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Abstract

The Kaczmarz method is an iterative method for solving linear systems of equations. The
Kaczmarz method has been around since it was developed by Kaczmarz 1937. The main idea
behind the original Kaczmarz method is to orthogonally project the previous xk onto the solution
space given by a row of the system. The block Kaczmarz on the other hand orthogonally projects
the previous xk onto the solution space given by a sub system of equations. Both the original
Kaczmarz method and block Kaczmarz method can only solve consistent systems, however
the extended Kaczmarz method is an adaptation that makes it possible to solve inconsistent
systems. We will look at both deterministic and randomized, row and block selection processes
then compare them on both consistent and inconsistent systems of equations.

Acknowledgement

I am grateful for my supervisor Andreas Langer and I really appreciate how he stuck with me even
through constant delays and mistakes. This would not have been possible without his constant
guidance, guiding me into the right direction when solving problems and challenging me with his
questions to understand it better. Thank you Andreas. I would also like to thank my younger
brother Axel and my classmates for the interesting discussions throughout my studies in Lund.

1



Contents

1 Introduction 2

2 Definitions 4

3 Kaczmarz method 6
3.1 Original Kaczmarz method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Randomized Kaczmarz method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Extended randomized Kaczmarz method . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Block Kaczmarz method 22
4.1 Block Kaczmarz method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Extended block Kaczmarz method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3 Greedy block Kaczmarz method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Implementation 26
5.1 Tests on consistent problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.1.1 Consistent tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.1.2 Underdetermined with σmax/σmin = 105 figure. 4 . . . . . . . . . . . . . . . . 26
5.1.3 Overdetermined with σmax/σmin = 105 figure. 5 . . . . . . . . . . . . . . . . . 27
5.1.4 Underdetermined with σmax/σmin = 1 + 10−1 figure. 6 . . . . . . . . . . . . . 27
5.1.5 Overdetermined with σmax/σmin = 1 + 10−1 figure. 7 . . . . . . . . . . . . . . 27
5.1.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2 Image reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2.1 Image reconstruction image. 9, 10, 11 . . . . . . . . . . . . . . . . . . . . . . 30
5.2.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.3 Test on inconsistent problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3.1 Inconsistent tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3.2 Extended underdetermined with σmax/σmin = 105 figure. 12, 13, 14 . . . . . 31
5.3.3 Extended overdetermined with σmax/σmin = 105 figure. 15, 16, 17 . . . . . . 34
5.3.4 Extended underdetermined with σmax/σmin = 1 + 10−1 figure. 18, 19, 20 . . 34
5.3.5 Extended overdetermined with σmax/σmin = 1 + 10−1 figure. 21, 22, 23 . . . 34
5.3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6 Summary and Improvements 39

1 Introduction

The Kaczmarz method is one of many methods to solve linear system of equations and thus it could
be of interest to first introduce what a linear system of equation is.

Definition 1 (Linear system of equations). A Linear system of equations is a collection of m ∈ N
equations with n ∈ N unknown variables

a1;1x
{1} + a1;2x

{2} + · · ·+ a1;nx
{n} = b1

a2;1x
{1} + a2;2x

{2} + · · ·+ a2;nx
{n} = b2

...

am;1x
{1} + am;2x

{2} + · · ·+ am;nx
{n} = bm,

where ai;j ∈ R and bi ∈ R are constants and x{j} are our unknown variables.

Remark 1. A linear system of equations can also be denoted as a matrix vector multiplication
Ax = b where A ∈ Rm×n and b ∈ Rm. Throughout the thesis we will use this definition for linear
systems of equations.

Definition 2 (Consistent system of equations). A system of equations is considered consistent if
for a given A ∈ Rm×n and b ∈ Rm there exists an x ∈ Rn such that Ax = b. If there exists no such
x then the system is said to be inconsistent.
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If the problem is inconsistent it could still be interesting finding some x̂ that minimizes the
difference ||Ax− b||22.

Definition 3 (Least squares solution). For any linear system of equations Ax = b with A ∈ Rm×n

and b ∈ Rm the least squares solution is defined as the set of solutions satisfying

x̂ := arg min
x∈Rn

||Ax− b||22.

The Kaczmarz method is an iterative method, where in each iteration xk+1 is the solution of an
equation aikx = bik which minimizes the distance to xk i.e.

xk+1 = arg min
{x∈Rn;aikx=bik}

||x− xk||22.

It selects equation in each iteration cyclically passing trough all equations once before returning to
the first, meaning ik = k + 1 mod m.
Given any x0 the Kaczmarz method converges towards a solution, if our system of equations has
several solutions, the Kaczmarz method will converge towards the solution minimizing the distance
between x0 and the solution space Ax = b i.e.

x̂ = arg min
{x∈Rn;Ax=b}

||x− x0||22.

It should also be noted that not all variations of the Kaczmarz method selects the equations in a
cyclical manner.

The Kaczmarz method was first discovered 1937, initially it had few to no applications, however as
computers developed so did the need for iterative methods to solve linear systems. In 1970 the first
application of the Kaczmarz method occurred, Gordon, Bender and Herman used it to reconstruct
images from the data given from a computed tomography [3]. In 2008 Strohmer and Vershynin
showed that the rate of convergence could be bound by the condition number of A, if a random row
selection process was applied instead, this caused a boom in popularity of the Kaczmarz method
[12]. Which gave room for the extended variations and block variations to develop.

In this thesis we will present some of the most well known variations of the Kaczmarz method and
compare them. In the tests we see that the discreet variations slightly outperform the randomized
variations and what the optimal order of operations for the extended Kaczmarz method is. Initially
in section 2 we define some useful notation that will be used throughout the thesis.

We then move onto section 3 where we begin by presenting the original Kaczmarz method and show
why it converges as well as how it converges presented by Kaczmarz [7]. We will also introduce the
rate of converges for consistent systems with A being square and full rank presented in [2]. Then we
move on to the randomized Kaczmarz method where we state the Algorithm and its rate of conver-
gence presented by Strohmer and Vershynin [12], continuing with the rate of convergence presented
by Needle [8] for noisy systems. Further we will look at how the Kaczmarz method can be utilized
to transform an inconsistent system into a consistent system and the extended Kaczmarz method
for solving inconsistent systems directly, both presented by Zouzias [14].

Then in section 4 we show the block Kaczmarz method presented by Needle and Tropp [9] and why
the block Kaczmarz method converges, furthermore that it converges to the same solution as the
original Kaczmarz method. Then we use the previous result to state the Kaczmarz method for the
least squares problems which was showed by Needle, Zhao and Zouzias [10]. In the end we will
present a variation of the block Kaczmarz method by Yu-Qi Niu and Bing Zheng [11].

In section 5 we will construct the tests and show a couple of adaptations of the methods constructed
throughout the thesis and present the results. We also implement the method to solve an image
reconstruction problem. We conclude with a summary and improvements 6.
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2 Definitions

Definition 4. Let A ∈ Rm×n, ai ∈ R1×n denote the i’th row of A, i.e.

A =


a1

a2

...
am−1

am

 .

Definition 5. Let b ∈ Rm, bi ∈ R denote the i’th value of b, i.e.

b =
[
b1, b2, . . . , bm−1, bm

]T
Definition 6 (Inner product). Consider we have two equally sized vectors x, y ∈ Rm, then the inner
product 〈x, y〉 is defined to be

〈x, y〉 := xT y.

Definition 7 (Vector two-norm). The two-norm of x ∈ Rm is defined as

||x||2 :=
√
〈x, x〉.

Definition 8 (Matrix Frobenius-norm). Given A ∈ Rm×n,

A =


a1;1 a1;2 . . . a1;n

a2;1 a2;2 . . . a2;n

...
...

. . .
...

am;1 am;2 . . . am;n

 ,
let the Frobenius norm be defined as

||A||F :=

 m∑
i=1

n∑
j=1

|ai;j |2
1/2

.

Definition 9 (Hermitian and unitary matrices). Consider we have a matrix A ∈ Rm×n then it is
considered hermitian if A = AT and unitary if AT = A−1.

Definition 10 (Eigenvectors and eigenvalues). Let A ∈ Rm×m be a square matrix then the eigen-
vectors are the set of vectors v ∈ Cn \ 0 that solve

Av = λv

where λ ∈ C is the corresponding eigenvalue.

Definition 11 (Diagonalizable). A square matrix A ∈ Rm×m is said to be diagonalizable if there
exists an invertible V such that

A = V DV −1

where D is a diagonal matrix with the eigenvalues of A on its diagonal.

Theorem 1 (Singular value decomposition). For every matrix A ∈ Rm×n there exists a decompo-
sition

A = USV T

where U ∈ Rm×m, V ∈ Rn×n are unitary and

S =

[
Σ 0
0 0

]
with Σ being a diagonal matrix with the singular values on its diagonal

Σ =


σ1 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...
0 0 . . . σr

 .
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Proof. See [5] page 330 -332 theorem 13.2

Definition 12 (Matrix two-norm ). Consider a matrix A ∈ Rm×n then the two-norm is

||A||2 := σmax

where σmax is the largest singular value of A. σmin is the smallest non-zero singular value of A and

||A†||2 =
1

σmin
.

Definition 13 (Induced matrix norm). Let A ∈ Rm×n and 1 ≤ µ ≤ ∞ then the Induced matrix
norm is defined as

||A||µ := sup
x∈Rn\0

||Ax||µ
||x||µ

.

Definition 14 (Moore-Penrose pseudoinverse). The Moore-Penrose pseudoinverse of A is defined
as the matrix A† satisfying the following equalities

AA†A = A,

A†AA† = A†,(
A†A

)T
= A†A,(

AA†
)T

= AA†.

Definition 15 (Orthogonal Projection). Suppose we have a matrix A ∈ Rm×m, it is said to be an
orthogonal projection if

〈Ax, y −Ay〉 = 0

for any x, y ∈ Rm.

Theorem 2. We have a matrix A ∈ Rm×m then it is an orthogonal projection if

AT = A

A2 = A.

Proof. We have that

〈Ax, y −Ay〉 = 〈Ax, y〉 − 〈Ax,Ay〉 = 0 ⇐⇒ 〈Ax, y〉 = 〈Ax,Ay〉

and similarly
〈x−Ax,Ay〉 = 0 ⇐⇒ 〈x,Ay〉 = 〈Ax,Ay〉.

Meaning we have
〈Ax, y〉 = 〈x,Ay〉 = 〈ATx, y〉,

implying that AT = A. Then from

〈Ax,Ay〉 = 〈ATAx, y〉 = 〈AAx, y〉 = 〈Ax, y〉

we get A2 = A.

Definition 16 (Condition number). Given a matrix A ∈ Rm×n\{0} then the condition number is
defined as

κ(A) := ||A||2||A†||2.

We define a condition number that is both induced by the Frobenius norm and the two-norm i.e.,

κ(A)F := ||A||F ||A†||2,

κ(A) ≤ κ(A)F ≤
√
mκ(A).

Where the final inequality comes from

||A||2 ≤ ||A||F ≤
√
m||A||2.
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Definition 17 (Linear Convergence [13]). Suppose limk→∞ xk = x̂. We say that the sequence
{xk}∞k=0 converges to x̂ at least linearly if there exists a C ∈ (0, 1) such that

lim
k→∞

||xk+1 − x̂||2
||xk − x̂||2

= C.

Remark 2. The sequence is said to have superlinear convergence if C = 0, and sublinear convergence
when C = 1.

Definition 18 (Positive definite [1]). A symmetric matrix H ∈ Rn×n is said to be positive definite
if

xTHx > 0

for all x ∈ Rn \ 0. H is called positive semi-definite if

xTHx ≥ 0

for all x ∈ Rn.

3 Kaczmarz method

3.1 Original Kaczmarz method

We introduce the original Kaczmarz method, which was first presented by Kaczmarz in 1937 [7]. The
original Kaczmarz method only solves consistent systems of equations Ax = b and in the original
work [7] it was limited to square matrices with full rank with all rows satisfying ||ai||2 = 1.

Algorithm 1 Original Kaczmarz method [7]

1: procedure (A, b, x0, N, ε) . A ∈ Rm×n, b ∈ Rm, x0 ∈ Rn, N ∈ N, ε ∈ R
2: A and b describes our system of equations
3: x0 is our initial point
4: N determines the maximum amount of iterations
5: ε how accurate we want to be
6: repeat
7: ik = k + 1 mod m
8: if ||aTik ||

2
2 6= 0 then

9:

xk+1 = xk +
bik − 〈aTik , xk〉
||aTik ||

2
2

aTik

10: else
11: xk+1 = xk

12: if k = 0 mod m and ||Axk+1 − b||22 ≤ ε then
13: return xk+1

14: terminate
15: until k + 1 > Nm

16: return xk+1

17: terminate

Statement 1. If xk+1 is defined by Algorithm 1 as

xk+1 = xk +
bik − 〈aTik , xk〉
||aTik ||

2
2

aTik

and ik ∈ {1, 2, . . . ,m}, then xk+1 solves the ik’th equation

aikxk+1 = bik .

Proof. We can write aikxk+1 as

aikxk+1 = aikxk + aik
bik − 〈aTik , xk〉
||aTik ||

2
2

aTik

6



using the definition of xk+1. Then we simplify it and get

aikxk+1 = 〈aTik , xk〉+ ||aTik ||
2
2

bik − 〈aTik , xk〉
||aTik ||

2
2

= 〈aTik , xk〉+ bik − 〈aTik , xk〉 = bik .

Definition 19 (Minimum norm solution). Given a linear system of equations Ax = b with A ∈
Rm×n and b ∈ Rn and the set of least squares solutions ω̂ = {x ∈ Rn; arg minx∈Rn ||Ax − b||22},
then the minimum norm solution is

x̃ := arg min
x∈ω̂

||x||22.

Theorem 3 (Normal equation [5]). If we have a least squares problem ω̂ = {x ∈ Rn; arg minx∈Rn ||Ax−
b||22} then we can transform our problem into a consistent problem given by the normal equation

ATAx = AT b,

where the solution is x ∈ ω̂.

Proof. See [5] page 391-392 theorem 15.10.

Lemma 1. For any A ∈ Rm×n if ATAy = 0, then y ∈ ker(A).

Proof. By the singular value decomposition we have

ATA = V STUTUSV T = V STSV T .

Now we want to show that if V STSV T y = 0 then Ay = 0.
We have

V STSV T y = 0

⇐⇒ V TV STSV T y = 0

⇐⇒ STSV T y = 0

=⇒
(
S†
)T

STSV T y = 0

(1)

where the equivalences comes form V being unitary and the implication comes from the multiplica-

tion by

(
S†
)T

. We can write S ∈ Rm×n and ST ∈ Rn×m as a block matrices where Σ is a diagonal

matrix with the singular values of A on its diagonal

S =

[
Σ 0
0 0

]

and the corresponding

(
S†
)T
∈ Rm×n

S† =

[
Σ−1 0
0 0

]
.

Now we simplify the left hand side of the equation(
S†
)T

STSV T y =

[
Σ−1 0
0 0

] [
Σ 0
0 0

]
SV T y

=

[
I 0
0 0

]
SV T y

= SV T y.

(2)

Since we multiply both sides with U and get

USV T y = 0

then by the definition of the singular value decomposition we have

Ay = 0

and thus y ∈ ker(A).
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Lemma 2. Given a ω̂ = {x ∈ Rn; arg minx∈Rn ||Ax− b||22} let x̂ any element in ω̂, and let x̃ be the
minimum norm solution to ω̂. Then x̂ can be written as x̂ = x̃+ y where y ∈ ker(A).

Proof. We begin as by writing x̂ as the solution to the normal equation

ATAx̂ = AT b.

By decomposing into x̂ = x̃+ y we get

ATAx̃+ATAy = AT b

since ATAx̃ = AT b we have ATAy = 0 which by lemma 1 implies that y ∈ ker(A).

Lemma 3 ([5]). If we have a linear system of equations ω̂ = {x ∈ Rn; arg minx∈Rn ||Ax− b||22} then
A†b a solution to the normal equation.

Proof. Using the singular value decomposition of A we have

ATAA†b = V STUTUSV TV S†UT b,

however we know that U and V are unitary so it simplifies to

ATAA†b = V STSS†UT .

We can write S ∈ Rm×n and ST ∈ Rn×m as a block matrix where Σ is a diagonal matrix with the
singular values of A on the diagonal

S =

[
Σ 0
0 0

]
and S† ∈ Rn×m the corresponding matrix

S† =

[
Σ−1 0
0 0

]
.

Thus we have

V SSS†UT = V

[
Σ 0
0 0

] [
Σ 0
0 0

] [
Σ−1 0
0 0

]
UT = V

[
Σ 0
0 0

]
UT = AT ,

giving us ATAA†b = AT b.

Lemma 4. Since A projects onto a linear subspace we have Ax =

Proof. Since P is an orthogonal projection we know P = PT = P 2. We have that

(I − P )T = IT − PT = I − P

and that
(I − P )2 = I2 − 2IP + P 2 = I − P.

Thus we know that both P and I − P are orthogonal projections. It remains to show that Im(P )
is orthogonal to Im(I − P ) given any vector x ∈ Rn we have

〈Px, (I − P )x〉 = 〈Px, x〉 − 〈Px, Px〉
= (Px)Tx− (Px)TPx

= xTPTx− xTP 2x

= xTPx− xTPx = 0.

(3)

We know that Im(P ) and Im(I−P ) are subsets of Rn and for any x ∈ Rn we have Px+Ix−Px =
x resulting in Im(P )⊕ Im(I − P ) = Rn

Lemma 5. For any matrix A ∈ Rm×n we have that I − A†A is an orthogonal projection and
Im(I −A†A) = ker(A).
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Proof. From lemma 4 it is enough to show that A†A is an orthogonal projection. We use the singular
value decomposition to show that (A†A)T = A†A

(A†A)T = AT (A†)T

= V SUTUS†V T

= V

[
I 0
0 0

]
V T

= A†A.

(4)

We expand and then use the singular value decomposition to show that (A†A)2 = A†A

(A†A)2 = A†AA†A

= V S†UTUSV TV S†UTUSV T

= V

[
I 0
0 0

] [
I 0
0 0

]
V T

= A†A.

(5)

Now we want to show that Im(I − A†A) = ker(A). We begin by choosing any element y ∈ ker(A)
then

(I −A†A)y = y − 0 = y

which shows that y ∈ Im(I − A†A). Consider any element ŷ ∈ Im(I − A†A) which can be written
as (I −A†A)x where x ∈ Rn. We have that

Aŷ = A(I −A†A)x = Ax−AA†Ax = Ax−Ax = 0

and thus ŷ ∈ Im(I −A†A) implying that Im(I −A†A) = ker(A).

Lemma 6. Suppose we have a least squares problem ω̂ = {x ∈ Rn; arg minx∈Rn ||Ax − b||22} and
any x̂ ∈ ω̂ is written as x̂ = x̃+ y where y ∈ ker(A) and x̃ is the minimum norm solution. Then x̃
is also orthogonal to y.

Proof. We orthogonaly decompose x̂ into x̂ = x1 + ȳ where x1 ∈ Im(A†A) and ȳ ∈ ker(A). We have
that

ATAx1 = ATA(x̂− ȳ)

= AT b− 0

= AT b

(6)

showing that x1 is a solution to normal equation.
We use both expression for x̂ to get the following equalities

x̂ = x1 + ȳ = x̃+ y

x̃ = x1 + ȳ − y

||x̃||22 = ||x1 + ȳ − y||22
however since x1 is orthogonal to ker(A) we get

||x̃||22 = ||x1||22 + ||ȳ − y||22.

Since ||x̃||22 is the minimum norm solution we have ||x1||22 ≥ ||x̃||22 and thus get

||x̃||22 ≥ ||x̃||22 + ||ȳ − y||22

0 ≥ ||ȳ − y||22
which only holds when ȳ = y yielding us

x̃ = x1 + y − y

x̃ = x1.

9



Lemma 7. If we have a linear system then the solution A†b is the minimum norm solution x̃ in
particular.

Proof. Using the definition of the Moore-Penrose pseudoinverse we require the following equality to
hold

A†AA†b = A†b.

Using lemma 3 and lemma 2 we get

A†Ax̂ = x̂

A†Ax̃+A†Ay = x̃+ y

since y is in the kernel of A we have Ay = 0 yielding us

A†Ax̃ = x̃+ y.

Taking the norm gets us
||A†Ax̃||22 = ||x̃+ y||22.

Using the singular value decomposition we expand ||A†Ax̃||22 to give us a bound

||A†Ax̃||22 = ||V S†SV T x̃||22

=

∣∣∣∣∣∣∣∣V [I 0
0 0

]
V T x̃

∣∣∣∣∣∣∣∣2
2

≤ ||V IV T x̃||22 = ||x̃||22.

(7)

This yields
||x̃||22 ≥ ||x̃+ y||22

then from lemma 6 we get

||x̃||22 ≥ ||x̃||22 + ||y||22
however this inequality only holds when y = 0 meaning A†b = x̃.

Theorem 4. Letting a ∈ {Rm \ 0} we have

a† =
1

||a||22
aT .

Proof. See [5] page 388.

Statement 2. If xk+1 is defined by Algorithm 1

xk+1 = xk +
bik − 〈aTik , xk〉
||aTik ||

2
2

aTik

and ω is the set ω = {x ∈ Rn; aikx = bik} then xk+1 is the orthogonal projection of xk onto ω.

Proof. From statement 1 we have that xk+1 ∈ ω and thus is a projection. It remains to prove that
the projection is orthogonal. Rearranging the equation we get

xk +
bik − 〈aTik , xk〉
||aTik ||

2
2

aTik = xk −
aTikaik
||aTik ||

2
2

xk +
1

||aTik ||
2
2

aTikbik .

We see that the final part 1
||aTik ||

2
2
aTikbik = a†ikb transforms our solution onto the solution space. Thus

it remains to show that

xk −
aTikaik
||aTik ||

2
2

xk

is an orthogonal projection. Defining

P := I −
aTikaik
||aTik ||

2
2

10



we have

xk −
aTikaik
||aTik ||

2
2

xk = Pxk.

By showing that PT = P and P 2 = P we prove that it is an orthogonal projection. We have

PT =

(
I −

aTikaik
||aTik ||

2
2

)T
= IT −

( aTikaik
||aTik ||

2
2

)T
however both I and aTikaik are hermitian and thus we have

PT = I −
aTikaik
||aTik ||

2
2

= P

and

P 2 =

(
I −

aTikaik
||aTik ||

2
2

)(
I −

aTikaik
||aTik ||

2
2

)
= I − 2

aTikaik
||aTik ||

2
2

+
aTikaik
||aTik ||

2
2

aTikaik
||aTik ||

2
2

= I − 2
aTikaik
||aTik ||

2
2

+
aTik ||a

T
ik
||22aik

||aTik ||
4
2

= I − 2
aTikaik
||aTik ||

2
2

+
aTikaik
||aTik ||

2
2

= I −
aTikaik
||aTik ||

2
2

= P.

(8)

To illustrate the convergence of the Kaczmarz method we construct two consistent systems and
compare the first 4 iterations. One is constructed such that the lines are relatively close to being
orthogonal and thus converges relatively quickly, while the other is constructed to show the method
when they are relatively far from being orthogonal and thus converges slower. The system Ax = b
in figure 1 is given by

A =

[
10 1
1 10

]
,

b =

[
1
1

]
setting the initial point to

x0 =

[
0
0

]
.

While the system Ax = b in figure 2 is given by

A =

[
2 1
2 3

]
,

b =

[
1
1

]
setting the initial point to

x0 =

[
0
0

]
.

In the figure 1, 2 we have the solution space for all equations in our system represented by blue
lines where the solution is the intersection. The red dots represents the respective points after
k ∈ {0, 1, 2, 3, 4} iterations, the cyanide line represents the orthogonal projection onto the solution
space of the equations and the gray represents our previous projections.
Comparing the figures we see that it converges quicker in figure 1 where the solution spaces are close
to orthogonal, than in figure 2.

Lemma 8 (Cauchy-Schwarz inequality [13]). Let a, b ∈ Rn then

〈a, b〉2 ≤ ||a||22||b||22.

Proof. See [13] page 59 lemma 2.2.

Theorem 5 (Original Kaczmarz method [7]). If we have a consistent system of equations given by
the set Ω = {x ∈ Rn;Ax = b} where A ∈ Rm×n, all ||ai||22 6= 0 and b ∈ Rm. Given any x0 ∈ Rn

the sequence {xk+1}∞0 given by Algorithm 1 converges towards the limit point x̂ ∈ cl(Ω) where x̂ is
the unique solution to x̂ = arg minx∈Ω ||x− x0||.

11



Figure 1: Illustrates the path towards the solution of Algorithm 1 of a system that has almost
orthogonal solution spaces.
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Figure 2: Illustrates the path towards the solution of Algorithm 1 of a system that has quite far
from orthogonal solution spaces.
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Proof. To show that {xk+1}∞0 converges towards the limit point x̂ ∈ Ω we begin by stating

||xk+1 − x̂||22 =

∣∣∣∣∣∣∣∣(xk − x̂) +

(
bik − 〈aTik , xk〉
||aTik ||

2
2

aTik

)∣∣∣∣∣∣∣∣2
2

= ||xk − x̂||22 +

∣∣∣∣∣∣∣∣bik − 〈aTik , xk〉||aTik ||
2
2

aTik

∣∣∣∣∣∣∣∣2
2

+ 2

〈
(xk − x̂),

(bik − 〈aTik , xk〉
||aTik ||

2
2

aTik

)〉
.

(9)

Removing the scalar from the inner product yields

||xk+1 − x̂||22 = ||xk − x̂||22 +

∣∣∣∣∣∣∣∣bik − 〈aTik , xk〉||aTik ||
2
2

aTik

∣∣∣∣∣∣∣∣2
2

+ 2
bik − 〈aTik , xk〉
||aTik ||

2
2

〈
(xk − x̂), aTik

〉
.

Taking a closer look at the scalar 〈(xk − x̂), aTik〉 and separating the inner products yields〈
(xk − x̂), aTik

〉
= 〈xk, aTik〉 − 〈x̂, a

T
ik
〉.

Using the consistency of the system Ax̂ = b to say that 〈x̂, aTik〉 = bik which gives us〈
(xk − x̂), aTik

〉
= 〈xk, aTik〉 − bik = −

(
bik − 〈xk, aTik〉

)
.

Moving back to the original equation we get

||xk+1 − x̂||22 = ||xk − x̂||22 +

∣∣∣∣∣∣∣∣bik − 〈aTik , xk〉||aTik ||
2
2

aTik

∣∣∣∣∣∣∣∣2
2

+ 2
bik − 〈aTik , xk〉
||aTik ||

2
2

(
−
(
bik − 〈xk, aTik〉

))
= ||xk − x̂||22 +

∣∣∣∣∣∣∣∣bik − 〈aTik , xk〉||aTik ||
2
2

aTik

∣∣∣∣∣∣∣∣2
2

− 2
(bik − 〈aTik , xk〉)

2

||aTik ||
2
2

.

(10)

Expanding and then simplifying the second term yields

∣∣∣∣∣∣∣∣bik − 〈aTik , xk〉||aTik ||
2
2

aTik

∣∣∣∣∣∣∣∣2
2

=

(
bik − 〈aTik , xk〉

)2

||aTik ||
4
2

||aTik ||
2
2 =

(
bik − 〈aTik , xk〉

)2

||aTik ||
2
2

.

This allows us to simplify the original equation to

||xk+1 − x̂||22 = ||xk − x̂||22 +

(
bik − 〈aTik , xk〉

)2

||aTik ||
2
2

− 2

(
bik − 〈aTik , xk〉

)2

||aTik ||
2
2

= ||xk − x̂||22 −

(
bik − 〈aTik , xk〉

)2

||aTik ||
2
2

.

(11)

Now that we have an expression for ||xk+1−x̂||22 we want to use definition 17 to show convergence.
We have

lim
k→∞

||xk+1 − x̂||22
||xk − x̂||22

= lim
k→∞

||xk − x̂||22 −

(
bik−〈a

T
ik
,xk〉
)2

||aTik ||
2
2

||xk − x̂||22

= lim
k→∞

1−

(
bik − 〈aTik , xk〉

)2

||aTik ||
2
2||xk − x̂||22

(12)

then we have bik = 〈aTik , x̂〉 thus we can write it as

lim
k→∞

||xk+1 − x̂||22
||xk − x̂||22

= lim
k→∞

1−

(
〈aTik , x̂〉 − 〈a

T
ik
, xk〉

)2

||aTik ||
2
2||xk − x̂||22

= lim
k→∞

1−

(
〈aTik , x̂− xk〉

)2

||aTik ||
2
2||xk − x̂||22

.

(13)
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Since

lim
k→∞

(
〈aTik , x̂− xk〉

)2

||aTik ||
2
2||xk − x̂||22

≥ 0

we can bound

lim
k→∞

1−

(
〈aTik , x̂− xk〉

)2

||aTik ||
2
2||xk − x̂||22

≤ 1.

Then by using lemma 8 we can bound

lim
k→∞

(
〈aTik , x̂− xk〉

)2

||aTik ||
2
2||xk − x̂||22

≤ lim
k→∞

||aTik ||
2
2||x̂− xk||22

||aTik ||
2
2||xk − x̂||22

= 1

and thus get

0 ≤ lim
k→∞

1−

(
〈aTik , x̂− xk〉

)2

||aTik ||
2
2||xk − x̂||22

.

Implying by definition 17 that the Algorithm converges towards some x̂.

Defining x̃ := arg minx∈Ω ||x−x0||22 allows us to write the solution x̂ = limk→∞ xk+1 as x̂ := x̃+y.
We want to show that x̂ ∈ Ω if and only if y ∈ ker(A), we have

||Ax̂− b||22 = ||Ax̃+Ay − b||22

then since x̃ ∈ Ω we get
||Ax̃+Ay − b||22 = ||Ay||22

and ||Ay||22 = 0 if and only if y ∈ ker(A). Now we want to show that x̂ = x̃ by showing that x̂− x0

is orthogonal to y. We have that

〈x̂− x0, y〉 = lim
k→∞

〈xk+1 − x0, y〉

= lim
k→∞

〈 k∑
j=0

bij − 〈aTij , xj〉
||aTij ||

2
2

aTij , y
〉

= lim
k→∞

k∑
j=0

bij − 〈aTij , xj〉
||aTij ||

2
2

〈
aTij , y

〉 (14)

however 〈aTij , y〉 = 0 since y ∈ ker(A) and thus we get

〈x̂− x0, y〉 = 0.

Remark 3. Furthermore any consistent system with some ||ai||22 = 0 can be transformed into a sys-
tem that is solvable by the Kaczmarz method. Consider we have a row ||ai||22 = 0 then if the system
is consistent we have bi = 0, which means that the i’th row solution space is the entire set x ∈ Rn.
Thus we can omit the row without loss of generality and solve a system given by A ∈ Rm−1×n and
b ∈ Rm−1 using Algorithm 1.

Remark 4. It is also important to notice that the order of row choice does not necessarily matter,
as long as {xk+1}∞p passes trough all rows for any p. Later in the thesis we will present other row
choice methods.

So the Kaczmarz method can solve all consistent systems, however if we consider an inconsistent
system the Kaczmarz method will not converge to any solution x̂. We get the solution to a new
equation in each iteration and for inconsistent systems the intersection of all equations is empty.
This is illustrated in figure 3 where we have an overdetermined inconsistent system given by

A =

 1 1
0 1
−1 1

 ,
15



Figure 3: Shows a over determined inconsistent system and Algorithm 1 inability to reach the least
square solution. Interestingly enough we choose x0 to be the least squares solution of the system.
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b =

1
0
1


with an initial point x0 = arg minx ||Ax− b||22.
We are also interested in the rate of convergence of the original Kaczmarz method. Galantai [2]
provides a proof of the rate of convergence for the original Kaczmarz method, however the rate of
convergence in the proof is limited to non singular A.

Lemma 9 (Meany [2]). Let xi ∈ Rn and ||xi||2 = 1 for i = 1, ..., k, k ≤ n, Xk = [x1, ..., xk] and

Qk =
∏k
j=1 I − xjxTj , then

||Qk||2 ≤
√

1− det(XT
k Xk).

Proof. See [2] page 72 theorem 2.77 in book

Lemma 10 (Arithmetic-geometric mean [5]). For any non-negative real numbers Ci we have(
m∏
i=1

Ci

)1/m

≤ 1

m

m∑
i=1

Ci.

Proof. See [[5] page 259-260 theorem 10.8]

Lemma 11. If we have a diagonalizable matrix A ∈ Rm×m then the trace tr(A) = tr(D) and
determinant det(A) = det(D) where A = V DV −1.

Theorem 6 (Original Kaczmarz method; rate of convergence [2]). If we have square consistent
system with full rank Ω = {x ∈ Rm;Ax = b} where A ∈ Rm×m and b ∈ Rm then we can bound the
expected rate of convergence of the sequence {xk+1}∞k=0 given by Algorithm 1 to x̂. Defining Y as

Ym :=
[
y1, y2, . . . , ym

]
:=
[

aT1
||aT1 ||2

,
aT2
||aT2 ||2

, . . . ,
aTm
||aTm||2

]
,

the rate of convergence every k + 1 = 0 mod m can be given by

||xk+1 − x̂||22 ≤
(
1− det(Y TmYm)

)(k+1)/m||(x0 − x̂)||22.

Proof. Using the consistency to represent x̂ as

x̂ = x̂+
bik − 〈aTik , x̂〉
||aTik ||

2
2

aTik .

Expressing the difference between xk+1 and x̂ then moving the constant over

xk+1 − x̂ = (xk − x̂)−
〈aTik , xk − x̂〉
||aTik ||

2
2

aTik .

We are looking to get an expression where we can use lemma 9 and thus write it as a matrix vector
multiplication

xk+1 − x̂ = (I −
aTikaik
||aTik ||

2
2

)(xk − x̂).

Repeating this process gives us

xk+1 − x̂ =

m−1∏
j=0

(
I −

aTijaij

||aTij ||
2
2

)
(xk+1−m − x̂)

=

m−1∏
j=0

(I −
aTijaij

||aTij ||
2
2

)

(k+1)/m

(x0 − x̂).

(15)

Using the definition 13 for the matrix norm we get

||xk+1−x̂||22 =

∣∣∣∣∣∣
∣∣∣∣∣∣
(
m−1∏
i=0

(I − aTi ai
||aTi ||22

)

)(k+1)/m

(x0 − x̂)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

≤

∣∣∣∣∣
∣∣∣∣∣
m−1∏
i=0

(I − aTi ai
||aTi ||22

)

∣∣∣∣∣
∣∣∣∣∣
2

2

(k+1)/m

||(x0−x̂)||22.
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We now see that
aTi ai
||aTi ||22

=
aTi
||aTi ||2

ai
||aTi ||2

= yiy
T
i

from the definition earlier. We now use the assumption that A is non singular and apply theorem
9. To make it clearer we choose to define Qm :=

∏m−1
i=0 (I − yiyTi )

||xk+1 − x̂||22 =
(
||Qm||22

)(k+1)/m

||(x0 − x̂)||22 ≤
(
1− det(Y TmYm)

)(k+1)/m||(x0 − x̂)||22.

It remains to show that 0 ≤ (1 − det(Y TmYm)) ≤ 1 we show that 0 < det(Y TmYm) ≤ 1. First to
show 0 < det(Y TmYm) it is enough to show that Y TmYm is positive definite. By definition 18 we need
to show

cT (Y TmYm)c > 0

for any c ∈ Rm \ 0. Since A has full rank it means that Ym has full rank thus we have that
Ymc ∈ Rm \ 0 which implies that

||Ymc||22 > 0.

Now it remains to show that det(Y TmYm) ≤ 1, all the values in diagonal of Y TmYm are

||ai||22
||ai||22

= 1

and thus the trace
m∑
i=1

||ai||22
||ai||22

= m.

Considering the eigenvalues λi of Y TmYm we have

m =

m∑
i=1

λi.

Using lemma 10 we get (
m∏
i=1

λi

)1/m

≤ 1

m

(
m∑
i=1

λi

)
however we have m =

∑m
i=1 λi and thus get

m∏
i=1

λi ≤ 1

and we have that det(Y TmYm) =
∏m
i=1 λi yielding det(Y TmYm) ≤ 1.
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3.2 Randomized Kaczmarz method

The randomized Kaczmarz method [12] uses the same projection scheme as the original Kaczmarz
method however selects rows randomly more precisely with a probability given by ||ai||22/||A||2F .
The randomized Kaczmarz method was the first variation of the Kaczmarz method with an expected

Algorithm 2 Randomized Kaczmarz method [12]

1: procedure (A, b, x0, N, ε) . A ∈ Rm×n, b ∈ Rm, x0 ∈ Rn, N ∈ N, ε ∈ R
2: repeat
3: Choose row ik with a probability given by ||ai||22/||A||2F
4:

xk+1 = xk +
bik − 〈aTik , xk〉
||aTik ||

2
2

aTi

5: if k = 0 mod m and ||Axk+1 − b||22 ≤ ε then
6: return xk+1

7: until k + 1 > Nm

8: return xk+1

rate of convergence that could be bound after each iteration using the Frobenius induced condition
number. This made it clearer to compare the Kaczmarz method to other solvers for linear system
of equations. Strohmer and Vershynin compares the randomized Kaczmarz method to the CGLS
(conjugate gradient least squares) method in their article [12]. It was proven that it required less
computational complexity than the CGLS method on a overdetermined, consistent and normally
distributed system with m > 3n.
Needle purposed a rate of convergence 2010 [8] that describes the rate of convergence up until we get
close to the solution. Thus showing how the Kaczmarz method handles noisy system of equations.

Definition 20 (Expectation). Given a distribution function f(x) we have that the expectation E of
a random variable X is given by

E[X] =

∞∑
x=−∞

xf(x)

or

E[X] =

∫ ∞
−∞

xf(x)dx

where f(x) is the probability of each outcome.

Definition 21 (Noise). Given a system of equations A ∈ Rm×n and b ∈ Rm. The noise is then set
to be smallest r ∈ Rm such that the system of equations becomes consistent Ax = b+ r.

Theorem 7 (Randomized Kaczmarz method; rate of convergence [12]). If we have a consistent
system A ∈ Rm×n and b ∈ Rm then we can bound the expected rate of convergence to x̂ of Algorithm
2 by a rate given by 0 ≤ (1− κ(A)−2

F ) < 1 i.e.

E
[
||xk+1 − x̂||22

]
≤ (1− κ(A)−2

F )k+1||x0 − x̂||22.

Theorem 8 (Randomized Kaczmarz method rate of convergence [8] for noisy systems). If we have
a noisy system of equations and A ∈ Rm×n, x ∈ Rn, b ∈ Rm and r ∈ Rm. Then we can bound the
expected rate of convergence of Algorithm 2 to the least squares solution x̂ by

E
[
||xk+1 − x̂||22

]
≤ (1− κ(A)−2

F )k+1||x0 − x̂||22 + ρ2κ(A)F .

Where ρ is defined as

ρ := max
i

|ri|
||aik ||2

.

19



3.3 Extended randomized Kaczmarz method

Furthering our interest of the Kaczmarz method applied to inconsistent systems, we desire to find
the least squares solution arg minx ||Ax − b||2 by first transforming the problem into a consistent
problem. Zouzias proposed 2013 [14] to instead solve a consistent problem Ax = b − z, where z is
approximated using the randomized Kaczmarz method to solve AT z = 0 setting z(0) = b.

Definition 22. For a matrix A ∈ Rm×n, a(j) ∈ Rm is defined by the j’th column of A i.e.

A = [a(1), a(2), ..., a(n−1), a(n)].

Algorithm 3 Randomized Kaczmarz transform for least squares problems [14]

1: procedure (A, b,M, ε) . A ∈ Rm×n, b ∈ Rm, M ∈ N, ε ∈ R
2: z(0) = b
3: repeat
4: Choose column jk with a probability given by ||a(j)||22/||A||2F .
5:

z(k+1) = z(k) −
〈a(jk), z

(k)〉
||a(jk)||22

a(jk)

6: if k = 0 mod n and ||AT z(k+1)||22 ≤ ε then
7: return z(k+1)

8: until k + 1 > Mn

9: return z(k+1)

Statement 3. Given any inconsistent system A ∈ Rm×n, b ∈ Rm, x ∈ Rn and minx∈Rn ||Ax −
b||22 6= 0 we can transform it into a consistent system minx∈Rn ||Ax − (b − z(k+1)||22 = 0 letting
z(k+1) ∈ Rm be defined by Algorithm 3.

Proof. To show there exists an x ∈ Rn such that Ax = b− z(k+1) we begin by writing Ax as a sum
of column vectors

Ax =

m∑
j=1

xja(j)

defining xj as the j’th element of x. Now we investigate b− z(k+1), first we rewrite z(k+1) using the
definition for z(k+1)

z(k+1) = b−
k∑
p=0

〈a(jp), z
(p)〉

||a(jp)||22
a(jp)

defining a(jp) as the randomly chosen column on the p’th iteration of Algorithm 3. It remains to
show that there exists an x such that

m∑
j=0

xja(j) =

k∑
p=0

〈a(jp), z
(p)〉

||a(jp)||22
a(jp)

holds. We group the terms on the right hand side such that all randomly selected a(jp) = a(j) are
grouped together,

k∑
p=0

〈a(jp), z
(p)〉

||a(jp)||22
a(jp) =

m∑
j=1

(∑ 〈a(j), z
(pj)〉

||a(j)||22

)
a(j)

where
∑ 〈a(j),z(pj)〉

||a(j)||22
is the sum of all the terms when a(jp) = a(j). We have

m∑
j=1

xja(j) =

m∑
j=0

(∑ 〈a(j), z
(pj)〉

||a(j)||22

)
a(j)

and we see that there exists at least one solution x letting xj =
∑ 〈a(j),z(pj)〉

||a(j)||22
.

Statement 4. Given a system of equations A ∈ Rm×n, x ∈ Rn and b ∈ Rm, let ẑ be any point in
the set ω = {z ∈ Rm;AT z = 0}, then arg minx∈Rn ||Ax− b||22 = arg minx∈Rn ||Ax− (b− ẑ)||22.
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Proof. We have that
x̂ ∈ arg min

x∈Rn

||Ax− b||22 ⇐⇒ ATAx̂ = AT b

however since AT ẑ = 0 we get

ATAx̂ = AT b ⇐⇒ ATAx̂ = AT (b− ẑ) ⇐⇒ x̂ ∈ arg min
x∈Rn

||Ax− (b− ẑ)||22

By statement 3 and statement 4 we know that Algorithm 3 creates a sequence of {z(k+1)}∞0
that transforms the problem into a consistent problem and converges towards a ẑ that has the same
least squares solution. Then by applying the randomized Kaczmarz method we get the extended
Kaczmarz method which by theorem 8 converges towards the solution.

Algorithm 4 Extended randomized Kaczmarz method [14]

1: procedure (A, b, x0, N, ε) . A ∈ Rm×n, b ∈ Rm, x0 ∈ Rn, N ∈ N, ε ∈ R
2: z(0) = b
3: repeat
4: Choose column jk with a probability given by ||a(j)||22/||A||2F .
5:

z(k+1) = z(k) −
〈a(jk), z

(k)〉
||a(jk)||22

a(jk)

6: Choose row ik with a probability given by ||ai||22/||A||2F .
7:

xk+1 = xk +
(bik − z

(k+1)
ik

)− 〈aTik , xk〉
||aTik ||

2
2

aTik

8: if k = 0 mod min(m,n) and ||AT z(k+1)||22 ≤ ε and ||Axk+1 − (b− zk+1)||22 ≤ ε then
9: return xk+1

10: until k + 1 > N min(m,n)

11: return xk+1

Theorem 9 (Extended randomized Kaczmarz method [14]). If we have a system of equations
A ∈ Rm×n and b ∈ Rm we can bound the expected rate of convergence to x̂ of Algorithm 4 by

E
[
||xk+1 − x̂||22

]
≤ (1− κ(A)−2

F )(k+1)/2(1 + 2κ(A)2)||x0 − x̂||22.

21



4 Block Kaczmarz method

4.1 Block Kaczmarz method

The idea behind the block Kaczmarz is to apply several row conditions at each iteration step to
approach the solution quicker. The block Kaczmarz method divide A ∈ Rn×m into blocks Aτ ∈
Rtτ×n where before starting the iterations. Then selects block Aτ in each iteration with uniform
distribution.

Algorithm 5 Block Kaczmarz method [9]

1: procedure (A, b, x0, N, ε) . A ∈ Rm×n, b ∈ Rm, x0 ∈ Rn, N ∈ N, ε ∈ R
2: Construct the blocks Aτ ∈ Rtτ×n and the corresponding bτ ∈ Rtτ

3: Let t be the amount of blocks Aτ created
4: repeat
5: Choose Aτk with uniform distribution
6:

xk+1 = xk +A†τk(bτk −Aτkxk)

7: if k = 0 mod t and ||Axk+1 − b||22 ≤ ε then
8: return xk+1

9: until k + 1 > Nt

10: return xk+1

Theorem 10 ([6]). The system Ax = b is consistent if and only if AA†b = b.

Proof. See [6] for proof.

Statement 5. If xk+1 is defined by Algorithm 5

xk+1 = xk +A†τk(bτk −Aτkxk)

then xk+1 solves the previous equation Aτkxk+1 = bτk .

Proof. By expanding Aτkxk+1 we get,

Aτkxk+1 = Aτk
(
xk +A†τk(bτk −Aτkxk)

)
= Aτkxk +AτkA

†
τk
bτk −AτkA†τkAτkxk

then by definition 14 we have AτkA
†
τk
Aτk = Aτk , yielding us

Aτkxk+1 = AτkA
†
τk
bτk .

We use the assumption that the system is consistent, which implies that the equations Aτkx = bτk
are consistent as well. It allows us to use theorem 10 resulting in

Aτkxk+1 = AτkA
†
τk
bτk = bτk .

Statement 6. If xk+1 is defined by Algorithm 5 and ω is the set ω = {x ∈ Rn;Aτx = bτ} then
xk+1 is the orthogonal projection of xk onto ω.

Proof. From statement 5 we have that xk+1 ∈ ω, now it remains to show that it is an orthogonal
projection. Rearranging the equation we get

xk +A†τk(bτkAτkxk) = xk −A†τkAτkxk +A†τkbτk .

From lemma 7 we see that A†τkbτk is the minimum norm transform to our solution space. It remains

to show that xk −A†τkAτkxk is an orthogonal projection. By defining

P := I −A†τkAτk

we have
xk −A†τkAτkxk = Pxk.
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By showing that P 2 = P and PT = P we prove that it is an orthogonal projection. By expanding
P 2 we get

P 2 = (I −A†τkAτk)(I −A†τkAτk)

= I − 2A†τkAτk +A†τkAτkA
†
τk
Aτk ,

(16)

then from definition 14 we get

P 2 = I − 2A†τkAτk +A†τkAτk = P.

We now expand PT and get

PT = (I −A†τkAτk)T

= I − (A†τkAτk)T ,
(17)

however by definition 14 we have
PT = I −A†τkAτk = P.

Remark 5. Since each iteration of Algorithm 5 orthogonally projects onto the solution space given
by ω = {x ∈ Rn;Aτx = bτ}, we have that every iteration step is equal to applying Algorithm 1 on
ω. Which by remark 4 implies that Algorithm 5 converges towards the same solution as Algorithm
1.

Definition 23 (Paving parameters [9, 10]). To describe the rate of convergence we need to introduce
the paving parameters. Let T = [Aτ1 , Aτ2 , . . . , Aτt ] then define α and β such that

α ≤ σmin(Aτ )

β ≥ σmax(Aτ )

holds for all Aτ ∈ T .

The rate of convergence of Algorithm 5 for a noisy system Ax = b + r was described 2014 by
Needle [9].

Theorem 11 (Block Kaczmarz method rate of convergence for noisy systems [9]). Let A ∈ Rm×n,
b ∈ Rm and r ∈ Rm define the noisy linear system given by Ax = b+r. Then Algorithm 5 converges
towards the solution x̂ with an expected rate of convergence given by

E
[
||xk+1 − x̂||22

]
≤
(

1− σ2
min(A)

βt

)k+1

||x0 − x̂||22 +
β

α

||r||22
σ2

min(A)
.

4.2 Extended block Kaczmarz method

Now we are interested in using the block Kaczmarz method to solve inconsistent systems similarly
to how we did with the randomized Kaczmarz method.

Algorithm 6 Block Kaczmarz method tranform for least squares problems

1: procedure (AT , b,N, ε) . AT ∈ Rn×m, b ∈ Rm, N ∈ N, ε ∈ R
2: Construct the blocks ATξ ∈ Rcξ×m

3: Let c be the amount of blocks created ATξ
4: z(0) = b
5: repeat
6: Choose ATξk with uniform distribution
7:

z(k+1) = z(k) − (ATξk)†ATξkz
(k)

8: if k = 0 mod c and ||AT z(k+1) − b||22 ≤ ε then
9: return z(k+1)

10: until k + 1 > Nc

11: return z(k+1)
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Statement 7. We can transform any inconsistent system minx∈Rn ||Ax− b||22 6= 0 into a consistent
system minx∈Rn ||Ax− (b− z(k+1))||22 = 0 letting z(k+1) be defined by Algorithm 6.

Proof. This follows directly from statement 3 and remark 5.

Statement 8. Let ẑ be any point in the set ω = {z ∈ Rm;AT z = 0}, then arg minx∈Rn ||Ax−b||22 =
arg minx∈Rn ||Ax− (b+ ẑ)||22.

Proof. This follows directly from statement 4 and remark 5

Algorithm 7 Extended block Kaczmarz method [10]

1: procedure (A, b, x0, N, ε) . A ∈ Rm×n, b ∈ Rm, x0 ∈ Rn, N ∈ N, ε ∈ R
2: Construct the blocks ATξ ∈ Rcξ×m

3: Construct the blocks Aτ ∈ Rtτ×n and the corresponding bτ ∈ Rtτ

4: Let c be the amount of blocks created ATξ
5: Let t be the amount of blocks created Aτ
6: z(0) = b
7: repeat
8: Choose ATξk with uniform distribution
9:

z(k+1) = z(k) − (ATξk)†ATξkz
(k)

10: Choose Aτk with uniform distribution

11: Construct z
(k+1)
τk using the corresponding rows to the block Aτ

12:

xk+1 = xk +A†τk

(
(bτk − z(k+1)

τk
)−Aτkxk

)
13: if k = 0 mod min(c, t) and ||AT z(k+1)||22 ≤ ε and ||Axk+1 − (b− zk+1)||22 ≤ ε then
14: return xk+1

15: until k + 1 > N min(c, t)

16: return z(k+1)
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Theorem 12 (Extended block Kaczmarz method rate of convergence [10]). Let A ∈ Rm×n and
b ∈ Rm, define the least squares problem arg minx∈Rn ||Ax − b||22. Then Algorithm 7 converges
towards the solution x̂ with an expected rate of convergence given by

E
[
||xk+1 − x̂||22

]
≤
(

1− σ2
min(A)

βt

)k+1

||x0 − x̂||22

+

((
1− σ2

min(A)

βt

)(k+1)/2

+

(
1− σ2

min(A)

β̂t̂

)(k+1)/2
)
βd||b− ẑ||22
ασ2

min(A)

(18)

where α and β are the paving parameters of the blocks Aτ and β̂ is the paving parameter of the blocks
ATξ .

4.3 Greedy block Kaczmarz method

The idea behind the greedy block Kaczmarz method is to create the block Aτ in each iteration such
that the distance between xk+1 and xk is maximized, meaning that xk+1 is as close to orthogonal
as it can to xk. The greedy Kaczmarz method presented by Yu-Qi Niu [11] approximates the block
that gives the maximum distance in each iteration by finding the maximum distance row

max
i∈{1,2,...,m}

|bi − 〈aTi , xk〉|2

||aTi ||2

and then let the permutation τ be defined as the combination of all rows satisfying the condition

|bi − 〈aTi , xk〉|2

||aTi ||2
≥ η

(
max

i∈{1,2,...,m}

|bi − 〈aTi , xk〉|2

||aTi ||2

)
where η is a relaxation parameter.

Algorithm 8 Greedy block Kaczmarz method [11]

1: procedure (A, b, x0, N, η, ε) . A ∈ Rm×n, b ∈ Rm, x0 ∈ Rn, N ∈ N, 0 < η ≤ 1, ε ∈ R
2: repeat
3: Calculate

ε =

(
max

i∈{1,2,...,m}

|bi − 〈aTi , xk〉|2

||aTi ||2

)
4: Construct the block Aτk and bτk as the matrix with all rows
5: i that satisfies the following condition

|bi − 〈aTi , xk〉|2

||aTi ||2
≥ ηε

6:

xk+1 = xk +A†τk(bτk −Aτkxk)

7: if Axk+1 ≤ ε then
8: return xk+1

9: until k + 1 > N

10: return xk+1

Theorem 13 (Greedy block Kaczmarz method [11]). Let A ∈ Rm×n and b ∈ Rm define a consistent
system, then we can bound the rate of convergence of Algorithm 8 to the solution x̂ by

||xk+1 − x̂||22 ≤
(
1− δk(η)κ(A)−2

F

)k+1 ||x0 − x̂||22,

defining

δk(η) := η
||A||2F

||A||2F − ||Aτk−1
||2F

||Aτk ||2F
σ2

max(Aτk)

for all k ≥ 1 and defining δ0 as

δ0 := η
||Aτk ||2F
σ2

max(Aτk)
.
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5 Implementation

The tests where all implemented on Matlab and the computer used for the tests runs on windows
10 with a intel core i7-7700hq and 2.80 GHz (8 CPUs).

5.1 Tests on consistent problems

5.1.1 Consistent tests

We want to compare the different variations of the Kaczmarz method for consistent problems Algo-
rithm 1, 2, 5, 8. We include two Algorithms for consistent problems to the tests.

Algorithm 9 Uniform randomized Kaczmarz method [9]

1: procedure (A, b, x0, N, ε) . A ∈ Rm×n, b ∈ Rm, x0 ∈ Rn, N ∈ N, ε ∈ R
2: repeat
3: Choose row ik randomly with a uniform distribution
4:

xk+1 = xk +
bik − 〈aTik , xk〉
||aTik ||

2
2

aTik

5: if k = 0 mod m and ||Axk+1 − b||22 ≤ ε then
6: return xk+1

7: until k + 1 > Nm

8: return xk+1

Algorithm 10 Deterministic block Kaczmarz method

1: procedure (A, b, x0, N, ε) . A ∈ Rm×n, b ∈ Rm, x0 ∈ Rn, N ∈ N, ε ∈ R
2: Construct the blocks Aτ and the corresponding bτ
3: Let t be the amount of blocks created Aτ
4: repeat
5: Choose τk = k + 1 mod t
6:

xk+1 = xk +A†τk(bτk −Aτkxk)

7: if k = 0 mod t and ||Axk+1 − b||22 ≤ ε then
8: return xk+1

9: until k + 1 > Nt

10: return xk+1

Algorithm 9 is the randomized Kaczmarz method presented in [9]. While Algorithm 10 is Algorithm
5 with the deterministic block selection processes found in Algorithm 1.

5.1.2 Underdetermined with σmax/σmin = 105 figure. 4

To construct A we first constructed a matrix Ã ∈ R300×5000 with uniformly distributed values
[0, 1]. Then we took the singular value decomposition and changed the singular values such that

1
100000 ≤ σ ≤ 1. Then constructed a solution x̃ ∈ R5000×1 with uniformly distributed values [0, 1].
We then calculate b = Ax and set x0 = 0. For the single row variations Algorithm 1, 2, 9 we set
N = 10. For the block variations that do not create blocks iteratively Algorithm 5, 10 we create
blocks of size 10 and set N = 100. For the greedy Kaczmarz method Algorithm 8 we set N = 3000
and µ = 0, 8. For all randomized variations we take the average of 10 runs. All variations will use
ε = 0.001.
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Figure 4: Semilog plot of the Kaczmarz methods on the system described in section 5.1.2 with
||Ax− b||22 on the y axis and k on the x axis.

5.1.3 Overdetermined with σmax/σmin = 105 figure. 5

To construct A we first constructed a matrix Ã ∈ R5000×300 with uniformly distributed values
[0, 1]. Then we took the singular value decomposition and changed the singular values such that

1
100000 ≤ σ ≤ 1. Then constructed a solution x̃ ∈ R300×1 with uniformly distributed values [0, 1].
We then calculate b = Ax and set x0 = 0. For the single row variations Algorithm 1, 2, 9 we set
N = 10. For the block variations that do not create blocks iteratively Algorithm 5, 10 we create
blocks of size 10 and set N = 100. For the greedy Kaczmarz method Algorithm 8 we set N = 3000
and µ = 0, 8. For all randomized variations we take the average of 10 runs. All variations will use
ε = 0.001.

5.1.4 Underdetermined with σmax/σmin = 1 + 10−1 figure. 6

To construct A we first constructed a matrix Ã ∈ R300×5000 with uniformly distributed values
[0, 1]. Then we took the singular value decomposition and changed the singular values such that
1 ≤ σ ≤ 1 + 10−1. Then constructed a solution x̃ ∈ R5000×1 with uniformly distributed values [0, 1].
We then calculate b = Ax and set x0 = 0. For the single row variations Algorithm 1, 2, 9 we set
N = 10. For the block variations that do not create blocks iteratively Algorithm 5, 10 we create
blocks of size 10 and set N = 100. For the greedy Kaczmarz method Algorithm 8 we set N = 3000
and µ = 0, 8. For all randomized variations we take the average of 10 runs. All variations will use
ε = 0.001.

5.1.5 Overdetermined with σmax/σmin = 1 + 10−1 figure. 7

To construct A we first constructed a matrix Ã ∈ R5000×300 with uniformly distributed values
[0, 1]. Then we took the singular value decomposition and changed the singular values such that
1 ≤ σ ≤ 1 + 10−1. Then constructed a solution x̃ ∈ R300×1 with uniformly distributed values [0, 1].
We then calculate b = Ax and set x0 = 0. For the single row variations Algorithm 1, 2, 9 we set
N = 10. For the block variations that do not create blocks iteratively Algorithm 5, 10 we create
blocks of size 10 and set N = 100. For the greedy Kaczmarz method Algorithm 8 we set N = 3000
and µ = 0, 8. For all randomized variations we take the average of 10 runs. All variations will use
ε = 0.001.
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Figure 5: Semilog plot of the Kaczmarz methods on the system described in section 5.1.3 with
||Ax− b||22 on the y axis and k on the x axis.

Figure 6: Semilog plot of the Kaczmarz methods on the system described in section 5.1.4 with
||Ax− b||22 on the y axis and k on the x axis.
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Figure 7: Semilog plot of the Kaczmarz methods on the system described in section 5.1.5 with
||Ax− b||22 on the y axis and k on the x axis.

5.1.6 Conclusion

From all the figures 4, 5, 6, 7 we can see that the more rows we evaluate in each iteration the
less iterations we need to converge which is in line with the result in [9], however it is important
to realize that the amount of rows evaluated in each iteration also affects the computational time.
In the tests conducted it also seems as if the deterministic variations Algorithm 1, 10 outperform
the randomized variations Algorithm 2, 9, 5 when the same amount of rows were evaluated in each
iteration, on underdetermined systems figure 4, 6.
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Figure 8: Ground truth of the problem described in section 5.2.1 with data from [4].

Figure 9: Reconstruction of the problem described in section 5.2.1 with data from [4].
Left: Reconstruction using Algorithm 1.
Right: Reconstruction using Algorithm 2.

5.2 Image reconstruction

5.2.1 Image reconstruction image. 9, 10, 11

In 1970 the first application of the Kaczmarz method occurred, Gordon, Bender and Herman used
it to reconstruct images from the data given from a computed tomography [3]. Thus we want to
tests the different variations of the Kaczmarz method on an image reconstruction problem. The
reconstruction problem is sourced from http://www.fips.fi/dataset.php [4], we use the most
pixelated walnut as our reconstruction problem. The largest sample is a system of equations given
by A ∈ R39360×107584, b ∈ R39360 and x ∈ R107584. It is ill-conditioned, underdetermined and
noisy, however we expect the noise to be relatively small. We will use Algorithm 1, 2, 9, 5, 10, 8 to
reconstruct the image. For the Algorithm 5, 10 we will use a block size of 60. For Algorithm 8 we
will use η = 0.8. All Algorithms 1, 2, 9, 5, 10, 8 will let N = 1.

5.2.2 Conclusion

The images 9, 10, 11 of Algorithm 1, 2, 9, 5, 10 seem to relatively well reconstruct the image 8.
Unfortunately Algorithm 8 is less clear which seem to run counter the results in figure 4, 5, 6, 7
however this is for mostly due to the amount of iterations the Algorithm performs, as in the image 10
it only performs one iteration as we choose to evaluate the same amount of rows for all Algorithms
1 2, 9, 10, 5, 8.
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Figure 10: Reconstruction of the problem described in section 5.2.1 with data from [4].
Left: Reconstruction using Algorithm 9.
Right: Reconstruction using Algorithm 10.

Figure 11: Reconstruction of the problem described in section 5.2.1 with data from [4].
Left: Reconstruction using Algorithm 5.
Right: Reconstruction using Algorithm 8.

5.3 Test on inconsistent problems

5.3.1 Inconsistent tests

To solve inconsistent problems we can either use Algorithm 4, 7 or first Algorithm 3, 6 then apply
any solver for consistent systems.

We construct the same matrices as in section 5.1.1 except that the matrices are not necessarily
consistent. Then we will compare ||Ax − b||2 of Algorithm 4, 11, 7, 12, 2, 5 and the termination
criterion of Algorithm 4, 11, 7, 12,

5.3.2 Extended underdetermined with σmax/σmin = 105 figure. 12, 13, 14

To construct A we first constructed a matrix Ã ∈ R5000×300 with uniformly distributed values
[0, 1]. Then we took the singular value decomposition and changed the singular values such that

1
100000 ≤ σ ≤ 1. Then we construct b ∈ R5000×1 with uniformly distributed values [0, 1]. For the
single row Algorithms 4, 11, 2 we set N = 10. For the block Algorithms 7, 12, 5 we create blocks of
size 10 and set N = 100. We take the average of 10 runs. All Algorithms 4, 11, 7, 12, 2, 5 will use
ε = 0.00001.
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Algorithm 11 Transform then solve randomized Kaczmarz method 3, 2

1: procedure (A, b, x0, N) . A ∈ Rm×n, b ∈ Rm, x0 ∈ Rn, N ∈ N
2: z(0) = b
3: repeat
4: Choose column jp with a probability given by ||a(j)||22/||A||2F .
5:

z(p+1) = z(p) −
〈a(jp), z

(p)〉
||a(jp)||22

a(jp)

6: if k = 0 mod min(m,n) and ||AT z(p+1)||22 ≤ ε then
7: Terminate loop

8: until k + 1 > Nn
9: repeat

10: Choose row ik with a probability given by ||ai||22/||A||2F
11:

xk+1 = xk +
(bikz

p+1
ik

)− 〈aTik , xk〉
||aTik ||

2
2

aTik

12: if k = 0 mod min(m,n) and ||Axk+1 − (b− z(p+1))||22 ≤ ε then
13: return xk+1

14: until k + 1 > Nm

15: return xk+1

Algorithm 12 Transform then solve block Kaczmarz method 6 5

1: procedure (A, b, x0, N) . A ∈ Rm×n, b ∈ Rm, x0 ∈ Rn, N ∈ N
2: Construct the blocks ATξ ∈ Rcξ×m

3: Construct the blocks Aτ ∈ Rtτ×n and the corresponding bτ ∈ Rtτ

4: Let c be the amount of blocks ATξ created
5: Let t be the amount of blocks Aτ created
6: z(0) = b
7: repeat
8: Choose ξp with uniform distribution
9:

z(p+1) = z(p) − (ATξp)†ATξpz
(p)

10: if k = 0 mod min(c, t) and ||AT z(p+1)||22 ≤ ε then
11: Terminate loop

12: until p+ 1 > Nc
13: repeat
14: Choose τk with uniform distribution
15:

xk+1 = xk +A†τk

(
(bτk − z(p+1)

τk
)−Aτkxk

)
16: if k = 0 mod min(c, t) and ||Axk+1 − (b− z(p+1))||22 ≤ ε then
17: return xk+1

18: until k + 1 > Nt

19: return xk+1
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Figure 12: Semilog plot of the extended Kaczmarz methods on the system described in section 5.3.2
with ||AT z(p)||22 or ||AT z(k)||22 on the y axis and k on the x axis.

Figure 13: Semilog plot of the extended Kaczmarz methods on the system described in section 5.3.2
with ||ATxk − (b− z(p))||22 or ||ATxk − (b− z(k))||22 on the y axis and k on the x axis.
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Figure 14: Semilog plot of the extended Kaczmarz methods on the system described in section 5.3.2
with ||ATxk − b||22 on the y axis and k on the x axis.

5.3.3 Extended overdetermined with σmax/σmin = 105 figure. 15, 16, 17

To construct A we first constructed a matrix Ã ∈ R300×5000 with uniformly distributed values
[0, 1]. Then we took the singular value decomposition and changed the singular values such that

1
100000 ≤ σ ≤ 1. Then we construct b ∈ R300×1 with uniformly distributed values [0, 1]. For the
single row Algorithms 4, 11, 2 we set N = 10. For the block Algorithms 7, 12, 5 we create blocks of
size 10 and set N = 100. We take the average of 10 runs. All Algorithms 4, 11, 7, 12, 2, 5 will use
ε = 0.00001.

5.3.4 Extended underdetermined with σmax/σmin = 1 + 10−1 figure. 18, 19, 20

To construct A we first constructed a matrix Ã ∈ R5000×300 with uniformly distributed values
[0, 1]. Then we took the singular value decomposition and changed the singular values such that
1 ≤ σ ≤ 1 + 10−1. Then we construct b ∈ R5000×1 with uniformly distributed values [0, 1]. For the
single row Algorithms 4, 11, 2 we set N = 10. For the block Algorithms 7, 12, 5 we create blocks of
size 10 and set N = 100. We take the average of 10 runs. All Algorithms 4, 11, 7, 12, 2, 5 will use
ε = 0.00001.

5.3.5 Extended overdetermined with σmax/σmin = 1 + 10−1 figure. 21, 22, 23

To construct A we first constructed a matrix Ã ∈ R300×5000 with uniformly distributed values
[0, 1]. Then we took the singular value decomposition and changed the singular values such that
1 ≤ σ ≤ 1 + 10−1. Then we construct b ∈ R5000×1 with uniformly distributed values [0, 1]. For the
single row Algorithms 4, 11, 2 we set N = 10. For the block Algorithms 7, 12, 5 we create blocks of
size 10 and set N = 100. We take the average of 10 runs. All Algorithms 4, 11, 7, 12, 2, 5 will use
ε = 0.00001.

5.3.6 Conclusion

In the tests for section 5.3 we see that Algorithm 4, 11, 7, 12 converge to some value in figure 17, 23,
20, 20 which from the Theorem 9, 12 can be assumed to be the least squares solution minimizing
the distance to x0. This is further illustrated by Algorithm 2, 5 ping-ponging further away from the
solution the larger the value Algorithm 4, 11, 7, 12 converges towards. The main part I wanted to
illustrate with the tests in section 5.3 was however how a change in order of operations could impact
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Figure 15: Semilog plot of the extended Kaczmarz methods on the system described in section 5.3.3
with ||AT z(p)||22 or ||AT z(k)||22 on the y axis and k on the x axis.

Figure 16: Semilog plot of the extended Kaczmarz methods on the system described in section 5.3.3
with ||ATxk − (b− z(p))||22 or ||ATxk − (b− z(k))||22 on the y axis and k on the x axis.
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Figure 17: Semilog plot of the extended Kaczmarz methods on the system described in section 5.3.3
with ||ATxk − b||22 on the y axis and k on the x axis.

Figure 18: Semilog plot of the extended Kaczmarz methods on the system described in section 5.3.4
with ||AT z(p)||22 or ||AT z(k)||22 on the y axis and k on the x axis.
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Figure 19: Semilog plot of the extended Kaczmarz methods on the system described in section 5.3.4
with ||ATxk − (b− z(p))||22 or ||ATxk − (b− z(k))||22 on the y axis and k on the x axis.

Figure 20: Semilog plot of the extended Kaczmarz methods on the system described in section 5.3.4
with ||ATxk − b||22 on the y axis and k on the x axis.
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Figure 21: Semilog plot of the extended Kaczmarz methods on the system described in section 5.3.5
with ||AT z(p)||22 or ||AT z(k)||22 on the y axis and k on the x axis.

Figure 22: Semilog plot of the extended Kaczmarz methods on the system described in section 5.3.5
with ||ATxk − (b− z(p))||22 or ||ATxk − (b− z(k))||22 on the y axis and k on the x axis.
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Figure 23: Semilog plot of the extended Kaczmarz methods on the system described in section 5.3.5
with ||ATxk − b||22 on the y axis and k on the x axis.

the convergence. In figure 15, 12, 21, 18 we can see the difference of order of operation of Algorithm
4, 11, 7, 12, with respect to xk+1, however it should be acknowledged that with respect to x(z+1) the
convergence does not differ. This change in order of operation is best illustrated by looking at both
figure 17, 23, 20, 20 and 16, 22, 19, 19 where Algorithm 11 consistently outperforms Algorithm 4
and Algorithm 12 outperforms Algorithm 7 by a small margin. This is a rather intuitive result since
in Algorithm 11, 12 we first transform our system of equations into the desired system of equations
and then solve it, while in Algorithm 4, 7 we converge towards a new system of equations in each
iteration.

6 Summary and Improvements

Initially we presented different variations of the Kaczmarz method, most of which had randomized
row or block selection schemes. In our tests the cyclic row or block selection schemes seemed to
perform slightly better especially on underdetermined systems, however we do not know if any
improvement in the randomized variations could be found if we force the Algorithms to choose every
row or block in each cycle like Needle suggested in [9]. The cyclic randomized variation only seems
plausibly applied if the rows are selected with a distribution that does not require any calculations
in each iteration like the uniform distribution and since our results for these sort of matrices was
very similar between Algorithm 9 and Algorithm 2 it seems rather interchangeable for this sort of
matrices.
It could also be interesting to see if the difference on required iterations on the systems presented
in section 5.1.2, 5.1.4 is due to rank of the matrix or the ratio n

m .
We also saw Algorithm 2, 5 handle the underdetermined systems relatively well. This could be due
to construction of the presented in section 5.3.2, 5.3.4 is likelier to construct system with small noise.
It could thus be interesting to see the result on a underdetermined system with rather large noise.
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