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Popular Summary

Planets form alongside stars within protoplanetary disks composed of gas and solids.
This material rotates around the central star and can convert into planets. The tiniest solid
particles, called dust, can grow up to form rocky/icy planets or the core of giant planets. In
the latter case, once the core forms, it attracts gas and becomes a gas giant.

The initial dust grows into pebbles, which are mm-cm size solid particles. The gas rotates
slower than solids, but dust easily couples to the slower rotation. However, when dust grows
up to the size of pebbles, the friction exerted by the gas decelerates them. Consequently,
pebbles might fall towards the star. In this project, we studied how a Moon-size body,
called the embryo, can attract these drifting pebbles. When the embryo effectively attracts
pebbles, it can grow to over ten times the size of Earth, which is similar to the typical size of
the core of gas giants like Jupiter and Saturn. We refer to this process as pebble accretion.

While the embryo grows via pebble accretion, it also gets closer to the star because of
its gravitational interaction with the gas. Therefore, it is challenging to keep planets in the
outer regions. Our understanding of the mechanism responsible for the observed wide-orbit
exoplanets remains elusive. In addition, from observations of protoplanetary disks, we know
that some disks have substructures, such as gaps in the outer regions, which might be
formed by massive and distant planets. Moreover, some of these planets would have to form
very quickly since the gaps are also observed within young disks. Our main goal has been
to figure out if it is possible to form planets with these characteristics via pebble accretion.

The key finding of our work is that pebble accretion could explain the fast formation of
cores in the outer regions under certain conditions. We need the embryos to form early in
the outermost regions and the gas to decelerate pebbles efficiently. When the pebble mass
reservoir is large, the distance away from the star at which cores can form increases. We
also found that if the turbulent motions of the gas are weak, it is easier to form cores in the
outer regions. The core can form far away from the star at the early stages, and therefore,
it can still attract gas and become a gas giant. However, as there might be still plenty of
gas remaining, the large amount of gas decelerates the core, and thus, it migrates inwards
for a long distance. Drawing an analogy with the Solar System, the cores could form beyond
Neptune’s orbit but eventually evolve into gas giants orbiting between Jupiter and Saturn.
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Abstract

The possibility that detected substructures in protoplanetary disks, such as gaps,
rings and cavities, are created by distant protoplanets has prompted an inquiry into the
mechanism responsible for their formation. These wide-orbit young bodies are likely to form
relatively rapidly in the outer regions of circumstellar disks. Pebble accretion is considered
a promising candidate to explain their formation, as distant reservoirs of pebbles (mm-cm
sized particles) have been confirmed, and the mechanism can enhance the growth rate of
forming planets. However, the inwards migration of planets and the slower growth in the
outer regions still challenge wide-orbit planet formation via pebble accretion. Therefore, the
disk must harbour the appropriate characteristics for the fast growth of the body.

With the aim of constraining such features, we utilised existing models, which describe
the growth and migration of distant protoplanets until the dispersal of the disk. We also
presented a novel analytical model to explain the depletion of pebbles over the evolving disk.
This model facilitates the simulation of more realistic formation scenarios when pebbles drift
fast across the disk generating a strong but short-lasting pebble flux.

We found that a Moon-sized protoplanetary embryo formed at very early stages and
located beyond 50AU can grow up to become the core of a gas giant (and therefore open
a gap) at 20 − 50AU within less than 1Myr. The outermost cores form when there is a
strong but short-lasting pebble flux with a Stokes number of St ≳ 0.03. A metallicity of
Z0 ∼ 0.01 − 0.02 and low turbulence of αt ≲ 10−4 also enhances the formation of distant
cores. As these cores form very early, they undergo a fast inwards migration while they
accrete gas, and by the end of the disk lifetime (∼ 3Myr), they become giant planets orbiting
at < 10AU. In view of these results, we proposed a new mechanism for forming wide-orbit
gas giants, and we showed that it might be possible to form gas giants at 10− 50AU at the
end of the disk lifetime. According to our model, these planets are rare, in agreement with
the low occurrence of gas giants in the outer regions from direct imaging surveys.

Overall, protoplanets migrate several AU before they become gas giants. That suggests
that giant planets in our Solar System, such as Jupiter, might have started forming from
protoplanetary embryos at distant locations. If the giant planets accrete most of their
solid material in the outermost regions, this can have a significant impact on their ultimate
composition.
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Chapter 1

Introduction

The formation of wide-orbit planets has become of special interest with recent detections
from Atacama Large Millimeter/submillimeter Array (ALMA). ALMA has detected plenty
of protoplanetary disks that show substructures such as gaps, rings, spirals and cavities (see
review by Bae et al., 2022). Although the origin of all the substructures is still unknown,
it is possible that protoplanets1 could have created them. These proposed protoplanets
need to be massive bodies (≳ 10M⊕) so that they can perturb the gas within the disk and
orbit at large distances (> 10AU) to match with the location of observed substructures (see
fig. 1.1). Furthermore, observations reveal that some disks younger than 1 Myr contain gaps
(e.g. Sheehan & Eisner, 2018). If these gaps were formed by protoplanets, the protoplanets
must have formed at early stages.

There is already evidence supporting the idea that substructures might form due to the
presence of a protoplanet. The first observations are related to a cavity created by PDS 70b
and c, which are bodies orbiting at ∼ 22AU and ∼ 35AU, respectively, within a disk with
an age of approximately 5Myr (Keppler et al., 2018; Haffert et al., 2019). Another more
recent evidence is the spirals excited by the planet AB Aur b at ∼ 90AU (Currie et al.,
2022). The detection of these protoplanets does not imply that all detected substructures
must form due to the presence of a planet. However, it is necessary to study how common
this mechanism is and whether it can explain the origin of the substructures for which
no direct evidence of protoplanets has been found. To date, the formation mechanism of
early-formed, distant and massive planets is still an open question.

To study the formation of planets massive enough create substructures, we will focus on
the formation of giant planets. Given that these planets contain a large percentage of gas,
their formation must occur before the gas within the circumstellar disk dissipates, typically
within a few million years (Hartmann et al., 1998; Soderblom et al., 2014). Two distinct
mechanisms have prevailed to explain their formation; the core accretion scenario (Safronov,
1972; Pollack et al., 1996) and the Gravitational Instability (GI) mechanism (Boss, 1997).
The core accretion model proposes that a massive core forms first, followed by the accretion
of a gaseous envelope. A crucial aspect of this model is that the core must reach sufficient
mass to accrete gas before the disk dispersal. The GI scenario can occur when the disk is

1Protoplanets are planets still in the ongoing formation process.
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Figure 1.1: Distribution of confirmed exoplanets (grey dots), planets within the Solar System
(black squares), proposed protoplanets to reproduce the observed disk substructures (blue ⊙
for gaps, purple spiral symbols for spirals, and green stars for kinematic planetary signatures)
and directly imaged protoplanets (PDS 70b and c, AB Aur b and AS 209b) with red
⊙ symbols. The figure does not include the uncertainties in the estimated mass of the
protoplanet, which can typically range from a factor of a few to ten. These uncertainties
are mainly due to poorly constrained properties of the disk, such as its viscosity. The
yellow lines indicate areas where current and future observing facilities such as ALMA,
the next generation Very Large Array (ngVLA) and the Extremely Large Telescope (ELT)
are predicted to discover protoplanets directly or through the disk substructures that they
generate. Figure from Bae et al. (2022).

sufficiently massive so that the disk’s self-gravity can trigger a collapse and result in the
formation of a planet. In this work, we will focus on the possibility of planet formation
based on the core accretion model.

According to classical theory, the core of the protoplanet grows by accreting planetesimals
from its vicinity (Wetherill & Stewart, 1989). Nevertheless, the formation of gas giants in
the outer regions via planetesimal-driven scenarios is hindered by long core formation times
(e.g. Ida & Lin, 2004; Bitsch et al., 2015b; Johansen & Bitsch, 2019). By the time the core
has formed, the gas has already dispersed, preventing the core from becoming a gas giant.
Given the limitations of planetesimal accretion, a new paradigm called pebble accretion was
prompted in the last decade (see review by Johansen & Lambrechts, 2017). The mechanism
was first discovered by Ormel & Klahr (2010) and later studied more in detail by Lambrechts
& Johansen (2012). The authors found that if there are enough pebbles (∼mm/cm size
particles) in the disk, pebble accretion is more efficient than planetesimal accretion. That
occurs because a flux of pebbles flows from the outside towards the centre of the disk, and
the drag force exerted by the gas slows down pebbles passing the protoplanet but not the
planetesimals themselves. Therefore, pebble accretion increases the growth rates of forming
planets.
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Although pebble accretion is a prospective mechanism for rapid core formation, the
formation of wide-orbit planets still faces some challenges. One of the main issues is that
the protoplanet interacts gravitationally with the gas disk, causing an inwards migration
towards the central star (Tanaka et al., 2002). That migration can be rapid enough to
prevent the formation and survival of gas giants (Coleman & Nelson, 2014). Moreover,
the outcome of planet formation strongly depends on the turbulence of the disk and on
the mass of the pebble reservoir (Ormel, 2017). It is, therefore, necessary to identify the
characteristics that can lead to the formation of distant planets.

Recent studies of wide-orbit planet formation embraced the idea of pressure bumps or
rings that prevent the planet from migrating too fast inwards and to have enough solid
build-up for growth (e.g. Morbidelli, 2020; Chambers, 2021; Jiang & Ormel, 2023). However,
as discussed above, the substructures within the disk might be caused by other planets.
We will therefore focus on the formation of the earliest planets and consider disks with
monotonic pressure profiles, i.e. without pressure bumps and substructures. We will analyse
the evolution of individual 2 embryos initially located in the outer regions with initial masses
close to M0 ∼ 0.01M⊕. We will see later that the core of a gas giant is already massive
enough to open a gap within the disk. Therefore, we will not concentrate only on the final
location of the giant planets but also on where their cores form. Since gaps are the most
common substructures (Bae et al., 2022), we will focus on their link with planet formation.

This work is structured as follows. In section 2, we explain the physical concepts
underlying the work. In section 3, we explain the existing models we employed for describing
growth and migration of distant protoplanets. We also present a novel analytical model to
explain the depletion of pebbles. In section 4, we present and discuss the results of our work,
and in section 5, we explain the main limitations and future prospects.

2We assume that a protoplanet does not interact with any other protoplanet within the disk.

8



Chapter 2

Background

In this chapter we introduce the main physical aspects of the planet-forming process. It
is known that the birthplace of planets, the disk, evolves (Hartmann et al., 1998), and that
the structure of the disk plays a fundamental role in planet formation (Bitsch et al., 2015a;
Ida et al., 2016). Hence, we begin by explaining the most important aspects of the disk
structure and evolution. Next, we focus on the dynamics and growth of the solid particles,
which establish the basics of pebble accretion. To finish, we explain the growth and migration
mechanisms of planets.

2.1 Gas disk structure and evolution
Protoplanetary disks surround the nascent stars. Approximately 99% of the matter in

a disk is gas (mainly H and He), and the rest is solid, initially µm-sized dust (Armitage,
2010). The dynamics of the gas and solids are different, and therefore, the distribution of
the gas and that of the solid differ during evolution. We will focus on the gas disk for now.

Figure 2.1a illustrates a disk spanning over 100AU, although some disks can be more
compact with sizes as small as 30AU (Drążkowska et al., 2022). Furthermore, a gas disk
tends to increase in size as it evolves. Apart from the radial extension, it has a vertical
structure that is assumed to be in isothermal hydrostatic equilibrium and geometrically thin
(Armitage, 2010). If the self-gravity of the disk can be neglected, the disk is nearly Keplerian
i.e. its orbital velocity is approximately

vK = rΩK =

√
GM∗

r
, (2.1)

where r is the radial distance from the parent star, ΩK the keplerian frequency and M∗ the
mass of the central star. The disk structure varies with the radial distance from the central
star and age of the disk, and it is commonly described by the gas surface density Σg, the
temperature T or the related magnitude the gas sound speed T ∝ c2s , and the scale height
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(a) Structure of the gas disk. The temperature and
density decrease with increasing distance from the
star. Black dots correspond to solid particles with
different sizes. Figure adapted from Miotello et al.
(2022).

(b) At Keplerian velocities, the orbital
velocity of the inner regions of a disk is
greater than that of the outer regions. The
viscosity between adjacent layers makes the
inner regions move inward while the outer
regions move outward.

Figure 2.1: Schematic view of the disk structure and evolution.

H. The scale height is defined as1,

H(r) =
cs(r)

Ω(r)
. (2.2)

The density and temperature of the disk decrease with radial distance (see fig. 2.1a).
Consequently, the pressure also decreases with distance. The pressure gradient exerts
an outwards force on the gas, and therefore, the gas rotates at sub-Keplerian speed
(vθ ≈ 0.995vK, Armitage, 2010). This pressure gradient force does not affect solids, which
is why the dynamics of the gas and solids differ significantly.

The disk evolves with a typical disk lifetime of tf ∼ 3Myr (Haisch et al., 2001; Williams
& Cieza, 2011). To explain why the disk evolves, the radial dependence of the orbital
velocity of the gas can be approximated as the Keplerian one, i.e. vϕ ∼ vK ∝ r−1/2 (see
eq. 2.1). From that relation, we can deduce that the inner regions orbit faster than the outer
ones. The viscosity between adjacent layers rotating at different velocities makes the inner
regions move inward while the outer regions move outward (see fig. 2.1b). Observations of
the rate at which gas accretes onto the star2 (e.g. Manara et al., 2012) suggest that the
gas is transported at a faster rate than what would be anticipated by molecular viscosity
alone. The origin of the anomalously high viscosity is not well understood yet (Hartmann

1As the gas is assumed to be vertically isothermal and in hydrostatic equilibrium, the volume density
ρ(z) = ρ0e

−z2/2/(cs/Ω)2 = ρ0e
−z2/(2H2). See Armitage (2010) for the whole derivation.

2Also referred to as the gas flux Ṁg.
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et al., 2016). However, given that disks are most likely turbulent (Youdin & Lithwick,
2007), turbulence may drive the radial gas transport. Different mechanisms could create
turbulence, but regardless of the source, viscosity can be linearly scaled by a dimensionless
parameter α between 0 and 1 (see α-disk model in section 3.1).

A further consideration is that describing the turbulence strength with a single α may
not be appropriate in particular for different vertical layers of the disk (Drążkowska et al.,
2022). It is expected that the midplane of the disk has lower turbulence than the upper
layers because of the shielding from ionizing radiation. Typically, different parameters are
used to differ the global α that describes the radial transport of the gas and the midplane
turbulence αt.

2.2 From dust to pebbles
The solid particles grow and are transported within the gas (Testi et al., 2014). Since

solids are initially orbiting at Keplerian speed and the gas at sub-Keplerian one, the gas
exerts a drag force on the solids. Depending on the size and position of the solids, they
re-couple to the gas or drift inwards rapidly compared to the disk lifetime (Weidenschilling,
1977).

An important parameter to describe the dynamics of solids is the Stokes number St. It is
a dimensionless parameter that quantifies the coupling time of a particle tstop (i.e. the time
that needs a particle to couple with the gas) in terms of the local orbital timescale,

St = tstopΩK, (2.3)

where ΩK is the Keplerian frequency (see eq. 2.1). In the outer part of the disk, the relation
between the particle size as and its St can be written as (Lambrechts & Johansen, 2012)

St =
π

2

asρs
Σg

, (2.4)

where ρs is its internal density, and Σg the gas surface density, which decreases with the
radial distance. Therefore, the size of particles exhibiting the same aerodynamic behaviour
(i.e. same St) reduces further away from the star.

Small particles (St ≪ 1) are well-coupled to the gas, orbiting at sub-Keplerian velocities
and radially moving due to turbulence. For larger particles (St ≲ 1) or pebbles, it is harder
to couple to the motion of the gas. Due to the drag force exerted by the gas, pebbles undergo
radial drift. In addition, there is also a vertical transport of solids. Particles are not affected
by the vertical force acting due to the vertical pressure gradient of the gas. However, particles
do not fall to the midplane; they form a vertical structure that depends on the settling due
to gravity and mixing effects due to the midplane turbulence (see fig. 2.2) (Testi et al., 2014).
Dubrulle et al. (1995) calculated that vertical structure Hp for an equilibrium between settling
and turbulence mixing effects,

Hp = H

√
αt

αt + St
, (2.5)
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Figure 2.2: Transport of solids within
the disk; 1) Radial or vertical mixing,
2) Vertical settling, 3) Radial Drift. 4)
Growth and barriers; a) Sticking, b) Bouncing,
c) Fragmentation with mass transfer, d)
Fragmentation. Figure adapted from Testi
et al. (2014).

where H is the scale height of the gas (see
eq. 2.2) and αt is the midplane turbulence.
This equation provides insight into the
settling behaviour of pebbles, with larger
pebbles showing greater decoupling from
the vertical gas structure and settling more
readily into the midplane. Conversely, the
turbulence in the midplane has an inhibiting
effect on settling. Regarding the growth
of solids, the µm-sized primordial dust
particles (or monomers) can stick together
to form larger aggregates (Testi et al.,
2014). The timescale for doubling the size is
estimated to be τ ∼ (Z0ΩK)

−1(Brauer et al.,
2008), where Z0 is the initial dust-to-gas
ratio, and ΩK the Keplerian frequency.
Hence, the timescale required to grow up
from 1µm to size as,

τg ∼
1

Z0ΩK

· log2
(

as
µm

)
. (2.6)

The velocity at which particles collide is one of the factors that determines the growth,
as when particles are driven by turbulence, their relative velocity increases with size or
St (∆vturb ∝ √

αtSt · cs, Ormel & Cuzzi, 2007), and the pairwise collisions can result in
fragmentation (Blum & Wurm, 2008). In models, this effect is described by the fragmentation
velocity vf , which is the maximum relative velocity between colliding pairs until they start
to fragment. By equating the relative velocity with the fragmentation limit,

Stfrag ≈
1

3αt

(
vf
cs

)2

, (2.7)

establishes the maximum size at which a particle can grow (Birnstiel et al., 2009). This does
not imply that particles always grow up to the fragmentation limit, as radial drift might
hamper growth. The Stokes number of particles dominated by the radial drift is (Ida et al.,
2016)

Stdrift ≈
√
3π

80

vK
∆v

Z0, (2.8)

where vK is the Keplerian velocity, ∆v the sub-Keplerian velocity and Z0 is the initial
dust-to-gas ratio. The maximum pebble-size at a certain location is the minimum between
the fragmentation barrier and drift barrier, i.e. St = min (Stfrag, Stdrift). The inner regions
are mostly dominated by the fragmentation barrier, and the outer ones by the drift barrier.

Turbulence plays a key role in the growth of particles, as higher turbulence increases the
relative velocity between particles, in addition to hindering the settling of particles into the
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midplane (see eq. 2.5). This causes the particles to spread within a larger region, resulting
in less frequent encounters, and therefore, reducing their growth rate (Misener et al., 2019).
Therefore, particles within high turbulence regions grow more slowly and stop growing at
smaller sizes.

Since particles grow to pebble sizes and then radially drift, a pebble flux Ṁp is defined
to describe the carried mass by pebbles from the outer to the inner regions of the disk
(Lambrechts & Johansen, 2014). In the pebble accretion scenario, the protoplanet grows by
consuming pebbles from this flux. The flux is characterised by the aerodynamic properties
of the pebbles (St) and the pebble-to-gas ratio (Z). The impact of varying these parameters
has already been explored. For example, Drążkowska et al. (2021) showed that an inwards
flux of small pebbles (or small St) lasts longer. Another example is that Lambrechts et al.
(2019) showed that a high pebble flux favours the formation of giant planets, while a low
flux leads to the formation of super-Earths. Arguably, the pebble flux characteristics shape
the fate of planets, and therefore, its characterisation is highly relevant. We will address this
again when we derive the model in section 3.2.

2.3 Protoplanetary growth
This section will focus on protoplanetary growth through the accumulation of solids and

gas. The initial embryo most likely forms by a mechanism called the Streaming Instability
(SI), which is based on the collapse of self-gravitating pebble clumps (Johansen et al., 2014).
Planetesimals with different sizes can form in those collapses (e.g. Schäfer et al., 2017), and
the embryo is the largest planetesimal of a population. In a standard model, the embryo
starts growing by accreting planetesimals until it is massive enough to accrete pebbles more
efficiently. Nevertheless, Lorek & Johansen (2022) analysed the growth of embryos via
planetesimal accretion in the outer regions and found that planetesimals cannot maintain
an efficient accretion rate beyond 5 − 10AU. In addition, Lyra et al. (2023) found that
growth via pebble accretion is possible directly after the embryo formation by SI. Thus, we
do not include planetesimal accretion in our model. We begin by examining the evolution
of a typical initial embryo mass of 0.001 − 0.1M⊕ that could form directly by SI at large
distances (e.g. Liu et al., 2020). The embryo is located in the midplane and undergoes pebble
accretion (as shown in fig. 2.3). Once the core forms, we proceed to gas accretion.

2.3.1 Pebble accretion

In the pebble accretion scenario, a protoplanet grows by accreting pebbles drifting from
outer regions. The efficiency of pebble accretion depends mostly on two factors: the
protoplanet’s mass and the pebble’s Stokes number (see fig. 2.4). On the one hand, the
protoplanet needs to be massive enough to settle particles down its gravitational well (see
the difference between fig. 2.4 (a), (b), (c) and (d)). On the other hand, if St ≪ 1 particles are
well-coupled to the gas (see fig. 2.4 (f)), and if St > 1, the gas cannot effectively decelerate
such large object (see fig. 2.4 (e)). Hence, a protoplanet accretes pebbles more efficiently
when St ∼ 0.001− 0.1 (Ormel, 2017; Drążkowska et al., 2022).
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Figure 2.3: The core accretion scenario. The embryo starts growing via pebble accretion,
and once the core forms, it will accrete gas to form the envelope until the gas disk dissipates.

Figure 2.4: Different scenarios of protoplanet-pebble interaction, adapted from Ormel (2017).
The red lines indicate the path of accreted pebbles. Only (c) and (d) are the ones qualified
as pebble accretion scenarios, whose accretion radius extends close to the Hill radius (dashed
circle). In (a) and (b), the protoplanet is not massive enough to attract pebbles efficiently.
In (e), the gas drag does not decelerate the particles due to the large Stokes number. In (f),
the particles are so small that they do not detach from the gas.

Some characteristics of the disk can also enhance or hinder pebble accretion. A high
gas density enhances accretion, as it will decelerate pebbles more effectively (Ormel, 2017).
We know that the gas density decreases with distance, so this does not benefit the growth
of wide-orbit planets. A higher dust-to-gas ratio also enhances accretion, as it causes a
stronger pebble flux. Turbulence is another factor to consider because, as we mentioned
in the previous section, high turbulence hinders the settling of particles, and consequently,
particles do not accumulate near the midplane. That can pose a challenge for low mass
protoplanets to accrete them. In that regard, accretion is classified as either 2D or 3D, and
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Figure 2.5: 3D simulation of the gravitational perturbation that an embedded protoplanet
causes on the midplane gas (Lambrechts et al., 2014). On the left panel, they show the change
in the gas surface density due to the presence of a protoplanet. They plot the full annulus
(θ = 2π) of a protoplanetary disk around the planet, located at a normalised distance of
r = 1. On the right panel, they show how the orbital velocity of the gas with respect to the
Keplerian one changes in the presence of protoplanets with different masses. In the outer
edge of the gap, the gas rotates at super-Keplerian velocity, which halts pebbles coming from
the outer regions.

we will delve into the specifics of this in section 3.3.1 when we discuss the model.

The body stops growing when the pebble flux is depleted (e.g. because all the pebbles
have fallen to the centre or the gas dissipates) or when the core reaches its maximum mass and
cannot accrete more pebbles. Lambrechts et al. (2014) showed via 3D numerical simulations
that a massive protoplanet perturbs the disk, opening a gap that changes the radial pressure
gradient in its vicinity (see fig. 2.5). Due to those perturbations, the gas in the outer regions
of the protoplanet’s orbit rotates at super-Keplerian velocities. Hence, pebbles are pushed
outwards in that region and eventually accumulate on the outer edge. The threshold mass of
a protoplanet, beyond which the pebble accretion process ceases, is referred to as the pebble
isolation mass Miso.

2.3.2 Gas Accretion

During pebble accretion, the impacts of pebbles heat the atmosphere, preventing
contraction and efficient gas accretion (Lambrechts et al., 2014). However, if the protoplanet
reaches Miso before the disk dispersal, the envelope starts to cool down by emitting radiation
or luminosity. In response to the energy loss, it contracts via Kelvin-Helmholtz contraction,
and new gas flows from the disk to refill the empty space.
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In the first stage, the envelope has a relatively low mass, and therefore, the cooling
and contraction process is slow and limits the gas accretion rate. Although the pebble
flux is halted, dust particles well-coupled to the gas can still enter the envelope. The dust
contributes to the opacity of the envelope κ and marginally hampers gas accretion (Ikoma
et al., 2000).

When the mass of the envelope is similar to that of the core, the gas accretion starts to be
very rapid. This mechanism is referred to as runaway gas accretion. As the protoplanetary
envelope increases, the cooling and contraction rate becomes so rapid that the accretion rate
starts to be limited by the extent of the disk where the protoplanet dominates, i.e. its Hill
radius RH. Whilst accretion continues, the Hill sphere can become sufficiently large that the
accretion rate is limited by the amount of gas that can enter the region from the disk (Ida
et al., 2018). The runaway process stops when the gas disk depletes after the disk lifetime tf .
By the time the gas disk dissipates, the protoplanet has already formed a gaseous envelope
or primary atmosphere (Pollack et al., 1996).

2.4 Protoplanetary migration
When the protoplanet attains a mass of approximately 0.1M⊕, the gravitational

interaction with the surrounding gas disk becomes significant, leading to notable effects on
the dynamical evolution of the system (Kley & Nelson, 2012). The protoplanet generates
two density waves; an inner leading and an outer trailing spiral arm. As a reaction, the
protoplanet feels an exerted torque by each excited wave (see fig. 2.6). The internal torque
exerted by the inner arm accelerates the protoplanet, while the external torque exerted
by the outer one decelerates it. The external torque dominates over the inner one, and
consequently, the protoplanet migrates inwards (Goldreich & Tremaine, 1978; Tanaka et al.,
2002).

Initially, the migration speed scales linearly with the protoplanet’s mass and with the
unperturbed gas surface density3 within the so-called type I migration regime (Tanaka et al.,
2002). As already mentioned in section 2.3.1, a massive protoplanet opens a density gap
along its orbit. If the gas does not flow across the gap, the gas will not exert any torque on
the planet and the protoplanet will migrate at the speed of the gas viscous accretion (Lin
& Papaloizou, 1986). This type of migration is referred to as the type II migration regime.
Hydrodynamical simulations (e.g. Dürmann & Kley, 2015) showed, however, that gas can
easily cross the gap. In Kanagawa et al. (2018), they described a new physical model where
the torque exerted by the gas that crosses the gap depends on the surface density at the
bottom of the gap instead of the unperturbed one of the type I regime. The surface density
at the bottom of the gap decreases with increasing the protoplanet’s mass, and therefore,
considering the gap-opening slows down the protoplanet’s migration.

3The unperturbed gas surface density is the aforementioned Σg in section 2.1, because the protoplanet is
still not massive enough to perturb significantly its vicinity.
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(a) The co-rotating frame of reference
of the protoplanet. The gas rotates
counterclockwise in the inner regions, and
clockwise the outer ones.

(b) The inner leading and the outer trailing spiral
arms induced by the protoplanet. The colour map
indicates the gas surface density.

Figure 2.6: Inwards migration due to planet-disk gravitational interaction (Kley & Nelson,
2012).

Although migration reduces when the planet reaches a large mass and opens a gap, rapid
growth of the planet is necessary to create such a gap quickly. Migration is one of the major
problems in retaining planets in outer regions and its impact will be considered in our model.
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Chapter 3

Method

In this chapter, we explain the specific method that we adopt to describe the outer
regions. First, we describe the model for the structure and evolution of the disk. Next,
we introduce the analytical model of the pebble flux, including its derivation and numerical
proof. Subsequently, we show the initial conditions for the simulations, followed by the model
and method for calculating the growth and migration of the protoplanet.

3.1 Gas surface density and gas flux
The evolution of the gas surface density Σg of a geometrically thin Keplerian disk under

the action of internal angular momentum transport is given by (Pringle, 1981)

∂ Σg

∂ t
=

3

r

∂

∂ r

[
r1/2

∂

∂ r
(ν Σg r

1/2)

]
, (3.1)

where ν is the turbulent viscosity. To derive Σg(r, t), we begin by analysing the steady-state
solution of eq. 3.1 (∂ Σg

∂ t
= 0). We assume that the viscosity and disk temperature of the disk

can be approximated with power-law functions of the radial distance r (Ida et al., 2016)

ν ∝ rγ, (3.2)

Td ∝ r−ζ , (3.3)

and consequently, the sound speed and the scale height (see eq. 2.1 and 2.2) can be written
as

cs(r) = cs,1

( r

AU

)− ζ
2
, (3.4)

H(r) =
cs,1

Ω1 AU

( r

AU

)− ζ
2
+ 3

2
, (3.5)

where cs,1 is the sound speed at 1AU, and Ω1 AU is the Keplerian frequency at 1AU (see
eq. 2.1). Following the α-disk model (Shakura & Sunyaev, 1973), we can relate the viscosity
to the sound speed and the scale height. The turbulence cannot create structures larger than
the smallest scale in the disk, which is generally the disk scale height. Similarly, the velocity
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of the turbulent motion is limited to be no larger than the sound speed since supersonic
motions result in shocks and rapid dissipation. Therefore, we write the turbulent viscosity
as

ν(r) = α · cs(r)H(r), (3.6)

where α, or the global disk accretion coefficient, quantifies the efficiency of angular
momentum transport due to turbulence (mentioned in section 2.1) and is expected to be
less than 1. From eq. 3.2, 3.4, 3.5 and 3.6, we can relate the two power-law indexes γ = 3

2
−ζ.

From the conservation of angular momentum of a narrow ring of material, the steady-state
solution of eq. 3.1 can be written as a function of constant gas flux Ṁg,0 across the disk and
over time, also known as the gas accretion rate onto the star,

Σg(r) =
Ṁg,0

3π ν(r)
. (3.7)

We assume that at t = t0 the surface density takes the form of the steady solution out to the
characteristic initial disk size R1, with an exponential cut-off at larger distances,

Σg(r, t = t0) =
Ṁg,0

3π ν1 r̃γ
exp

(
−r̃(2−γ)

)
, (3.8)

where Ṁg,0 in the non-steady solution is the initial gas accretion rate onto the star in the
inner regions, ν1 = ν(R1), r̃ = r/R1, and γ is the viscous power-index. Then, we use the
self-similar solution (Lynden-Bell & Pringle, 1974)

Σg(r, t) =
Ṁg,0

3π ν1 r̃γ
T− 5/2−γ

2−γ exp

(−r̃(2−γ)

T

)
, (3.9)

where T is the dimensionless time

T ≡ t− t0
ts

+ 1. (3.10)

Here, ts is the viscous timescale of the gas at radial distance R1, which characterises the
timespan required for the gas to evolve radially. It is defined as

ts ≡
1

3(2− γ)2
R2

1

ν1
. (3.11)

Once we have the analytical expression of Σg, we can derive the expression of the gas flux
Ṁg. By definition, the gas flux is (Armitage, 2010)

Ṁg ≡ −2πrvr,gΣg (3.12)

where vr,g is the radial velocity of the gas. The negative sign is due to the definition of a
positive flux as being directed towards the star. From the continuity equation of a flux,

r
∂ Σg

∂ t
+

∂ (r vr,g Σg)

∂ r
= r

∂ Σg

∂ t
− 1

2π

∂ Ṁg

∂ r
= 0 (3.13)
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Hence, by replacing eq. 3.9 in the continuity equation and solving it, we get the expression
for the gas mass flux (Hartmann et al., 1998),

Ṁg(r, t) = Ṁg,0 T
− 5/2−γ

2−γ exp

(
− r̃(2−γ)

T

)
×
[
1− 2(2− γ)

r̃(2−γ)

T

]
. (3.14)

The expression changes sign at Rt = R1

[
T

2(2−γ)

] 1
(2−γ) . For r < Rt the gas accretes towards

the star, and for r > Rt it expands outwards. Replacing eq. 3.9 and 3.14 in eq. 3.12, we
derive the radial velocity of the gas,

vr,g = −3

2

ν

r
×
[
1− 2(2− γ)

r̃(2−γ)

T

]
. (3.15)

To identify multiple unknown values of parameters that emerged in this section, we will
utilise relevant literature as a reference to obtain their fiducial values. For simplicity, we will
focus only on Sun-like stars M∗ ∼ M⊙ and assume that their mass remains constant. Beyond
a few AU, the main heat source of the disk is the irradiation from the central star (Ida et al.,
2016). According to the empirical fitting in Garaud & Lin (2007), ζ ≈ 3

7
, and consequently,

γ ≈ 15
14

. As a fiducial value for the sound speed cs,1 ∼ 650m s−1 in eq. 3.4 for a Sun-like
star (Johansen et al., 2019) and Ω1AU ∼ 2π yr−1. In Hartmann et al. (1998), they estimated
from fitting observational data for Sun-like stars that the gas accretion rate at early stages
(e.g. t0 ∼ 0.2Myr) is Ṁg,0 ∼ 10−7 M⊙ yr−1 and that drops to ∼ 10−8 M⊙ yr−1 over a few
Myr. They also estimated that α ∼ 0.01. For the midplane turbulence, however, we choose
αt ∼ 10−4 as a fiducial value, as a low turbulence has been inferred from dust observations
in the outer regions (Pinte et al., 2022). The total disk mass from eq. 3.9,

Mg(t) =

∫ ∞

0

2πrΣg(r, t) dr =
2

3

Ṁg,0

ν1

R2
1

(2− γ)
T − 1

2(2−γ)

=
2

3

Ṁg,0

αc2s,1Ω
−1
1 AU

(
R1

1AU

)γ R2
1

(2− γ)
T − 1

2(2−γ)

≈ 0.16 · M⊙

( α

0.01

)−1
(

Ṁg,0

10−7 M⊙ yr−1

)( cs,1
650 m s−1

)−2
(

M∗

1 M⊙

) 1
2

×

× 100
15
14

−γ ·
(

R1

100AU

)2−γ

T − 1
2(2−γ)

(3.16)

For a typical initial disk mass of Mdisk ∼ 0.1M⊙ and Mdisk ∼ 0.2M⊙, from fiducial values
we get initial disk sizes of R1 ∼ 60AU and R1 ∼ 120AU respectively. As a fiducial
value we choose the typical disk size R1 ∼ 100AU (Williams & Cieza, 2011). These
fiducial values correspond to a stable disk. When the disk is not stable, the self-gravity
of the disk becomes relevant, and it can undergo local collapses. The Toomre’s parameter
Q ≈ cs Ω

π G Σg
is used as the criteria to calculate the stability of the disk; the disk is stable if

Q ≳ 2 across the whole disk (Armitage, 2010). All the fiducial values are listed in appendix A.

In fig. 3.1, we plot the gas surface density and the gas flux described by eq. 3.9 and 3.14.
In this figure, we see that, when the initial disk size is set to R1 = 100AU, the outward
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Figure 3.1: Gas density and gas flux over time according to eq. 3.9 and eq. 3.14, respectively.
The dots represent the radial distance where Ṁg vanishes. We use the fiducial values from
table 1.

flux initially emerges at a radius greater than 50AU, and then gradually moves outwards,
reaching 100AU before ∼ 2Myr. Thus, considering the momentum redistribution of the gas
is relevant for protoplanets forming at large distances.

3.2 Pebble flux
The pebble flux describes the rate of pebble mass passing through an annulus at a

distance r from the star. Numerical models that estimate the pebble flux (e.g. Brauer
et al., 2008; Birnstiel et al., 2010) are computationally expensive and hinder the testing
of various planet-forming scenarios, which is the aim of our work. Therefore, in this section,
we develop a new analytical description. We introduce the general model of the dynamics
of solid particles in section 3.2.1, followed by the derivation of the novel analytical model in
section 3.2.2 and its computational test in section 3.2.3.

3.2.1 Dynamics of solid particles

Similarly to eq. 3.12, the pebble flux is defined as

Ṁp ≡ −2πrvr,pΣp, (3.17)
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where vr,p is the radial velocity of pebbles (Weidenschilling, 1977),

vr,p =
vr,g

1 + St2
− 2∆v St

1 + St2
. (3.18)

Here, St is the Stokes number (see section 2.2), vr,g is the radial velocity of the gas (see
eq. 3.15) and ∆v quantifies the sub-Keplerian velocity reduction of the gas (vϕ,g ≈ vK−∆v),

∆v = −1

2

(
H

r

)
∂ lnP

∂ ln r
cs =

1

2

(
H

r

)
χcs. (3.19)

We denote the negative logarithmic pressure gradient in the midplane as χ. Assuming an
ideal gas (P ∝ Σg

H
Td) and using eq. 2.2, 3.3 and 3.9,

χ ≡ −∂ lnP

∂ ln r
= γ +

ζ

2
+

3

2
+ (2− γ)

r̃ (2−γ)

T
= χ0 + (2− γ)

r̃ (2−γ)

T
(3.20)

where γ and ζ are the power-law indices of the viscosity and temperature respectively,
r̃ = r/R1, and T is the dimensionless time (see eq. 3.10). The first term in eq. 3.18 describes
the advection mode of transport that occurs when the gas flux drags solid particles, and
the second term corresponds to the radial drift towards higher pressure. In fig. 3.2, we plot
the radial velocity of solids depending on St. When St ∼ α ∼ 0.01 solids decouple from
the gas1, drifting faster than the gas towards the star. After a maximum when St ∼ 1, the
radial velocity decreases again, as massive bodies have greater inertia. Since the drift and
fragmentation barriers limit the pebble growth via coagulation (see section 2.2), generally,
pebbles do not reach St ∼ 1.

As in the previous section, we discuss the fiducial values from the literature for
parameters related to the pebble flux. First, it is thought that the initial dust-to-gas ratio
is roughly the same as the one in the ISM (Feng & Krumholz, 2014). A typical standard
value is Z0 ∼ 0.01. Assuming that solids do not decouple from the gas until t0 (because
their size is initially small), the initial pebble-to-gas ratio is equal to the initial dust-to-gas
ratio, i.e. Z(t0) = Z0 ∼ 0.01. Z evolves with time once pebbles start to decouple from the
gas. As mentioned in section 2.2, St = min(Stdrift, Stfrag). Regarding Stfrag (see eq. 2.7),
laboratory experiments done in Güttler et al. (2010) reported a value of vf ∼ 1m s−1 for
the fragmentation velocity of grain silicates 2. For fiducial values, the outer regions r ∼ R1

are drift-limited (see fig. 3.3). Hence, we choose St ≈ 0.03. To calculate the size of solid
particles (see eq. 2.4), we choose ρdust ∼ 1 g cm−3 as a nominal value (Ida et al., 2016).
According to observations in Ricci et al. (2010), they found evidence of solid particles as
large as at least 1mm in the outer regions of several young disks. The particle size according
to eq. 2.4 is as ∼ 2mm at R1. Therefore, the fiducial values are in line with observations.
A particle at R1 ∼ 100AU grows up to 2mm in ∼ 0.2Myr (from eq. 2.6) and then starts
drifting inwards. We will consider that in the outer regions the pebble flux starts depleting
when t0 ∼ 0.2Myr.

1In vr,p/vr,g, the radial drift term will depend on St/α.
2There is an ongoing debate about the value of vf , as the fragmentation threshold may depend on the

particle composition and consequently the location in the disk (Drążkowska et al., 2022).
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Figure 3.2: The inwards radial velocity of solids depending on their St or size as at 20AU
(see eq. 2.4 and eq. 3.18). The dashed line indicates the inwards radial velocity of the gas (see
eq. 3.15). The colour ranges indicate the approximate regions describing what dominates the
dynamics of solids. Small particles are well-coupled to the gas; particles with St between
∼ 0.01 and 100 undergo inwards radial drift; and for larger solids, the radial component of
the velocity approaches 0, resulting in a purely Keplerian orbit. For the plot, we use fiducial
values from appendix A.

Different models for the pebble flux Ṁp can be derived depending on the assumptions.
For example, in Johansen et al. (2019), they assumed that the ratio between the pebble and
gas flux is constant. This approach is valid for small particles that are well-coupled to the
gas. Nevertheless, with this model we are limited to analyse scenarios where pebbles grow
only up to an small St, and the growth of protoplanets via small pebble accretion is too slow
in the outer regions. Therefore, we will implement a model that considers that the pebble
flux might deplete faster than the gas flux due to larger St.

3.2.2 Derivation of the analytical description

Defining the pebble-to-gas ratio or metallicity as

Z ≡ Σp

Σg

, (3.21)
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by the fragmentation barrier and the outer ones by the drift barrier. When r ∼ R1 ∼ 100AU,
St ∼ 0.03, as ∼ 2mm and τg ∼ 0.2Myr for fiducial values (see appendix A).

the pebble flux can be written in terms of the metallicity by dividing eq. 3.12 and 3.17,

Ṁp = Z
vr,p
vr,g

Ṁg. (3.22)

For simplification, we define h(r, t) = vr,p
vr,g

Ṁg so that Ṁp = Z · h(r, t). From eq. 3.14, 3.15
and 3.18,

vr,p
vr,g

=
1

1 + St2

(
1− 2∆vSt

vr,g

)
=

1

1 + St2

[
1 +

2

3

χSt

α

1

(1− 2(2− γ) r̃
(2−γ)

T
)

]
, (3.23)

h(r, t) =
vr,p
vr,g

Ṁg =
1

1 + St2

[
1− 2(2− γ)

r̃ (2−γ)

T
+

2

3

χSt

α

]
Ṁg,0T

− 5/2−γ
2−γ exp

(
− r̃ (2−γ)

T

)
,

(3.24)
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where r̃ = r/R1 and T (see eq. 3.10) are the dimensionless spatial and time variables. χ
depends on r and t (see eq. 3.20), and St can also depend on r and t. Defining

b(r, t) =
2

3

χ(r, t)St(r, t)

α
, (3.25)

we can rewrite h,

h(r, t) =
vr,p
vr,g

Ṁg =
1

1 + St2

[
1− 2(2− γ)

r̃ (2−γ)

T
+ b(r, t)

]
Ṁg,0T

− 5/2−γ
2−γ exp

(
− r̃ (2−γ)

T

)
.

(3.26)
Since h(r, t) is known, we want to derive Z(r, t) so that we can get the analytical form of Ṁp

in eq. 3.22. Neglecting the diffusivity of solid particles within the gas, the pebble flux fulfils
its own continuity equation,

r
∂ Σp

∂ t
− 1

2π

∂ Ṁp

∂ r
= 0. (3.27)

We can rewrite this equation in terms of Z by replacing Σp = ZΣg and Ṁp = Zh (see eq. 3.21
and 3.22). We make the change of variables from r and t to the dimensionless parameters
r̃ = r/R1 and T (see eq. 3.10 and 3.11) respectively to simplify the equation. Applying the
chain rule,

∂

∂t
≡ 1

ts

∂

∂T
≡ 3(2− γ)2

ν1
R2

1

∂

∂T
,

∂

∂r
≡ 1

R1

∂

∂r̃
. (3.28)

The continuity equation, therefore, is

3(2− γ)2
ν1
R1

r̃
∂(Z · Σg)

∂T
− 1

2π

1

R1

∂(Z · h)
∂r̃

= 0

3(2− γ)2ν1r̃

(
Z
∂Σg

∂T
+ Σg

∂Z

∂T

)
− 1

2π

(
Z
∂h

∂r̃
+ h

∂Z

∂r̃

)
= 0.

(3.29)

To solve the partial differential equation we substitute Σg and h (see eq. 3.9 and 3.26) and
compute their (dimensionless) time and spatial derivatives respectively. The time derivative
of Σg is

∂Σg

∂T
=

Ṁg,0

3πν1
r̃−γT− 5/2−γ

2−γ exp

(
− r̃ (2−γ)

T

)
1

T

(
−5/2− γ

2− γ
+

r̃ (2−γ)

T

)
. (3.30)

Computing ∂h
∂r̃

is not trivial, and therefore, we make an approximation. The larger pebbles
that we might find within a flux have St ∼ 0.1. In that case 1

St2+1
= 0.99, and for lower St

the value is even closer to one. Therefore, for simplicity 1
St2+1

∼ 1. Consequently, the spatial
derivative is simplified as

∂h

∂r̃
= Ṁg,0T

− 5/2−γ
2−γ exp

(
− r̃ (2−γ)

T

)[
∂b

∂r̃
− (2− γ)

r̃ (1−γ)

T

(
1 + 2(2− γ)− 2(2− γ)

r̃ (2−γ)

T
+ b

)]
.

(3.31)
The general equation, therefore,

Z
r̃ (1−γ)

T

[
(2− γ)

2
b− T

2r̃ (1−γ)

∂b

∂r̃

]
= −(2− γ)2r̃ (1−γ)∂Z

∂T
+

1

2

[
1 + b− 2(2− γ)

r̃ (2−γ)

T

]
∂Z

∂r̃
.

(3.32)

25



This equation can be solved numerically given any initial conditions Z(r̃, 1) = Z0(r̃) and
expression for St(r̃, T ). However, solving eq. 3.32 analytically involves further limitations.
Hence, for simplicity, we assume that St is constant and that Z(r̃, 1) = Z0. In appendix B.1,
we show why we could not solve the equation with St(r̃). Applying the assumptions and
substituting χ(r̃, T ) from eq. 3.20, we get that

b(r̃, T ) =
2

3

St

α

(
χ0 + (2− γ)

r̃ (2−γ)

T

)
= b0

(
1 +

(2− γ)

χ0

r̃ (2−γ)

T

)
, (3.33)

where b0 =
2
3
Stχ0

α
. The spatial derivative of b(r̃, T ) is

∂b

∂r̃
=

2

3

St

α
(2− γ)2

r̃ (1−γ)

T
= b0

(2− γ)2

χ0

r̃ (1−γ)

T
. (3.34)

Replacing ∂b
∂r̃

in the general continuity equation 3.32, we get that

Z
r̃ (1−γ)

T
· (2− γ)

2
b0

[
1− 2− γ

χ0

(
1− r̃ (2−γ)
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∂T
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− 2

)
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r̃ (2−γ)

T

]
∂Z

∂r̃
.

(3.35)

This equation is a first-order linear Partial Differential Equation (PDE), which we will
solve employing the Method of Characteristics for Non-Constant Coefficients (Riley et al.,
1999). For simplicity, we will find the Z solution when γ = 1, and generalise the expression
afterwards. Therefore, the equation we want to solve is

1

2

[
1 + b0 +

(
b0
χ0

− 2

)
r̃

T

]
∂Z

∂r̃
− ∂Z

∂T
− Z

T

b0
2

[
1− 1

χ0

+
1

χ0

r̃

T

]
= 0. (3.36)

We seek a solution of the form Z(r̃, T ) = f(p) · g(r̃, T ), where p is a function of r̃ and T and
g(r̃, T ) is any function that fulfills eq. 3.36. We rewrite the equation with

∂Z

∂T
=

∂g

∂T
f(p) + g

df

dp

∂p

∂T
,

∂Z

∂r̃
=

∂g

∂r̃
f(p) + g

df

dp

∂p

∂r̃
, (3.37)

A(r̃, T ) =
1

2

[
1 + b0 +

(
b0
χ0

− 2

)
r̃

T

]
, B(r̃, T ) = −1, C(r̃, T ) =

1

T

b0
2

[
1− 1

χ0

+
1

χ0

r̃

T

]
,

(3.38)
which when substituting in the PDE we get[

A(r̃, T )
∂g

∂r̃
+B(r̃, T )

∂g

∂T
− C(r̃, T )h

]
f(p) +

[
A(r̃, T )

∂p

∂r̃
+B(r̃, T )

∂p

∂T

]
g
df

dp
= 0,[

A(r̃, T )
∂p

∂r̃
+B(r̃, T )

∂p

∂T

]
g
df

dp
= 0,

A(r̃, T )
∂p

∂r̃
+B(r̃, T )

∂p

∂T
= 0.

(3.39)
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In the first line, the first term vanishes as it is just the original PDE with Z replaced by g.
Given that

dp =
∂p

∂r̃
dr̃ +

∂p

∂T
dT, (3.40)

this equation and eq. 3.39 become the same if we require that

dr̃

A(r̃, T )
=

dT

B(r̃, T )
. (3.41)

This is the characteristic equation, and the integration constant will be p. Hence, the first
equation we need to solve is

dr̃

1
2

[
1 + b0 +

(
b0
χ0

− 2
)

r̃
T

] = −dT. (3.42)

This equation is an homogeneous first-order Ordinary Differential Equation (ODE), and
therefore, we can rewrite it in the form of dr̃

dT
= F ( r̃

T
). An homogeneous ODE can be solved

by
dT

T
=

du

F (u)− u
, (3.43)

where u = r̃
T

and F (u) = d r̃
d T

. Integrating the equation, we get that

r̃(T ) = −
(
1 +

1

b0

)
χ0T + pT

− b0
2χ0

+1
, (3.44)

where p is the constant of integration. Rearranging the equation,

p =

[(
1 +

1

b0

)
χ0 +

r̃

T

]
T

b0
2χ0 . (3.45)

Thus, the general solution for the PDE is

Z(r̃, T ) = g(r̃, T )f

([(
1 +

1

b0

)
χ0 +

r̃

T

]
T

b0
2χ0

)
. (3.46)

To get the form of Z(r̃, T ) that fulfills the initial condition Z(r̃, 1) = Z0, we will look for an
adequate form of g(r̃, T ). We propose that it has the following structure

g(r̃, T ) = cT a exp

(
b+

r̃

T

)
, (3.47)

where a, b and c are unknown constants that can be calculated by replacing g(r̃, T ) in the
PDE and applying the initial conditions. The partial derivatives of g,

∂g

∂r̃
= cT a exp

(
b+

r̃

T

)
1

T
=

g

T
, (3.48)

∂g

∂T
= cT a exp

(
b+

r̃

T

)[
a

T
− r̃

T 2

]
=

g

T

[
a− r̃

T

]
. (3.49)
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Replacing this in the PDE, we get that a = 1
2
+ b0

2χ0
. b and c can be computed using the

initial condition Z(r̃, 1) = Z0. When T = 1,

g(r̃, 1) = c exp (b+ r̃) , f(p) = f

((
1 +

1

b0

)
χ0 + r̃

)
. (3.50)

In order to get Z(r̃, 1) = c exp (b+ r̃) f
((

1 + 1
b0

)
χ0 + r̃

)
= Z0, the function f must

take the form f = exp(−p), and therefore,

c = Z0, b =

(
1 +

1

b0

)
χ0. (3.51)

Setting everything together, we get the solution

Z(r̃, T ) = Z0T
1
2
+

b0
2χ0 exp

{
−
[
χ0

(
1 +

1

b0

)
+

r̃

T

]
×
[
T b0/(2χ0) − 1

]}
. (3.52)

From this equation we can get the general expression for any γ looking for a similar solution
that fulfils eq. 3.35:

Z(r̃, T ) = Z0T
1

2(2−γ)
+

b0
2χ0 exp

{
−
[

χ0

(2− γ)

(
1 +

1

b0

)
+

r̃(2−γ)

T

]
×
[
T b0/(2χ0) − 1

]}
(3.53)

A simplified expression of this solution can be derived by assuming that χ ≈ χ0, which
is valid in the inner disk. From this assumption (and keeping St constant), ∂b

∂r
= 0, and

therefore, the general equation 3.35 is further simplified. Since b0 =
2
3
St
α
χ0,

Z
r̃ (1−γ)

T

(2− γ)

2
b0 = −(2− γ)2r̃ (1−γ)∂Z

∂T
+

1

2

[
1 + b0 − 2(2− γ)

r̃ (2−γ)

T

]
∂Z

∂r̃
(3.54)

We realise there is a straightforward solution of this equation since if ∂Z
∂r̃

= 0, it turns out
that the PDE converts into a ODE,

Z
r̃ (1−γ)

T

(2− γ)

2
b0 = −(2− γ)2r̃ (1−γ)∂Z

∂T
, (3.55)

Z

T

1

2
b0 = −(2− γ)

dZ

dT
. (3.56)

Therefore, Z(r̃, T ) = Z(T ), and this is valid for our initial conditions as they do not depend
on r̃. Integrating the ODE,

Z(T ) = Z0T
− b0

2(2−γ) = Z0T
− 1

2(2−γ)
2
3

χ0St
α (3.57)

which is less intricate than eq. 3.53. We tried to derive Z(r, t) alternatively (see appendix
B.2) by some other assumptions, and we get the same expression as in eq. 3.57. Knowing
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Figure 3.4: Analytical models of the evolution of the metallicity across the disk. We plot the
two solutions; Z(r, t) from eq. 3.53 with solid lines, and Z(t) from eq. 3.57 with dotted lines.
Z(r, t) ≈ Z(t) in the inner regions until the pebbles from the outer regions reach the inner
ones. We use the fiducial values from appendix A.

the metallicity, we compute the pebble flux by eq. 3.22.

In fig. 3.4, we compare the evolving metallicity across the disk from eq. 3.53 and 3.57.
For Z(r, t) we see that, in the outer regions, the pebble flux depletion occurs faster than
in the inner regions. Hence, Z(t) ≁ Z(r, t) in the outer regions (r ∼ R1). In addition, in
the inner regions Z(t) > Z(r, t) after a while because, in the case of Z(r, t), fewer pebbles
are coming from the outer regions. The timescale until Z(r, t) ≈ Z(t) for inner regions will
depend on St, as it will determine the radial drift of particles (see fig. 3.2), and therefore,
the timescale at which outer particles reach the inner regions. We will adopt Z(r, t) for our
calculations, as it involves less approximations. However, in section 5, we will discuss the
possibility that Z(t) might be a marginally superior alternative.

3.2.3 Computational method vs. analytical description

To validate that the analytical expression Z(r, t) from eq. 3.53 properly describes the
dynamics of pebbles within the flux, we conducted a simulation of the evolution of the gas
and drifting pebbles in a disk. The simulation involved tracking the trajectories of 40 000
particles - 20 000 representing the gas, while the remaining 20 000 represent the pebbles.

Firstly, a set of 20 000 positions was selected randomly on a logarithmic grid, each position
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Figure 3.5: Comparison between the metallicity calculated computationally and analytically.
The dash-dotted lines and the filled regions represent the mean value and standard deviation
of the computational results. The solid lines represent the analytical expression (see eq. 3.53).
We use the fiducial values from appendix A.

being occupied by a gas particle and a pebble particle. To determine the mass represented by
each particle, we identified its nearest neighbouring particles and computed the midpoint rmid

between the particle and its neighbour. The mass embedded between the particle’s position
and the midpoint was then calculated by

mi,g = |
∫ ri

rmid

2πrΣg(r, t0) dr|, (3.58)

which was assigned as the mass of the gas particle, and

mi,p = |
∫ ri

rmid

2πrZ0Σg(r, t0) dr|, (3.59)

for the pebble one. Consequently, we are enforcing the assumption that Z(r, t0) = Z0.
Moreover, we assign the same Stokes number St to all pebble particles since we assumed a
constant St to obtain Z(r, t). Once particles are initialised, we employed the explicit Euler
method to compute their evolution. The position of the ith particle at the nth time-step is
given by

r
(n)
i,g = r

(n−1)
i,g + v

(n−1)
i,r,g h, (3.60)

r
(n)
i,p = r

(n−1)
i,p + v

(n−1)
i,r,p h, (3.61)

where h = t(n)− t(n−1) is the constant time-step (we chose h = 5 · 10−3Myr), and to compute
v
(n−1)
i,r,g and v

(n−1)
i,r,p we used eq. 3.15 and 3.18 respectively.
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After calculating the evolution of each particle at the nth time-step, we divided the disk
in ∼ 20 bins and summed the gas and pebble mass of the particles contained in each bin.
Then, we calculated the pebble-to-gas density ratio in the jth bin at the nth time step by

Z
(n)
j =

∑
i∈j at t(n) mp,i∑
i∈j at t(n) mg,i

(3.62)

By following this method, we calculated the metallicity evolution across the disk. To improve
accuracy, we repeated the procedure 50 times. Fig. 3.5 displays the mean metallicity of 50
simulations and the standard deviation. Given the similarity between the analytical model
and the mean result from the simulations and the small uncertainty, we conclude that under
the assumptions of initial Z0 being constant across the disk and St over time and across the
disk, the analytical expression Z(r, t) from eq. 3.53 provides an accurate description of the
pebble dynamics.

3.3 Evolution of the protoplanet
Since the protoplanet grows via pebble and gas accretion while it migrates, in this

section, we explain the specific model we use for describing this evolution. We display the
pebble and gas growth rate Ṁ and migration rate ṙ equations, which we will solve using
simple numerical methods such as the Explicit Runge-Kutta method of order 2, already
implemented in scipy.integrate.solve_ivp Python package.

For solving the numerical equation, we need the initial mass, location and formation time
of the embryo; M0, r0 and t0,p. The initial time of the formation of the embryo can differ
from that of the disk t0. We presume that the embryo can be initialiased at any t0,p ≥ t0
and at any r0. As a fiducial value, we set the typical initial mass value of M0 ∼ 0.01M⊕
(Johansen et al., 2019).

3.3.1 Growth rate via pebble accretion

To formulate the growth rate via pebble accretion, two questions need to be addressed.
Firstly, is the planetary mass sufficient to accrete from the complete layer of pebbles?
Secondly, what physics governs the relative velocity between the protoplanet and pebbles?
The answer to the first question will determine whether we can consider the accretion to
be 2D or 3D. The second answer will determine whether the relative velocity is dominated
by the gas (Bondi Regime) or the gravitational pull from the protoplanet (Hill regime). In
this subsection, we will elaborate on the various regimes and their corresponding analytical
growth rates.

Regarding the first aspect, in the 2D regime, the protoplanet is large enough to accrete
from the complete layer of pebbles. Analytically, this means that the pebble-accretion radius
Racc is larger than the pebble scale height Hp (see eq. 2.5). The characteristics favouring the
2D accretion scenario are a large planet mass (so that accretion has a larger scope) and the
settling of pebbles. In contrast, in the 3D regime, the embryo only has access to a fraction of
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the pebble layer. Therefore, the efficiency in the 3D regime is lower than in the 2D regime.
From Johansen & Lambrechts (2017), the expressions for the growth rate of the protoplanet
in each regime are

Ṁ2D = 2RaccΣpδv, (3.63)

Ṁ3D = πR2
accρpδv, (3.64)

where Σp is the surface density of pebbles (see eq. 3.21), ρp is the pebble density in the
midplane (ρp ≈ 1√

2π

Σp

Hp
), and δv is the approach velocity between the pebble and the

protoplanet, defined as
δv ≡ ΩRacc +∆v, (3.65)

where ∆v is the sub-Keplerian velocity reduction of the gas (see eq. 3.19). For the transition
between 3D and 2D to be continuous, Ṁ2D = Ṁ3D at certain stage. From this equality we
get that the transition occurs when

Racc

Hp

=

√
8

π
. (3.66)

To derive the analytical expression of the accretion radius Racc, we address the second
question; depending on the mass of the protoplanet and the Stokes number, the relative
velocity between the protoplanet and pebbles is determined either by sub-Keplerian gas flow
(δv ≈ ∆v, Bondi regime, see eq. 3.19) or by the Keplerian shear (δv ≈ ΩRacc , Hill regime)
(Lambrechts & Johansen, 2012). The Bondi and Hill radii of a protoplanet are defined as,

RH ≡ r

(
M

3M∗

)1/3

, (3.67)

RB ≡ GM

∆v2
, (3.68)

where r and M are the position and mass of the protoplanet. If the relative velocity is
dominated by the gas flow (Bondi regime), the encounter time is

tenc, B ≡ RB

∆v
. (3.69)

On the contrary, if the relative velocity is dominated by the gravity of the protoplanet,

tenc, H ≡ RH

vH
=

RH

RHΩ
= Ω−1. (3.70)

For accretion, the pebble needs to change direction significantly in the encounter on a
timescale that is shorter than the stopping time of pebbles tstop (see eq. 2.3). Therefore,
tstop/tenc ≲ 1 for accretion. In Johansen & Lambrechts (2017), they derive a more accurate
expression for the effective accretion radius in each regime (Johansen & Lambrechts, 2017),

Racc =

(
10

tstop
tenc,H

)1/3

RH =

(
St

0.1

)1/3

RH Hill Regime (3.71)

32



Racc =

(
4
tstop
tenc,B

)1/2

RB =

(
4 St ∆v

Ω RB

)1/2

RB Bondi Regime (3.72)

These expressions of Racc are valid for pebble-sizes we will use (St ≲ 0.1), but for larger
values, the expressions need some readjustment (Johansen & Lambrechts, 2017).

By equating the two accretion radii, we can determine the transitional mass between
the two regimes. This approach ensures a smooth and continuous growth rate during the
transition from one regime to another,

Mt =
25

144

∆v3

GΩ

1

St
. (3.73)

The accretion will occur in the Hill regime if M ≥ Mt and in the Bondi regime if if M < Mt.

In the literature, many pebble accretion models are based on the 2D Hill regime (see review
by Drążkowska et al., 2022). Nevertheless, the transition between Bondi and Hill regimes
shifts to larger protoplanet masses in the outer disk. In fig. 3.6, we plot the transition mass
between 2D and 3D accretion and Bondi and Hill regime, and we see that the prevailing
regime strongly depends on the location and mass of the protoplanet. Considering only the
2D Hill regime would lead to overestimated growth rates.

As mentioned in section 2.3.1, the protoplanet stops accreting pebbles when it reaches the
pebble isolation mass (Miso). In Bitsch et al. (2018), they run 3D hydrodynamical simulations
to measure Miso and derive a simple scaling law,

Miso(r) = 25M⊕

(
H/r

0.05

)3

×
[
0.34

(
log 10−3

logαt

)4

+ 0.66

]
×
[
1− −χ0 + 2.5

6

]
, (3.74)

where αt is the midplane turbulence and χ0 was calculated in eq. 3.20. Miso scales with
H/r (which increases with distance) since the non-linear perturbations that open the gap
start approximately when the Hill Radius (RH ∝ r, see eq. 3.67) reaches the scale height H
(Lambrechts et al., 2014). Miso also increases with increasing αt because turbulent motions
can give pebbles random kicks, hampering the trapping of pebbles at the outer edge of the
gap. Furthermore, Miso increases with increasing χ0, as increasing the pressure gradient
hinders the formation of an inverted pressure gradient zone. In our simulations, the mass
growth due to pebble accretion will stop when M ≈ Miso. Once the protoplanet reaches
Miso, we consider the model for the gas accretion onto the protoplanet.

One of the issues we will find is that Miso is very large in the outer regions; e.g. to reach
Miso at 50AU the protoplanet needs to form a core of ∼ 50M⊕. In general, reaching Miso

is necessary to allow the protoplanet’s envelope to cool down and accrete gas. Nevertheless,
if the pebble flux depletes, the envelope can cool down without reaching Miso. Still, the
protoplanet needs to be massive enough to accrete gas efficiently (e.g. 2 − 10M⊕), but we
propose that when the pebble flux depletes, it undergoes gas accretion.
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Figure 3.6: The growth rate Ṁ of a protoplanet via pebble accretion depending on its location
and mass (see eq. 3.63 and 3.64). The solid white line indicates the transition between
Hill and Bondi regimes (see eq. 3.73), and the dotted yellow line the transition between 2D
and 3D (see eq. 3.66). The yellow line will be placed lower or higher on the y-axis if the
midplane turbulence αt decreases or increases respectively. The accretion rate increases as
the protoplanet becomes larger and it gets closer to the star. Although it is not depicted in
the plot, the accretion rate drops also over time, as the pebble surface density decreases. For
fiducial values, see appendix 1.

As a first approach, we use a simple description to implement this; if the time required
for doubling the mass of a protoplanet via pebble accretion is larger than a certain threshold
τth, pebble accretion stops and the protoplanet starts accreting gas. The doubling-mass time
is

τ ≈ M

Ṁ
, (3.75)

where M is the mass of the protoplanet and Ṁ its growth rate via pebble accretion. When
the pebble flux depletes, Ṁ decreases, and consequently, τ will approach τth. Even small
protoplanets close to the embryo mass can fulfil τ > τth. However, when M is very small,
the gas accretion is not efficient, and the protoplanet will not grow.

τth is unknown, and it might vary with the atmospheric pollution, as it might take longer to
cool down if the envelope is highly polluted. In Lambrechts et al. (2014), they calculated the
minimal accretion rates required to sustain a stable gas envelope, and from their calculations,
we infer that τth might lay down between 10Myr and 100Myr. We will take τth = 100Myr
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as a fiducial value.

3.3.2 Growth rate via gas accretion

We assume that the gas accretion starts with the contraction of the gaseous envelope at
a rate suggested by Ikoma et al. (2000),

ṀKH = 10−5 M⊕ yr−1

(
M

10 M⊕

)4(
κ

0.1 m2 kg−1

)−1

, (3.76)

where κ is the opacity of the envelope, and as already mentioned in section 2.3.2, the growth
rate decreases with increasing the opacity. As a fiducial value we take κ = 0.005 m2 kg−1

(Johansen et al., 2019). Since the contraction accelerates at higher mass, the planet might
eventually become so massive that growth will be restricted by the supply of gas flowing into
its Hill sphere. Once this occurs, the growth rate of the protoplanet will be equal to the rate
of gas supply, as described by Tanigawa & Tanaka (2016) and Ida et al. (2018),

Ṁdisk =
0.29

3π

(
H

r

)−4(
M

M⋆

)4/3
Ṁg

α

Σgap

Σg

, (3.77)

where Σgap is the surface density in the gap3. The ratio between the unperturbed and gap
density is

Σgap

Σg

=
1

1 + 0.04K
, (3.78)

where

K =

(
M

M⋆

)2(
H

r

)−5

α−1
t . (3.79)

The growth rate cannot be larger than the global accretion rate of the gas flux within
the disk Ṁg (see eq. 3.14). Indeed, in Lubow & D’Angelo (2006) they estimated that the
maximum accretion rate onto the protoplanet is approximately 80% of the gas flux, and
therefore,

Ṁ = min
[
ṀKH, Ṁdisk, 0.8 Ṁg

]
. (3.80)

3.3.3 The protoplanet’s migration

Generally, individual protoplanets undergo inwards radial migration while they grow.
Planets that are not massive enough to open a gap in the gas fall into the type-I migration
regime. To describe type-I migration, we use the standard scaling law as in Tanaka et al.
(2002) for the migration speed of the protoplanet,

ṙ = −kmig
M

M⋆

Σgr
2

M⋆

(
H

r

)−2

vK, (3.81)

3As the protoplanet opens a gap the amount of gas that enters the gap will be lower.
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where vK is the Keplerian velocity (see eq. 2.1) and kmig the constant prefactor that was fitted
using 3D numerical simulations in D’Angelo & Lubow (2010)

kmig = −2 (1.36 + 0.62γ + 0.43ζ). (3.82)

γ and ζ are the already discussed power-values of the midplane temperature and viscosity
respectively (see eq. 3.2 and 3.3).

When a planet grows up to a certain mass, according to Kanagawa et al. (2018), the
disk–planet interaction becomes strong enough so that the planet opens a density gap along
its orbit and migrates with the gap in the disk. Considering this effect, we will use the
modified migration equation from Johansen et al. (2019),

ṙ =
ṙI

1 + [M/ (2.3Miso)]
2 , (3.83)

where ṙI is the classical type-I migration rate from eq. 3.81, and Miso is the isolation mass
from eq. 3.74. Combining the aforementioned pebble and gas accretion rate, the migration
rate and the initial conditions, we are prepared to carry out simulations.
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Chapter 4

Results & Discussion

Given the growth and migration rates, we numerically calculated the growth tracks
(i.e. growth versus migration) of the protoplanets over time. First, we compare our
simulations with previous studies to verify that our code works. We also compare growth
tracks using different pebble flux models to demonstrate the need for our new model.
Afterwards, we analyse different planet-forming scenarios by varying some parameters.
Finally, we summarise our findings and the implications of our work.

4.1 Code testing and model comparison
We tested our code by comparing the outcome with the analytic growth tracks derived

in Johansen et al. (2019) (see their eq. 20). Using a simplified model, the authors obtained
the growth track r(M) of a protoplanet that evolves over an unlimited timespan. First,
we calculated growth tracks using their model to compare our outcome with the analytical
expression. Afterwards, we incrementally assembled our model.

We enumerate the building blocks we utilised in the assembly, along with the expected
outcome at each stage:

(a) Model adopted in Johansen et al. (2019). The protoplanet grows in the 2D Hill regime
within a steady disk (see eq. 3.7). They simplified the expression of the approach
velocity between the protoplanet and the pebbles (see eq. 3.65) such as δv ≈ RaccΩ.
Moreover, they assumed that the pebble-to-gas ratio Z = Z0 is constant in space and
time. When adopting this model, we expect to obtain the same result as their analytical
expression.

(b) Accretion in the 3D regime. It is expected that the growth slows down, especially for
small St, due to the higher pebble scale height (see eq. 2.5).

(c) Disk evolution and exponential cut-off of the gas surface density. At growth timescales
of a few ∼ 0.1Myr, we do not expect the disk evolution to have much impact, as
the viscous timescale for fiducial values is ∼ 1Myr (see eq. 3.11). The outer regions,
however, will be strongly affected by the exponential cut-off of the density and by the
outwards gas flux.
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Figure 4.1: Comparison between the analytical expression from Johansen et al. (2019) eq. 20
and the numerical calculation of the growth tracks. We incrementally assembled our model
from (a) to (d). However, Z0 is still constant. We employed St = 0.001 and St = 0.01.
The embryos are initialised at 20, 50 and 80AU, starting at t0,p = 0.2Myr. We stopped the
simulations at t = 1Myr or before if they reach Miso (grey dot-dashed line, see eq. 3.74). The
analytical growth track is indicated with the grey dotted line, and the numerical ones with
blue, red and orange lines.

(d) Accretion in Bondi regime. We considered the Bondi Racc accretion radius below the
transition mass (see eq. 3.73) and the complete expression for δv from eq. 3.65. By
adding the Bondi Racc, we anticipate a lower growth rate for low masses. However, the
complete form of δv will increase the growth rates (see eq. 3.63 and 3.64). Therefore,
when including the Bondi regime, the increase or decrease in the growth rate will
depend on the balance between these counteracting effects.
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Figure 4.2: Row-by-row, we used a different pebble flux model; (1) Z0, (2) Z(t), and (3)
Z(r, t). The embryos are initialised at 20, 50 and 80AU (indicated with blue, red and orange
respectively), starting at t0,p = 0.2, 0.5, and 0.8Myr (indicated with dotted, dashed and solid
lines respectively). We stopped the simulations at t = 1Myr or when they reach Miso (grey
dot-dashed line, see eq. 3.74). Column-by-column, we used a different St. Model (1) and (2)
overestimate the growth, especially for large St. However, model (2) yields outcomes that
are more similar to those of model (3).

In fig. 4.1, we show the comparison between the analytical and numerical growth tracks.
The variations from one model to another one are consistent with what we expected.
Furthermore, fig. 4.1d shows that reaching Miso beyond 20AU is difficult, as migration
overcomes the slow growth. A solution to that is faster growth with a stronger pebble flux.
When St is large, pebbles drift faster, and consequently, the pebble flux is stronger but
short-lasting. In section 3.2.2, we described a model for the pebble flux that implements the
pebble flux depletion. We will now demonstrate how relevant it is to consider this depletion
when we increase St of the pebble flux.

In fig. 4.2, we compare growth tracks when varying the model for the pebble flux: model
(1) is the one with constant Z = Z0; model (2) is the simplified expression we derived for
Z(t) (see eq. 3.57); and model (3) is the full solution Z(r, t) (see eq. 3.53). We initialised the
position and mass of the seeds as in fig. 4.1, but also varying the formation time t0,p = 0.2, 0.5
and 0.8Myr and St = 0.01, 0.05 and 0.1. In the results, we see that increasing St increases
growth. When St = 0.01, the three models show similar growth tracks when t0,p = 0.2 and
0.5Myr. However, when t0,p = 0.8Myr, as the pebble flux depletes, growth is lower in model
(2) and (3). When St = 0.05 and 0.1, given that the pebble flux depletes faster, model (1)
greatly overestimates the final masses. Another interesting aspect is that when St = 0.1
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in model (3), the embryo initialised at r0 = 80AU reaches Miso at distances closer to the
star that the one initialised at r0 = 50AU. This happens not only because the growth is
slower in the outer regions, but also because the depletion occurs earlier in the outermost
regions. Overall, the new pebble flux model that considers depletion is crucial in modelling
the formation of distant cores. From this point forward, we will adhere to model (3).

4.2 Which scenarios are most favourable for forming
wide-orbit planets?

In this section, we show the results of many simulations. First, we vary the characteristics
of the initial embryo, such as the position r0, formation time t0,p and mass M0. We calculate
the formation of their cores, followed by their gas accretion process. Next, we repeat the
simulations but varying disk parameters such as the Stokes number, the metallicity, and the
midplane turbulence. Afterwards, we implement the new gas accretion path. Finally, we
discuss which scenarios lead to the formation of distant cores that can open gaps and which
might yield wide-orbit planets at the end of the disk lifetime (tf ∼ 3Myr) 1.

4.2.1 Fiducial simulation

We simulated the evolutionary trajectories of 1000 protoplanets with an initial mass
of M0 = 0.01M⊕, with random variations in their initial position r0 within the range of
30AU to 100AU and formation time t0,p between 0.2Myr and 1.5Myr. We initialised the
disk of R1 = 100AU at t0 = 0.2Myr, with a pebble flux characterised by a Stokes number
St = 0.03 and an initial metallicity Z0 = 0.01, which gives an initial pebble reservoir
of Mpeb,0 ∼ 650M⊕ for fiducial values. We terminated the simulation when tf = 3Myr.
Subsequently, we repeated the simulations using the same initial position and formation
time of the embryos but decreasing and increasing an order of magnitude their initial mass
(M0 = 0.001 and 0.1M⊕). In this section, we did not include the new path for gas accretion
from eq. 3.75.

In fig. 4.3, we show the results of the core formation for fiducial values. The most distant
cores form at ∼ 25−30AU within the range t ∼ 0.35−0.7Myr. Since these protoplanets
reach Miso, they open a gap at early stages near their location. The embryos of these
protoplanets are initialised at the earliest stages (t0,p ∼ 0.2−0.3Myr), but it is hard to
discern any clear pattern in the embryos’ initial positions. Hence, in fig. 4.4, we plot the
total solid mass of the protoplanets depending on their initial conditions. We divided the
protoplanets into five different groups: (1) metal-rich cores Ms ≥ 25M⊕; (2) standard
cores 25M⊕ > Ms ≥ 10M⊕; (3) mini-Neptunes 10M⊕ > Ms ≥ 2M⊕; (4) ice planets
2M⊕ > Ms ≥ 0.1M⊕; and (5) minor bodies 0.1M⊕ > Ms. In the plot, we see that the
core mass (and therefore the core formation distance) strongly depends on t0,p. Embryos

1For clarity: the initial time of the disk t0 corresponds to the onset of the fiducial values and the drift
of the pebbles; the embryo’s formation time, t0,p, can occur at equivalent or later times than t0; the core
formation time denotes the point at which the protoplanet attains Miso and opens a gap; the disk lifetime
refers to the end of the simulation, when the planet is presumed to have ceased its evolution.
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Figure 4.3: Evolution of 1000 protoplanets with an initial mass of M0 = 0.01M⊕. Simulations
stop after t = 3Myr or if a protoplanet reaches Miso (grey dot-dashed line, see eq. 3.74). The
color-map in the top panel indicates the formation time of the embryos, and the one at the
bottom indicates their initial position. The core of giant planets can form at ∼ 30AU the
furthest. The embryos of those cores must form early and be initialised in the outer regions
(see fig. 4.4 for a detailed description).

initialised at around ∼ 30AU have to form before t0,p ∼ 0.8Myr to reach Miso, and the
embryos initialised at ≳ 90 AU, before t0,p ∼ 0.3Myr. Furthermore, the core mass decreases
with increasing initial distance, except the region 50−80AU, where cores are metal-rich if
the embryos are formed in the early stages (t0,p ≲ 0.3Myr). That occurs due to the same
reason as in figure 4.2, in the 3rd row and 3rd column; the embryo initialised at 50AU forms
a more massive core than the embryos initialised at 20AU and 80AU.

In fig. 4.5, we show the same results as in fig. 4.3 but including gas accretion. First, we see
a large dichotomy between gas giants and planets that do not reach Miso. The furthest gas
giants are at ∼ 6 AU and are as massive as ∼ 10 MJup. Early-formed embryos that become gas
giants end up orbiting at further distances and are more massive. Simultaneously, embryos
initially located further from the star end up having a lower total mass. Those trends are
more evident when plotting the total mass and final position of the gas giants depending on
their initial conditions (see fig. 4.6). In figure 4.6b, we see that the final distance of embryos
formed at early stages increases with increasing the initial distance. However, if the embryos
form at later stages, outer embryos end up orbiting closer to the star due to the depletion of
the pebble flux.
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Figure 4.4: Total solid mass of protoplanets from fig. 4.3 depending on the initial position
and formation time of the embryos. The coloured regions indicate the solid mass specified in
the legend. Protoplanets that reach Miso are denoted by circular symbols, while those that
fail to reach Miso are represented by small pentagonal symbols. The black line separates both
populations. The most massive cores (and therefore the furthest ones) originate from early
embryos (t0,p ≲ 0.3Myr) located within the range ∼ 50− 80AU.
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Figure 4.5: Same as fig. 4.3 but including gas accretion when the cores reach Miso. As a
reference, magenta squares show the position and mass of the giant planets in the Solar
System, and the grey dotted lines indicate 1 and 10 times the mass of Jupiter. The furthest
gas giants are at ∼ 6 AU and are as massive as ∼ 10 MJup. The embryos of those giant
planets must form early and be initialised in the outer regions (see fig. 4.6 for a detailed
description).
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(a) The final mass of the gas giant is larger when the embryo forms closer to the star or/and when
it forms earlier.

(b) For a given initial location, the later the embryo forms, the closer the final gas giant is. On the
other hand, if the embryo forms early, the final gas giant is further away when the embryo forms
further away. However, if the embryo forms late, the final gas giant is closer to the star when the
embryo forms further away.

Figure 4.6: Final mass and position of the gas giants depending on the initial position and
formation time of the embryos.
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Figure 4.7: Same as fig. 4.4, but for M0 = 0.001M⊕ and M0 = 0.1M⊕. More massive embryos
can form approximately ∼ 0.2Myr later than small embryos to reach Miso. An increase of
ten times the initial mass produces an effect comparable to forming the embryo ∼ 0.1Myr
earlier.
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Figure 4.8: Same as fig. 4.5 but varying M0. We can still form gas giants when M0 =
0.001M⊕. For high initial mass M0 = 0.1M⊕, the possibility for embryos to form gas giants
expands longer in time, but there is no significant change in the furthest distance they reach;
the furthest achievable final position is around 6− 7AU, and they cross the pebble isolation
mass at slightly further locations.

When increasing/decreasing the mass of the embryos an order of magnitude, the formation
time required to reach Miso spans/stretches ∼ 0.1Myr at all locations (see fig. 4.7). Otherwise,
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there is no significant change in the maximum distance of the cores and gas giants (see
fig. 4.8).

4.2.2 Varying the Stokes number, initial metallicity and turbulence

Next, we ran simulations with the same set of initial conditions (r0, t0,p) and
M0 = 0.01M⊕, but varying the Stokes numbers St, the initial metallicity Z0 and midplane
turbulence αt. For simplicity, we only changed the values of the parameters individually.
We did not readjust the fiducial values as the conclusions would not change.

For St, we tried the values St = 0.01 and St = 0.06. St = 0.01 could be the real value if
Stdrift from eq. 2.8 is overestimated or if vf ∼ 0.4m s−1, which in that case means that the
Stokes number is limited by fragmentation. On the other hand, St = 0.06 could be the real
value if Stdrift from eq. 2.8 is underestimated, and Stfrag = 0.06 with the fiducial vf ∼ 1m s−1.
In fig. 4.9, we show the results of varying St when Z0 = 0.01. For small St = 0.01, the
outcome strongly depends on the initial position. Embryos closer to the star at r0 ∼ 30AU
mainly become gas giants, while protoplanets beyond ∼ 80AU never reach Miso. Growth
is slower than for higher St, but as the flux depletes at later stages, the protoplanets can
still reach Miso at later times. When cores form late, the remaining amount of gas within
the disk is lower, and therefore, the torque exerted by the gas causing migration is weaker.
Thus, embryos initially between 50 and 70AU and formed at early stages (t0,p ≲ 0.3Myr)
reach Miso later (t ∼ 1Myr) and at closer distances (≲ 20AU, see also fig. 4.15 and
fig.C.2), but far enough so that it leads to the formation of planets almost as far as 10AU.
Late-formed cores that never reach Miso grow more than in the case of larger St due to
the longer-lasting pebble flux. When increasing St, we see that the short-lasting pebble
flux creates a large dichotomy between protoplanets that reach Miso and the ones that do not.

For Z0, we doubled the fiducial value (Z0 = 0.02, Mpeb,0 ∼ 1300M⊕), which can occur
if, e.g. the star and the disk form in a higher-metallicity environment. In fig. 4.10, we see
that a higher Z0 leads to the formation of more distant gas giants. That occurs because
the stronger pebble flux allows faster growth, and consequently, cores can form at larger
distances. In fig. 4.11, we show the growth tracks of the furthest cores we can form. When
St = 0.01, the cores can form at ∼ 35AU at the furthest, and those cores form from
embryos starting at around ∼ 90AU at the earliest stages t0,p ∼ t0. In the case of St = 0.03,
the cores form as far as 50AU. Those cores form from embryos at r0 ≳ 80AU, and they
reach Miso at t ≳ 0.4Myr. That means that when the disk is t ∼ 0.4Myr, it is possible
to open a gap at 50AU, and that this gap would co-migrate alongside the protoplanet.
However, hydrodynamical simulations are necessary to study the details of the evolution
of the gap (Kanagawa et al., 2020). When St = 0.06, the scenario is similar to St ∼ 0.03,
but the furthest cores form at t ∼ 0.3Myr. We already mentioned that faster growth is not
always beneficial, as two protoplanets that reach Miso at the same location but at different
times, the late one will migrate less. Nonetheless, since the cores form way further, the
increase of Z0 ∼ 0.02 is positive in forming wide-orbit gas giants at the end of the disk lifetime.
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Figure 4.9: Same as fig. 4.5 but varying St. For small St = 0.01, early formed embryos
initially between 60 and 80AU lead to the formation of planets almost as far as 10AU. For
larger St = 0.03 and 0.06, there is a large dichotomy between protoplanets that reach Miso

and the ones that do not. In fig. C.1 we show the same plot but for t0,p in the color-bar.
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Figure 4.10: Same as fig. 4.9 but increasing Z0. For any St, a higher Z0 leads to the formation
of more distant planets.
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form. The embryos are initialised at t0,p = t0 = 0.2Myr and located at r0 = 90AU. For
St = 0.03 and 0.06, the cores form at ∼ 50AU when 0.4 and 0.3Myr respectively. As they
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Figure 4.12: Same as fig. 4.9 but varying the midplane turbulence αt. For lower turbulence,
the furthest gas giants increase their distance by a few AU.
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Figure 4.13: The evolution of protoplanets with the best scenario for forming wide-orbit
planets at the end of the disk lifetime: St = 0.01, Z0 = 0.02 and αt ∼ 10−5. These conditions
can lead to gas giants as far as ∼ 20AU. We did not include the new path for gas accretion
yet.

For αt, we tried the scenario of high turbulence αt ∼ 10−3 and low turbulence αt ∼ 10−5.
In fig. 4.12, we see that high turbulence hinders the formation of gas giants mainly in the
outer regions, while low turbulence leads to the formation of wider orbit gas giants. As low
midplane turbulence allows pebbles to settle down onto the midplane, the initial growth in
the 3D regime becomes faster. Furthermore, high turbulence hinders the particle’s growth
and St ∼ Stfrag ∼ 0.005 for fiducial values (see eq. 2.7). However, there is very little growth
in such a scenario (see fig. C.3).

Overall, we saw that the best characteristics for the fast core formation are Z0 = 0.02
and αt ∼ 10−5. We also saw that when St = 0.01, gas giants can form further at the end
of the disk lifetime. Within that scenario, we can form gas giants between 10 and 20AU
(see fig. 4.13). Their embryos formed at around t0,p ∼ 0.5−1.5Myr in the outermost regions
within the disk ∼ 60−100AU (see fig. C.4 and C.5 for detailed description). The furthest
cores that we can form within this scenario are at ∼ 45AU when ∼ 0.7Myr, and then, it
would migrate towards ∼ 10AU by the end of the disk lifetime. In this scenario, we see that
the protoplanets that do not reach Miso are as massive as ∼ 10M⊕ and orbit as far as 70AU.

So far, we were able to reproduce the formation of gaps at far distances (≲ 50AU) and
the formation of relatively wide-orbit gas giants (≲ 20AU) at the end of the disk lifetime.
Attempting to inquire whether or not pebble accretion could explain the existence (albeit
scarce) of gas giants beyond 20AU, in the next section, we implement the new path for
starting gas accretion.
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4.2.3 A new gas accretion path for forming wide-orbit gas giants

10−2

10−1

100

101

102

103

104

M
[M
⊕

]

100 101 102

r [AU]

10−2

10−1

100

101

102

103

104

M
[M
⊕

]

0.2

0.6

1.0

1.4

t0,p [Myr]

40

60

80

100

r0 [AU]

Figure 4.14: Evolution of 1000 protoplanets but including gas accretion before reaching Miso

when τ > 100Myr (see eq. 3.75). It is possible to form gas giants beyond 10AU for fiducial
values.

In fig. 4.14, we repeated the simulations for fiducial values but including gas accretion
before reaching Miso if τ > 100Myr. Previously, the furthest giant planets we could form
were at ∼ 6AU for fiducial values (see fig. 4.5). With this new approach, we form a few
giant planets between 10 and 30AU. Furthermore, trying different scenarios, we saw that
it is possible to form gas giants as far as 50AU (see fig. C.6). These giant planets have
cores between 2 and 8M⊕, and start growing from embryos formed between 0.4 and 0.7Myr
located between 60AU and 100AU. In fig. C.6, we included the calculations but varying the
τth = 10, 40, 70, 100Myr due to atmospheric pollution variability (Lambrechts et al., 2014).
For higher τth, protoplanets will take longer to cool down, and therefore, they will accrete
gas later. Therefore, final masses will be lower for higher τth. In the same figure, we show
different scenarios (M0 = 0.1M⊕, Z0 = 0.02 and αt ∼ 10−5), and in all of them we could
reproduce wide-orbit gas giants. When St ∼ 0.01, given that the pebble flux is long-lasting,
this new mechanism does not apply.

49



Table 4.1: Summary of different sets of simulations. For each of them, we ran 1000 simulations
with the same initial condition set (r0, t0,p). The parameters we changed from the fiducial
value are emphasised in bold type. For abbreviations, we used the prefix h (high) or xs/s/l
(extra small/small/low) + the parameter we varied.

Set (A) (B) (C) (D) (E) (F) (G) (H) (I) (J) (K) (L)

M0 [M⊕] 0.01 0.001 0.1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Z0 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.01 0.01 0.01 0.02

St 0.03 0.03 0.03 0.01 0.06 0.01 0.03 0.06 0.005 0.03 0.03 0.01

αt 10−4 10−4 10−4 10−4 10−4 10−4 10−4 10−4 10−3 10−3 10−5 10−5

Abv. fid sM0 hM0 sSt hSt sSt.hZ hZ hSt.hZ xsSt.hαt hαt lαt sSt.hZ.lαt

4.2.4 Comparison between different scenarios

In table 4.1, we summarise different scenarios we tried. In fig. 4.15, we show the obtained
solid masses as well as the number of protoplanets that reach Miso. In fig. 4.16, we show the
final positions of the gas giants.

In fig. 4.15, we see that we can only form very metal-rich cores (> 35M⊕) if Z0 = 0.02.
With fiducial values, we can form cores as massive as 25 − 35M⊕. A decrease in the
turbulence (αt ∼ 10−5) is beneficial for forming more massive cores, as the initial growth in
the 3D regime is faster (see eq. 3.64) and Miso increases with decreasing αt (see eq. 3.74).
In the scenario of only varying St = 0.01 is not possible to form metal-rich cores, but
this is improved when including Z0 = 0.02. In fig. 4.16, we see that the configuration of
St = 0.01 and Z0 = 0.02 is the only one in reproducing wide-orbit planets further away than
10AU among planets that reach Miso, and it is improved when the turbulence is αt ∼ 10−5.
However, when St ≳ 0.03, we could also reproduce a few wide-orbit gas giants that never
reach Miso.

4.3 Summary and Implications
In this work, we intended to decipher which scenarios lead to the rapid formation of

distant planetary cores via pebble accretion, thereby enabling them to carve gaps as in
observed disks. Additionally, we analysed the formation of distant giant planets at the end
of the disk lifetime. Given that pebbles drift inwards, we derived a novel analytical model
to describe the pebble flux that supplies material for the growth of embryos. In fig. 4.2, we
showed that the new pebble flux model is necessary, especially in the outer regions. Starting
from an embryo of ∼ 0.01M⊕, we implemented that the protoplanet can grow via pebble
accretion within the 3D or 2D regime, as well as in the Bondi or Hill regime. As shown in
fig. 3.6 and 4.1d, the initial embryo grows within the 3D Bondi regime in the outer regions.
We also considered that the protoplanet migrates as it grows and that it opens a gap that
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Figure 4.15: The amount of protoplanets in different total solid mass ranges for various
scenarios (see table 4.1). The dashed lines indicate the number of protoplanets that reach
Miso.

hinders pebble accretion and slows down migration. Once the core formed by reaching the
pebble isolation mass Miso, we included a prescription of the gas accretion. Moreover, we
proposed that the protoplanet can accrete gas before reaching Miso when the pebble flux
depletes significantly.

We found that the Stokes number of the pebble flux determines the core formation and,
consequently, the final position of giant planets. A relatively strong pebble flux (St ≳ 0.01)
is necessary for growth in the outer regions. Moreover, a short-lasting (St ≳ 0.03) flux can
form metal-rich cores very quickly (t ∼ 0.35 − 0.7Myr) at around 30AU and open a gap.
After accreting gas, these giant planets end up orbiting at 6AU at the furthest. On the
contrary, a long-lasting (St ∼ 0.01) flux can form gas giants with lower core masses opening
a gap at ∼ 20AU when ∼ 1Myr. However, the final giant planets will orbit as far as 10AU.
When including gas accretion when the pebble flux depletes, the short-lasting pebble flux
can form gas giants between ∼ 10 − 30AU with low core masses. These bodies will get
massive enough to open a gap after they start accreting gas at t > 2Myr. Therefore, with a
short-lasting flux protoplanets could open a gap at around 30AU in both the early and late
stages.

An increase in the metallicity of Z0 ∼ 0.02 significantly contributes to the formation of
metal-richer cores. In fig. 4.11, we showed that cores can quickly form as far as ∼ 50AU
for St ≳ 0.03, and ∼ 35AU for St ≳ 0.01. Moreover, in the case of the long-lasting pebble
flux, giant planets can form as far as 20AU at the end of the disk lifetime (see fig. 4.10).
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Figure 4.16: The amount of gas giants within different final position ranges for various
scenarios (see table 4.1). The dashed lines indicate the number of protoplanets that reach
Miso. The planets outside the dashed region undergo gas accretion without reaching Miso.

Furthermore, we found that high turbulence hinders the formation of wide-orbit planets,
and low turbulence allows the outermost embryos to grow faster. Hence, a relatively high
metallicity of Z0 ∼ 0.02 and low turbulence of αt ∼ 10−5 are beneficial in forming wide-orbit
gas giants with metal-rich cores.

Aside from the characteristics of the disk, the initial location and formation time of
the embryo are crucial for the outcome. Embryos initially located at > 60AU and formed
earlier than ∼ 1Myr are necessary to form wide-orbit giant planets (the ranges could be
narrower or wider depending on the scenario, see section 4.2.2). An increase (decrease)
of ten times the initial mass of the embryo produces an effect comparable to forming the
embryo ∼ 0.1Myr earlier (later) (see fig. 4.7). The embryo has to form at early stages to
reach Miso in the outer regions. However, according to Liu et al. (2020), the embryos are
more massive further from the star; an embryo at ∼ 100AU can be one order of magnitude
larger than an embryo at ∼ 10AU. If the embryos are more massive in the outer regions,
the position dependency in reaching Miso could be mitigated. Otherwise, we did not find
a strong correlation between the formation of more massive embryos and an increase in
the furthest distances that gas giants can achieve. The authors in Jiang & Ormel (2023)
analysed the formation of wide-orbit planets using ring substructures, and their findings led
to a similar conclusion.

In section 4.2.3, we proposed a mechanism that could potentially elucidate the formation
of gas giants at significantly greater distances. We found that the model results in two

52



types of gas giants; the ones that reach Miso and therefore have a metal-rich core, and
the ones that orbit at further distances and have a smaller core (between 2 and 8M⊕).
Moreover, these distant planets are overall less massive than the ones that reach Miso

(but final mass moderately depends on τth, see fig. C.6). We suggest that in observations
we could differ if a protoplanet at ∼ 15AU is formed by a long-lasting flux of St ∼ 0.01
or by a stronger short-lasting flux of St ∼ 0.03 by analysing its metallicity, as the latter
would have a less massive core. Nonetheless, detecting the metallicity of a protoplanet
could be challenging. Another possibility that we suggest is that in the short-lasting
pebble scenario, the protoplanet would open a gap when the outer regions are mostly
depleted of pebbles, while in the long-lasting pebble scenario, the solid amount would be
higher. When observing a protoplanet within a gap, we propose that it might be possible
to infer the scenario in which it was formed by detecting the solid amount in its outer regions.

One of the reasons why it has been questioned whether the substructures are formed
by planets is because the substructures are observed in outer regions, whereas in evolved
planetary systems, wide-orbit gas giants are hardly ever found (e.g. Vigan et al., 2017).
Nevertheless, in every scenario we analysed, once the cores formed in the outer regions,
they migrated tens of AUs until the disk dissipated. That could explain why we see
several substructures in the outer regions that do not match the exoplanet catalogue. In
addition, according to our model, wide-orbit planets are also rare (see fig. 4.14), as the
protoplanet must attain sufficient growth through pebble accretion to be able to accrete
gas while avoiding excessive migration and aligning with the decrease in pebble flux. This
rare occurrence is consistent with the low frequency of wide-orbit giant planets from direct
imaging surveys (Bowler & Nielsen, 2018).

Given that most of the simulated cores accrete solid material from the outer regions, that
might imply that our giant planets may have started to form in the outer regions (previously
suggested in Bitsch et al., 2019). This conclusion is in line with Jupiter’s super-solar nitrogen
abundance, as the majority of the nitrogen is frozen out in the outer regions exterior to the
N2 snowline beyond 30AU (Öberg & Wordsworth, 2019). In addition, the metal content of
Jupiter is between 25M⊕ and 45M⊕ (Wahl et al., 2017). It has been challenging to explain
the formation of such massive cores only by pebble accretion mechanism; e.g., in Johansen
et al. (2019), they alluded to late planetesimal accretion proposed by Shiraishi & Ida (2008).
However, we could reproduce Jupiter’s core analogues solely by pebble accretion within
certain scenarios (see fig. 4.15). As we did not consider the interaction between planets, we
cannot draw any accurate conclusions about the formation of the Solar System. Nevertheless,
it is noteworthy that in figures 4.9 and 4.10 when St = 0.01, we were able to reproduce all the
giant planets of the Solar System with unexpected accuracy. While we do not have enough
data to posit that the Solar System must have formed within such a scenario, we can conclude
that the formation of planets with the mass and location of the giant planets in the Solar
System are reproducible individually in the same scenario.
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Chapter 5

Main Limitations and Prospects

In this work, we analysed whether distant planets can form via pebble accretion. Our
models have certain limitations, and some of them may impact our results.

First, the derived pebble flux model does not include dust evolution; we estimated
the growth of the outermost solids and calculated when they start drifting. We also
assumed a constant St for the flux across the disk. Nevertheless, dust coagulation might
result in a distribution of particles with different St and Z across the disk. In fig. 5.1, we
conducted a preliminary comparative analysis between our analytical pebble flux models
(from eq. 3.53 and 3.57) and the numerical one calculated in Appelgren et al. (2023),
where they included a simple model of dust evolution with both fragmentation and drifting
barriers. In this comparison, the analytical models look promising. Nevertheless, the flux
from the assumption that St and χ are constant (left panel) is closer to the numerical
flux than the one that assumes only St constant (center panel). That might be because in
the outer regions, the radial drift limits the growth of particles, and Stdrift · χ ∝ r−

4
7 (see

eq. B.1), which is a weak r-dependency in the outermost regions. As in the PDE St and χ
are multiplying (see eq. 3.25 and 3.32), the assumption of considering both constants might
be a better approximation. We made our simulations by assuming that only St is constant,
and we do not expect that switching the analytical pebble flux model would have a major
effect (see fig. 4.2). Nevertheless, the impact of our approximations needs to be studied in
the future by comparing it with detailed dust evolution models (e.g. Birnstiel et al., 2010).

In our simulations, our starting point is an embryo of ∼ 0.01M⊕ initialised in a smooth
disk at any position and time within the disk. So far, we did not discuss the origin of
the embryos since our goal was to study the growth once pebble accretion takes place.
For triggering SI, a local enrichment in the metallicity of Z ∼ 0.015 and a large Stokes
number of St ∼ 0.1 are required (Johansen et al., 2009; Bai & Stone, 2010). The water
ice line (where the inward drifting pebbles evaporate) is demonstrated to be a preferred
location for fulfilling these criteria (e.g. Schoonenberg et al., 2018). If the ice lines of
more volatile species (e.g. N2, CO) are also favourable locations for forming planetesimals,
this could explain the origin of distant embryos (Qi et al., 2013). Next, we modelled the
evolution of the protoplanet utilising scaling laws derived from previous works (e.g. for
migration and pebble isolation mass Tanaka et al., 2002; Kanagawa et al., 2018; Bitsch
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Figure 5.1: Comparison of the analytical pebble fluxes (eq. 3.53 and 3.57) and numerical
calculations from Appelgren et al. (2023). Both analytical models display adequate output,
but the one that assumes constant St and χ exhibits closer proximity to numerical
calculations. We thank Johan Appelgren for sharing the data needed to produce the figure.

et al., 2018). The use of these simplified scaling laws might undermine our accuracy.
Regarding the formation of the core, we did not include planetesimal accretion, which
might increase the growth rate of the core. Moreover, in Birnstiel et al. (2012), they
demonstrated that dust coagulation leads to a two-size population; large pebbles and small
dust. We neglected the contribution of the smallest population. Nonetheless, in Lyra et al.
(2023), they claimed that the contribution of small solids to the growth rate (especially
in the Bondi regime) is significant. Because of this, our growth rate might be underestimated.

Our goal was to model the growth via pebble accretion. Nevertheless, we included a
simplified gas accretion model for some insights into the formation of gas giants. As we see
in e.g. fig. 4.5, the gas giants attain masses often higher than most observed exoplanets. Our
model does not explain how to stop gas accretion unless we reduce the disk lifetime. Hence, a
more detailed model for gas accretion is necessary to study more realistic outcomes. Another
limitation is that the gas accretion depends on the opacity κ, which its value, to date, is
still unknown. Moreover, we proposed that when the pebble flux depletes significantly, the
envelope could cool down, and the protoplanet could accrete gas if it is massive enough.
This mechanism needs to be further studied in the future since we did not relate the cooling
time with the opacity of the envelope.

We simulated the evolution of isolated protoplanets, yet many planets reside in
multi-planetary systems. Simultaneously growing bodies would interact with each
other, strongly influencing the outcome (Bitsch et al., 2019). However, the study of a
multi-planetary system cannot (or should not) be carried out without first studying the
formation of individual planets. Due to the scant research on planet formation in outer
regions, we studied single-evolving protoplanets.
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Finally, the results are very sensitive to variations in the parameters. We often used
fiducial values based on previous literature, but in many cases, the values are still being
debated, and future observations are needed for further constraint. In addition, to compare
our results with forthcoming observations of young wide-orbit planets (see fig. 1.1), the
generalisation of the model for all types of stars is necessary.
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A Fiducial values of parameters

Table 1: Definition of parameters used in this work, their fiducial values from literature and
related equations.

Symbol Definition Fiducial Values Equation
t0 Initial time of the disk 0.2Myr —
tf Disk lifetime 3Myr —
M∗ Star mass 1M⊙ —
Mdisk Initial disk mass 0.16M⊙ eq. 3.16
Mpeb,0 Initial pebble reservoir 650M⊕ —
Z Global metallicity Initially 0.01 eq. 3.53 and 3.57
Σg Gas surface density Initially 2000 g cm−2 at 1AU eq. 3.9
Σp Pebble surface density Initially 20 g cm−2 at 1AU eq. 3.21
R1 Disk size 100AU —

Ṁg,0 Inner gas accretion rate 10−7M⊙ yr−1 eq. 3.14
cs Sound speed 650m s−1 at 1AU eq. 3.4
ν Viscosity — eq. 3.6
γ Viscosity power-index 15

14
eq. 3.2

ζ Temperature power-index 3
7

eq. 3.3
α Accretion coefficient 0.01 —
αt Midplane turbulence 10−4 —
Ω Keplerian angular frequency 2π yr−1 at 1AU eq. 2.1
H Gas scale height — eq. 2.2
Hp Pebble scale height 0.1H eq. 2.5
St Stokes number 0.03 See eq. 2.3
vf Fragmentation velocity 1m s−1 —
tstop Stopping time of pebbles — See eq. 2.3
ρdust Internal density of pebbles 1 g cm−3 See eq. 2.4
as Size of pebbles Initially 2mm at 100AU See eq. 2.4
κ Opacity of the envelope 0.005 m2 kg−1 —
M0 Initial mass of the embryo 0.01M⊕ —
r0 Initial position of the embryo 30−100AU —
t0,p Formation time of the embryo 0.2− 1.5Myr —

B Analytical model for the pebble flux
In this appendix, we include the issues we found for the derivation of an analytical model

when St is non-constant and another derivation for the metallicity, which turns out to be the
same expression as in eq. 3.57.
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B.1 An attempt to solve the pebble flux for non-constant St.

In this section, we explain why we could not solve the PDE for non-constant St. First,
to date, there is no analytical expression of St(r, t) for describing the growth and transport
simultaneously. We could, however, use the expression St(r) ≈ Stdrift for outer regions and
assume that particles reach Stdrift at approximately the same time in all locations. We can
rewrite eq. 2.8 by substituting eq. 2.1 and 3.19,

Stdrift ≈
√
3π

80

vK
∆v

Z0 = 0.12· 100
15
14

−γ

χ
·
(
M∗

M⊙

)
·
( cs1
650m s−1

)−2

·
(

Z0

0.01

)
·
( r

100AU

) 1
2
−γ

. (B.1)

Therefore, b from eq. 3.25,

b =
2

3

χ

α
Stdrift ≈ 8·100 15

14
−γ ·
( α

0.01

)−1

·
(
M∗

M⊙

)
·
( cs1
650m s−1

)−2

·
(

Z0

0.01

)
·
( r

100AU

) 1
2
−γ

. (B.2)

For γ = 1, we can rewrite b and its dimensionless spatial derivative,

b = bsr̃
− 1

2 ,
∂b

∂r̃
= −bs

2
r̃−

3
2 . (B.3)

Replacing b in the PDE from eq. 3.32 with γ = 1,

Z

T

bs
2
r̃−

1
2

[
1 +

T

2r̃

]
= −∂Z

∂T
+

1

2

(
1 + bsr̃

− 1
2 − 2

r̃

T

)
∂Z

∂r̃
. (B.4)

This equation is a first-order linear Partial Differential Equation (PDE), and we try to
solve it by the Method of Characteristics for Non-Constant Coefficients (for a more detailed
explanation of the derivation, see section 3.2.2 or Riley et al., 1999). The characteristic
equation, in this case,

d r̃

1
2

(
1 + bsr̃

− 1
2 − 2 r̃

T

) = −d T. (B.5)

This equation is a non-linear first-order Ordinary Differential Equation (ODE). We were not
able to analytically solve this non-linear equation. We could linearise the equation around
r̃ ∼ 1, but in that case, St ∼ St0. Hence, we decided to look for a solution for constant St
directly. Nevertheless, in the drift-limited region, we see that the r-dependency of b is weak
(b ∝ St ·χ ∝ r−

4
7 for γ = 15

14
). Therefore, it might be a better approximation to assume St ·χ

constant rather than St constant. In the case of St ·χ constant, and therefore b constant, we
get the solution eq. 3.57.

B.2 Exploring an alternative method for determining the evolving
metallicity

In this section, we describe an alternative way of deriving the pebble flux. First, we use
simplified expressions for the gas surface density and gas flux, commonly used to describe
the inner regions,

Σg(r, t) =
Ṁg,0

3πν1

(
R1

r

)γ

T η, (B.6)
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Ṁg(t) = Ṁg,0T
η, (B.7)

where η = −5/2−γ
2−γ

. Recalculating ∂ lnP
∂ ln r

with the simplified Σg(r, t) (see eq. 3.20), we get that
χ = χ0. The ratio between the radial velocities (see eq. 3.15 and 3.18)

vr,p
vr,g

=
1 + 2

3
St
α
χ0

1 + St2
. (B.8)

From eq. 3.16, we know that the total mass of the gas disk is

Mg(t) =
2

3

Ṁg,0

ν1

R2
1

(2− γ)
T η+1 = 2(2− γ)tsṀg(t) · T. (B.9)

where ts is the viscous timescale (see eq. 3.11). We derive the mass over time,

dMg

d t
=

2

3

Ṁg,0

ν1

R2
1

(2− γ)

(η + 1)

ts
T η = −Ṁg,0T

η = −Ṁg(t). (B.10)

Assuming that Z(r, t) ≈ Z(t), we can relate the mass of the gas and the mass of the pebbles,

Mp(r, t) =

∫
2πrΣp(r, t)d r =

∫
2πrZ(r, t)Σg(r, t)d r ≈ Z(t)Mg(t). (B.11)

Therefore, Mp(t) ≈ Z(t)Mg(t). Taking the derivative of this equation over time,

dMp(t)

d t
=

dZ

d t
Mg(t) +

dMg

d t
Z(t). (B.12)

As dMg

d t
= −Ṁg(t) (see eq. B.10), we assume that dMp

d t
= −Ṁp(t) as well. Hence,

−Ṁp(t) =
dZ

d t
Mg(t)− Ṁg(t)Z(t), (B.13)

Z(t)Ṁg(t)

(
1− vr,p

vr,g

)
=

dZ

d t
Mg(t). (B.14)

Replacing eq. B.9, (
1− vr,p

vr,g

)
1

2(2− γ)ts

1

T
d t =

dZ

Z
, (B.15)

Z(t) = Z0T
1

2(2−γ)

(
1− vr,p

vr,g

)
(B.16)

Assuming that 1
St2+1

∼ 1, from eq. B.8,

Z(t) = Z0T
− 1

2(2−γ)
2
3

St
α
χ0 . (B.17)

We get the same result as in eq. 3.57.
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C Other results
In this appendix, we include results that can help the reader understand the details of

the findings.
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Figure C.1: Same as fig. 4.9 but showing t0,p in the color-bar. When St ≳ 0.03, only
early-formed embryos can become gas giants orbiting at ∼ 6AU at furthest. When St = 0.01,
late-formed embryos can become gas giants. For the same initial location, later-formed ones
will be less massive.

Figure C.2: When St = 0.01, the total solid mass of protoplanets depending on the initial
position and formation time of the embryos. None of the protoplanets reach Ms ≥ 25M⊕.
However, more protoplanets reach Miso than in the case of St = 0.03 (see fig. 4.4).
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Figure C.3: Evolution of protoplanets when St = 0.005 and αt ∼ 10−3. There is very little
growth, so wide-orbit gas giants cannot form within this scenario.

Figure C.4: When St = 0.01, Z0 = 0.02 and αt ∼ 10−5, the total solid mass of the
protoplanets depending on the initial position and formation time of the seeds. Most
protoplanets reach Miso. Early-formed and distant embryos form distant and massive cores.
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Figure C.5: When St = 0.01, Z0 = 0.02 and αt ∼ 10−5, the final position of the gas giants
depending on the initial position and formation time of the seeds. Embryos initiated far away
become the furthest gas giants. Since the pebble flux is long-lasting, contrary to fig. 4.6b,
for late-formed embryos, the final gas giants do not get closer to the star when the embryo
forms further away.
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(a) Fiducial values.
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(b) M0 = 0.1M⊕.
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(c) Z0 = 0.02.
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(d) αt ∼ 10−5.

Figure C.6: For different scenarios, the position and mass of giant planets formed without
reaching Miso, as explained in section 4.2.3. The lines connect the different outcomes of the
same planet when varying τth. In all scenarios, most gas giants form between 10 − 30AU,
and a few form at 40− 50AU.
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