
MASTER’S THESIS 2023

Evaluating a Unified Parallel
Computing API for Radar
Signal Processing
Filip Jergle Almquist

ISSN 1650-2884
LU-CS-EX: 2023-30

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2023-30

Evaluating a Unified Parallel Computing
API for Radar Signal Processing

Utvärdering av ett universellt parallellt
programmeringsgränssnitt för

radarsignalbehandling

Filip Jergle Almquist

Evaluating a Unified Parallel Computing
API for Radar Signal Processing

Filip Jergle Almquist
fi1316je-s@student.lu.se

June 27, 2023

Master’s thesis work carried out at

the Department of Computer Science, Lund University.

Supervisors: Anders Åhlander, anders.ahlander@saabgroup.com
Jonas Skeppstedt, jonas.skeppstedt@cs.lth.se

Examiner: Falvius Gruian, flavius.gruian@cs.lth.se

mailto:fi1316je-s@student.lu.se
mailto:anders.ahlander@saabgroup.com
mailto:jonas.skeppstedt@cs.lth.se
mailto:falvius.gruian@cs.lth.se

Abstract

This master’s thesis presents an evaluation of Intel’s oneAPI in the context
of high-performance radar signal processing applications, with a focus on ac-
tive electronically scanned array (AESA) radar systems. These systems require
the real-time processing of large amounts of data, demanding high-performance
hardware. However, the diversity of hardware platforms, including CPUs, GPUs,
and FPGAs, introduces challenges for code portability and long-term mainte-
nance. The study aims to assess oneAPI’s ability to unify programming across
these platforms, thereby improving engineering efficiency and sustainability.

The assessment centers on three main aspects: productivity, portability, and
performance of oneAPI. The productivity evaluation showed that the amount of
code required with oneAPI is comparable to other similar programming models.
Portability investigations demonstrated that while oneAPI allows for code ex-
ecution on multiple hardware architectures, code modifications are needed for
optimized performance across devices, and experiments on FPGA were unsuc-
cessful. The performance analysis indicated competitive results with other math
libraries, but performance degradation was observed on third-party hardware.

The study thus concludes that oneAPI offers a step toward hardware-agnostic
programming, although with issues such as bugs and limited industry adoption.
It suggests that future work should extend the evaluation to other data-parallel
algorithms and hardware types to fully understand oneAPI’s potential in high-
performance computing applications.

Keywords: oneAPI, Radar Signal Processing, Portability, High-Performance Comput-
ing, Parallel Computing

2

Acknowledgements

I would like to thank Anders Åhlander for teaching me everything I needed to know about
radar systems and keeping the project on track.

I would also like to thank Jonas Skeppstedt for his academic guidance and the courses
that let me dive deeper in the subject of high-performance computing.

Finally, I would like to thank Flavius Gruian for providing a new perspective on the thesis
and for his helpful and extensive feedback.

3

4

Contents

1 Introduction 7
1.1 Purpose . 8
1.2 Research Questions . 8
1.3 Scope . 8
1.4 Overview . 8

2 Radar Signal Processing 11
2.1 Radar Introduction . 11
2.2 Signal Processing Pipeline . 12
2.3 Rader Signal Processing Realization . 13

2.3.1 Parallelization . 13
2.3.2 Accelerators . 14
2.3.3 CPU . 15

3 Programming Models 17
3.1 oneAPI . 17

3.1.1 SYCL . 18
3.1.2 DPC++ . 18
3.1.3 Libraries . 18
3.1.4 Tools . 19
3.1.5 DevCloud . 19

3.2 Related Programming Models . 19
3.2.1 Kokkos . 19
3.2.2 Eigen . 20
3.2.3 CUDA . 20

4 Related Work 23

5 Approach 25
5.1 Productivity . 25

5

CONTENTS

5.2 Portability . 25
5.3 Performance . 26

5.3.1 Comparison with Baseline . 26
5.3.2 Importance of Tuning Work Group Size 26
5.3.3 Intel CPU vs Integrated GPU . 27
5.3.4 Discrete GPU . 27
5.3.5 CPU: oneAPI vs Kokkos . 28
5.3.6 GPU: oneAPI vs Kokkos vs CUDA 28
5.3.7 Scaling Problem Size . 28
5.3.8 FPGA . 28

5.4 GPU Considerations . 28

6 Implementation 31
6.1 Code Comparison . 31

6.1.1 DPC++ . 32
6.1.2 Kokkos . 33
6.1.3 CUDA . 34

6.2 Productivity Results . 35

7 Performance Results 37
7.1 Comparison with Baseline . 37
7.2 Importance of Tuning Work Group Size . 38
7.3 Intel CPU vs Integrated GPU . 38
7.4 Discrete GPU . 38
7.5 CPU: oneAPI vs Kokkos . 39
7.6 GPU: oneAPI vs Kokkos vs CUDA . 39
7.7 Scaling Problem Size . 39

8 Discussion 47
8.1 Interpretation of Results . 47

8.1.1 Productivity . 47
8.1.2 Portability . 47
8.1.3 Performance . 48

8.2 Broader Impact . 49
8.3 Limitations . 50
8.4 Future Work . 50

9 Conclusion 51

References 53

Appendix A oneAPI Setup Process 59
A.1 Intel Hardware . 59
A.2 FPGA . 60
A.3 Nvidia GPUs . 61

6

Chapter 1

Introduction

Radar systems have been widely used in various applications such as defense, air traffic con-
trol, and weather monitoring for several decades. However, the development of new tech-
nologies such as active electronically scanned array (AESA) radar systems [4] is enabling
greater flexibility, higher resolution, and improved performance in cluttered environments.
AESA radar systems typically use multi-channel antenna arrays to transmit and receive radar
signals, and the received signals are processed to extract useful information such as range, ve-
locity, and direction of targets.

The signal processing requirements for AESA radar systems are particularly demanding
due to the need to process data from hundreds or thousands of channels in real-time and the
complexity of the algorithms required to extract useful information from the received signals.
This requires high-performance hardware, and in addition to traditional central processing
units (CPUs), it can be beneficial to use more specialized hardware, such as graphics pro-
cessing units (GPUs) and field programmable gate arrays (FPGAs). However, CPUs, GPUs
and FPGAs traditionally all use different programming models and languages, which makes
it difficult to switch out hardware without rewriting large parts of the code.

Advanced radar systems are often produced in low volumes [1], which makes the devel-
opment cost per unit high and many radar systems are in use for several decades, requiring
maintenance as hardware is discontinued. Additionally, it is advantageous to be able increase
the performance of the system over its lifespan through more advanced algorithms and up-
grading hardware as faster processors become available [2].

Developing radar systems in a cost-effective manner requires focus engineering efficiency
and sustainability [2]. Engineering efficiency in the context of software engineering pertains
to the complexity of writing code. For example, changing a few parameters of an algorithm is
likely less complex than rewriting the whole algorithm in a different programming language.
Thus, being able to reuse more of the code increases engineering efficiency. Sustainability
is tightly connected to engineering efficiency. A sustainable system should allow for both
software upgrades and switching out the hardware, either because the previous hardware
was discontinued or to improve cost or size. It should also be possible to scale the system

7

1. Introduction

depending on the context the system is used, for example scale it down for a light drone
implementation or up for a powerful ground-based system. Finally, the application design
should be independent of the hardware design or have a clear path to replacement in case
of the hardware becoming obsolete. Unless it can be guaranteed that the hardware provider
will last for the full life cycle of the product, vendor lock-in should be avoided.

To address these challenges, Saab’s radar department is investigating the potential of us-
ing a generic parallel computing application programming interface (API) called oneAPI [16].
oneAPI is an open programming model created by Intel that includes Data Parallel C++
(DPC++) [35], which implements SYCL [36], a cross-platform abstraction layer that enables
code reuse across CPUs, GPUs, and FPGAs. Intel also provides various libraries that integrate
well with oneAPI along with profiling and debugging tools [8].

1.1 Purpose
The goal of this Master’s thesis is to evaluate to what extent oneAPI can help model high-
performance radar signal processing applications in a unified way, without considering spe-
cific target processor architectures and thus improve engineering efficiency and sustainabil-
ity.

1.2 Research Questions
The primary research questions we aim to address are:

• Productivity: How much code is needed to setup and implement algorithms with
oneAPI and how does it compare to other similar APIs?

• Portability: How much of the oneAPI code can be reused for different hardware ar-
chitectures and what changes are needed?

• Performance: How does the computational performance of oneAPI compare to other
established libraries?

1.3 Scope
While the research questions are applicable to a broad range of high-performance computing
fields, the scope of this thesis is focused primarily on the domain of radar signal processing.
The intent is to evaluate the suitability of oneAPI for the unique challenges posed by this
area, such as real-time processing of large volumes of data and the long-term maintainability
of the software in the face of hardware upgrades and replacements. The choice of radar signal
processing also provides a practical and real-world context for our evaluations and analyses.

1.4 Overview
Here is an overview of the following chapters in the thesis:

8

1.4 Overview

• Chapter 2 lays out the foundational concepts of radar systems and the signal processing
pipeline used as a benchmark in the thesis. It also describes the how signal processing
is well-suited for parallelization on CPUs, GPU and FPGAs.

• Chapter 3 introduces oneAPI and its different components along with related pro-
gramming models that are used as comparisons in the thesis.

• Chapter 4 reviews recent studies on oneAPI, including code conversion and its perfor-
mance impact, optimization strategies and comparing oneAPI to other programming
models.

• Chapter 5 discusses how experiments are conducted and how they can answer the re-
search questions.

• Chapter 6 goes through an implementation of an operation in oneAPI and other pro-
gramming models in order to compare productivity.

• Chapter 7 presents the results of experiments that evaluate performance of oneAPI.

• Chapter 8 discusses the results in terms of productivity, portability and performance.

• Chapter 9 concludes the thesis.

9

1. Introduction

10

Chapter 2

Radar Signal Processing

This chapter goes over the radar signal processing operations that are used in the thesis.

Digital
beamforming

Pulse
compression

CFARDoppler filteringReceiver

Collects samples

Steers antenna
beam

Improves range resolution

Extracts motion
information

Output

Extracts targets

Figure 2.1: Signal processing pipeline used in this thesis.

2.1 Radar Introduction
In radar systems, a transmitter sends out electromagnetic waves or pulses towards a target,
which reflects these pulses back to the radar receiver [37]. The receiver then measures the
time delay between the transmitted and received pulses, as well as the amplitude and phase
of the received pulses.

In an AESA-based multi-channel radar system, each channel has its own transmitter and
receiver, which allows for simultaneous measurement of multiple targets at different angles.
The pulse echoes received by each channel are typically slightly different in phase, which
allows the receiver to distinguish between signals from different directions.

To obtain range information about the target, the radar system samples the received
pulses at different times, corresponding to different ranges. The time delay between the

11

2. Radar Signal Processing

transmitted and received pulses is proportional to the distance to the target. By collecting
the sampled signals for multiple ranges, pulses and channels, the radar system can create a
cube of data. The data cube is a three-dimensional matrix that stores the radar data as com-
plex numbers. The first dimension represents the number of channels in the radar system.
The second dimension represents the pulse repetition interval, which is the time between
the transmission of two consecutive pulses. Finally, the third dimension represents the range
bins, also refered to as range gates, which correspond to the distances of the objects from the
radar.

2.2 Signal Processing Pipeline
In order to assess both performance and coding efficiency, we implement a signal processing
pipeline, following the methodology presented in an MIT paper [30]. The pipeline operates
on data cubes that contain the radar samples.

Samples are collected by the radar receiver before the signal processing is applied. The sig-
nal processing includes four primary operations: digital beamforming (DBF) steers antenna
beams, pulse compression (PC) improves range resolution, Doppler filtering (DF) extracts
motion information, and Constant False Alarm Rate (CFAR) detection extracts targets [37].
Corner turns (CT) are used between operations to improve performance. The signal process-
ing pipeline can be seen in Figure 2.1. The following description details how each operation
is realized.

Denote X ∈ CNC×NP×NR as a data cube that comprises NC channels, NP pulses, and NR
range gates. The individual elements in this data cube are denoted by X[c, p, r], representing
a specific channel c, pulse p, and range gate r. Moreover, the set of all range gates for a
particular channel and pulse is represented by the vector X[c, p, :].

Digital Beamforming: The realization of the digital beamforming operation can be de-
scribed as a batched matrix multiplication with precomputed weights. If W ∈ CNC×NB repre-
sents the beamforming weights, where NB denotes the number of beams, the operation can
be expressed as Y [:, p, :] = WHX[:, p, :]. Here, Y ∈ CNB×NP×NR denotes the output. Within
the code, this operation is realized with a general matrix multiplication function, batched
over the pulse dimension.

Pulse Compression: Pulse compression can be seen as a convolution with a relatively
large filter, applied across range gates. Denoting the filter by h ∈ CNF , the pulse compression
operation can be represented as Y [c, p, :] = X[c, p, :]∗h, where ∗ represents the convolution
operator. For a larger NF , efficiency can be improved by performing the convolution in the
frequency domain. This involves applying a discrete Fourier transform (DFT) to the input,
conducting an elementwise multiplication (EWM) with the filter, and finally applying an
inverse DFT to the result. The DFT operations are realized with the Fast Fourier Transform
(FFT) algorithm. However, libraries like FFTW [25] require creating an FFT plan prior to
executing the FFTs. Generating the plan might test different algorithms to find the most
efficient one.

Doppler Filtering: The Doppler filtering stage consists of applying a DFT to the data
cube, which is again accomplished by calling an FFT function. In mathematical notation it
looks like Y [c, :, r] = DFT (X[c, :, r]).

CFAR Detection: The CFAR detection process involves calculating the mean absolute

12

2.3 Rader Signal Processing Realization

sum of the values surrounding each element in the range dimension. This technique has
two adjustable parameters: the number of values on each side of the tested element that are
included in the summation Nc f ar , and the number of guard gates G, which are the values
immediately adjacent to the cell that are omitted from the sum. Mathematically, it looks like
Y [c, p, r] = 1

2Nc f ar

∑G+Nc f ar
i=G+1 |C[c, p, r + i]|2 + |C[c, p, r − i]|2.

Lastly, a corner turn (CT) operation can be carried out to rearrange the data for better
cache locality, thereby optimizing the efficiency of certain operations. Mathematically, a
corner turn that swaps the last two dimensions can be described as Y = CT (X), where Y ∈
CNC×NR×NP and X ∈ CNC×NP×NR . Within the code, the corner turn operation is implemented
as a data transfer between two cubes, swapping the indices in the destination during the
process.

2.3 Rader Signal Processing Realization
Efficient signal processing realizations are essential to be able handle the massive amount of
data produced by AESA radar systems. The linear algebra used in radar signal processing
is well-suited for parallelization and can therefore take advantage of hardware accelerators
such as GPUs, FPGAs and CPU features like AVX.

2.3.1 Parallelization
Linear algebra is a fundamental mathematical tool in radar signal processing that is used
extensively in a wide range of operations, including filtering, compression, and beamforming.
These operations can be represented mathematically as linear transformations that operate
on vectors and matrices of signal data. In practice, these vectors and matrices can be quite
large, making them computationally demanding to process. For example, in our radar signal
processing pipeline, the input data cube has dimensions 48 × 128 × 3500 [30], resulting in
21.5 million data samples. Two common and computationally intensive operations are matrix
multiplication [40] and Fast Fourier Transform (FFT) [5].

Matrix multiplication can be easily parallelized because each element in the resulting ma-
trix is the dot product of a row from the first matrix and a column from the second matrix.
These dot products are independent of each other and can therefore be calculated simulta-
neously.

In a simple 2D decomposition, the matrices are divided into blocks or tiles, and each pro-
cessor is assigned the task of computing the result for a specific block. This approach reduces
communication overhead between processors and is well-suited for distributed memory sys-
tems.

FFT is a key operation in signal processing used for converting a signal from time domain
to frequency domain, a fundamental step in radar signal processing.

The Cooley-Tukey radix-2 decimation in time algorithm [5] is one of the simplest FFT
algorithms. It breaks down a discrete Fourier transform (DFT) of size N into two interleaved
DFTs of size N /2 at each stage, and this process can be continued recursively. Each stage of
the computation can be performed independently, making it suitable for parallel processing.

Parallelization can be achieved through a variety of techniques, including SIMD, multi-
threading, and distributed computing. Parallelizing linear algebra operations can signifi-

13

2. Radar Signal Processing

cantly reduce the processing time required to analyze large volumes of radar data by utilizing
more of the available resources of modern processors.

2.3.2 Accelerators
GPUs and FPGAs are well-suited for massively parallel workloads, such as linear algebra, due
to their unique architectural characteristics and hardware capabilities.

GPUs: Graphics Processing Units (GPUs) were originally designed for rendering graph-
ics and performing calculations related to computer graphics [43]. However, their massively
parallel architecture has proven to be highly effective for general-purpose computation, par-
ticularly for linear algebra workloads. Modern GPUs consist of thousands of small, energy-
efficient cores that can perform simple arithmetic operations concurrently. For example, the
Nvidia Geforce RTX 2070 used in this thesis has 2304 general compute cores. These cores are
organized into multiprocessors, which provide a hierarchical structure for managing thread
execution and memory access.

Some of the key features that make GPUs well-suited for linear algebra workloads [43]
include:

• High arithmetic throughput: GPUs can execute a large number of arithmetic opera-
tions per second, enabling them to process large-scale linear algebra problems quickly.

• High memory bandwidth: GPUs have a large memory bandwidth, which allows them
to efficiently access and manipulate large data sets, such as matrices and vectors.

• Efficient SIMD execution: GPUs are designed to exploit SIMD (Single Instruction,
Multiple Data) parallelism, which enables them to perform the same operation on
multiple data elements simultaneously. This is particularly beneficial for linear algebra
workloads, as many operations can be vectorized and executed in parallel.

FPGAs: Field-Programmable Gate Arrays (FPGAs) are reconfigurable hardware devices
that can be programmed to implement custom logic circuits [23]. Unlike GPUs, which have
a fixed architecture and instruction set, FPGAs can be tailored to the specific requirements
of a given workload, providing a high degree of flexibility and adaptability. This customiza-
tion allows FPGAs to achieve high performance and energy efficiency for a wide range of
applications, including linear algebra.

Some of the key features that make FPGAs well-suited for linear algebra workloads [35]
include:

• Customizable hardware: FPGAs can be programmed to implement specialized hard-
ware accelerators for linear algebra operations, such as matrix multipliers or systolic
arrays. These accelerators can be optimized for specific problem sizes or data types,
enabling high performance and energy efficiency.

• Fine-grained parallelism: FPGAs can exploit fine-grained parallelism at the bit or
word level, allowing them to perform multiple independent operations concurrently.
This is particularly useful for linear algebra workloads, which often involve a large
number of small, independent calculations.

14

2.3 Rader Signal Processing Realization

• Low-latency communication: FPGAs provide low-latency communication, enabling
efficient data sharing and synchronization for parallel linear algebra operations. This
reduces the overhead of communication and synchronization, which can be a bottle-
neck for large-scale parallel workloads.

2.3.3 CPU
Central Processing Units (CPUs) are the primary computing engines of most computers.
While traditionally associated with serial processing, modern CPUs have evolved to include
several features that allow for significant parallel computation. Two such features are multi-
core processing and SIMD instruction sets such as AVX (Advanced Vector Extensions) [34].

Multi-core Processing: Modern CPUs consist of multiple cores, each of which can exe-
cute instructions independently of the others. This allows for thread-level parallelism where
different threads of execution run simultaneously on different cores. Many linear algebra op-
erations can be parallelized at the level of outer loops, making multi-core CPUs well-suited
for these types of workloads. For instance, different columns or rows of a matrix can be pro-
cessed concurrently by different cores. Additionally, modern CPUs support multithreading
technologies like Hyper-Threading [39] (on Intel CPUs) which can further increase paral-
lelism by allowing each core to execute multiple threads concurrently.

AVX: Advanced Vector Extensions [34] is a SIMD (Single Instruction, Multiple Data)
instruction set extension for x86 CPUs introduced by Intel. SIMD involves performing the
same operation on multiple data points simultaneously, which is ideal for workloads that
involve repetitive operations on large datasets, such as linear algebra.

AVX provides 128-bit, 256-bit (AVX2), and as of AVX-512, 512-bit wide vector registers
that allow for the simultaneous processing of several data points. For example, with AVX2,
it is possible to perform eight 32-bit floating-point operations concurrently within a single
CPU core. This makes AVX particularly well-suited for linear algebra operations like vector
and matrix operations, which often involve applying the same operation to each element in
a set of data.

Moreover, AVX includes specific instructions designed to accelerate certain mathemati-
cal operations common in linear algebra, such as fused multiply-add, which performs a mul-
tiplication and addition in a single operation.

SIMD parallelism is a crucial aspect of modern CPU design that significantly acceler-
ates many workloads, including linear algebra. However, it is important to note that using
AVX effectively often requires careful attention to details such as data alignment, memory
access patterns, and the structure of the computation to ensure that operations are efficiently
vectorized and that the AVX units are fully utilized [29].

15

2. Radar Signal Processing

16

Chapter 3

Programming Models

This chapter introduces oneAPI along with other established and similar programming mod-
els that are used as comparison.

3.1 oneAPI
Intel’s oneAPI [16] builds upon an industry standard called SYCL [26], a unified programming
model that enables developers to write parallelized applications for a wide range of heteroge-
neous systems. An overview of the oneAPI ecosystem can be seen in Figure 3.1. It shows that
oneAPI consists of tools, DPC++ [35] and libraries. Intel Advisor and Intel VTune [6, 14] are
two examples of the included tools, oneDNN, oneMKL and oneDPL [10, 13, 11] are notable
oneAPI libraries and HIP, CUDA, OpenCL and Level Zero [22, 18, 27, 12] are examples of
SYCL backends that the DPC++ code can be compiled for.

oneAPI

DPC++ (SYCL) Libraries

Level ZeroOpenCL

Tools

CUDAHIP oneMKLoneDNN oneDPLIntel VTuneIntel Advisor

Figure 3.1: Overview of the oneAPI ecosystem.

17

3. Programming Models

3.1.1 SYCL
SYCL is a programming model for heterogeneous systems that allows developers to write
code in a single-source style using standard C++ [36]. It is based on the OpenCL standard
and was designed to enable programming for a wide range of heterogeneous devices such
as CPUs, GPUs and FPGAs [26]. SYCL supports modern C++ features such as templates,
lambdas, and range-based for loops.

In SYCL, the host and device code are written in the same language, in constrast to
OpenCL where the kernels are written in a separate file [27]. The SYCL runtime system
is responsible for managing platforms, devices, contexts and memory handling. The SYCL
runtime system uses the OpenCL API or other backends like CUDA, HIP and Level Zero to
interact with the hardware. SYCL code can be compiled for a generic architecture, such as
x86_64, or for a specific device, for example for an Intel Stratix 10 SX FPGA.

One of the key features of SYCL is its ability to express parallelism and data dependencies
in a high-level and platform-agnostic manner. SYCL code is written in terms of kernels,
which are functions that can be instantiated many times and applied to different input data.
Kernels are executed on a device, and their execution is coordinated by the SYCL runtime
system. SYCL provides a set of memory and synchronization primitives that allow developers
to express dependencies between kernels and data transfers.

SYCL organizes the work to be executed on a device into work groups, subgroups, and
work items, which enables developers to control parallelism and data locality. Work items
are the smallest units of execution and perform the actual computation. They are grouped
into work groups, which are scheduled for execution on the same compute unit, allowing
them to share local memory and synchronize execution. Subgroups are an optional division
within work groups, providing a finer level of control over synchronization and data sharing.

In SYCL, computation is scheduled with queues. A queue is an object that represents
a sequence of command groups that are submitted to a device for execution. Command
groups can include data transfers between the host and the device, as well as the execution of
kernels. Queues provide a way for the programmer to control the order in which commands
are executed and to manage data dependencies between commands.

3.1.2 DPC++
One key part of oneAPI is Data Parallel C++ (DPC++). DPC++ is Intel’s implementation of
SYCL with extensions, including FPGA-specific functionality and a Unified Shared Memory
(USM) model that has now been accepted into the SYCL standard [26]. USM lets you access
memory on both host and device through a data pointer. We use USM for all device mem-
ory in our signal processing pipeline. DPC++ is supported by Intel’s own LLVM-based C++
compiler, icpx [9].

3.1.3 Libraries
In addition to DPC++, oneAPI provides a set of libraries with specialized code paths op-
timized for each supported architecture [16]. These libraries, include functions for linear
algebra, signal processing, and machine learning, among others. One of the libraries, oneAPI
Math Kernel Library (oneMKL) [13], includes a wide range of numerical algorithms, including

18

3.2 Related Programming Models

linear algebra functions, FFTs, sparse matrix solvers, and random number generators. Besides
the closed source optimized implementations for x86 CPUs and Intel GPUs, there are also
open source interfaces that supports multiple backends and devices [15]. Currently, there is
partial support for Nvidia and AMD GPUs through their native backends. In addition, the
SYCL-BLAS [3] backend provides BLAS functionality implemented in SYCL.

3.1.4 Tools
oneAPI also provides a set of tools for profiling and optimizing applications, including Intel
VTune Profiler [14] and Intel Advisor [6]. These tools can be used to analyze application per-
formance, identify bottlenecks, and optimize code for better performance on heterogeneous
systems. However, they only support Intel hardware.

3.1.5 DevCloud
The Intel DevCloud service makes oneAPI and Intel hardware more accessible by giving
free access to various hardware configurations in the cloud. It is a development sandbox
for learning about oneAPI and other cross-architecture APIs. Currently, it features a few
different CPUs with integrated GPU and two different FPGAs. We use it to compare oneAPI
performance on Intel hardware.

3.2 Related Programming Models
There are several of other programming models similar to oneAPI and they all have their own
strengths and weaknesses. The following sections describe the programming models that we
compare oneAPI to.

3.2.1 Kokkos
Kokkos is another C++ library and programming model for writing portable parallel appli-
cations targeting heterogeneous architectures [24, 41]. Developed by Sandia National Labo-
ratories, Kokkos is designed similarly to SYCL, to abstract the complexities of parallel pro-
gramming and enable developers to write code that can run efficiently on various hardware
platforms, including CPUs, GPUs, and other accelerators.

The Kokkos programming model is based on the concept of parallel patterns, which are
high-level constructs that describe the parallelism and data access patterns in an application.
Some of the key parallel patterns provided by Kokkos include parallel_for, parallel_reduce,
and parallel_scan, which are used to express parallel loops, reductions, and scans, respectively.
The parallel_for abstractions in Kokkos and SYCL are very similar, as we will see in Chapter 6.

In Kokkos, data structures are organized using multidimensional arrays, called View,
which provide a flexible and portable way to manage memory [33]. View can be used to
represent data in various memory spaces, such as host memory or device memory, and can be
resized and reallocated as needed. Additionally, Kokkos provides memory management facil-
ities to automatically handle data transfers between different memory spaces, switch between
row-major and column-major memory layout and ensure proper data synchronization.

19

3. Programming Models

Kokkos also provides an execution space abstraction, which represents the different hard-
ware resources available for parallel execution and is analogous to SYCL backends. Some
examples of execution spaces include C++ threads, OpenMP, and CUDA. It also has an ex-
perimental SYCL backend, that is not considered stable yet. By specifying the execution space
when defining parallel patterns, developers can control where the computation is performed.

We choose Kokkos as a comparison because of how similar it is to oneAPI, while being
more established. We consider Kokkos to be a direct competitor to oneAPI.

3.2.2 Eigen
Eigen is a high-performance C++ template library for linear algebra, matrix and vector oper-
ations, and geometrical transformations [28]. Developed as an open-source project, Eigen is
designed to provide a flexible and efficient library for a wide range of applications, including
scientific computing, computer graphics, robotics, and machine learning.

One of the key features of Eigen is its expressive syntax, which more closely resembles
mathematical notation than a Basic Linear Algebra Subprogram (BLAS) API like oneMKL.
This syntax, accomplished through C++ operator overloading, allows developers to write
complex linear algebra expressions in a concise and readable manner.

Eigen’s performance is achieved through a combination of template metaprogramming
and vectorization. Template metaprogramming enables Eigen to generate efficient code at
compile time by unrolling loops and optimizing expressions based on the matrix and vector
dimensions. Vectorization, on the other hand, leverages the SIMD capabilities of modern
processors to perform multiple operations in parallel.

For discrete Fourier transforms, Eigen supports three different backends. One of them is
FFTW [25], which is an open source project by researchers at MIT that includes high perfor-
mance FFT implementations.

We use Eigen with the FFTW backend as a baseline because of its high CPU performance,
popularity and usage in the industry.

3.2.3 CUDA
CUDA (Compute Unified Device Architecture) is a parallel computing platform and applica-
tion programming interface developed by Nvidia [18]. It provides a C++-based programming
model that enables developers to efficiently utilize Nvidia GPUs’ massive parallel processing
capabilities for general-purpose computing.

CUDA organizes computation into a hierarchy of threads, blocks, and grids. Threads
are the smallest unit of execution and can be grouped into blocks. A block is a collection of
threads that can communicate and synchronize with each other. A grid is an array of blocks,
and multiple grids can be launched concurrently. This hierarchy allows developers to express
parallelism at different granularities, enabling the efficient use of GPU resources for a wide
range of computational tasks.

One of the key advantages of CUDA is its extensive ecosystem, which includes a variety
of libraries, tools, and resources that simplify the development of GPU-accelerated applica-
tions. Two important libraries are cuBLAS [17] and cuFFT [19], which provide optimized
implementations of commonly used algorithms in linear algebra and signal processing, re-
spectively.

20

3.2 Related Programming Models

In comparison to SYCL and oneAPI, CUDA is a platform specific solution, which means
that it is tied to Nvidia GPUs and does not support other types of devices, such as CPUs,
FPGAs, or other vendor GPUs. However, CUDA is widely adopted [32] and has a mature
ecosystem, making it a popular choice for developing high-performance applications that
target Nvidia GPUs.

We compare oneAPI with CUDA, since it is the dominant programming model for GPU
compute and to see how well oneAPI compares with native code on third-party hardware.

21

3. Programming Models

22

Chapter 4

Related Work

Several recent works have evaluated oneAPI with different approaches. Many of them mi-
grate code written in CUDA to DPC++ using a conversion tool, DPC++ Compatibility Tool
(dpct), but also from C++ code.

Costanzo et al. [21] (2021) discuss their experiences porting two small CUDA applications
to DPC++ using the dpct conversion tool, a matrix multiplication and a reduction. They
include performance numbers for the matrix multiplication running on an Nvidia Geforce
RTX 2070 GPU, Intel Core i9-10920X CPU and an Intel Iris Xe MAX GPU. The RTX 2070 is
tested both running the original CUDA code and the converted DPC++ with an 8-38% slower
result with DPC++. Furthermore, DPC++ on the RTX 2070 runs 7-8 times faster than the CPU
and the Xe Max GPU runs 1.5-2.3 times faster than the CPU. Our thesis extends these tests
with more operations and investigates and further comparisons with similar programming
models.

Wang et al. [44] (2021) migrate a CUDA-based medical ultrasound application to DPC++
and run it on Intel CPU, GPU and FPGA. The application uses a processing pipeline that in-
cludes beamforming, envelope detection, log-compression and scan-conversion. Wang et al.
find that code conversion is efficient using the dpct conversion tool. To improve performance
on GPUs, they use a low-level extension for explicit SIMD instructions to increase vector-
ization. For FPGA, a pipelining approach with local buffers is used and they note that their
optimizations require professional FPGA experience. When comparing the performance of
an Intel Core i7-8700K GPU with its integrated Intel UHD Graphics 630 GPU, the GPU is
9.7 times faster, even though it only has 24% more single precision floating point operations
per second. However, the paper does not mention any CPU optimizations and given that the
code was originally written for Nvidia GPUs it might not be well-suited for the CPU. The
Intel Arria 10 FPGA achieves around double the through put of the Intel UHD Graphics
630. In constrast to [44], our thesis does not base our test application on already optimized
GPU code and our results are more focused on performance with as few architecture specific
optimizations as possible.

Marinelli et al. [31] (2021) port a highly-optimized GPU-based hash join algorithm to

23

4. Related Work

DPC++ from CUDA using dpct. They execute the code on an Intel CPU and two GPUs and
an Nvidia GPU and compare with hand-optimized CUDA. An Intel Gen 9 integrated GPU is
around 40% slower than its Intel Xeon E-2176G CPU, while an Intel Xe Max GPU is around
twice as fast as the CPU. DPC++ on the Nvidia Geforce RTX 2080ti is around 10 times faster
than the CPU. When comparing the DPC++ implementation to the original CUDA code,
the DPC++ version is 1.3-4.7 times slower on the RTX 2080ti. Marinelli et al. also compares
the performance of using different work group sizes and show that it can have a significant
impact. The paper does not mention trying automatic work group size. In our thesis, we
explore whether automatic work group size can eliminate the manual tuning.

Volokitin et al. [42] adapts a particle simulation implemented in C++ to use DPC++ and
run it on an Intel CPU and two GPUs. They find porting the C++ code to DPC++ to be
easy and that the DPC++ performance is only around 10% worse than the C++ code using
OpenMP on the CPU. In constrast to the other papers mentioned, the code in this paper
is based on, and compared with, an optimized CPU implementation. We further compare
CPU implementations with Eigen, FFTW and Kokkos.

Besides extending the performance evaluations done in the mentioned papers, we also
compare productivity of oneAPI with similar programming models.

24

Chapter 5

Approach

To evaluate the productivity, portability and performance of oneAPI, we conduct a series
of experiments. The experiments compare various aspects of oneAPI to other programming
models, namely Eigen with FFTW, Kokkos and CUDA. We deemed these programming mod-
els to be representative of each aspect we wanted to evaluate. Eigen and FFTW are well
established math libraries for CPUs and therefore suitable as a baseline. Kokkos is similar
to oneAPI in terms of its high-performance computing and portability goals and has also
been around for a longer time. Finally, CUDA is the most frequently mentioned parallel
programming language in research according to Google Scholar [32] and the native language
for programming Nvidia GPUs and therefore a suitable comparison for evaluating oneAPI’s
performance on third-party hardware.

5.1 Productivity
The productivity aspect is evaluated on the basis of how much code and parameter tuning
is needed to achieve the desired functionality. We evaluate it on the code we write for the
performance experiments and thus compare oneAPI to the other programming models used.
More specifically, we look at what setup is needed before you can launch a kernel, what
parameters should be tuned and how much extra code is required for the kernels besides the
core algorithm. This is discussed in Chapter 6.

5.2 Portability
Since the main selling point of oneAPI is that it improves portability and avoids vendor lock-
in, we run the code on several hardware architectures and observe if it compiles and runs
successfully. We judge the portability based on how much of the code needs to be changed to
make it run and further changes to make it run well. Portability is also evaluated on the code

25

5. Approach

written for the performance experiments and the results are partly presented when describing
the performance experiments in the coming sections, but also summarized in Chapter 8.

5.3 Performance
The performance of oneAPI is evaluated in several ways. We compare performance to a
baseline, investigate the trade-off between automatic or manual tuning of work group size,
sensitivity to input size with non-optimal factors, scaling across different architectures and
input sizes and compare kernel performance to a competitor and native code.

All benchmarks are run for 10 iterations to achieve more consistent timings. Before mea-
suring, a warmup sequence is run, that includes all the timed operations. This ensures that
any initialization and JIT compilation is completed before the benchmark and not included
in the measurements. Since the timings still varies a few percent between runs, the bench-
marks are run multiple times for each configuration and the best time is recorded. Five times
was deemed enough to consistently get at least one good result and the best time was chosen,
because it is likely the least affected by background processes and other random occurrences
that can harm performance. All code is compiled with only the -O3 flag, using Intel’s ipcx
compiler for the CPUs and Intel GPU and Intel’s clang compiler for the Nvidia GPU with
nvcc [20] for the CUDA kernels.

The results are presented in Chapter 7. Next, we describe each experiment in more detail.

5.3.1 Comparison with Baseline
First, we want to make sure that it is competitive compared to established math libraries
that we consider as baseline. If other libraries offer higher performance, then the improved
portability of oneAPI might not be enough for it to get chosen, although the exact perfor-
mance threshold depends on the context. To verify that oneAPI is competitive with other
popular math libraries, we compare its performance with the open source library Eigen, with
the FFTW backend for FFTs. With Eigen, multithreading is enabled by OpenMP.

Pulse compression is used as the benchmark which consists of applying an FFT on the
input, elementwise multiplication (EWM) with a filter and an inverse FFT. Pulse compression
was chosen because it provides more breadth of algorithms than the other operations in the
pipeline. We deem it sufficient to get a sense of whether oneAPI can compete with the Eigen,
without having to re-implement the whole pipeline. Instead of running the experiment on
an Intel CPU through Intel Devcloud, we run this experiment on our local machine with an
AMD Ryzen 5 3600 CPU, since it makes it easier to install additional libraries such as Eigen.

5.3.2 Importance of Tuning Work Group Size
Next, one of the architecture specific parameters SYCL exposes to the programmer is work
group size. We want to evaluate how much impact it has on performance and how well
the implementation can automatically tune it. The optimal work group size depends on the
device, so it would make oneAPI less portable if you have to tune it for each device to achieve
good performance.

26

5.3 Performance

In SYCL, the work group size determines how many work items, instances of the kernel,
are scheduled to the same compute unit. What exactly a compute unit represents in hardware
is architecture dependent, but for CPUs and GPUs, setting work group size to one masks out
all SIMD units other than the first one [35]. Intel Gen 12 GPUs, for example, can execute
eight 32-bit operations in parallel per instruction [7], so only utilizing one of those should
be detrimental to achieving good performance. We run the experiment on an Intel Gen 12
UHD Graphics via Intel Devcloud. We choose a GPU for this experiment, because we expect
it to be more affected by the choice of work group size than a CPU, since GPUs have weaker
individual cores than CPUs and are more reliant on utilizing many of them.

To determine how important it is to choose proper work group sizes, we use three dif-
ferent work group size configurations. For the first configuration we set work group size to
one, to represent the worst case. Then, SYCL lets you omit specifying work group size, in
which case the SYCL implementation decides for you, which is the second configuration. For
the last configuration, we manually tune the work group size by measuring the performance
of different configurations. We notice that the performance of the automatic tuning varies
significantly depending on input size. Therefore, we include two different input sizes, one
with range dimension 3500 and one with 3584. In this experiment we only include the CFAR
and corner turn, since those are the only operations we implemented as SYCL kernels and
specify work group size for.

5.3.3 Intel CPU vs Integrated GPU
We notice that the oneMKL FFT performance is more sensitive to input size on GPU than
CPU. Therefore, we compare the performance gains of padding the input on CPU and GPU.
Having to pad input for certain devices, would make oneAPI less portable and add another
device specific parameter.

We compare the performance on the Intel i9 11900KB CPU with its integrated UHD
Graphics GPU running in Intel Devcloud. We also tested padding the range dimension of
the input data from 3500 to 3584 and 4096 for better FFT performance. This experiment
includes the full signal processing pipeline. To make each device perform its best, we tuned
work group size for both individually and reused FFT plans on GPU. We reused the FFT plans
for the GPU, since creating them for the GPU is slow, sometimes slower than the actual FFT.
The reason for not reusing FFT plans on the CPU is that it made the inverse FFT three times
slower. However, creating the FFT plans for the CPU each time did not significantly increase
the total time.

5.3.4 Discrete GPU
To evaluate portability of oneAPI beyond Intel hardware, we add a third-party GPU to the
comparison, the Nvidia Geforce RTX 2070 running on our local machine. In this experiment
all devices use a range dimension padded to 3584. The only modification required compared
to the code running on the UHD Graphics GPU is that for the Nvidia GPU we have to use
the native cuFFT library directly instead of through the oneMKL interface, since it has not
yet been implemented.

27

5. Approach

5.3.5 CPU: oneAPI vs Kokkos
The code for kernels in oneAPI and Kokkos is very similar, so one would also expect the
performance to be about the same. First we run the test on our local machine with a AMD
Ryzen 5 3600 CPU, again because of the difficulties of using Kokkos in Intel Devcloud. We
did not get Kokkos’ experimental SYCL backend to work for CPU nor the OpenMP backend,
so we used the C++ threads backend that use standard library threads for parallelization. We
compare the elementwise multiplication used in pulse compression, CFAR and corner turn,
since those operations are written as kernels.

5.3.6 GPU: oneAPI vs Kokkos vs CUDA
We repeat the same kernel benchmark with the Nvidia GPU. This time we add kernels written
in CUDA to the comparison to see how oneAPI compares to native code on third-party
hardware. For the GPU kernel comparison, the Kokkos code uses the SYCL backend.

5.3.7 Scaling Problem Size
The final experiment shows how well oneAPI performs when scaling problem size on dif-
ferent devices. It also gives an indication of whether oneAPI adds significant overhead on
the three different devices tested, Intel Core i9 11900KB, Gen 12 UHD Graphics and Nvidia
Geforce RTX 2070. The native CUDA kernels are again added to the comparison to see if
oneAPI behaves any differently. We run full signal processing pipeline and scale the range
dimension from 128 to 16384, doubling it for each step.

5.3.8 FPGA
We compile and run the code on the Intel Stratix 10 SX. However, according to a runtime
error the oneMKL functions used are not supported on the device. When running the code
without those functions, the program hangs indefinitely. Because of the four hours long
compile times, lack of FPGA expertise and time, we did not debug it any further.

5.4 GPU Considerations
Offloading computations onto a discrete GPU (not integrated with the CPU) usually comes
with various overheads compared to running everything on the CPU and therefore requires
some extra consideration when comparing performance. For example, launching a CUDA
kernel on an Nvidia GPU involves setting up the execution context [18], including the grid
and block dimensions, shared memory and registers. This overhead can become significant
when launching a large number of small kernels. Discrete GPUs have their own memory,
separate from the main system memory that CPUs use and transferring large amount of data
between can be slow. Furthermore, synchronizing the entire GPU with all of its cores is
another time consuming operation. The first time you use CUDA in a program, there is ad-
ditional overhead to initialize the CUDA context on the GPU. This can be quite significant,

28

5.4 GPU Considerations

but it is a one-time cost per program execution. CUDA can be compiled to the intermediary
programming language PTX [20], analogous to Java bytecode. PTX needs to be just-in-time
(JIT)-compiled to binary code at runtime, which results in another initial overhead.

Depending on the use case, many of the mentioned latencies can be amortized or hidden.
We assume the real world use case of oneAPI in the context of radar signal processing would
be running the signal processing pipeline continuously as more radar samples are made avail-
able to the computing device. Therefore, we do not include any initialization or JIT overhead
when timing our performance tests. Memory transfers only need to happen at the start and
end of the signal processing pipeline. Assuming the compute time is longer, the transfers can
be performed asynchronously while computing to hide the latency cost and are therefore also
excluded from the measurements. The need for synchronization is highly use case dependent.
Due to an issue with the built-in SYCL profiling API, we have to synchronize after each op-
eration to be able to measure their time costs and it is therefore included. Finally, the kernel
launch overhead can be reduced by launching multiple kernels concurrently. However, in
this case all operations happen sequentially, so it is not applicable.

29

5. Approach

30

Chapter 6

Implementation

In this chapter, we discuss the implementation of the signal processing pipeline and compare
the kernel implementations in DPC++, Kokkos and CUDA in order to evaluate the produc-
tivity of oneAPI as defined in Chapter 5.

6.1 Code Comparison
The signal processing pipeline was fully implemented using DPC++ and oneMKL. More specif-
ically, oneMKL was used for FFTs and matrix multiplication while elementwise multiplica-
tion, corner turns and CFAR were implemented in SYCL kernels. To be able to compare
the performance and ease of use, parts of the benchmark were also implemented in Kokkos,
Eigen and CUDA, as described in Chapter 5. For all frameworks, we use shared USM memory,
which means the memory can be accessed from both host and device. The memory is implic-
itly copied between the host and device when needed. This feature improves productivity
by reducing the need to manually manage memory and is available in all three programming
models. If performance is an issue, the allocations can later be switched to host or device and
be copied explicitly.

To illustrate the differences between DPC++, Kokkos and CUDA, we use a corner turn
as a simple example of how kernel is written. The corner_turn_mon function swaps the
last two dimensions of a data cube out of place, so Y = CTmon(X), where input data cube
X ∈ CM×N×O and output data cube Y ∈ CM×O×N .

In the DPC++ and CUDA examples we use a simple Cube wrapper class that wraps the
USM data pointer, keeps track of sizes and provides helper methods like Cube::I which
converts a 3D index to a 1D index. Kokkos, on the other hand, provides its own multidimen-
sional array class, Kokkos::View. It has much more capabilities, letting you easily change
the memory layout between row-major and column-major, automatically pads the memory
for the target device and is supported in kernels.

31

6. Implementation

6.1.1 DPC++
The corner_turn_mon function takes a sycl::queue and an input and output Cube as
arguments. First, we extract the USM data pointers from the Cube objects that is due to
the kernels not currently supporting modifying the data elements through class methods. In
future versions of DPC++, the mdspan class, introduced in C++23, will likely be the preferred
way of handling multidimensional USM data. It will be possible to read and write to mdspan
in a kernel, simplifying the code compared to our Cube data wrapper.

Next, we define the work group size along with the range we want to loop over. Certain
devices such as GPUs require uniform work group sizes, so each range dimension has to be
divisible by its work group dimension. Then, we submit a command group to the device
queue, which consists of a parallel for loop. The parallel for loop takes the range and work
group size as arguments along with the actual kernel that implements the corner turn. Inside
the kernel, we extract the global indices and copy from the input memory to the output
memory. Since we potentially made the range larger than the actual data dimensions to
make it evenly divisible by work group size, we have to check that we are not copying out of
bounds.

Finally, submitting the command group generates a sycl::event that can be used to
define data dependencies for which order submitted kernels can be executed and synchro-
nization. However, all of the operations in our signal processing pipeline should happen in
order, so we use an in-order sycl::queue that does not permit any reordering.

1 template <typename T, size_t M, size_t N, size_t O>
2 sycl::event corner_turn_mon(sycl::queue& q, Cube<T,M,N,O>& x_cube,

Cube<T,M,O,N>& y_cube) {↪→

3 /*
4 * Because of kernel constraints we cannot use Cube methods to
5 * write to the USM memory, so we extract the USM data pointers.
6 */
7 auto x = x_cube.data();
8 auto y = y_cube.data();
9

10 /*
11 * Some devices require uniform work group sizes, so each range
12 * dimension has to be divisible by its work group dimension.
13 */
14 auto wgs = range(1, 8, 8);
15 int m = (N / wgs.get(0) + 1) * wgs.get(0);
16 int n = (N / wgs.get(1) + 1) * wgs.get(1);
17 int o = (O / wgs.get(2) + 1) * wgs.get(2);
18 auto r = range(m, n, o);
19

20 /*
21 * Here we submit a lambda function containing
22 * a command group to the device queue.
23 */
24 auto event = q.submit([&](handler& h) {
25 /*

32

6.1 Code Comparison

26 * We call parallel_for with a kernel consisting of
27 * another lambda function. The function is scheduled
28 * in parallel and run for every element in the range r.
29 */
30 h.parallel_for(nd_range(r, wgs), [=](nd_item<3> item) {
31 int i = item.get_global_id(0);
32 int j = item.get_global_id(1);
33 int k = item.get_global_id(2);
34 if (i < M && j < N && k < O)
35 y[y_cube.I(i, k, j)] = x[x_cube.I(i, j, k)];
36 });
37 });
38

39 // We return the event generated by the submitted command group.
40 // It can be used to define data dependencies or synchronization.
41 return event;
42 }

6.1.2 Kokkos
The Kokkos code is very similar to DPC++, but requires slightly less code. Instead of hav-
ing to pass around a sycl::queue, kernels are submitted to a global context that is as-
sumed to be initialized. The kernel itself simply has the indices as parameters rather than a
wrapper object, nd_item, which you then have to extract them from. However, nd_item
does provide more functionality like getting the work group index or a subgroup. With the
Kokkos::View, we can access and write to elements inside the kernel, instead of having to
calculate the 1D indices and access them through the pointer. Work groups sizes are called
tiles in Kokkos terminology, but similarly specified when submitting the kernel. Finally, in-
stead of only providing the upper range bounds, we also have to specify the lower bounds,
which is the one area in this example where Kokkos is more verbose than DPC++.

1 using CubeView = Kokkos::View<complex<float>***, Kokkos::LayoutRight,
Kokkos::Experimental::SYCLSharedUSMSpace>;↪→

2

3 void corner_turn_mon(CubeView& x_cube, CubeView& y_cube) {
4 int M = x_cube.extent(0);
5 int N = x_cube.extent(1);
6 int O = x_cube.extent(2);
7

8 int wgs = 8;
9 int m = (M / wgs + 1) * wgs;

10 int n = (N / wgs + 1) * wgs;
11 int o = (O / wgs + 1) * wgs;
12

13 Kokkos::parallel_for(
14 Kokkos::MDRangePolicy<Kokkos::Rank<3>>({0, 0, 0}, {m, n, o}, {wgs,

wgs, wgs}),↪→

15 KOKKOS_LAMBDA(int i, int j, int k) {

33

6. Implementation

16 if (i < M && j < N && k < O) {
17 y_cube(i, k, j) = x_cube(i, j, k);
18 }
19 }
20);
21 }

6.1.3 CUDA
The CUDA code differs a bit compared to DPC++ and Kokkos in how the work group sizes
are specified. In CUDA each kernel is launched with a grid size and a block size argument
using the <<<grid size, block size, shared memory size, stream>>> syntax. A block is a group
of threads that run in parallel and it is the CUDA version of a work group. The grid defines
how many of the blocks that are scheduled. This is similar to the loop bounds in DPC++ and
Kokkos, but you have to do the math of how many are needed to cover the range yourself.
For Nvidia GPUs, shared memory is similar to L1 cache and shared between all threads in the
same block. In this example we do not use any shared memory, but we do specify a stream.
A CUDA stream is a sequence of operations that execute on the device in the order they are
issued by the host, analogous to an in-order sycl::queue. To make sure that all the signal
processing operations happen in the correct order we run them in the same stream.

Here we have to explicitly implement a device function to calculate the 1D index, instead
of using the Cube::I function defined in host code. The __device__ specifier means the
function can only be called from the device, likely in a kernel. __global__ functions can be
called from both host and device. In corner_turn_mon_kernel we use the special objects
blockIdx, blockDim and threadIdx to calculate the indices. Compared to the DPC++
and Kokkos code, this slightly increases code complexity, but also flexibility. Again, similar
values can be obtain from the DPC++ nd_item. Finally, instead of a calling parallel_for
we use cuda_host_task which itself calls the DPC++ function host_task and wraps the
CUDA function call with synchronization. The synchronization makes sure that all previ-
ously submitted operations in the stream have finished before proceeding. In this case, that
is redundant since we only use one stream, but we included it to follow how the open source
oneMKL CUDA interface was written.

1 __device__ int get_idx(int i, int j, int k, int n, int o) {
2 return i * n * o + j * o + k;
3 }
4

5 __global__ void corner_turn_mon_kernel(std::complex<float>* x,
std::complex<float>* y, int m, int n, int o) {↪→

6 int i = blockIdx.x * blockDim.x + threadIdx.x;
7 int j = blockIdx.y * blockDim.y + threadIdx.y;
8 int k = blockIdx.z * blockDim.z + threadIdx.z;
9 if (i < m && j < n && k < o) {

10 int idx = get_idx(i, j, k, n, o);
11 int idx_t = get_idx(i, k, j, o, n);
12 y[idx_t] = x[idx];
13 }
14 }

34

6.2 Productivity Results

15

16 void corner_turn_mon(std::complex<float>* x, std::complex<float>* y, int
m, int n, int o, cudaStream_t stream = 0) {↪→

17 dim3 block(4, 1, 64);
18 dim3 grid((m + block.x - 1) / block.x, (n + block.y - 1) / block.y, (o +

block.z - 1) / block.z);↪→

19 corner_turn_mon_kernel<<<grid, block, 0, stream>>>(x, y, m, n, o);
20 }
21

22 template <typename T, size_t M, size_t N, size_t O>
23 void corner_turn_mon(sycl::queue& q, Cube<T,M,N,O>& x_cube, Cube<T,M,O,N>&

y_cube) {↪→

24 auto x = x_cube.data();
25 auto y = y_cube.data();
26

27 q.submit([&](handler& cgh) {
28 cuda_host_task(cgh, q, [=](CudaScopedContextHandler &sc) {
29 auto stream = sc.get_stream(q);
30 corner_turn_mon(x, y, M, N, O, stream);
31 });
32 });
33 }

6.2 Productivity Results
Writing DPC++ kernels is similar to both Kokkos and CUDA. However, DPC++ has the down
side of having to explicitly pass and submit command groups to a sycl::queue, while
Kokkos and DPC++ lets you implicitly use a default queue or stream, which can reduce code
complexity. The three programming models all let you specify range and work group size,
but for DPC++ the latter is optional which reduces the need for coming up with your own
heuristics or manually tuning it. Finally, Kokkos has a useful data wrapper that simplifies
using multidimensional data in kernels, which neither DPC++ will not have until mdspan is
introduced with C++23.

35

6. Implementation

36

Chapter 7

Performance Results

In this chapter, we present the results from the performance evaluations described in Chap-
ter 5.

7.1 Comparison with Baseline
Figure 7.1 shows the results of the comparison between oneAPI and Eigen with FFTW. The
y-axis shows the time it took to run the pulse compression operation for 10 iterations. The
stacked bars show the routines that make up pulse compression, FTT in dark gray, elemen-
twise multiplication in light gray, inverse FFT in yellow and output scaling in beige. The
reason for only Eigen having the scale operation is that for oneMKL, output scaling is in-
cluded in the API for the inverse FFT. However, the Eigen API does not do that, so we do
the scaling explicitly after the inverse FFT, which greatly contributes to the total time. The
scaling is needed to get the correct output, since setting the scale factor to 1/n, where n is the
number of elements in X , results in IFFT (FFT (X)) = X .

Another difference is in the FFT configuration. To make the comparison fair, we use the
fastest FFT configuration that we find for each API. In implementation is that FFTW lets
you choose how thoroughly to plan the FFT. If you choose one of the slower options like
FFTW_MEASURE it runs the FFT with different parameters and measures which combination
is fastest. We use FFTW_MEASURE and reuse the FFT plans for all test iterations, but do
not include the planning time in our timings. For oneMKL, there is no such option, but
the default strategy is so fast that it is not very significant in relation to running the FFT.
Therefore, the oneMKL FFT plans are not reused and the planning is included in the timings.
We did also try reusing the oneMKL FFT plans, but it made the inverse FFT around three
times slower on the CPU, which we suspect to be a bug.

The result shows that oneAPI is about twice as fast as Eigen for the pulse compression op-
eration. While the explicit scaling contributes a large part of time cost for Eigen, elementwise
multiplication is also individually around twice as fast.

37

7. Performance Results

7.2 Importance of Tuning Work Group Size
The next experiment investigates how much difference tuning work group size makes and
the results can be seen in Figure 7.2. Again, y-axis shows the time for 10 iterations, but this
time of CFAR and corner turn kernels, in dark and light gray, respectively. There are three
bars: the first shows work group size set to one, the second letting the implementation decide
and the third is manually tuned. There are results for two different range dimensions, 3500
and 3584.

As expected, the performance is much better when properly tuned than when set to one,
with manually tuned work group size being around 10 times faster. The more interesting
result is how well automatic work group size works. For range size 3500, automatic is around
50% slower than the manually tuned result. However, for certain input sizes it fails and seem-
ingly chooses a bad work group size for the corner turn kernel, with performance closer to
setting work group size to one than manual tuning. Since the failure only happens for corner
turn and a certain input size in this experiment, it might be a DPC++ bug, but nevertheless
makes automatic tuning less reliable.

7.3 Intel CPU vs Integrated GPU
In Figure 7.3, the y-axis shows the time for running 10 iterations of the full signal processing
pipeline on an Intel Core i9-11900KB and its integrated UHD Graphics GPU. Digital beam-
forming (DBF) is shown in dark gray, pulse compression (PC) in light gray, Doppler filtering
(DF) in yellow, CFAR in beige and corner turn (CT) in blue. The pipeline is run for three
different range sizes for each device, 3500, 3584 and 4096.

FFT performance depends heavily on having good size factors, especially on GPUs. Par-
allel FFT algorithms usually support input sizes that can be written as 2a · 3b · 5c · 7d , where
a, b, c, d ∈ N (sometimes with more prime factors), but they perform best for as small factors
and as few different factors as possible. A large prime number should be avoided at all costs
and simple way to accomplish that is by zero padding the input. While 3500 = 22 · 53 · 7 are
not the worst factors, we can see in Figure 7.3 that on the integrated GPU, 3584 = 29 · 7 is
significantly faster and even 4096 = 212 is a bit faster even though it is 17% larger. However,
having good prime factors does not have as large impact on the CPU performance.

The results show that the integrated GPU with proper padding is overall significantly
faster than the CPU for the full signal processing pipeline. The matrix multiplication in
digital beamforming and FFTs in pulse compression and doppler filtering perform similarly
on both processors. Transpose and CFAR, on the other hand, is where the integrated GPU
pulls ahead.

7.4 Discrete GPU
In Figure 7.4, we add the discrete Nvidia Geforce RTX 2070 GPU to the comparison with the
Intel Core i9-11900KB CPU and UHD Graphics GPU. The setup is the same as in Section 7.3,
except the input has range dimension 3584 for all devices. The RTX 2070 GPU is around 10
times faster than the CPU.

38

7.5 CPU: oneAPI vs Kokkos

7.5 CPU: oneAPI vs Kokkos
For the oneAPI and Kokkos kernel comparison we compare three kernels and in Figure 7.5,
elementwise multiplication (EWM) can be seen in dark gray, CFAR in light gray and corner
turn (CT) in yellow. The y-axis shows the time for running the kernels for 10 iterations on
the an AMD Ryzen 5 3600. oneAPI is slightly faster for all the kernels. The elementwise
multiplication kernel stands out, being around 67% faster in oneAPI than Kokkos.

7.6 GPU: oneAPI vs Kokkos vs CUDA
The results in Figure 7.6 are presented the same way as in Section 7.5, but run on the Nvidia
Geforce RTX 2070 and kernels written in CUDA is added to the comparison. oneAPI out-
performs Kokkos across all kernels, but the CUDA kernels are even faster. The elementwise
multiplication kernel in CUDA is about ten times faster than the Kokkos version, while
CFAR and corner turns are around twice as fast.

7.7 Scaling Problem Size
In this experiment we run the full signal processing pipeline on the Intel Core i9-11900KB,
Intel UHD Graphics and Nvidia Geforce RTX 2070. In addition, to using oneAPI for all
devices, we also include the RTX 2070 running the CUDA kernels for elementwise multipli-
cation in pulse compression, CFAR and corner turns. The range dimension is scaled from 128
to 16384, doubling it for each step and the signal processing pipeline is run for 10 iterations
for each range size and device. The timings are then divided by the range dimension, so the
resulting metric shows how well the device performs per range bin. We further normalize so
that the time shown for range size 2048 is equal to one.

The results are shown in Figure 7.7. It can be seen that both the CPU and the UHD
Graphics GPU perform most efficiently at small problem sizes, while the discrete GPU excels
at large sizes. Again, we can see that the CUDA kernels scale better to large problem sizes
than the oneAPI versions. For oneAPI, the performance starts degrading at range dimension
8196, while the CUDA version stays the same.

To investigate the impact of synchronization on the Nvidia GPU, we measured the CUDA
code again with range 128, but without the timing synchronization. Then we saw a perfor-
mance gain of around 50%.

39

7. Performance Results

API

Eigen/FFTW oneAPI

FFT
EWM
IFFT
SCALE

Operation

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ti
m

e
 (

s)

Pulse compression comparison

Figure 7.1: Timings for 10 iterations of pulse compression using
Eigen/FFTW and oneAPI.

40

7.7 Scaling Problem Size

Work group size by Range

CFAR
CT

Operation

35843500

1 Auto Tuned1 Auto Tuned

0.0

0.5

1.0

1.5

2.0

2.5

Ti
m

e
 (

s)

Work group size comparison (UHD Graphics)

Figure 7.2: Timings for 10 iterations of the full pipeline with differ-
ent work group sizes and range dimension padding.

41

7. Performance Results

Range by Device

DBF
PC
DF
CFAR
CT

Operation

UHD GraphicsCore i9-11900KB

3500 3584 40963500 3584 4096

0.0

0.5

1.0

1.5

Ti
m

e
 (

s)

Range dimension padding comparison

Figure 7.3: Timings for 10 iterations of the full pipeline with differ-
ent range dimension padding and devices.

42

7.7 Scaling Problem Size

Device

Core i9-11900KB UHD Graphics RTX 2070

DBF
PC
DF
CFAR
CT

Operation

0.0

0.5

1.0

1.5

Ti
m

e
 (

s)

Device comparison

Figure 7.4: Timings for 10 iterations of the full pipeline with
range dimension = 3584 and different devices.

43

7. Performance Results

API

ONEAPI KOKKOS

EWM
CFAR
CT

Operation

0.0

0.2

0.4

0.6

0.8

Ti
m

e
 (

s)

API comparison

Figure 7.5: Timings for 10 iterations of kernels on CPU implemented
with oneAPI, Kokkos.

44

7.7 Scaling Problem Size

API

ONEAPI KOKKOS CUDA

EWM
CFAR
CT

Operation

0.00

0.01

0.02

0.03

0.04

0.05

Ti
m

e
 (

s)

API comparison

Figure 7.6: Timings for 10 iterations of kernels on GPU imple-
mented with oneAPI, Kokkos and CUDA.

45

7. Performance Results

Range by Device

DBF
PC
DF
CFAR
CT

Operation

R
T

X
 2

0
7

0
 C

U
D

A

R
T

X
 2

0
7

0

U
H

D
 G

ra
p
h

ic
s

C
o

re
 i9

-1
1

9
0

0
K

B

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

0.0

0.5

1.0

1.5

2.0

Ti
m

e
/R

a
n

g
e

, n
o

rm
a

liz
e

d
 b

y
 r

a
n

g
e

=
2

0
4

8

Problem size scaling comparison

Figure 7.7: Timings for different ranges and devices. The y-axis
shows the time divided by range and normalized by range = 2048
for each device. The first three devices use oneAPI, while RTX 2070
CUDA uses kernels written in CUDA.

46

Chapter 8

Discussion

In this chapter we will summarize and discuss the main findings and try to answer the re-
search questions. Then, we will discuss limitations of the study and future work.

8.1 Interpretation of Results
8.1.1 Productivity
The research question about productivity asked how much code was needed in comparison
to similar programming models. Our results show that DPC++ has one advantage compared
to Kokkos and CUDA, which is the automatic work group size. Otherwise, it is simpler to
submit kernels in both Kokkos and CUDA, and Kokkos has useful data wrapper that can
further reduce the amount of code needed to implement kernels.

While the productivity is not necessarily better than the other two programming models,
we also do not consider there to be a large enough difference to sway developers in either
direction, without considering other aspects.

8.1.2 Portability
Across the performance experiments, we can see that oneAPI does successfully compile and
execute on three different architectures and four different devices: an Intel Core i9-11900KB
CPU, an AMD Ryzen 5 3600 CPU, an Intel UHD Graphics integrated GPU, and an Nvidia
Geforce RTX 2070 GPU. While we did manage to compile for an Intel Stratix 10 SX FPGA
after finding a workaround for the incorrect Intel documentation and server setup,the code
did not successfully execute. Further details about the oneAPI setup process can be found in
Appendix A. The lack of oneMKL support on the Intel FPGA is also disappointing, given
that it is a first-party platform.

47

8. Discussion

Although we got the code to execute on a few different devices, the code did require
changes to run well. A potential bug with the inverse FFT being much slower on CPU when
reusing FFT plans, while for GPUs, creating new plans for each iteration added significant
overhead. Therefore, we had to reuse FFT plans on GPUs but not CPUs to get good perfor-
mance. Another potential bug made the automatic work group size unreliable, so we tuned
the work group size manually for each device. Finally, we had to use the cuFFT library di-
rectly, instead of through the oneMKL interface, due to the unfinished state of its Nvidia
GPU support. The batched general matrix multiplication function, on the other hand, was
available for Nvidia GPUs.

Fixing the FFT issue, so that it is always preferable to reuse FFT plans, when possible,
would be a step towards better portability. Another step would be improving the automatic
work group size feature, so that it is more reliable and closer to the performance of manual
tuning. Intel could also implement oneMKL for their FPGAs, so the code is at least portable
among its first-party hardware.

The larger problem is third-party adoption. As long as Nvidia is still dominant in the
GPU market and people develop for CUDA, Nvidia has no good reason spending resources
on implementing the cross-architecture oneAPI. Rather, it would be harmful to Nvidia, as it
makes it easier for developers to move away from their platform. On the other hand, once
there is broad support for oneAPI, the API should become appealing for hardware producers
that are not already dominant with lot of software written for their platform. Then, they
could potentially get support for all of that software just by implementing oneAPI for its
hardware. But, until oneAPI reaches that amount of support, Intel will likely have to spend
those resources itself.

In its current state, oneAPI does provide good portability between Intel CPUs and GPUs,
but in our experience, not for FPGAs. Kernels work on Nvidia GPUs and there is limited
oneMKL support. In summary, the portability of oneAPI is an improvement from vendor
specific programming models like CUDA, but it has not yet reached its goals of being a
broadly supported industry standard.

8.1.3 Performance
The baseline comparison in Section 7.1 showed that oneAPI is competitive with and even ex-
ceeded the performance of popular math libraries Eigen and FFTW used for signal processing.
The fact that the oneAPI FFTs were slightly faster is not surprising given that the oneMKL
implementation is developed by Intel, with much more resources, than the researchers at
MIT responsible for the FFTW implementation. FFTW is also portable, while the Intel’s
oneMKL implementation is tuned exclusively for its own hardware.

In Section 7.2, the results showed that letting the implementation choose work group size
can get close to manually tuned performance, but in certain cases fails. In the experiment,
one of the corner turns got about the same performance as setting the work group size to one.
That is the worst scenario for architectures, such as GPUs, that rely heavily on parallelism,
since it masks out all SIMD units except for one. Currently, the automatic work group size
feature seems unreliable, especially since its effectiveness is dependent on input size. Unless
only one specific input size will be used in the application, it is difficult to know whether the
problem will show up for other input sizes.

The CPU vs integrated GPU comparison in Section 7.3 showed that Intel’s GPU imple-

48

8.2 Broader Impact

mentation of FFT is much more sensitive to good size factors than the CPU implementation
and that offloading to the integrated GPU can improve performance. However, the sensitive
FFT implementation on Intel GPUs means that achieving maximum performance requires
proper padding. It is also important to reuse the FFT plans, since they are slow to create for
the GPU.

Comparing with the discrete Nvidia GPU in Section 7.4, we can see that the performance
scales well to larger third-party GPUs.

In Section 7.5 and Section 7.6 the results showed that DPC++ kernels consistently out-
perform Kokkos on both CPU and GPU. On the Nvidia GPU, CUDA is at much faster for
all three operations, which indicates that the portability comes with a performance cost for
third-party hardware. DPC++ performing worse than CUDA on Nvidia GPUs is also corrob-
orated by some of the papers mentioned in Chapter 4. Given that the elementwise multipli-
cation is nearly eight times faster in CUDA than DPC++, the gained portability does not seem
like a very good trade-off when running on Nvidia GPUs. However, since the oneMKL in-
terface wraps native libraries such as cuBLAS, those functions will have native performance.
Thus, if an application mostly use oneAPI library functions and only have a few DPC++ kernel
implementations, the performance loss will be less substantial.

The aim of the final experiment in Section 7.7, was to measure how well performance
scales to different problem sizes. Time complexity for pulse compression, when scaling the
range dimension, is O(n log(n)) due to the FFTs operating on the range dimension, while
it is O(n) rest of the operations. In Figure 7.7, we divide the time by the range dimension.
Therefore, with perfect scaling, pulse compression is expected to increase in a logarithmic
fashion, while the other operations should stay constant.

As mentioned in Section 5.4, the Nvidia GPU is expected to have additional kernel launch
and synchronization overhead. From the results it is apparent that the Nvidia GPU needs
large problem sizes to get fully utilized and to amortize kernel launch and synchronization
latencies. As with the kernel comparison, DPC++ also seems to scale worse than CUDA, since
its performance starts getting worse at smaller problem sizes than CUDA.

The CPU performances scales well to small problem sizes compared to the Nvidia GPU,
due to less overhead. At the smallest sizes, it also benefits from being able to keep all data
in cache, especially for memory bandwidth intensive operations like corner turns. More sur-
prising is that the integrated Intel GPU also performs best at small problem sizes, given the
overhead issues of the Nvidia GPU. On the other hand, being integrated naturally lends itself
to low latency communication. The fact that it is sharing last level cache and global memory
with the host CPU should also eliminate the memory transfer overhead. Considering the low
overhead, offloading even single operations to an integrated GPU is useful.

8.2 Broader Impact
The primary benefit of using oneAPI is that it does not lock the software to a single hardware
platform. As mentioned in Section 8.1.2, Nvidia wants people to use CUDA, so that they have
to keep using Nvidia hardware, unless they rewrite all their code. Even if oneAPI does not
support that many platforms currently, the fact that the standard is open and free for any
company to adopt makes it more likely that it will support more platforms in the future than
platform specific programming models like CUDA. With SYCL kernels, developers are not

49

8. Discussion

even locked to using an Intel DPC++ compiler, as any SYCL implementation can be used.
With platform specific code, decisions have to be made about which platform is currently

most suitable, with the hope that it will continue to be the leading platform in the future. If it
turns out another platform becomes superior it can be expensive to switch, given that all code
has to be ported over to the new platform. That cost could prompt the decision to stay with
the inferior platform. Reduced vendor lock-in makes competition stronger, since developers
can use the cross-architecture code with whichever vendor produces the best hardware at any
given point. An example of this is the x86 CPU market where competition between AMD
and Intel is strong thanks to the shared code base, whereas in the GPU compute market,
Nvidia dominates due to its greater CUDA adoption [32] which hinders usage of Intel and
AMD GPUs.

An open specification such as oneAPI also makes it easier for new hardware providers to
join the market and provide more choice and competition, since the code will work for any
hardware that supports the specification. Intel recently announced the oneAPI Construction
Kit [38] that is supposed to make it simpler for third-parties to implement oneAPI for their
custom architecture.

However, given oneAPI’s current portability limitations, it does not yet fulfill its lofty
goals of becoming a fully unified programming model that can run on any processor.

8.3 Limitations
The results of this study might not apply to all situations. The range of algorithms tested is
limited and focused on simple linear algebra. For example, the experiments do not test data
parallel algorithms like reductions and scans. However, the operations considered, such as
matrix multiplication, FFT and convolution, are very common and used in popular fields like
signal processing and machine learning.

8.4 Future Work
Unfortunately, this thesis was not able to investigate the performance of oneAPI on FPGAs.
However, the difficulties experienced do give insight in portability and productivity. It was
not as simple to switch to FPGA as switching between CPU and GPU. As with standard
FPGA development compile times are long and Intel DevCloud does not support simulation,
which otherwise could have enabled shorter iteration times. Further experiments on FPGA
would be interesting as future work. It would also be interesting to investigate what what
makes oneAPI faster than Kokkos when both use the SYCL backend and why their kernels
are much slower than CUDA on Nvidia GPUs.

50

Chapter 9

Conclusion

This master’s thesis has evaluated the productivity, portability and performance of oneAPI,
a unified programming model developed by Intel, in the context of radar signal process-
ing applications. This evaluation was necessitated by the high-performance requirements of
active electronically scanned array (AESA) radar systems, which can benefit from the use of
highly parallel hardware such as GPUs and FPGAs. Traditional programming models present
challenges when upgrading hardware or using multiple hardware types due to a lack of code
portability.

Productivity: The study found that while DPC++ does not offer superior productivity
to other programming models such as Kokkos and CUDA. The differences are not signifi-
cant enough to clearly favor one model over another. Automatic work group size in DPC++
improves productivity, but is unreliable. Moreover, certain functionalities such as kernel
submission are simpler in Kokkos and CUDA.

Portability: With respect to portability, oneAPI was successfully able to compile and exe-
cute across multiple architectures and devices, including both Intel and AMD CPUs, as well
as Nvidia GPUs. However, issues were encountered in attempting to use it with an Intel
FPGA, and several bugs impacted the performance across different devices. In its current
state, oneAPI shows good portability between Intel CPUs and GPUs, but there are limita-
tions in third-party and FPGA support.

Performance: OneAPI demonstrated competitive performance with other popular math
libraries used for signal processing, like Eigen and FFTW. However, it was found that oneAPI’s
DPC++ performs worse than CUDA on Nvidia GPUs, indicating a performance cost for third-
party hardware. This suggests that while oneAPI can offer improvements in portability, it
may do so at the expense of performance. Despite this, if an application mostly uses oneAPI
library functions and only has a few DPC++ kernel implementations, the performance loss
will be less substantial.

51

9. Conclusion

52

References

[1] Saab AB. Saab’s fourth globaleye conducted successful first flight.
https://www.saab.com/newsroom/press-releases/2023/saabs-fourth-globaleye-
conducted-successful-first-flight, 2023. Accessed 08-06-2023.

[2] A. Ahlander, A. Åström, B. Svensson, and M. Taveniku. Meeting engineer efficiency
requirements in highly parallel signal processing by using platforms. In IASTED PDCS,
pages 693–700, 2005.

[3] J. I. Aliaga, R. Reyes, and M. Goli. Sycl-blas: Leveraging expression trees for linear
algebra. In Proceedings of the 5th International Workshop on OpenCL, IWOCL 2017, New
York, NY, USA, 2017. Association for Computing Machinery.

[4] A. D. Brown. Active Electronically Scanned Arrays: Fundamentals and Applications. Wiley-
IEEE Press, 2021.

[5] J. W. Cooley and J. W. Tukey. An algorithm for the machine calculation of complex
fourier series. Mathematics of computation, 19(90):297–301, 1965.

[6] Intel Corporation. Intel advisor. https://www.intel.com/content/www/us/en/developer/tools/oneapi/advisor.html,
2023. Accessed 19-06-2023.

[7] Intel Corporation. Intel iris xe gpu architecture.
https://www.intel.com/content/www/us/en/docs/oneapi/optimization-guide-
gpu/2023-0/intel-iris-xe-gpu-architecture.html, 2023. Accessed 19-06-2023.

[8] Intel Corporation. Intel oneapi documentation.
https://www.intel.com/content/www/us/en/developer/tools/oneapi/documentation.html,
2023. Accessed 08-06-2023.

[9] Intel Corporation. Intel oneapi dpc++/c++ compiler developer guide and reference.
https://www.intel.com/content/www/us/en/docs/dpcpp-cpp-compiler/developer-
guide-reference/2023-1/overview.html, 2023. Accessed 21-06-2023.

53

REFERENCES

[10] Intel Corporation. Intel oneapi level zero. https://www.intel.com/content/www/us/en/developer/tools/oneapi/onednn.html,
2023. Accessed 21-06-2023.

[11] Intel Corporation. Intel oneapi level zero. https://www.intel.com/content/www/us/en/developer/tools/oneapi/onednn.html,
2023. Accessed 21-06-2023.

[12] Intel Corporation. Intel oneapi level zero. https://www.intel.com/content/www/us/en/docs/dpcpp-
cpp-compiler/developer-guide-reference/2023-1/intel-oneapi-level-zero.html, 2023.
Accessed 21-06-2023.

[13] Intel Corporation. Intel oneapi math kernel library.
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html,
2023. Accessed 19-06-2023.

[14] Intel Corporation. Intel vtune profiler. https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-
profiler.html, 2023. Accessed 19-06-2023.

[15] Intel Corporation. oneapi math kernel library (onemkl) interfaces.
https://github.com/oneapi-src/oneMKL, 2023. Accessed 19-06-2023.

[16] Intel Corporation. oneapi specification documentation.
https://spec.oneapi.io/versions/latest/introduction.html, 2023. Accessed 08-06-2023.

[17] Nvidia Corporation. cublas api reference. https://docs.nvidia.com/cuda/cublas/, 2023.
Accessed 25-06-2023.

[18] Nvidia Corporation. Cuda c++ programming guide. https://docs.nvidia.com/cuda/cuda-
c-programming-guide/contents.html, 2023. Accessed 27-05-2023.

[19] Nvidia Corporation. cufft api reference. https://docs.nvidia.com/cuda/cufft/index.html,
2023. Accessed 25-06-2023.

[20] Nvidia Corporation. Nvidia cuda compiler driver nvcc.
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html, 2023. Accessed
19-06-2023.

[21] M. Costanzo, E. Rucci, C. García Sánchez, and M. R. Naiouf. Early experiences migrating
CUDA codes to oneapi. CoRR, abs/2105.13489, 2021.

[22] Advanced Micro Devices. Introduction to hip programming
guide. https://docs.amd.com/bundle/HIP-Programming-Guide-
v5.3/page/Introduction_to_HIP_Programming_Guide.html/, 2023. Accessed 21-
06-2023.

[23] Advanced Micro Devices. Programming an fpga: An introduction to how it
works. https://www.xilinx.com/products/silicon-devices/resources/programming-an-
fpga-an-introduction-to-how-it-works.html, 2023. Accessed 21-06-2023.

[24] H. C. Edwards, C. R. Trott, and D. Sunderland. Kokkos: Enabling manycore perfor-
mance portability through polymorphic memory access patterns. Journal of Parallel and
Distributed Computing, 74(12):3202 – 3216, 2014. Domain-Specific Languages and High-
Level Frameworks for High-Performance Computing.

54

REFERENCES

[25] M. Frigo and S. G. Johnson. Fftw 3.3.10. https://www.fftw.org/fftw3_doc/index.html,
2023. Accessed 19-06-2023.

[26] The Khronos SYCL Working Group. Sycl 2020 specification.
https://registry.khronos.org/SYCL/specs/sycl-2020/html/sycl-2020.html, 2023. Ac-
cessed 08-06-2023.

[27] The Khronus Group. Opencl. https://www.khronos.org/opencl/, 2023. Accessed 21-06-
2023.

[28] G. Guennebaud, B. Jacob, et al. Eigen v3. http://eigen.tuxfamily.org, 2010. Accessed
27-05-2023.

[29] Johnny’s Software Lab. Crash course introduction to parallelism: Simd par-
allelism. https://johnnysswlab.com/crash-course-introduction-to-parallelism-simd-
parallelism/, 2021. Accessed 21-06-2023.

[30] J. Lebak, J. McMahon, and M. Arakawa. Polymorphous computing architecture (pca)
application benchmark 1: Three-dimensional radar data processing. page 22, 11 2001.

[31] E. Marinelli and R. Appuswamy. Xjoin: Portable, parallel hash join across diverse XPU
architectures with oneapi. In D. Porobic and S. Blanas, editors, Proceedings of the 17th
International Workshop on Data Management on New Hardware, DaMoN 2021, 21 June 2021,
Virtual Event, China, pages 11:1–11:5. ACM, 2021.

[32] S. McIntosh-Smith. Large scale hpc hardware in the age of ai. https://www.iwocl.org/wp-
content/uploads/iwocl-2023-Simon-Mcintosh-Smith-opening.pdf, 2023. Accessed 22-
06-2023.

[33] National Technology & Engineering Solutions of Sandia. Kokkos: The programming
model. https://kokkos.github.io/kokkos-core-wiki/, 2023. Accessed 27-05-2023.

[34] J R. Reinders. Intel avx-512 instructions. https://www.intel.com/content/www/us/en/developer/articles/technical/intel-
avx-512-instructions.html, 2017. Accessed 21-06-2023.

[35] J. Reinders, B. Ashbaugh, J. Brodman, M. Kinsner, J. Pennycook, and X. Tian. Data
Parallel C++. Apress, 2021.

[36] R. Reyes and V. Lomüller. SYCL: single-source C++ accelerator programming. In
G. R. Joubert, H. Leather, M. Parsons, F. J. Peters, and M. Sawyer, editors, Parallel Com-
puting: On the Road to Exascale, Proceedings of the International Conference on Parallel Com-
puting, ParCo 2015, 1-4 September 2015, Edinburgh, Scotland, UK, volume 27 of Advances in
Parallel Computing, pages 673–682. IOS Press, 2015.

[37] M.I. Skolnik. Introduction to Radar Systems. Electrical engineering series. McGraw-Hill,
2001.

[38] Codeplay Software. Software first with the oneapi construction kit.
https://codeplay.com/portal/press-releases/2023/06/05/software-first-with-the-
oneapi-construction-kit, 2023. Accessed 08-06-2023.

55

REFERENCES

[39] J. Stokes. Introduction to multithreading, superthreading and hyperthreading.
https://arstechnica.com/features/2002/10/hyperthreading/, 2002. Accessed 21-06-2023.

[40] V. Strassen. Gaussian Elimination is not Optimal, volume 13. Springer, 1969.

[41] C. R. Trott, D. Lebrun-Grandié, D. Arndt, J. Ciesko, V. Dang, N. Ellingwood, R. Gayatri,
E. Harvey, D. S. Hollman, D. Ibanez, N. Liber, J. Madsen, J. Miles, D. Poliakoff, A. Powell,
S. Rajamanickam, M. Simberg, D. Sunderland, B. Turcksin, and J. Wilke. Kokkos 3:
Programming model extensions for the exascale era. IEEE Transactions on Parallel and
Distributed Systems, 33(4):805–817, 2022.

[42] V. Volokitin, A. V. Bashinov, E. Efimenko, A. A. Gonoskov, and I. B. Meyerov. High
performance implementation of boris particle pusher on DPC++. A first look at oneapi.
In Victor Malyshkin, editor, Parallel Computing Technologies - 16th International Conference,
PaCT 2021, Kaliningrad, Russia, September 13-18, 2021, Proceedings, volume 12942 of Lecture
Notes in Computer Science, pages 288–300. Springer, 2021.

[43] R. W. Vuduc and J. Choi. A brief history and introduction to gpgpu. 2013.

[44] Y. Wang, Y. Zhou, Q. Scott Wang, Y. Wang, Q. Xu, C. Wang, B. Peng, Z Zhu, K. Takuya,
and D. Wang. Developing medical ultrasound beamforming application on GPU and
FPGA using oneapi. In IEEE International Parallel and Distributed Processing Symposium
Workshops, IPDPS Workshops 2021, Portland, OR, USA, June 17-21, 2021, pages 360–370.
IEEE, 2021.

56

Appendices

57

Appendix A

oneAPI Setup Process

A.1 Intel Hardware
Using oneAPI requires installing the compiler, libraries and setting up environment vari-
ables. Intel provides official packages for popular Linux distributions like Ubuntu, Red Hat,
Fedora and SUSE. Arch Linux is not officially supported, but still provides a package in the
community repository.

Before compiling, the environment variables can be configured by sourcing the included
setvars.sh script.

. /opt/intel/oneapi/setvars.sh

An alternative is using an official Docker image, like intel/oneapi-basekit, which
sets everything up for you.

The recommended way of integrating oneAPI libraries is using CMake and the corre-
sponding included config files, such as MKLConfig.cmake for oneMKL. A small example
might look like this:

cmake_minimum_required(VERSION 3.13)
project(oneMKL_program LANGUAGES CXX)
find_package(MKL CONFIG REQUIRED)
add_executable(myprogram, myprogram.cpp)

target_compile_options(myprogram
PUBLIC $<TARGET_PROPERTY:MKL::MKL,INTERFACE_COMPILE_OPTIONS>)

target_include_directories(myprogram
PUBLIC $<TARGET_PROPERTY:MKL::MKL,INTERFACE_INCLUDE_DIRECTORIES>)

target_link_libraries(myprogram
PUBLIC $<LINK_ONLY:MKL::MKL>)

59

A. oneAPI Setup Process

A.2 FPGA
FPGA is one of the hardware platform DPC++ supports. Given the high performance and
efficiency achievable with FPGA thanks to pipelining and parallelization, it is an interesting
platform for radar signal processing. However, running the code on an FPGA in the Intel
Devcloud is not as easy as just changing the SYCL queue device.

The first step is compiling the code for FPGA hardware. Note that the documentation for
how to compile for FPGA is either incorrect or the Intel Devcloud server setup is broken, as
the suggested way is not working at the time of writing this. Specifically, the documentation
tells you to use fpga_compile nodes for compiling and fpga_runtime to run. However,
the only way we could get compilation for FPGA hardware to work was to also compile on an
fpga_runtime node. The easiest way to access an fpga_runtime node is to login to Intel
Devcloud with ssh and run

. /data/intel_fpga/devcloudLoginToolSetup.sh
devcloud_login

Choose one of the oneAPI options. The next problem is that not all of the nodes have
CMake 3.13 installed, which is needed for the CMake config above. As a workaround you can
create a Conda environment and install a more recent version there.

conda create -n build python=3.11
conda activate build
conda install -c anaconda cmake

When compiling for an Intel FPGA, you have to add the -fintelfpga and -Xshardware
options and specify a target architecture with -Xstarget. The Xs prefix means the argu-
ment is passed to the FPGA backend. Here is an example where the target is an Intel Stratix
10 SX with both explicit and restricted USM support. Restricted USM means it also allows
for shared USM allocations.

icpx -fsycl -fintelfpga -Xshardware \
-Xstarget=intel_s10sx_pac:pac_s10_usm myprogram.cpp

Finally, if the code uses USM, the FPGA board has to be explicitly initialized. For example,
if the code is compiled with: The board must be initialized with:

aocl initialize acl0 pac_s10_usm

There are also some other flags such as -Xsemulator and -Xssimulation which com-
piles for emulation and simulation, respectively. However, only emulation is supported in
Intel Devcloud. Compiling for FPGA hardware can take several hours, so the emulator is
useful to test with first.

Although the oneAPI specification website [16] says

"As part of oneAPI, oneMKL is designed to allow execution on a wide variety of
computational devices: CPUs, GPUs, FPGAs, and other accelerators."

, oneMKL does not currently seem to support FPGA. Neither general matrix multiplication
nor FFT is available on the Intel Stratix 10 SX.

60

A.3 Nvidia GPUs

A.3 Nvidia GPUs
Intel’s newly acquired subsidiary Codeplay provides Nvidia GPU support for oneAPI. It re-
quires installing an extension that is downloaded from their website. The SYCL program can
then be compiled with:

clang++ -fsycl -fsycl-targets=nvptx64-nvidia-cuda \
myprogram.cpp -o myprogram

To use the open-source oneMKL interfaces, you have to build and install the library with
the CUDA backend enabled. The BLAS functions can then be linked with using
-lonemkl_blas_cublas. At the time of writing, it does not have complete BLAS support
and no DFT interfaces for Nvidia GPUs.

61

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2023-06-16

EXAMENSARBETE Evaluating a Unified Parallel Computing API for Radar Signal Processing
STUDENT Filip Jergle Almquist
HANDLEDARE Anders Åhlander och Jonas Skeppstedt (LTH)
EXAMINATOR Flavius Gruian (LTH)

Återanvändbar programmeringsmodell
för ökad hållbarhet och effektivitet

POPULÄRVETENSKAPLIG SAMMANFATTNING Filip Jergle Almquist

Detta examensarbete undersöker potentialen av oneAPI för att effektivisera utveckling
and öka återanvändning av kod för radarsignalbehandling. Resultaten indikerar att
oneAPI-kod kan köras på flera platformar, men har en del begränsningar.

Radar är viktiga verktyg som används inom
flera områden, till exempel inom försvar, luft-
fartsledning och väderövervakning. Nya tekniker
som AESA (Active Electronically Scanned Array)
möjliggör dock ännu mer flexibla radarlösningar
med högre upplösning och bättre prestanda. De
ställer dock höga krav på datorkraft eftersom stora
mängder data måste bearbetas i realtid. Därför
uttnyttjas flera olika typer av hårdvara, både tra-
ditionella datorprocessorer och specialiserade pro-
cessorer som grafikprocessorer och FPGA-kretsar.
Utmaningen är att programmeringen för dessa
processorer kan variera kraftigt, vilket gör att
stora delar av koden måste skrivas om när typen
av hårdvara byts ut.

Detta är ett problem inom radartekniken, där
effektiv programmering är avgörande och system
ofta är i bruk i flera decennier. För att lösa detta
undersöker Saabs radaravdelning möjligheten att
använda en universell programmeringsmodell som
kallas oneAPI. oneAPI skapades av Intel och syf-
tar till att göra det möjligt att återanvända samma
kod oavsett vilken typ of processor man använder.

I mitt examensarbete har jag utvärderat
oneAPI:s potential för att hantera den krävande

signalbehandlingen som krävs för radarapplika-
tioner i de tre olika aspekterna produktivitet,
portabilitet och prestanda. När det gäller pro-
duktivitet visar resultaten att oneAPI likvärdig
med liknande programmeringsmodeller. oneAPI-
koden kan återanvändas i hög grad mellan olika
typer av hårdvara, men vissa delar av oneAPI
är fortfarande under utveckling, så stödet sig
kraftigt mellan olika processortyper, vilket be-
gränsar portabiliteten. Prestandamässigt gör
oneAPI starkt i från sig, framförallt på Intels egna
hårdvara, och producerar snabbare kod än andra
etablerade programmeringsmodeller. På hårdvara
från en konkurrent visar resultaten däremot att
prestandan kan vara upp till åtta gånger långsam-
mare, vilket tyder på att den ökade portabiliteten
av den universella programmeringsmodellen kan
ha en stor prestandakostnad jämfört med plat-
formsspecifik kod.

I nuläget lever oneAPI bara delvis upp till dess
mål som universell programmeringsmodel och det
återstår att se hur väl denna teknik kommer att
antas av andra företag inom industrin och hur den
kommer att utvecklas framöver.

	Introduction
	Purpose
	Research Questions
	Scope
	Overview

	Radar Signal Processing
	Radar Introduction
	Signal Processing Pipeline
	Rader Signal Processing Realization
	Parallelization
	Accelerators
	CPU

	Programming Models
	oneAPI
	SYCL
	DPC++
	Libraries
	Tools
	DevCloud

	Related Programming Models
	Kokkos
	Eigen
	CUDA

	Related Work
	Approach
	Productivity
	Portability
	Performance
	Comparison with Baseline
	Importance of Tuning Work Group Size
	Intel CPU vs Integrated GPU
	Discrete GPU
	CPU: oneAPI vs Kokkos
	GPU: oneAPI vs Kokkos vs CUDA
	Scaling Problem Size
	FPGA

	GPU Considerations

	Implementation
	Code Comparison
	DPC++
	Kokkos
	CUDA

	Productivity Results

	Performance Results
	Comparison with Baseline
	Importance of Tuning Work Group Size
	Intel CPU vs Integrated GPU
	Discrete GPU
	CPU: oneAPI vs Kokkos
	GPU: oneAPI vs Kokkos vs CUDA
	Scaling Problem Size

	Discussion
	Interpretation of Results
	Productivity
	Portability
	Performance

	Broader Impact
	Limitations
	Future Work

	Conclusion
	References
	Appendix oneAPI Setup Process
	Intel Hardware
	FPGA
	Nvidia GPUs

