
MASTER’S THESIS 2023

Enhancing Satellite Images
Using Super-Resolution
Nils Olén

ISSN 1650-2884
LU-CS-EX: 2023-28

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2023-28

Enhancing Satellite Images Using
Super-Resolution

Förbättring av satellitbilder med hjälp av
super-resolution

Nils Olén

Enhancing Satellite Images Using
Super-Resolution

Nils Olén
ni3552ol-s@student.lu.se

June 27, 2023

Master’s thesis work carried out at Tactel AB.

Supervisors: Michael Doggett, michael.doggett@cs.lth.se
Jonas Bondesson, jonas.bondesson@tactel.se

Tobias Leksell, tobias.leksell@tactel.se

Examiner: Jacek Malec, jacek.malec@cs.lth.se

mailto:ni3552ol-s@student.lu.se
mailto:michael.doggett@cs.lth.se
mailto:jonas.bondesson@tactel.se
mailto:tobias.leksell@tactel.se
mailto:jacek.malec@cs.lth.se

Abstract

Super-resolution refers to the concept of enhancing the resolution of an im-
age. This project investigates the use of machine learning based super-resolution
to upscale satellite images for use in an interactive map application that is dis-
played in airplanes. The purpose is to store lower quality satellite images and
upscale them instead of storing the high-resolution images, to ultimately save
storage space. The research includes evaluating different super-resolution im-
plementations, as well as a conventional bicubic image interpolation algorithm,
to determine which method performs best in terms of image quality (PSNR and
SSIM), upscaling speed and storage space saved. It was concluded that, out of
the methods tested, EDSR produces the images that are closest in similarity to
the original images. Findings also include that upscaling speed is a problem, be-
cause some of the deeper network architectures result in a good quality image,
but with an upscaling speed that is too slow.

Keywords: Super-resolution, Neural network, Machine learning, Deep learning, Image
interpolation, Satellite imagery

2

Acknowledgements

I would like to thank my supervisor Michael Doggett for the helpful discussions regarding the
content of this thesis. I would also like to thank my supervisors at Tactel, Jonas Bondesson and
Tobias Leksell, for helping me setup and giving me the resources for carrying out the research
needed for the project. Finally, I would like to thank Tactel for giving me a comfortable and
friendly space to work in, as well as providing me with the equipment that I required.

3

4

Contents

1 Introduction 7
1.1 Aim . 9
1.2 Research Questions . 9

2 Background 11
2.1 Theory . 11

2.1.1 Digital Image Interpolation . 11
2.1.2 Neural Networks . 13
2.1.3 Convolutional Neural Networks 16
2.1.4 Generative Adversarial Networks 17
2.1.5 Super-Resolution using Neural Networks 17
2.1.6 Metrics . 18
2.1.7 Downsampling . 19

2.2 Previous Research . 20
2.2.1 A History of Super-Resolution . 20
2.2.2 Super-Resolution on Satellite Imagery 25

3 Methodology 27
3.1 Thoughts and Concerns . 27
3.2 Setting up Metric Functions . 27
3.3 Conventional Interpolation Tests . 28
3.4 Description of the Datasets . 29
3.5 Early Experiments . 29
3.6 Selection of Test Images . 30
3.7 Selection of Models . 31
3.8 SRCNN . 31
3.9 EDSR . 32
3.10 SRGAN . 33
3.11 ESRGAN . 34
3.12 HAT . 34

5

CONTENTS

3.13 Test on Edges Between Tiles . 34

4 Results 37
4.1 Image 1 - Malmö . 37
4.2 Image 2 - London . 38
4.3 Image 3 - Central Park . 40
4.4 Image 4 - Countryside . 41
4.5 Image 5 - Miami Beach . 42
4.6 Image 6 - Rocky Landscape . 44
4.7 Image 7 - Lake . 45
4.8 Image 8 - Paris . 46
4.9 Image 9 - Versailles . 48
4.10 Image 10 - Abstract Sea Image . 49
4.11 Metric Tables . 50
4.12 Space Saved . 52
4.13 Edges Between Tiles . 52

5 Discussion 55
5.1 Ambiguous Results . 55
5.2 Original Image Similarity . 55
5.3 Difficulty of Upscaling Satellite Imagery . 56
5.4 Comparison of SR Methods . 56

6 Conclusions 59
6.1 Further Research . 59

References 61

Appendix A Unused Metrics 67

6

Chapter 1

Introduction

These days, machine learning is becoming increasingly common for solving computer related
tasks. As with many other problems, this also applies to image upscaling, where the use of
convolutional neural networks has popularised the concept known as super-resolution.

Single image super-resolution, often simplified as super-resolution, refers to the concept
of reconstructing a high-resolution image using a low-resolution image as input in a trained
neural network. The network is trained using many pairs of low- and high-resolution versions
of the same image. The training process teaches the network how to upscale these images,
and when the training process is finished, provided that the training image dataset was varied
enough, the trained network can be used to upscale other previously unseen images.

When dealing with large amounts of data, the issue of storage space is always present.
Super-resolution can be used to decrease the size of needed storage space by removing the
need of storing high-resolution images, by upscaling lower-resolution images when needed
instead.

Arc [1] is an interactive map service, developed by Malmö-based company Tactel, that is
designed to be displayed to passengers in airplanes. The map is built out of satellite images,
which are arranged in layers called zoom levels. When zooming in on the map, new details
emerge because higher detailed satellite images are being utilised the closer a user zooms in.

The Arc system follows a tiled map model [2]. At its most zoomed out level, zoom level
1, it originally consists of two 512x512 images which display the whole world map. When
increasing the zoom level to level 2, each of these images are replaced by four new 512x512
images, which occupy the same space as the image they replace, resulting in a more detailed
map which is displayed using eight 512x512 images. This pattern is followed all the way to
the last level, zoom level 13, which contains over 20 million images. An example of the tiled
map model is shown in Figure 1.1.

The images on zoom level 13 use about 241 GB of storage space, which is almost 4 times
as many as zoom level 12, which uses about 68 GB of storage space. Using super-resolution
to upscale the images from zoom level 12 to zoom level 13, instead of storing the actual high-
resolution images, could free up a significant amount of space on the airplane’s storage space,

7

1. Introduction

(a) Zoom level 1.

(b) Zoom level 2.

(c) Zoom level 3.

Figure 1.1: An example of how the tiled map model works for the
first three zoom levels. Each square has a size of 512x512 pixels.

which could then be used to store other desired content. To upscale the images from zoom
level 12 to zoom level 13, each image on level 12 is split into four images of size 256x256 pixels,
after which each of these four images is upscaled to a size of 512x512 pixels to generate the
tiles used to build zoom level 13.

As with any other computer related task, super-resolution comes with a number of chal-
lenges. The upscaled images are estimations of the high-resolution images. This estimation

8

1.1 Aim

needs to be close enough to be a viable option to replace the high-resolution images. There is
also the problem of upscaling speed. In a map service like Arc, the images need to be upscaled
at a speed fast enough to not cause a too distracting delay. The trained network also uses up
storage space. The space used by the network can not be so large that the decrease in storage
space use is no longer useful.

1.1 Aim
The aim of this project is to identify and study different methods of implementing super-
resolution to find out how well they are suited for usage on satellite images in an interactive
map system. This will be done by evaluating a test set of images which are upscaled from
zoom level 12 to zoom level 13 using the different super-resolution methods. To explore
the possibility of using super-resolution as an alternative to storing high-resolution satellite
images, the different methods will be evaluated on image quality of the produced images,
upscaling speed and storage space saved.

1.2 Research Questions
• Out of a selection of super-resolution models, which method is best suited for upscal-

ing satellite images in regards to resulting image quality, space saved and upscaling
speed?

• Could it be used as a potential replacement for the real high-resolution images in a
map application?

9

1. Introduction

10

Chapter 2

Background

To put the research in this project into context, this chapter presents the foundation on which
it is built. The chapter serves as an introduction to the theory behind super-resolution, and
image upscaling in general, as well as a short history of super-resolution research, both in the
broad sense and specifically for satellite imagery.

2.1 Theory
To understand how super-resolution works, its fundamental building blocks need to be ex-
plained. This section outlines the theory behind central concepts such as conventional inter-
polation methods, how neural networks work and how super-resolution uses neural networks
to function. This section also includes how various performance factors can be measured and
how these metrics are calculated.

2.1.1 Digital Image Interpolation
When increasing the spatial resolution of an image, also known as upscaling, the information
in that image is stretched out over an area containing a larger amount of pixels than before,
so a decision has to be made concerning what to do with the new pixels that appear between
the old pixels, i.e. which colour to display. The process of estimating the missing pixels is
called interpolation. A visual example of this shown in Figure 2.1 and Figure 2.2.

Image interpolation is a technique that is widely used in image processing, and works
as a component of many image processing algorithms, including super-resolution, where the
interpolation is performed using a machine learning approach. Some of the most common
digital image interpolation techniques include nearest-neighbour, bilinear, bicubic and Lanc-
zos interpolation.

11

2. Background

Figure 2.1: A 6x6 image that is about to be resized.

Figure 2.2: The 6x6 image resized to 11x11, the new pixels that appear
between the old pixels need to be interpolated.

Nearest-Neighbour Interpolation
With nearest-neighbour interpolation we simply look at the pixel that is closest to the unde-
cided pixel and display the same colour as that pixel. The effect of this is that in the enlarged
version of the image, each pixel from the original image becomes bigger. So for the example
in Figure 2.2, the new pixels would take on the colours as shown in Figure 2.3.

Figure 2.3: The resized 11x11 image with nearest-neighbour interpo-
lation applied.

Bilinear/Bicubic Interpolation
Bilinear, based on repeated linear interpolation, looks at an area of 2x2 pixels to calculate
the weighted average for every new pixel. Linear interpolation looks at the value in between
two known values and assigns that value to the new pixel. Bilinear means that we do linear
interpolation on each axis, e.g. the x-axis and then on the y-axis. Bilinear interpolation is

12

2.1 Theory

fast and produces reasonably good results. The results of using bilinear interpolation on the
example image is shown in Figure 2.4

Bicubic interpolation, which is commonly used in photo editing software [3, p. 120], looks
at an area of 4x4 pixels and computes the weighted average to decide the new colour display
value for each new pixel. Since it requires more calculating, bicubic is generally slower than
bilinear, and it uses more memory. Figure 2.5 shows an example that illustrates the differences
between bilinear and bicubic interpolation.

Figure 2.4: The example image resized to 11x11 using bilinear inter-
polation.

Figure 2.5: 8-bit Mario upscaled x4 using bilinear and bicubic inter-
polation.

Lanczos Interpolation
Lanczos interpolation is a more sophisticated method, which also means that it is the slowest
and uses the most memory out of the mentioned methods. An example of using Lanczos
interpolation is shown in Figure 2.6.

2.1.2 Neural Networks
An artificial neural network (ANN), often simplified as neural network, is a machine learning
technique that is based on the structure and function of biological neurons in an organism’s
brain [4, p. 1]. Neural networks are built out of an input layer, a number of hidden layers,

13

2. Background

Figure 2.6: Mario again, upscaled using Lanczos interpolation.

and an output layer. Each layer contains nodes (neurons) where data is passed through an
activation function, which decides if and what that node will output to the nodes in the next
layer. The connections between nodes have weights, so when a value goes toward the input
to a node it is scaled by a weight before being summed with the other inputs to that node.
These weights start off as random numbers and are then estimated in the training process to
map the inputs to the outputs.

Figure 2.7: An example of a simple neural network.

In the example image in Figure 2.7 we see a simple neural network with one input layer,
two hidden layers and one output layer. It also shows the nodes in the network: three input
nodes, four in each of the hidden layers and one output node.

Deep learning refers to there being multiple hidden layers. The more layers that are
added to a network, the deeper the network is. A network can have any number of hidden
layers depending on how deep you want the network to be. There could be hundreds or even

14

2.1 Theory

thousands of hidden layers if that is desired.
The training process for a neural network generally works like this: if y = F(x), where

x is the input and y is the output of the network, we want to estimate F, which represents
the network itself. What we have is many examples of input-output pairs (x, y), which form
a training dataset and a validation dataset. With machine learning we estimate F "automat-
ically", by presenting these input-output pairs and letting the network adapt (changing the
weights) itself to become an estimation of F . It does this by estimating the output from each
input in the training dataset, which is compared to the true output using a loss function.
It "corrects" itself using backpropagation and estimates again, and repeats this process for a
specified number of iterations.

Activation Function
The activation function, as mentioned earlier, decides what a node will send to the next layer.
If a value of zero is sent, this node is not activated, hence the name, and does not influence
the computations in the next layer. One of the most commonly used activation functions is
the rectified linear unit (ReLU):

f (x) = max (0, x) =
{

x if x > 0
0 otherwise (2.1)

where x is the input to the node and f (x) is the output from the node.
There is also Leaky ReLU. This variant of ReLU lets the node be active even when x is

negative, by letting through a small value, which is useful when a network suffers from too
few nodes being activated.

f (x) =
{

x if x > 0
0.01x otherwise (2.2)

Leaky ReLU has an expansion called Parametric ReLU. This activation function makes
the leakage coefficient a into a trainable parameter:

f (x) =
{

x if x > 0
a · x otherwise (2.3)

Loss Function and Backpropagation
The loss function is used to measure how close the network’s estimated values are to the true
values. The goal is to minimise the loss function. For the loss function, one of the most
commonly used is mean squared error (MSE):

MSE =
1
n

n∑
i=0

(Yi − Ŷi)2. (2.4)

where n is the number of samples, Y is the true output of sample i and Ŷ is the estimated
output of sample i.

After calculating the loss function, backpropagation is used to compensate for the loss
by adjusting the weights in the network. It calculates the gradient of the loss function with

15

2. Background

respect to the weights in the network. The weight updates are then (commonly) done using
an optimisation algorithm called stochastic gradient descent.

Hyperparameters
To control how the neural network learns, there are a number of configuration settings
that can be used to manipulate the learning process called hyperparameters. The number
of epochs decides the number of training iterations, i.e. the number of times the network
gets to evaluate and correct itself. The learning rate determines how fast the network learns
by adjusting how large the correction steps are in each epoch. Batch size decides how many
training samples to go through before calculating the loss and updating the weights. If the
batch size is smaller than the size of the training dataset, the weights are updated multiple
times per epoch, and the optimisation method is called batch gradient descent, instead of
stochastic gradient descent.

2.1.3 Convolutional Neural Networks
Convolutional neural networks (CNNs) are a type of neural network that are commonly used
in computer vision tasks [4, p. 40]. In CNNs, the layers are 3-dimensional, where the shape
often corresponds to image width, image height and number of image channels. They work
similarly to regular neural networks, but they include an important component between the
regular fully connected layers called a convolutional layer.

The convolutional layers work as filters that perform a convolutional operation on images
between layers in the network. They are 3-dimensional filters of weights with the same depth
as the previous layer but with a smaller size when it comes to width and height. The weights
in these filters are estimated during the training process to create a convolutional operation
that produces the desired outputs.

Figure 2.8 shows a simple CNN. The smaller square which connect the layers represent the
convolutional operations. The small squares are the convolution filters, which slide over the
matrices, calculating feature maps which creates the next layer. The stride of a convolution
filter refers to how big steps it takes when it slides over a matrix. So a larger stride gives
smaller resulting feature maps. The "dense" part of the network is a fully connected neural
network where the previous 3-dimensional layer has been flattened into a layer of nodes. This
particular network has 128 output nodes.

Max-Pool Convolution Max-Pool Dense

3@128x128
3@64x64

9@48x48
9@16x16

1x256

1x128

Figure 2.8: A simple convolutional neural network.

16

2.1 Theory

Max-pooling refers to the operation of calculating the max value of patches in a feature
map, and using the values to create a new feature map. It results in a downsampled, smaller
feature map.

For CNNs there are publicly available pre-trained networks which are commonly used
instead of training a network from scratch [4, p. 42].

2.1.4 Generative Adversarial Networks
A generative adversarial network (GAN) is a machine learning framework that uses two neu-
ral networks: a generator network and a discriminator network [4, p. 45].

The generator network takes random Gaussian noise as input data and generates new
data that is intended to resemble a sample from the real dataset. The discriminator network
takes in both the real data and the generated data from the generator network and tries to
distinguish between them.

During training, the two networks are trained in an adversarial manner: the generator
network tries to generate data that can fool the discriminator network into classifying it
as real, while the discriminator network attempts to correctly classify the real data and the
generated data into their respective classification categories.

As the two networks are trained together, the generator network learns to generate more
realistic data, while the discriminator network becomes better at distinguishing between
the real data and the generated data. Eventually, the generator network learns to generate
data that is indistinguishable from the real data, at which point the training process can be
stopped. The GAN training process is visualised in Figure 2.9.

Figure 2.9: A diagram of how a GAN works.

2.1.5 Super-Resolution using Neural Networks
If we use neural networks to apply digital image interpolation we get super-resolution. In
super-resolution, the input to the neural network is a low-resolution image and the output
from the network is the same image in a higher resolution. It is the neural network’s job to
estimate a mapping between these input-output pairs to be able to upscale new, previously

17

2. Background

unseen images to a higher resolution. Super-resolution methods can be broadly categorised
into two types: single-image super-resolution and multi-image super-resolution.

Single-image super-resolution, which is the type of SR that has been referred to so far in
this text, aims to reconstruct a high-resolution image from a single low-resolution input im-
age. Since little input information is available, single-image super-resolution has a tendency
to display upscaling artefacts in the resulting images.

Multi-image super-resolution utilises multiple low-resolution images of the same scene
to generate a high-resolution output. By exploiting the redundancy across multiple images,
these algorithms are able to resolve more details. Since the satellite images provided only
contain one image per scene, single-image super-resolution is the focus in this project.

2.1.6 Metrics
There are many metrics that can be used to measure similarity between images. Out of these,
the most commonly used metrics for super-resolution are peak signal-to-noise ratio and the
structural similarity index measure.

Peak Signal-to-Noise Ratio
Peak signal-to-noise ratio (PSNR) is a value that is calculated as the ratio of the maximum
possible pixel value to the mean squared error between the original and processed images.
With a ground truth image I and a noisy representation of that image K, the MSE becomes:

MSE =
1

m · n

m−1∑
i=0

n−1∑
j=0

[I(i, j) − K(i, j)]2. (2.5)

In short, this calculation means summing the squared difference of each pixel and divid-
ing by the image size.

The PSNR is:

PSNR = 10 · log10

(MAX2
I

MSE

)
, (2.6)

where MAXI is the maximum pixel value, i.e. 255.
When using colour images, the MSE is calculated by adding the three colour channels’

squared difference and then dividing by 3 multiplied by the image size.
PSNR is expressed in decibels (dB), and higher PSNR values indicate closer similarity

between the images. Typical values for a compressed image fall between 30 and 50 dB. A
value over 40 dB is considered very good and a value below 20 dB is generally considered
poor [5, p. 135].

While PSNR is a widely used metric for image similarity, it has some limitations. For
example, it does not take into account perceptual differences between images, such as dif-
ferences in texture. Additionally, it can be sensitive to compression artefacts and may not
always correspond well with subjective human evaluations of image quality. Despite this,
PSNR remains a useful tool for evaluating image processing techniques.

18

2.1 Theory

Structural Similarity Index
The structural similarity index measure (SSIM) is a measure of image quality that takes into
account both the structural information and the pixel values of an image or video. It is de-
signed to be more perceptually accurate than metrics like PSNR, which only measure the
difference between pixel values.

The SSIM is calculated by comparing the structural and pixel information of two images.
It takes into account three measures of similarity: luminance, contrast, and structure.

With x and y being the images being compared, the SSIM is calculated using the following
formula:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ

2
y + c1)(σ2

x + σ
2
y + c2)

(2.7)

where

• µx is the pixel sample mean of x,
• µy is the pixel sample mean of y,
• σ2

x is the variance of x,
• σ2

y is the variance of y,
• σxy is the covariance of x and y,
• c1 = (k1L)2, c2 = (k2L)2 are two variables to stabilize the division with weak denomi-

nator,
• L = 2b−1 is the dynamic range of the pixel values, where b is the number of bits per

pixel,
• k1 = 0.01 and k2 = 0.03 by default.

The SSIM ranges from -1 to 1, with values closer to 1 indicating closer similarity between
the two images.

SSIM has several advantages over PSNR. It takes into account perceptual differences be-
tween images, such as differences in texture, colour and contrast. Additionally, it is more
sensitive to compression artefacts, making it more accurate for evaluating the quality of com-
pressed images.

Other Metrics
With image quality accounted for, more metrics are needed to measure other aspects of the
performance. To measure the space saved by using a particular super-resolution model, we
simply take the amount of storage space the images from zoom level 12 use and add the size
of the trained network. To measure the upscaling speed of an SR model, a built-in Python
function is used to measure how long it takes to upscale each image in a test set.

2.1.7 Downsampling
The low-resolution image equivalents, will have to have been downsampled using some method.
The method used in the Arc system is known as pixel binning. In this method, blocks of 2x2
pixels are averaged to produce one pixel in the low-resolution output image. However, many
super-resolution models are optimised for using bicubic downsampling.

19

2. Background

2.2 Previous Research
This section contains research previously done regarding the task of super-resolution. The
history of using neural networks to perform super-resolution is outlined, and some previous
examples of using super-resolution for enhancing satellite imagery are described.

2.2.1 A History of Super-Resolution
The following is a brief history of super-resolution using neural networks. It is structured
into different model categories which are presented separately, and contains the models on
which this work is based on. Implementations of some of the described models will be used
to evaluate the research questions.

Linear Networks
The first use of deep learning in super-resolution dates back to 2014 and is presented in the
paper "Image Super-Resolution Using Deep Convolutional Networks" by Dong et al. [6]. It
introduces a novel approach in performing single image super-resolution using a deep convo-
lutional neural network called SRCNN (Super-Resolution Convolutional Neural Network).

This CNN architecture consists of three layers. The first is a patch extracting layer which
extracts dense patches from the low resolution input image and represents them as high-
dimensional vectors which make up a set of feature maps. The second layer is a non-linear
mapping layer which consists of 1x1 convolutional filters which map the high-dimensional
vectors to another set of high-dimensional vectors that ultimately comprise a new set of
feature maps. These vectors represent high-resolution patches. The final layer aggregates the
representations of the high-resolution patches to reconstruct the high-resolution image.

The SR method Very Deep Super-Resolution (VDSR) [7], propsed in 2015, is an improve-
ment on SRCNN and uses (as the name suggests) a very deep convolutional network which
is based on the VGG-net architecture [8]. Instead of learning the direct mapping between
the low and the high resolution images, it only learns a residual mapping that is the differ-
ence between the LR and the HR image. It also uses a learning rate that is 104 times greater
than SRCNN, to speed up training. This method performs better than previously existing
methods, and supports the theory that a deeper network architecture can provide a better
contextualisation [9].

While SRCNN and VDSR are examples of early upsampling designs, i.e. they upsample
the LR image to the size of the HR image before performing the SR operation, the following
SR methods employ late upsampling. A late upsampling design performs feature extraction
on the LR image and upsamples at the end, which significantly reduces the required compu-
tational cost [9].

Fast Super-Resolution Convolutional Neural Network (FSRCNN) [10] is an upgrade of
SRCNN which was developed in 2016 to combat the high computational cost that hinders
SRCNN from being used practically, essentially by making it faster. The redesign includes,
among other changes, the introduction of a deconvolution layer at the end of the network,
which is responsible for upsampling the image. This means that the mapping is learned di-
rectly from the LR image to the HR image. This model reaches speeds of more than 40 times
faster than SRCNN, while also achieving a better image reconstruction.

20

2.2 Previous Research

Figure 2.10: A residual
block from the ResNet ar-
chitecture. BN stands for
Batch Normalisation.

The next model, Efficient Sub-Pixel Convolutional Neural
Network (ESPCN) [11], also from 2016, introduces a sub-pixel
convolutional layer which performs an operation at the end of
the network that is similar to the deconvolution layer in FSR-
CNN. The sub-pixel convolution works by taking the depth of
the last layer and converting it into the spatial dimension, es-
sentially aggregating the feature maps from the low-resolution
space and buiding the upscaled image in a single step. ESPCN
is the first network model capable of real-time super-resolution
on 1080p videos on a single GPU, while also producing higher
quality images than previous CNN-based models [11].

Residual Networks
Residual learning is a technique that differs from linear net-
works by incorporating skip connections in the network de-
sign. This approach is used to mitigate the issue of vanishing
gradients, which in turn makes working with very deep net-
works feasible [9]. In a residual network for super-resolution,
the network learns the difference, or "residue", which mainly
consists of high frequency information.

The Enhanced Deep Super-Resolution (EDSR) [12] net-
work, proposed in 2017, builds upon the ResNet architecture
[13], which consists of multiple residual blocks like the one
shown in Figure 2.10. EDSR demonstrates improvements in
accuracy by excluding batch normalisation layers, which nor-
malise the input and restricts the network’s range. Removal of
these layers can also yield a reduction in memory usage of up to
40%, which makes training more efficient [14]. This paper also
introduces a Multi-Scale Deep Super-Resolution (MDSR) [12] system which works similarly
and can upscale images using different upscaling factors.

Cascading Residual Network (CARN) [15], from 2018, is also a modification of the ResNet
architecture. While being similar to EDSR, it also incorporates a cascading mechanism that
feeds information from all previous layers as input to any convolutional layer. The cascading
also works on a local level where each block between the convolutional layers incorporates
a similar cascading mechanism internally. CARN produces results that are comparable to
state-of-art-methods at the time of its conception.

EDSR and CARN use a single-stage design, which means that they are comprised of a
single network. Several architectures employ a multi-stage design to enhance performance
by extracting features separately in the low-resolution space and high-resolution space. In
this approach, the first stage predicts the coarse features, which are further refined in the
later stage [14].

An example of a multi-stage approach for residual networks is Balanced Two-Stage Resid-
ual Network (BTSRN) [16]. It is comprised of two parts: a low-resolution stage, which has
6 residual blocks, and a high-resolution stage, which includes 4 residual blocks. Given the
larger input size in the HR stage, the convolution process has a higher computational cost

21

2. Background

than in the LR stage. To achieve a balance between accuracy and performance, the number
of blocks in each stage has been chosen accordingly. The model ranked among the best at
NTIRE SR 2017 in terms of both accuracy and speed [16].

Recursive Networks
Recursive networks utilise recursively connected convolutional layers or recursively linked
units. This approach aims to progressively break down the complex super-resolution problem
into a series of simpler ones, which are easier to tackle [9].

An example of this is the Deep Recursive Convolutional Network (DRCN) [17]. Devel-
oped as early as 2015, it applies the same convolutional layers repeatedly, which helps to
maintain a constant number of parameters for multiple recursions. DRCN is composed of
three smaller networks: the embedding net, inference net, and reconstruction net. First,
the embedding network, converts the input into feature maps. Secondly, the inference net
performs the super-resolution task by using a single recursive layer to analyse a large image
region, and applying the same convolutional layer multiple times while increasing the size of
the receptive field after each recursion. Lastly, the reconstruction net transforms the feature
maps that were output by the inference net into the final image. According to the authors,
this method outperforms previous methods by a large margin [17].

Deep Recursive Residual Network (DRRN) [18] combines the recursive and residual
methods by improving DRCN with the introduction of residual layers. This results in better
overall performance compared to DRCN.

Progressive Reconstruction Networks
CNN models usually predict the output in one step, which may not be feasible when it comes
to upscaling with large scaling factors. To address this issue, certain methods predict the
output in multiple stages. For example, if we want to upscale by 4x, we separate the operation
into steps, and first do 2x followed by 4x [9].

Laplacian Pyramid Super-Resolution Network (LapSRN) [19], proposed in 2017, utilises
this method of upscaling in a pyramidial framework. It consists of three sub-networks that
progressively generate residual images up to a factor of 8x. These residual images are added
to the input low-resolution image to obtain super-resolution images. The first sub-network
generates a residue of 2x, the second predicts the 4x and the final sub-network provides the
8x residual image. The resulting residual images are then added to the respective scaled up-
sampled images to obtain the final image [9]. The model performs favourably against state-
of-the-art methods at the time of the paper’s publication [19].

Densely Connected Networks
Super-resolution algorithms that fall under the category of densely connected networks are
inspired by the success of the DenseNet architecture for image classification [20]. The idea
behind this approach is to incorporate hierarchical cues available at different depths of the
network that are combined to improve flexibility and achieve richer feature representations
[9].

One of these designs is the 2017 model SRDenseNet [21], which uses skip connections in
a very deep network. The dense skip connections help to combine low-level and high-level

22

2.2 Previous Research

features, which leads to better reconstruction performance. Additionally, the connections
enable direct short paths from the output to each layer, which counteracts the vanishing-
gradient issue that is common in very deep networks. To further enhance efficiency, the
network includes deconvolution layers for learning upsampling filters and speeding up the
reconstruction process. The method, according to the authors, sets a new state of the art for
super-resolution, at the time of publication [21].

Multi-Branch Networks
Training very deep networks is difficult partly due to the problem of information flow.
Multi-branch networks address this issue by dividing the information flow into a number
of branches in which information can be allowed to pass [14]. This results in a fusion of
information that stem from different receptive fields, allowing for better high-resolution re-
constructions [9].

Cascaded Multi-Scaled Cross Network (CMSC) [22], published in 2018, is a multi-branch
network which is built out of a feature extraction layer, a sequence of cascading subnetworks
and a reconstruction layer. The feature extraction layer and the reconstruction layer works
similarly to earlier examples. The mentioned subnetworks, which is the new introduced
element, consist of two branches, each of which utilise different filter sizes which result in
different receptive fields that capture contextual information at different scales. The result
is a fusion of parts of information that complement each other, leading to a higher quality
image reconstruction.

Another example of a multi-branch network, also from 2018, is the Information Distil-
lation Network (IDN) [23]. With a similar architecture to CMSC, it consists of a feature ex-
traction block, multiple stacked information distillation blocks and a reconstruction block.
The distillation block is made up of an enhancement unit, which consists of 6 convolutional
layers, and a compression unit. Halfway through the enhancement unit, the multi-branching
happens. The output is sliced, where one half passes on through the enhancement unit and
the other is returned and concatenated with the input of the block. This concatenation is
then added to the output of the enhancement unit. Lastly, the compression unit uses a 1x1
convolutional filter to reduce the number of channels in the output of the enhancement unit.
The purpose of this new block is the same as in CMSC, to identify features at different scales.
This model performs particularly better in terms of speed [23].

Attention-Based Networks
Previously mentioned super-resolution models treat all spatial locations and channels as be-
ing of equal importance. However, in some cases, it may be beneficial to focus only on a select
few features at a given layer. This is where attention-based models can be useful as they allow
for flexibility by considering that not all features are crucial for super-resolution and instead
have different levels of significance [9].

SelNet [24], proposed in 2017, introduces a selection unit that is put at the end of convolu-
tional layers that can decide which information to pass on. In total, there are 22 convolutional
layers with each one being connected to a selection unit. Additionally, it also uses residual
learning and includes a sub-pixel layer at the end, similar to ESPCN.

Residual Channel Attention Network (RCAN) [25], from 2018, is also an attention-based

23

2. Background

network. It employs a recursive residual-in-residual design, and consists of several residual
groups with long skip connections, inside of which a couple of residual blocks sit with short
skip connections. This structure allows the individual blocks to focus on low-frequency de-
tails, while the main network identifies high-frequency information. Each of the local resid-
ual blocks include an attention channel mechanism, which selectively passes on information
in a way that is comparable to SelNet.

Generative Models

Generative models use a design based on generative adversarial networks (GANs). This
means that, unlike previously mentioned models, they are not based on a pixel-wise loss
function. Humans do not see differences between images pixel by pixel, but in perceptual
quality [14], which is what the following models generally try to replicate.

One of these models is SRGAN [26], which was published in 2016. It introduces a percep-
tual loss function which consists of three parts: MSE for capturing pixel-wise loss, perceptual
similarity loss which looks for differences in a high-level space and adversarial loss from the
discriminator network, which is trained to differentiate between SR images and the original
images.

EnhanceNet [27], also from 2016, uses an architecture based on the Fully Convolutional
Network [28] which uses residual learning. The model, like with SRGAN, introduces a per-
ceptual loss function which is supposed to enhance finer details and counteract the over-
smoothed images that can result from using only pixel-based loss.

ESRGAN, which stands for Enhanced SRGAN [29], is an extension of SRGAN, and was
made in 2018 to combat visual artefacts that appear in upscaled images. The main differences
include: a residual-in-residual dense block without batch normalisation as the main building
block for the network, a relative realness output from the discriminator network instead of
a binary real-or-fake decision, and improvements on the perceptual loss function.

Recent Methods

The models in this section are recent super-resolution methods that introduce new elements
into their networks, which are briefly presented.

Content Adaptive Resampler (CAR) [30], proposed in 2020, addresses the issue of down-
sampling by using a network called ResamplerNet to learn a task specific image downscaling
method that is adapted to the super-resolution operation. The SR network used in CAR is
based on the EDSR network.

Super-resolution models generally use one loss function to optimise the network, which
can result in visual artefacts. Super-Resolution using Optimal Objective Estimation (SROOE)
[31], a model published in 2022, incorporates multiple loss functions that are adaptively ap-
plied to different regions where they are deemed optimal.

Hybrid Attention Transformer (HAT) [32] is a a Transformer [33] based super-resolution
method developed in 2022. It is designed to activate more pixels from the input image.

24

2.2 Previous Research

2.2.2 Super-Resolution on Satellite Imagery
Using super-resolution in combination with satellite imagery is not a new concept. The chal-
lenge of enhancing images of the earth’s surface has been done before, not only for the sake
of getting nice looking maps, but for different purposes as well, such as object detection and
improving image segmentation.

The article "Enhancing Satellite Imagery with Deep Learning: A Practical Guide" [34]
deals with the general problem of getting clearer images for a map application. It proposes
a neural network architecture based on the Fully Convolutional Network [28] to solve this
problem, finding regular interpolation methods to not produce good enough results.

One example [35] deals with the problem of semantic segmentation in satellite images.
The challenge is to locate crop fields and identify which crop type it contains, which requires
high-resolution clear images capable of showing small details. In the article, it was found that
only using the images was not good enough to get an accurate labelling of the crop fields, so
a solution incorporating super-resolution was tested. The results are clearer images which
have the capability to significantly help the segmentation process and crop field labelling.

Another example [36] of using super-resolution for satellite imagery implements GAN-
based approach based on the SRGAN architecture. This article uses large scale images to
evaluate the approach, i.e. images that cover a large space, and the model shows significant
improvement over a bicubic interpolation algorithm for these images.

The article "Super-Resolution of Multispectral Satellite Images Using Convolutional Neu-
ral Networks" [37] takes advantage of pan-sharpening, i.e. the process of merging high-
resolution panchromatic imagery with low-resolution multispectral imagery to create a single
high-resolution colour image, that is often applied to satellite images to investigate a novel
approach of satellite image super-resolution. The article evaluates multiple super-resolution
methods while incorporating pan-sharpening and finds RedNet30 to give the overall best
performance.

Multi-image super-resolution (MISR) has also been used in conjunction with satellite im-
ages by utilising multiple images of the same area to find hidden fine details in low-resolution
images that can be resolved in a super-resolution image that is generated by a fusion of multi-
ple input images [38]. MISR is also useful for making clearer satellite images by, for example,
removing clouds that partly obscure the images in different areas.

In an article entitled "The Missing Ingredient in Deep Multi-Temporal Satellite Image
Super-Resolution" [39] a multi-image super-resolution solution is proposed in the form of
a model called PIUnet. The model, at the time of the article’s publication, outperformed
similar methods in terms of PSNR while also being more computationally efficient.

25

2. Background

26

Chapter 3

Methodology

For this project to go from thought to realisation, many things would need to be accounted
for. This includes tasks like: setting up various bits of code to use for things like downscal-
ing images and calculating image quality measurements from the upscaled images, choosing
which super-resolution models to use for upscaling the test images and implementing these
models in Python to produce the upscaled versions of the images from the test set.

3.1 Thoughts and Concerns
This section addresses some thoughts and potential problems that came up early in the pro-
cess of this project.

One concern was the edges of the tiles. In the map application, these tiles will sit next to
each other, so after upscaling there might be visible lines between the tiles since the upscaling
does not take into account any pixels from the adjacent tiles outside the given image.

It is not uncommon for some of these models requiring upwards of 20 GB of dedicated
GPU memory to run, which is a lot more than what was available for this project. So training
some of the deeper networks would have to be ruled out.

As mentioned in Section 2.1.7, the images in the Arc application are downsampled using
a binning style method. Many super-resolution models are optimised towards using bicubic
downsampling for the low-resolution input images. If using binning became a problem, there
may have been a need to resort to testing on bicubic downsampled images instead.

3.2 Setting up Metric Functions
To measure the performance of the upscaling techniques, both the conventional interpolation
and super-resolution, methods for producing the metrics needed to be implemented.

27

3. Methodology

Python has a built-in function for measuring time, which was used to measure how many
seconds it takes to upscale an image.

There are also built-in functions that can measure values such as PSNR and SSIM. How-
ever, these come from external packages. The one that was used in this project is from the
Python package sewar [40].

Since PSNR and SSIM can be quite deceptive at times, a visual assessment can also be a
valuable "metric" for measuring how good the upscaled image is. The images are in fact made
for humans to look at. Therefore, a visual interpretation and evaluation was done for each
upscaled image produced for this report.

3.3 Conventional Interpolation Tests
To test the conventional interpolation methods from Section 2.1.1 a built-in function from
the Python package OpenCV [41] was used. The function takes an image and resizes it to a
set size using a selected interpolation algorithm. To measure the resulting image quality, the
Python package sewar was used for the metrics.

(a) Nearest-neighbour (b) Bilinear (c) Bicubic

(d) Lanczos (e) Original image

Figure 3.1: Results from using conventional interpolation methods

The image that was resized is a 256x256 image of Malmö which shows an area of about
2 km², and mainly consists of buildings and roads. The results of the interpolation is shown
in Figure 3.1. These images were resized to a size of 512x512 using each of the interpolation
methods from Section 2.1.1, and in the figure they are cropped and zoomed in to show closer
details of the different interpolation methods.

28

3.4 Description of the Datasets

Nearest-neighbour Bilinear Bicubic Lanczos

Time (ms) 0.36 0.46 0.52 3.99
PSNR (dB) 34.51 37.59 39.38 39.54

SSIM 0.9395 0.9632 0.9769 0.9776

Table 3.1: The measured results of using the interpolation methods
on the Malmö image.

As shown in Table 3.1, Lanczos gives the best values, both for PSNR and SSIM, which
is also supported by a visual assessment of the images in Figure 3.1 but it has an execution
time which is significantly slower than the rest. This, however, should be fast enough for
a map application, but since it still is almost 10 times slower than bicubic without a huge
improvement, bicubic interpolation is used in further comparisons to the super-resolution
images.

3.4 Description of the Datasets
This project uses different datasets, depending on if the weights are pre-trained or if the
network is trained from scratch.

The dataset for training from scratch is a collection of 1000 satellite images with a size of
512x512 that were randomly selected from a single column of images from the north pole all
the way to the south pole. The images were downsampled to a size of 256x256 to form 1000
low-res high-res pairs. Out of the 1000 images, 800 were used for training and 200 were used
for validation.

Pre-trained weights are trained using various datasets, one of which is the DIV2K dataset
[42] which was used in the super-resolution challenges at NTIRE 2017 [43] and 2018 [44],
and is commonly used for pre-trained weights. It consists of 1000 images, containing a wide
range of subjects, which are divided into 800 training images, 100 validation images and 100
test images.

3.5 Early Experiments
One of the very first experiments consisted of using images from zoom level 3 and 4 to test
a small training set, and what super-resolution can do with such a small dataset. This was
trained using a method based on ESPCN from Section 2.2.1. The resulting images from up-
scaling using this network were worse than the low-resolution images, i.e. the network es-
sentially took the low-resolution images and made the images look less similar to the original
images.

The same images, from zoom level 3, were then used as input in a network with pre-
trained weights based on ESRGAN from Section 2.2.1. In Figure 3.2, which shows the result
of this upscaling, we can see that a significant improvement of the low-resolution image has
been done, with a PSNR of about 30 dB.

29

3. Methodology

(a) Low-resolution (b) Super-resolution (c) High-resolution

Figure 3.2: Result from early experiment using ESRGAN.

3.6 Selection of Test Images
The selection of test images for the report includes 10 images of cities, famous landmarks and
different terrain. This selection is based on the assumption that a user most likely would like
to zoom in on cities and landmarks. Figure 3.3 shows one of the test images in its uncropped
form as an example.

Figure 3.3: Uncropped New York image.

30

3.7 Selection of Models

3.7 Selection of Models
Since a lot of super-resolution models exist, a selection of a number of models to test had
to be made. The resulting selection was based on using models from different categories in
2.2.1, as well as if they were considered interesting, unique or easy to implement. The models
were implemented with Python using the PyTorch package.

3.8 SRCNN
The implementation used in this section is based on SRCNN which was introduced in Section
2.2.1. For SRCNN, the input images are pre-processed by using bicubic interpolation to resize
the images into the desired size, i.e. from 256x256 to 512x512. This is the only pre-processing
that is done for the images in this method. So the "low-resolution" input image shown in
Figure 3.4 is actually a bicubic interpolated image with the same pixel size as the output
image.

Figure 3.4: The architecture of SRCNN. The arrows represent the
convolutional operations.

The first experiment on the SRCNN model was done with a small dataset which consists
of 24 images of Paris. This was trained for 5 epochs, mostly to test if the method worked,
which resulted in a PSNR of 34.15 dB on the same image of Malmö used in the experiment
shown in Figure 3.2. This was then increased to 120 images, still 5 epochs, which gave a PSNR
of 34.24 dB, which was only a slight increase. For these experiments the inference time was
about 200 ms.

After these smaller experiments, all of which took a surprisingly long time to train, the
network was trained on the whole map dataset for 100 epochs. The training process took
around 10 hours, and the full results are shown in the results section. Another SRCNN test
was done using pre-trained weights. These weights were trained using the T91 dataset. For
the PSNR value, the pre-trained weights actually performed slightly better than the ones

31

3. Methodology

trained from scratch. Tests with this SRCNN network is referred to as SRCNN-p later in
the text.

Since training took a very long time, even for the network with the simplest architecture,
and because the weights trained with the T91 dataset seem to have a similar performance in
terms of both image quality and speed, a decision was made to shift focus towards the use of
pre-trained weights in later tests.

3.9 EDSR
For EDSR, an architecture based on the model described in Section 2.2.1 was used. The
architecture is shown in Figure 3.5. It consists of 16 residual blocks and 64 filters as proposed
in the paper for the baseline model on which this implementation is based.

Figure 3.5: The architecture of EDSR. The bottom block architec-
tures represent the residual block and the upsampling block respec-
tively.

Experiments were done initially by training from scratch in a manner similar to the SR-
CNN training, by gradually increasing the size of the dataset. However, the training time
was too slow to be able to produce any usable results. So a test with weights trained with
the DIV2K dataset was used in the final comparison. Additionally, bicubic downsampling
resulted in a much greater PSNR than binning, so the downsampling method was changed
as well.

32

3.10 SRGAN

3.10 SRGAN
The SRGAN model is based on the super-resolution technique described in Section 2.2.1. A
visual representation of the generator architecture is shown in Figure 3.6. The PReLU blocks
shown refer to parametric ReLU activation function. Figure 3.7 shows the discriminator
network, which uses leaky ReLU for activation as well as a sigmoid activation function at the
end of the network. The dense part of the network starts with 1024 nodes which all connect
to a single node, which ultimately determines whether or not the input image is real or fake.

Figure 3.6: The architecture of the generator network in SRGAN.

Figure 3.7: The architecture of the discriminator network in SR-
GAN. The numbers on the convolutional layers represent the num-
ber of feature maps.

The SRGAN model was more difficult than anticipated to set up. When time came to
train the network it ultimately demanded too much video memory, and would not work.
The result images were upscaled using pre-trained weights that were trained on the DIV2K
dataset.

33

3. Methodology

3.11 ESRGAN
Since a network with pre-trained weights was used in one of the early experiments, the same
model was used on the test images to produce the pictures in the final results. The generator
network model is very similar to SRGAN in Figure 3.6, but batch normalisation is removed,
and the residual blocks are replaced by residual-in-residual blocks, which are depicted in
Figure 3.8.

Figure 3.8: The architecture of a Residual-in-Residual Dense Block
(RRDB).

3.12 HAT
The HAT implementation is based on the model mentioned in Section 2.2.1. As shown in
Figure 3.9, it is a deep and complex model, and it requires around 20 GB of video memory
to train, so the intention was, from the start, to use pre-trained weights for this model. The
upscaling took a much longer time for this model than the previous models, which makes
sense when considering the complexity of the network architecture.

3.13 Test on Edges Between Tiles
To test if a problem could appear where the upscaling creates visible lines between the tiles,
due to the upscaling operation only taking into account only a single image at a time, two
images were appended next to each other after upscaling them using SRCNN. The result of
this is shown in Section 4.13.

34

3.13 Test on Edges Between Tiles

Figure 3.9: The architecture of the HAT super-resolution model.

35

3. Methodology

36

Chapter 4

Results

This chapter presents the results of every upscaling technique on every image in the test
set. First, every image is presented separately with a short discussion, as well as a visual
assessment, of that image’s results with the different super-resolution methods. Then, every
metric is presented separately to see which method performs best overall. Lastly, the results
from a test of the edges between tiles are shown.

For any time results on SRCNN, it should be noted that the time of the bicubic upscaling
should technically be added to the SRCNN time. However, the bicubic upscaling is much
faster than SRCNN, so it does not add a significant time delay. Other things to note include
that all images shown are zoomed in heavily to see closer upscaling details and that the images
for SRGAN were upscaled x4 and then downscaled. This, however, does not add a significant
time delay.

4.1 Image 1 - Malmö
The results of the upscaling techniques on the Malmö image are seen in Figure 4.1 and Table
4.1. While bicubic interpolation and EDSR perform best according to the metrics, SRCNN-
p and HAT both produce sharper images. Interestingly, these models get a relatively low
PSNR and SSIM. It might be that the produced images are too sharp, so the similarity metrics
determine that the image is not as similar to the original image as the blurrier results. It is
also worth mentioning that HAT is more than ten times slower than ESRGAN which is the
second slowest.

37

4. Results

(a) Low-resolution (b) Bicubic (c) SRCNN

(d) SRCNN-p (e) EDSR (f) SRGAN

(g) ESRGAN (h) HAT (i) Original image

Figure 4.1: Malmö image upscaled using different super-resolution methods.

LR Bicubic SRCNN SRCNN-p EDSR SRGAN ESRGAN HAT

Time (s) N/A 0.00052 0.23 0.19 2.94 4.98 8.51 95
PSNR (dB) 34.51 39.38 35.14 35.95 41.16 38.01 37.27 36.09

SSIM 0.9395 0.9769 0.9383 0.9566 0.9833 0.9687 0.9774 0.9586

Table 4.1: Image 1 - Malmö

4.2 Image 2 - London
According to Table 4.2, this image, which includes smaller details than the Malmö image,
gets closer results between bicubic and SRCNN, while SRCNN and SRCNN-p differ more,

38

4.2 Image 2 - London

which were closer in the previous image.
The images, shown in Figure 4.2, show that SRCNN-p and HAT are the sharpest again.

They do however feature upscaling artefacts which might not be desirable. The metrics also
show that EDSR and ESRGAN are the only methods that get a better image quality than
bicubic. The images also support this because they look the most similar to the original
image.

(a) Low-resolution (b) Bicubic (c) SRCNN

(d) SRCNN-p (e) EDSR (f) SRGAN

(g) ESRGAN (h) HAT (i) Original image

Figure 4.2: London image upscaled using different super-resolution methods.

39

4. Results

LR Bicubic SRCNN SRCNN-p EDSR SRGAN ESRGAN HAT

Time (s) N/A 0.0018 0.28 0.20 2.89 4.95 8.43 115
PSNR (dB) 27.95 31.48 30.04 28.02 33.11 30.88 31.59 27.91

SSIM 0.8921 0.9443 0.9202 0.9061 0.9594 0.9310 0.9523 0.9073

Table 4.2: Image 2 - London

4.3 Image 3 - Central Park

(a) Low-resolution (b) Bicubic (c) SRCNN

(d) SRCNN-p (e) EDSR (f) SRGAN

(g) ESRGAN (h) HAT (i) Original image

Figure 4.3: Central Park image upscaled using different super-resolution methods.

Again, only EDSR and ESRGAN produce a better image quality than bicubic interpola-

40

4.4 Image 4 - Countryside

tion according to the PSNR and SSIM values in Table 4.3. HAT produces an image that gets
a lower PSNR but a higher SSIM than the low-resolution image.

In the image results (Figure 4.3), the ones that stick out are SRCNN-p, SRGAN and HAT.
SRCNN-p and SRGAN looks sharper than the results for this image as well and SRGAN
produces a colour on the buildings that is slightly off. EDSR looks the most similar to the
original image, which the metrics also indicate.

LR Bicubic SRCNN SRCNN-p EDSR SRGAN ESRGAN HAT

Time (s) N/A 0.00064 0.23 0.21 2.93 4.93 8.48 109
PSNR (dB) 25.21 29.07 27.73 25.15 30.89 26.57 29.53 24.90

SSIM 0.8951 0.9498 0.9276 0.9122 0.9658 0.9106 0.9573 0.9090

Table 4.3: Image 3 - Central Park

4.4 Image 4 - Countryside
For this image, the measured values in Table 4.4 show that all methods except SRCNN are
an improvement over the low-resolution image. EDSR is the only method that outperforms
bicubic interpolation. It might also be worth noting that, SRCNN-p, SRGAN, ESRGAN
and HAT are all similar in PSNR, but SRCNN-p and HAT are significantly lower in SSIM.

In the produced images shown in Figure 4.4, it is hard to discern differences between the
images, but it seems that HAT is sharpest again and that SRCNN-p contains many upscaling
artefacts. Otherwise, the resulting images look quite similar.

LR Bicubic SRCNN SRCNN-p EDSR SRGAN ESRGAN HAT

Time (s) N/A 0.00051 0.23 0.21 2.89 4.97 8.83 100
PSNR (dB) 36.27 39.85 36.07 37.05 41.22 37.33 37.71 37.04

SSIM 0.9403 0.9689 0.9220 0.9509 0.9752 0.9624 0.9653 0.9494

Table 4.4: Image 4 - Countryside

41

4. Results

(a) Low-resolution (b) Bicubic (c) SRCNN

(d) SRCNN-p (e) EDSR (f) SRGAN

(g) ESRGAN (h) HAT (i) Original image

Figure 4.4: Countryside image using different sr methods

4.5 Image 5 - Miami Beach
For this image, HAT produces an improvement over the low-resolution image when mea-
sured in SSIM, but worse when measured in PSNR. Like in some of the earlier results, EDSR
and ESRGAN scores a higher SSIM and PSNR than bicubic interpolation. SRCNN pro-
duces a significant improvement over the LR image in PSNR, but gets a worse SSIM. All the
measured values are shown in Table 4.5.

As is evident from Figure 4.5, the SRCNN-p image looks quite messy. The sharpness is
still there, but the high frequency details do not seem to go well with it. SRGAN produces a
strange gray-like texture on the buildings in the center of the image. The image produced by
the HAT network has a high contrast, compared to the other images. The sharpness does not

42

4.5 Image 5 - Miami Beach

make it look as messy as SRCNN-p, but the buildings are still too bright and defined. Most
of the methods resolve the clearer high frequency details in the lower part of the image but
some of them struggle with the more cluttered details further up.

LR Bicubic SRCNN SRCNN-p EDSR SRGAN ESRGAN HAT

Time (s) N/A 0.00048 0.23 0.20 2.90 4.96 8.43 116
PSNR (dB) 25.67 28.99 27.38 26.16 30.53 27.05 29.56 24.80

SSIM 0.9327 0.9641 0.9312 0.9431 0.9732 0.9382 0.9645 0.9364

Table 4.5: Image 5 - Miami Beach

(a) Low-resolution (b) Bicubic (c) SRCNN

(d) SRCNN-p (e) EDSR (f) SRGAN

(g) ESRGAN (h) HAT (i) Original image

Figure 4.5: Miami image upscaled using different super-resolution methods.

43

4. Results

4.6 Image 6 - Rocky Landscape

(a) Low-resolution (b) Bicubic (c) SRCNN

(d) SRCNN-p (e) EDSR (f) SRGAN

(g) ESRGAN (h) HAT (i) Original image

Figure 4.6: Rocky Landscape image upscaled using different super-resolution methods.

LR Bicubic SRCNN SRCNN-p EDSR SRGAN ESRGAN HAT

Time (s) N/A 0.00053 0.23 0.19 2.92 4.92 8.43 116
PSNR (dB) 40.24 43.98 39.08 40.68 44.75 39.65 38.84 41.36

SSIM 0.9638 0.9785 0.9354 0.9626 0.9815 0.9608 0.9723 0.9647

Table 4.6: Image 6 - Rocky Landscape

For these results (Table 4.6), HAT gets a higher PSNR than ESRGAN but it is the other

44

4.7 Image 7 - Lake

way around for SSIM. ESRGAN gets the lowest PSNR of all methods, including the low-
resolution image, which is the first time this has happened for ESRGAN. Out of all models,
only EDSR is higher than bicubic for both metrics. Furthermore, SRCNN, SRGAN and
ESRGAN all receive a worse PSNR than the low-resolution image, but ESRGAN gets a higher
SSIM.

This time the differences in the produced images, shown in Figure 4.6, are hard to see.
The HAT image is the most clear this time. The lack of small details in the image seems to
be a benefit to the sharper results that HAT produces. The image looks like it has a higher
resolution than the rest, including the original image. Since the original image is blurry, HAT
obviously does not look very similar to it compared to other methods.

4.7 Image 7 - Lake

LR Bicubic SRCNN SRCNN-p EDSR SRGAN ESRGAN HAT

Time (s) N/A 0.00055 0.24 0.21 2.83 4.93 8.63 98
PSNR (dB) 31.90 35.86 32.96 32.93 37.81 34.72 35.43 32.53

SSIM 0.9259 0.9581 0.9140 0.9360 0.9675 0.9395 0.9551 0.9313

Table 4.7: Image 7 - Lake

Out of all the network models, EDSR is the only method which is an improvement over
bicubic, both for PSNR and SSIM. This time, all methods get a higher PSNR than the low-res
image, which seems to be a rare occurrence. This is true for SSIM too, except for SRCNN,
which gets a lower value. Interestingly, as opposed to the previous image, HAT is lower
than ESRGAN again for PSNR. This image, especially in its uncropped form, has more high
frequency details than the previous, which could be an explanation for why HAT performs
worse.

As evident from Figure 4.7, all the upscaled images look similar except for SRCNN-p and
HAT, which seems to be a pattern. Further details between these images, are hard to discern.

45

4. Results

(a) Low-resolution (b) Bicubic (c) SRCNN

(d) SRCNN-p (e) EDSR (f) SRGAN

(g) ESRGAN (h) HAT (i) Original image

Figure 4.7: Lake image upscaled using different super-resolution methods.

4.8 Image 8 - Paris
From Table 4.8, we can see that HAT scores the lowest PSNR, even lower than the low-
resolution image, which was also true for the Miami image. SRCNN and SRCNN-p are
significantly different in PSNR, while for the previous image, they were very close. EDSR
and ESRGAN are the only improvements over bicubic interpolation. There seems to be
a pattern where EDSR always takes the top spot and the second spot alternates between
being occupied by ESRGAN and bicubic interpolation. For SSIM, all the super-resolution
methods score higher than the low-resolution image. EDSR is has the highest SSIM, followed
by ESRGAN, which aligns with the PSNR scores.

In the images, shown in Figure 4.8, HAT works out the building details better this time.

46

4.8 Image 8 - Paris

However, HAT (and SRCNN-p) also seems to amplify the small high contrast bits in the
image, which the other methods do not. Overall, EDSR, SRGAN and ESRGAN look the
most similar to the original image.

LR Bicubic SRCNN SRCNN-p EDSR SRGAN ESRGAN HAT

Time (s) N/A 0.00052 0.23 0.19 2.89 4.94 8.53 119
PSNR (dB) 26.42 29.65 28.24 26.33 31.18 28.52 29.90 26.17

SSIM 0.8712 0.9310 0.9042 0.8900 0.9500 0.9053 0.9431 0.8904

Table 4.8: Image 8 - Paris

(a) Low-resolution (b) Bicubic (c) SRCNN

(d) SRCNN-p (e) EDSR (f) SRGAN

(g) ESRGAN (h) HAT (i) Original image

Figure 4.8: Paris image upscaled using different super-resolution methods. The dark blob in
the lower right corner is the Eiffel Tower.

47

4. Results

4.9 Image 9 - Versailles

(a) Low-resolution (b) Bicubic (c) SRCNN

(d) SRCNN-p (e) EDSR (f) SRGAN

(g) ESRGAN (h) HAT (i) Original image

Figure 4.9: Versailles image upscaled using different super-resolution methods.

According to the metrics in Figure 4.9, every method improves the low-resolution image,
both for PSNR and SSIM. This time, only EDSR is better than bicubic interpolation again,
pushing down ESRGAN to a close third spot.

In the images in Figure 4.9, all the upscaling methods seem to have produced images that
do not look bad. As with all the other test images, SRCNN-p and HAT’s resulting images
are sharper than the others, with HAT looking slightly cleaner.

48

4.10 Image 10 - Abstract Sea Image

LR Bicubic SRCNN SRCNN-p EDSR SRGAN ESRGAN HAT

Time (s) N/A 0.00047 0.23 0.22 2.89 4.95 8.41 113
PSNR (dB) 29.19 32.69 30.48 29.52 34.23 31.83 32.60 29.34

SSIM 0.9047 0.9499 0.9114 0.9193 0.9628 0.9345 0.9551 0.9194

Table 4.9: Image 9 - Versailles

4.10 Image 10 - Abstract Sea Image

(a) Low-resolution (b) Bicubic (c) SRCNN

(d) SRCNN-p (e) EDSR (f) SRGAN

(g) ESRGAN (h) HAT (i) Original image

Figure 4.10: Sea image upscaled using different super-resolution methods.

As shown in Figure 4.10, this is the only test image where bicubic interpolation gets

49

4. Results

LR Bicubic SRCNN SRCNN-p EDSR SRGAN ESRGAN HAT

Time (s) N/A 0.00049 0.25 0.21 2.91 4.93 8.50 111
PSNR (dB) 45.82 49.31 42.09 45.66 49.35 39.58 39.53 45.82

SSIM 0.9864 0.9922 0.9657 0.9854 0.9916 0.9750 0.9855 0.9887

Table 4.10: Image 10 - Sea

the highest score, which it does for SSIM. For PSNR, EDSR is slightly higher than bicubic
interpolation.

It is unclear what the image, shown in 4.10, depicts. In the full image, it looks like it
might be the sea and some islands, and some clouds seem to be visible as well. It is quite hard
to see a significant difference between the super-resolution techniques for this image. Like
in some of the preceding examples, HAT seems to work well with this low-detailed image.
Other than that, any method, except maybe SRCNN, resolve the details in the image in a
satisfying manner.

4.11 Metric Tables

Image Bicubic SRCNN SRCNN-p EDSR SRGAN ESRGAN HAT

Malmö 0.00052 0.23 0.19 2.94 4.98 8.51 95
London 0.0018 0.28 0.20 2.89 4.95 8.43 115

Park 0.00064 0.23 0.21 2.93 4.93 8.48 109
Country 0.00051 0.23 0.21 2.89 4.97 8.83 100
Miami 0.00048 0.23 0.20 2.90 4.96 8.43 116
Rocky 0.00053 0.23 0.19 2.92 4.92 8.43 116
Lake 0.00055 0.24 0.21 2.83 4.93 8.63 98
Paris 0.00052 0.23 0.19 2.89 4.94 8.53 119

Versailles 0.00047 0.23 0.22 2.89 4.95 8.41 113
Sea 0.00049 0.25 0.21 2.91 4.93 8.50 111

Table 4.11: Upscaling time for every image in seconds.

Not much of interest can be deduced from the table of upscaling times (4.11). Bicubic
interpolation is the fastest, and HAT is, by far, the slowest. EDSR, which is the best per-
forming method according to the image quality metrics, has one of the faster upscaling times
when comparing to the other models, but it is still about 15 times slower than the SRCNN
implementations.

The Central Park and Miami images consistently get the lowest PSNR, as seen in Table
4.12. The images with many buildings, like the city images, seem to be harder to upscale
overall. The table also confirms that the second best upscaling technique alternates between
bicubic interpolation and ESRGAN. Bicubic is second best for all the non-city images, so it
might be a pattern there, but it is also second best for the Malmö and the Versailles images,
which contain city textures.

50

4.11 Metric Tables

Image LR Bicubic SRCNN SRCNN-p EDSR SRGAN ESRGAN HAT

Malmö 34.51 39.38 35.14 35.95 41.16 38.01 37.27 36.09
London 27.95 31.48 30.04 28.02 33.11 30.88 31.59 27.91

Park 25.21 29.07 27.73 25.15 30.89 26.57 29.53 24.90
Country 36.27 39.85 36.07 37.05 41.22 37.33 37.71 37.04
Miami 25.67 28.99 27.38 26.16 30.53 27.05 29.56 24.80
Rocky 40.24 43.98 39.08 40.68 44.75 39.65 38.84 41.36
Lake 31.90 35.86 32.96 32.93 37.81 34.72 35.43 32.53
Paris 26.42 29.65 28.24 26.33 31.18 28.52 29.90 26.17

Versailles 29.19 32.69 30.48 29.52 34.23 31.83 32.60 29.34
Sea 45.82 49.31 42.09 45.66 49.35 39.58 39.53 45.82

Average 32.31 36.03 32.92 32.75 37.42 33.41 34.20 32.60

Table 4.12: PSNR for every image. Numbers in bold indicate the
highest value and underlined numbers indicate the second highest
value.

Image LR Bicubic SRCNN SRCNN-p EDSR SRGAN ESRGAN HAT

Malmö 0.9395 0.9769 0.9383 0.9566 0.9833 0.9687 0.9774 0.9586
London 0.8921 0.9443 0.9202 0.9061 0.9594 0.9310 0.9523 0.9073

Park 0.8951 0.9498 0.9276 0.9122 0.9658 0.9106 0.9573 0.9090
Country 0.9403 0.9689 0.9220 0.9509 0.9752 0.9624 0.9653 0.9494
Miami 0.9327 0.9641 0.9312 0.9431 0.9732 0.9382 0.9645 0.9364
Rocky 0.9638 0.9785 0.9354 0.9626 0.9815 0.9608 0.9723 0.9647
Lake 0.9259 0.9581 0.9140 0.9360 0.9675 0.9395 0.9551 0.9313
Paris 0.8712 0.9310 0.9042 0.8900 0.9500 0.9053 0.9431 0.8904

Versailles 0.9047 0.9499 0.9114 0.9193 0.9628 0.9345 0.9551 0.9194
Sea 0.9864 0.9922 0.9657 0.9854 0.9916 0.9750 0.9855 0.9887

Average 0.8265 0.9614 0.9270 0.9362 0.9710 0.9426 0.9628 0.9356

Table 4.13: SSIM for every image. Numbers in bold indicate the
highest value and underlined numbers indicate the second highest
value.

The SSIM results (Table 4.13) seem to follow PSNR, for the most part, in terms of which
method is best and second best. For SSIM there is a trend where the London, Central Park
and Paris images get the lowest overall values. It is also for SSIM where the only time EDSR
is not the best method happens. Bicubic interpolation gets a higher SSIM score for the sea
image.

The models and their average PSNR and SSIM scores ranked are shown in Table 4.14. All
the methods produced a better image overall, than simply keeping the low-resolution image.

51

4. Results

Ranking Method PSNR

1 EDSR 37.42
2 Bicubic 36.03
3 ESRGAN 34.20
4 SRGAN 33.41
5 SRCNN 32.92
6 SRCNN-p 32.75
7 HAT 32.60
8 LR 32.31

Ranking Method SSIM

1 EDSR 0.9710
2 ESRGAN 0.9628
3 Bicubic 0.9614
4 SRGAN 0.9426
5 SRCNN-p 0.9362
6 HAT 0.9356
7 SRCNN 0.9270
8 LR 0.9252

Table 4.14: PSNR and SSIM rankings.

4.12 Space Saved
Table 4.15 shows how much storage space the weights require. As mentioned in the intro-
duction chapter, zoom level 12 and zoom level 13 use 68 GB and 241 GB of storage space
respectively, so in relation to the size of the images, the sizes of these network are insignifi-
cant. The storage space saved is around 173 GB.

Model Size

Bicubic 413 B
SRCNN 231.1 kB

SRCNN-p 231.6 kB
EDSR 6.2 MB

SRGAN 6.5 MB
ESRGAN 20.6 MB

HAT 82.6 MB

Table 4.15: Storage space used by the different models.

4.13 Edges Between Tiles
As clarified in the lowermost image in Figure 4.11, an edge appears between tiles. The figure
shows three levels of zoom on the edge between the tiles. The edge, however, is subtle, and
can only be seen when zooming in to a degree which would most likely not be done during
common use.

52

4.13 Edges Between Tiles

Figure 4.11: Result of displaying two adjacent SRCNN-upscaled im-
ages. A subtle vertical line is visible in the middle of the bottom
image.

53

4. Results

54

Chapter 5

Discussion

This chapter contains a discussion of the results shown in the previous chapter, as well as
various topics derived from the process of producing results during the course of this project.

5.1 Ambiguous Results
One of the main dilemmas surrounding super-resolution is that it should not be used when
ambiguous results can be a problem. The information that the upscaling creates is only esti-
mated and, therefore, does not actually exist. There is no guarantee that the details we see in
the upscaled image are real.

For a map application ambiguous results is not an issue, to a degree. Most important is
probably that the images look good to the users of the application, and if some details are
not resolved entirely correctly, this is most likely not an issue. It becomes an issue when they
start becoming distracted by strange upscaling artefacts.

5.2 Original Image Similarity
In some of the upscaled results, the super-resolution image is actually clearer than the original
image. As mentioned, the details that show up in the SR image are not actually real details.
The question then is what a user would prefer. They might look at the less blurry SR image
and think that it looks better, unaware of the fact that what they are seeing is fake. The
clearer results can also result in a lower image quality value (PSNR and SSIM), which is a
reason why those values can be misleading.

If what you are after is an as accurate representation of the original image as possible,
then high metric values are good, but if you want an image that looks as "good" as possible,
which is obviously subjective, the values do not accurately represent this. This is shown, for

55

5. Discussion

example, in the images that lack smaller details, where HAT creates a clear and defined result
but receives a PSNR and SSIM that is among the lower scores.

5.3 Difficulty of Upscaling Satellite Imagery
Images at zoom level 12 have very small details, particularly the images depicting cities. This
essentially means that the images contain unpredictable textures, which are not ideal for
using with super-resolution, and machine learning in general.

There is also the issue of downsampling. When using images downsampled with binning
for upscaling, the results did not come out well. So to use super-resolution in a system like
this, the downsampling method used to generate the lower resolution images would need to
be bicubic.

5.4 Comparison of SR Methods
Upscaling time is an issue for the deeper networks, which is not ideal for a map application,
where the images need to be displayed when a user zooms in, without a too distracting de-
lay. Bicubic interpolation, SRCNN and SRCNN-p, with their fast upscaling speeds, would
probably work without any issues. However, HAT can be ruled out, because it takes almost
two minutes for it to upscale one image. Of course, it is not only up to me to decide what
is too slow, but ESRGAN at roughly 8.5 seconds, and SRGAN at around 5 seconds, cause a
delay which seems like it would be distracting. EDSR sits on the limit at around 3 seconds
which is still quite slow, but considering its good image results, it could work.

For some images with no small details, like the sea image, the upscaling method does
not seem to matter that much, and any upscaling technique seems to produce an image that
looks good enough. Because, while the measured values vary, the images are not very easy to
distinguish between.

From the upscaled images, it becomes clear that HAT performs better on images that do
not contain a lot of small details, so different models work better on different types of images.
While it is not viable to use HAT, because its upscaling speed is too slow, there might be
another super-resolution method which also carries this attribute, but also has a more useful
upscaling speed. This could be used in a system that classifies satellite images into different
types, and uses a corresponding super-resolution model for upscaling that image.

Looking at Table 4.12 and Table 4.13, it is clear that EDSR generates the best quality
images in relation to the original images out of the methods tested. This is also supported
by a visual assessment of the upscaled images; the images produced by EDSR consistently
look the most similar to the original images. Bicubic interpolation gets high metric results,
while in the shown images it is one of the blurrier results. The images produced still look
good, and the roughness in the low-resolution images has definitely been smoothed out, so
considering its fast upscaling speed it is still a useful alternative. ESRGAN’s results look very
similar to EDSR and, considering its complexity and its slower upscaling speed, it is not very
useful for this task. This is also the case for SRGAN, which is also slower and produces lower
quality results compared to EDSR. SRCNN is low in the ranking of the models, but in a visual
assessment the results are similar to bicubic interpolation. However, considering that bicubic

56

5.4 Comparison of SR Methods

interpolation has a speed of around 0.5 ms, while SRCNN takes around 230 ms, SRCNN
becomes redundant. SRCNN-p’s sharper images, might be useful for some applications. The
upscaling artefacts, which it is prone to, are undesirable. The results produced by HAT do
not go together well with the methods of measurement, but some of the images look good,
and they have a sharpness that could be desirable. However, as mentioned, HAT is clearly
too slow to be used in an application such as this.

57

5. Discussion

58

Chapter 6

Conclusions

Out of the methods tested, EDSR gives the best results according to the metrics, which is also
supported by the images. Its upscaling speed, which is about 3 seconds, makes it uncertain
if it could be used in an application such as Arc. The size of the network in terms of storage
space needed, was found to be of no issue.

Regarding if super-resolution could be used to replace the original images in a map ap-
plication, the potential is there. While it is possible to produce images which are very similar
to the original images, the biggest issue is the upscaling speed. If a speed of 3 seconds per
image is tolerable, EDSR is definitely a candidate, otherwise another method would have to
be identified and tested.

6.1 Further Research
Further research of this project includes trying more models to find if one can get better
upscaling speed than EDSR with similar results, as well as training EDSR from scratch to see
if it can produce improved results.

If a system that follows the tiled map model does not implement any super-resolution,
it could still be a good idea to use bicubic interpolation to create a fake zoom level 14, since
it needs little storage space, has a fast upscaling speed and, as shown by the metric results,
produces reasonably good quality images. Machine learning based image upscaling could also,
of course, be applied to the images in zoom level 13 to produce a zoom level 14.

Another thing that would be interesting to explore would be using a larger scaling fac-
tor, like 4x for example. While this would not resolve any more details, it could result in
a less pixelated image, which in turn would mean that a user could zoom in further while
maintaining smooth edges. An issue with this though is that the produced images would be
1024x1024, so the system would need to be made compatible with displaying twice as large
images in the same space as the 512x512 images are displayed.

59

6. Conclusions

60

References

[1] Tactel, “Arc: Exploring the world below from the sky above.” URL: https://tactel
.se/en/cases/exploring-the-world-below-from-the-sky-above.

[2] Wikipedia, “Tiled web map.” URL: https://en.wikipedia.org/wiki/Tiled_we
b_map.

[3] R. Szeliski, Computer Vision: Algorithms and Applications. Springer, 2022. ISBN:
9783030343712.

[4] C. C. Aggarwal, Neural Networks and Deep Learning. Springer International Publishing,
2018. ISBN: 9783319944623.

[5] D. R. Bull and F. Zhang, Intelligent Image and Video Compression. Oxford: Academic Press,
second ed., 2021. ISBN: 9780128203538.

[6] C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-resolution using deep convolu-
tional networks,” arXiv preprint arXiv:1501.00092, 2015. URL: http://arxiv.org/ab
s/1501.00092.

[7] J. Kim, J. K. Lee, and K. M. Lee, “Accurate image super-resolution using very deep con-
volutional networks,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 1646–1654, 2016.

[8] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image
recognition,” in International Conference on Learning Representations, 2015.

[9] S. Anwar, S. Khan, and N. Barnes, “A deep journey into super-resolution: A survey,”
ACM Computing Surveys, vol. 53, pp. 1–34, May 2020.

[10] C. Dong, C. C. Loy, and X. Tang, “Accelerating the super-resolution convolutional neural
network,” in Computer Vision – ECCV 2016, pp. 391–407, Springer International Publish-
ing, 2016.

61

https://tactel.se/en/cases/exploring-the-world-below-from-the-sky-above
https://tactel.se/en/cases/exploring-the-world-below-from-the-sky-above
https://en.wikipedia.org/wiki/Tiled_web_map
https://en.wikipedia.org/wiki/Tiled_web_map
http://arxiv.org/abs/1501.00092
http://arxiv.org/abs/1501.00092

REFERENCES

[11] W. Shi, J. Caballero, F. Huszar, J. Totz, A. P. Aitken, R. Bishop, D. Rueckert, and Z. Wang,
“Real-time single image and video super-resolution using an efficient sub-pixel convolu-
tional neural network,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 1874–1883, IEEE Computer Society, June 2016.

[12] B. Lim, S. Son, H. Kim, S. Nah, and K. M. Lee, “Enhanced deep residual networks for
single image super-resolution,” in 2017 IEEE Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), pp. 1132–1140, 2017.

[13] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778,
2016.

[14] A. C. N. Matcha, “Image super-resolution: A comprehensive review,” 2020. URL: http
s://blog.paperspace.com/image-super-resolution/.

[15] N. Ahn, B. Kang, and K.-A. Sohn, “Fast, accurate, and lightweight super-resolution with
cascading residual network,” in Computer Vision – ECCV 2018, pp. 256–272, Springer
International Publishing, 2018.

[16] Y. Fan, H. Shi, J. Yu, D. Liu, W. Han, H. Yu, Z. Wang, X. Wang, and T. S. Huang, “Bal-
anced two-stage residual networks for image super-resolution,” in 2017 IEEE Conference
on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1157–1164, 2017.

[17] J. Kim, J. K. Lee, and K. M. Lee, “Deeply-recursive convolutional network for image
super-resolution,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 1637–1645, 2016.

[18] Y. Tai, J. Yang, and X. Liu, “Image super-resolution via deep recursive residual network,”
in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2790–2798,
2017.

[19] W.-S. Lai, J.-B. Huang, N. Ahuja, and M.-H. Yang, “Deep laplacian pyramid networks
for fast and accurate super-resolution,” in 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 5835–5843, 2017.

[20] G. Huang, Z. Liu, L. V. D. Maaten, and K. Q. Weinberger, “Densely connected convo-
lutional networks,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 2261–2269, IEEE Computer Society, July 2017.

[21] T. Tong, G. Li, X. Liu, and Q. Gao, “Image super-resolution using dense skip connec-
tions,” in 2017 IEEE International Conference on Computer Vision (ICCV), pp. 4809–4817,
2017.

[22] Y. Hu, X. Gao, J. Li, Y. Huang, and H. Wang, “Single image super-resolution via cascaded
multi-scale cross network,” arXiv preprint arXiv:1802.08808, 2018. URL: https://arxi
v.org/abs/1802.08808.

[23] Z. Hui, X. Wang, and X. Gao, “Fast and accurate single image super-resolution via infor-
mation distillation network,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 723–731, IEEE Computer Society, June 2018.

62

https://blog.paperspace.com/image-super-resolution/
https://blog.paperspace.com/image-super-resolution/
https://arxiv.org/abs/1802.08808
https://arxiv.org/abs/1802.08808

REFERENCES

[24] J.-S. Choi and M. Kim, “A deep convolutional neural network with selection units for
super-resolution,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), pp. 1150–1156, 2017.

[25] Y. Zhang, K. Li, K. Li, L. Wang, B. Zhong, and Y. Fu, “Image super-resolution using very
deep residual channel attention networks,” in Computer Vision – ECCV 2018, pp. 294–310,
Springer International Publishing, 2018.

[26] C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Te-
jani, J. Totz, Z. Wang, and W. Shi, “Photo-realistic single image super-resolution using a
generative adversarial network,” in 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 105–114, IEEE Computer Society, July 2017.

[27] M. M. Sajjadi, B. Schölkopf, and M. Hirsch, “Enhancenet: Single image super-resolution
through automated texture synthesis,” in 2017 IEEE International Conference on Computer
Vision (ICCV), pp. 4501–4510, IEEE Computer Society, Oct. 2017.

[28] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic seg-
mentation,” in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 3431–3440, IEEE Computer Society, June 2015.

[29] X. Wang, K. Yu, S. Wu, J. Gu, Y. Liu, C. Dong, Y. Qiao, and C. C. Loy, “Esrgan: En-
hanced super-resolution generative adversarial networks,” in Computer Vision – ECCV
2018 Workshops, pp. 63–79, Springer International Publishing, 2019.

[30] W. Sun and Z. Chen, “Learned image downscaling for upscaling using content adaptive
resampler,” IEEE Transactions on Image Processing, vol. 29, pp. 4027–4040, 2020.

[31] S. H. Park, Y. S. Moon, and N. I. Cho, “Perception-oriented single image super-resolution
using optimal objective estimation,” arXiv preprint arXiv:2211.13676, 2022. URL: https:
//arxiv.org/abs/2211.13676.

[32] X. Chen, X. Wang, J. Zhou, and C. Dong, “Activating more pixels in image super-
resolution transformer,” arXiv preprint arXiv:2205.04437, 2022. URL: https://arxi
v.org/abs/2205.04437.

[33] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin, “Attention is all you need,” in Advances in Neural Information Processing
Systems (I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, eds.), vol. 30, Curran Associates, Inc., 2017.

[34] E. Alimohammadi, “Enhancing satellite imagery with deep learning: A practical guide
(super-resolution),” 2019. URL: https://itnext.io/satellite-view-images-e
nhancement-with-deep-learning-super-resolution-92040d6b22b6.

[35] J. Tan, “Enhancing satellite imagery through super resolution,” 2020. URL: https:
//omdena.com/blog/super-resolution/.

[36] M. Tayba and P. Rivas, “Enhancing the resolution of satellite imagery using a genera-
tive model,” in 2021 International Conference on Computational Science and Computational
Intelligence (CSCI), pp. 20–25, 2021.

63

https://arxiv.org/abs/2211.13676
https://arxiv.org/abs/2211.13676
https://arxiv.org/abs/2205.04437
https://arxiv.org/abs/2205.04437
https://itnext.io/satellite-view-images-enhancement-with-deep-learning-super-resolution-92040d6b22b6
https://itnext.io/satellite-view-images-enhancement-with-deep-learning-super-resolution-92040d6b22b6
https://omdena.com/blog/super-resolution/
https://omdena.com/blog/super-resolution/

REFERENCES

[37] M. U. Müller, N. Ekhtiari, R. M. Almeida, and C. Rieke, “Super-resolution of multi-
spectral satellite images using convolutional neural networks,” ISPRS Annals of the Pho-
togrammetry, Remote Sensing and Spatial Information Sciences, vol. V-1-2020, pp. 33–40,
Aug. 2020.

[38] M. Rifat Arefin, V. Michalski, P.-L. St-Charles, A. Kalaitzis, S. Kim, S. E. Kahou, and
Y. Bengio, “Multi-image super-resolution for remote sensing using deep recurrent net-
works,” in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), pp. 816–825, 2020.

[39] D. Valsesia, “The missing ingredient in deep multi-temporal satellite image super-
resolution,” 2021. URL: https://towardsdatascience.com/the-missing
-ingredient-in-deep-multi-temporal-satellite-image-super-resolut
ion-78cac0f063d9.

[40] A. Khalel, “sewar.” URL: https://pypi.org/project/sewar.

[41] OpenCV-Team, “Opencv.” URL: https://pypi.org/project/opencv-python/.

[42] E. Agustsson and R. Timofte, “Ntire 2017 challenge on single image super-resolution:
Dataset and study,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), pp. 1122–1131, 2017.

[43] R. Timofte, E. Agustsson, L. Van Gool, M.-H. Yang, L. Zhang, B. Lim, et al., “Ntire 2017
challenge on single image super-resolution: Methods and results,” in The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) Workshops, July 2017.

[44] R. Timofte, S. Gu, J. Wu, L. Van Gool, L. Zhang, M.-H. Yang, M. Haris, et al., “Ntire 2018
challenge on single image super-resolution: Methods and results,” in The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) Workshops, June 2018.

64

https://towardsdatascience.com/the-missing-ingredient-in-deep-multi-temporal-satellite-image-super-resolution-78cac0f063d9
https://towardsdatascience.com/the-missing-ingredient-in-deep-multi-temporal-satellite-image-super-resolution-78cac0f063d9
https://towardsdatascience.com/the-missing-ingredient-in-deep-multi-temporal-satellite-image-super-resolution-78cac0f063d9
https://pypi.org/project/sewar
https://pypi.org/project/opencv-python/

Appendices

65

Appendix A

Unused Metrics

This section includes the measured values of each image using metrics that were not used in
the main evaluation of the super-resolution methods.

LR Bicubic SRCNN SRCNN-p EDSR SRGAN ESRGAN HAT
UQI 0.9962 0.9987 0.9958 0.9970 0.9991 0.9974 0.9955 0.9973
MSSSIM 0.9853 0.9923 0.9820 0.9876 0.9961 0.9911 0.9944 0.9904
PSNRB 34.0228 39.7241 34.4985 35.9239 41.3250 37.5973 36.4331 36.2512
ERGAS 3559.3009 2021.8384 3566.4328 3050.7063 1699.1113 2618.1332 2910.2305 2938.4011
RASE 512.6029 291.2837 512.6750 439.8728 244.7969 376.0097 417.7597 423.1265
SAM 0.0841 0.0486 0.0795 0.0725 0.0397 0.0537 0.0454 0.0702
SCC 0.4103 0.6713 0.4819 0.6629 0.7168 0.5992 0.6814 0.7157
VIFP 0.5525 0.7279 0.5606 0.6692 0.7717 0.6785 0.7381 0.6697

Table A.1: Image 1 - Malmö

LR Bicubic SRCNN SRCNN-p EDSR SRGAN ESRGAN HAT
UQI 0.9880 0.9943 0.9912 0.9878 0.9959 0.9924 0.9915 0.9878
MSSSIM 0.9649 0.9782 0.9768 0.9693 0.9882 0.9795 0.9863 0.9743
PSNRB 27.4814 31.1706 29.3754 27.8474 32.7114 30.7230 30.9703 27.6432
ERGAS 6586.1995 4381.9118 5422.4065 6565.3180 3704.7203 4909.5923 4596.1186 6527.1815
RASE 949.0123 631.7395 781.1944 946.9939 534.0997 707.5762 661.8260 940.8257
SAM 0.1498 0.1002 0.1185 0.1475 0.0831 0.1048 0.0874 0.1481
SCC 0.4345 0.6633 0.5240 0.6396 0.7042 0.5730 0.6828 0.6696
VIFP 0.4271 0.5435 0.4662 0.4834 0.5928 0.5133 0.5756 0.4850

Table A.2: Image 2 - London

67

A. Unused Metrics

LR Bicubic SRCNN SRCNN-p EDSR SRGAN ESRGAN HAT
UQI 0.9806 0.9910 0.9862 0.9800 0.9937 0.9833 0.9865 0.9793
MSSSIM 0.9665 0.9820 0.9795 0.9761 0.9915 0.9772 0.9895 0.9769
PSNRB 25.0427 28.7419 27.1620 24.9654 30.3947 26.9984 28.9594 24.6500
ERGAS 8545.3060 5636.3204 6972.6243 8698.7893 4683.3123 7527.6813 5888.9409 8753.4121
RASE 1231.0257 811.0623 1002.3485 1253.4716 673.5650 1083.3214 846.0130 1260.1007
SAM 0.1966 0.1266 0.1478 0.1920 0.1026 0.1657 0.1086 0.1977
SCC 0.4210 0.6232 0.4607 0.6079 0.6690 0.4587 0.6263 0.6402
VIFP 0.3991 0.5090 0.4410 0.4543 0.5630 0.4376 0.5444 0.4490

Table A.3: Image 3 - Central Park

LR Bicubic SRCNN SRCNN-p EDSR SRGAN ESRGAN HAT
UQI 0.9931 0.9965 0.9888 0.9930 0.9973 0.9875 0.9867 0.9936
MSSSIM 0.9861 0.9911 0.9788 0.9875 0.9951 0.9875 0.9925 0.9894
PSNRB 35.3735 39.6173 34.9554 36.8017 40.9778 35.9387 36.8445 35.9022
ERGAS 4342.3999 2948.1398 4983.7209 4110.6069 2621.6105 4531.4890 4297.0406 4054.4045
RASE 626.0818 424.3901 714.3115 592.1483 377.2822 645.4366 615.5797 583.5349
SAM 0.1131 0.0761 0.1190 0.1051 0.0652 0.0925 0.0742 0.1039
SCC 0.4325 0.6113 0.3877 0.5951 0.6324 0.4886 0.5879 0.6630
VIFP 0.5567 0.6901 0.5084 0.6474 0.7250 0.6100 0.6860 0.6469

Table A.4: Image 4 - Countryside

LR Bicubic SRCNN SRCNN-p EDSR SRGAN ESRGAN HAT
UQI 0.9913 0.9956 0.9892 0.9906 0.9967 0.9875 0.9860 0.9905
MSSSIM 0.9795 0.9874 0.9823 0.9836 0.9932 0.9839 0.9915 0.9842
PSNRB 25.3233 28.6526 26.9295 25.8812 30.1590 27.3320 28.9858 24.5105
ERGAS 4490.2316 3105.6903 4525.5856 4468.6090 2681.8146 4380.0511 3947.0072 4662.1604
RASE 647.1001 446.9789 650.6114 643.2951 385.8298 631.4595 564.3150 671.2120
SAM 0.1471 0.1005 0.1211 0.1384 0.0842 0.1220 0.0892 0.1595
SCC 0.4155 0.5378 0.3234 0.5025 0.5411 0.3791 0.4880 0.6057
VIFP 0.4740 0.5640 0.4511 0.5131 0.6040 0.4922 0.5773 0.5078

Table A.5: Image 5 - Miami

LR Bicubic SRCNN SRCNN-p EDSR SRGAN ESRGAN HAT
UQI 0.9971 0.9987 0.9944 0.9970 0.9989 0.9933 0.9912 0.9976
MSSSIM 0.9898 0.9939 0.9774 0.9908 0.9962 0.9898 0.9938 0.9927
PSNRB 37.5559 42.4730 36.1490 39.7216 43.5395 37.4052 37.4391 37.2015
ERGAS 2790.9666 1842.1291 3332.2995 2697.4249 1703.5892 3143.1733 3466.5030 2483.7986
RASE 402.6991 265.7635 480.7575 389.1246 245.7662 453.7227 497.4480 358.3862
SAM 0.0686 0.0452 0.0799 0.0645 0.0414 0.0630 0.0494 0.0608
SCC 0.4440 0.6331 0.4049 0.6166 0.6415 0.4706 0.5839 0.7047
VIFP 0.6065 0.7531 0.5316 0.7209 0.7703 0.6187 0.7131 0.7314

Table A.6: Image 6 - Rocky Landscape

68

LR Bicubic SRCNN SRCNN-p EDSR SRGAN ESRGAN HAT
UQI 0.9869 0.9924 0.9821 0.9866 0.9942 0.9838 0.9787 0.9861
MSSSIM 0.9819 0.9882 0.9799 0.9841 0.9938 0.9856 0.9914 0.9850
PSNRB 30.8627 34.8589 31.8631 32.3102 36.5943 33.6627 34.1981 31.4402
ERGAS 6099.9323 4330.6042 6459.3125 5909.3727 3740.7051 5880.6273 5451.6181 6099.8000
RASE 872.6355 616.1607 918.3478 844.5736 531.2901 827.9621 775.0439 868.6778
SAM 0.1511 0.0962 0.1347 0.1335 0.0769 0.1047 0.0888 0.1382
SCC 0.4297 0.5891 0.3620 0.5708 0.6194 0.4713 0.5741 0.6272
VIFP 0.4934 0.6153 0.4745 0.5635 0.6660 0.5610 0.6351 0.5605

Table A.7: Image 7 - Lake

LR Bicubic SRCNN SRCNN-p EDSR SRGAN ESRGAN HAT
UQI 0.9875 0.9938 0.9910 0.9872 0.9957 0.9916 0.9922 0.9871
MSSSIM 0.9563 0.9739 0.9712 0.9637 0.9866 0.9740 0.9848 0.9701
PSNRB 26.0083 29.1018 27.3605 26.0135 30.4420 28.3343 29.0549 25.8796
ERGAS 6912.8039 4699.2639 5681.1864 6915.4604 3947.4553 5404.7512 4677.1253 6971.3147
RASE 996.1857 677.2244 818.3867 997.3763 568.8456 778.9047 673.6191 1004.6470
SAM 0.1509 0.1045 0.1229 0.1512 0.0876 0.1162 0.0918 0.1528
SCC 0.4192 0.6474 0.5170 0.6389 0.6987 0.5449 0.6779 0.6674
VIFP 0.3873 0.4942 0.4237 0.4446 0.5469 0.4548 0.5315 0.4452

Table A.8: Image 8 - Paris

LR Bicubic SRCNN SRCNN-p EDSR SRGAN ESRGAN HAT
UQI 0.9900 0.9951 0.9899 0.9902 0.9965 0.9914 0.9902 0.9901
MSSSIM 0.9711 0.9820 0.9754 0.9751 0.9906 0.9822 0.9887 0.9795
PSNRB 28.7362 32.1387 29.6362 29.1980 33.5489 31.3329 31.7280 29.0286
ERGAS 5796.0077 3903.7220 5479.1779 5596.9694 3309.4481 4753.3372 4409.9715 5639.2587
RASE 833.9686 561.5305 786.8188 806.1803 475.9314 679.9109 632.8703 811.0757
SAM 0.1374 0.0927 0.1194 0.1323 0.0776 0.0990 0.0824 0.1337
SCC 0.4206 0.6307 0.4420 0.6125 0.6702 0.5360 0.6406 0.6585
VIFP 0.4484 0.5661 0.4534 0.5111 0.6153 0.5293 0.5946 0.5126

Table A.9: Image 9 - Versailles

LR Bicubic SRCNN SRCNN-p EDSR SRGAN ESRGAN HAT
UQI 0.9999 0.9999 0.9996 0.9998 0.9999 0.9990 0.9989 0.9999
MSSSIM 0.9979 0.9984 0.9893 0.9970 0.9988 0.9944 0.9971 0.9982
PSNRB 42.2454 47.9105 40.1054 44.6718 48.0719 39.1476 38.4511 42.0462
ERGAS 503.9697 377.3061 894.4186 600.3008 391.4067 1250.1844 1295.1236 459.0874
RASE 72.6700 54.3802 128.7177 86.5733 56.4303 180.2369 185.8405 66.1454
SAM 0.0133 0.0090 0.0198 0.0125 0.0089 0.0207 0.0133 0.0116
SCC 0.4589 0.4694 0.2053 0.4247 0.4035 0.1973 0.2945 0.6194
VIFP 0.7831 0.8606 0.6079 0.8398 0.8365 0.6869 0.7676 0.8636

Table A.10: Image 10 - Sea

69

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2023-06-02

EXAMENSARBETE Enhancing Satellite Images Using Super-Resolution
STUDENT Nils Olén
HANDLEDARE Michael Doggett (LTH), Jonas Bondesson (Tactel), Tobias Leksell (Tactel)
EXAMINATOR Jacek Malec (LTH)

AI-uppskalning av satellitbilder

POPULÄRVETENSKAPLIG SAMMANFATTNING Nils Olén

Super-resolution är en populär maskininlärningsmetod som används för att skala upp
bilder till en högre upplösning. I detta arbete utvärderas flera implementationer av
super-resolution efter hur bra resultat de producerar vid uppskalning av satellitbilder.

Kartapplikationer som visar satellitbilder följer of-
ta en så kallad Tiled web map-modell. Denna mo-
dell innebär att man har ett antal zoomnivåer, där
varje ökad zoomnivå innebär att fler bilder av en
bestämd konstant upplösning används för att vi-
sa kartan. Detta innebär att antalet bilder, och
lagringsutrymmet som krävs för att lagra dessa
bilder, ökar exponentiellt.

Karttjänsten Arc, utvecklad av Malmöbasera-
de Tactel, som jag har arbetat med är gjord för
att visas för passagerare på flygplan, och eftersom
ett flygplan har ytterligare begränsningar gällan-
de lagringsutrymme, krävs effektiv komprimering.
Kartmodellen har 13 zoomnivåer, där den 13:e
kräver nästan fyra gånger mer lagringsutrymme
än den föregående. Detta projekt utforskar möjlig-
heten att lagra bilderna på den föregående zoom-
nivån 12 istället, och skala upp bilderna till en
estimering av zoomnivå 13 när de behöver visas.
För att åstadkomma detta använde jag en metod
av AI-uppskalning som kallas super-resolution.

Super-resolution är en maskininlärningsteknik
som innebär att man tränar ett artificiellt neuron-
nät med ett dataset av bildpar som består av en
lågupplöst och en högupplöst version av samma
bild. Målet är att nätverket ska lära sig att skala
upp nya osedda bilder.

I mitt examensarbete har jag undersökt om
super-resolution ger tillräckligt bra resultat för att
vara ett alternativ för att slippa lagra de högupp-

lösta bilderna på flygplanet. Därför har jag iden-
tifierat och utvärderat ett antal olika implementa-
tioner av super-resolution för att ta reda på vilken
som fungerar bäst för att skala upp satellitbilder.

Figur 1: En bild på slottet i Versailles, uppskalad
med EDSR-modellen.

Under testandet av implementationerna kom
det fram att mer komplexa modeller har en för
långsam uppskalningshastighet för att vara an-
vändbara i en kartapplikation. Efter en utvärde-
ring. som baserades på bildkvalitet och uppskal-
ninghastighet, ansågs modellen EDSR (Enhanced
Deep Super-Resolution Network) ge bäst resultat
av de implementationer jag testade. Jag kunde
också konstatera att eftersom mätvärdena är ba-
serade på vilken uppskalad bild som liknar origi-
nalbilden mest, fick vissa bilder ett sämre betyg
då de var skarpare än originalbilden.

	Introduction
	Aim
	Research Questions

	Background
	Theory
	Digital Image Interpolation
	Neural Networks
	Convolutional Neural Networks
	Generative Adversarial Networks
	Super-Resolution using Neural Networks
	Metrics
	Downsampling

	Previous Research
	A History of Super-Resolution
	Super-Resolution on Satellite Imagery

	Methodology
	Thoughts and Concerns
	Setting up Metric Functions
	Conventional Interpolation Tests
	Description of the Datasets
	Early Experiments
	Selection of Test Images
	Selection of Models
	SRCNN
	EDSR
	SRGAN
	ESRGAN
	HAT
	Test on Edges Between Tiles

	Results
	Image 1 - Malmö
	Image 2 - London
	Image 3 - Central Park
	Image 4 - Countryside
	Image 5 - Miami Beach
	Image 6 - Rocky Landscape
	Image 7 - Lake
	Image 8 - Paris
	Image 9 - Versailles
	Image 10 - Abstract Sea Image
	Metric Tables
	Space Saved
	Edges Between Tiles

	Discussion
	Ambiguous Results
	Original Image Similarity
	Difficulty of Upscaling Satellite Imagery
	Comparison of SR Methods

	Conclusions
	Further Research

	References
	Appendix Unused Metrics

