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Abstract 
 
To mitigate climate change and reach Sweden’s goal of becoming carbon neutral by 2045, or at an earlier stage 
of 2030 for 23 Swedish cities, urgent action is required to reduce greenhouse gas emissions. Due to the building 
sector’s significant contribution to carbon emissions, a crucial aspect in achieving these goals is improving the 
energy efficiency of existing buildings, as most of these will still be in use by this time. To improve the energy 
performance of these buildings, various renovation measures can be applied, where the choice of the best 
strategies involves being confronted with multiple conflicting objectives such as reducing energy demand, 
minimising environmental impact, and managing costs, which can be assessed using advanced building 
performance simulation tools. Finding the most appropriate renovation solutions involves testing a significant 
number of different combinations, which can become a very time-consuming process; therefore, optimising the 
simulation process is essential, especially in large-scale renovations.  
 
This study investigates the effect of using different existing building performance optimisation tools to 
accelerate the process of finding the most optimal renovation packages for Swedish buildings, with a focus on 
achieving decarbonisation in a cost-effective manner. A parametric model was created in Grasshopper to 
analyse three different optimisation tools, including Octopus, Wallacei and Opossum. Their performance was 
compared to Colibri components, which were used to carry out a ‘brute force’ to obtain results for energy use 
intensity, global warming potential and cost, for all possible renovation packages. The evaluation process was 
conducted in three main parts. The first involved testing 1260 combinations of different passive renovation 
measures on a simple shoebox model; the second considered both the same model and passive renovation 
measures, in addition to a number of active renovation measures, resulting in a total of 10 080 combinations to 
assess the optimisation tools’ performance when considering a larger number of iterations; and the third 
consisted of testing only the passive measures on a more complex geometry, modelled after a real building. 
 
The utilisation of optimisation tools proved to be very effective in accelerating the simulation and assessment 
process, while maintaining satisfactory precision in achieving optimal results, enhancing the applicability of 
parametric design as well as its practicality. Opossum was found to be the most efficient tool and reduced the 
total simulation time by 90 %, while upholding an acceptable level of accuracy in achieving optimal solutions. 
Additionally, Wallacei proved to be a feasible choice, as it provides the user with a number of useful post-
processing features. For the real building model, the most optimal packages generally consisted of glass wool 
or cellulose fibre insulation at varying thicknesses, for both the walls and roof as well as the installation of a 
storm window. Although active measures were not applied to the real building model, the installation of a PV 
system was required for reaching carbon neutrality, as this was the only climate compensation considered in 
this study.
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Terminology 
 
Term Definition 
 
Brute force  
 
 
Carbon neutrality 
 
Convergence 
 
 
 
Heuristics  
 
 
Parametric modelling  
 
 
Search space 
 
Stochastic 

 
An exhaustive search where all possible solutions to an optimisation problem are 
consecutively generated and evaluated.  
 
A state of having net-zero carbon emissions. 
 
An optimisation algorithm will converge when the evaluated solutions remain 
relatively unchanged, meaning that a satisfactory solution has been identified, or 
when another stopping criterion is met.  
 
Intuitive problem-solving approaches, where prior knowledge or experience is 
used to make decisions quickly, without guaranteeing an optimal solution.  
 
A computer-aided design (CAD) modelling technique that utilises adjustable 
parameter inputs to easily modify the design. 
 
The array of all possible solutions for a particular optimisation problem. 
 
A stochastic process involves probabilistic elements, thus producing 
unpredictable outcomes. 
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1 Introduction 
 
Despite a progression towards the use of renewable energy sources, fossil fuels continue to be the main source 
of providing energy needs, resulting in large concentrations of greenhouse gases (GHG) in the atmosphere 
(United Nations Environment Programme, 2020). According to the Intergovernmental Panel on Climate Change 
(IPCC), the last decade has had the greatest amounts of GHG emissions to date, meaning that urgent action is 
required to reduce emissions and therefore keep global warming below the target of 1.5 °C (IPCC, 2022). One 
of the leading emitters is the building sector; in 2020, buildings accounted for 36 % of global energy demand 
and 37 % of energy related CO2 emissions (United Nations Environment Programme, 2021). Within Sweden, 
the construction and real estate sector is responsible for one fifth of GHG emissions, while its importation of 
construction products also affects emissions in other countries (Boverket, 2020b).   
 
According to a study, the building sector was also estimated to hold the greatest economic mitigation potential 
in 2030, giving it an important role in climate change mitigation (IPCC, 2007). The majority of existing 
buildings in the EU were constructed over 20 years ago, while around 90 % of these will still be in operation in 
2050; this means large scale renovation is needed in order to decarbonise the building stock and meet European 
climate neutrality goals (European Commission, 2020). The improvement in energy performance due to 
renovation, results in a reduction in CO2 emissions (Ramírez-Villegas et al., 2016); however, renovation 
processes also require a significant amount of materials and energy to execute (European Commission, 2019).  
 
Computational simulation enables quantifying the building performance for proposed renovation measures, 
which can be used to achieve a specific target, i.e., balancing energy consumption, environmental impact, and 
costs (Clarke, 2001). A parametric modelling approach allows for the automated testing of a large number of 
potential renovation strategies; however, in large scale renovation this can be very time intensive. The time 
required to find the most feasible solutions can be substantially reduced by incorporating various optimisation 
methods. 
 
 

1.1 Background 
 
In order to mitigate climate change, a number of agreements have been concluded worldwide, one being the 
Paris Agreement under the 1992 United Nations Framework Convention on Climate Change (UNFCCC): this 
aims to “hold the increase in the global average temperature to well below 2°C above pre-industrial levels and 
pursuing efforts to limit the temperature increase to 1.5°C above pre-industrial levels” (UNFCCC, 2015). 
Europe also strives to be the first climate neutral continent with the formation of the European Green Deal, 
which addresses environmental problems by targeting net-zero GHG emissions by 2050 (European 
Commission, 2019).  
 
Sweden was one of the first UNFCCC parties to adopt a net-zero GHG emission goal by establishing a climate 
policy framework in 2017, outlining that the country is to have net-zero emissions of GHG into the atmosphere 
by 2045 and should achieve negative emissions thereafter (Svensk Riksdag, 2021). To move in this direction, 
several milestone targets have been set, including a 63 % and 75 % decrease of GHG emissions by 2030 and 
2040 respectively, compared to emissions in 1990 (Ministry of the Environment Sweden, 2020). In addition to 
this, Viable Cities created the Climate Neutral Cities 2030 initiative in 2019, bringing together 23 Swedish cities 
and six public authorities, with an aim to accelerate the climate transition and already achieve net zero GHG 
emissions by 2030 (Viable Cities, 2022). 
 
With the building sector being one of the leading GHG emitters, an important aspect of reaching climate goals 
is to improve energy-efficiency in both existing and newly built buildings. To address this challenge, a 
renovation wave is needed within Europe; however, only 0.4 % to 1.2 % of buildings currently undergo energy-
efficient renovation every year, which should at least double to reach the EU’s climate objectives (European 
Commission, 2019). The post-war building stock within Europe, such as homes constructed between 1965 and 
1974 as part of the Swedish Million Programme are already in need of renovation and have great energy-saving 
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potential, since there were no energy performance requirements for buildings at this time (Ministry of the 
Environment Sweden, 2020).  
 
Various renovation measures can be applied to existing buildings to improve their energy performance, which 
involves being confronted with multiple conflicting objectives such as minimising energy demand, 
environmental impact, and costs. When multiple design variables are being considered simultaneously, Building 
Performance Optimisation (BPO) is a useful technique for finding the most feasible solutions among all possible 
cases. This method incorporates optimisation algorithms within building performance simulation to provide a 
set of optimal solutions (Si et al., 2016). 
 

1.2 Objectives 
 
This thesis will explore various optimisation algorithms used within computational calculations and identify 
those most relevant and commonly used for building performance analysis. This study then aims to evaluate 
and compare a selection of available optimisation tools within the program grasshopper (GH), which will aid 
the user in finding the most favourable solutions that balance the conflicting objectives of energy use, 
environmental impact, and cost. This will accelerate the calculation process of determining the most viable 
renovation packages to achieve carbon neutrality.  
  
The study intends to answer the following questions: 
  

 What optimisation algorithms are available for building performance analysis?  
 Which objectives should be set for the optimisation of renovations towards carbon neutrality?   
 Other than achieving a less time intensive simulation process, what criteria should be used to 
compare the performance different optimisation tools?  
 How does a change in the number of tested iterations or the complexity of the building model 
geometry affect the performance of optimisation tools?   
 Based on the results, which of the investigated optimisation tools is recommended?  

 
 

1.3 Limitations 
 
This study included several limitations and aspects that were disregarded throughout. When considering the 
analysis of renovation packages, other important values aside from the examined objectives were overlooked, 
including thermal comfort, indoor air quality, property value, moisture safety and daylight availability. The 
outcomes of this study were also heavily influenced by the chosen carbon neutrality definition of NollCO2, as 
other definitions would have reached different conclusions in terms of the performance of renovation packages. 
Additionally, the evaluated renovation measures within each package were limited to a chosen range, meaning 
that there will most likely be other variables which prove to be more optimal than those regarded in this study, 
i.e., it might be more effective to install a window type that is different from those that were analysed. Moreover, 
rather than investigating the renovation solutions themselves, this study was more focused on evaluating 
whether different tools reached similar solutions, while the investigation was limited to only one real building, 
so more testing on different typologies is required.  
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2 Literature review 
 
A literature review was conducted to gain a deeper understanding of the topics associated with the aim of this 
study. 
 

2.1 Carbon neutral definitions  
 
There are a number of carbon neutrality calculation methods available, such as NollCO2 (SGBC, 2022), Zero 
Emission Buildings (ZEB) (Fufa et al., 2016) and White Arkitekter’s approach (White Arkitekter, 2020), with 
each one differing in their process. A comprehensive analysis of these methods can be found in a study 
evaluating the impact of different definitions on building design (Razna & Aive, 2022). NollCO2 was 
implemented within this study, as it was considered to be a good representation of current and future carbon 
neutral certification within Sweden.  
 

2.1.1 NollCO2 
 
NollCO2 (SGBC, 2022) is a certification system created by the Swedish Green Building Council (SGBC). In 
this definition, climate neutrality equates to a total climate impact of zero, which is achieved by balancing a 
building’s reduced climate impact, in line with the IPCC's 1.5° development path, with reductions or uptake of 
GHG emissions outside of the NollCO2 project’s system boundary. Table 2.1 lists the climate impacts and 
offsets included in this net zero balance. The standard SS-EN 15978:2011 is used for calculations of the climate 
impact during the building’s life cycle while several measures are defined as offsets for this. Any installation of 
renewable electricity is considered as a replacement of fossil-fuelled electricity in the Nord Pool’s electricity 
market, while improving the energy-efficiency of existing buildings and purchasing Continuous Cover Forestry 
(CCF) certificates or carbon credits from an approved organisation are also accepted as carbon offsetting 
measures. Since this certification is only intended for newly built constructions, it was adapted to the renovation 
project in this study.  
 

Table 2.1. NollCO2 net-zero balance considerations 
Climate impact Offsets 
Production* (A1-A3) 
Construction* (A4-A5) 
Replacement and refurbishment (B4-B5) 
Energy use* (B6) 
Water use (B7)  

On/off-site renewable electricity delivered to the 
grid 
Energy efficient measures in existing buildings 
Swedish CCF certificate and approved climate 
compensation 

*Contains a set limit 
 

2.2 Optimisation 
 
Optimisation ultimately entails finding the optimal or near optimal solution(s) to a particular problem (Floudas 
& Pardalos, 2009). Instead of using prior knowledge and intuition to formulate an ideal solution based on a 
certain number of iterations, optimisation provides an efficient and systematic approach to identify a satisfactory 
solution, without specifically evaluating every possible alternative (Ravindran et al., 2006).  
 

2.2.1 Optimal problem formulation 
 
The formulation of an optimal problem typically consists of identifying the decision variables, objective 
function, and constraints. This allows for the creation of a mathematical model describing the essence of the 
problem, which can in turn be solved by an optimisation algorithm (Hillier & Lieberman, 2010). The decision 
variables consist of the parameters that will be varied during the optimisation process, while others might remain 
fixed or change in accordance with other values (Deb, 2012). When formulating the objective function, the aim 
of the problem is expressed in terms of its decision variables and other parameters, and it should either be 
minimised or maximised (Arora, 2015). The constraints refer to any physical condition or limitations the 
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resulting design must adhere to, in order to maintain a functional relationship between certain parameters i.e., 
some parameters must be maintained at, above or below a particular value (Deb, 2012). If no constraints are 
specified, the problem is referred to as an unconstrained optimisation problem. Overall, the mathematical model 
should identify the decision variable values that minimise or maximise the objective function, whilst complying 
with the constraints (Hillier & Lieberman, 2010).  
 
This study focuses on a black-box optimisation problem, where the relationship between decision variables and 
objectives is not explicitly defined by a mathematical equation, but by using computer simulations to evaluate 
a parametric model of a building (Wortmann, 2017b). In this type of optimisation, the evaluated design 
parameters are the decision variables, and computer simulations are used to calculate and optimise certain 
performance measures (i.e., objective functions), in order to identify the most favourable parameterisations 
(Costa & Nannicini, 2018). Computer simulations are a form of black box; this describes a process that will 
return an output when supplied with an input, yet there is no analytical availability of the intrinsic workings of 
the process (Audet & Hare, 2017). Therefore, black box optimisation methods do not require a mathematical 
formulation: these methods are discussed further in later sections.  
 

2.2.2 Multi-objective optimisation 
 
An optimisation problem can be referred to as single-objective or multi-objective. Single-objective optimisation 
involves one objective function, where the optimal solution relates to a single point in the design space, at which 
the value of the objective function is either minimised or maximised (Arora, 2015). Alternatively, two or more 
objective functions result in multi-objective optimisation (MOO); this gives rise to a set of points known as 
Pareto optimal solutions, which can be considered as equally favourable overall (Chankong & Haimes, 1983). 
Most real-world optimisation problems are of this type, as they involve multiple conflicting objectives, where 
the improvement in one objective results in degenerating another; these problems have no single best solution 
and the goal is to find good compromises instead (Chong & Zak, 2013).  
 
All possible solutions can be represented in the decision space (search space) and the objective space, as shown 
in Figure 2.1. The decision space contains each feasible solution in terms of its decision variables and other 
parameters. Each point in the decision space corresponds to a point in the objective space, which is used to 
evaluate the quality of solutions in MOO; in this space, each solution is shown in terms of the values of its 
objective functions, where the number of dimensions is equal to the number of objectives (Anagnostopoulos et 
al., 2017; Talbi, 2009).  

 

 
Figure 2.1. The decision space and objective space of an optimisation problem, adapted from (Deb, 2001) 
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The relative optimality of solutions within a multi-objective problem can be assessed using the principle of 
domination (Tan et al., 2005). In order to confirm whether one solution dominates another, the following 
conditions must be satisfied (Arora, 2015; Deb, 2001):  
 

• Solution x1 is no worse than x2 in all objectives 
• Solution x1 is better than x2 in at least one objective  

 
To illustrate this, Figure 2.2 shows the objective space of an optimisation problem with two objective functions, 
where f1 should be maximised while f2 must be minimised. When comparing solution A and solution C, it is 
clear that solution C is better in both objective functions (it has a greater value in f1 and a smaller value in f2), 
meaning it dominates solution A. However, when looking at solution A and solution B, it cannot be said that 
either one dominates the other, since solution A is better in f1 but worse in f2. Solutions that are not dominated 
by any other solution are referred to as non-dominated solutions and form the Pareto optimal front, where any 
solution outside of this set will be dominated by one inside it. Therefore, it can be said that solutions of this set 
are superior to the rest (Coello Coello et al., 2007; Deb, 2001). When an optimisation problem contains three 
objective functions, the non-dominated set will form a Pareto surface instead.  
 

 
Figure 2.2. The Pareto optimal front 

 
Since these Pareto optimal solutions are all of equal importance, it is desirable to identify as many as possible, 
while the obtained set should be diverse to ensure a good coverage of the Pareto front (Rostami et al., 2020). It 
should also be noted that multiple optimal solutions will only exist if the objectives are conflicting; otherwise, 
the resulting problem involves single-objective optimisation, which can be considered as a degenerate case of 
multi-objective optimisation (Deb, 2001).  
 

2.2.3 The fitness landscape 
 
The structure of an optimisation problem can be assessed through a fitness landscape; a concept which was first 
introduced by Sewall Wright within the field of biology, where the term fitness comes from “survival of the 
fittest” in natural selection and corresponds to an organism’s ability to survive, mate, and reproduce (Talbi, 
2009; Wright, 1932). The landscape was thought to have several peaks while the population would evolve by 
climbing uphill, thereby increasing fitness (Coello Coello et al., 2007; T. C. Jones, 1995). Much like the fitness 
landscape was initially used to examine and comprehend biological systems, it has also been applied to 
optimisation problems (Talbi, 2009).  
 
Figure 2.3 shows an optimisation problem where points representing all possible solutions are visualised as a 
fitness landscape. For each solution, the decision variables (genes) dictate their quality (fitness), which is 
expressed as the height of the landscape. Therefore, the aim is to find the peaks, as these will contain the optimal 
solutions (Knowles et al., 2008). More specifically, the intention is to identify the highest peak, known as the 
global optimum; as these solutions equate the absolute optimum value of the objective function, while the other 
peaks are known as local optima (Deb, 2012). However, it is often impossible to conclude whether the current 
best solution is located at a local or a global optimum and some optimisation algorithms are more effective in 
finding global optima and avoiding local ones (Weise, 2009).  
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Figure 2.3.The fitness landscape 

2.3 Classification of optimisation algorithms 
 
Optimisation algorithms can be categorised in a number of ways, and the selection of an optimisation algorithm 
is dependent on the type of optimisation problem that it should solve. Generally, algorithms have search 
principles that are either deterministic or stochastic: deterministic algorithms use specific rules when moving 
from one solution to another, where the same inputs will always yield the same results; alternatively, the 
transition principles in stochastic algorithms are probabilistic, so different solutions might be produced each 
time (Deb, 2012; Weise, 2009). Due to their randomness element, stochastic approaches are typically more 
effective in finding global optimal solutions and handling complex problems such as black box optimisation; 
however, the accuracy of the solution is often compromised, and more time is required for a higher level of 
precision (Deb, 2001; Kvasov & Mukhametzhanov, 2018). On the other hand, deterministic approaches can be 
considered unfeasible for problems with a complicated structure and a large search space, as an exhaustive 
search (brute force) often becomes the only option, making the process extremely time intensive (Weise, 2009). 
 
This study is focused on black-box optimisation methods, which must obtain a balance between exploring the 
entire design space and focusing on a promising region to find an optimal solution (Wortmann, 2017b). These 
methods have been further categorised as follows: direct search, model-based and metaheuristics. 
 

2.3.1 Direct search 
 
Direct search is most commonly known as an unconstrained optimisation method which does not utilise 
derivatives (Kolda et al., 2003). The term seemingly first appeared in 1961, when Hooke and Jeeves described 
it as sequential examination of trial solutions, by means of a certain strategy (Hooke & Jeeves, 1961). Unlike 
gradient-based methods, which utilise the derivative of the objective function, direct search methods do not 
require any information about the gradient, but directly use objective function values to determine search 
directions (Deb, 2012; Rios & Sahinidis, 2013). Generally, the algorithm begins with a possible solution in the 
search space and explores a set of trial points; if one is found to be more optimal, it will replace the original 
solution and the same process continues until the algorithm converges; otherwise, a new set of trial points are 
examined (Audet & Hare, 2017). This means, the set of points create a direction of search, while the algorithm 
simply relies on the relative rankings of objective values to compare solutions (Lewis et al., 2000). 
 
Direct search methods can be categorised into both local and global approaches, depending on their scope within 
the search space. Two well-known local direct search methods are the Hooke-Jeeves method and the Nelder-
Mead simplex method (Hooke & Jeeves, 1961; Nelder & Mead, 1965). The Hooke-Jeeves method employs the 
coordinate directions of the search space to conduct a series of exploratory moves in order to gain insight into 
the objective function; successful moves are followed by pattern moves, which accelerate the search by 
determining an ideal direction based on previously acquired information. The Nelder-Mead simplex method 
consists of constructing a simplex (i.e., a collection of points in the search space), where the vertices are adjusted 
at each iteration by using one of five operators: reflection, expansion, outer contraction, inner contraction and 
shrinkage (Baeyens et al., 2016; Ravindran et al., 2006). 
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DIRECT is an example of a global direct search algorithm, with its name being an acronym for dividing 
rectangles (D. R. Jones et al., 1993). Figure 2.4 illustrates three iterations of DIRECT: in this method, the search 
space is partitioned into hyper-rectangles and the objective function value is assessed at each rectangles centre 
point; favourable rectangles are then subdivided for further search until the algorithm converges (D. R. Jones & 
Martins, 2021). 
 

 
Figure 2.4. Three iterations of the DIRECT algorithm, adapted from (Wortmann, 2017a) 

2.3.2 Model-based methods 
 
Model-based methods attempt to accelerate the optimisation process by utilising an approximated model of a 
black-box problem (Wortmann & Nannicini, 2016). This model is known as a surrogate model, which mimics 
the behaviour of a high-fidelity simulation model in a simplified manner and makes predictions, by exploring 
the connection between the input and output variables (D. Yang et al., 2016). It is formed through the 
interpolation of a mathematical function by relating a set of chosen decision variables and their objective 
function values, in order to estimate the design space (Wortmann et al., 2015). Global model-based methods 
construct these models using various statistical (e.g. Polynomial Regression and Kriging) and machine learning-
related (e.g. Neural Networks and Support Vector Machines) techniques (Wortmann, 2017b). Figure 2.5 shows 
three iterations of a model-based algorithm. At each iteration of the optimisation process, a promising solution 
is obtained and evaluated using a high-fidelity simulation model; the data is then used to update the surrogate 
model, increasing its complexity (Koziel & Yang, 2011). Thus, this method alternates between improving the 
accuracy of the surrogate model and using it as a guide to identify further solutions (Wortmann & Nannicini, 
2016). As a result, the computational cost of the simulation is reduced, when compared to optimising the high-
fidelity simulation model directly, while these methods typically only require a small number of iterations until 
a termination criterion is met (Koziel et al., 2011). 
 

 
Figure 2.5. Three iterations of a global, model-based algorithm, adapted from (Wortmann, 2017a) 

2.3.3 Metaheuristics  
 
Metaheuristics comprise the primary subfield of stochastic optimisation, which employ elements of randomness 
to identify optimal solutions: they are generally applied to optimisation problems with a large search space and 
little available knowledge about the inner workings as well as the potential outcomes of the problem (Luke, 
2016). A heuristic is an intuitive decision-making procedure, implemented within an optimisation algorithm: it 
guides the search process, without the guarantee of discovering a global optimal solution. Heuristics are 
typically created for a particular type of problem, whilst metaheuristics apply heuristics in an abstract manner 
to provide a more general strategy, which has the ability to escape local optima and can be applied to a number 
of different problems (Hillier & Lieberman, 2010; Weise, 2009). This involves an iterative process, combining 
the exploration of the search space with the exploitation of potentially feasible solutions (Abo-Hamad & Arisha, 
2011). These two factors should be relatively balanced, as too much exploitation can cause the algorithm to 
become stuck in local optima whilst too much exploration can cause difficulty with convergence, thus slowing 
down the optimisation process. The selection and assessment criteria applied by metaheuristics are often nature 
inspired, such as ensuring the survival of the fittest solutions, by continually updating the best solution found 
thus far  (X.-S. Yang, 2011). Metaheuristics are favoured for their easy implementation and applicability to a 
wide range of problems, regardless of complexity or size; however, they also tend to have a high computational 
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cost and poor convergence properties (Wortmann et al., 2015). These methods are either population-based (e.g., 
evolutionary algorithms and swarm intelligence) or trajectory-based (e.g., simulated annealing): while 
population-based algorithms use multiple candidate solutions in their search, trajectory-based algorithms only 
keep around a single candidate solution throughout the search process (Luke, 2016; X.-S. Yang, 2011). Figure 
2.6 shows three iterations of a genetic algorithm: one of the most commonly used metaheuristics.   
 

 
Figure 2.6. Three iterations of a genetic algorithm, adapted from (Wortmann, 2017a) 

Evolutionary Algorithms (EA) 
 
Evolutionary optimisation approaches mimic the behaviour of biological principles, to drive the search for an 
optimal solution (Pintér, 2002). They are population-based methods and refine a set of solutions through an 
iterative process, making them especially suitable for multi-objective optimisation, as they possess the ability 
to discover multiple optimal solutions in one iteration (Weise, 2009). Despite there being a number of different 
evolutionary algorithms (i.e, genetic algorithms, evolution strategy, evolutionary programming and genetic 
programming), they are all driven by evolutionary principles and possess operations of selection and search, 
where favourable solutions are duplicated and new solutions are created through a partial exchange of 
information (Deb, 2001). Genetic algorithms are the subset of EA’s most relevant in this study; they are 
described further in the next section.  
 

2.4 Genetic Algorithms (GA) 
 
Genetic algorithms are a subcategory of evolutionary algorithms, rooted in the biological concept of natural 
selection (Goldberg, 1989). John Holland conceptualised GA’s during the 1960’s, being motivated by selective 
breeding principles to maintain desirable characteristics within a population (Holland, 1975; Reeves, 2010). The 
algorithm identifies each point as an individual with a set of genes (decision variables), giving them a certain 
fitness value, which will guide the evolution of favourable solutions (Rios & Sahinidis, 2013). A set of 
individuals (solutions) make up a population, and their genetic information is stored in strings known as 
chromosomes, with certain biological processes making changes to their composition, in turn creating new 
individuals (Audet & Hare, 2017). The algorithm keeps around a population of candidate solutions of which the 
population size is generally specified by the user and will affect the performance of the algorithm: an overly 
large population size could result in an unnecessary addition of computational time, whilst a small population 
size might cause premature convergence with less accurate results (Reeves, 2010).  
 

2.4.1 The genetic algorithm process  
 
The entire process of a genetic algorithm is illustrated in Figure 2.7. The population in its entirety will undergo 
a number of transitions, each one being referred to as a generation, until no further significant improvements 
occur or another stopping criterion is met (Arora, 2015). The initial population is typically created at random, 
after which the workings of a GA consist of three main operators to complete each subsequent generation: 
selection, crossover and mutation (Floudas & Pardalos, 2009). 
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Figure 2.7. The genetic algorithm process 

Selection 
 
The selection operator ensures that the fittest members of the population survive and duplicate, while the least 
fit are eliminated, keeping the population size the same (Deb, 2001). Firstly, each candidate solution (individual) 
within the population, represented by a string of decision variables (genes), is evaluated to find their fitness, 
which corresponds to their objective function value (Chong & Zak, 2013). The solutions with higher fitness 
values are chosen to form a mating pool, for which a number of different selection procedures have been 
proposed (Reeves, 2010). A common method is tournament selection, where the selection takes place in a 
randomly created subpopulation that is given the opportunity to interact (Audet & Hare, 2017). As shown in 
Figure 2.8, solutions are compared in pairs, of which the fitter option will become part of the mating pool: each 
solution should be compared twice, giving them either one, two or no copies (Deb, 2001).  
 

 
Figure 2.8. Tournament selection, adapted from (Deb, 2001) 

 

Crossover 
 
The crossover operator randomly combines parental solutions from the mating pool to create new offspring 
solutions, with different and potentially more favourable traits (Reeves, 2010). This involves exchanging 
substrings of two parent chromosomes, which can be done in a number of different ways. A one-point crossover 
is performed by assigning a crossing site and interchanging the parts on one side of this site, as shown in Figure 
2.9. The crossover operation can also use multiple crossing sites, such as the two-point crossover illustrated in 
Figure 2.9 (Chong & Zak, 2013). 
 

   
Figure 2.9. One-point crossover (left) and two-point crossover (right) 
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Mutation 
 
The mutation operator randomly modifies an offspring solution, with one or more adjustments being made to 
the features of their chromosomes (Reeves, 2010). Although most mutations are disadvantageous or have no 
effect, this is mainly done to maintain diversity amongst the offspring and potentially cause better survivability, 
(Arora, 2015; Hillier & Lieberman, 2010). In the mutation operator, digits of a chromosome are randomly 
changed at a given probability, which is typically a low value (Chong & Zak, 2013). Figure 2.10 shows a 
chromosome where one digit has been changed to create a new solution.  

 

 
Figure 2.10. The mutation operator 

2.4.2 NSGA-II 
 
NSGA-II (Deb et al., 2002) is a genetic algorithm, with a few distinct operators making it useful for MOO. The 
algorithm has three main features: using elitism, preserving diversity, and emphasising non-dominated solutions 
(Deb, 2012). After randomly initialising a parent population (Pt) of size N, the solutions are ranked and an 
offspring population (Qt) of the same size is created using binary tournament selection, crossover, and mutation. 
The combined populations form a new population (Rt) of size 2N, of which all solutions are ranked based on 
their nondomination level. This process of non-dominated sorting involves assigning solutions with a fitness 
value, according to the non-dominated front that they belong to, as illustrated in Figure 2.11, where the initial 
front is given the best fitness value, followed by all subsequent fronts thereafter. The fact that previous 
population (Pt) members are also considered in this ranking process, describes a mechanism known as elitism. 
The population is cut down to its initial size N, with the best fronts being accepted first. When a partial front is 
needed to fill the remaining slots of the new population, members of this front are ranked according to a 
crowding distance calculation as shown in Figure 2.11, which reveals how close each solution is to their 
neighbouring solutions: the solutions within the least crowded regions are accepted to ensure a better spread 
(diversity) across the front. All other solutions are rejected, and the cycle continues with the newly formed 
population (Pt+1) becoming the parent population of the next generation.  
 

 
Figure 2.11. Non-dominated sorting scheme (left) and crowding-distance calculation (right) 

 

2.4.3 SPEA-II 
 
SPEA-II (Zitzler et al., 2001) is another type of genetic algorithm: it is similar to NSGA-II but involves a few 
different mechanisms. In addition to utilising a population, the algorithm keeps an external archive of a constant 
number of non-dominated solutions, and both archive and population members are given a strength (fitness) 
value as illustrated in Figure 2.12. This value is representative of the number of solutions the evaluated solution 
is dominated by as well as the number of solutions that those solutions dominate, so a lower value is more 
favourable. Environmental selection updates the archive set at each generation, by accepting all non-dominated 
solutions and when required, the best dominated solution thereafter, until the archive is filled: in the case that 
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the archive size exceeds the predefined limit, a truncation method is used to iteratively remove those members 
which have the minimum distance to another solution. The algorithm will terminate once a maximum number 
of generations is reached or another stopping criterion is met.  
 

 
Figure 2.12. SPEA-II fitness assignment scheme, adapted from (Zitzler et al., 2001) 

 

2.5 The hypervolume indicator  
 
The hypervolume indicator is one of the most widely used indicators to evaluate the performance of multi-
objective algorithms, as it simultaneously accounts for proximity to the Pareto front, diversity and spread  
(Guerreiro et al., 2021). It is also referred to as the “size of the space covered” and assesses the quality of Pareto 
front approximations in a single value, by measuring the size of the dominated portion of the objective space 
(Emmerich & Deutz, 2014). As illustrated for a minimisation problem in Figure 2.13, the indicator maps the set 
of non-dominated points found by an optimisation algorithm to a chosen reference point in order to measure the 
size of the dominated space; therefore, a greater hypervolume indicates a larger dominated region, and thus a 
better approximation of the pareto front.   
 

 
Figure 2.13. The hypervolume indicator, adapted from (Custódio et al., 2012) 

 

2.6 Optimisation in grasshopper  
 
There are a number of existing optimisation tools for GH, which incorporate the algorithms described in the 
previous sections. This section outlines a number of available tools for both single-objective problems and 
multi-objective problems: these are illustrated in Figure 2.14. 
 



12 
 

 
Figure 2.14. Optimisation tools in Grasshopper 

 

2.6.1 Single-objective optimisation tools 
 
Goat (Rechenraum GmbH, 2023) uses a mathematically rigorous approach to provide fast and deterministic 
results, where the same problem will yield the same optimal outcome with every optimisation run. The plugin 
contains several gradient free optimisation algorithms: constrained optimization by linear approximation 
(COBYLA), bound optimization by quadratic approximation (BOBYQA), subplex algorithm (Sbplx), DIRECT, 
and controlled random search 2 (CRS2). It is also inspired by the graphical user interface (GUI) of Galapagos 
and uses the mathematical optimisation libraries NLopt.  
 
Galapagos (Rutten, 2013) employs two metaheuristics: the genetic algorithm (GA) and simulated annealing 
(SA). Although both have advantages and disadvantages, the GA solver is more successful in identifying 
reliable intermediate solutions early on, while the SA solver is more appropriate for navigating rough 
landscapes.  
 
Optimus (Cubukcuoglu et al., 2019) is a metaheuristic tool, implementing the self-adaptive differential 
evolution with ensemble of mutation strategies (jEDE). The control parameters are updated in a self-adaptive 
approach where the algorithm is adapted according to the nature of the problem, while it uses three mutation 
operators, as opposed to one.   
 
Silvereye (Cichocka et al., 2017) is based on the particle swarm optimisation (PSO) algorithm. It implements a 
ParticleSwarmOptimization.dll file, which is a shared library with employment of the core version of the PSO 
algorithm, and it also emulates the GUI design of Galapagos.  
 

2.6.2 Multi-objective optimisation tools  
 
Due to the focus of this thesis being a multi-objective optimisation problem, Octopus, Wallacei and Opossum 
were applied and investigated in this study.  
 

Octopus 
 
Octopus (Vierlinger, 2013) is based on the GUI of Galapagos and incorporates SPEA-II (section 2.4.3) as its 
main algorithm. The tool includes the choice of two different strategies for the reduction operator, which 
truncates the non-dominated set when it is too large to fit the desired archive size: SPEA-II and HypE reduction. 
It also contains the choice four different mutation strategies: Polynomial, Alternative Polynomial, HypE, and 
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Custom Mutation. In this study, the HypE (Bader & Zitzler, 2008) operator was utilised for both strategies. A 
picture of the plug-in can be seen in Figure 2.15. 
 

 
Figure 2.15. Octopus plug-in interface 

Wallacei 
 
Wallacei (Makki et al., 2022) integrates NSGA-II (section 2.4.2) as its primary algorithm, as well as utilising 
the K-means method as a clustering algorithm (Morissette & Chartier, 2013), to further analyse outputted 
results. The tool also employs the JMetal, LiveCharts and HelixToolkit libraries. Refer to Figure 2.16. for a 
visual representation of the plug-in. 
 

 
Figure 2.16. Wallacei plug-in interface 
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Opossum 
 
Opossum (Wortmann, 2017b) can be used for both single-objective optimisation (SOO) and multi-objective 
optimisation (MOO): for SOO, the tool includes model-based RBFOpt and the evolutionary CMA-ES algorithm 
while for MOO, it employs model-based RBFMOpt, and evolutionary MACO (Ant Colony), MOEA/D, NSGA-
II and NSPSO (Particle Swarm) algorithms from the Pygmo 2 library.  
 
RBFOpt (Costa & Nannicini, 2018) is a model-based optimisation library, where a surrogate model is built to 
approximate the design space using radial basis functions (Gutmann, 2001). This is an interpolation technique, 
specified for problems where each evaluation of the objective function is expensive (i.e., a time-consuming 
computer simulation), meaning that the duration of the optimisation process is dominated by the function 
evaluations. The goal of this technique is to provide an estimation of the global optimum, using as few function 
evaluations as possible. RBFMopt is the multi-objective version of this algorithm and was implemented within 
this study. Figure 2.17. shows a snapshot of the plug-in.  
 

 
Figure 2.17. Opossum plug-in interface
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3 Methodology 
 
An overall workflow of the study is illustrated in Figure 3.1. The same process was carried out for three 
different alternatives: the first involved testing 1260 combinations of different passive renovation measures on 
a simple shoebox model; the second considered both the same model and passive renovation measures, in 
addition to a number of active renovation measures, resulting in a total of 10080 combinations; and the third 
consisted of testing only the passive measures on a more complex geometry, modelled after a real building.  
 
For each of these three variations, a parametric model was created using the GH plugin within the software 
Rhino 3D. Most input parameter values were sourced externally and incorporated within the GH script 
numerically, while the energy model was defined using the Ladybug (LB) and Honeybee (HB) components 
within GH. Simulations were conducted to obtain three outputs for each iteration: the annual energy need in 
kWh/(m²·y), the environmental impact in kgCO2 equivalent, and the cost in SEK.  
 
Colibri components in GH were used to carry out a ‘brute force’ to obtain results for all possible iterations. 
Once the most favourable solutions were identified, an optimisation was performed using three different 
optimisation tools available in GH: Octopus, Wallacei, and Opossum. The results were compared to those 
found by Colibri and the performance of each optimisation tool was evaluated in terms of different criteria, 
including the time taken and the accuracy of the solutions found.  
 
 

 
Figure 3.1. Project workflow 

 
 

3.1 Shoebox model 
 
The main energy model inputs for the shoebox model can be found in Table 3.1. The simulation model 
consisted of a simple geometry, measuring 5 m × 10 m × 3 m, with a 30 % window-to-wall ratio (WWR) on 
the south façade. Most inputs corresponded to recommended values from the Swedish building regulations 
(Boverket, 2017, 2020a) and SVEBY (SVEBY, 2012), while the airtightness was based on a prediction model 
for airtightness in Sweden (Zou, 2010). The U-values were calculated in HB, with the roof, wall, and ground 
compositions being modelled after typical constructions for a generic Swedish apartment building from the 
1970’s (Boverket, 2013). The exterior wall composition can be found in Figure 3.2. 
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Table 3.1. GH script input values for the shoebox model 
Description  GH script value Source/calculation method  
Heated floor area (Atemp) / m2  50 GH script 
External wall area / m2 85.5 GH script 
Window area / m2 4.5 GH script 
People load / (people/m2)  0.028 BEN2 / SVEBY 
Heating setpoint / °C  21 BEN2 / SVEBY 
Building airtightness / (l/(s·m²)) at q50 1.2 Airtightness prediction model 
Ventilation air flow / (l/(s·m²)) 0.35 BBR  
Domestic hot water / (kWh/(m²·y)) 25 BEN2 / SVEBY 
Household electricity / (kWh/(m²·y))  30 BEN2 / SVEBY 
Radiant fraction from electricity / %  70 BEN2 / SVEBY 
Property electricity / (kWh/(m²·y)) 15 SVEBY 
External roof U-value / (W/(m²·K))  1.474 GH script 
External wall U-value / (W/(m²·K)) 0.376 GH script 
Ground U-value / (W/(m²·K)) 2.046 GH script 
Window U-value / (W/(m²·K)) 3.5 GH script 
Weather file  Copenhagen LB EPW map  

 
 

 
Figure 3.2. Exterior wall construction detail 

 
 

3.1.1 Control method 
 
In order to validate the results obtained by the simulation model, a control method was carried out. This 
consisted of making several simultaneous adjustments to the inputs of the GH script and a manual calculation 
method contained within an Excel spreadsheet. The results for annual heating energy need were compared 
after each change, to ensure they were viable, before adding more complexity to the GH script. The different 
adjustments and their results can be found in Appendix A. 
 

3.2 Energy renovations 
 
The renovation measures consisted of testing both passive and active measures, in an attempt to reduce the 
building’s energy need. An overview of these can be found in Figure 3.3. The passive measures involved the 
reduction of heat losses through the façade, roof and glazing by decreasing their U-values, thus lowering the 
energy demand for heating. The active measures comprised installing a PV system to reduce the electricity 
being bought as well as integrating an exhaust air heat pump (EAHP) for the heating of domestic hot water 
(DHW), which would replace a portion of district heating (DH) with electricity.   
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Figure 3.3. Overview of considered renovation measures 

 

3.2.1 Passive measures  
 
The façade renovations involved adding a layer of insulation to the outer side of the exterior walls. Five 
different insulation types were tested: EPS, glass wool, cellulose fibre, hemp fibre and wood fibre, along with 
six variations in thicknesses ranging from 100 mm to 350 mm, with increments of 50 mm in between. The roof 
renovations included the addition of three insulation types of EPS, cellulose fibre and glass wool as well as 
three different thicknesses of 100 mm, 200 mm, and 300 mm.  
 
The window renovations consisted of two different strategies: the first was adding an additional pane of glazing 
to the existing window, decreasing its U-value to 1.7 W/(m2·K), while the second was replacing the existing 
window with a new triple glazed window, which had a U-value of 1.2 W/(m2·K). 
 

3.2.2 Active measures  
 
Four different PV system sizes were tested for installation on the roof, taking up different proportions of its 
area: 20 %, 40 %, 60 %, and 80 %. This would enable a fraction of the electricity demand to be self-produced, 
whilst also allowing for any over-production to be sold back to the grid.  
 
The installation of an EAHP was used for covering the DHW demand, whilst the space heating was still 
covered by DH. Consideration of a seasonal coefficient of performance (SCOP) of 3 meant that the same DHW 
need was met with 1/3 of the energy previously required, now in the form of electricity.  
 

3.3 Life cycle assessment 
 
To determine the environmental impact of each renovation measure, a life cycle assessment (LCA) was carried 
out. The approach taken as well as the boundaries and limitations of this assessment are defined in this section.  
 

3.3.1 Goal and scope 
 
The purpose of this LCA was to evaluate the environmental impact of each renovation measure in terms of 
their global warming potential (GWP), measured in kgCO2 equivalent. A reference study period of 30 years 
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was chosen to be somewhat in line with the year 2050, at which the EU aims to be carbon neutral, and to 
determine the total impact, each functional unit was converted to the functional unit used in this study: 
kgCO2eq./(m2·Atemp).  
 

System boundaries  
 
The LCA’s system boundaries aligned with those from NollCO2 (SGBC, 2022), with some exceptions, and all 
considered stages are highlighted in Figure 3.4. The certification system follows the calculation standard SS-
EN 15978:2011 to determine the climate impact of a building, while excluding the impact from outside of the 
system boundary (module D) as well as the end of life stage (modules C1-C4): this is set to zero since waste 
incineration in Sweden is required to be fossil-free by 2045, and NollCO2’s calculation period of 50 years 
means that the earliest a building will be disposed of is in 2070. For the disposal of any replacements (module 
B4) required before 2045, an interpolated climate impact value was used. As modules B1-B3 are difficult to 
forecast and expected to have a marginal climate impact compared to the rest of the user stage, they are not 
included in the NollCO2 definition, and since the renovation carried out in this study was considered as 
refurbishment, module B5 was also excluded from this study. Additionally, the impact of operational water 
use (module B7) was disregarded due to lack of available information, although the heating of water was 
included in the impact of operational energy (module B6). The expected service life of various building 
elements and products was also taken from NOllCO2, which was 30 years for façade and roof elements as well 
as electrical systems, and 20 years for hot water systems. For façade and roof renovations, the impact of any 
extra materials and elements required for the installation of insulation, such as studwork, plaster, and fixings, 
were also excluded from calculations.  
 

 
Figure 3.4. SS-EN 15978:2011 life cycle stages, with considered stages highlighted 

 

Limitations 
 
It should be noted that this LCA involved several simplifications and estimations. In addition to the exclusion 
of certain façade and roof elements, the heat pump calculations also included a lack of detail, as the values 
sourced from One Click LCA represented generalised data. The impact values obtained for A1-A5 were 
obtained from Boverket’s climate database, which also contains generic values, specifically the transport value, 
which was not site specific.  
 

3.3.2 LCA of passive measures  
 
The environmental impact of all passive measures for modules A1-A5 was calculated using values from 
Brimstone: a GH component plugin which retrieves data from Boverket’s climate databases. These values, 
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which can be found in Table 3.2, were then multiplied to their respective mass attributed with the amount of 
each element used. Other properties regarding the different insulation materials can be found in Appendix B. 
In addition to glazing, the value used for the storm window installation also included impact values for a 
sealant, wood trim and spacer, which was sourced from the One Click LCA database (One Click LCA, 2023), 
while for the installation of the triple glazed window, transportation (C2) and disposal (C4) of the existing 
window, was also considered. Since the service life for these elements was 30 years, the impact for disposal 
(B4) was zero.   
 

Table 3.2. Environmental impact of passive renovation measures, in kgCO2 eq./kg 
 A1 – A3 A4 A5 A1-A5 
Façade insulation  
EPS 3.200 0.035 0.282 3.517 
Glass wool  0.860 0.035 0.077 0.972 
Cellulose fibre 0.160 0.035 0.002 0.197 
Hemp fibre 0.644 0.117 0.065 0.826 
Wood fibre 0.297 0.035 0.028 0.360 
Roof insulation  
EPS 3.200 0.035 0.282 3.517 
Glass wool 0.890 0.035 0.080 1.005 
Cellulose fibre 0.160 0.035 0.002 0.197 
Window renovations  
Storm window 2.128 0.035 0.297 2.460 
Triple glazed window 2.300 0.042 0.312 2.654 

 

3.3.3 LCA of active measures 
 
The environmental impact values of the active measures can be found in Table 3.3. The PV system impact for 
stages A1-A5 included a module impact of 797 kgCO2 eq./kWp, based on a PV module manufactured in China 
and used in Europe (Müller et al., 2021) as well as a balance of system (BOS) value of 240 kgCO2 eq./kWp , 
which considered elements such as mounting, wiring and installation, and was based on a study including a 
BOS carbon impact of a European energy mix (Friedrich et al., 2021). The inverter replacement was discarded, 
whilst the service life of other PV system elements was considered to be beyond the study period, resulting in 
an impact of zero. The EAHP carbon impact values were sourced from One Click LCA, and included the 
impacts of the HP unit, storage tanks, insulated pipe work and the refrigerant. For the replacement of the EAHP 
(B4), the impact is the depreciated value after 20 years, which was interpolated in accordance with NollCO2.  
 

Table 3.3. Environmental impact of active renovation measures 
 A1-A5 B4 
PV system / (kgCO2 eq./kWp) 1037 - 
EAHP / (kgCO2 eq.) 746 152 

 

3.3.4 Operational energy (B6) 
 
The environmental impact of operational energy was calculated using 2019 values from NollCO2 (SGBC, 
2022), which are shown in Table 3.4. Any electricity sold was assumed to reduce the environmental impact, 
by offsetting coal used within the Nordic Pool’s electricity market. This value was linearly interpolated to zero 
by 2050 in accordance with the EU’s carbon neutrality goal, whilst the impact from utilising DH or electricity 
from a Swedish mix were interpolated to zero by 2045, in line with Sweden’s net zero target.  
 

Table 3.4. NollCO2 2019 environmental impact and offset values, in kgCO2 eq./kWh 
Swedish district heating 

mix 
Swedish electricity 

mix 
On-site consumption Exported renewable 

electricity 
0.060 0.022 0 -0.820 
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3.4 Life cycle costing 
 
To evaluate the economic feasibility and impact of each renovation option, an LCC analysis was carried out. 
This included the initial cost, the operational cost after implementing the measure, and the cost for any 
replacements required throughout the study period of 30 years. All costs are shown as a present value, and 
equations 1 and 2 were used to convert operational costs as well as any replacement costs from their future 
values. 
 

𝑃 =  𝐹(1 + 𝑖)  [𝑃] = 𝑆𝐸𝐾 (1)   
 

𝑃 = 𝐴
1 − (1 + 𝑔) (1 + 𝑖)

𝑖 − 𝑔
  

[𝑃] = 𝑆𝐸𝐾 (2)   

 
Where F is the future value, P is the present worth, A1 is the annual energy cost when N = 1, N is the number 
of years, g is the growth rate and i is the interest rate.  
 
The fixed input values used within LCC calculations are shown in Table 3.5. The district heating price reflects 
a mean value, sourced from a study that evaluated pricing data for a number of providers within Sweden 
(Egüez, 2021). The purchasing and selling price for electricity was based on the Nord Pool spot price; it was 
considered as a fixed price with no price fluctuations throughout the study period (IEA, 2022). A tax reduction 
of 0.60 SEK/kWh, as currently offered by the Swedish government, was also included in the selling price. For 
the electricity price growth, an average value was obtained from changes in future Swedish electricity prices, 
predicted by the European Commission, until the year 2050 (Statista, 2023). Since the price growth for district 
heating is difficult to predict, the same average value for used. The interest rate was based on the latest value 
from February 2023, as decided by Sweden’s central bank (Sveriges Riksbank, 2023).  

 
Table 3.5. Input values used for LCC calculations 

Description Value Source/calculation method 
District heating price / (SEK/kWh) 0.85 District heating price study  
Swedish electricity mix purchasing price / (SEK/kWh) 2.5 National survey report 2021 
Swedish electricity mix selling price / (SEK/kWh) 2 National survey report 2021 
Electricity price growth / % 0.5 Average of future predictions 
District heating price growth / % 0.5 Average of future predictions  
Interest rate / % 3 Sveriges Riksbank 

 
The energy prices were multiplied by the annual amount of energy bought and sold throughout the study 
period, for both electricity and DH. The difference between these values gave the total annual operational 
costs, which were then added to the initial and replacement costs for each measure, to obtain the total net 
present value (NPV) for the 30-year calculation period.  
 

3.4.1 Passive renovation costing 
 
The section cost of each type of insulation material and thickness considered in this study can be found in 
Table 3.6. This includes the material cost, the labour cost for installation, and the hire of scaffolding: these 
were sourced from Wikells cost books (Wikells Sektionsfakta, 2022), with the exception of the material cost 
of the hemp fibre and wood fibre insulation, which was obtained from a manufacturer (Optimera, 2023). These 
values were then multiplied by the respective façade or roof area to provide their final initial cost within the 
GH script.  
 

Table 3.6. Cost inputs for varying thicknesses of insulation, in SEK/m2 
 100 mm 150 mm 200 mm 250 mm 300 mm 350 mm 
Façade insulation       
EPS 1777 1888 2083 2252 2559 2727 
Glass wool  1589 1728 1933 2183 2450 2590 
Cellulose fibre 1615 1690 1864 2084 2375 2489 
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Hemp fibre 1654 1884 2101 2476 2706 2866 
Wood fibre 1581 1771 1937 2293 2479 2850 
Roof insulation       
EPS 495 - 621 - 852 - 
Glass wool 147 - 217 - 277 - 
Cellulose fibre 407 - 433 - 462 - 

 
The costs associated with both window renovation measures were also sourced from Wikells cost books and 
can be found in Appendix B. The total cost of the storm window renovation consisted of a combination of 
costs for each individual component, including the additional pane of glazing as well as a sealant, wood trim 
and spacer channel. For the addition of a triple glazed window, the total cost includes that of the new window, 
and the demolition and removal of demolition materials of the existing window.  
 

3.4.2 Active renovation costing 
 
The cost of the PV system was sourced from a report, providing average pricing for turnkey grid-connected 
PV systems (IEA, 2022). A price of 13.56 SEK/Wp was selected and applied to all three PV system sizes: this 
was an average price for multi-family houses with a size of 50 - 100 kWp. A value of 17.4 % of the system 
price was used for the cost of the inverter, which was replaced after 15 years.  
 
The total cost concerning the installation of the EAHP system can be found in Appendix B. This included unit 
prices, labour costs for installation, and insulated piping as well as a heat pump replacement after 20 years, 
with removal and disposal of the existing unit. The NIBE S735 and the NIBE UKV 100 were selected for 
costing the heat pump unit and the accumulator tank (NIBE, 2023), whilst all other costs were sourced from 
Wikells cost books. 
 

3.5 Real building model 
 
The main inputs for the more complex energy model can be seen in Table 3.7. This was modelled after a 
residential building located in Skåne county. The building was constructed in 1942 and consisted of four floors 
and a basement, with a total of 37 apartments. A visualisation of the building model can be found in Figure 
3.3. 
 

Table 3.7. GH script input values for the real building model 
Description  GH script value Source/calculation method  
Heated floor area (Atemp) / m2  3168 GH script 
External wall area / m2 1396 GH script 
Window area / m2 282 GH script 
People load / (people/m2)  0.032 BEN2 / SVEBY 
Heating setpoint / °C  21 BEN2 / SVEBY 
Building airtightness / (l/(s·m²)) at q50 1.2 Airtightness prediction model 
Ventilation air flow / (l/(s·m²)) 0.35 BBR  
Domestic hot water / (kWh/(m²·y)) 25 BEN2 / SVEBY 
Household electricity / (kWh/(m²·y))  30 BEN2 / SVEBY 
Radiant fraction from electricity / %  70 BEN2 / SVEBY 
Property electricity / (kWh/(m²·y)) 15 SVEBY 
External roof U-value / (W/(m²·K))  0.735* Building data 
External wall U-value / (W/(m²·K)) 0.711* Building data 
Ground U-value / (W/(m²·K)) 2.046 Building data 
Window U-value / (W/(m²·K)) 2.697* Building data 
Weather file  Copenhagen LB EPW map 

*These values include a thermal bridge factor of 20 % 
 
The geometry of the building and its surroundings were created in GH, by retrieving values from a database 
containing building specific information such as a WWR for each façade, which was used to generate the 
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windows. The resulting building model took approximately 6 minutes to simulate, which was unfeasible for 
this study. To ensure a reasonable simulation runtime, slight simplifications were made to the model by 
combining the windows into a single glazing area for the north, east and west facades as well as removing 
unnecessary geometries from the surroundings. The model consisted of five thermal zones, with one for each 
floor and had a simulation runtime of 1 minute and 28 seconds. The initial building geometry and the simplified 
model can be found in Appendix C. Running the more complex model with all passive and active measures 
would be impractical; therefore, the active measures were disregarded to scale down the total simulation time 
to a reasonable number for this study. 
 

3.6 Optimisation tools 
 
After running all iterations with Colibri, several optimisation runs were executed with Octopus, Wallacei and 
Opossum. Each optimisation plugin was connected to sliders corresponding to the different decision variables 
as well as the three objective functions shown in Figure 3.5, where the aim was to identify the combination of 
decision variable values that would minimise the three objectives. All values can be found in Table 3.8. The 
results were retrieved as a list comprising the values found at each iteration of the algorithm, and post-
processed in excel.  
 

 
Figure 3.5. Simulation input variables and objectives 

 
Table 3.8. Decision variables and objectives 

Input parameters    
 Façade insulation type  EPS 

 Glass wool (GW) 
 Cellulose fibre (CF) 
 Hemp fibre (HF) 
 Wood fibre (WF) 

 Façade insulation thicknesses  0         mm 
 100     mm 
 150     mm 
 200     mm 
 250     mm 
 300     mm 
 350     mm 

 Roof insulation type  EPS 
 Glass wool 
 Cellulose fibre 

 Roof insulation thicknesses  0         mm 
 100     mm 
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 200     mm 
 300     mm 

 Window type  Existing window (EW) 
 Storm window (SW) 
 Triple glazed window (TW) 

 PV system size / (% of roof area)  0           % 
 20         % 
 50         % 
 80         % 

 HVAC  No change 
   EAHP  ( COP = 3 ) 
Objectives 
 Energy Use Intensity (EUI)  / (kWh/m²Atemp) 
 CO₂ emissions (GWP)  / (kgCO₂eq./m²Atemp) 
 Net Present Value (NPV)  / (SEK/m²Atemp) 

 
The different input settings for each tool can be found in Table 3.9. The multi-objective model-based algorithm 
RBFMOpt was selected for Opossum, whilst Octopus and Wallacei contained the genetic algorithms SPEA-II 
and NSGA-II, with the HypE algorithm being selected for the reduction and mutation operators in Octopus. 
Due to the stochastic nature of these algorithms causing a different result being produced for every run, each 
run was repeated three times. For the shoebox model, three different population sizes of 10, 20 and 30 were 
tested when only considering passive measures, whilst a population size of 30 was used for all remaining runs, 
which considered both passive and active measures and the real building model. The convergence criteria 
differed between each optimisation plug-in. For opossum, the algorithm was set to stop after a solution was 
repeated a certain number of times without showing any improvement in the results: three different values of 
10, 20 and 30 were tested for this. The maximum number of generations for Octopus was set to 10; however, 
the algorithm could stop before reaching this number, on the premise that another integrated criterion was 
fulfilled. The only termination criterion for Wallacei was to specify a certain number of generations that the 
algorithm would execute, which was also set to 10. 
 

Table 3.9. Simulation tools inputs/settings 
Tools Algorithm Population size Convergence factor 
Colibri - - - 
Opossum RBFMOpt - 10, 20, 30 results without improvement 
Octopus SPEA-II & HypE 10, 20, 30  10 generations and other background criteria 
Wallacei NSGA-Ⅱ 10, 20, 30 10 generations 

 

3.6.1 Criteria for comparing optimisation tools  
 
The performance of each optimisation plug-in was evaluated using a set of criteria, including the time taken 
for each run and the accuracy of the results, while the user interface of each tool was also reviewed. Two values 
were generated to assess how successful each plugin was in identifying the most optimal solutions. The first 
was an adaptation of the hypervolume indicator: a volume was calculated for each solution, using a reference 
point with coordinates corresponding to a value 10 % greater than the maximum value for each objective found 
with Colibri, after which the solutions with the 10 largest volumes found by both the optimisation tool and 
Colibri were added and compared, by calculating their percentage difference. Due to this indicator only 
considering values that would be located near the centre of the pareto front, another value was used to evaluate 
how successful each plug-in was in identifying the minimum value of each of the three objectives: this was 
done by calculating the percentage difference between the minimum value found by the optimisation tool and 
the minimum value from Colibri, before averaging the three percentages. 
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4 Results  
 
This chapter presents the study’s results, which were obtained through a three-step process. Firstly, the analysis 
focused on the performance of three optimisation tools for the shoebox model with only passive renovation 
measures. This involved comparing the time and accuracy of the results to those extracted from Colibri for all 
possible combinations. The same assessment process was then repeated for the shoebox model with both passive 
and active measures, allowing for an investigation into the optimisation tools’ performance with a greater 
number of iterations. Finally, a simulation of a real case building was conducted to explore the impact of the 
optimisation tools on a more complex energy simulation. 
 

4.1 Shoebox model with passive measures 
 
The simulation performance outcomes for all runs considering the shoebox model with passive renovation 
measures are visible in Table 4.1. The table provides information about the total number of simulations and 
their corresponding time, based on the input settings for each plug-in. Additionally, it displays the optimisation 
tools’ success rates in finding the hypervolume, which represents the 10 most optimal solutions that minimised 
all objectives, and in identifying the three extreme cases, which contained the minimum value for each objective. 
 
The results of this set of simulations shows that all optimisation runs managed to reduce the simulation time by 
at least 74 % compared to Colibri. Regarding the optimisation tools’ settings, the table shows that reducing the 
population size in Octopus and Wallacei as well as decreasing the required number of results without 
improvement in Opossum, lead to a decreased simulation time whilst simultaneously lowering the success rates. 
Although each optimisation run started with a random selection, and the number of iterations and total running 
time may vary with the same settings, the results did not show a significant difference in success rates.  
 
Opossum generally showed the greatest time reduction, and although the shortest run for Octopus took a similar 
time of around 10 minutes, its success rates were lower, at 81 % and 91 % compared to 92 % and 99 %. As the 
stopping criterion for Wallacei meant that it would always execute 10 generations, its shortest run took 
approximately 18 minutes, while the runs with the same population size input only slightly differed in their 
results, as the total number of iterations did not change. Despite Octopus and Wallacei showing a relatively 
similar performance, Wallacei’s fixed termination setting meant that Octopus often converged sooner; however, 
for the same number of generations, Octopus took longer, as it evaluates twice the number of population 
individuals within the initial generation.  
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Table 4.1. Total simulation performance results for passive measures, with shoebox model 

 Plug-in 
Population 

size 
input 

Number of 
generations 

Time 

 
Time  

reduction 

Total 
number of 
iterations 

Success 
rate for 
hyper- 
volume 

Success 
rate for 

minimum 
values 

Passive 
measures 

Colibri - - 3:50:28 - 1260 100 % 100% 

Octopus 

30 

5 0:33:37 85 % 180 96 % 99 % 

10 0:59:58 74 % 330 98 % 100 % 

7 0:44:56 81 % 240 99 % 100 % 

20 

11 0:44:51 81 % 240 99 % 99 % 

7 0:29:30 87 % 158 98 % 100 % 

12 0:45:42 80 % 258 96 % 99 % 

10 

4 0:09:40 96 % 50 81 % 95 % 

8 0:15:47 93 % 90 96 % 99 % 

6 0:13:13 94 % 70 88 % 99 % 

Wallacei 

30 

10 0:52:13 77 % 300 98 % 99 % 

10 0:53:57 77 % 300 97 % 99 % 

10 0:54:35 76 % 300 97 % 99 % 

20 

10 0:36:05 84 % 200 97 % 98 % 

10 0:36:28 84 % 200 93 % 99 % 

10 0:36:35 84 % 200 95 % 98 % 

10 

10 0:17:33 92 % 100 84 % 97 % 

10 0:17:47 92 % 100 90 % 97 % 

10 0:17:45 92 % 100 90 % 97 % 

 
Results without 
improvement 

input 

 
  

Opossum 

30 

- 0:39:11 83 % 194 99 % 100 % 

- 0:39:57 83 % 186 100 % 100 % 

- 0:26:48 88 % 128 99 % 100 % 

20 

- 0:10:42 95 % 52 96 % 100 % 

- 0:38:11 83 % 183 99% 100% 

- 0:25:18 89 % 126 99% 99% 

10 

- 0:18:18 92 % 85 96% 99% 

- 0:09:33 96 % 42 92% 99% 

- 0:14:35 94 % 67 96% 99% 

 
  



26 
 

Figure 4.1. displays one set of the shoebox simulation results with passive measures, using Colibri and the 
optimisation tools. The scatterplots below provide a visual depiction of the difference between the number of 
iterations conducted using the optimisation tools and their respective areas of focus, compared to all 1260 
combinations simulated with Colibri. Additionally, the size of each dot on the scatterplot represents the 
hypervolume for each combination, indicating its fitness regarding all objectives. For each tool, it is clear that 
their focus was within the region where the hypervolume was the largest, whilst fewer evaluations occurred in 
less favourable areas, where the hypervolume was smaller. It can also be seen that a significant number of 
iterations were avoided by the optimisation tools, causing them to be much more efficient than Colibri. 
 

  

  

 
Figure 4.1. Shoebox model simulation results with passive measures, for Colibri and optimisation plug-ins 

The hypervolume-based distribution of simulated solutions is illustrated in Figure 4.2. The adapted 
hypervolume indicator determines the proximity of a solution to the central region of the pareto optimal front, 
where a larger hypervolume implies a closer proximity. The graph includes a box plot illustrating the range of 
the entire set of solutions as well as the range of each quartile within this set, while each dot represents a single 
solution, and the concentration of solutions at each value is indicated by the width of the violin plot. It can be 
seen that Colibri’s solutions are more widely dispersed, with a more even concentration throughout, while the 
solutions from the optimisation tools are more clustered toward the upper part of the graph with greater 
hypervolume values. Although the total range of solutions is similar for all plug-ins, the optimisation tools show 
a greater median hypervolume value than Colibri, while most of their solutions also have hypervolumes greater 
than Colibri’s median.    
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Figure 4.2. Violin plot of solution distribution and their hypervolume using Colibri and optimisation tools for the 

shoebox model with passive measures 

Figure 4.3 and Figure 4.4 show an overview of the input parameters and results for the 10 most optimal solutions 
in terms of hypervolume, found by Colibri and each optimisation tool, for the shoebox model with passive 
measures. The exact values for each package can be found in Appendix D. It is clear that the packages found 
by all optimisation tools generally aligned with those from Colibri, as the coordinates follow similar paths, with 
most of them overlapping. All plug-ins found that cellulose fibre (CF) and glass wool (GW) were the best 
insulation types for both the walls and the roof, while keeping the existing window (EW) or installing a storm 
window (ST) was more favourable than a triple glazed window (TW). There was no clear optimal wall insulation 
thickness for any plug-in, as the thicknesses ranged between all possible values, with the exception of Wallacei’s 
optimal solutions, which only contained thicknesses of 300 mm and 350 mm. Additionally, Colibri and 
Opossum found that 200 mm of insulation was generally best for the roof, while Octopus and Wallacei showed 
more variation. Although there were some slight differences in the parameters within the optimal packages 
found by each tool, it is clear that each one successfully minimised all objective functions, as the results aligned 
closely with those from Colibri.   
 

 
Figure 4.3. Input variables and results for the 10 most optimal renovation packages found by Colibri, for the shoebox 

model with passive measures 
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Figure 4.4. Input variables and results for the 10 most optimal renovation packages found by Colibri and each 

optimisation tool, for the shoebox model with passive measures 

Table  D.6 in Appendix D also shows the renovation packages that resulted in the minimum value for each of 
the three objectives, as found by each plug-in. The optimal package in terms of reaching the minimum energy 
use and cost both included the use of glass wool insulation with a 350 mm thickness, while the best window 
type was a triple glazed window for energy use and the existing window for cost. For a minimum environmental 
impact, the best renovation package consisted of cellulose fibre insulation with a 150 mm thickness for the wall 
and a 300 mm thickness for the roof, as well as the installation of a storm window. All optimisation tools 
managed to find either the same renovation packages or slight variations, while the minimum results for all 
optimisation tools were all within 0 % to 2 % of colibri’s result. For the minimum energy use, all optimisation 
tools found most of the optimal parameters, with the exception of a different window type for Octopus and 
Wallacei, and a different insulation type for Opossum. Additionally, Opossum and Octopus both found the 
optimal renovation package for minimising the carbon impact, whilst Wallacei found a slightly different 
insulation thickness. Lastly, the optimal renovation packages for cost were found by both Octopus and Wallacei, 
whilst Opossum found a different insulation thickness.  
 

4.2 Shoebox model with passive and active measures 
 
The optimisation tools’ performance results for all runs concerning the shoebox model with passive and active 
measures can be found in Appendix D. Table 4.2 is a representative of all runs, as it showcases one of the runs 
for each plug-in and provides information about the total number of simulations conducted and their 
corresponding time. It shows that optimisation tools drastically reduced the total simulation time for 10 080 
iterations, from 30 hours and 49 minutes with colibri to around 1 hour with Octopus and Wallacei using genetic 
algorithms and to 23 minutes with Opossum using model-based algorithms, while maintaining a high success 
rate in finding optimal solutions. The table also indicates that the increase in the total number of combinations 
does not necessarily lead to a proportional increase in the time and accuracy of the results for the optimisation 
tools. As an example, the Opossum simulation converged after 112 iterations, which represents only 1 % of the 
total possible combinations, while still achieving a high success rate of 98 % for hypervolume and 100 % for 
finding minimum objective values; similarly, Octopus and Wallacei required only 330 and 300 simulations, 
respectively, to find optimal solutions.  
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Table 4.2. Simulation performance results for passive and active measures, with shoebox model 

 Plug-in 
Population 

size 
input 

Number of 
generations 

Time 

 
Time  

reduction 

Total 
number of 
iterations 

Success 
rate for 
hyper- 
volume 

Success 
rate for 

minimum 
values 

Passive & 
active 

measures  

Colibri - - 30:49:05 - 10 080 100 % 100 % 

Octopus 30 10 0:59:55 97 % 330 98 % 99 % 

Wallacei 30 10 0:54:35 97 % 300 99 % 100 % 

 
Results without 
improvement 

input 

 
  

Opossum 30 - 0:23:28 99 % 112 98 % 100 % 

 
Figure 4.5 highlights all solutions found by one run with each the optimisation tool as well as the total number 
of iterations from Colibri, considering the shoebox model with passive and active measures. With the size of 
each dot representing the hypervolume, the graphs illustrate that the area of focus for each optimisation tool 
remained where the largest hypervolumes occurred and all objectives would be minimised. It should also be 
noted that the influence of climate compensation and the selling of electricity when adding different sizes of PV 
systems, resulted in a significant decrease in GWP as well as the NPV, causing the solutions to be split into four 
distinct sets of data.  
 

  

  

 
Figure 4.5. Shoebox model simulation results with passive and active measures, for Colibri and optimisation plug-ins 
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Figure 4.6. illustrates the distribution of solutions regarding the shoebox model with passive and active 
measures. Once again, each point alongside the violin plots represents a solution in terms of its hypervolume. 
The graph shows a clear contrast between the distribution and number of solution evaluations when using 
optimisation tools compared to Colibri. The width of the violin plot and the boxplot in the background indicate 
that Colibri tested many solutions that are far from the Pareto front and outside the problem’s area of interest, 
whereas the hypervolumes of the simulation results with optimisation tools have a larger median, and their focus 
is on the upper part of the graph, as they avoided running numerous unnecessary simulations. Due to Opossum 
running fewer iterations of 112 compared to 330 and 300 for Octopus and Wallacei, its focus within the upper 
part of the graph is less obvious; however, their success rates remain similar.  
 

 
Figure 4.6. Violin plot of solution distribution and their hypervolume using Colibri and optimisation tools for the 

shoebox model with passive and active measures 

Figure 4.7 and Figure 4.8 depict the 10 most optimal renovation packages, in terms of hypervolume, found by 
Colibri and the optimisation tools, for the shoebox model with passive and active measures. The exact values 
for each package can be found in Appendix D. It is clear that all optimisation tools successfully minimised the 
objective values, as they aligned closely with those extracted from Colibri, while the optimal variables slightly 
changed from those identified for only passive measures. The best insulation type identified by Colibri was 
mostly GW, and occasionally CF. Wallacei and Opossum found both GW and CF, while Opossum generally 
found GW for the wall and CF for the roof, and Octopus mostly found GW. Opossum and Octopus also 
identified some additional insulation types: wood fibre (WF) and hemp fibre (HF) for the wall and EPS for the 
roof. The optimal insulation thicknesses for Colibri varied; however, the best thickness was mostly 350 mm for 
the wall and 300 mm for the roof. For all optimisations tools, the best thickness was generally 300 mm or 350 
mm for the wall and 300 mm for the roof. The optimal choices for each plug-in were the same for all other 
parameters: these consisted of either installing a storm window or a triple glazed window as well as an EAHP 
and the largest PV system, which covered 80 % of the roof area. The addition of PV also meant that all optimal 
solutions had a negative carbon impact, and therefore achieved carbon neutrality.  
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Figure 4.7. Input variables and results for the 10 most optimal renovation packages found by Colibri, for the shoebox 

model with passive and active measures 
 

 
 

 
Figure 4.8. Input variables and results for the 10 most optimal renovation packages found by Colibri and each 

optimisation tool, for the shoebox model with passive and active measures 

Table  D.11 in Appendix D also shows the renovation packages that resulted in the minimum value for each 
objective, for Colibri and the optimisation tools. When including active measures, the optimal passive 
renovation parameters for minimising the energy use remained the same (GW insulation at maximum thickness 
and triple-glazed windows), while the best active strategies consisted of installing an EAHP and the largest PV 
system. This was also the optimal case for minimising costs, other than a different optimal window type, which 
was a storm window. For a minimum environmental impact, the optimal passive strategies also remained the 
same as previously (CF insulation with a 150 mm thickness for walls and a 300 mm thickness for the roof), 
while the optimal active measures included the largest PV system and no heat pump. All optimisation tools 
either found the same renovation packages or slight variations, with the largest difference from a minimum 
objective value being only 3 %.  
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4.3 Real building model with passive measures  
 
Table 4.3 shows the simulation results for the real building model with passive and active measures, using 
Colibri and the optimisation tools. Originally, the generated model took approximately six minutes for each 
iteration, resulting in an estimated total of 5 days for all 1260 iterations. After simplifying the model, the time 
for each iteration reduced to 1 minute and 28 seconds, which was around eight times longer than one simulation 
with the shoebox model. As a result, simulating the building model with passive measures using both Colibri 
and the optimisation tools took significantly longer in total. All optimisation tools had high success rates, above 
90 %; however, Opossum remained the most efficient optimisation tool, as it reduced the original time by 91 
%, while Octopus and Wallacei had a similar time reductions of 76 % and 79 % respectively. 

 
Table 4.3. Simulation performance results for passive measures, with real building model 

 Plug-in 
Population 

size 
input 

Number of 
generations 

Time 

 
Time  

reduction 

Total 
number of 
iterations 

Success 
rate for 
hyper- 
volume 

Success 
rate for 

minimum 
values 

Real 
building 

with 
Passive 

measures 

Full model estimation 

Colibri - - 5 days - 1260 100 % 100 % 

Simplified model 

Colibri - - 32:33:31 - 1260 100 % 100 % 

Octopus 30 10 7:58:15 76 % 330 94 % 99 % 

Wallacei 30 10 6:58:07 79 % 300 97 % 100 % 

 
Results without 
improvement 

input 

 
  

Opossum 30 - 2:54:08 91 % 112 96 % 100 % 

 
Figure 4.9 shows the results for all iterations executed by Colibri and the optimisation tools, for the real building 
model with passive measures, where the hypervolume is indicated by the size of each point. Much like the case 
with the shoebox model, the area of focus for all optimisation tools was where the hypervolume was largest, 
meaning that they were successful in minimising all three objectives. It is also clear that a large number of the 
less favourable cases were not evaluated by the optimisation tools, allowing them to save a significant amount 
of simulation time.  
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Figure 4.9. Real building model simulation results with passive measures, for Colibri and optimisation plug-ins 

Figure 4.10 and Figure 4.11 show the 10 most optimal renovation packages in terms of hypervolume, for the 
real buiding model with passive measures. The exact values for each package can be found in Appendix D. 
Colibri found that the best packages either included GW or CF insulation at varying thicknesses, and the 
installation of storm windows. The package with the largest hypervolume included GW insulation with a 100 
mm thickness for the walls and a 300 mm thickness for the roof, in additon to a storm window: this gave an 
EUI of 111.2 kWh/(m2·y), a carbon impact of 52.2 kgCO2eq/m2, and a NPV of 11.5 MSEK/m2. Overall, all 
optimisation tools had the same parameters within their 10 most optimal renovation packages. For the largest 
hypervolume, Wallacei found the same package as Colibri, while Octopus and Opossum’s package varied 
slightly; however, the difference in their objective values was very minimal. Opossum’s optimal package 
included CF insulation of 200 mm for the walls and 300 mm for the roof, along with storm windows, resulting 
in an EUI of 112.3 kWh/(m2·y), a carbon impact of 52.2 kgCO2eq/m2, and a NPV of 11.6 MSEK/m2. The best 
renovation package for Octopus comprised of GW insulation with a 250 mm thickness for the walls and a 100 
mm thickness for the roof as well as installing storm windows. This gave an EUI of 112.2 kWh/(m2·y), a carbon 
impact of 54.1 kgCO2eq/m2 and a NPV of 11.6 MSEK/m2. All packages managed to successfully reduce the 
carbon impact from the building’s original impact of 66 kgCO2eq/m2; however, as no climate compensation 
measures (i.e., installing a PV system) were included for the real building, no package could reach carbon 
neutrality. 
 

   
Figure 4.10. Input variables and results for the 10 most optimal renovation packages found by Colibri, for the real 

building model with passive measures 
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Figure 4.11. Input variables and results for the 10 most optimal renovation packages found by Colibri and each 

optimisation tool, for the real building model with passive measures 

Table  D.16 in Appendix D also shows the renovation packages that minimised each objective, for the real 
building model with passive measures. Colibri found that the renovation package most optimal in terms of both 
energy savings and costs consisted of GW insulation with a 100 mm thickness for the wall and a 300 mm 
thickness for the roof as well as the installation of triple glazed windows, giving an EUI of 109.3 kWh/(m2·y) 
and a NPV of 11.4 MSEK/m2. Wallacei found the same package, while Octopus and Opossum found slightly different 
insulation thicknesses; however, these still resulted in very similar EUI’s of 110.1 kWh/(m2·y) and 109.6 
kWh/(m2·y), and NPV’s of 11.4 MSEK/m2. For the lowest environmental impact, Colibri found that the best 
renovation package consisted of the same insulation type and thicknesses that minimised energy use and costs, in 
addition to installing storm windows: this resulted in a carbon impact of 52.2 kgCO2 eq./m².  While Wallacei also 
found this package, Octopus and Opossum had slightly different variables, although these still achieved very similar 
results of 53.5 kgCO2 eq./m² and 52.3 kgCO2 eq./m² respectively. 
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5 Discussion 
 
This study revealed that the employment of optimisation plug-ins in GH can be extremely beneficial for 
parametric studies, by reducing the simulation time, while retaining the accuracy of the results. Each tool 
managed to substantially reduce the total simulation time compared to Colibri and was successful in identifying 
a reasonable number of optimal solutions. Although the main accuracy indicator used in this study failed to 
judge the diversity and spread of the pareto front, it is clear that each plug-in is able to converge in the most 
optimal region of the search space, whilst neglecting a large number of unnecessary iterations.  
 

5.1 Overview of results  
 
The inner workings of the algorithm are an important factor to consider when deciding which type of algorithm 
to employ, as this choice is problem dependent. The results showed that Opossum, which utilised a model-based 
algorithm, generally performed the best in terms of time, whilst still achieving a high level of accuracy. With 
the shoebox model and passive measures, the longest run for Opossum still reduced the total time by 84 %, 
whilst achieving both a hypervolume success rate and a minimum objective value success rate of 100 %. Since 
these methods specifically attempt to minimise the number of required function evaluations by approximating 
the design space with a surrogate model, they are likely more suitable for optimisation problems involving 
building performance simulations or other cases where function evaluations are more time intensive. Genetic 
algorithms are also beneficial, with the right input settings making them more efficient; however, they might be 
more suitable for optimisation problems that require less computational effort, as the number of iterations 
becomes less important with a less time intensive function evaluation.  
 
Increasing the number of iterations with the shoebox model did not mean that the runtime of the optimisation 
tools also increased at a similar rate; however, a critical factor was increasing the time taken for each iteration, 
as this substantially increased the total simulation time. With an increase in the number of iterations from 1260 
(4 hours) to 10 080 (31 hours), the runtime for each optimisation tool remained relatively similar and still did 
not exceed one hour, with the longest run for Opossum taking around 40 minutes compared to 35 minutes 
previously, while the success rates for hypervolume and the minimum objective values also remaining at similar 
values of 99 % and 100 %, compared to 100 % for both. Since changing the shoebox model to a real building 
model increased each function evaluation from 10 seconds to around 6 minutes, the total time taken with Colibri 
would have taken approximately 5 days. The simplified model still had a longer function evaluation of 1 minute 
and 28 seconds, so the total time taken with both Colibri and the optimisation tools increased at a similar rate. 
Although the number of iterations remained at 1260, the increased complexity of the model meant that the total 
simulation runtime with Colibri increased from approximately 4 hours to 33 hours, while with the addition of 
active measures (10 080 iterations), Colibri would have taken around 10 days. Therefore, without optimisation, 
this parametric analysis would have been infeasible. Additionally, in the real case, where the semi-automatically 
generated geometry had not been simplified and kept its original function evaluation time of 6 minutes, the total 
simulation time when considering both passive and active measures would have taken approximately 42 days. 
In this case, it would also be impractical to carry out a parametric analysis, even with the employment of 
optimisation tools.   
 

5.1.1 Renovation packages  
 
When testing the passive measures for the shoebox model, there were a lot of similarities between the most 
optimal renovation packages. These generally included either glass wool or cellulose fibre insulation for both 
the walls and the roof, and either keeping the existing window or installing a storm window. Although there 
was no obvious optimal insulation thickness, the optimal thicknesses tended to be balanced between both the 
walls and the roof, i.e., when the wall insulation thickness was at a higher value, the roof insulation thickness 
was generally at a lower value and vice versa. Additionally, when the wall insulation was at the maximum 
thickness of 350 mm, there was no difference in energy savings between the three different insulation 
thicknesses for the roof. After adding active measures, the optimal insulation variables remained relatively 
similar, whilst the other optimal measures comprised of either installing a storm window or a triple glazed 
window as well as an EAHP and the largest PV system, which covered 80 % of the roof area.  
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When changing the geometry from a shoebox model to a real building model, the optimal passive renovation 
packages consisted of the same measures, with the exception that the installation of storm windows was more 
prevalent. For solely minimising energy use and costs, the same package was found to be optimal for both: 
adding 100 mm of glass wool insulation to the walls and 300 mm to the roof, alongside installing tripe-glazed 
windows. This reduced the EUI by 32.4 kWh/(m2·y) and the NPV by 1.9 MSEK/m2, while the carbon impact 
was lowered by 8.8 kgCO2eq./m2 over the 30-year study period.  On the other hand, aiming for a minimum 
carbon impact gave a slightly different optimal package as it included the installation of storm windows rather 
than triple-glazed windows. The resulting reduction in GWP was 13.8 kgCO2eq./m2. This package was also the 
most optimal for balancing all three objectives, and it resulted in energy savings of 30.5 kWh/(m2·y) and a cost 
saving of 1.8 MSEK/m2.  
 
When comparing these results with a previous study that evaluated potential renovation packages for the 
decarbonisation of Swedish multi-family homes (Daya & Nolan, 2022), some similarities in the resulting most 
optimal packages can be identified. Much like this study, the most favourable renovation packages often 
included installing storm windows and cellulose fibre insulation for the walls; however, EPS and wood fibre 
insulation (not tested in this study) tended to be most optimal for the roof. Although active measures were only 
included for the shoebox model, the same study also found that installing an EAHP and a PV system with 80 % 
roof coverage was favourable. Due to the same NollCO2 definition considered for climate compensation, cases 
with a PV system had the potential to achieve carbon neutrality, with larger PV systems being more likely in 
doing so. 
 

5.2 Implementing optimisation plug-ins 
 
To ensure the most favourable result, certain aspects should be kept in mind when working with optimisation 
algorithms and these GH tools. For genetic algorithms, the chosen population size will influence the outcome, 
so a reasonable size should be selected for a sensible compromise between speed and accuracy. If time is of less 
importance, a larger population size will allow for more accurate results, as the algorithm will execute more 
function evaluations per generation, whilst a smaller population size will involve fewer function evaluations 
and could cause the algorithm to converge too early, providing less accurate results. The user should also be 
aware that the algorithms integrated within these tools are stochastic, meaning they employ elements of 
randomness, which will lead to a different outcome for each optimisation run; regardless, the results revealed 
that the utilisation of these tools will be valuable, as they have the ability to identify optimal solutions in a 
shorter period of time compared to running every possible iteration. In most cases, running the optimisation 
more than once could still be advantageous as it will provide an extra degree of certainty whilst still being less 
time intensive than executing a ‘brute force’. Alternatively, if the user does not want to solely rely on 
optimisation tools, they could also be used as a starting point for identifying the variables that appear within the 
most optimal solutions and use this information to narrow down the total number of iterations or evaluate some 
additional iterations with the most favourable variables. For example, if the best insulation thickness ranges 
between 150 mm to 250 mm, the user can limit the number of insulation thickness variables to be within this 
range, compared to previously tested values between 100 mm to 400 mm.  
 
Given the successful performance of these optimisation tools for identifying optimal building renovation 
strategies in this study, the application of optimisation tools can be extended to other building-related areas, 
such as design stage problems and daylight analysis. For example, in the design stage, optimisation tools can be 
utilised to identify the most efficient building forms for reducing energy consumption and carbon emissions, 
while increasing the daylight availability within the space.  
 

5.3 Octopus 
 
Octopus contains some useful features alongside having a number of downsides. Although the main algorithm 
cannot be changed from SPEA-II, the interface allows the user to have control over mutation and crossover 
operators. A ‘save interval’ feature can be utilised, providing an interval of generations after which the 
Grasshopper file is saved to prevent data loss, in the case that Rhino crashes, while any unwanted situations can 
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be tracked by specifying a maximum evaluation time: when a function evaluation takes longer than this, the 
solution will be added to a collection that can be debugged afterwards, by reinstating them in the 
‘Troubleshooting’ tab. Additionally, the interface provides a 3D visual of the solutions found, which is useful 
for an initial overview of the optimisation process and the solution history of each generation as well as 
identifying the Pareto front. Despite this, the tool has no post processing features and selecting a specific solution 
from the solution space only reveals the objective values, without specifying its input variables. Moreover, the 
interface does not contain an input for defining whether each objective should be minimised or maximised, 
while the user also has no control over the termination criteria of the algorithm, other than setting a maximum 
number of generations.  
 

5.4 Wallacei 
 
Much like Octopus, Wallacei has several useful attributes, while also lacking in some areas. The interface 
provides a lot of information regarding the optimisation run, including the evaluation time per solution, the total 
simulation runtime as well as estimating the remaining simulation time, which can be useful for the user, 
especially when simulating for longer periods of time. It will also identify any null solutions, giving the user an 
indication of any issues within the script: the algorithm will continue the optimisation process by replacing these 
solutions in case the user doesn’t find the issue to be critical enough to stop the process. Again, there is no 
option of changing the algorithm from NSGA-II, yet the user has control over the mutation and crossover 
operators as well as a random seed option, which can be useful when comparing results after making a change, 
as it creates the same initial population. The interface also provides a lot of result visualisations and embedded 
features for analysing the optimisation process and recalling specific solutions, as can be found in Figure  D.1 
and Figure  D.2 in Appendix D. Solutions can be clustered in each generation while a diamond fitness chart is 
provided for selected solutions, showing each objective in terms of their fitness value, although the interface 
does not contain a graph showing the input variables of a selected solution. Additionally, the user is able to 
export the phenotype and other specific data of any type associated with each solution, that is not used within 
the optimisation process. For example, obtaining the insulation volume or the amount of electricity sold to the 
grid. Unlike Octopus and Opossum, which require results to be exported for post processing in another 
environment (e.g., Excel or Python), Wallacei enables the user to post process the results within GH. However, 
in contrary to the maximum generation input in Octopus, Wallacei will not converge before reaching the number 
of generations specified, regardless of whether the results reveal a satisfactory improvement, since it does not 
define any other stopping criteria.  
 

5.5 Opossum 
 
Other than containing no result visualisations, with exception of the hypervolume trend, Opossum provides 
notably more user control for certain features than both Octopus and Wallacei. In addition to including choice 
between minimisation and maximisation within the interface, the user has the option of choosing between 
model-based as well as evolutionary algorithms, while the settings for these can also be changed within the 
interface. The termination criteria can also be defined in a number of different ways: the optimisation can be 
stopped based on a maximum number of iterations, a specific number of iterations without further improvement, 
and a time limitation. Lastly, the solutions are presented in a straightforward manner, as the tool provides the 
hypervolume, objectives and parameters for each solution, and sorts them based on their rank. 
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6 Conclusion 
 
Given the urgency to undertake significant renovations of existing buildings for Sweden to attain carbon 
neutrality by 2045, or as early as 2030 for 23 Swedish cities, parametric modelling becomes a very useful 
approach, as it allows for the automation of testing a significant number of potential renovation strategies to 
identify the most optimal solutions for achieving this goal. However, exploring all possible solutions is 
extremely time consuming, making such an evaluation unfeasible. Optimisation can be a suitable approach to 
accelerate this process, thus saving time and costs, whilst still identifying the most optimal solutions.  
 
This study evaluated the optimisation tools Octopus, Wallacei and Opossum within GH and found that all three 
plug-ins were effective in reducing the total simulation time, while retaining a pleasing accuracy of the optimal 
results. Opossum performed the best in terms of reducing the simulation time, while all tools achieved a high 
accuracy. When testing passive measures (1260 iterations) with the shoebox model, Opossums longest run took 
approximately 40 minutes, compared to 4 hours with Colibri, while obtaining a 100 % success rate in finding 
both the largest hypervolumes and the minimum objective values. After adding active measures (10 080 
iterations), the longest run for Opossum still took a similar time of around 35 minutes, compared to Colibri 
taking 31 hours, with success rates of 99 % and 100 % respectively. When evaluating passive measures with a 
more complex geometry based on a real building, the total runtime with Colibri would have increased to 
approximately 5 days, while a slight simplification of this model resulted in a total runtime of 33 hours. In 
comparison, the optimisation run with Opossum reduced this time by 91 % as it took around 3 hours to execute, 
with a hypervolume success rate of 96 % and a minimum objective value success rate of 100 %. Although 
Opossum was the most effective in reducing the simulation time, choosing between optimisation tools could 
also depend on other factors such as the availability of certain features, i.e., if the inclusion of features 
concerning data analysis or the post processing of results within the GH tool is important to the user, Wallacei 
might prove to be a viable option.  
 
For the real building model, the most optimal renovation packages generally included similar measures. When 
balancing all three objectives or considering only environmental impact, the same renovation package was 
deemed as optimal: adding 100 mm of glass wool insulation to the walls and 300 mm to the roof, alongside 
installing storm windows. Compared to the existing building, this resulted in a decrease in carbon impact of 
13.8 kgCO2eq./m2 as well as saving 30.5 kWh/(m2·y) of energy and 1.8 MSEK/m2 in costs, over the 30-year 
study period. On the other hand, aiming for a minimum EUI or a minimum NPV meant that the optimal package 
included the installation of triple-glazed windows rather than storm windows, while all other variables remained 
the same. The resulting energy savings for this package were 32.4 kWh/(m2·y), while 1.9 MSEK/m2 were saved 
in costs, and the carbon impact decreased by 8.8 kgCO2eq./m2.  
 
Overall, the optimisation tools proved to be successful in accelerating the simulation process, by focusing on 
the area of interest regarding the objectives, while choosing the right input settings can further increase the 
effectiveness of their application, i.e., adjusting the population size or termination criteria. Due to the often 
unfeasible simulation runtime of parametric design, the implementation of optimisation tools becomes an 
important factor to consider and could even be the difference in determining whether the execution of a 
parametric design is possible or not.   
 
The evident influence that optimisation tools can have on the efficiency and feasibility of parametric design 
makes the field of optimisation a valuable area to explore further, while many considerations could be made for 
future studies in this topic. Although this study already focused on a multi-objective optimisation problem by 
assessing energy use, environmental impact and costs, there are numerous other factors that can be used to 
assess the performance of a building, such as thermal comfort, indoor air quality and measures of daylight 
availability. It would be beneficial to increase the number of objectives to include more of these aspects, while 
a continuation of this study could also include different or additional renovation measures. Although the 
outcomes of this study can be applicable to similar buildings, these findings would be affected by a change in 
geometry; thus, future work should also consider the application of optimisation tools to other building 
typologies. Fewer simplifications or exclusions of certain aspects, specifically for LCA and LCC, might also 
increase the validity of the renovation packages that were deemed as the most optimal. Lastly, the different 
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optimisation methods could also be explored further, by analysing the performance of the evolutionary 
algorithms within Opossum or investigating the possibility of other optimisation methods within GH.  
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Appendix A  
 

Table  A.1. Control method process and results 
Assessment Description Excel result / 

(kWh/(m2·y)) 
Simulation result / 
(kWh/(m2·y)) 

Margin of 
error / % 

Transmission 
losses 

Shoebox model (5 m ·10 m · 3 m), 
elevated by 3 m, with no 
doors/windows and a U-value of 0.2 
W/(m2·K) assigned to all surfaces. 
Measured under steady-state 
conditions at a constant outdoor 
temperature of 0°C, with values for 
infiltration, ventilation and internal 
gains set to zero and a heating set 
point of 20 °C.  

133.00 132.94 0.05 

Ventilation 
losses 

Addition of mechanical ventilation 
of 0.35 l/(s·m2). 

206.90 207.39 0.24 

Infiltration 
losses 

Addition of an infiltration rate of 0.3 
l/(s·m2) at q50. 

218.89 220.39 0.68 

Heat recovery Addition of sensible heat recovery 
of 75 %. 

163.70 164.56 0.52 

Envelope 
losses 

Base case with a changed wall U-
value of 0.1 W/(m2·K). 

101.72 103.61 1.82 

Window 
losses 

Base case with a window with an 
area of 3.75 m2 and a U-value of 1.3 
W/(m2·K). 

147.77 146.28 1.01 

Ground losses Base case with no elevation and a 
ground temperature of 0°C. 

133.00 135.28 1.69 

Ground 
temperature 

Changing the ground temperature to 
10°C. 

- 118.89 - 

Thermal 
bridges 

Base case with a changed roof U-
value of 0.22 W/(m2·K). 

137.00 138.39 1.00 

Real outdoor 
conditions 

Base case with a change to a 
Copenhagen weather file. 

- 59.72 - 
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Appendix B  
 

Table  B.1. Insulation material properties used in energy simulations 
Material Thickness / m Conductivity / 

(W/(m·K)) 
Specific heat / 
(J/(kg·K)) 

Bulk density / 
(kg/m³) 

EPS 0.10 – 0.35 0.033 1692 16.0 
Glass wool 0.10 – 0.35 0.035 1030 18.7 
Cellulose fibre 0.10 – 0.35 0.039 2020 47.0 
Hemp fibre 0.10 – 0.35 0.040 1600 36.0 
Wood fibre 0.10 – 0.35 0.038 2100 50.0 

 
 
 

Table  B.2. Breakdown of window costs, in SEK 
 Shoebox model Real building model 
Storm window    
Additional glazing layer  2741 171 815 
Channel for spacer  1166 127 727 
Acrylic sealant  878 96 141 
Wooden trim painted white  698 76 410 
Total cost 5484 472 092 
Tripe glazed window   
Window type 1 - 174 424 
Window type 2 - 495 192 
Window type 3 15 058 794 772 
Demolition of existing window(s)  1036 98 731 
Removal of demolition material 1163 72 907 
Total cost 17 257 1 636 025 

 
 

 
Table  B.3. Breakdown of EAHP costs, in present values 

Description  Cost / SEK 
EAHP initial cost incl. installation 153 078 
Accumulator tanks initial cost incl. installation 9664 
Insulated pipework incl. installation 1040 
EAHP replacement cost 84 756 
EAHP removal cost 956 
EAHP disposal cost 118 
Total cost 249 613 
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Appendix C  
 

Table  C.1. Simplification of the real building energy model 
Initial model retrieved from database 
 
Simulation time per iteration: 6 minutes 
 
Total simulation runtime for 1260 iterations ≈ 126 hours 
Total simulation runtime for 10080 iterations ≈ 42 days 

Simplified model 
 
Simulation time per iteration:  1.4 minutes 
 
Total simulation runtime for 1260 iterations = 35 hours 
Total simulation runtime for 10080 iterations ≈ 10 days 
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Appendix D  
 

Table  D.1. Total simulation performance results for passive and active measures, with shoebox model 

 Plug-in 
Population 

size 
input 

Number of 
generations 

Time 

 
Time  

reduction 

Total 
number of 
simulations 

Success 
rate for 
hyper- 
volume 

Success 
rate for 

minimum 
values 

Passive & 
active 

measures  

Colibri - - 30:49:05 - 10080 100% 100% 

Octopus 30 

10 1:00:14 97 % 330 98% 98% 

10 0:59:55 97 % 330 98% 99% 

10 0:59:47 97 % 330 99% 100% 

Wallacei 30 

10 0:54:35 97 % 300 99% 100% 

10 0:52:44 97 % 300 96% 99% 

10 0:53:24 97 % 300 100% 100% 

 
Results without 
improvement 

input 

 

  

Opossum 30 

- 0:23:28 99 % 112 98% 100% 

- 0:34:31 98 % 180 99% 100% 

- 0:08:59 100 % 48 93% 96% 

 
Table  D.2. Top 10 optimal renovation packages for the shoebox model with passive measures using Colibri, where  

CF = Cellulose Fibre, GW = Glass Wool, EW = Existing Window and ST = Storm Window 
Façade 
insulation 
type 

Façade 
insulation 
thickness 
/mm 

Roof 
insulation 
type 

Roof 
insulation 
thickness 
/mm 

Window 
type 

EUI / 
(kWh/m²) 

GWP / 
(kgCO2 

eq./m²) 

NPV / 
(KSEK/m²) 

Hyper 
volume 

CF  150 CF 200 EW  164.70 84.61 293.32 1966624.65 
GW  100 GW 200 EW 163.15 87.29 291.41 1948809.46 
CF 200 CF 200 EW 164.70 85.40 293.61 1945480.25 
CF 150 CF 200 SW  159.09 83.46 307.87 1932613.88 
CF 250 CF 200 EW 164.70 86.19 293.99 1923601.83 
GW 350 GW 100 EW 161.03 90.08 290.78 1922889.47 
CF 300 CF 200 EW 164.70 86.05 294.49 1921760.09 
GW 100 GW 200 SW 157.53 86.15 305.97 1916235.42 
CF 200 CF 200 SW 159.09 84.25 308.17 1911837.22 
CF 300 CF 200 EW 164.70 86.98 294.49 1900614.02 
 

Table  D.3. Top 10 optimal renovation packages for the shoebox model with passive measures using Opossum, where  
CF = Cellulose Fibre, GW = Glass Wool, EW = Existing Window and ST = Storm Window 

Façade 
insulation 
type 

Façade 
insulation 
thickness 
/mm 

Roof 
insulation 
type 

Roof 
insulation 
thickness 
/mm 

Window 
type 

EUI / 
(kWh/m²) 

GWP / 
(kgCO2 

eq./m²) 

NPV / 
(KSEK/m²) 

Hyper 
volume 

CF  150 CF 200 EW  164.70 84.61 293.32 1966624.65 
GW  100 GW 200 EW 163.15 87.29 291.41 1948809.46 
CF 200 CF 200 EW 164.70 85.40 293.61 1945480.25 
CF 150 CF 200 SW  159.09 83.46 307.87 1932613.88 
CF 250 CF 200 EW 164.70 86.19 293.99 1923601.83 
GW 100 GW 200 SW 157.53 86.15 305.97 1916235.42 
CF 200 CF 200 SW 159.09 84.25 308.17 1911837.22 
CF 300 CF 200 EW 164.70 86.98 294.49 1900614.02 
CF 250 CF 200 SW 159.09 85.04 308.54 1890280.24 
CF 350 CF 200 EW 164.70 87.77 294.68 1880645.52 
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Table  D.4. Top 10 optimal renovation packages for the shoebox model with passive measures using Octopus, where  
CF = Cellulose Fibre, GW = Glass Wool, EW = Existing Window and ST = Storm Window 

Façade 
insulation 
type 

Façade 
insulation 
thickness 
/mm 

Roof 
insulation 
type 

Roof 
insulation 
thickness 
/mm 

Window 
type 

EUI / 
(kWh/m²) 

GWP / 
(kgCO2 

eq./m²) 

NPV / 
(KSEK/m²) 

Hyper 
volume 

CF  150 CF 200 EW  164.70 84.61 293.32 1966624.65 
CF 200 CF 200 EW 164.70 85.40 293.61 1945480.25 
CF 150 CF 200 SW  159.09 83.46 307.87 1932613.88 
CF 250 CF 200 EW 164.70 86.19 293.99 1923601.83 
CF 200 CF 200 SW 159.09 84.25 308.17 1911837.22 
GW 350 GW 100 SW 155.42 88.93 305.33 1890645.92 
CF 250 CF 300 SW 159.09 85.04 308.54 1890280.24 
CF 350 CF 300 EW 164.70 87.77 294.68 1880645.52 
GW 350 GW 200 EW 161.03 91.96 290.78 1877759.24 
CF 300 CF 300 SW 159.09 85.83 309.04 1867543.87 
 

Table  D.5. Top 10 optimal renovation packages for the shoebox model with passive measures using Wallacei, where  
CF = Cellulose Fibre, GW = Glass Wool, EW = Existing Window and ST = Storm Window 

Façade 
insulation 
type 

Façade 
insulation 
thickness 
/mm 

Roof 
insulation 
type 

Roof 
insulation 
thickness 
/mm 

Window 
type 

EUI / 
(kWh/m²) 

GWP / 
(kgCO2 

eq./m²) 

NPV / 
(KSEK/m²) 

Hyper 
volume 

GW 350 GW 100 EW 161.03 90.08 290.78 1922889.47 
CF 350 GW 300 EW 162.76 89.50 292.52 1892538.80 
GW 350 GW 100 SW 155.42 88.93 305.33 1890645.92 
CF 300 CF 200 SW 159.09 84.91 309.04 1888039.79 
CF 350 CF 300 EW 164.70 87.77 294.68 1880645.52 
GW 350 GW 200 EW 161.03 91.96 290.78 1877759.24 
GW 300 GW 100 EW 163.15 89.75 292.88 1876871.77 
CF 300 GW 300 EW 163.92 89.39 293.62 1866107.12 
CF 350 GW 300 SW 157.15 88.35 307.07 1860489.38 
CF 350 CF 300 SW 159.09 86.62 309.23 1848013.58 
 

Table  D.6. Solutions with minimum value of each objective for the shoebox model with passive measures using Colibri 
and optimisation tools, where CF = Cellulose Fibre, GW = Glass Wool, EW = Existing Window, ST = Storm Window and 

TW = Triple glazed Window 
 Façade 

insulation 
type 

Façade 
insulation 
thickness 
/mm 

Roof 
insulation 
type 

Roof 
insulation 
thickness 
/mm 

Window 
type 

EUI / 
(kWh
/m²) 

GWP / 
(kgCO2 

eq./m²) 

NPV / 
(KSEK/
m²) 

Hyper 
volume 

Colibri 
Min EUI GW 350 GW 100 TW 155.31 95.64 356.08 1255658 
Min GWP CF 150 CF 300 SW 159.09 83.46 307.87 1932613 
Min NPV GW 350 GW 100 EW 161.03 90.08 290.78 1922889 

Opossum 
Min EUI CF 350 EPS 300 TW 156.65 106.1 357.40 1057861 
Min GWP CF 150 CF 300 SW 159.09 83.46 307.87 1932614 
Min NPV GW 100 GW 300 EW 163.15 87.29 291.41 1948809 

Octopus 
Min EUI GW 350 GW 100 SW 155.42 88.93 305.33 1890645 
Min GWP CF 150 CF 300 SW 159.09 83.46 307.87 1932614 
Min NPV GW 350 GW 200 EW 161.03 91.96 290.78 1877759 

Wallacei 
Min EUI GW 350 GW 100 SW 155.42 88.93 305.33 1890645 
Min GWP CF 300 CF 200 SW 159.09 84.91 309.04 1888040 
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Min NPV GW 350 GW 100 EW 161.03 90.08 290.78 1922889 
 

Table  D.7. Top 10 optimal renovation packages for the shoebox model with passive and active measures using Colibri, 
where CF = Cellulose Fibre, GW = Glass Wool, ST = Storm Window and TW = Triple glazed Window 

Façade 
ins. 
type 

Façade 
ins. 
thickness 
/mm 

Roof 
ins. 
type 

Roof ins. 
thickness 
/mm 

Win. 
type 

PV size 
/ % of 
roof 
area 

Heat 
pump 
/ unit 

EUI / 
(kWh 
/m²) 

GWP / 
(kgCO2 

eq./m²) 

NPV / 
(KSEK 
/m²) 

Hyper 
volume 

GW 350 GW 100 SW 80 1 130.4 -811.5 -13.9 52757047 
GW 350 GW 200 SW 80 1 130.4 -809.6 -13.9 52656220 
GW 350 GW 300 SW 80 1 130.4 -807.7 -13.9 52555423 
GW 350 GW 100 TW 80 1 130.3 -804.6 -13.8 52410397 
GW 350 GW 200 TW 80 1 130.3 -802.8 -13.7 52309533 
GW 350 GW 300 TW 80 1 130.3 -800.9 -13.7 52208698 
GW 100 GW 300 SW 80 1 132.5 -814.3 -13.7 52138456 
CF 350 GW 300 SW 80 1 132.1 -812.1 -12.5 51982009 
GW 350 CF 300 SW 80 1 132.1 -809.6 -12.3 51825160 
GW 100 GW 300 TW 80 1 132.4 -807.4 -13.5 51797413 
 
Table  D.8. Top 10 optimal renovation packages for the shoebox model with passive and active measures using Opossum, 

where CF = Cellulose Fibre, GW = Glass Wool, WF = Wood Fibre, HF = Hemp Fibre ST = Storm Window and  
TW = Triple glazed Window 

Façade 
ins. 
type 

Façade 
ins. 
thickness 
/mm 

Roof 
ins. 
type 

Roof ins. 
thickness 
/mm 

Win. 
type 

PV size 
/ % of 
roof 
area 

Heat 
pump 
/ unit 

EUI / 
(kWh 
/m²) 

GWP / 
(kgCO2 

eq./m²) 

NPV / 
(KSEK 
/m²) 

Hyper 
volume 

GW 350 GW 300 SW 80 1 130.4 -807.7 -13.9 52555423 
WF 350 CF 300 SW 80 1 132.7 -809.4 -11.8 51549868 
GW 300 CF 300 SW 80 1 133.3 -810.5 -11.5 51346853 
GW 300 GW 300 TW 80 1 132.4 -801.2 -12.1 51253889 
CF 350 EPS 300 TW 80 1 131.6 -794.2 -12.7 51242232 
WF 350 CF 300 TW 80 1 132.6 -802.5 -11.6 51183010 
GW 300 CF 300 TW 80 1 133.2 -803.6 -11.3 51009696 
CF 250 CF 300 TW 80 1 134.0 -808.5 -11.3 50987084 
HF 350 CF 300 SW 80 1 133.1 -802.1 -11.0 50914579 
GW 300 EPS 300 TW 80 1 132.0 -790.2 -12.4 50856082 
 
Table  D.9. Top 10 optimal renovation packages for the shoebox model with passive and active measures using Octopus, 

where CF = Cellulose Fibre, GW = Glass Wool, WF = Wood Fibre, ST = Storm Window and TW = Triple glazed Window 
Façade 
ins. 
type 

Façade 
ins. 
thickness 
/mm 

Roof 
ins. 
type 

Roof ins. 
thickness 
/mm 

Win. 
type 

PV size 
/ % of 
roof 
area 

Heat 
pump 
/ unit 

EUI / 
(kWh 
/m²) 

GWP / 
(kgCO2 

eq./m²) 

NPV / 
(KSEK 
/m²) 

Hyper 
volume 

GW 100 GW 300 TW 80 1 132.4 -807.4 -13.5 51797413 
WF 350 GW 300 SW 80 1 131.9 -807.0 -12.5 51796360 
GW 300 GW 300 SW 80 1 132.5 -808.0 -12.2 51593709 
HF 300 GW 300 SW 80 1 133.3 -812.2 -11.6 51455972 
WF 350 GW 300 TW 80 1 131.9 -800.1 -12.3 51426810 
GW 350 EPS 300 TW 80 1 130.9 -789.3 -13.2 51296971 
WF 300 GW 300 SW 80 1 133.1 -807.8 -11.6 51280708 
GW 300 GW 300 TW 80 1 132.4 -801.2 -12.1 51253889 
GW 300 EPS 300 SW 80 1 132.1 -797.0 -12.5 51197427 
HF 300 GW 300 TW 80 1 133.2 -805.3 -11.5 51118730 
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Table  D.10. Top 10 optimal renovation packages for the shoebox model with passive and active measures using Wallacei, 
where CF = Cellulose Fibre, GW = Glass Wool, ST = Storm Window and TW = Triple glazed Window 

Façade 
ins. 
type 

Façade 
ins. 
thickness 
/mm 

Roof 
ins. 
type 

Roof ins. 
thickness 
/mm 

Win. 
type 

PV size 
/ % of 
roof 
area 

Heat 
pump 
/ unit 

EUI / 
(kWh 
/m²) 

GWP / 
(kgCO2 

eq./m²) 

NPV / 
(KSEK 
/m²) 

Hyper 
volume 

GW 350 GW 200 SW 80 1 130.4 -809.6 -13.9 52656220 
GW 350 GW 300 SW 80 1 130.4 -807.7 -13.9 52555423 
GW 350 GW 300 TW 80 1 130.3 -800.9 -13.7 52208698 
CF 350 GW 300 SW 80 1 132.1 -812.1 -12.5 51982009 
GW 350 CF 300 SW 80 1 132.1 -809.6 -12.3 51825160 
GW 300 GW 300 SW 80 1 132.5 -808.0 -12.2 51593709 
GW 350 CF 300 TW 80 1 132.1 -802.7 -12.1 51456387 
CF 300 GW 300 SW 80 1 133.3 -812.2 -11.6 51455972 
GW 300 CF 300 SW 80 1 133.3 -810.5 -11.5 51346853 
GW 300 GW 300 TW 80 1 132.4 -801.2 -12.1 51253889 
 

Table  D.11. Solutions with minimum value of each objective for the shoebox model with passive and active measures 
using Colibri and optimisation tools, where CF = Cellulose Fibre, GW = Glass Wool, EW = Existing Window,  

ST = Storm Window, TW = Triple glazed Window 

 
Table  D.12. Top 10 optimal renovation packages for the real building model with passive measures using Colibri, where  

CF = Cellulose Fibre, GW = Glass Wool, ST = Storm Window and TW = Triple glazed Window 
Façade 
insulation 
type 

Façade 
insulation 
thickness 
/mm 

Roof 
insulation 
type 

Roof 
insulation 
thickness 
/mm 

Window 
type 

EUI / 
(kWh/m²) 

GWP / 
(kgCO2 

eq./m²) 

NPV / 
(MSEK/m²) 

Hyper 
volume 

GW 100 GW 300 SW 111.2 52.2 11.5 1178935 
CF 200 CF 300 SW 112.3 52.3 11.6 1092942 
CF 250 CF 300 SW 112.6 52.7 11.6 1047254 
CF 300 CF 200 SW 113.0 53.0 11.6 1012642 
GW 100 GW 200 SW 113.1 53.0 11.6 1004632 
CF 300 CF 300 SW 113.0 53.1 11.6 1002671 
GW 350 GW 100 SW 112.2 54.1 11.6 993993 
GW 300 GW 100 SW 112.5 53.9 11.6 990747 
CF 300 GW 300 SW 112.8 53.6 11.6 988385 

 Façade 
ins. 
type 

Façade 
ins. 
thickness 
/mm 

Roof 
ins. 
type 

Roof ins. 
thickness 
/mm 

Win. 
type 

PV size 
/ % of 
roof 
area 

Heat 
pump 
/ unit 

EUI / 
(kWh/
m²) 

GWP / 
(kgCO2 

eq./m²) 

NPV / 
(KSEK 
/m²) 

Hyper 
volume 

Colibri 
Min EUI GW 350 GW 100 TW 80 1 130.3 -804.6 -13.8 52410397 
Min GWP CF 150 CF 300 SW 80 0 159.1 -820.3 5.8 40777639 
Min NPV GW 350 GW 100 SW 80 1 130.4 -811.5 -13.9 52757047 

Opossum 
Min EUI GW 350 GW 300 SW 80 1 130.4 -807.7 -13.9 52555423 
Min GWP GW 100 GW 300 EW 80 1 138.1 -813.1 -8.6 49412299 
Min NPV GW 350 GW 300 SW 80 1 130.4 -807.7 -13.9 52555423 

Octopus 
Min EUI GW 350 EPS 300 TW 80 1 130.9 -789.3 -13.2 51296971 
Min GWP GW 100 GW 300 EW 80 0 163.1 -816.5 9.2 38878895 
Min NPV GW 100 GW 300 TW 80 1 132.4 -807.4 -13.5 51797413 

Wallacei 
Min EUI GW 350 GW 300 TW 80 1 130.3 -800.9 -13.7 52208698 
Min GWP CF 300 CF 200 SW 80 0 159.1 -818.9 7.0 40575049 
Min NPV GW 350 GW 200 SW 80 1 130.4 -809.6 -13.9 52656220 
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GW 100 GW 300 TW 109.3 57.2 11.4 987292 
 

Table  D.13. Top 10 optimal renovation packages for the real building model with passive measures using Opossum, 
where CF = Cellulose Fibre, GW = Glass Wool, ST = Storm Window and TW = Triple glazed Window 

Façade 
insulation 
type 

Façade 
insulation 
thickness 
/mm 

Roof 
insulation 
type 

Roof 
insulation 
thickness 
/mm 

Window 
type 

EUI / 
(kWh/m²) 

GWP / 
(kgCO2 

eq./m²) 

NPV / 
(MSEK/m²) 

Hyper 
volume 

CF 200 CF 300 SW 112.3 52.3 11.6 1092942 
CF 250 CF 300 SW 112.6 52.7 11.6 1047254 
CF 300 CF 300 SW 113.0 53.1 11.6 1002671 
CF 300 GW 300 SW 112.8 53.6 11.6 988385 
CF 350 GW 300 SW 112.7 53.8 11.6 983871 
CF 250 GW 300 SW 113.0 53.5 11.6 980472 
CF 350 CF 300 SW 113.3 53.5 11.6 959340 
GW 200 CF 300 SW 113.2 53.7 11.6 959023 
CF 200 GW 300 SW 113.4 53.6 11.6 953298 
GW 150 GW 300 TW 109.6 57.8 11.4 931456 
 
Table  D.14. Top 10 optimal renovation packages for the real building model with passive measures using Octopus, where 

CF = Cellulose Fibre, GW = Glass Wool, ST = Storm Window 
Façade 
insulation 
type 

Façade 
insulation 
thickness 
/mm 

Roof 
insulation 
type 

Roof 
insulation 
thickness 
/mm 

Window 
type 

EUI / 
(kWh/m²) 

GWP / 
(kgCO2 

eq./m²) 

NPV / 
(MSEK/m²) 

Hyper 
volume 

GW 350 GW 100 SW 112.2 54.1 11.6 993993 
GW 300 GW 100 SW 112.5 53.9 11.6 990747 
CF 350 GW 300 SW 112.7 53.8 11.6 983871 
CF 250 GW 300 SW 113.0 53.5 11.6 980472 
GW 350 GW 200 SW 112.2 54.5 11.6 972772 
GW 250 GW 100 SW 113.0 53.8 11.6 968096 
GW 200 CF 300 SW 113.2 53.7 11.6 959023 
GW 350 GW 300 SW 112.2 54.9 11.6 951550 
GW 150 GW 200 SW 113.4 53.6 11.6 950497 
GW 300 GW 300 SW 112.5 54.6 11.6 949033 
 
Table  D.15. Top 10 optimal renovation packages for the real building model with passive measures using Wallacei, where 

CF = Cellulose Fibre, GW = Glass Wool, ST = Storm Window and TW = Triple glazed Window 
Façade 
insulation 
type 

Façade 
insulation 
thickness 
/mm 

Roof 
insulation 
type 

Roof 
insulation 
thickness 
/mm 

Window 
type 

EUI / 
(kWh/m²) 

GWP / 
(kgCO2 

eq./m²) 

NPV / 
(MSEK/m²) 

Hyper 
volume 

GW 100 GW 300 SW 111.2 52.2 11.5 1178935 
GW 150 GW 300 SW 111.5 52.8 11.5 1119039 
GW 100 GW 200 SW 113.1 53.0 11.6 1004632 
GW 100 GW 300 TW 109.3 57.2 11.4 987292 
CF 250 GW 300 SW 113.0 53.5 11.6 980472 
GW 350 GW 200 SW 112.2 54.5 11.6 972772 
GW 350 GW 300 SW 112.2 54.9 11.6 951550 
GW 150 GW 200 SW 113.4 53.6 11.6 950497 
GW 300 GW 300 SW 112.5 54.6 11.6 949033 
CF 300 GW 200 SW 113.5 53.7 11.6 939216 
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Table  D.16. Solutions with minimum value of each objective for the real building model with passive measures using 
Colibri and optimization tools, where CF = Cellulose Fibre, GW = Glass Wool, EW = Existing Window,  

ST = Storm Window and TW = Triple glazed Window 
 Façade 

insulation 
type 

Façade 
insulation 
thickness 
/mm 

Roof 
insulation 
type 

Roof 
insulation 
thickness 
/mm 

Window 
type 

EUI / 
(kWh
/m²) 

GWP / 
(kgCO2 

eq./m²) 

NPV / 
(MSEK
/m²) 

Hyper 
volume 

Colibri 
Min EUI GW 100 GW 300 TW 109.3 57.2 11.4 987292 
Min GWP GW 100 GW 300 SW 111.2 52.2 11.5 1178935 
Min NPV GW 100 GW 300 TW 109.3 57.2 11.4 987292 

Opossum 
Min EUI GW 150 GW 300 TW 109.6 57.8 11.4 931456 
Min GWP CF 200 CF 300 SW 112.3 52.3 11.6 1092942 
Min NPV GW 150 GW 300 TW 109.6 57.8 11.4 931456 

Octopus 
Min EUI GW 350 GW 100 TW 110.1 59.0 11.4 822186 
Min GWP CF 250 GW 300 SW 113.0 53.5 11.6 980472 
Min NPV GW 350 GW 100 TW 110.1 59.0 11.4 822186 

Wallacei 
Min EUI GW 100 GW 300 TW 109.3 57.2 11.4 987292 
Min GWP GW 100 GW 300 SW 111.2 52.2 11.5 1178935 
Min NPV GW 100 GW 300 TW 109.3 57.2 11.4 987292 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure  D.1. Wallacei analysis features 
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Figure  D.2. Wallacei recalling and exporting features 
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