instructions
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2. Cloud Systems

include how many containers a pod should run, where to run them and how to configure
them. [32, 25]

2.2 Graph Databases
A graph database stores and organises information as nodes and relationships, rather than
as tables or documents. The different architectures are illustrated in figure 2.1. The nodes
can hold any number of properties and are connected to each other through relationships.
The relationships are directed, meaning it has a defined start and end node, and must con-
tain a type. Additionally, the nodes also may contain properties. The foremost advantage
in using a graph database is the ability to quickly traverse the data through its relations. In
existing relational databases the relationships are often navigated with expensive JOIN oper-
ations or cross-look-ups, making it both slow and complicated. Moreover, as it is easy to add
new nodes and make new relationships, the number of relationships from a node does not
affect performance, it allows the data to be stored without being restricted to a predefined
model.[42] [7]

Figure 2.1: Graph database versus a relational database

2.3 The AuraDB System
The system studied in this thesis is the Neo4j AuraDB, a fully managed native DBaaS launched
by Neo4j, Inc. in 2019.[41]. It is available to customers with three different subscription
plans: AuraDB Free, AuraDB Professional and AuraDB Enterprise. Each plan offers different lev-
els of functionality and support. AuraDB Free has a limited instance size and is restricted
to one graph database for the customer. This plan is recommended for smaller development
projects or for experimenting. AuraDB Professional and AuraDB Enterprise both offer un-
limited database instances with an allowed instance size of 64GB for Professional and 384GB
for Enterprise. The professional plan uses a multi-tenant architecture while Enterprise uses
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2.3 The AuraDB System

single-tenant. In this thesis we will focus on data collected from databases from the Neo4j
AuraDB Professional plan, with Google Cloud Platform (GCP) as a cloud provider.

The AuraDB platform consists of a Kubernetes cluster with corresponding orchestras, which
themselves are a Kubernetes cluster, see Figure 2.2 for a graphical illustration. The brain clus-
ter consists of mostly stateless applications that mainly translate web requests into changes in
the system. When a new database is to be instantiated it is placed in an orchestra depending
on its plan and/or region. For example, there could be a specific orchestration reserved for
databases belonging to professional plan, placed in Sweden.

Figure 2.2: Brain cluster with orchestration cluster

Orchestra

As mentioned, each orchestra is in itself a kubernetes cluster. Figure 2.3 shows an illstrative
example of an orchestra and its nodes. Each orchestra contains a number of nodes or other-
wise called hosts. In this thesis we will refer to them as hosts. These hosts are restricted to
the specified orchestra, i.e. an orchestras cannot use hosts that belong to other orchestras.
Every host in itself can contain several pods, which run the containers that make up the ap-
plication. A pod can enclose several containers with different functions. The containers for
AuraDB can for example contain a database core, labelled db_x in the figure, or a component
that conducts health-checking. It is worth noting that a pod can only contain one database
core, it is not possible for several databases to belong to the same pod. As illustrated with
the arrow A in 2.3 the pods are able to move between the hosts in the orchestra. A database
cluster consists of three database cores, located in three different pods. The three pods must
be distributed across three different hosts. An example of how a database cluster needs to
be distributed between the hosts can be viewed in 2.3, where the database cores labelled db_1
belong to the same database cluster. As an orchestra can enclose many hosts, there can be
several database clusters belonging to an orchestra. Database clusters will be discussed in
detail in the next section.
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Figure 2.3: System overview of an orchestra containing hosts, with
encloses pods with containers belonging to a database cluster.

2.3.1 Database Cluster
As mentioned, three database cores together form a database cluster. Since the cores are lo-
cated on different pods it becomes important to establish rules regarding the collaboration
between the pods. For this system, the consensus algorithm raft is used. A consensus algo-
rithm is used in distributed systems to obtain agreement among the different components
on a shared state or decision. Raft states that all operations must go through a designated
leader, i.e. only the leader can accept requests sent from the client. For our database cluster
it means that one of the pods is the appointed leader with the other two being read replicas
of the leader, they are called followers. The leader’s role is to keep an overview over the clus-
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ter’s well-being and to communicate to its followers. When a request is sent to the leader it
follows the outline as stated in the Figure 2.4. The leader receives the request and appends
it to its transaction log, a log that records all changes made to the data in the cluster. The
log entry is replicated and sent to its followers, which in turn sends a confirmation to the
leader that it was received. In this way the replicas, or followers, are kept up to date with the
changes made by the client.

Figure 2.4: Visualisation of how the leader communicates to its fol-
lowers when receiving a request from the client.

The leader monitors the state of the database cluster by periodically sending out what is
called heartbeat to its followers. This serves as a way of informing its followers that it is still
alive and actively managing the cluster. Additionally, it serves as a way to discover if any
member of the cluster has become unavailable. When receiving a heartbeat message the fol-
lowers send a confirmation back to the leader. If the number of confirmations does not match
the number of followers, the leader knows that one of its followers has become unavailable.
The followers has a defined election timeout and if it does not receive a heartbeat within this
time frame the follower assumes that the leader has failed and starts an election process. This
election timeout is randomised to prevent multiple followers from starting elections simul-
taneously. While there may only be one leader at a time, every pod in a database has the
capacity of becoming the leader. So in the case of an election process, one of the former fol-
lowers becomes the new leader. [3]

The advantages of using database clusters instead of a single-instance database are primarily
data safety and high availability.
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• Data safety: If on a single machine, the disk becomes corrupted or fails, the access to
the data would be lost. However, if the same happened to a cluster you can simply
communicate to another machine and your data can be recovered.

• High availability: By distributing the database across multiple pods, a cluster can con-
tinue functioning even if one or more pods fail, it does not lose availability. If a pod
goes down, the cluster automatically redirects the workload to the remaining pods,
ensuring uninterrupted service. This is further discussed and visualised i 2.3.2. Addi-
tionally it enables online upgrades without losing availability, called rolling upgrade
and is further explained below.

Rolling Upgrade
A rolling upgrade of a cluster refers to the process of upgrading its members, one at a time.
In our case, the members refers to each of the pods of the database cluster. One of the causes
that can result in a rolling upgrade, can for example be that the customer wishes to resize the
database. The upgrade follows several steps, as illustrated in Figure 2.5. First two new pods
are added to the cluster, named pod 4 and pod 5 in the figure. One by one the pods are switched
out. As can be seen in the second step of the figure, pod 1 has been exchanged with pod 6. As
the cluster still had enough active pods when pod 1 was taken offline, it remained in operation.
The same process is repeated and pod 2 is exchanged with pod 4 and pod 3 is exchanged with
pod 5. Finally pod 5 is selected to be the new leader and the database has executed a rolling
upgrade. This approach ensures that the database cluster remains operational all through the
upgrade, meaning it has no downtime.

Figure 2.5: Rolling upgrade of a database cluster

20



2.4 System Monitoring

2.3.2 Database Fault Intolerance
As mentioned a database consists of three pods that together form a cluster. If all pods are
operating as normal the database is healthy and is considered to be fault tolerant. However,
if one pod was to become unavailable the other pods can no longer communicate with it.
The database is now considered to be fault intolerant. This means that if another pod in the
same database cluster was to go down, the database would no longer be operational. If this
occurs, the database is said to be unavailable; it would no longer be accessible or operational,
preventing the client from interacting with it. The process of a database going from healthy
to unavailable is illustrated in Figure 2.6.

Figure 2.6: Process of database losing fault tolerance. Illustrates a
database going from healthy to fault intolerant to unavailable

2.3.3 Causes of Fault Intolerance
There are many causes for a database to become fault intolerant. By inspecting issue-reports
made by Neo4j regarding their AuraDB system we could determine and categorise some of
their more frequent causes. As our experiments were conducted on professional databases,
the reviewed issues were limited to databases belonging to this plan.

• Customer behaviour: If the customer overloads their database with a heavy incoming
write process it can result in an out of memory (OOM) error and cause the pod to
crash.

• Resizing: When trying to resize the database it got stuck.

• Rolling upgrade: Cluster becoming unstable due to a heavy workload which results in
issues when data is replicated across the cluster. As a symptom, the rolling upgrade
becomes stuck.

• Election: A follower gets stuck in a loop and repeatedly calls re-election.

2.4 System Monitoring
The data used in this thesis project is queried from Datadog, a system Neo4j uses to monitor
its metrics. Datadog gets the data from Prometheus, a systems monitoring framework that
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collects and stores metrics as time series data. [53] Time series data can be regarded as a
collection of observations, obtained through repeated measurements over time. Sampling
metrics within a defined time frame results in what can be regarded as time series data. [27]

2.4.1 System Data
The metric data that is being used in this project is collected through the Datadog API. Met-
ric data from different levels are collected; from the application itself up to system level.
When querying for data, there are a lot of options to consider. The metric in question can be
modified to query data from different subgroups. For example, if we want to query for data
about container memory usage from a specific orchestra we can specify that in the query. The
metric data originating from that orchestra is grouped by a grouping function. The grouping
function used, either returns the average, max, min, or sum of the data given different argu-
ments to group on. As an example, the container memory usage from a specific orchestra can
be grouped on the database id, this will be referred to as dbid in this thesis. This give us sev-
eral time series, as the specific orchestra contains a number of databases, and each database
is returning its own time series. There can be additional time series that are returned when
the queried data is not connected to a specific database. For instance, there can be memory
usage that is connected to other services running on the same orchestra. [38]

Given that the system studied in this thesis is cloud native and consists of several microser-
vices, there is a lot of metric data that can be extracted from it. In addition, the microservices
themselves can have many processes running within them; the number varying from time to
time. As described above, a database consists of three cores that each holds a copy of the
data. However, there are occasions where the number of cores deviates from this number,
for example during a rolling upgrade. As each core is located on a separate pod, this process
leads to the creation and deletion of pods in the distributed system. The dynamic behaviour
of the system is important to take into consideration when collecting the metric data. Dif-
ferent processes related to a database can spin up and down. While the system is running it
will create new pods with new names which are located on different hosts, while old pods are
removed from the cluster and thus from the hosts. In order to be able to consider different
levels in the distributed system, from the physical unit up to the application itself, we chose
to query data in a way that makes it possible to capture this dynamic behaviour.
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Chapter 3

Anomaly Detection and AI

This section will include all relevant theory regarding anomaly detection. We will define
what an anomaly is and describe different types of anomalies. Further, the concept of labelled
data will be explained as well as how it affects what anomaly detection models can be used.
Thereafter, some theory about AI is given which is followed by a description of the anomaly
detection methods used in this thesis. Finally, this chapter shows how anomaly detection can
be evaluated.
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3.1 Defining an Anomaly
An anomaly can be defined as a pattern or an observations that diverges from an established
normal behaviour. The anomalies represent instances that deviate significantly from the ma-
jority of the data or established patterns, standing out as unusual or abnormal occurrences.
[16] This is illustrated in Figure 3.1 where N_1 and N_2 illustrate two normal regions as they
encapsulate most data points. Points that deviate sufficiently from the normal regions, such
as points a_1, a_2 and points within the region A_3 are anomalies. An anomaly can for example
manifest as an unexpectedly high request response time or/and a reduced request throughput.
Anomaly causes can be broadly divided into two categories: internal and external. Internal
causes refers to both software and hardware bottlenecks, such as bugs in the application code
or resource capacity saturation. External causes include resource contention by services be-
longing to other cloud subscribers that are competing for resources. [40]

Anomalies are generally categorised into three types: point anomalies, contextual anomalies and
collective anomalies. A point anomaly is an individual data point that falls outside the nor-
mal range for the entirety of the data set. This anomaly is considered the simplest type of
anomaly. Examples of point anomalies are extreme values in a time-series, and data points
deviating from a cluster of other data points. Contextual anomalies do not necessarily devi-
ate from the entire data set, but diverge from the normal range of the surrounding data set.
This anomaly is most often explored in time-series data. Finally, collective anomalies refers
to when a collection of data points deviates when compared to the entire data set. The in-
dividual data points may not themselves be considered outliers, however occurring together
creates an anomaly. Collective anomalies are often investigated when handling sequence data.
[16] Certain anomaly detection models can be superior in identifying one type of anomaly
but perform poorly on the others. It is therefore beneficial to identify the most common
type of anomaly to choose the right model to implement. [6] If no information concerning
the nature of the anomalies is known, it is recommended to use point anomalies detection
methods. [10] In our thesis we search for all types of anomalies.

3.1.1 Challenges of Anomaly Detection
In anomaly detection the straightforward approach is to define an anomaly as any observa-
tion in the data which does not belong to the normal region, which represents the normal
behaviour. Despite its simplicity, there are several factors that can be challenging in anomaly
detection. [16]

• Defining normal region: When the normal region is being defined it is very difficult to
encompass every possible normal behaviour. Additionally, the boundary concerning
what is considered normal and anomalous behaviour can often be imprecise. As a
result, an anomalous observation that is situated close to the boundary can in fact be
normal, and vice-versa.

• Dynamic normal behaviour: What is normal behaviour may not always be constant
but keep evolving. Thus the current defined normal behaviour may not be adequately
representative in the future.
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Figure 3.1: Anomalies in a 2-dimensional data set where N_1 and
N_2 are normal regions, a_1 and a_2 and the region A_3 are point
anomalies

• Different application domains: What is considered an anomaly may differ for dif-
ferent application domains. In a medical domain a seemingly small deviation in for
example body temperature might be classified as an anomaly, while in a stock market
domain similar deviations would be considered normal behaviour. Therefore, applying
anomaly detection techniques developed for one domain to another is not a straight-
forward process, as the criteria for identifying anomalies differ significantly.

• Availability of labelled data: The model’s access to available labelled data for training
and validation is often a significant issue.

• Data noise: Distinguishing and removing noise from the data is often challenging as it
can bear similarities to actual anomalies, making it difficult to differentiate between
the two.

• Accurate classification: Failure to detect an anomaly and having it go unnoticed can
have unpredictable impacts on the system. On the other hand, mistakenly identifying
an anomaly, also called a false positive, causes a disruption on regular operations in
order to investigate the anomaly. It is therefore important to have a high accuracy in
detecting anomalies without it leading to too many false positives.

As a result of the above challenges the general problem of anomaly detection is not easy
to solve. Existing anomaly detection techniques primarily solve a specific formulation of
the problem, based on factors such as the nature of the data, availability of labelled data,
as well as the types of anomalies to be detected. Therefore, it is important to determine
the characteristics of the domain and data in order to elect a suitable anomaly detection
technique. [16]
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3.2 Data Analysis and AI
Data analysis is the science of analysing raw data to produce information. Many of the tech-
niques used for data analysis have been automated into mechanical processes and algorithms
that convert raw data into information for human consumption. [19] When talking about
data analysis for large amounts of complex data or big data, the term data science is of-
ten used. [11] In data science, techniques based on machine learning and artificial (AI), are
frequently used to extract meaningful information and to predict future patterns and be-
haviours. Machine learning, in fact, is a form of AI, where the aim is for the machine to
learn, adapt and improve from that data. An example of information that can be obtained
by applying data science, is if a data set contains any type of anomalies. In this section, a
brief background on data analysis and AI is given in regards to anomaly detection.

3.2.1 Statistical Analysis of Data
As mentioned previously, a key aspect in anomaly detection techniques is the nature of the
input data available. The input data set generally consists of a collection of data points, which
represents a specific example or measurement. In the context of time series data, the data
points are observations collected at different points in time. The data set may consist of a
single variable (univariate) or multiple variables (multivariate) recorded at regular intervals
such as every second or minute. [16] Depending on this characteristic of the data set, it is
analysed differently.

Univariate Analysis

The simplest analysis is called univariate, where the data being analysed only contains one
variable. The main purpose of univariate analysis is often to describe and find patterns in the
data. The focus is on understanding the characteristics and distribution of that specific vari-
able, without considering its relation to other variables. Some of the most common univari-
ate analyses include checking the standard deviation, the range, and the mean of a variable.
Histogram, a frequency distribution graph, is often used to visualise univariate analysis. [50]

Bivariate Analysis

Bivariate analysis refers to the analysis that examines the relationship or association between
two variables simultaneously. Contrary to univariate analysis, this analysis considers the in-
teraction and dependencies between the variables in order to gain knowledge and insight
into their relationship. The variables can both be dependent or independent to each other,
but there must always be a Y-value for each X-value. This analysis is commonly executed by
techniques such as scatter plots or correlation analysis. [50]
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Multivariate Analysis
Finally, multivariate data refers to analysis of data sets that contain three or more variables.
In other words, multivariate data sets consist of two or more variables that are measured
on the same set of cases. For example, a multivariate data set might include a computer’s
weight, size, cpu, among other variables. This analysis examines how the variables interact
and influence each other in order to gain insight of their relationship and patterns. In this
analysis, various techniques and methods can be employed, for example cluster analysis or
through descriptive statistics. [50]

3.2.2 Labelled and Unlabelled Data
When working with data in anomaly detection, data points can be assigned a label indicating
whether they are classified as normal or anomalous. However, this can be an expensive task
as it is often done manually as well as requires accurate and representative labelled data for
all possible behaviours. Obtaining labels for anomalous data sets is particularly challenging
due to the dynamic nature of anomalous behaviour, which may result in the emergence of
new types of anomalies without corresponding labelled training data. Additionally, if the
distribution of classifications in the labelled data set is skewed, it can pose challenges in
building predictive models. This problem is referred to as the imbalanced classification problem
and must be taken into consideration when deciding on what approach to take, since most
machine learning algorithms assume balanced class distributions. [9] Based on the extent of
available labelled data, anomaly detection techniques can operate in one of three following
modes: supervised, semi-supervised and unsupervised. [16]

Supervised Anomaly Detection
In supervised anomaly detection the model assumes access to training sets labelled as both
normal and anomalous. The typical approach is to create a predictive model for normal
versus anomaly classes, where unseen data can be compared to determine which classification
it should get. However, two major issues arise with this approach. Firstly, the number of
anomalous occurrences is often much lower than normal occurrences in the training data,
causing imbalanced class distributions of the data sets. Secondly, as mentioned above, it is
often challenging to obtain accurate and representative labels for all anomalies. [16]

Semi-Supervised Anomaly Detection
Semi-supervised anomaly detection techniques assume that only normal training sets are la-
belled, making them more broadly applicable than supervised techniques. This detection
technique is often implemented by building a model corresponding to normal behaviour
and identifying anomalies based on deviations from the model. While more applicable, this
technique has its own challenges. Firstly, it can be difficult to determine the threshold against
which data is compared, especially when the training data contain labelled anomalies. Sec-
ondly, the success of this technique relies heavily on that the training data include representa-
tions of all possible normal data sets. Otherwise, normal data has a risk of being missclassified
as an anomaly. Finally, if the anomalous data sets are similar to the normal ones, detecting
these anomalies becomes challenging. [16]
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Unsupervised Anomaly Detection
Unsupervised anomaly detection is a technique that does not require any labelled training
data. Instead, it attempts to identify anomalies solely based on the characteristics of the data,
without any prior knowledge of what constitutes normal or abnormal behaviour. While this
technique is very applicable as it does not require labelled data, its success is based on the
assumption that normal instances are far more frequent than anomalies in the test data. If this
assumption is not true, this technique can produce a high rate of false alarms. Additionally,
unsupervised techniques may not be effective in detecting rare anomalies, as they are often
drowned out by the abundance of normal instances. [16]

3.2.3 Artificial Neural Networks
Artificial neural networks (ANN) are a category of machine learning techniques that simulate
the learning mechanism observed in biological organisms. An ANN contains computational
units referred to as neurons (also nodes), which can be connected to each other to form a
network. Through this network, they can receive and send signals to other connected neu-
rons, resembling the synapses in our brain. The connections between the nodes in an ANN
are associated with weights which affects the function of the connected neurons. The ANN
computes a function of the input values by propagating the computed values from each neu-
ron to the subsequent ones, using the weights as intermediate parameters. Learning occurs
by adjusting these weights. During the training process, input and target pairs are utilised as
training data, representing the desired behaviour of the network. These pairs are used to up-
date the weights. The training data is passed through the network, and the prediction error
is calculated by comparing the output value with the target value for the given input. This
prediction error serves as feedback to the network, providing information on the correctness
of its weights. The calculated error is commonly known as the loss, and the function used
to compute it is referred to as the loss function. By training the network, the objective is to
alter the weights in order to modify the computed function, enabling more accurate predic-
tions in future iterations of training. One widely used method to train neural networks is the
backpropagation algorithm, which will be described further in Section 3.2.3. There are several
different architectures of ANNs, some of which are described below.

Perceptron
The simplest form of a neural network is the perceptron, which consists of a single input
layer and an output node. The basic architecture of the perceptron can be viewed in figure
3.2. Given a set of input values X̄ , the predicted value ŷ is computed as shown in equation 3.2
The output of the perceptron ŷ, is given by applying an activation function to the sum of all
inputs xi multiplied by its weight wi .

ŷ = f (W̄ · X̄) = f (
N∑

i=1

wixi) (3.1)
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In many cases, predictions often contain an invariant component known as bias. In order
to capture the bias, an additional bias variable b is included before applying the activation
function. The updated equation, accounting for the bias, is as follows:

ŷ = f (W̄ · X̄ + b) = f (
N∑

i=1

wixi + b) (3.2)

Figure 3.2: Illustration of perceptron with inputs x1, x2, x3 with
corresponding weights w1, w2, w3. The weighted sum is applied to
the activation function f(x) to obtain the output, ŷ.

The perceptron, despite consisting of two layers (input and computational), is considered a
single-layer network since we only consider the computational layer while disregarding the
input layer. The training process involves calculating the error value between the true value
and the predicted value, denoted as E(X̄) = y − ŷ. When the error is non-zero, the weights
need to be updated in the negative direction of the error gradient. There are various methods
to determine the magnitude of the weight update. The most common optimisation algorithm
that does this is gradient descent, although it is often modified or extended in different ways.
One such modification to the gradient descent is the Adam optimiser. By interpreting the
perceptron as a simple computational unit, multiple units can be put together to create a
more complex and powerful model. [5] This leads us to the next architecture where we de-
scribe multi-layer neural networks.

Feed Forward Neural Network
In a multi-layer network, there are multiple computational layers. The additional interme-
diate layers are referred to as hidden layers since the computations performed at these levels
are not visible to the user. The multi-layer architecture is often referred to as a feed-forward
network, as the outputs from nodes in one layer are fed into the succeeding nodes in a direc-
tion towards the output. The most common architecture of a feed-forward neural network
assumes that every node in one layer is connected to every node in the next layer. This ar-
chitecture is often referred to as a fully connected neural network and is depicted in Figure
3.3.[5]
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Figure 3.3: Illustration of a fully connected neural network with in-
put layer, hidden layer and output layer.

When training a multi-layer neural network, as opposed to the single-layer neural network
where the loss is a direct function of the weights, the loss is a complicated composition func-
tion of the weights in earlier layers. To train a multi-layer neural network, the backpropa-
gation algorithm is used. The algorithm consists of two phases: the forward phase and the
backward phase. During the forward phase, the input is propagated through the neural net-
work and produces an output using the current weights. The output is then compared to
the target value by calculating the derivative of the loss function with respect to the output.
Here is where the backward phase takes over, where the derivative of the loss with respect
to the weights in all layers is computed. This is accomplished by utilising the chain rule of
differential calculus. The gradients are learned by starting from the output node and propa-
gating them backwards through the network, hence the name backwards phase. One iteration
of this process of forward- and backward propagations is referred to as an epoch. There are
many other types of neural networks that can implement multiple layers, one of them being
recurrent neural networks (RNN). [5]

Recurrent Neural Network

Recurrent neural networks (RNNs) are a type of network that is specifically designed for
sequential data, such as time series data. In sequences, the successive data is dependent on
one another, making it essential for the model to incorporate a memory unit. In Figure 3.4,
the architecture of a recurrent neural network is illustrated. The memory unit, or units of a
multi-layer network, are hidden states within the network. They can be seen as the red loops
in the figure. These hidden states store information from previous time steps and allow the
network to retain and utilise this information in its computations.[5] The hidden state is
given by the function:

h̄t = f (h̄t−1, x̄t) (3.3)
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Figure 3.4: Illustration of a recurrent connected neural network with
input layer, hidden layer and output layer.

Long Short-term Memory (LSTM)
Similar to neural networks consisting of many layers, recurrent neural networks have sta-
bility issues associated with the training. One prominent issue is that the gradients tend to
vanish when performing backpropagation on long sequences. This is the result of successive
multiplications with the hidden state vectors at various time-stamps. To address this issue,
a more advanced type of RNN known as Long Short-Term Memory (LSTM) is preferred. In
LSTM, the recurrence equation for the hidden state vector is replaced, this allows for a more
precise control over the data to be stored in the long-term memory.[5]

3.3 Anomaly Detection Techniques
In this section we will first give an overview of the anomaly detection techniques used in this
thesis. We will further present the advantages and disadvantages of each technique as well as
when it is suitable to use. Finally, the specific models used in the thesis and which detection
technique it belongs to will be explained.

3.3.1 Classification-Based Anomaly Detection Tech-
niques

In classification-based anomaly detection techniques anomalies can be identified by building
a model from labelled data that is able to classify data points as either normal or anomalous.
This means that this technique only can be applied to supervised or semi-supervised anomaly
detection. The technique consists of two phases; training and testing phase. In the training
phase the model is trained with the available labelled data. In the testing phase the model is
used to classify unseen data as normal or anomalous and its performance can be evaluated.
Advantages of classification based techniques include its ability to utilise labelled data as
well as having a fast testing phase as each test point only has to be compared to the prede-
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fined model. However, classification-based approaches also have limitations. They rely on
availability of labelled data and may struggle with imbalanced data sets where anomalies are
rare compared to normal instances. Some examples of classification-based anomaly detection
techniques are decision trees and deep learning models such as neural networks and recurrent
neural networks. [16]

3.3.2 Autoencoder Approach for Classification
While not inherently a classification-based technique, autoencoders can be effectively used
for classification purposes. As depicted in Figure 3.5, an autoencoder consists of two mod-
ules: an encoder and an decoder. The encoder learns the underlying features of a process
and reduces the dimensionality of the input data. Using the captured features, the decoder is
trained to recreate the data to match the original input data. This process involves bringing
the dimensionality back to its original shape. [46]

When using an autoencoder for anomaly detection, the model is trained on normal data,
making it well-suited for reconstructing data from the normal state of the process. In order
to evaluate how successful a reconstruction is, a reconstruction error is calculated. This is
done by comparing the prediction, i.e. the reconstruction, to the true value, i.e. the input
value. A common approach is to define the reconstruction error as the mean squared error
(MSE) between the prediction and the input data. A small reconstruction error indicates
data originating from normal process behaviour, while a high reconstruction error suggests
data from a rare event or anomaly. By setting a threshold, the reconstruction error can be
used to classify data as either normal or anomalous. [46]

The autoencoder model can be extended to handle not only multivariate data but also in-
corporate the temporal information contained in time series. To achieve this, the encoder
and decoder modules need to be based on recurrent neural networks (RNNs). By using the
RNN layers, an additional dimension is added to the input data, as the number of points
to include in the look-back needs to be specified. The reconstruction error is now calcu-
lated over multiple data points, as the entire look back window will serve as the target value.
When designing an RNN autoencoder, one option is to employ LSTM layers in the model
architecture, as this enables modelling dependencies for longer sequences. [46]

3.3.3 Statistical Anomaly Detection Techniques
Statistical anomaly detection techniques identify anomalies in data based on their deviation
from the statistical properties of the majority of the data and is based on the following key
assumption:

• Normal data instances occur in high probability regions of a stochastic model, while anomalies
occur in the low probability regions of the stochastic model.

By assuming that normal data points follow a specific statistical distribution, such as mean,
standard deviation or Gaussian distribution, anomalies can be identified as data points that
significantly deviate from this distribution. Depending on chosen distribution, data points
that fall outside of a certain range or have unusual patterns can be flagged as anomalies.
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Figure 3.5: Illustration of an autoencoder

Limitation of statistical anomaly detection is primarily the assumption that data follows a
specific statistical distribution, which may not always be the case. In the case of multivariate
data it is unable to handle dependence between variables. An anomaly could have variable
values that individually are very common, but their combination is infrequent. Examples
of statistical anomaly detection techniques include gaussian based, regression model based and
histogram-based. These techniques can all be used to analyse both univariate and multivariate
data. [16]

Histogram-based Outlier Score (HBOS)
Histogram-based Outlier Score or HBOS is a histogram based statistical anomaly detection
technique. Given N variables, this algorithm produces N histograms independently where
each histogram is a representation of how likely a particular data point is to fall within its
bins. The higher the bin, the more observations belong to that bin. This means that values
classified as anomalies are found in the lowest bins of the histogram. The outlier score for
univariate HBOS is the inverse of the height of a bin calculated as: [35, 15]

HBOS(p = 1/hist(p) (3.4)

Where 1/hist(p) is the height of the bin of variable. A resulting large value will indicate
the point p being an outlier.

This algorithm is suitable to handle both univariate and multivariate unsupervised data. In
order to calculate a point’s multivariate outlier score, the univariate score for each variable
is calculated separately, meaning the algorithm assumes independence between the variables.
By summing up the N univariate anomaly scores the multivariate HBOS can be calculated.
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This is visualised in figure 3.6 where P, the point we want to examine, is first shown as to a
normal point as it appears in the high bins for each variable and secondly as an anomalous
point as it belongs to the low bins. It is worth noting that P does not need to always belong
to the highest bin in order to be classified as normal and vice versa for being an anomaly.
HBOS of an observation p defines the sum of the N logarithmic univariate anomaly scores.
The reason for using the logarithmic value is to make it less sensitive to extremely small bin
values as well as errors due to floating-point precision in unbalanced distribution causing
very high scores. [15, 23]The formula is formulated as following:

HBOS(p) =
N∑

i=1

log
(

1
histi(p)

)
(3.5)

Where histi(p) is the height of the bin of variable i for the given observation p.

Determining the size of the bins used to build the histogram is critical in order to achieve
effective anomaly detection. If the bins are too small, a large number of normal test points
may be placed into rare or empty bins, resulting in a high false alarm rate. Similarly, if the
bins are too large it may cause a large number of anomalous test points to be placed in fre-
quent bins, resulting in a high false negative rate. Therefore, determining an optimal bin size
for the histogram that can achieve both low false alarm rate and low false negative rates is a
significant challenge when using HBOS. [16]

Figure 3.6: Illustration of multivariate HBOS that shows a point P
being classified as normal VS anomalous, depending on what bins it
belongs to.
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3.4 Data Processing
Before applying data to the models described above it is important to prepare and process
the data. Data preprocessing is an integral part of data preparation. In this step, various
techniques are used to transform and modify the raw data in order to make it suitable for
further analysis or processing procedures. In this section we will talk about how the data can
be processed to be better suited for anomaly detection.

3.4.1 Data Preprocessing
Data preprocessing is the step after the data has been gathered before entering it into a
machine learning model, this step is essential for the success of the model. Insufficient or
irrelevant data can lead to machine learning algorithms producing inaccurate and incompre-
hensible results, or even failing to uncover anything valuable. There are several practices in
data preprocessing for example data cleaning or data transformation. The resulting data is
the final training set for the model. [31] In this section we will go through data processing
practises that had to be considered and evaluated during the experiment of this thesis.

There are several different methods to handle if a metric is missing a value. When work-
ing with time-series data this will occur when a specific metric lacks a value for a certain
point in time. One way to handle this scenario is to fill the missing value with an arbitrary
value. This is a good method for when you have a known default value and said value can be
inserted without corrupting the entire data set. The second approach is to calculate a default
value based on the metrics statistic. If possible, this is often considered a better opinion. The
final way is to simply ignore said value. This can be applied if working in a large data set
where single values can be disregarded. [51]

3.4.2 Feature Scaling
Feature scaling is a data transformation process where the aim is to transfer the data into
forms suitable for the chosen model. The reason behind this is that features often have dif-
ferent scales, for example one feature can have values ranging from 0 to 1 and another from
0 to 1000. This can result in the machine learning algorithm giving higher weight to features
with higher magnitude, (making it unbiased). [14]

Capture Pattern in Data
As the data being used in this thesis is time series data it becomes important to be able to
capture this behaviour. Moving average is a statistical technique that can help identify the
general direction or movement of the data over time.

Simple Moving Average (SMA)
Simple Moving Average (SMA) is a simple and rapid method to capture patterns in time
series data. SMA is calculated by taking the mean value of the past N data points throughout
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the timeseries, according to the following formula:

SMA =
PM + PM−1 + · · · + PM−(N−1)

N
(3.6)

Where PM is the value of the datapoint at time M and N is the number of datapoints used in
the calculation. [24]

Besides gaining insight in the data patterns, SMA can be used to detect anomalies. By calcu-
lating SMA for every point in the timeseries you get a smoothed graph that displays how the
graph is estimated to behave. In comparing the SMA for each point in the time series with
the actual value a distribution over its deviance can be composed. By identifying points with
high deviance anomalies can be identified. [34]

Exponential Moving Average (EMA)
In SMA the position of the points are not taken into account when calculating the mean value,
as a result, past observations are weighted equally. In EMA, the weight of past observations
decreases exponentially, meaning recent points have more of an impact when calculating the
EMA. Given a time series with observations beginning at time t = 0, the output of EMA can
be calculated using the following formula:[24, 34]

Ft = αyt + (1 − α)Ft−1, t > 0 (3.7)

Where Ft is the forecast of the next value, yt is the value of the time series in time t and
α is the smoothing constant which determines the degree of weighting decrease, factoring
between 0 and 1. With a high smoothing constant, the model mainly takes the most recent
observations into account, whereas with a low value the model takes more of the history of
observations into account. [24] As a default the smoothing constant is often set as following:

α =
2

windowsize + 1
(3.8)

3.5 Evaluating Anomaly Detection
In order to evaluate anomaly detection performance the first step is to identify the following
outcome from classifications obtained from the anomaly detection model [36]:

• True positives, (TP). Number of correctly predicted outliers.

• True negatives, (TN). Number of correctly predicted normal points.

• False positives, (FP). Number of false alarms, namely when normal points are predicted
as outliers.
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• False negatives, (FN). Number of missed outliers, namely when outliers are predicted
as normal points.

These measurements are used to compose performance metrics that evaluates the anomaly
detection model. The most common are Accuracy, Recall, Precision and F1 Score and are calcu-
lated in the following way, where the higher its score, the better the model performs. [12]:

• Accuracy: The proportion of correctly identified predictions.

Accuracy =
TP + TN

TP + TN + FP + FN

• Recall: The proportion of true anomalies that was identified.

Recall =
TP

TP + FN

• Precision: The proportion of identified anomalies that are true anomalies.

Precision =
TP

TP + FP

• F1 Score: The overall performance of the anomaly detection model, calculated by using
the harmonic mean of precision and recall.

F1 score =
2 ∗ Recall ∗ Precision

Precision + Recall

A model is said to be under-predicting if its performance results in high precision and low
recall, meaning anomaly predictions are often accurate but only a small proportion of them
are predicted. Similarly, a model is said to be over-predicting if it has low precision but high
recall. In this case the model correctly identifies a large proportion of the anomalies, but a lot
of its predicted anomalies are miss-classified and are instead normal values. Often a model
can be manipulated to increase precision at a cost of lower recall, and same the other way
around. [36]

F1 score is the computed average of precision and recall, meaning it gives equal weight to
precision and recall. As Precision and Recall are both rates, harmonic mean is a rational
choice. Harmonic mean is a type of average, best suited when the average rate is desired. It is
calculated by taking the number of observations and dividing it with the reciprocal of each
observation. A high F1 score is obtained if the models Recall and Precision are both high,
similarly its score will be low if they are both low. A medium F1 score is obtained if the model
precision or recall is low while the other is high, meaning the model is under-predicting or
over-predicting. [30]
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Chapter 4

Method

In this chapter we aim to provide a detailed description of the data collection, data prepro-
cessing, metric selection, the anomaly detection process, and methods to evaluate our results.
This will give the reader an understanding of the challenges that needed to be addressed at
the different stages as well as necessary context to follow the subsequent presentation of re-
sults and discussion. Based on our research questions, the scope of our work can essentially be
divided into two main categories; metric selection and anomaly detection. Different meth-
ods of how to reduce the number of metrics included in our experiments are discussed. The
possible architectures of previously mentioned anomaly detection models are described as
well as the process of evaluating the results.
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4.1 Project Process
In the start of our thesis a literature study was conducted in order to determine the best
practices for anomaly detection when using metrics. Through this study, we discovered that
when working with metrics generated from monitoring the system, it is crucial to identify
a subset of monitoring metrics that are relevant to our objective. In our case, it was finding
metrics whose anomalies indicated that the system was losing fault intolerance. The litera-
ture suggested several state-of-the-art methods, including Support Vector Machine (SVM),
Mutual information (MI), finding correlation between error logs and metrics, and finally Fil-
ter methods.

In order to determine which methods would be suitable for our experiment, we analysed
the data, specifically focusing on how fault intolerance was represented. The fault tolerance
of a database, referred to as db, is reported using the metric
neo4jdatabases.condition.duration/db/condition:faulttolerant. When a database is operating nor-
mally, i.e. all pods are up and running, the value of this metric is 0.0. However, if the database
loses fault tolerance, this metric indicates the duration for which the database has been with-
out fault tolerance. Therefore, this metric provides valuable information about the occur-
rence of fault intolerance loss and subsequent recovery. The significance of this information
had a large impact on what methods we could use to identify our relevant metrics.

SVM was withdrawn from consideration due to the method relying on separate classes. Since
our data exhibited severe class imbalance, with fault intolerance only comprising a small frac-
tion of the data set, this method was deemed not optimal for our data. Mutual information,
on the other hand, relies on finding a correlation between a feature and the target value,
which in our case was fault tolerance. However, as our metric monitoring fault tolerance
only provides information when fault tolerance is lost, rather than offering a continuous
representation of the system’s state, calculating a relationship with other features would be
challenging.

Since filter methods simply rank the features according to some criteria, independent of
the target feature, we could disregard the limitations imposed by the representation of our
target feature, which prevented us from using the methods mentioned above. Therefore, we
decided to implement a filter method to identify the most relevant metrics. The selection of
interesting metrics was made using the filter method, which involved a statistical analysis of
standard deviation and metric selection based on domain knowledge.

After identifying the interesting metrics, our focus shifted to how they could be utilised
for anomaly detection. To address this, an additional literature study was conducted, with
the aim of identifying state-of-the-art anomaly detection algorithms that would be suitable
for our specific scenario. We paid particular attention to algorithms capable of handling time
series data and high dimensionality, caused by us aiming to incorporate multiple metrics in
the detection process. Ultimately, we selected HBOS and an LSTM-based autoencoder as
our chosen algorithms.

While the LSTM-based autoencoder algorithm is constructed to capture the interdependen-
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cies among the data, HBOS did not take the data points surroundings into consideration.
As a result, HBOS was found to be less suitable for handling time series data. To address
this limitation, a customised vrsion of HBOS was developed. This customised HBOS, incor-
porated a moving average technique to capture the estimated behaviour of the data points
based on their moving average values. The difference between the actual value and the mov-
ing average estimation was then used as input for the HBOS algorithm.

The models were trained and tested using real data collected during one month of normal
operation from 30 chosen databases in the AuraDB system. The data set was divided into
two equal parts: one for training and one for testing. The models were evaluated based on
their capacity to detect anomalies that resulted in a database losing fault tolerance. The
evaluations were conducted based on metrics such as recall, precision and F1-score.

4.2 Metrics Selection
A significant part of the thesis project involved extracting and processing metric data from
the Neo4j AuraDB system. In the following section, we outline the steps taken to reduce the
number of metrics that were later used in the anomaly detection phase. In order to scale down
the amount of data, our first step was to examine what data was available. Subsequently, we
analysed the metric data in several steps to finally arrive at a manageable set of metrics on
which we could focus our experiments.

4.2.1 Identify Relevant Metrics
The first step was to obtain a list of available metrics used to monitor the system. The metrics
were obtained by querying get_active_metrics_list to the Datadog API, which provided us with
a comprehensive list of all actively reporting metrics from a specified time until the present.
We decided to limit the timeframe to metrics active in the last 30 days, resulting in 2,591
different metrics. Our next task was to identify which of these metrics that appeared to
correlate with databases becoming fault intolerant. In collaboration with our advisory at
Neo4j, we were able to eliminate metrics that solely monitored the system separately from
the databases or were known to have no correlation with the state of the databases. This
reduced the number of relevant metrics to a total of 1,158. To continue our analysis and
further narrow down the metric selection, we began examining the metric data, leading us
to the next step in the process of metric selection.

4.2.2 Data Querying
To be able to conduct further analysis, we now needed to query for actual data. This might
seem like a trivial step, but due to limitations of the Datadog API and the complexity of the
system there were a number of factors that we needed to take into account when designing
the pipeline. To gain an understanding of the data before proceeding to large-scale querying,
we used the Datadog metric explorer to visualise selected metrics. This was especially bene-
ficial as it allowed us to gain an understanding of the frequency of database fault intolerance.
We could see that it happened a couple of times a week, and that it stayed fault intolerant for
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up to a couple of minutes. This information was useful when we had to decide on the time
to query data and the sampling rate, the number of samples taken per unit of time. Since
the number of metrics was still quite large, we decided to query data for a total time of one
week, with a sampling rate of one minute per sample.

The first step was to extract the metric data from the system by constructing queries to send
to the Datadog API. The required arguments in the request were the start and end time, as
well as the actual query string. Unfortunately, the version of the Datadog API that was used
did not allow us to specify the sampling rate, instead this was decided on the start and end
time that was given. In order to sample data with a rate of one minute, the start and end time
was set with a four hour interval in between. To query for more data than four hours while
still maintaining the same sampling rate, we needed to make several queries and concatenate
the results as the metric data was returned from the API.

The actual query string was created by composing a string with the information on what
to query for. The format of the string can be seen below.

< grouping_ f unction>:<metric> {< f rom>} by {< groups>}

The available grouping functions to choose from was; average by, max by, min by, and sum by.
"The averaging function was used when collecting our metric data as it is the most generic
and suitable for most types of metrics. The Datadog API only allows querying for one metric
at a time, and is specified by giving the name of the metric. For instance, to narrow down the
scope, we decided to query data for databases belonging to the same orchestra, specifically
orch-1. Therefore, our from argument would be orchestra:orch-1. Lastly, we could include a
grouping parameter to group the data by. Since we knew that a specific database consisted
of several pods which in turn reside on different hosts, we decided to group the time series
data on dbid, podname, pod_name, and host.

A problem that arose when querying the data was the inconsistency in the names of the
groups from which we queried the desired metric data. For example, one metric may have
used orchestra as the group name, while another metric used aura_cluster_name, or cluster-name,
all belonging to the same group in principle. If we included a group in the from field that could
not be found by the Datadog API for the specified metric, an error was returned. As we could
not determine in advance which metric used what group name, we had to adopt a trial-and-
error approach. We started by making a test query to check if the query was successful, thus
indicating that the specified group name was included as part of the metric tags. If an error
was returned, we would modify the group name and try again.

Similarly, the groups (dbid, podname, pod_name, and host), for which we were to group the
time series by, also had slight differences in naming for different metrics. E.g. sometimes
the name podname was used by a metric, other times it was called pod_name. However, even
if we included a name that was not part of the metric tags, we still obtained a result. The
only difference was that there would be no grouping on that specific subgroup name. This
enabled us to include all the metric tags to group by for every single query, even if it was not
always possible to group by them. For example, some metrics could only be grouped by host,
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while others could only be grouped by dbid, or podname. To give an example of how a query
string looks like, we can study the following query:

avg: jvm.heap_memory{orchestra :orch−1} by {dbid, podname, pod_name, host}

Taking all these aspects into account when querying for metric data, in order to get data
for one week with a sample rate of one minute, we needed to make more than 42 000 queries.
The high number is the result of the inability to specify sampling rate, as well as the large
number of metrics. Sampling at a rate of one minute we could only query for data at a four
hour interval which results in 6 queries per day, making it 42 queries for one week. Multi-
plying this by the number of metrics, which was over 1000, gave us the final number.

The time series resulting from the querying process were stored in files, with each file con-
taining one time series. Each time series represents an unique combination of values for the
groups that we used for grouping. For example, we could have time series matching the fol-
lowing two set of values.

metric: haproxy.backend.session.current
host: gke-prod-1-XXXX
dbid: 0001
podname: NA

metric: haproxy.backend.session.current
host: gke-prod-1-YYYY
dbid: 0001
podname: NA

We can observe that the two time series originate from different hosts while still sharing
the same dbid. This is a result of the system’s complexity described earlier in Section 2.4.1.
The pod name is set to NA since these groups were not applicable to the specific metric dur-
ing the querying process. The fact that database cores, each with its own pod, can change
host or spin up and down over time contributes to the fragmented nature of the collected
time series data. An illustrative example on how the resulting fragmented time series can
look like, can be seen in Table 4.1. The table presents data from six time series, all from the
same metric. The example also illustrates the different types of pods that can be connected
to a database. This includes the core pods, given the annotation neo4j-core where the database
cores reside, and the backup pods with the annotation backup, which are used for backing up
a database. Some data cannot be connected to a specific pod, resulting in a time series with
the pod name NA.

In contrast to the previous example where the metric could be grouped by host, dbid and
podname, there are metrics which can only be grouped by host, meaning they cannot be di-
rectly linked to a database. The hosts form the lower level of the system, meaning there can
be no pods not related to any host. This provides a challenge of connecting time series from
metrics that lacked information regarding the database they belonged to. Our proposed so-
lution to this challenge is described in section 4.2.4.
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4.2.3 Database Selection
When querying for data, an assumption was made that the data from different databases be-
longed to the same distribution. Therefore, in order to obtain a larger data set for training
and testing the anomaly detection models, we decided to query data from several database
instances. Initially, the number of databases belonging to orchestra 1 were 124. However, this
provided us with to much data to query so the number of databases was narrowed down to
30. All the databases belonging to orchestra 1 were part of the AuraDB Professional plan. As
the objective of the thesis is to predict fault intolerance when a database is operating nor-
mally, we opted to select databases based on how long they had been active. When a new
database is first created, it may affect the metric values as it takes a while for the database to
stabilise. To exclude data from these initial events, the databases were sorted according to
how long they had been active, and the 30 databases with the longest lifetime were chosen.
The selected databases have varying instance sizes, ranging from 1GB to 64GB of RAM. Fur-
ther investigation showed that one of the databases had been paused during the examined
interval, and was therefore excluded from our experiments. As a result, we ended up with a
total of 29 databases to process.

4.2.4 Data Preprocessing
With the data now locally available, our next step was to further reduce the number of met-
rics before proceeding with anomaly detection. As mentioned previously, there were several
issues that first needed to be addressed. Firstly, we had to tackle the problem of labelling the
time series with no dbid connected to them. Secondly, we needed to address the problem of
the varying number of time series for a specific database and metric over time as well as the
fragmented characteristics of the time series.

Creating Time Series from Metrics without dbid
When querying the data, the collected time series could be associated to one or several of
the different groups: host, database or pod. While the groups database and pod could include
the dbid, the host did not always contain this information. This was expected since a host
can encompass multiple pods connected to different databases, and the pods themselves can
move between different hosts. Thus, having database id as part of the host name would be
impractical. An example of a metric that did not keep information on what databases that
were related to it was kubernetes.kubelet.pod.worker.duration.sum. For this metric we would only
have a number of time series with information regarding what hosts they were queried from.

In order to utilise the metrics lacking information regarding dbid, we needed to associate
each databases with a set of hosts on which they were active. This was achieved by studying
the time series from metrics that included both the host name and dbid. For each database,
the time series were sorted based on the host from which they were queried. Once the time
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TS1 TS2 TS3
host gke-prod-1-000X gke-prod-1-000Y gke-prod-1-000Z
dbid 0001 0001 0001
podname neo4j-core-0001-0A neo4j-core-0001-0B NA

TS4 TS4 TS6
host gke-prod-1-00XX gke-prod-1-00YY gke-prod-1-00ZZ
dbid 0001 0001 0001
podname neo4j-core-0001-0C neo4j-core-0001-0D backup-0001-0A

time TS1 TS2 TS3 TS4 TS5 TS6
t_0 0.0 - 0.0 0.0 0.0 0.0

0.0 - 0.0 0.0 0.0 0.0
0.0 - 0.0 0.0 0.0 0.0
0.0 - 0.0 0.0 0.0 0.0
0.0 - 0.0 0.0 0.0 2152.31
0.0 - 0.0 0.0 0.0 0.0
22.81 - 22.81 0.0 0.0 0.0
0.0 - 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
- 0.0 - 0.0 0.0 0.0
- 0.0 - 0.0 0.0 0.0
- 0.0 - 0.0 0.0 0.0
- 0.0 - 0.0 0.0 0.0
- 0.0 - 0.0 0.0 0.0
1850.54 1850.54 - 1850.54 0.0 0.0
1850.54 1850.54 - 1850.54 0.0 -
- 0.0 - 0.0 0.0 -
- 0.0 - 0.0 0.0 -

t_n - 0.0 - 0.0 273.66 -

Table 4.1: Illustrative example showing six time series from the
metric kubernetes.io.read_bytes, all which are connected to the same
database with id 0001. Pod names and hosts related to the specific
time series is given. Missing values are denoted as "-"
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series were sorted, they were merged and saved to different files, where each file only con-
tained time series queried from the same host and dbid. In Table 4.2 we can see how time
series from host gke-prod-1-000X and dbid 0001 were collected together.

In the Table 4.2, it can be observed how the data points are limited to specific time intervals.
This is due to the fact that the time series only contains data when the pod is active on a
host. Looking at these time series, we can determine the periods during which a database
is active on a specific host. Using this information, we can generate new time series for the
metrics lacking information about the dbid. This process is explained through Figure 4.3.
The time series from the specific metric that we wanted to connect to a dbid was copied.
From the merged time series that was the result of the process shown in 4.2, we used the has
data column to identify the time indices during which the database was active on that specific
host. If the value of has data was 0, the row’s value was excluded from said copy. After having
excluded these values we had a new time series that was representative for the specific metric
and database.

Handling Missing Values and Outliers
As outlined in Section 3.4.1, there are various approaches to handling missing values. Given
that a metric missing one or several values can potentially be an indication that the database
the metric describes is about to lose fault tolerance, we opted not to fill the missing values
with a default or arbitrary value. Since we had access to a substantial data set, even if some
values were missing, we would still have sufficient data for our experiments. This resulted in
a time series as illustrated in figure 4.1, where missing values were left empty. The same argu-
ment can be made regarding outlier data points, as they too can be an indication concerning
the state of the database. Hence, no outliers were removed from the data sets.

Aggregating the Time Series Data
Before utilising the time series data for analysis, we made the decision to further reduce and
aggregate our data. As depicted in Figure 4.1, there are different types of pods represented
in the data set; primarily cores and backups, but there can also be data not associated to any
pod. Given our research objective of predicting fault intolerance, which refer to a core pod
going down, we opted to only include data from core pods. Data from backup pods and pods
not associated to a specific database was therefore disregarded. Some metrics could not be
grouped on pod name, resulting in the time series having the pod names being set to NA.
For these metrics, all time series were considered and used for anomaly detection. To ensure
we only had one time series per database and metric, we performed data aggregation in a
convenient manner. Specifically, we calculated the average of all available time series data
for each point in time, per database and metric, resulting in one single time series.

4.2.5 Further Reduction of Metric Count
Since we now had the time series for the metrics saved on a suitable format, we were still
faced with a high number of metrics. To narrow down the scope, we made the decision to
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TS1 TS2 TS3
metric container.cpu.system neo4j.transaction.rollbacks kubernetes.io.read_bytes
dbid 0001 0001 0001
podname neo4j-core-0001-0E neo4j-core-0001-0E NA

TS4 TS4 TS6
metric jvm.heap_memory containerd.mem.cache neo4j.transaction.tx_size_heap.count
dbid 0001 0001 0001
podname neo4j-core-0001-0E neo4j-core-0001-0E neo4j-core-0001-0E

time TS1 TS2 TS3 TS4 TS5 TS6
t_0 2470568.14 4279.25 0.0 162005910.0 45659750.4 432.75

2267125.72 4285.25 13.2 162303648.0 45659750.4 433.25
2463920.82 4297.25 0.0 160784824.0 45659750.4 433.75
- - 0.0 - - -
- - - - - -
- - - - - -
- - - - - -
- - - - - -
- - - - - -
- - - - - -
- - - - - -
- - - - - -
- - - - - -
- - - - - -
- - - - - -
2597467.84 1008.75 0.0 162841248.0 - 242.0
10352518.61 1014.25 0.0 163784272.0 45686784.0 242.5
10143984.33 1020.25 0.0 161018500.0 45686784.0 243.0
9811915.01 1026.25 0.0 164899958.0 45666508.8 243.5

t_n 10150722.33 1032.25 0.0 163611446.0 45632716.8 244.0

has data
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1

Table 4.2: Illustrative example showing six time series from the same
host gke-prod-1-000X, all which are connected to the same database
with id 0001. Missing values are denoted as "-".
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TS1
metric kubernetes.kubelet.pod.worker.duration.sum
dbid NA
podname NA

TS1 for dbid 0001
metric kubernetes.kubelet.pod.worker.duration.sum
dbid 0001
podname NA

time TS1
t_0 158465982.55155748

158468921.16411304
158471806.52155754
158474314.00066864
158476484.04189083
158479531.2624464
158481879.8714464
158484205.97222412
158486860.0660019
158489579.06711298
158491743.23955742
158493944.63633522
158493944.63633522
158497326.02989075
158500337.03477967
158504770.67000186
158507204.13500193
158510325.085113
158513013.07166857

t_n 158515644.0610019

has data
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1

time TS1 for dbid 0001
t_0 158465982.55155748

158468921.16411304
158471806.52155754
158474314.00066864
-
-
-
-
-
-
-
-
-
-
-
158504770.67000186
158507204.13500193
158510325.085113
158513013.07166857

t_n 158515644.0610019

Table 4.3: Illustrative example on how time series for metrics with-
out dbid were processed and connected to a specific database. The
original time series TS1 is copied and data points in the rows where
there was no data for any of the metrics containing the host and
database specified (has data column) with were removed. Missing
values are denoted as "-". How the has data column is put together is
illustrated through Table 4.2.
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perform analyses aimed at further reducing the number of metrics. As a result, we compiled
two lists of metrics: one based on domain knowledge and the other on statistical analysis.

Selecting Metrics Based on Domain Knowledge
As mentioned in Section 1.2, a common approach to selecting monitoring metrics is by lever-
aging domain knowledge of the system. In order to obtain such a selection of metrics, we
consulted our advisory at Neo4j and requested their input on identifying metrics that corre-
late with the event of a database becoming fault intolerant, as outlined in research question
RQ1. The resulting list can be viewed in its entirety in table 4.4.

Selecting Metrics Based on Statistical Analysis
The process of identifying relative metrics was conducted iteratively, by applying different
requirements for the data to meet. Firstly, we took a look at missing values. As a missing
value could potentially indicate an anomaly, discarding metrics with missing values should
be done with care. However, there were metrics that continuously reported no values for
extended periods or had entirely missing time series for certain databases, indicating that
no values were reported for those specific metric and databases. Since our aim was to find a
unified anomaly detection model applicable to all databases, we decided to discard metrics
that did not have data for all databases being studied. This resulted in 307 remaining metrics
to further examine.

One method described in Section 1.6 is the Filter method, where the selection of metrics is
based on ranking them according to some criteria. In order further reduce the number of
metrics, our objective was to evaluate and rate them using this criteria. The chosen criteria
should indicate potential deviation in behaviour between the period before a database be-
comes fault intolerant and the periods when the database was running with all three cores,
demonstrating fault tolerance. In order to rate the metrics in this way, we made the following
assumption:

Metrics containing data which behaviour diverge leading up to the event of fault
intolerance, in comparison to a randomly selected time interval, holds information that
can be used to predict when a database becomes fault intolerant.

To identify changes in the behaviour of the data we used standard deviation. We examined
the time periods preceding the loss of fault tolerance for the databases and designated them as
one category. For the other category, we randomly selected intervals from clean data. All time
intervals span over 30 minutes. During our previous analysis of the time series, we observed
that the time series could vary in behaviour over longer time periods. Therefore, comparing
the standard deviation of the intervals preceding fault intolerance events to the intervals from
clean data could potentially overshadow the small changes in the data, as longer trends may
dominate. To address the problem of comparing behaviour between intervals over shorter
time periods, we divide each interval into two parts: the first being 20 minutes, and the sec-
ond one 10 minutes. An illustrative example of such an interval can be seen in 4.1.

The reason for dividing the intervals in this manner was based on the assumption that the
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Figure 4.1: An illustrative example of a time interval leading up to a
database loosing fault intolerance at time Ft.

data would have a higher likelihood of exhibiting varying behaviour when approaching fault
intolerance. This assumption relied on the data coming from a metric that could be corre-
lated to the fault intolerance events. After splitting the interval into two parts, we calculated
the standard deviation for each part, denoted asσ_1 andσ_2,respectively, and calculated the
percentage difference between the two resulting in a ratio. This ratio was calculated for all
intervals, both in the set of intervals preceding fault intolerance and the clean set. The aver-
age ratio of the two sets were calculated and compared them by determining the percentage
difference between the averages. A low value indicated a smaller difference in how the data
behaved between the two sets, while a higher value indicated a larger difference in behaviour.
We conducted this analysis for all metrics and picked the 20 metrics with the highest per-
centage difference. The resulting list can be viewed in Table 4.5.

4.3 Anomaly Detection
Now that we had the lists of metrics, we could proceed with designing the anomaly detection
pipeline. Since we had significantly reduced the number of metrics, it was now feasible to
query for a larger amount of data. To ensure sufficient data for training, testing, and validat-
ing our anomaly detection models, we made the decision to query data for a time period of
one month. This extended time frame would provide us with a substantial data set to work
with.
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kubernetes.cpu.usage.total
neo4j.transaction.active
neo4j.transaction.started
neo4j.transaction.rollbacks
neo4j.transaction.tx_size_heap.quantile
neo4j.db.query.execution.latency.millis.quantile
neo4j.check_point.total_time
haproxy.backend.session.current
haproxy.backend.errors.con_rate
jvm.heap_memory
jvm.heap_memory_max
neo4j.page_cache.page_faults
neo4j.vm.gc.time.g1_young_generation
neo4j.vm.gc.time.g1_old_generation
kubernetes.io.write_bytes
kubernetes.io.read_bytes
kubernetes.network.tx_bytes
kubernetes.network.rx_bytes
neo4jcloud.neo4j_disk_usage_sidecar_disk_usage

Table 4.4: Metrics selected based on domain knowledge.

neo4j.transaction.tx_size_heap.count
neo4j.transaction.committed
container.uptime
neo4j.transaction.tx_size_native.count
neo4j.page_cache.unpins
jvm.gc.cms.count
container.memory.cache
neo4j.vm.memory.pool.compressed_class_space
neo4j.vm.memory.pool.metaspace
jvm.gc.metaspace_size
jvm.non_heap_memory
jvm.loaded_classes
kubernetes.memory.cache
containerd.mem.cache
container.memory.oom_events
containerd.mem.current.failcnt
gcp.networking.pod_flow.rtt.sumsqdev
container.cpu.limit
kubernetes.io.read_bytes
container.io.read

Table 4.5: Metrics selected based on statistical analysis.

After preprocesed the new data using the same method as we described in Section 4.2.4 for
metric selection, we observed a few data points for some of the metrics and databases that
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had not a number (NaN) values. These NaN values indicated that there was no values reported
for these specific metrics at that given time. Since some anomaly detection models require
for each data point to be a value, we had to replace these NaN values with numeric ones. We
decided to replace them with 0, as this would describe the behaviour of no reported values.

The available data set had to be divided into a training set and a testing set. This division
involved splitting the data set into two parts: one for training and the other for testing its
performance. This resulted in data corresponding two weeks was used for training and the
other two weeks for testing. To obtain clean or normal data for training the models, a certain
part of data points were excluded. The data points corresponding to times when the database
was experiencing fault intolerance, as well as data points within 30 minutes preceding and
following loss of fault tolerance was removed. By removing these periods, we aimed to focus
the models training on normal operational states of the database.

4.3.1 Anomaly Detection using HBOS
One of the anomaly detection models used in our pipeline was the HBOS method, as de-
scribed in Section 3.3.3. For the implementation of this model, we used a module called
PyOD, (Python Outlier Detection). As previously mentioned, the number of bins used in the
HBOS model can impact its effectiveness. Since we were working with data from multiple
time series, each with distinct characteristics, we adopted a strategy where we constructed
a HBOS model using a range of histogram widths. This approach allowed us to generate
multiple scores which could be aggregated to create a single, stable model. This approach
would thus reduce the risk of overfitting, i.e. making the model good at predicting values for
the training set but bad for making predictions on the test set, and enhance the prediction
accuracy. In our case, we developed 10 HBOS models using the range of bins [5, 10, 15, 20,
35, 30, 50, 60, 75, 100]. From these models, 10 predictions were made and normalised to
zero-mean and unit variance before calculating the average prediction, which served as our
final prediction

When conducting experiments with the HBOS method, we discovered that our initial as-
sumption, stating that time series originating from different database instances would be-
long to the same distribution might not hold true. Therefore, we opted up train the HBOS
model using two different approaches. The first method involved training a HBOS model for
each individual database, to use for anomaly detection on that specific database. The second
method instead trained one single HBOS on data from all available databases and applying
said model to predict the anomalies for every database.

After fitting the HBOS model to the training data, we proceeded to make predictions on
the test data. As outlined in Section 3.3.3, the HBOS will generate outlier scores for each
data point in the test set during the prediction process. By setting a threshold to determine
what outlier score should be classified as an anomaly and which should be considered nor-
mal, a list of indices corresponding to data points classified as anomalous was created. The
threshold was set based on the number of fault intolerant events observed in the training
data set. This number was multiplied by 30, as we aimed to account for the assumption that
multiple data points in the period preceding a fault intolerance event would exhibit anoma-
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lous behaviour. Finally, this was dividing it by the total length of the training time series.
This provided us with a ratio regarding how frequent fault intolerance events occurred. The
produced list of indices of anomalous points, was later used in the evaluation process.

Using HBOS with Moving Average
Since the HBOS method consider each data points individually and does not take the values
of surrounding data points into account, the time series aspect of the data in which we train
our model is lost. As we believed that the data points were not independent of their sur-
roundings, we wanted to preprocess the data in a way that incorporated information about
how each data point behaved relative to its surroundings, before using it on our model. To
achive this, we used two types of moving averages: Simple Moving Average (SMA) and Expo-
nential Moving Average (EMA), as described in Section 3.3.3. For each time series, we created
two new time series: one based on SMA and another on EMA. First, the moving average was
calculated for each data point, then the difference between the moving average the actual
value was calculated. A large difference would indicate that the data point deviated from its
surrounding points. To calculate the SMA, a window size of 30 minutes was used. For the
EMA, a smoothing level of 0.065 was used, which was determined based on the equation in
3.4.2 and a window size of 30 minutes.

The resulting time series consisted of the calculated differences between the SMA and the
original data, and the EMA and the original data. These time series were used to train the
HBOS models, following the same methodology as described above for the original time
series.

4.3.2 Anomaly Detection using LSTM Autoencoder
The second method tested for detecting anomalies was an LSTM autoencoder, as described
in section 3.3.2. An LSTM autoencoder can be used to capturing dependencies and patterns
over longer time series, making it suitable for anomaly detection.

Architecture
To implement our LSTM autoencoder, we used Keras. The model summary of the architec-
ture used is depicted in table 4.6. The architecture was derived from attempting different
architectures and hyperparameters, and studying the result. The architecture is as follows:
two LSTM layers acting as encoders, followed by a RepeatVector. Then, we had two more
LSTMs acting as decoders, and finally a TimeDistributed layer. The output shapes of the
different layers can be viewed in the model summary. As we studied the data in intervals of 5
and the number of metrics studied was 19 or 20 depending on metric set, the input shape was
(1, 5, 19) or (1, 5, 20). The loss function used to calculate the error was MSE and the optimiser
used was Adam. Since we designed and used the LSTM autoencoder for anomaly detection,
the input sequence was also the target sequence in the training process. This means that we
are training the model to detect changes in the data, not to predict future values.

After fitting the model to the training data, we proceeded to make predictions on the test
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Layer (Type) Output Shape Param #
encoder_1 (LSTM) (None, 5, 32) 6656
encoder_2 (LSTM) (None, 16) 3136
encoder_decoder_bridge (RepeatVector) (None, 5, 16) 0
decoder_1 (LSTM) (None, 5, 16) 2112
decoder_3 (LSTM) (None, 5, 32) 6272
time_distributed (TimeDistributed) (None, 5, 19) 627

Table 4.6: Summary of the LSTM auto-encoder used.

data. The LSTM autoencoder will try to encode and decode a given sequence, and by com-
paring the predicted output to the target and observing the deviation, we can detect rare
patterns in the data. The Mean Average Error (MAE) loss was therefore computed for all the
predicted outputs and their target values. A small MAE would indicate that the pattern in
the sequence had been observed before in the normal training data, while a high MAE would
indicate an anomalous pattern. By setting a threshold regarding what MAE would count as
normal and what should be considered an anomaly, we could label the data point indices as
either predicted to be normal or predicted to be anomalous. The threshold was determined
in the same way as we did when setting it for the anomaly detection using HBOS, as described
in Section 4.3.1. This involved counting the number of fault tolerance events in the training
data and then multiplying it by 30 and dividing it by the total number of data points.

4.4 Evaluation Method
As our research question RQ2 states, we want to be able to predict when the database is going
to become fault intolerant. Now that we had the models produce predictions that classified
the data points as either normal or anomalous, we needed a way to compare these points to
the events where a database became fault intolerant. There are several aspects which need to
be taken into consideration when developing such an evaluation model. It is important to
define the time horizon within which we can accurately predict fault intolerance. Addition-
ally, we need to establish clear criteria for determining true positives, true negatives, false
positives, and false negatives in order to evaluate the performance of our prediction models.

When considering the time aspect, our aim was to investigate not only if fault intolerance
could be predicted, but also how long in advance. However, to ensure meaningful results, we
decided to analyse multiple data points simultaneously when making classifications close to
the fault intolerance events. To achieve this, we employed time windows in our evaluation,
extending up to one hour before a database became fault intolerant. Each time window had
a length of 10 minutes, equivalent to 10 data points. Given the data points proximity to a
fault intolerance event, we desired these time windows to be classified as anomalous in order
to trigger an alert. As a consequence, these time windows can only be classified as either
true positives or false negatives. All data points outside of the studied time windows will be
classified as either false positives or true negatives.

In our work we decided to investigate the following time intervals before a fault intoler-
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ance event occurred; 0-10, 5-15, 10-20, 15-25, 20-30, 25-35, 30-40, 35-45, 40-50, and 45-55.
Considering the time intervals, such as 0-10 minutes and 45-55 minutes, implies different
expectations regarding the system’s ability to alert for databases becoming fault intolerant
within those respective time frames. In the 0-10 minute interval, we anticipate the system
to detect and alert promptly for fault intolerance events occurring within the next 10 min-
utes. On the other hand, within the 45-55 minute interval, the system should be capable of
predicting and alerting for fault intolerance events expected to happen between 45 and 55
minutes from the present moment.

The different time windows can be classified as follows:

• True Positives: All time windows which have at least one anomaly within them, and
lies within the specified time from a fault intolerance event.

• False Negatives: All time windows with no anomalies, and which lies within the spec-
ified time from a fault intolerance event.

• True Negatives: All data points not predicted as anomalous, and which do not lie in
the specified time window currently studied.

• False Positives: All data points predicted as anomalous, and which are not in the
specified time window currently studied.
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Chapter 5

Result

The purpose of this chapter is to present the result of the anomaly detection and provide
necessary information to substantiate the following discussion. We begin by providing the
results from the HBOS method, followed by the results obtained from the LSTM autoen-
coder. It is important to note that the results presented in this section represent only a part
of the information gathered from the conducted experiments. We have selected the find-
ings that showed the best results or provided us with insights which could be used in the
discussion and the validation of the thesis.
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5.1 Data Attributes
In the previous chapter we described the process we went through in order to get the data
that we used to train and test our models on. We first started by reducing the metric count
to 19 ones chosen by a developer at Neo4j with domain knowledge of the system, and 20 ones
selected through the metric reduction process described in section 4.2. Note that there is one
metric overlapping the two sets of metrics, therefore the total number of metrics studied is
38. The listed metrics are shown in the Tables 4.4 and 4.5. From these metrics, data for a
total of four weeks was queried and aggregated to become one time series per metric and
database, as described in section 4.2.4.

In order to get a better understanding of the results, a brief description of the attributes
of the final time series is given. For all 29 databases there was a total number of 194 instances
in which a database lost fault tolerance during the two weeks used for training, and 137 times
during the two weeks that was used for testing. The distribution of fault intolerance events
between the different databases did not align: one database could have become fault intol-
erant only 3 times during the training period and 3 times during the testing period, while
another database became fault intolerant 23 times during the training period and 17 times
during the test period. Observe that the training data did not include any of the fault intol-
erance data during training, this is only to illustrate how fault intolerance was distributed.
The number of times the databases became fault intolerant could also differ a lot between
the two time periods used for testing and training of a database. For example, there was one
database that became fault intolerant 10 times during the training period and only one time
during the testing period. In general, there were more instances of databases becoming fault
intolerant during the training period than during the testing period. Additionally, only six
databases exhibited a higher count of fault intolerance events in the test data compared to
the training data.

Four example of time series from different metrics can be seen in the figs. 5.1 to 5.5. From
these figures we can see that the time series behaves differently depending on the metric.
Some of them reports no values, or very low, but can suddenly spike before going back to
reporting low values again, this behaviour can be seen for the haproxy.backend.errors.con_rate
metric in figure 5.1. Other metrics reports values that fluctuate a lot, as is the case for the
values coming from the metric jvm.heap_memory seen in figure 5.2. Additionally, it can be
observed that for some metrics the data is spiking but continues to report the higher values
for some time before going back to report lower values again, these plateau like shapes can
be seen in the time series coming from the metric neo4j.page_cache.page_faults shown in figure
5.3. Other time series shows some kind of combination of the two last mentioned, they are
fluctuating but stays at plateaus at different stages for a while, such as the time series coming
from neo4j.transaction.rollbacks shown in figure 5.4. Another thing worth noticing is that
the values that are reported from the metric can differ a lot between databases, for example
for metric haproxy.backend.session.current shown in figure 5.5 we can see that the values lies
between 0 and approximately 4 for one database, while it for another varies between 0 and
approximately 40. Last it is worth pointing out that the trends in the data can change with
time, as for metric neo4j.page_cache.page_faults, data from the two first weeks have values lower
than data from the two last weeks, this trend is clearly shown in Figure 5.3.
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In Figures figs. 5.1 to 5.5 not only the time series for the different metrics are shown, but
also the periods where the database has been fault intolerant. It is hard to see any correlation
between the fault intolerance events and the time series data just by looking at them. In order
to better get a view over how the data changes close to a fault intolerance event a few close
ups are shown in figure 5.6. The data comes from the metric haproxy.backend.error.con_rate.
The reason for why this metric was chosen for close ups was because it looked like there
could be a correlation between the spikes in a time series to when a database becomes fault
intolerant. Worth noticing is that the two close ups presented highest up in the figure are
overlapping, meaning that the second spike in the first time series is the same as the second
one in the second time series which also shows a fault intolerance event in it. For the third
spike in these two time series at the top, there was no fault intolerance reported from the
database. The following three time series in the figure are not overlapping any other.

The figures presented above are only a few of the 1102 (38 metrics for each of the 29 databases)
time series generated through the metric selection and the data preprocessing. Counting the
time series derived when applying SMA and EMA the number is even higher. In the next
section we will provide the results from using these time series in the anomaly detection
process.

Figure 5.1: Two time series from different databases showing the
values of metric haproxy.backend.errors.con_rate in blue and fault in-
tolerance in red. Note the contrast in frequency of fault intolerance
between the databases.
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Figure 5.2: Two time series from different databases showing the
values of metric jvm.heap_memory in blue and fault intolerance in
red. Note the higher level of fluctuation in the data.

Figure 5.3: Two time series from different databases showing the
values of neo4j.page_cache.page_faults in blue and fault intolerance in
red. Note the uneven distribution of the data between the first half
and the second half.
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Figure 5.4: Two time series from different databases showing the
values of metric neo4j.transaction.rollbacks in blue and fault intoler-
ance in red. The lower level of fluctuation in the data.

Figure 5.5: Two time series from different databases showing the
values of haproxy.backend.session.current in blue and fault intolerance
in red. Note the substantial disparity in the range of values between
the two databases.
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Figure 5.6: Four time periods of one specific database showing the
values of haproxy.backend.errors.con_rate in blue and fault intolerance
in red. Note how the values of the metric correlates to the fault
intolerance instances and the overlap of the top two graphs.
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5.2 Results for Fault Intolerance Predictions
In this section, results from the evaluation of the anomaly detection experiments are given. As
our research questions RQ1 and RQ2 state, we are interested in finding metrics that correlate
with databases becoming fault intolerant, and if we can, based on anomaly detection, predict
when a database is at risk of becoming fault intolerant. In order to answer these questions we
designed an evaluation method to be able to label the predicted anomalies as true positives,
false positives, true negatives, and false negatives. It is this process, described in section 4.4,
that process that the resulting scores are based on. The models that were designed and built
for the anomaly detection were based on the HBOS method and the LSTM autoencoder
method. The metrics used for training and testing these models are shown in the Tables 4.4
and 4.5.

5.2.1 Results for Metrics Selected on Domain Knowl-
edge

The results given in this section derives from models trained and tested on metrics selected
based on domain knowledge. The list of metrics can be seen in Table 4.4.

Results based on HBOS Anomaly Detection
In Table 5.1, combined results of having trained and tested multiple HBOS models, one for
each database are shown. The time series used in this part are the original ones, i.e. not
the ones derived from combining SMA and EMA. We can see that all scores are low for all
metrics and time intervals. The table also shows results for the multivariate HBOS model,
where all metrics are used to build a single model. Worth noticing is that the multivariate
model did not perform better than the single best univariate model which was trained on the
haproxy.backend.errors.con_rate metric.

In contrast to the result described above, the results shown in Table 5.2 comes from training
one single HBOS model on the data from all databases; the single HBOS model was then used
by all databases to test on. Note that a multivariate HBOS model was not tested for this set
up. In the table we can see, again, that all scores are low for all metrics and time intervals. Ad-
ditionally, we can observe that the performance of the best metric, haproxy.backend.errors.con_rate,
is worse than for the ensemble HBOS model.

For the time series derived from the process of using moving averages in combination with
HBOS as described in Section 4.3.1 we can see the result in Table 5.3. The table only shows
the five best performing metrics of each moving average. As we can see, the scores are low
for all metrics and time windows. Later we will present the result based on a multivariate
HBOS model trained on the three best performing metrics from the metrics selected based
on domain knowledge, and the three best metrics based on the statistical analysis.
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Metrics F1-scores
0-10 5-15 10-20 15-25 20-30 25-35 30-40 35-45 40-50 45-55 50-60

kubernetes.cpu.usage.total 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.001
neo4j.transaction.active 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002
neo4j.transaction.started 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
neo4j.transaction.rollbacks 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
neo4j.transaction.tx_size_heap.quantile 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
neo4j.db.query.execution.latency.millis.quantile 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
neo4j.check_point.total_time 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001
haproxy.backend.session.current 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
haproxy.backend.errors.con_rate 0.065 0.026 0.013 0.007 0.007 0.020 0.013 0.013 0.013 0.007 0.013
jvm.heap_memory 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.005 0.000
jvm.heap_memory_max 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
neo4j.page_cache.page_faults 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
neo4j.vm.gc.time.g1_young_generation 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
neo4j.vm.gc.time.g1_old_generation 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
kubernetes.io.write_bytes 0.001 0.001 0.000 0.001 0.001 0.001 0.000 0.000 0.000 0.001 0.001
kubernetes.io.read_bytes 0.014 0.018 0.006 0.013 0.009 0.009 0.005 0.005 0.001 0.004 0.004
kubernetes.network.tx_bytes 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.005 0.005 0.002
kubernetes.network.rx_bytes 0.004 0.004 0.004 0.007 0.004 0.005 0.005 0.000 0.000 0.001 0.001
neo4jcloud.neo4j_disk_usage_sidecar_disk_usage 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Multivariate analysis 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0007 0.0007 0.0006 0.0007 0.0007

Metrics Recall
0-10 5-15 10-20 15-25 20-30 25-35 30-40 35-45 40-50 45-55 50-60

kubernetes.cpu.usage.total 0.072 0.094 0.109 0.159 0.159 0.152 0.174 0.145 0.159 0.087 0.130
neo4j.transaction.active 0.094 0.087 0.094 0.094 0.101 0.101 0.109 0.109 0.094 0.094 0.101
neo4j.transaction.started 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.022 0.022
neo4j.transaction.rollbacks 0.116 0.116 0.116 0.123 0.101 0.101 0.101 0.101 0.101 0.101 0.101
neo4j.transaction.tx_size_heap.quantile 0.000 0.000 0.000 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007
neo4j.db.query.execution.latency.millis.quantile 0.080 0.080 0.080 0.080 0.072 0.072 0.072 0.094 0.101 0.101 0.101
neo4j.check_point.total_time 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.058 0.051 0.058
haproxy.backend.session.current 0.065 0.036 0.029 0.029 0.036 0.051 0.051 0.058 0.043 0.043 0.036
haproxy.backend.errors.con_rate 0.072 0.029 0.014 0.007 0.007 0.022 0.014 0.014 0.014 0.007 0.014
jvm.heap_memory 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.007 0.007 0.000
jvm.heap_memory_max 0.261 0.261 0.261 0.261 0.275 0.275 0.275 0.275 0.290 0.283 0.290
neo4j.page_cache.page_faults 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.043 0.043
neo4j.vm.gc.time.g1_young_generation 0.094 0.094 0.094 0.109 0.109 0.109 0.109 0.116 0.123 0.123 0.123
neo4j.vm.gc.time.g1_old_generation 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007
kubernetes.io.write_bytes 0.029 0.022 0.007 0.014 0.014 0.014 0.000 0.000 0.007 0.014 0.014
kubernetes.io.read_bytes 0.080 0.101 0.036 0.072 0.051 0.051 0.029 0.029 0.007 0.022 0.022
kubernetes.network.tx_bytes 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.029 0.036 0.036 0.014
kubernetes.network.rx_bytes 0.058 0.058 0.065 0.101 0.065 0.080 0.080 0.000 0.000 0.022 0.022
neo4jcloud.neo4j_disk_usage_sidecar_disk_usage 0.116 0.116 0.116 0.116 0.116 0.116 0.116 0.116 0.101 0.101 0.101
Multivariate analysis 0.0362 0.0362 0.0362 0.0362 0.0362 0.0362 0.0435 0.0435 0.0362 0.0435 0.0435

Metrics Precision
0-10 5-15 10-20 15-25 20-30 25-35 30-40 35-45 40-50 45-55 50-60

kubernetes.cpu.usage.total 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000
neo4j.transaction.active 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
neo4j.transaction.started 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
neo4j.transaction.rollbacks 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
neo4j.transaction.tx_size_heap.quantile 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
neo4j.db.query.execution.latency.millis.quantile 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
neo4j.check_point.total_time 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
haproxy.backend.session.current 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000
haproxy.backend.errors.con_rate 0.059 0.024 0.012 0.006 0.006 0.018 0.012 0.012 0.012 0.006 0.012
jvm.heap_memory 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.004 0.000
jvm.heap_memory_max 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
neo4j.page_cache.page_faults 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
neo4j.vm.gc.time.g1_young_generation 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
neo4j.vm.gc.time.g1_old_generation 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
kubernetes.io.write_bytes 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
kubernetes.io.read_bytes 0.008 0.010 0.003 0.007 0.005 0.005 0.003 0.003 0.001 0.002 0.002
kubernetes.network.tx_bytes 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.003 0.003 0.001
kubernetes.network.rx_bytes 0.002 0.002 0.002 0.004 0.002 0.003 0.003 0.000 0.000 0.001 0.001
neo4jcloud.neo4j_disk_usage_sidecar_disk_usage 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Multivariate analysis 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003

Table 5.1: This table shows F1-score, recall, and precision for evaluation of the anomalies
found depending on how long time before the prediction of a fault intolerance event is
going to be made. The time windows evaluated are 10 minutes long and range between
0 minutes up to 50 minutes before a fault intolerance event occurred. The results comes
from training and testing one HBOS model per database and combining the results.
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5.2 Results for Fault Intolerance Predictions

Metrics F1-scores
0-10 5-15 10-20 15-25 20-30 25-35 30-40 35-45 40-50 45-55 50-60

kubernetes.cpu.usage.total 0.000 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.001
neo4j.transaction.active 0.003 0.002 0.002 0.002 0.002 0.003 0.003 0.003 0.002 0.002 0.003
neo4j.transaction.started 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
neo4j.transaction.rollbacks 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
neo4j.transaction.tx_size_heap.quantile 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
neo4j.db.query.execution.latency.millis.quantile 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000
neo4j.check_point.total_time 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001
haproxy.backend.session.current 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
haproxy.backend.errors.con_rate 0.036 0.009 0.000 0.000 0.009 0.009 0.000 0.000 0.000 0.009 0.018
jvm.heap_memory 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
jvm.heap_memory_max 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
neo4j.page_cache.page_faults 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
neo4j.vm.gc.time.g1_young_generation 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
neo4j.vm.gc.time.g1_old_generation 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
kubernetes.io.write_bytes 0.005 0.004 0.000 0.000 0.004 0.004 0.000 0.000 0.000 0.003 0.003
kubernetes.io.read_bytes 0.018 0.024 0.008 0.015 0.011 0.011 0.005 0.005 0.000 0.005 0.005
kubernetes.network.tx_bytes 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.004 0.006 0.002
kubernetes.network.rx_bytes 0.006 0.006 0.002 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000
neo4jcloud.neo4j_disk_usage_sidecar_disk_usage 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Metrics Recall
0-10 5-15 10-20 15-25 20-30 25-35 30-40 35-45 40-50 45-55 50-60

kubernetes.cpu.usage.total 0.036 0.065 0.087 0.116 0.130 0.116 0.159 0.138 0.130 0.065 0.109
neo4j.transaction.active 0.072 0.043 0.043 0.043 0.043 0.072 0.072 0.072 0.058 0.058 0.080
neo4j.transaction.started 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.000 0.000
neo4j.transaction.rollbacks 0.065 0.065 0.065 0.065 0.043 0.043 0.043 0.043 0.043 0.036 0.036
neo4j.transaction.tx_size_heap.quantile 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
neo4j.db.query.execution.latency.millis.quantile 0.101 0.101 0.101 0.101 0.094 0.094 0.094 0.094 0.094 0.094 0.094
neo4j.check_point.total_time 0.036 0.036 0.036 0.029 0.029 0.029 0.036 0.036 0.065 0.058 0.065
haproxy.backend.session.current 0.029 0.029 0.022 0.022 0.014 0.022 0.022 0.014 0.022 0.022 0.029
haproxy.backend.errors.con_rate 0.029 0.007 0.000 0.000 0.007 0.007 0.000 0.000 0.000 0.007 0.014
jvm.heap_memory 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
jvm.heap_memory_max 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
neo4j.page_cache.page_faults 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.014 0.014
neo4j.vm.gc.time.g1_young_generation 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.036 0.036 0.029 0.029
neo4j.vm.gc.time.g1_old_generation 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007
kubernetes.io.write_bytes 0.029 0.022 0.000 0.000 0.022 0.022 0.000 0.000 0.000 0.014 0.014
kubernetes.io.read_bytes 0.080 0.109 0.036 0.065 0.051 0.051 0.022 0.022 0.000 0.022 0.022
kubernetes.network.tx_bytes 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.022 0.029 0.036 0.014
kubernetes.network.rx_bytes 0.022 0.022 0.007 0.007 0.000 0.000 0.000 0.000 0.000 0.000 0.000
neo4jcloud.neo4j_disk_usage_sidecar_disk_usage 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.087 0.087 0.087 0.087

Metrics Precision
0-10 5-15 10-20 15-25 20-30 25-35 30-40 35-45 40-50 45-55 50-60

kubernetes.cpu.usage.total 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
neo4j.transaction.active 0.002 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.001 0.001 0.002
neo4j.transaction.started 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
neo4j.transaction.rollbacks 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
neo4j.transaction.tx_size_heap.quantile 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
neo4j.db.query.execution.latency.millis.quantile 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
neo4j.check_point.total_time 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
haproxy.backend.session.current 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001
haproxy.backend.errors.con_rate 0.047 0.012 0.000 0.000 0.012 0.012 0.000 0.000 0.000 0.012 0.023
jvm.heap_memory 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
jvm.heap_memory_max 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
neo4j.page_cache.page_faults 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
neo4j.vm.gc.time.g1_young_generation 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
neo4j.vm.gc.time.g1_old_generation 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
kubernetes.io.write_bytes 0.003 0.002 0.000 0.000 0.002 0.002 0.000 0.000 0.000 0.001 0.001
kubernetes.io.read_bytes 0.010 0.014 0.005 0.008 0.006 0.006 0.003 0.003 0.000 0.003 0.003
kubernetes.network.tx_bytes 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.002 0.003 0.001
kubernetes.network.rx_bytes 0.004 0.004 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000
neo4jcloud.neo4j_disk_usage_sidecar_disk_usage 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 5.2: This table shows F1-score, recall, and precision for evaluation of the anomalies
found depending on how long time before the prediction of a fault intolerance event is
going to be made. The time windows evaluated are 10 minutes long and range between
0 minutes up to 50 minutes before a fault intolerance event occurred. The results comes
from training one single HBOS model on data from all database and then using that
model to evaluate the test data from the different databases.
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5. Result

Metrics F1-scores for SMA
0-10 5-15 10-20 15-25 20-30 25-35 30-40 35-45 40-50 45-55 50-60

haproxy.backend.errors.con_rate 0.019 0.006 0.005 0.003 0.003 0.006 0.005 0.003 0.005 0.005 0.005
jvm.heap_memory_max 0.003 0.003 0.003 0.003 0.000 0.001 0.001 0.001 0.001 0.001 0.001
kubernetes.io.read_bytes 0.005 0.006 0.004 0.004 0.004 0.004 0.001 0.001 0.001 0.001 0.001
kubernetes.network.tx_bytes 0.000 0.000 0.000 0.001 0.001 0.000 0.001 0.003 0.004 0.005 0.003
kubernetes.network.rx_bytes 0.005 0.005 0.004 0.005 0.004 0.004 0.004 0.000 0.000 0.001 0.001
Metrics Recall for SMA

0-10 5-15 10-20 15-25 20-30 25-35 30-40 35-45 40-50 45-55 50-60
haproxy.backend.errors.con_rate 0.087 0.029 0.022 0.014 0.014 0.029 0.022 0.014 0.022 0.022 0.022
jvm.heap_memory_max 0.022 0.022 0.022 0.022 0.000 0.007 0.007 0.007 0.007 0.007 0.007
kubernetes.io.read_bytes 0.101 0.116 0.087 0.087 0.072 0.072 0.029 0.029 0.022 0.022 0.022
kubernetes.network.tx_bytes 0.000 0.000 0.000 0.007 0.007 0.000 0.007 0.029 0.036 0.043 0.022
kubernetes.network.rx_bytes 0.116 0.116 0.101 0.123 0.094 0.101 0.094 0.000 0.000 0.022 0.022
Metrics Precision for SMA

0-10 5-15 10-20 15-25 20-30 25-35 30-40 35-45 40-50 45-55 50-60
haproxy.backend.errors.con_rate 0.011 0.004 0.003 0.002 0.002 0.004 0.003 0.002 0.003 0.003 0.003
jvm.heap_memory_max 0.002 0.002 0.002 0.002 0.000 0.001 0.001 0.001 0.001 0.001 0.001
kubernetes.io.read_bytes 0.003 0.003 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.001
kubernetes.network.tx_bytes 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.002 0.003 0.001
kubernetes.network.rx_bytes 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.000 0.000 0.000 0.000

Metrics F1-scores for EMA
0-10 5-15 10-20 15-25 20-30 25-35 30-40 35-45 40-50 45-55 50-60

kubernetes.cpu.usage.total 0.000 0.001 0.001 0.001 0.002 0.002 0.003 0.003 0.003 0.001 0.001
haproxy.backend.session.current 0.004 0.003 0.003 0.004 0.003 0.003 0.003 0.004 0.003 0.004 0.003
haproxy.backend.errors.con_rate 0.020 0.008 0.005 0.003 0.003 0.005 0.003 0.003 0.003 0.003 0.003
kubernetes.io.read_bytes 0.006 0.007 0.005 0.005 0.004 0.004 0.002 0.002 0.002 0.001 0.001
kubernetes.network.tx_bytes 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.004 0.005 0.006 0.002
Metrics Recall for EMA

0-10 5-15 10-20 15-25 20-30 25-35 30-40 35-45 40-50 45-55 50-60
kubernetes.cpu.usage.total 0.007 0.029 0.036 0.036 0.036 0.029 0.072 0.072 0.080 0.036 0.029
haproxy.backend.session.current 0.065 0.051 0.065 0.080 0.058 0.043 0.043 0.080 0.072 0.080 0.065
haproxy.backend.errors.con_rate 0.087 0.029 0.022 0.014 0.014 0.029 0.022 0.014 0.022 0.022 0.022
kubernetes.io.read_bytes 0.101 0.116 0.087 0.087 0.072 0.072 0.029 0.029 0.022 0.022 0.022
kubernetes.network.tx_bytes 0.000 0.000 0.000 0.007 0.007 0.000 0.007 0.029 0.036 0.043 0.022
Metrics Precision for EMA

0-10 5-15 10-20 15-25 20-30 25-35 30-40 35-45 40-50 45-55 50-60
kubernetes.cpu.usage.total 0.000 0.000 0.001 0.001 0.001 0.000 0.001 0.001 0.001 0.001 0.000
haproxy.backend.session.current 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
haproxy.backend.errors.con_rate 0.011 0.004 0.003 0.002 0.002 0.004 0.003 0.002 0.003 0.003 0.003
kubernetes.io.read_bytes 0.003 0.003 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.001
kubernetes.network.tx_bytes 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.002 0.003 0.001

Table 5.3: This table shows F1-score, recall, and precision for evaluation of the anomalies
found depending on how long time before the prediction of a fault intolerance event is
going to be made. Only the five best performing metrics are shown. The time windows
evaluated are 10 minutes long and range between 0 minutes up to 50 minutes before a
fault intolerance event occurred. The results comes from training and testing one HBOS
model per database and combining the results. The data used was the SMA and EMA
time series produced in the data preprocessing phase.
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5.2 Results for Fault Intolerance Predictions

Results Based on the LSTM Autoencoder Anomaly Detection
In addition to the HBOS anomaly detection method, we also evaluated an LSTM anomaly
detection method. The results can be seen in Table 5.4. A seen in the table the scores are low
for all time windows. In Table 5.5 the same model is used but the threshold for a point to be
classified as an outlier is lowered, producing 3 times more outliers than before. Even though
a slight improvement can bee seen, the scores are still low.

Scores
0-10 5-15 10-20 15-25 20-30 25-35 30-40 35-45 40-50 45-55 50-60

F1-score 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0003 0.0002 0.0005 0.0005 0.0002
Recall 0.0072 0.0072 0.0072 0.0072 0.0072 0.0145 0.0217 0.0145 0.0362 0.0362 0.0145
Precision 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0002 0.0002 0.0001

Table 5.4: This table shows F1-score, recall, and precision for evaluation of the anomalies
found depending on how long time before the prediction of a fault intolerance event is
going to be made. The time windows evaluated are 10 minutes long and range between
0 minutes up to 50 minutes before a fault intolerance event occurred. The results comes
from training and testing one multivariate LSTM autoencoder model.

Scores
0-10 5-15 10-20 15-25 20-30 25-35 30-40 35-45 40-50 45-55 50-60

F1-score 0.0003 0.0003 0.0003 0.0003 0.0002 0.0003 0.0003 0.0003 0.0004 0.0003 0.0002
Recall 0.0797 0.0797 0.0797 0.0652 0.0507 0.0652 0.0652 0.0870 0.0942 0.0870 0.0580
Precision 0.0002 0.0002 0.0002 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002 0.0002 0.0001

Table 5.5: This table shows F1-score, recall, and precision for evaluation of the anomalies
found depending on how long time before the prediction of a fault intolerance event is
going to be made. The time windows evaluated are 10 minutes long and range between
0 minutes up to 50 minutes before a fault intolerance event occurred. The results comes
from training and testing one multivariate LSTM autoencoder model.

5.2.2 Results for Metrics Selected by Statistical Anal-
ysis

The results given in this section derives from models trained and tested on metrics selected
based on statistical analysis. The list of metrics can be seen in Table 4.5.

Results based on HBOS Anomaly Detection
In Table 5.8, combined results of having trained and tested multiple HBOS models, one for
each database are shown. The time series used in this part are the original ones, i.e. not the
ones derived from combining SMA and EMA. We can see that all scores are low for all met-
rics and time intervals. The table also shows results for the multivariate HBOS model, where
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5. Result

all metrics are used to build a single model.

In contrast to the result described above, the results shown in Table 5.9 comes from training
one single HBOS model on the data from all databases; the single HBOS model was then
used by all databases to test on. Note that a multivariate HBOS model was not tested for this
set up. In the table we can see, again, that all scores are low for all metrics and time intervals.
That the performance of the best metric, container.io.read shows has higher scores than it
did for the ensemble model accounted for above.

For the the time series derived from the process of using moving averages in combination
with HBOS as described in Section 4.3.1 we can see the result in Table 5.10. The tables only
shows the five best performing metrics of each moving average. As we can see, the scores are
low for all metrics and time windows.

Results Based on the LSTM Autoencoder Anomaly Detection
In the same way as we did train and test an LSTM autoencoder model for the metrics derived
from the domain knowledge, we did with the metrics selected based on the statistical analysis.
The model trained on these metrics did not succeed in finding any anomalies close enough for
our evaluation method to count them in. The fact that the model did not find any anomalies
close to the fault intolerance events is illustrated by Table 5.6, where all scores are zero for all
time intervals. Again we tried to improve the results by lowering the threshold for a point
to be classified as an outlier, which results in 3 times more outliers than before. The results
from this change are shown in Table 5.5. Now there are data points classified as outliers that
lies close enough to a fault intolerance event. However, the scores are still low.

Scores
0-10 5-15 10-20 15-25 20-30 25-35 30-40 35-45 40-50 45-55 50-60

F1-score 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Recall 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Precision 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 5.6: This table shows F1-score, recall, and precision for evaluation of the anomalies
found depending on how long time before the prediction of a fault intolerance event is
going to be made. The time windows evaluated are 10 minutes long and range between
0 minutes up to 50 minutes before a fault intolerance event occurred. The results comes
from training and testing one multivariate LSTM autoencoder model.
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5.2 Results for Fault Intolerance Predictions

Scores
0-10 5-15 10-20 15-25 20-30 25-35 30-40 35-45 40-50 45-55 50-60

F1-score 0.0004 0.0004 0.0004 0.0008 0.0007 0.0006 0.0004 0.0006 0.0005 0.0008 0.0007
Recall 0.0563 0.0563 0.0704 0.1338 0.1127 0.0986 0.0634 0.0986 0.0845 0.1268 0.1127
Precision 0.0002 0.0002 0.0002 0.0004 0.0004 0.0003 0.0002 0.0003 0.0003 0.0004 0.0004

Table 5.7: This table shows F1-score, recall, and precision for evaluation of the anomalies
found depending on how long time before the prediction of a fault intolerance event is
going to be made. The time windows evaluated are 10 minutes long and range between
0 minutes up to 50 minutes before a fault intolerance event occurred. The results comes
from training and testing one multivariate LSTM autoencoder model.

Multivariate on the Six Best Performing Metrics
From the results we got from the different approaches made with HBOS we trained one
multivariate HBOS model based on six of the top performing metrics. The metrics and type
of time series chosen is shown in Table 5.11. The time series data used as an input came from
either the original time series data, the SMA, or the EMA time series data. One multivariate
HBOS model per database is trained and tested, and the combined results from those models
can be viewed in Table 5.12.

Metric Moving Average
haproxy.backend.errors.con_rate no
kubernetes.network.rx_bytes no
kubernetes.io.read_bytes no
container.io.read no
gcp.networking.pod_flow.rtt.sumsqdev EMA
containerd.mem.cache SMA

Table 5.11: The six best performing metrics. The time series data
used comes from either the original time series, the EMA or the
SMA, depending on which one was used to produce the best results.

Scores
0-10 5-15 10-20 15-25 20-30 25-35 30-40 35-45 40-50 45-55 50-60

F1-score 0.008 0.008 0.010 0.010 0.002 0.006 0.006 0.004 0.006 0.006 0.006
Recall 0.029 0.029 0.036 0.036 0.007 0.022 0.022 0.014 0.022 0.022 0.022
Precison 0.005 0.005 0.006 0.006 0.001 0.004 0.004 0.002 0.004 0.004 0.004

Table 5.12: This table shows F1-score, recall, and precision for evaluation of the anoma-
lies found depending on how long time before the prediction of a fault intolerance event
is going to be made. The time windows evaluated are 10 minutes long and range between
0 minutes up to 50 minutes before a fault intolerance event occurred. The results comes
from training and testing one multivariate HBOS model per database and combining
the results. The six metrics used for the multivariate HBOS model can be seen in Table
5.11.
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5. Result

Metrics F1-scores
0-10 5-15 10-20 15-25 20-30 25-35 30-40 35-45 40-50 45-55 50-60

neo4j.transaction.tx_size_heap.count 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.000
neo4j.transaction.committed 0.000 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
container.uptime 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
neo4j.transaction.tx_size_native.count 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
neo4j.page_cache.unpins 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
jvm.gc.cms.count 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
container.memory.cache 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.001
neo4j.vm.memory.pool.compressed_class_space 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
neo4j.vm.memory.pool.metaspace 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000
jvm.gc.metaspace_size 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
jvm.non_heap_memory 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
jvm.loaded_classes 0.001 0.000 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000
kubernetes.memory.cache 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002
containerd.mem.cache 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002
container.memory.oom_events 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
containerd.mem.current.failcnt 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
gcp.networking.pod_flow.rtt.sumsqdev 0.003 0.001 0.002 0.002 0.003 0.004 0.003 0.001 0.001 0.001 0.001
container.cpu.limit 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000
kubernetes.io.read_bytes 0.014 0.018 0.006 0.013 0.009 0.009 0.005 0.005 0.001 0.004 0.004
container.io.read 0.007 0.008 0.011 0.007 0.008 0.006 0.001 0.000 0.001 0.006 0.008
Multivariate analysis 0.0009 0.0008 0.0008 0.0005 0.0008 0.0007 0.0005 0.0003 0.0004 0.0004 0.0002

Metrics Recall
0-10 5-15 10-20 15-25 20-30 25-35 30-40 35-45 40-50 45-55 50-60

neo4j.transaction.tx_size_heap.count 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.070 0.063
neo4j.transaction.committed 0.035 0.028 0.049 0.049 0.049 0.056 0.056 0.056 0.056 0.042 0.049
container.uptime 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014
neo4j.transaction.tx_size_native.count 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028
neo4j.page_cache.unpins 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007
jvm.gc.cms.count 0.028 0.028 0.035 0.035 0.035 0.035 0.042 0.049 0.049 0.049 0.042
container.memory.cache 0.028 0.028 0.028 0.028 0.035 0.035 0.035 0.042 0.042 0.049 0.049
neo4j.vm.memory.pool.compressed_class_space 0.141 0.148 0.162 0.169 0.190 0.162 0.155 0.162 0.169 0.169 0.169
neo4j.vm.memory.pool.metaspace 0.127 0.162 0.169 0.162 0.113 0.099 0.085 0.099 0.113 0.092 0.021
jvm.gc.metaspace_size 0.035 0.028 0.021 0.014 0.021 0.021 0.028 0.021 0.042 0.035 0.042
jvm.non_heap_memory 0.077 0.099 0.070 0.120 0.106 0.092 0.063 0.063 0.077 0.070 0.063
jvm.loaded_classes 0.063 0.042 0.077 0.070 0.063 0.021 0.028 0.028 0.014 0.014 0.007
kubernetes.memory.cache 0.232 0.232 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225
containerd.mem.cache 0.246 0.246 0.246 0.246 0.239 0.239 0.239 0.254 0.254 0.246 0.232
container.memory.oom_events 0.007 0.007 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014
containerd.mem.current.failcnt 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.035 0.035 0.035
gcp.networking.pod_flow.rtt.sumsqdev 0.042 0.021 0.028 0.035 0.049 0.070 0.049 0.021 0.014 0.014 0.014
container.cpu.limit 0.063 0.077 0.070 0.106 0.092 0.099 0.063 0.077 0.035 0.070 0.063
kubernetes.io.read_bytes 0.080 0.101 0.036 0.072 0.051 0.051 0.029 0.029 0.007 0.022 0.022
container.io.read 0.035 0.042 0.056 0.035 0.042 0.028 0.007 0.000 0.007 0.028 0.042
Multivariate analysis 0.0845 0.0704 0.0704 0.0493 0.0775 0.0634 0.0423 0.0282 0.0352 0.0352 0.0141

Metrics Precision
0-10 5-15 10-20 15-25 20-30 25-35 30-40 35-45 40-50 45-55 50-60

neo4j.transaction.tx_size_heap.count 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
neo4j.transaction.committed 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
container.uptime 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
neo4j.transaction.tx_size_native.count 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
neo4j.page_cache.unpins 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
jvm.gc.cms.count 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
container.memory.cache 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
neo4j.vm.memory.pool.compressed_class_space 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000
neo4j.vm.memory.pool.metaspace 0.000 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000
jvm.gc.metaspace_size 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
jvm.non_heap_memory 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
jvm.loaded_classes 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
kubernetes.memory.cache 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
containerd.mem.cache 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
container.memory.oom_events 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
containerd.mem.current.failcnt 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
gcp.networking.pod_flow.rtt.sumsqdev 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.001 0.000 0.000 0.000
container.cpu.limit 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
kubernetes.io.read_bytes 0.008 0.010 0.003 0.007 0.005 0.005 0.003 0.003 0.001 0.002 0.002
container.io.read 0.004 0.005 0.006 0.004 0.005 0.003 0.001 0.000 0.001 0.003 0.005
Multivariate analysis 0.0005 0.0004 0.0004 0.0003 0.0004 0.0003 0.0002 0.0002 0.0002 0.0002 0.0001

Table 5.8: This table shows F1-score, recall, and precision for evaluation of the anomalies
found depending on how long time before the prediction of a fault intolerance event is
going to be made. The time windows evaluated are 10 minutes long and range between
0 minutes up to 50 minutes before a fault intolerance event occurred. The results comes
from training and testing one HBOS model per database and combining the results.
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5.2 Results for Fault Intolerance Predictions

Metrics F1-scores
0-10 5-15 10-20 15-25 20-30 25-35 30-40 35-45 40-50 45-55 50-60

neo4j.transaction.tx_size_heap.count 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
neo4j.transaction.committed 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
container.uptime 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
neo4j.transaction.tx_size_native.count 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001
neo4j.page_cache.unpins 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
jvm.gc.cms.count 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
container.memory.cache 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
neo4j.vm.memory.pool.compressed_class_space 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
neo4j.vm.memory.pool.metaspace 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000
jvm.gc.metaspace_size 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
jvm.non_heap_memory 0.000 0.001 0.000 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000
jvm.loaded_classes 0.003 0.001 0.004 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000
kubernetes.memory.cache 0.005 0.005 0.005 0.005 0.005 0.004 0.004 0.005 0.005 0.005 0.006
containerd.mem.cache 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
container.memory.oom_events 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
containerd.mem.current.failcnt 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
gcp.networking.pod_flow.rtt.sumsqdev 0.001 0.000 0.000 0.002 0.002 0.000 0.001 0.001 0.001 0.001 0.001
container.cpu.limit 0.001 0.001 0.001 0.002 0.002 0.002 0.001 0.002 0.001 0.002 0.002
kubernetes.io.read_bytes 0.018 0.024 0.008 0.015 0.011 0.011 0.005 0.005 0.000 0.005 0.005
container.io.read 0.008 0.010 0.013 0.008 0.007 0.005 0.002 0.002 0.005 0.010 0.010

Metrics Recall
0-10 5-15 10-20 15-25 20-30 25-35 30-40 35-45 40-50 45-55 50-60

neo4j.transaction.tx_size_heap.count 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.007 0.007
neo4j.transaction.committed 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
container.uptime 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
neo4j.transaction.tx_size_native.count 0.035 0.035 0.035 0.035 0.028 0.028 0.028 0.028 0.028 0.028 0.028
neo4j.page_cache.unpins 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
jvm.gc.cms.count 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007
container.memory.cache 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
neo4j.vm.memory.pool.compressed_class_space 0.035 0.035 0.028 0.028 0.028 0.021 0.021 0.042 0.042 0.042 0.042
neo4j.vm.memory.pool.metaspace 0.077 0.106 0.106 0.092 0.049 0.056 0.042 0.049 0.085 0.085 0.021
jvm.gc.metaspace_size 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
jvm.non_heap_memory 0.028 0.049 0.021 0.063 0.049 0.049 0.000 0.000 0.000 0.021 0.021
jvm.loaded_classes 0.042 0.014 0.056 0.049 0.000 0.000 0.000 0.000 0.000 0.000 0.000
kubernetes.memory.cache 0.190 0.183 0.183 0.183 0.183 0.155 0.155 0.169 0.183 0.197 0.211
containerd.mem.cache 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
container.memory.oom_events 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
containerd.mem.current.failcnt 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.028 0.035 0.035 0.035
gcp.networking.pod_flow.rtt.sumsqdev 0.014 0.007 0.000 0.028 0.028 0.007 0.014 0.014 0.014 0.014 0.014
container.cpu.limit 0.021 0.035 0.035 0.049 0.049 0.056 0.028 0.049 0.021 0.049 0.049
kubernetes.io.read_bytes 0.080 0.109 0.036 0.065 0.051 0.051 0.022 0.022 0.000 0.022 0.022
container.io.read 0.035 0.042 0.056 0.035 0.028 0.021 0.007 0.007 0.021 0.042 0.042

Metrics Precision
0-10 5-15 10-20 15-25 20-30 25-35 30-40 35-45 40-50 45-55 50-60

neo4j.transaction.tx_size_heap.count 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
neo4j.transaction.committed 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
container.uptime 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
neo4j.transaction.tx_size_native.count 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
neo4j.page_cache.unpins 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
jvm.gc.cms.count 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
container.memory.cache 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
neo4j.vm.memory.pool.compressed_class_space 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.001
neo4j.vm.memory.pool.metaspace 0.000 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.001 0.001 0.000
jvm.gc.metaspace_size 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
jvm.non_heap_memory 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
jvm.loaded_classes 0.001 0.000 0.002 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000
kubernetes.memory.cache 0.003 0.003 0.003 0.003 0.003 0.002 0.002 0.002 0.003 0.003 0.003
containerd.mem.cache 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
container.memory.oom_events 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
containerd.mem.current.failcnt 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
gcp.networking.pod_flow.rtt.sumsqdev 0.000 0.000 0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000
container.cpu.limit 0.000 0.001 0.001 0.001 0.001 0.001 0.000 0.001 0.000 0.001 0.001
kubernetes.io.read_bytes 0.010 0.014 0.005 0.008 0.006 0.006 0.003 0.003 0.000 0.003 0.003
container.io.read 0.005 0.006 0.007 0.005 0.004 0.003 0.001 0.001 0.003 0.006 0.006

Table 5.9: This table shows F1-score, recall, and precision for evaluation of the
anomalies found depending on how long time before the prediction of a fault in-
tolerance event is going to be made. The time windows evaluated are 10 minutes
long and range between 0 minutes up to 50 minutes before a fault intolerance
event occurred. The results comes from training one single HBOS model on data
from all database and then using that model to evaluate the test data from the
different databases.
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5. Result

Metrics F1-scores for SMA
0-10 5-15 10-20 15-25 20-30 25-35 30-40 35-45 40-50 45-55 50-60

neo4j.vm.memory.pool.compressed_class_space 0.003 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.000
neo4j.vm.memory.pool.metaspace 0.002 0.002 0.002 0.002 0.001 0.001 0.002 0.002 0.002 0.002 0.000
containerd.mem.cache 0.006 0.007 0.006 0.006 0.004 0.003 0.003 0.003 0.003 0.003 0.002
gcp.networking.pod_flow.rtt.sumsqdev 0.003 0.002 0.003 0.002 0.005 0.007 0.005 0.002 0.001 0.000 0.000
kubernetes.io.read_bytes 0.005 0.006 0.004 0.004 0.004 0.004 0.001 0.001 0.001 0.001 0.001
Metrics Recall for SMA

0-10 5-15 10-20 15-25 20-30 25-35 30-40 35-45 40-50 45-55 50-60
neo4j.vm.memory.pool.compressed_class_space 0.127 0.120 0.099 0.106 0.063 0.056 0.056 0.063 0.063 0.035 0.021
neo4j.vm.memory.pool.metaspace 0.092 0.113 0.106 0.092 0.070 0.077 0.092 0.092 0.120 0.106 0.021
containerd.mem.cache 0.176 0.190 0.176 0.176 0.106 0.099 0.099 0.092 0.099 0.077 0.056
gcp.networking.pod_flow.rtt.sumsqdev 0.049 0.035 0.042 0.035 0.077 0.106 0.077 0.035 0.021 0.007 0.007
kubernetes.io.read_bytes 0.101 0.116 0.087 0.087 0.072 0.072 0.029 0.029 0.022 0.022 0.022
Metrics Precision for SMA

0-10 5-15 10-20 15-25 20-30 25-35 30-40 35-45 40-50 45-55 50-60
neo4j.vm.memory.pool.compressed_class_space 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.000
neo4j.vm.memory.pool.metaspace 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000
containerd.mem.cache 0.003 0.003 0.003 0.003 0.002 0.002 0.002 0.002 0.002 0.001 0.001
gcp.networking.pod_flow.rtt.sumsqdev 0.002 0.001 0.001 0.001 0.002 0.003 0.002 0.001 0.001 0.000 0.000
kubernetes.io.read_bytes 0.003 0.003 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.001

Metrics F1-scores for EMA
0-10 5-15 10-20 15-25 20-30 25-35 30-40 35-45 40-50 45-55 50-60

neo4j.vm.memory.pool.compressed_class_space 0.003 0.003 0.002 0.002 0.001 0.001 0.001 0.002 0.001 0.001 0.000
neo4j.vm.memory.pool.metaspace 0.002 0.002 0.002 0.002 0.001 0.002 0.002 0.002 0.002 0.002 0.000
containerd.mem.cache 0.006 0.006 0.006 0.005 0.004 0.002 0.004 0.003 0.003 0.002 0.002
gcp.networking.pod_flow.rtt.sumsqdev 0.004 0.004 0.008 0.008 0.008 0.010 0.010 0.008 0.004 0.004 0.004
kubernetes.io.read_bytes 0.006 0.007 0.005 0.005 0.004 0.004 0.002 0.002 0.002 0.001 0.001
Metrics Recall for EMA

0-10 5-15 10-20 15-25 20-30 25-35 30-40 35-45 40-50 45-55 50-60
neo4j.vm.memory.pool.compressed_class_space 0.148 0.141 0.106 0.106 0.063 0.063 0.056 0.077 0.070 0.035 0.021
neo4j.vm.memory.pool.metaspace 0.092 0.113 0.113 0.099 0.070 0.085 0.092 0.099 0.113 0.099 0.021
containerd.mem.cache 0.176 0.176 0.162 0.155 0.106 0.070 0.106 0.092 0.092 0.070 0.056
gcp.networking.pod_flow.rtt.sumsqdev 0.014 0.014 0.028 0.028 0.028 0.035 0.035 0.028 0.014 0.014 0.014
kubernetes.io.read_bytes 0.101 0.116 0.087 0.087 0.072 0.072 0.029 0.029 0.022 0.022 0.022
Metrics Precision for EMA

0-10 5-15 10-20 15-25 20-30 25-35 30-40 35-45 40-50 45-55 50-60
neo4j.vm.memory.pool.compressed_class_space 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.000
neo4j.vm.memory.pool.metaspace 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000
containerd.mem.cache 0.003 0.003 0.003 0.003 0.002 0.001 0.002 0.002 0.002 0.001 0.001
gcp.networking.pod_flow.rtt.sumsqdev 0.002 0.002 0.005 0.005 0.005 0.006 0.006 0.005 0.002 0.002 0.002
kubernetes.io.read_bytes 0.003 0.003 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.001

Table 5.10: This table shows F1-score, recall, and precision for evaluation of the anoma-
lies found depending on how long time before the prediction of a fault intolerance event
is going to be made. Only the five best performing metrics are shown. The time windows
evaluated are 10 minutes long and range between 0 minutes up to 50 minutes before a
fault intolerance event occurred. The results comes from training and testing one HBOS
model per database and combining the results. The data used was the SMAand EMA
time series produced in the data preprocessing phase.
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Chapter 6

Discussion

This chapter serves several purposes. Not only will it disclose and discuss the results presented
previously, but it will also aim at providing the reader with a reflection on the entire work.
The results will be discussed in relation to our initial assumptions and the methods used to
achieve them will be analysed. We will also discuss the validity of the results and to what
extent they can be generalised. In the end, we will provide the reader with examples of input
for further work, based on our findings.
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6. Discussion

6.1 Reflections
When starting our thesis the objective was to predict faults in Neo4j’s AuraDB. In a dis-
tributed system like this, there are many types of faults that can occur which can in turn
cause failures of different types. In order to narrow down the scope of the issue stated, we
decided to interpret this into being able to alert when a database is at risk of losing fault tol-
erance. This decision was based on Neo4j’s desire to be alerted before a database core went
down, since this would decrease the risk of a failure. Additionally, the database’s metrics
included information regarding if it was fault tolerant or not. This enabled us to validate our
findings with real data in respect to our research question. While the process of testing if a
database actually lost fault tolerance following an alert was straightforward, finding correla-
tions from other metrics that could have an implication on the system and thus be used to
trigger these alerts, provided a much harder problem.

Since we were dealing with real data from a system in production we had no control over
the processes resulting in the values reported from the metrics. Different processes could
have an effect on the values which caused them to deviate from a more common pattern
without it causing fault intolerance in the system. When and how often such processes occur
is not known to us. Instead, assumptions had to be made about what data would be regarded
as normal data. In our work we simply defined normal, or clean data, as data that did not lie
in the specified proximity of a database becoming fault intolerant, both before and after. If
this was a valid definition depends on what the normal data is later used for. In our case it
would be used for training anomaly detection models. An additional consequence of using
data from a real system was that we had no way of impacting the data set distribution. As
fault intolerance was a rare occurrence in the system we were limited in obtaining anomalous
data. This led to the data gathered being highly imbalanced. That was another important
characteristic of the data that had to be regarded when applying a model to it.

One of the biggest challenges we encountered during our work was how we would handle
the huge amount of data that was made available to us. In theory we could query data from
thousands of databases, thousands of metrics, for several months back in time, and with sam-
pling frequencies as small as a second. In practice this would not be possible due to limitations
in computing capacity and to the fact that there was a limit on how fast we could query the
data. In order to limit the scope we had to reduce the number of metrics and databases, as
well as limit the data to be queried. When studying the metrics in order to bring the scale
the count down, we only queried for one week.

In the beginning of our work we had made the assumption that all databases could be treated
as if they were coming from the same distribution, i.e. the data queried from the databases
would behave in a similar way given that the same processes were running on them. As all
databases are built on the exact same software, we expected this to be the case. This assump-
tion was of importance since we wanted to create and train one single model that would
work for any database in the AuraDB system. Creating and training a single model for each
database at Neo4j would be much less efficient than having one model that could monitor
all instances. In such a case, every time a new database was added to the system a new model
had to be trained for that specific database. However, by looking at the attributes of the
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data in section 5.1 we can see that the behaviour of the data can differ a lot between different
databases. Especially from figure 5.5 we can see that the time series data of the two databases
differs a lot. After having disclosed our results with our advisory at Neo4j we discussed the
possibility that this assumption was incorrect.

The primary arguments to why databases could not be viewed as coming from one and the
same distribution were identified to be differences in the amount of resources assigned to the
database, and how the database was used by the customer. Customers’ usage of the database
may cause a difference in how the database operates. For example, one customer might have a
database with the resources to handle sudden spikes in workload, like the spike in e-commerce
as a result of Black Friday. In this case, the database is constantly operating on a low work-
load in regards to its capacity, resulting in very low values on metrics (even though the usage
and processes vary over the normal season.) Another customer might have slimmed down
their database, and allocated just enough resources to handle a normal workload. In this in-
stance the database is always working and the workload is expected to stay consistent. In the
latter case, a small increase in the workload could result in the database losing fault toler-
ance, while the customer that had allocated much more resources can continue operating as
normal. In these two cases, the metric data leading up to the databases losing fault tolerance
would probably look very different. The customer with a much slimmer database would lie
much closer to the limit of different metrics, such as CPU usage, while the customer with
a lot of resources might report low numbers for the corresponding time period. If we were
to treat these two databases as coming from the same distribution, and simply use the data
from the two as if they came from the same instance, it would be much harder to create a
satisfying performing model.

By looking at the figures in Section 5.1, and especially Figure 5.3 which shows two time series
from the metric neo4j.page_cache.page_faults, we can see that the trend represented in the data
is the values increasing over time. In the first two weeks, which is the first half of the time
series which has a total length of four weeks, the periods of higher values are fewer and values
are lower compared to the second half. We chose to train on the time series for the first two
weeks, and test on data from the last two. The reason behind this was because the aim of this
thesis was to create a model that will be able to predict fault intolerance events in the future.
Thus, training on data that comes before the testing data in time would be most suitable
for the validity of the results in relation to the objective. However, by looking at the figure
displaying the time series from neo4j.page_cache.page_faults, questions regarding if the amount
of data queried and used was enough to be able to adequately train and test a model. Are the
higher values reported a common occurrence, or is it a new phenomenon? Either way, the
fact that the two time periods used for training and testing deviates could have an impact on
the performance of the model.

As stated before, finding correlations from metrics that could have an implication on the
system and thus be used to trigger alerts for upcoming events of fault intolerance was one of
our main problems. One theory we established was that databases lose fault tolerance from
different anomalous events in the system. Therefore, one way forward was to look for anoma-
lies in the data and use these as predictors. From the literature study conducted we found
that a common technique used for anomaly detection was semi-supervised methods. In order
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for semi-supervised models to work, there is a need for training data that consists solely of
normal data. This prerequisite raises the question if our definition of normal data is valid for
our purpose. As we could not control the operation of the databases from which we collected
our data, we could not know if there occurred other anomalous events that would show in
the metrics without causing the database to become fault intolerant. Further discussion of
this limitation is given in Section 6.6.

In order to complete the evaluation of the anomalies found in the anomaly detection phase we
needed to design an evaluation method where we would classify the anomalies. The method
for this is described in Section 4.4. There are many ways in which to classify the anomalies,
the way we chose to do it was based on the needs of Neo4j. It was of interest to them to see
not only if, but also how long in advance it would be possible to predict that a database would
become fault intolerant. More about the limitations of the evaluation method is given in Sec-
tion 6.3. Having given some background on the challenges that had to be addressed during
the course of the work, we now come to the part where we discuss the results achieved from
applying our method on the problem.

6.2 Discussion on Fault Intolerance Predic-
tions Results

In this section we will present and discuss the results from the evaluation of the anomaly
detection methods used to predict fault intolerance. We start by discussing the results from
applying HBOS in different ways. In the end we talk about the results derived from the
LSTM autoencoder approach.

6.2.1 HBOS
While it can simply be observed that the result obtained by the experiments in this thesis left
much to be desired there are still some interesting observations that can be made. By looking
at the resulting scores shown in the tables 5.1 to 5.3, 5.8 to 5.10 and 5.12, we can see that
our model perform vastly superior in recall rather than precision. This means that while our
model could identify some anomalies that indicated loss of fault tolerance, there would be
too many false alarms for it being able to be used efficiently. We can also identify the metric
with best performance based on domain knowledge was haproxy.backend.errors.con_rate and
the best metric based on statistical analysis was kubernetes.io.read_bytes.

If we look at the Tables table 5.1 and 5.8 and at the multivariate HBOS models created
for these two sets of metrics, we see that the F1-score generated by metrics generated by
our statistical analysis goes from 0.0009 for the time window 0-10, down to 0.0002 for the
time window 50-60. The score becomes increasingly higher for the time windows closer to
fault intolerance. For metrics generated by domain knowledge the F1-score varies between
0.0006-0.0007. This means that while metrics based on domain knowledge had better over-
all performance when looking at the multivariate HBOS analysis: but the metrics selected
by the statistical analysis performed better up to 35 minutes before the database lost fault
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tolerance. While this could be an indication that our statistical analysis was successful in
finding metrics that could be used for predicting leading up to losing fault tolerance, the
poorness of the overall result along with the small differences, makes it impossible to draw
any conclusions.

As can be seen in the results, HBOS models were constructed both individually for each
database where the results were combined to an ensemble, as well using data from all databases
to construct one single HBOS model. We expected that the model trained on all available
data would perform better, however the results showed that the model constructed individ-
ually for each database overall performed better. While some metrics performed better when
being trained on all available databases, others performed worse. Most noticeable was that
the performance of the overall best metric identified haproxy.backend.errors.con_rate, was sig-
nificantly reduced. Our best result was from training HBOS models individually. This could
indicate that the behaviour of the database was too diverse for the use of one unified model.
As all databases use the exact same software, we expected to be able to use one model on all
databases. As mentioned in section 6.1, the assumption made about the databases originating
from one and the same distribution might not hold, thus affecting the result.

HBOS with Moving Average
The results from moving average being used in combination with HBOS can be viewed in
the tables tables 5.3 and 5.10. These tables show the five best performing metrics from each
experiment. While some metrics performance did improve, others declined. Again, the scores
from our best performing metric haproxy.backend.errors.con_rate, decreased. We have found
that the approach of combining the use of moving averages with HBOS is unique for our
thesis. However, our poor overall results do not allow for drawing any conclusions about the
benefit of combining moving averages and HBOS for it to work better on time series data.

HBOS on our Best Results
The final experiment conducted with the HBOS anomaly detection method was by creating
a multivariate model trained on our six best performing metrics from the previous experi-
ments. The results can be viewed in table 5.12. As we can see, the scores for this multivariate
model are much better than the ones from the multivariate models trained on all the selected
metrics. This is expected as the evaluation of the anomalies found by the HBOS model is
carried out after the model is fit, and no learning from the results is taking place. When we
select the metrics by hand and use them to produce a multivariate model, we give the model
the metrics which results in the prediction of anomalies lying before the fault intolerance
events.

6.2.2 LSTM based Autoencoder
The results of the LSTM based autoencoder trained and tested on metrics extracted by do-
main knowledge can be viewed in tables 5.4 and 5.5. The results for the metrics selected from
the statistical analysis are shown in tables 5.6 and 5.7. As can be seen, this model performance
was secondary to HBOS. When training and testing the model with metrics from statistical
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analysis with the initial threshold set as described in section 4.3.1, it was unable to predict
any anomaly that lied within the hour leading up to a database losing fault intolerance. When
lowering the threshold so that three times more data points were classified as anomalies, we
got non-zero scores. However, the scores are still very low. The effect of changing the thresh-
old is discussed further in Section 6.3. In contrast to the HBOS model, which assumes no
relation between features, the LSTM autoencoder weighs the features and reduces the di-
mensionality. The fact that there can be correlations between different metrics that we use
for the anomaly detection motivates the use of the LSTM autoencoder. In addition to this,
the fact that it is developed especially for the use of modelling sequence data made us be-
lieve it would perform well. There are several possible reasons why the scores achieved by the
LSTM autoencoder approach are so low. In Section 6.6 we discuss further why we achieved
low scores both in general, and in regards to the LSTM autoencoder approach.

6.3 Discussion on the Evaluation Method
An important part of our work was the classification of the predicted anomalies produced in
the anomaly detection phase. The method that was used is described in Section 4.3. As the
scores produced are based on the rate of true positives, false positives, and false negatives,
the classification process had a big impact on our results. There are a few limitations to our
evaluation method that is worth discussing. In the evaluation process, no regard was given
the fact that a database could become fault intolerant repeatedly and that this could happen
with little time in between. If we look at Figure 5.6, the three spikes visible in the top two
graphs are actually representing the same data points, meaning that the two are overlapping
each other. Thus, the fault intolerance event shown on the second (main) spike in the second
graph is happening less than 20 minutes after the fault intolerance event shown on the first
(main) spike in the top graph. Worth noticing is that the third higher spike has no fault in-
tolerance in its closer proximity. Let us say all the spikes were to be classified as anomalies,
then it would be difficult to tell which anomalies should be said to belong to which fault in-
tolerance instance. It all comes down to the on how we define a true positive, false negative,
false positive and true negative. By simply defining them as we did in Section 4.3, some of
the anomalies are going to be predictive of multiple fault intolerance events, but in time win-
dows lying differently close to the events. This will happen given that the fault intolerance
events occur with less than one hour distance. Similarly, these anomalies will be classified as
false positives when lying outside these time windows.

There could also be a question whether the chosen size and placement of the time windows
studied are appropriate. If the size were to increase, more anomalies would be classified as
true positives. However, by studying the results, changes to the windows would not result
in any big change to the scores. By increasing the window size, fewer windows would be
classified as false negative since the criteria we use to classify a window as true positive is
if there is at least one predicted anomaly within it. This would increase the recall, but the
change to the precision would be small. To improve the precision we would need to classify
fewer anomalies as false positives which would require us to extend the window sizes in an
unreasonable way. By our way of categorising the anomalies using time windows, we limit the
way we can interpret the results. If we look at Table 5.1 and imagine designing a prediction
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model based on the metric haproxy.backend.errors.con_rate, we can see that the probability of a
fault intolerance happening within 0-10 if an alert would be 5.9 percent. But we cannot tell
if we got the alert the minute before or 10 minutes before a database lost fault intolerance.
If the window size would be extended this uncertainty would be even bigger, defeating the
purpose of an alarm system.

Another thing that has an impact on the scores is the number of data points that we label as
a predicted anomaly, which in turn depends on the threshold chosen. The threshold is set as
a function of the percentage of fault intolerance data points in the training set, as described
in Section 4.3. If the threshold would be set higher, leading to fewer anomalies classified, it
could cause the recall to decrease and the precision to increase. This is due to the fact that
fewer points can be classified as anomalies, which in our case likely would lead to a decrease
in the number of false positives at a higher rate than true positives. However, the effect of
higher threshold would have on the poor result we obtained is not going to be overplayed. In
the case of the LSTM autoencoders, it was instead necessary to lower the threshold in order
to improve the results, but to lower it further than we already did would not generate results
superior to those we presented. The number of anomalies that can cause a window to be
classified as a true positive is limited. There are only so many fault intolerance events to be
predicted.

6.4 Discussion of Metric Selection
Maybe the most important part of the prediction process is the selection of data used for
the anomaly detection phase. In this section we discuss the metrics used and the methods to
select them.

6.4.1 Metric Selection
From the metric selected by domain knowledge and our statistical analysis only one met-
ric appears in both selections, kubernetes.io.read_bytes. While this is the only identical metric
there are several that appear to monitor similar behaviour. Both selections contain metrics
monitoring the databases’ transactions and the heap memory of the JVMs (Java Virtual Ma-
chine). The biggest difference between the two collections is that our statistical analysis gave
metrics monitoring the container and containerd.

We further analysed how the metrics selected by domain knowledge scored according to
our statistical analysis. As described in 4.2.5 we first removed metrics that on any database
were missing metric values of the entire interval. Later we scored them according to their
behaviour leading up to the database losing fault tolerance. Surprisingly, not all metrics ex-
tracted by domain knowledge were apparent here. This means that for our week of queried
data, these metrics generated no values for at least one of the database instances studied. To
be able to capture these metrics it could be beneficial to extend the period of the data we
conduct our analysis on. The remaining metrics were found on our list, but their score was
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not high enough to be included in the 20 best.

6.4.2 Discussion of our Statistical Analysis
Limitations of this approach include simply letting standard deviation represent the be-
haviour of the graph. In implementing this approach we gain limited information concerning
the graph. Standard deviation simply gives us an average regarding how far each value lies
from the mean. This method is for example very sensitive to outliers, which causes a dispro-
portionate effect, making it hard to model the graph characteristics. This limitation could
disrupt the guarantee of the statistical analysis finding metrics that both have a different be-
haviour leading up to fault intolerance as well as that conformation is an abnormal behaviour
in the metric.

6.5 Our Findings Compared to Related Work
In related work, HBOS was listed as a fast anomaly detection algorithm with performance as
reliable as state-of-the-art algorithms in detecting point anomalies. To capture other types
of anomalies, temporal information needed to be taken into account. Papers in related work
suggested to use an LSTM autoencoder and found it to perform better than classical anomaly
detection, for example statistical methods. Based on the findings in related work, it was ex-
pected for our LSTM autoencoder to perform better than the statistical model HBOS. In-
stead we found that our HBOS method performed better, contradicting the related work.
However, related work also found limitations of the LSTM autoencoder. One paper found
that if the normal and anomalous data was too similar it would result in miss-classifications,
subsequently an LSTM autoencoder would be unsuitable. As discussed in Section 6.6, this
limitation seemed to be present in our data as well.

Related work further discussed if metric information was sufficient for detecting anoma-
lies in a complex cloud system. They proposed to include logs in addition to metrics when
identifying anomalies. Due to time restriction, we did not include logs when conducting our
thesis. This claim from related work could be an implication that metrics was inadequate
when detecting anomalies in our thesis. The process of incorporating logs is debated in our
future work in Section 6.7.

6.6 Possible Factors Contributing to Poor
Results

From the results and discussion above, it is clear that our work did not produce the results
that we had hoped for. In this section, we aim to examine the factors and circumstances that
could have contributed to this outcome. By analysing the limitations, challenges and unfore-
seen complications we seek to grasp the reasons behind our results. Additionally, we aim to
provide valuable insights for further research in a similar setting.
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One factor that could have an impact on the result is the choice of metrics. The metrics
chosen to conduct the experiments on were wrongly chosen and some metrics that could be
used were overlooked. While this could have an impact on the result, we believe it is unlikely
to have caused our low scores. Instead, we consider the quality of data to be the issue with
the highest impact.

When approaching our research questions we chose to apply semi-supervised models to our
problem in question. As mentioned in Section 6.1, in choosing this tactic it became essen-
tial to identify normal data from our data sets. When identifying normal data there are two
aberrations that can profoundly affect the success of the models; not all normal behaviour
is captured, and data is missclassified. We believe that these problems could have an impact
on the success of our models. Due to the time restriction imposed on this thesis, we only
had time to train and test our models on a time-frame of one month. We consider this to
possibly be an insufficient time to capture all normal behaviour of a database. For instance,
by observing the graphs in Figure 5.3 we can clearly see that the graphs do not conform to the
same behaviour throughout the time series. Since we carry out training with data from the
first half and testing on the second, a consequence would be that normal behaviour would be
missclassified as anomalous leading to an abundance of false positives (FP). As the formula
when calculating the precision of a model contains false positives, this is likely a contribution
to our low precision in the results.

It is not far-fetched to believe that there are other processes in the system that would cause
an anomalous behaviour that would display in the metric data. In terms of mistakenly clas-
sifying anomalous data as normal this can be observed in Figures 5.1 and 5.6. Based on these
figures it is easy to believe that the spikes in the time series are the result of some kind of
anomalous behaviour, thus the spikes would be classified as anomalies. However, when we
look at the graphs we see that even though some of the spikes appear to correlate with the
fault intolerance event shown in red, others lie far from these events in time. This means
that even though we removed some of the anomalies from the training data as part of the
preprocessing, others would persist and be used in the training of the semi-supervised mod-
els. Occurrences like this would cause our models to be trained to interpret anomalous data
as normal resulting in a good deal of false negatives (FN) to be identified. As the formula
when calculating the recall of a model contains false negatives, this is likely a contribution
to our low recall in the results. The importance to clearly separate data for when a database
is running normally from when anomalies happens is especially true for the training of the
LSTM autoencoder, as it will learn how to encode and decode the data it trains on.

While it is possible that these factors could have contributed to our poor results it is hard
to speculate if it would be enough to cause such an immense impact. Another theory is that
the approach of training models to perform anomaly detection on metric data originating
from a system in production was simply too complex for our purpose. This leads us to the
next section where we will present our thoughts and ideas for future research and possible
alternative approaches to methods used in our work.
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6.7 Future Work
In terms of future work there are several directions that could be interesting to explore fur-
ther. Even though we did not achieve good results for predicting fault intolerance by applying
anomaly detection on metric data in our work, we do not reject the use of metric data as a
base for making these predictions. In this section we will suggest alternative ways of creating
models fit for the purpose.

As discussed in Section 6.1, one of the big question marks is whether there are other pro-
cesses running that could be causing errors that would show as anomalies in the metric data.
Not all anomalies would lead to a database core going down resulting in the system becoming
fault intolerant. In order to have better control over the processes that run on the system and
thus be able to monitor the metric behaviour in a better way it could be good to get the data
from a controlled environment. Thus, the suggestion would be to use a database in a con-
trolled setup and try to invoke fault intolerance by making the database subject to extreme
or anomalous events, such as making a large query, or many queries. By using an approach
like this, not only can one correlate different behaviours in the metric to when the database
loses fault tolerance, but also know what was the root cause of the anomalies in the metric
data.

If instead it is of interest to study data from the real system running in production, a dif-
ferent approach to ours would be to only try to build a model for a single database instance,
this would allow for more data to be queried for. As discussed in Section 6.1, the assumption
that all database instances would be of the same distribution might not hold. By only study-
ing one database would eliminate this problem.

Additionally, the logs produced by the system could be taken into account. By combining
information both from logs and metrics it could be easier to understand the behaviour of the
system. As related work suggested this approach could also be used to identify which metrics
lead to the failures reported in logs. In future work, this would be an interesting direction to
take.
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Conclusion

The aim of this theis was to examine if faults could be predicted in Neo4j AuraDB, a database
as a service offered by the company Neo4j. The approach taken was to use anomaly detection
with monitoring metrics and train different models to predict when a database core would
go down. This approach resulted in the research questions addressing both the challenges
of metric selection, as well as the anomaly detection problem. The research questions are as
follows:

• RQ1: Can we identify metrics that correlate, with the event of a database becoming
fault intolerant.

• RQ2: From the metrics identified in RQ1, can we based on anomaly detection state
when a database is at risk of becoming fault intolerant.

For RQ1 we were not successful in general to identify metrics that correlate with the event
of a database becoming fault intolerant, neither by using domain knowledge, nor statistical
analysis. The only metric we could identify that would show a reasonable correlation was
haproxy.backend.errors.con_rate, with an F1-score of 0.065, where the recall was 0.072 and the
precision 0.059. This was for values registered 0-10 minutes before fault intolerance events.
However, the rest of the 37 metric did not show any correlation to a satisfactory extent.

For RQ2 we were not able to predict when a database is at risk of becoming fault intol-
erant based on the different anomaly detection methods used in this work. The anomaly
detection methods used were based on either HBOS or the LSTM autoencoder approach.

Example of probable explanations for our results are that the data, on which the models
were trained, did not capture all of the normal behaviour or that anomalies were present in
the normal data from processes not causing fault intolerance. To obtain more reliable data
for training and testing, we suggest that further work should utilise data collected from a
controlled environment rather than from a system in production.
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Förutsäga förlust av feltolerans i en
molntjänst

POPULÄRVETENSKAPLIG SAMMANFATTNING Evelina Danielsson, Lisa Franzén af
Klint

För att en molntjänst ska vara konstant tillgänglig för en användare behöver systemet
ha en tolerans mot fel som kan uppstå. Detta examensarbete undersöker om det finns
anomalier i de olika mätvärdena från systemet vars information kan användas i syfte
att behålla feltoleransen.
Molntjänster är idag det vanligaste sättet för före-
tag att leverera programvara till sina kunder.
Tidigare var det vanligt att behöva installera ett
program direkt på datorn för att kunna använda
det. Idag är vi i stället vana vid att få tillgång till
digitala tjänster via en webbläsare. Dessa tjän-
ster kan innefatta allt från lagring av foton, till
avancerade tjänster för bildredigering. För att
dessa tjänster ska vara tillgängliga för användare
behöver systemet vara feltolerant. För att kunna
avgöra hur ett system mår övervakas det ofta
med hjälp av olika metriker och loggar. Metriker
ger kontinuerlig kvantitativ information angående
olika processer i systemet.

I vårt examensarbete har vi undersökt om vi
med hjälp av olika metriker extraherade ifrån en
databas-molntjänst kan förutsäga när fel inträffar
som resulterar i att systemet förlorar sin feltoler-
ans. För att en kund ska ha konstant tillgång till
sin databas finns det tre kopior av databasen i sys-
temet. Om en utav dessa kopior skulle gå ner är
systemet fortfarande operativt då de återstående
två kopiorna kan serva kunden. Detta resulterar
i att funktionaliteten upprätthålls, men feltoler-
ansen går förlorad.

För att undersöka om det är möjligt att förut-

säga då en databaskopia går ner analyserades
all tillgänglig metrik för att undersöka vilka
som skulle kunna innehålla relevant information.
Därefter analyserades värden från dessa metriker
genom att applicera olika algoritmer för anoma-
lidetektion. Dessa algoritmer bygger dels på en
statistisk metod baserad på HBOS, dels på en au-
toencoder baserad på artificiella neuronnätverk.

Resultaten visar att genom att applicera de
metriker och de metoder som nämnts ovan, inte
är möjligt att förutsäga när en databas tappar fel-
tolerans. Det kan finnas många orsaker till detta,
några som omnämns i rapporten är processer som
orsakar anomalier inte leder till förlorad feltoler-
ans samt att databaserna som undersöks inte be-
sitter gemensamma egenskaper.
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