
DETECTION OF INSURANCE

FRAUD USING NLP AND ML
A STUDY ON THREE DIFFERENT NLP-TECHNIQUES

FOR TEXT CLASSIFICATION

RASMUS BÄCKLUND, HAMPUS ÖHMAN

Master’s thesis
2023:E64

Faculty of Engineering
Centre for Mathematical Sciences
Mathematical Statistics

C
EN

TR
U

M
SC

IEN
TIA

R
U

M
M

A
TH

EM
A

TIC
A

R
U

M

Abstract

Machine-Learning can sometimes see things we as humans can not. In this the-
sis we evaluated three different Natural Language Procces-techniques: BERT,
word2vec and linguistic analysis (UDPipe), on their performance in detecting
insurance fraud based on transcribed audio from phone calls (referred to as au-
dio data) and written text (referred to as text-form data), related to insurance
claims. We also included TF-IDF as a naive model. On all models we applied
logistic regression on the extracted word embeddings. On word2vec and the lin-
guistic analysis, we also applied a KNN-classifier on the word embeddings. For
BERT, we instead opted to apply an LSTM-network on the merged CLS-token
embeddings, due to the sequential nature of BERT’s architecture.

For the audio data, all models achieved a Macro F1-score higher than 50% on a
95%-confidence interval, with at least one type of classifier. TF-IDF scored 58.2%
˘2.6%, BERT 56.0% ˘2.6%, word2vec 54.1% ˘3.8% and linguistic analysis 53.6%
˘3.0%.

For the text-form data, all models achieved a Macro F1-score higher than 50%
on a 95%-confidence interval, with at least one type of classifier. TF-IDF scored
56.0% ˘2.3%, BERT 57.4% ˘0.9%, word2vec 56.0% ˘2.1% and linguistic analysis
51.4% ˘0.5%.

Each score reported is from using the best performing classifier for that model.

The above findings show that our models manage to learn something from the
data, but due to rather small data sets and insurance cases from many different
areas, it is quite difficult to draw any conclusions with high confidence. The
results are not that much better than "guessing", and the small gain over 50%
could be due to something else, such as bias in the data sets.

We feel that there is potential to use these techniques in a real setting, but the
topic seems to need further exploration. We especially feel that there is potential
in using transformer-based models, such as BERT, but currently it lacks the abil-
ity to analyse longer sequences due to computational limitations. With the cur-
rent development pace of transformer models, it might be possible to use these
in the future to get a better representation of what is being said, which hopefully
would produce better results.

Popular Science Description

Försäkringsbolag behöver identifiera och hantera en stor mängd potentiellt
bedrägliga försäkringsanspråk från deras kunder. Därför har försäkringsbolag
en rad system för att försöka identifiera vilka anspråk som är bedrägliga och
vilka som inte är det. Med den senaste utvecklingen inom maskininlärning och
särskilt inom området för språkbehandling (NLP) kan dessa tekniker eventuellt
användas för att underlätta identifiering av bedrägliga anspråk.

Syftet med denna avhandling är därför att undersöka möjligheten att använda
NLP för det ovan nämnda syftet. Baserat på transkriberade samtal mellan kun-
der och företagsrepresentanter, samt på text skriven fritt av kunder eller som svar
på olika frågor (beroende på anspråkstypen) kommer vi att träna flera modeller
för att förutspå sannolikheten att ett anspråk är försäkringsbedrägeri. De tre
olika modellerna som används i detta projekt är

• BERT

• word2vec

• lingvistisk analys

Modellerna kommer att skapa numeriska representationer av dessa texter, vilka
sedan kommer att klassificeras med hjälp av olika tekniker inom maskininlärn-
ing. Slutligen kommer prestandan för varje modell att utvärderas för att avgöra
om detta är ett användbart hjälpmedel i processen att undersöka potentiellt
bedrägliga anspråk.

Acknowledgments

We would like to thank our supervisor at LTH, Maria Sandsten, for guiding us
through the creation of this Master Thesis. We would also like to thank our super-
visor, Fredrik Thuring, and the rest of the team at Trygg-Hansa, for supporting us
through out this interesting project and providing us with the necessary tools and
equipment that it required.

iv

Contents

Abstract ii

Acknowledgments iv

Contents v

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Problem background . 1
1.2 Problem formulation . 1
1.3 Research questions . 2
1.4 Data & Approach . 2

2 Background and Related Work 5
2.1 Background . 5
2.2 Related Work . 7

3 Theory 10
3.1 Related Machine Learning (ML) . 10
3.2 NLP-techniques . 13
3.3 Evaluation methods . 17

4 Method Results 20
4.1 Audio data . 21
4.2 Text-form data . 28
4.3 Summary of Results . 31

5 Discussion 32
5.1 Results . 32
5.2 Imbalanced data . 33
5.3 Quality of transcription and diarization 34
5.4 Fraud vs Lie . 34
5.5 Limitation of Swedish models . 34
5.6 Further research . 34

6 Conclusion 36

v

Bibliography 38

vi

List of Figures

1.1 A visualization of the two data sets. The text-form data is located on the
left-hand side. It consists of two subsets. The first one is free-text, which
is when a customer describes the accident in free-text form. The second
one is Questions & Answers, which is when a customer fills out a form
with different questions. The audio data is on the right-hand side. For
visualizing purposes, a short transcription of a conversation is presented.
Bold text represents the company and regular text represents the customer.
Please note that all text is made up and is not correlated to any actual
insurance cases. 2

1.2 An overview of the used work-flow for this project. 4

3.1 Overview of the architecture of a Recurrent Neural Network (on the left
hand side) and a Feed-Forward Neural Network (on the right hand side).
Figure source: "How I Classified Images With Recurrent Neural Net-
works" [rnn_vs_nn]. 12

3.2 Simple overview of the K-nearest neighbor algorithm. The white square
represents the point desired to classify. The red and blue squares repre-
sents training data with two different classes. Figure source: "Visualiza-
tion of Uncertainty in LANDSAT Classification Process" [knn-pic]. 13

3.3 Model architectures for word2vec. CBOW predicts the current word based
on the context, while Skip-gram predicts the surrounding words given the
current word. Figure source: "Efficient Estimation of Word Representa-
tions in Vector Space" [word2vec]. 17

3.4 Outline of a confusion matrix in a binary classification task. Figure
source "Weighting Confusion Matrices by Outcomes and Observations"
[confusion_matrix]. 18

3.5 Overview of k-fold cross validation with k = 5. Each iteration represents
training and validation of a model. Image source "K Fold Cross Valida-
tion" [k-fold-fig]. 19

4.1 Features with the ten highest and ten lowest values of β-parameter esti-
mates (3128 features total), from weighted logistic Regression on TF-IDF
matrix for audio data. 22

4.2 Estimates and confidence interval for the eight most important features
for weighted logistic regression on TF-IDF matrix for audio data. 23

4.3 Plot of a histogram for the tokenized sequence length of the audio data.
The number of bins is 20. 24

vii

4.4 An overview of the possible fine-tuning of a data point with a longer se-
quence length than 512. The call is labeled as fraudulent, but the deception
is (possibly) only present in one of the sequences. Since we do not know
where the deception is taking place, the whole call is labeled as fraudulent.
If this is the case, BERT is fine-tuned with misleading labels. 25

4.5 An overview of the architecture of a hierarchical approach using BERT.
Fraction n represents the first fraction of a text in a data point. 25

4.6 Estimates and confidence intervals for the ten largest and ten smallest β-
values from TF-IDF with weighted logistic regression, on text-form data. . 29

4.7 Plot of a histogram showing the distribution of tokenized sequence length
of the text-form data. The number of bins is 20 30

viii

List of Tables

3.1 Simple overview of how the TF-IDF matrix will look. tfidf(ti,dj) represents
the weight of term i in document j. 14

4.1 The table shows the distribution of Legitimate and Fraudulent cases in the
audio data. It shows both the number of cases and its fraction of the whole
data set. 21

4.2 Classification report for TF-IDF model with logistic regression, on audio
data. 23

4.3 Classification report for logistic regression and an LSTM-network trained
on the extracted CLS-tokens from BERT, on audio data. 26

4.4 Classification report for BERT fine-tuned on different chunks of audio data
with a final linear layer as classifier. 26

4.5 Classification report for word2vec with logistic regression and k-nearest
neighbours as classifiers, on audio data. 27

4.6 Classification report for linguistic analysis with logistic regression and k-
nearest neighbours, on audio data. 27

4.7 The table shows the distribution of legitimate and fraudulent cases in the
text-form data. 28

4.8 Classification report for TF-IDF with unweighted and weighted logistic
regression, on text-form data. 29

4.9 Classification report for a fine-tuned BERT with a final linear layer as clas-
sifier. 30

4.10 Classification report for text-form data with word2vec and random forest
as classifiers. 30

4.11 Classification report for linguistic analysis with logistic regression and k-
nearest neighbours as classifiers. 31

4.12 Summary of all results. The table shows the best result for all NLP-
techniques and for both data sets. 31

ix

Chapter 1
Introduction

The aim of this project was to assess if it is possible to predict fraudulent insurance
claims using Natural Language Processing-techniques on data from both investiga-
tion calls and online data written by the customer. All modeling was done on text
data. Furthermore, all customer claims are labeled as fraudulent or legitimate by
claim handlers at Trygg-Hansa.

1.1 Problem background

An insurance company receives a significant amount of insurance claims every day.
The vast majority of the claims are valid, however, some of these are fraudulent,
meaning the insurance holder is lying about what reportedly happened to increase
the possible claim amount. To deal with this, the company makes use of data process-
ing to be able to automatically detect suspicious cases and send them for manual in-
vestigation. Both customers and claim handlers create text descriptions of the claims
and it is believed that adding automatic analysis of these texts might enhance the per-
formance of the data processing. Therefore, with the recent development in Machine
Learning (ML) and Natural Language Processing (NLP), it might be possible to make
use of these technologies to assist in the process of detecting fraud.

Using NLP-techniques to predict fraudulent texts is a rather unexplored subject, es-
pecially in the context of insurance claims. Some research has been done on predict-
ing lies from conversations, predicting fake news, and financial scams.

1.2 Problem formulation

The prediction of fraudulent claims was to be done only based on text from the cus-
tomer. We defined all text from the customer corresponding to a specific insurance
claim as a stochastic process denoted by X. Furthermore, the correct label corre-
sponding to X was denoted by Y, where:

Y =

#

1 fraudulent claim

0 legit claim
(1.1)

The goal was formulated as estimating p, where

p = E(Y|X) (1.2)

1

1.3. Research questions

using different types of NLP-models.

1.3 Research questions

• Is it possible to predict insurance fraud with NLP-techniques from conversa-
tion recordings between a customer and company representative or text data
entered by the customer either in free text form or from Question & Answers?

• How do different NLP-techniques compare to each other when it comes to pre-
dicting fraud?

1.4 Data & Approach

1.4.1 Data

The data is divided into two parts. One containing 1334 unique phone calls corre-
sponding to 1014 different insurance claims. This data set will be called "audio data"
from here on. The other one contains short written descriptions of insurance claims
as well as written responses to simple questions about the claims, both of which are
written by the customer in an online form. This data set will be called "text-form
data" from here on. The two different data sets are visualized in Figure 1.1.

Figure 1.1: A visualization of the two data sets. The text-form data is located on the
left-hand side. It consists of two subsets. The first one is free-text, which is when
a customer describes the accident in free-text form. The second one is Questions &
Answers, which is when a customer fills out a form with different questions. The
audio data is on the right-hand side. For visualizing purposes, a short transcription
of a conversation is presented. Bold text represents the company and regular text
represents the customer. Please note that all text is made up and is not correlated to
any actual insurance cases.

All data, both audio data and text-form data, are labeled as either fraudulent or not.
This label is determined by one or several company representatives. It is important
to note that all data points are given labels for the case as a whole, even if there are
several calls or texts per case. It is also important to note that these labels are given by
a company representative according to Trygg-Hansa’s policies for determining insur-
ance fraud. This means that we will be modeling whether or not a case is fraudulent

2

1.4. Data & Approach

based on these policies, and the labels can therefore not really be called the "ground
truth" for insurance detection outside of Trygg-Hansa.

1.4.2 Approach

Since all models are to be based on text data, the first step in the project is to transcribe
all conversations in audio data using a speech-to-text model. In this step, the speakers
are also separated from each other. We only want to predict the probability of fraud
based on what the customer says and exclude the company representative.

Early in the project, it was decided to limit the number of models to three. Evaluating
more models were deemed to be too time-consuming. It would also risk that the time
spent on each model would decrease, which could affect the performance. A naive
model was also included among the models. The use of a naive model is common in
these types of projects. First off, it lets the authors get acquainted with the data. It
also provides a benchmark to compare the results from the later models. The naive
model was chosen to be a Term Frequency-Inverse Document Frequency (TF-IDF)
together with logistic regression. This is a model simple to understand and simple to
implement.

It is worth noting that for the more advanced models, none have been built and
trained from scratch. With the resources invested by companies like Google, Ope-
nAI, etc. it would be impossible for us to pre-train something that could compete
with e.g. BERT. For the choice of the three models, we wanted models that were as
different as possible from each other. We reasoned that this would yield the highest
probability of finding a successful model. Even if the two data sets are somewhat
different, we decided to use the same three techniques for both data sets. The three
techniques chosen are:

1. BERT

2. word2vec

3. Linguistic analysis

During the training of all models, the data will be split into folds for k-fold validation.
All models will consist of one NLP-part and one classification part. i.e. the data will
be passed through an NLP-model which will output word embeddings. These will
then be used to predict the probability of fraud with some kind of classification (e.g.
logistic regression, k-nearest neighbor, or a Long Short-Term Memory (LSTM)). The
same techniques (in general) will be used on both data sets. An overview of the
workflow can be seen in Figure 1.2.

The test data in each fold will be used to compare the models. The label of each data
point will be predicted, based on the estimated probability of fraud. These predicted
labels will then be used to calculate recall, precision, and Macro F1-score, which will
be our measures for comparison.

3

1.4. Data & Approach

Figure 1.2: An overview of the used work-flow for this project.

4

Chapter 2
Background and Related Work

2.1 Background

This section will contain the background that is the foundation of this project. It can
be seen as a short introduction to NLP in general and certain techniques in particular.
Furthermore, the section also gives a short introduction to deception.

2.1.1 Deception

Throughout the history of society, humans have tried to detect lies and deception.
Thus, lots of research have been done on the subject. A simple search of "lie detection"
in Google Scholar results in over 4 000 000 results. Today there are many methods
for detecting deception. Some of these are: Polygraphs, Voice Analysis and Brain
observations [16]. However, these methods are often difficult to implement and hard
to use on a larger scale. Furthermore, a method like Voice Analysis is also rather
inaccurate. Another approach is to look at written text and its characteristics and
structure.

2.1.2 Natural Language Processing (NLP)

NLP is a field within Artificial Intelligence and linguistics that revolves around build-
ing machines that are able to understand and generate human language. The tech-
nologies created within the field are sought to solve specific tasks such as transla-
tion, text generation, sentiment analysis, text classification, and question-answering
among many other tasks. In recent years there has been large development within the
field. NLP-models are used in applications like conversational agents (Alexa or Siri),
chatbots like GPT-4, or in Google’s search engine to complete sentences and improve
results [5].

General architecture of an NLP-model consists of pre-processing, feature extraction,
and some sort of modelling. The pre-processing often includes removing stop-words
and tokenization of the input. For a machine to be able to use and understand the
text it has to be tokenized, usually into a numerical representation. To create a model
from the tokens, there has to be a feature extraction. The feature extraction can be of a
simpler method, for example counting the occurrence of certain words. There are also
more advanced methods where the machine is trained to understand the relationship
between words and how they are used in a sentence. Each word is then given a word

5

2.1. Background

embedding, which is the numerical representation of that word. For these feature
extractions, the same word can have very different embeddings depending on the
context of the word. Lastly, the features extracted are typically used together with a
Neural Network or a Transformer to be able to perform the desired task [5].

2.1.3 Term Frequency-Inverse Document Frequency (TF-IDF) with
logistic regression

TF-IDF is a way of determining the importance of words in a document or corpus
[12]. It is a rather simple NLP-technique, but a widely used one. Simply put, the
method counts the occurrence of a word in each text and takes into account how
many of these texts the word appears in.

2.1.4 Transformers

Traditionally, NLP models and sequence transduction tasks have been built with ei-
ther RNNs or CNNs. In 2017, Vaswani et al. proposed a new architecture using only
attention mechanisms, in the paper [32]. One limitation with models like RNNs or
CNNs is how computationally expensive it is to relate inputs and outputs at different
positions in a sequence. The number of operations required usually grows linearly or
logarithmically with the distance between the positions. Whereas for a transformer,
the number of operations required is constant, thus making it easier to create relations
between distant positions in a sequence.

Since invented, Transformers have been used widely for different NLP-tasks, es-
pecially for pre-trained language models. These pre-trained models are trained on
large, often unlabeled, data sets, such as Wikipedia pages, news articles, etc. To per-
form a specific task, these models are then fine-tuned for the desired task. Some of
the most prominent models are GPT, BERT, and XLNET. In this thesis, a model will
be built based on BERT.

2.1.5 word2vec

word2vec is an NLP-technique that was presented by a team at Google in 2013 [19].
It was one of the breakthroughs in the NLP-world within "transfer learning", which
means that the training of the model can be done by someone with lots of data and
computational power and the parameter values can then be shared and used by
someone else. The model works by creating numerical representations of words in
the form of vector embeddings. These make up a vector space, where similar words
or words that often appear in the same context are located close to each other. The two
most common architectures of word2vec are Continuous Bag of Words (CBOW) and
Skip-gram. CBOW is a lot faster and works better with frequently occurring words,
and comparatively, Skip-gram is more computationally heavy but does a better job at
representing rare words and phrases.

2.1.6 Speech-to-text with Whisper

Whisper is a collection of five speech recognition models able to perform transcrip-
tion of speech in multiple languages as well as speech translation from multiple lan-

6

2.2. Related Work

guages to English. The five different models are trained with a different amount of
parameters, ranging from 39 million for the smallest model "tiny", to 1550 million
parameters for the largest model "large. The performance varies widely depending
on which language is being transcribed, where Spanish and English perform the best.
For example, when tested on the FLEURS dataset, which contains speech and correct
transcriptions in different languages, Swedish has a Word Error Rate (WER) of 8.5%
compared to 3.0% for Spanish.

The model is largely built on the Transformer architecture that consists of multiple
encoder and decoder blocks. This is the same type of architecture that BERT uses, so
for more information on that part read Section 3.2.2. Together with the Transformer
architecture Whisper also uses a multitask training format, which allows it to use
several different components, such as language recognition, voice activity detection,
and translation.

WhisperX

WhisperX is a fork of Whisper that provides more accurate timestamps than Whis-
per, by incorporating other audio-related Python packages [1]. The more accurate
timestamps can be used together with NeMo to produce better diarization.

2.1.7 NeMo

NeMo is a toolkit provided by NVIDIA that contains models for different NLP-
related tasks [22]. One of those is speaker diarization. NeMo is able to separate speak-
ers in audio files, which it does by using Voice Activity Detection (VAD), Speaker Em-
bedding Extraction (SEE), and a Neural Diarizer (ND). The VAD detects the presence
or absence of speech and generates timestamps for these, the SEE extracts speaker
embeddings, from the parts VAD flagged as active, which contain voice characteris-
tics and the ND estimates the speaker labels from these features.

2.2 Related Work

There is some previous research that might be helpful for the purpose of this project.
This research will be shortly described in this section. It involves both specific re-
search about insurance fraud for Trygg-Hansa and research about deception and NLP
in general.

2.2.1 Tonal Analysis

A similar project, also done for Trygg-Hansa, was carried out by Steneld in 2022
[10]. The aim of the project was the same as this project, i.e. to predict fraudulent
insurance claims. Steneld tried to achieve this by performing Tonal Analysis. Thus,
the data used was only voice recordings of investigations, called audio data in this
project.

The models used in Steneld’s project did not manage to generalize the validation
data. That is, the models were not able to predict whether an insurance claim was
fraudulent or not.

7

2.2. Related Work

During the project, some pre-processing of the data was done. First off, the silence
was removed. Secondly, a speaker diarization was performed. Since the aim was
to determine whether a customer’s claim was fraudulent or not, only the audio of
the customer was interesting. The diarization was done in two parts. First, turning
points was identified, i.e. points where there is a change of speaker. Then two au-
dio streams were constructed, where each audio stream consists of all audio from
one of the speakers. Secondly, the customer and the handler from Trygg-Hansa were
identified. Simplified, this was done by matching audio streams from calls that were
known to be with the same handler. We can see this process as a Binomial distribu-
tion, with p being the probability of a speaker being correctly labeled. The identifica-
tion was manually evaluated on 20 calls. 18 of these 20 were deemed to be correctly
labeled, resulting in a 95% confidence interval of I(0.66 0.99) for p.

2.2.2 NLP-techniques for fraud prediction

To our knowledge, the research on using NLP on insurance-based deception is very
limited. However, some research has been carried out in the area of NLP-techniques
for deception tasks in general.

Newman et.al [20] claim that their research found three categories associated with
deception. These are fewer self-references, more negative emotion words, and fewer
markers of cognitive complexity. The authors predict lies/truths by first classifying
words and then they fit a logistic regression to the data. Words are classified into
72 different categories according to the Linguistic Inquiry and Word Count (LIWC)
dictionary [24]. One word can be part of several categories. For example, "cried" is
a part of sadness, negative emotion, overall affect, and past tense verb. The authors
reduce the number of categories using three rules. First off, they remove categories
that were thought to reflect the content of the document. The reasoning was that the
goal of the model was to be able to predict deception independent of the subject. Sec-
ondly, categories with very low frequency were removed. Finally, they also removed
categories that might be unique to spoken or written transcripts, for example, uhm or
eh. They achieve a prediction accuracy of 61 % across their five different studies.

Duran et.al [8] did a similar project to Newman et.al in 2010. Like the authors of
[20], their idea is to classify words into different word classes. Instead of using the
LIWC library, they use the Coh-Metrix software. Coh-Metrix tracks word features
on a deeper level than LIWC. It has over 700 linguistic indices, compared to the 72
of LIWC. The main difference between Coh-Metrix compared to LIWC is that Coh-
Metrix asses a collection of words, rather than every word individually [8]. The study
let two students conversate about four given subjects, where one of them was in-
structed to be deceptive on two of the subjects. The authors then search for linguistic
indices that had a significant difference in usage across the deceptive conversations
and the truth full conversations. For example, they found that the speakers used
more third-person pronouns when being deceptive.

Chang et.al created a chatbot to help detect financial fraud in Taiwan, first published
in [3]. The purpose of the chatbot is to let people consult the chatbot to help them
determine whether an incoming claim is legal or not. The user describes the situation
to the chatbot. The chatbot is built in two parts. The first part extracts the semantics

8

2.2. Related Work

of the incoming text and the second part predicts whether it is illegal or not. There
are three possible outputs of the second part of the bot, which are legal, illegal, or
pending confirmation. The chatbot is trained on the seven most common financial
frauds in Taiwan, which are related to: ATMs, shopping websites, mobile payments,
and counterfeiting. The authors try four different NLP-techniques to get word em-
beddings from the text. These are: Word2vec, ELMO, BERT and DistilBERT. These
are used together with six different classification methods, namely: random forest,
naïve Bayes, SVM, Adaboost, K-nearest-neighbour, and an ANN (Artificial Neural
Network). For fraud detection, they achieve an accuracy of 98,7 % using DistilBERT
with a Random Forest classifier. It is worth noting that the nature of the fraud and
the fact that they use three classes for classification enables great accuracy.

9

Chapter 3
Theory

This chapter seeks to further explain the theory used in this project. For instance, the
NLP-techniques that have been used will be covered more deeply. Furthermore, all
methods used for classifying will be described.

3.1 Related Machine Learning (ML)

This section will cover some basic Machine Learning techniques relevant to the
project. The purpose of the section is to give readers that are inexperienced in the
field of Machine Learning some basic knowledge about ML to be able to follow along
in the rest of the thesis.

3.1.1 Machine Learning terms

This section will cover some relevant Machine Learning terms, especially related to
training settings [6].

• Epoch - number of full training passes. For each epoch, all data in the training
set is used to train the model.

• Batch size - number of data points the model processes per iteration.

• Loss Function - the function used in training to calculate how far off the model
is from the actual label.

• Optimizer - numerical method for minimizing the loss.

– ADAM - stands for Adaptive Momentum. It is an optimizing algorithm
for gradient descent.

• Learning Rate - a number that tells the optimizer how strongly weights and
biases should be adjusted between iterations.

• Label - the correct "answer" of a data point. In this project Fraud or Legit.

• Iteration - a single update of model parameters.

• Hidden layers - All layers between the input layer (with features) and the out-
put layer (with predictions).

10

3.1. Related Machine Learning (ML)

• Fine-tuning - a second optimization to parameters on an already trained model,
usually for a new problem that is different from the one in the original training.

• Dropout - sometimes used in Neural Networks for regularization. It randomly
removes a number of units in a network layer for a gradient step. i.e. selected
weights are not updated in that iteration.

3.1.2 Neural Networks (NN)

A neural network is a connection of nodes, interlinked with each other through con-
nections. In a simple dense feed-forward neural network, all nodes are connected
and the data is passed forwards through the model. There is an input layer, where
the data is entered, an output layer, which usually produces some kind of predic-
tion or probability, and all layers of nodes in between are called hidden layers. For
each connection between one layer and another, there is a weight. These weights
are multiplied by the incoming data and summed up for each node. Depending on
the result, the node will "fire" data to the next layer of nodes, or stay inactive. The
weights related to these connections are initialized randomly and updated through-
out the training of the neural network [9].

3.1.3 Recurrent Neural Network (RNN)

Recurrent Neural Networks (RNNs) are a type of Neural Networks. It is commonly
used when dealing with sequential data, for example, speech or time-series data. The
main difference between an RNN and an NN is how information is passed through
the network. In an NN, the inputs of a sequence are assumed to be independent
of each other, meaning no information is passed between two inputs. RNNs on the
other hand, cycle information back to itself. This allows an RNN to not only consider
the current input Xt, but also previous inputs X0:t´1 [28]. A simple overview of the
architecture of an RNN compared to a Feed-Forward Neural Network can be seen in
Figure 3.1

3.1.4 Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) is a type of RNN. It is specially designed to handle
longer sequences of data. One weakness of RNNs is their incapability to learn long-
term dependencies, making them less efficient when handling sequential data where
the relevant connection of inputs is further apart. LSTMs handle this by using a
memory cell. The memory cell can handle and store data for a longer period of time.
The memory cell consists of three gates, an input gate, a forget gate, and an output
gate. The gates have rather self-explanatory tasks. The forget gate controls what
information is to be kept and what information is to be discarded from the memory
cell. The input gate controls what information is fed into the cell and lastly, the output
gate controls what information is passed on from the memory cell [11].

3.1.5 Logistic regression

Logistic regression is a statistical technique for classifying and analysing data sets.
Consider a set of data X P Rnˆd, where n is the number of data points and d is the

11

3.1. Related Machine Learning (ML)

Figure 3.1: Overview of the architecture of a Recurrent Neural Network (on the left
hand side) and a Feed-Forward Neural Network (on the right hand side). Figure
source: "How I Classified Images With Recurrent Neural Networks" [13].

number of features in each data point. Further, let y be a vector of binary outputs
such that yi = 1 or yi = 0. A linear regression could then be described as

y = Xβ + ϵ , (3.1)

where β is a vector of unknown parameters and ϵ is an error vector. yi is assumed to
be a Bernoulli random variable with probability pi. Since the desired estimation, ŷi,
of yi is a probability between 0 and 1, the regression in equation (3.1) is poorly suited
for the task. Instead, the logistic function is introduced as

E[yi = 1|xi, β] = pi =
exi β

1 + exi β
=

1
1 + e´xi β

. (3.2)

Assuming that all observations are independent, the likelihood function is

L(β) =
n

ź

i=1

(pi)
yi(1 ´ pi)

1´yi =
n

ź

i=i

(
exi β

1 + exi β

)yi (1
1 + exi β

)1´yi

(3.3)

and the log-likelihood function

ℓ(β) = ln(L(β)) =
n

ÿ

i=1

yi ln
(

exi β

1 + exi β

)
+ (1 ´ yi) ln

(
1

1 + exi β

)
. (3.4)

To fit the parameters β, the Maximum log-Likelihood (ML) is used. That is, β is set
so that the value of (3.4) is maximized. The ML does not have a closed-form solution.
Thus, the Maximum Likelihood Estimations are achieved through the use of numer-
ical optimization algorithms. Once the parameters have been fitted, probabilities of
new data point i can be estimated using the features in xi. If dealing with unbal-
anced data sets, one can use weighted logistic regression. In short, this means that
the loss in the optimizer is calculated differently for different classes. The optimizer
is "punished" more if it predicts the less common class [17].

12

3.2. NLP-techniques

3.1.6 K-nearest neighbor

K-nearest neighbor is a classifying technique for Machine Learning. It classifies
classes in a simple way. The k-nearest neighbors are identified, and the class is deter-
mined by those neighbors. There are a few ways to determine which points are the
closest neighbors. The most common one is to use the euclidean norm of all input fea-
tures. The k-nearest neighbors then cast a vote on which class the data point should
belong to. The class with the most votes is then the prediction of the algorithm. One
could also use a weighted K-nearest neighbor, weighting the weight depending on
the distance [4]. We introduce a simple example in Figure 3.2. If k = 3, the predicted
class would be red, since two out of the three nearest neighbors are red. If we instead
choose k = 5, the predicted class would be blue.

Figure 3.2: Simple overview of the K-nearest neighbor algorithm. The white square
represents the point desired to classify. The red and blue squares represents train-
ing data with two different classes. Figure source: "Visualization of Uncertainty in
LANDSAT Classification Process" [30].

3.2 NLP-techniques

3.2.1 Term Frequency-Inverse Document Frequency (TF-IDF)

To understand how the TF-IDF works, we introduce a definition for document and
corpus. In our case, a document is a string representing all free-text inputs for a
specific case. In our case, the corpus is all the documents in the data set. The Term-
Frequency is based on the number of occurrences for each word (term) in a document.
Since the length of a document varies from just a few terms to many sentences, the
frequency is divided by the total number of terms in the document. Formally, we get

t f (t, d) =
ft,d

ř

t1Pd ft1,d
. (3.5)

13

3.2. NLP-techniques

Where ft,d is the total number of occurrences of term t in document d and the denom-
inator is the total number of terms in document d.

Just looking at the occurrences of words will give common words such as: "the",
"a" and "is" high importance. Thus, the Inverse Document Frequency is introduced.
The idea is to increase the importance of words that occur rarely in the corpus and
diminish the importance of frequently occurring words. To compute this, the fraction
of documents with the specific word is calculated. That is the number of documents,
d, containing the term t is divided by the total number of documents in the corpus,
N. Then, we take the natural logarithm of the inverse of this fraction. More formally
we get

id f (t, D) = log
(

N
|d P D : f P d|

)
. (3.6)

The denominator is the number of documents d containing the term t.

To compute the final weight, these two terms are multiplied, resulting in the T ˆ N
matrix t f ´ id f (t, d). T is the total number of unique words in all documents and N
is the total number of documents in the corpus. A simplified example of the matrix
is shown in Table 3.1.

Document 1 Document 2 ... Document N
Term 1 tfidf(t1, d1) tfidf(t1, d2) tfidf(t1, dN)
Term 2 tfidf(t2, d1) tfidf(t2, d2) tfidf(t2, dN)

Table 3.1: Simple overview of how the TF-IDF matrix will look. tfidf(ti,dj) represents
the weight of term i in document j.

3.2.2 Bidirectional Encoder Representations from Transformers (BERT)

Bidirectional Encoder Representations from Transformers, or BERT, is a language rep-
resentation model that uses Transformers. It was proposed in 2019 by Devlin et.al.
[7].

BERT pre-training

One of the main advantages of BERT, according to the authors, is that it is bidirec-
tionally pre-trained. This is in opposition to other pre-trained models which tradi-
tionally are pre-trained either in a left-to-right context or a right-to-left context. The
pre-training for BERT is done with two different tasks. The first one is Masked Lan-
guage Modelling. In the input sequence, 15 % of the tokens are masked at random.
The task is then for the model to predict the masked tokens. With this approach, the
model uses the context both on the left and the right side of the masked token.

The other pre-training task is Next Sentence Prediction. Two sentences, A and B are
chosen from the corpus. 50 % of the time, B is the next sentence from A, and the other
half B is just a random sentence from the corpus. The task is then for the model to
predict whether B is actually the next sentence or just a random sentence from the
corpus.

14

3.2. NLP-techniques

The architecture of the pre-training allows the model to be easy to fine-tune for spe-
cific tasks, with state-of-the-art performances. The fine-tuning is simply done by
adding a task-specific input and output, and then all the parameters are fine-tuned.

Sequence limitations of BERT

One limitation of Transformers is the complexity required for long sequences. The
self-attention mechanism has a computational complexity of O(n2). Thus, the se-
quence length is limited to 512 tokens. For the purpose of this project, 512 is not long
enough. Some of the recorded calls are over one hour long and will therefore contain
much more than 512 words. To deal with this, there are mainly two proposed options
in the literature [14].

The first option is to use a "hierarchical" or "concatenating" approach. The idea is to
split the document into fractions of length 512 [23]. Then, every fraction can be run
through a BERT-model. To compose this into some kind of result, the output of each
fraction is used. There are several options for this stage. One could use a Transformer
once again, some RNN or CNN, or a more simple method like logistic regression.

The other option is to build a Transformer-based model that is not limited to 512
words per document. To accomplish this, the attention-mechanism is slightly mod-
ified. Two of the most prominent models for long sequences are Longformer and
Big Bird [2] [33]. The attention in Longformer is based on windowed attention. i.e.
every token attends to w/2 tokens to its left and w/2 tokens to its right, where w is
the window size. Furthermore, some tokens are chosen, at random, to have global
attention. Tokens with global attention will attend to all other tokens. The attention
in Big Bird is similar but with an addition. Big Bird also introduces random attention.
r tokens will attend another token, chosen at random. These approaches reduce the
computational complexity of the attention-mechanism, which allows a sequence size
of 4096.

Hierarchical BERT

The application of a hierarchical BERT has been tested in the paper [23]. The authors
split the input sequence into fractions with overlap. BERT has two useful outputs for
this purpose. First of all, it outputs a pooled representation of the last transformer
block and also a posterior probability. The authors use both outputs, but separately.
Once each fraction has been run through BERT, the outputs form a sequence. This
sequence is then processed either through an RNN or a Transformer.

3.2.3 word2vec

Word2vec creates numerical word representations, called embeddings, through train-
ing done with shallow neural networks. There are two main architectures of
word2vec, Continuous Bag Of Words (CBOW) and Skip-gram. These are trained a
bit differently but are then used the same in a classification task, where the created
embeddings are used as inputs to a classifier. Due to the need for large amounts of
data to get proper embeddings, it is possible to use someone else’s pre-trained model
on your own data. The training is explained below.

15

3.2. NLP-techniques

CBOW

The CBOW architecture is a feedforward neural network, that consists of one input
layer, one projection layer, and one output layer[19], see the left part of Figure 3.3.
The input layer is of size N, where N is how far forward and backward the "context
window" is looking. Each element will consist of a 1-hot encoded vector represen-
tation of that word, which will be the length of the vocabulary, V. A 1-hot encoded
vector is a vector with all zeros except for a single 1, which represents the element in
question. These vectors, or embeddings as they are called, are then averaged out in
the projection layer and sent to a dense softmax layer which outputs the most likely
target word. Softmax is an activation function that takes all inputs and turns them
into a probability distribution between 0 and 1, where the higher the value the more
likely it is to be the correct prediction, according to the model.

Conceptually this can be thought of as follows. For each target word, an in-
put/expected output relationship will look like ([context], target word). The context
size is determined by the window size N. If the sentence is "I was playing football
and was tackled by another player" and the window size is 2, three examples of the
input/expected output relations are ([was, football], playing), ([playing, and], foot-
ball) and ([tackled, another], by). The model tries to predict the target word from the
context, computes the loss, and then adjusts the parameter weights through back-
propagation. This is done for all such relations and then repeated for several epochs.

Skip-gram

The Skip-gram architecture can be seen as the opposite of the CBOW architecture.
Instead of using context to predict a word, it uses a word to predict the context, see
the right part of Figure 3.3. The training is done by grouping (context, target word)
together, like in CBOW, while also grouping a randomly chosen word together with
the target word, like (random word, target word). The true pairs are given a positive
label (1) and the "fake" pairs are given a negative label (0), in hopes of teaching the
model which words are contextually relevant together and which are not. The word
embeddings are created just as in CBOW. Then the dot product of the vector embed-
dings of the pairs mentioned above is calculated and put through a dense layer with
a sigmoid activation function, which outputs either a 1 or a 0. Then the weights are
updated with the same procedure as in CBOW.

3.2.4 Linguistic Analysis with UDPipe

Research suggests that the use of certain word classes can be an indicator of decep-
tion. The authors of [8] use the LIWC library. The LIWC library is not available in
Swedish, meaning it can’t be used for this project. Instead, we went with a similar
method called UDPipe. UDPipe is a multilingual pipeline that provides language-
agnostic tokenization, tagging, lemmatization, and dependency parsing of raw text.
It allows the user to map words into different word classes, such as verbs, conjunc-
tions, adjectives, etc.

16

3.3. Evaluation methods

Figure 3.3: Model architectures for word2vec. CBOW predicts the current word based
on the context, while Skip-gram predicts the surrounding words given the current
word. Figure source: "Efficient Estimation of Word Representations in Vector Space"
[19].

3.3 Evaluation methods

3.3.1 F1-score

F1-score is a metric that can be used to evaluate classification tasks. The F1-score is
based on two terms, Precision and Recall. To understand these terms, we introduce
the confusion matrix, see Figure 3.4. Precision is then calculated as

P =
TP

TP + FP
, (3.7)

where TP is True Positive and FP is False Positive. Recall is calculated as

R =
TP

TP + FN
, (3.8)

where FN is False Negative. Lastly, the F1-score is the harmonic mean of Precision
and Recall. That is

F1-score =
2

1
P + 1

R

=
2

P+R
PR

=
2PR

P + R
, (3.9)

where P is precision and R is recall [27]. The F1-score is calculated for both classes.
Macro F1 is calculated as the arithmetic mean of the F1-score for each class

Macro F1-score =
řn

i=1 F1-scorei

n
, (3.10)

where F1-scorei is the F1-score for class i.

17

3.3. Evaluation methods

The F1-score is especially useful, compared to a more simple metric like accuracy, if
the data set is unbalanced. An unbalanced data set is one where one label is more
common than others [15]. This can be illustrated with a simple example. Consider a
data set where 90 % of the points are labeled 1 and 10 % are labeled 0. Further, let’s
say the model only predicts label 1. Looking at the accuracy (which will be 90 %) the
model seems to be doing great when it in fact has learned nothing.

Figure 3.4: Outline of a confusion matrix in a binary classification task. Figure source
"Weighting Confusion Matrices by Outcomes and Observations" [29].

3.3.2 K-fold cross validation

When training machine learning models generalization is desired. In other words,
you want the model to perform well on data that it has not been trained on, i.e. data
that the model has not seen before. This is one of the reasons that data is often split
into training data and test data. To evaluate a model’s performance one usually looks
at how well it models the test data.

K-fold cross-validation is a method for splitting data into a training set and a test
set. The data is divided into k number of randomly drawn subsets, called folds.
Then, the model is trained on k ´ 1 folds and evaluated on 1 fold. This is repeated k
times so that every fold is the test set once. At the end of each iteration, the desired
evaluation scores are retrieved and averaged to get a mean [25]. Furthermore, this
allows for a standard deviation to be estimated. Thus, a confidence interval can also
be constructed. An overview of k-fold cross-validation can be seen in figure 3.5.

18

3.3. Evaluation methods

Figure 3.5: Overview of k-fold cross validation with k = 5. Each iteration represents
training and validation of a model. Image source "K Fold Cross Validation" [26].

19

Chapter 4
Method Results

As mentioned before we decided to test three models as well as a naive one. We
opted for three models that would be as different as possible. This was thought to be
a good approach to maximize the chances of finding a model that performs well on
the data. We chose TF-IDF together with a logistic regression as our naive model and
three following NLP-techniques as our main models.

1. BERT

2. word2vec

3. Linguistic analysis (with UDpipe)

The purpose of this chapter is to describe the overall procedure of the project. i.e.
how we went from raw data to building models, to classifying and finally evaluating
the results. It will consist of three main parts:

• Pre-processing of data

• Choice of NLP-techniques to model the data

– and their respective results

• Summary of results

These parts will be presented separately for each data set, as the procedure differed
quite a lot between the two.

All methods are evaluated using the confidence interval of Precision, Recall, and
Macro F1-score, described in section 3.3.1. The reason for using the Macro F1-score is
that the data sets are imbalanced. The Macro F1-score is the average of the F1-score
for each class, providing us with a fair metric for the model’s performance despite
an unbalanced data set. To ensure that the model does not stem from a beneficial
split of training and test data, we used k-fold cross-validation. All tables will be
presented with the mean of the measure as well as a 95%-confidence interval. i.e.
˘σ̂ ˚ 1.96/

?
n ´ 1, where s is the estimated standard deviation, 1.96 is the z-value for

a 95% confidence interval and n is the number of folds.

20

4.1. Audio data

4.1 Audio data

4.1.1 Pre-processing of the data

First off, all calls have to be transcribed since our models can only handle text data.
In this step, the speakers were also separated from each other. This was done us-
ing a combination of Whisper, WhisperX, and NeMo. Whisper performs the initial
transcriptions, WhisperX gives the transcriptions time stamps with improved preci-
sion and NeMo performs the diarization. We discussed using the diarization already
done by Steneld in his project [10]. We tried running Whisper on a few calls using
this diarization, however, we found that the transcriptions were more accurate when
we used the whole conversation as input to Whisper.

There were about 300 calls that NeMo was unable to diarize, probably due to poor
audio quality. Since our data set is quite small, we wanted to minimize data loss.
Therefore we decided to use Steneld’s diarization for these in complement to the
procedure above.

Once the audio data was transcribed, we had to identify which one of the speakers
that were the customer. We considered basing this identification on some simple
"rule" that could be easily implemented but found that none of the rules we came up
with were consistent through all calls. Instead of spending a lot of time on building
something that we did not even know would be able to handle this issue well, we
decided to do it manually. This was done by simply reading through the transcribed
text and determining which of the speakers was more likely to be the customer. Albeit
time-consuming, this ensured the quality of the identification. It also gave us an
insight into the quality of the transcriptions.

Some of the insurance cases had several investigation calls. All calls regarding the
same insurance case are considered to be the same data point. This is because there
is only one label given per claim and there is no way for us to tell beforehand which
call would "contain the fraud". Thus, the diarized transcriptions of calls belonging to
the same insurance case were merged together. This was done based on the case-id
belonging to each insurance case.

4.1.2 NLP-techniques and results

The audio data originally consisted of 1334 calls. 1049 of these were diarized by
NeMo, 185 by Steneld’s method, and the rest were discarded due to poor diarization
and/or transcription. These calls correspond to 940 unique insurance cases, and thus
940 data points. The distribution of data points can be seen in Table 4.1

Class Number of cases Fraction

Legitimate 286 30.4%
Fraudulent 654 69.6%

Table 4.1: The table shows the distribution of Legitimate and Fraudulent cases in the
audio data. It shows both the number of cases and its fraction of the whole data set.

21

4.1. Audio data

TF-IDF with logistic regression

Before running TF-IDF, numbers and stop words [21], which are very common words
and would dilute the TF-IDF scores if included, were removed from all documents.
It seemed unreasonable to include words that occur very rarely, hence, we chose to
only include words present in at least 1% of the calls. This resulted in 3218 unique
words. The resulting TF-IDF matrix was used together with logistic regression, which
resulted in poor results. Because our data set is quite unbalanced, we decided to
apply weights to the loss function, to punish miss-labeling the smaller class. This
worked well and we continued to do so for all other models on the audio data.

A usual procedure when using logistic regression models is to remove the least sig-
nificant parameters. All parameters with an absolute value of less than 0.9 for the
β-estimate were removed. This resulted in a model with 8 parameters instead.

The results of both unweighted and weighted logistics regression can be seen in Table
4.2. Furthermore, estimates of resulting β-parameters can be seen in Figure 4.1, and
the eight remaining β-parameters after reduction can be seen in Figure 4.2.

Figure 4.1: Features with the ten highest and ten lowest values of β-parameter esti-
mates (3128 features total), from weighted logistic Regression on TF-IDF matrix for
audio data.

22

4.1. Audio data

Figure 4.2: Estimates and confidence interval for the eight most important features
for weighted logistic regression on TF-IDF matrix for audio data.

Model: TF-IDF Class Precision Recall F1-Score
Logistic regression

3218 features
Legit 0.0 ˘0.0 0.0 ˘0.0 0.0 ˘0.0
Fraud 0.695 ˘0.032 0.993 ˘0.005 0.815 ˘0.023

Macro avg 0.347 ˘0.018 0.495 ˘0.003 0.408 ˘0.011
Weighted logistic regression

3218 features
Legit 0.367 ˘0.044 0.433 ˘0.044 0.393 ˘0.036
Fraud 0.731 ˘0.039 0.672 ˘0.024 0.7 ˘0.025

Macro avg 0.549 ˘0.025 0.553 ˘0.027 0.546 ˘0.026

8 features
Legit 0.403 ˘0.043 0.653 ˘0.043 0.497 ˘0.041
Fraud 0.791 ˘0.035 0.579 ˘0.031 0.667 ˘0.029

Macro avg 0.597 ˘0.024 0.616 ˘0.026 0.582 ˘0.026

Table 4.2: Classification report for TF-IDF model with logistic regression, on audio
data.

Hierarchical BERT

Transformers have proven to perform well on a wide range of NLP-tasks. Consid-
ering the length of our sequences (number of words per data point) we could not
use a standard Transformer, like BERT straight away, since it is capped at a sequence
length of 512. There are some Transformers adapted to handle longer sequences, but
these models were excluded since none of them are pre-trained in Swedish to our
knowledge. It is possible to re-train a "normal" transformer into the architecture of a
"longformer". Sagen discusses this process in [18], where Sagen re-trains a multilin-
gual short model into a long one and then lets the model process long sequences in
other languages than English. This approach was excluded mainly for two reasons.
First off, the conclusion of Sagen’s thesis was that this approach did not give a satisfy-
ing result. Secondly, this would require a lot of resources to re-train a model. Instead,
we chose to use a hierarchical approach, which splits the input sequence into chunks
that are shorter than 512 and can therefore fit into BERT. This does not require us to

23

4.1. Audio data

Figure 4.3: Plot of a histogram for the tokenized sequence length of the audio data.
The number of bins is 20.

put in any extra effort in training a new model from scratch, and it has been proven
to perform well on longer sequences [23].

There are some choices to be done for the hierarchical approach. One could either
choose to fine-tune the parameters of BERT for the specific task on each chunk or just
use the pre-trained parameters. The authors of [23] achieve better results when they
fine-tune their BERT-model. However, fine-tuning BERT on every chunk might lead
to feeding the model with incorrect labels, since our audio data have one label for
the whole conversation (see Figure 4.4 for a graphical overview of this issue). This
means that we either consider the whole conversation to be fraudulent or the whole
conversation to be legit. In a fraudulent case, it is likely that the customer is only
being deceptive in certain parts of the conversation. If we were to fine-tune BERT
on every chunk we would likely have many sequences labeled as fraud where the
customer is actually being truthful.

Instead, we decided to use one of the outputs of BERT, which is a token representa-
tion of the input sequence called the CLS-embedding (Classification-embedding). In
short, it can be explained as an embedding containing the information for the entire
input sequence. Each chunk is fed into BERT and their respective CLS-embedding is
then concatenated and can be used as an input to some other model, see 4.5. Despite
using this approach, we still excluded the data points with the longest tokenized se-
quence length for performance purposes. A histogram of tokenized sequence lengths
can be seen in Figure 4.3. The cutoff was decided to be at 8160, which excluded 14
data points.

For the classification, we decided to train an LSTM-network and use logistic regres-
sion. The LSTM architecture is known for working well with sequential data and
logistic regression is being used for comparison to the other models. The LSTM-

24

4.1. Audio data

network had a single LSTM-layer with 16 units, optimizer Adam, learning rate 0.001,
Categorical Cross-Entropy (CCE) as loss function, dropout of 0.4, batch size 8, and
ran for 25 epochs. The results can be seen in Table 4.3.

Figure 4.4: An overview of the possible fine-tuning of a data point with a longer se-
quence length than 512. The call is labeled as fraudulent, but the deception is (possi-
bly) only present in one of the sequences. Since we do not know where the deception
is taking place, the whole call is labeled as fraudulent. If this is the case, BERT is
fine-tuned with misleading labels.

Figure 4.5: An overview of the architecture of a hierarchical approach using BERT.
Fraction n represents the first fraction of a text in a data point.

25

4.1. Audio data

Model: BERT Class Precision Recall F1-Score

Logistic regression
Legit 0.385 ˘0.054 0.354 ˘0.06 0.365 ˘0.048
Fraud 0.727 ˘0.033 0.757 ˘0.03 0.741 ˘0.02

Macro avg 0.556 ˘0.026 0.556 ˘0.024 0.553 ˘0.025

LSTM-network
Legit 0.386 ˘0.043 0.520 ˘0.078 0.435 ˘0.040
Fraud 0.751 ˘0.038 0.635 ˘0.049 0.683 ˘0.028

Macro avg 0.568 ˘0.026 0.577 ˘0.032 0.560 ˘0.026

Table 4.3: Classification report for logistic regression and an LSTM-network trained
on the extracted CLS-tokens from BERT, on audio data.

While having discarded the approach of fine-tuning every chunk, due to the risk of
miss-labeling, we still wanted to see if fine-tuning on our own data could result in
an improvement. We decided to test if fraud could be more present in the beginning,
middle, and end of a call, by fine-tuning and predicting those parts in isolation. The
training was done with optimizer Adam, learning rate 0.001, CCE as loss function,
batch size of 16, and ran for four epochs. The results can be seen in Table 4.4.

Model: BERT Class Precision Recall F1-Score

First chunk
Legit 0.214 ˘0.122 0.163 ˘0.131 0.173 ˘0.122
Fraud 0.705 ˘0.020 0.856 ˘0.090 0.767 ˘0.040

Macro avg 0.460 ˘0.059 0.510 ˘0.030 0.471 ˘0.045

Mid chunk
Legit 0.266 ˘0.102 0.287 ˘0.130 0.269 ˘0.106
Fraud 0.714 ˘0.033 0.756 ˘0.96 0.724 ˘0.038

Macro avg 0.489 ˘0.057 0.521 ˘0.022 0.498 ˘0.037

Last chunk
Legit 0.183 ˘0.131 0.162 ˘0.114 0.167 ˘0.116
Fraud 0.702 ˘0.036 0.857 ˘0.090 0.764 ˘0.033

Macro avg 0.443 ˘0.079 0.51 ˘0.033 0.466 ˘0.055

Table 4.4: Classification report for BERT fine-tuned on different chunks of audio data
with a final linear layer as classifier.

word2vec

For the second model, we wanted an NLP-model with a different way of creating
word embeddings, compared to BERT. We decided to go with a model that creates
a vector space where words that are related to each other are located close to each
other. These models are pre-trained completely different to BERT, and do not use the
Transformer architecture. There are a few of these models available, but we chose
word2vec, for the simple reason that it was the only model that we found pre-trained
on the Swedish language. We used these pre-trained weights and combined them
with our own vocabulary to update the vector space to fit our task. The model was
built with vector size=100, window=10, min_count=1, workers=8, and sg = 1 and
trained for five epochs. This model could then be used to create word embeddings
for our texts which we used in a k-nearest neighbor and a logistic regression. The
k-nearest neighbor uses k = 3 neighbors and weighted distance. Weighted distance
means that closer neighbors have a higher impact on the predicted result. The results
can be seen in Table 4.5.

26

4.1. Audio data

Model: word2vec Class Precision Recall F1-Score

Logistic
regression

Legit 0.361 ˘0.036 0.505 ˘0.074 0.417 ˘0.045
Fraud 0.735 ˘0.054 0.610 ˘0.040 0.667 ˘0.041

Macro avg 0.548 ˘0.037 0.556 ˘0.047 0.541 ˘0.038

K-nearest
neighbour

Legit 0.338 ˘0.062 0.217 ˘0.051 0.261 ˘0.053
Fraud 0.703 ˘0.042 0.814 ˘0.037 0.753 ˘0.034

Macro avg 0.52 ˘0.044 0.516 ˘0.032 0.507 ˘0.039

Table 4.5: Classification report for word2vec with logistic regression and k-nearest
neighbours as classifiers, on audio data.

Linguistic analysis

We decided to go for a somewhat simpler and more understandable model as the
third one. Research like [20] and [8] suggests that deception can be linked to the
usage of certain word classes. There are two arguments for this choice. First off, it
is different from the two previously chosen models. Secondly, it is easier to under-
stand this approach compared to the previous models. With the use of UDPipe, we
extracted different linguistic characteristics for each word in a call, such as nouns,
verbs, and adjectives. One extraction tagged the words with the universal Part-of-
Speech tags[31] (16 classes) and the other also included the syntactic dependency
relations (39 classes), which is the relation between words in a sentence. The total oc-
currences were counted for each class for each call and divided by the total number
of words in that call. This was then used as input to a k-nearest neighbor classifier
and a logistic regression. The k-nearest neighbor uses k = 3 neighbors and weighted
distance. The results can be seen in Table 4.6.

Model: Linguistic Class Precision Recall F1-Score
Logistic regression

16 classes
Legit 0.337 ˘0.049 0.483 ˘0.095 0.395 ˘0.064
Fraud 0.728 ˘0.042 0.590 ˘0.048 0.649 ˘0.039

Macro avg 0.533 ˘0.042 0.538 ˘0.048 0.522 ˘0.042

55 classes
Legit 0.356 ˘0.026 0.505 ˘0.051 0.414 ˘0.029
Fraud 0.733 ˘0.037 0.599 ˘0.036 0.658 ˘0.033

Macro avg 0.543 ˘0.028 0.552 ˘0.034 0.536 ˘0.030
K-nearest neighbour

16 classes
Legit 0.334 ˘0.083 0.188 ˘0.054 0.237 ˘0.057
Fraud 0.703 ˘0.037 0.836 ˘0.029 0.763 ˘0.023

Macro avg 0.52 ˘0.046 0.512 ˘0.033 0.499 ˘0.036

55 classes
Legit 0.256 ˘0.061 0.147 ˘0.022 0.183 ˘0.03
Fraud 0.683 ˘0.031 0.805 ˘0.037 0.737 ˘0.02

Macro avg 0.469 ˘0.027 0.477 ˘0.021 0.459 ˘0.02

Table 4.6: Classification report for linguistic analysis with logistic regression and k-
nearest neighbours, on audio data.

27

4.2. Text-form data

4.2 Text-form data

4.2.1 Pre-processing of the data

For the text-form data, there was not as much pre-processing needed. As mentioned
before, we want to build our models on only text stemming from the customer. Thus,
all questions were removed from the Questions & Answers data. Furthermore, the
free text and Questions & Answers were merged together. We also checked for insur-
ance claims with an entry in both sets, but there were none.

4.2.2 NLP-techniques and results

The text-form data contains 5385 data points in total. The distribution of legitimate
and fraudulent cases can be seen in Table 4.7

Class Number of cases Fraction

Legitimate 3986 74.0%
Fraudulent 1399 26.0%

Table 4.7: The table shows the distribution of legitimate and fraudulent cases in the
text-form data.

In principle, the NLP-techniques used are the same for the text-form data as for the
audio data. However, some things are adjusted for the text-form data.

For all models built on the text-form data, we chose to have k = 5 folds for the k-fold
cross-validation, meaning that each fold contains 1077 data points. The reason we
chose this number to be lower than for the audio data was because this data set has
more data points. Thus, we believed the training data in each validation fold to be
big enough with only 5 folds.

Just like for the audio data, all results will be presented as a classification report with
mean and confidence intervals for all measures.

TF-IDF

First off, the text-form data was evaluated on the naive model. Stop words and num-
bers were excluded from the Term-Frequency. This resulted in 19009 unique words.
This is a lot of features, especially since the data set contains 5385 data points. We
chose to only include words present in at least 1% of the documents in the corpus.
This gave 328 unique words. Just as for the audio data, the text-form data is also quite
unbalanced, and applying weights to the loss function for all models turned out to
improve performance in this case as well. The results for both logistic regression and
weighted logistic regression can be seen in Table 4.8.

All parameters with an absolute value of less than 1, 2 for the β-estimate were re-
moved. This resulted in a model with 20 parameters instead. The resulting classifica-
tion report can also be seen in Table 4.8. Furthermore, the estimated β-values can be
seen in Figure 4.6.

28

4.2. Text-form data

Model: TF-IDF Class Precision Recall F1-Score
Logistic regression

328 features Legit 0.748 ˘0.018 0.970 ˘0.100 0.844 ˘0.009
Fraud 0.442 ˘0.048 0.070 ˘0.020 0.118 ˘0.032

Macro avg 0.594 ˘0.018 0.520 ˘0.007 0.480 ˘0.012
Weighted logistic regression

328 features Legit 0.812 ˘0.011 0.590 ˘0.029 0.682 ˘0.019
Fraud 0.342 ˘0.025 0.610 ˘0.090 0.438 ˘0.027

Macro avg 0.576 ˘0.015 0.598 ˘0.022 0.560 ˘0.023

20 features Legit 0.884 ˘0.018 0.330 ˘0.014 0.482 ˘0.011
Fraud 0.314 ˘0.020 0.878 ˘0.018 0.464 ˘0.024

Macro avg 0.600 ˘0.010 0.606 ˘0.011 0.472 ˘0.018

Table 4.8: Classification report for TF-IDF with unweighted and weighted logistic
regression, on text-form data.

Figure 4.6: Estimates and confidence intervals for the ten largest and ten smallest β-
values from TF-IDF with weighted logistic regression, on text-form data.

BERT

The procedure for BERT was a bit different for the text-form data than the audio
data. The length of the sequences in audio data had a big impact on what type of
models we could use. For the text-form data, only 15 data points had a tokenized
sequence length longer than 512 (which is the limitation for BERT). A histogram of
the tokenized sequence lengths can be seen in Figure 4.7. Because of this, we saw
no reason to use a Hierarchical BERT for the text-form data. Instead, we fine-tuned
BERT with our labels. The training was done with optimizer AdamW, CCE as loss
function, batch size of 16, and ran for four epochs. The resulting classification report
can be seen in Table 4.9

29

4.2. Text-form data

Figure 4.7: Plot of a histogram showing the distribution of tokenized sequence length
of the text-form data. The number of bins is 20

Class Precision Recall F1-Score

Legit 0.824 ˘0.016 0.598 ˘0.019 0.692 ˘0.013
Fraud 0.358 ˘0.011 0.632 ˘0.037 0.454 ˘0.013

Macro avg 0.590 ˘0.01 0.616 ˘0.015 0.574 ˘0.009

Table 4.9: Classification report for a fine-tuned BERT with a final linear layer as clas-
sifier.

word2vec

word2vec was carried out in the same way for the text-form data as for the audio
data. For word2vec, stop words were also excluded. The model was built with vec-
tor size=100, window=10, min_count=1, workers=8, and sg = 1. It was then trained
for five epochs. The resulting embeddings were used as input data for a k-nearest
neighbors classifier and logistic regression. The K-nearest neighbor uses k = 3 neigh-
bors and weighted distance. All results can be seen in Table 4.10

Model: word2vec Class Precision Recall F1-Score

Weighted logistic
regression

Legit 0.824 ˘0.015 0.564 ˘0.016 0.672 ˘0.013
Fraud 0.346 ˘0.034 0.652 ˘0.054 0.452 ˘0.040

Macro avg 0.584 ˘0.019 0.608 ˘0.025 0.560 ˘0.021

K-nearest neighbour
Legit 0.754 ˘0.019 0.888 ˘0.004 0.816 ˘0.011
Fraud 0.344 ˘0.019 0.168 ˘0.03 0.224 ˘0.026

Macro avg 0.548 ˘0.018 0.528 ˘0.011 0.522 ˘0.019

Table 4.10: Classification report for text-form data with word2vec and random forest
as classifiers.

30

4.3. Summary of Results

Linguistic Analysis

The third technique, Linguistic Analysis, was carried out in the same manner as for
audio data. It was used together with K-nearest neighbor and logistic regression. The
K-nearest neighbor uses k = 3 neighbors and weighted distance. The results can be
seen in Table 4.11.

Model: Linguistic Class Precision Recall F1-Score
Logistic regression

16 classes
Legit 0.764 ˘0.018 0.556 ˘0.015 0.646 ˘0.015
Fraud 0.290 ˘0.026 0.516 ˘0.037 0.370 ˘0.032

Macro avg 0.526 ˘0.016 0.536 ˘0.025 0.508 ˘0.018

55 classes
Legit 0.766 ˘0.009 0.584 ˘0.019 0.662 ˘0.016
Fraud 0.292 ˘0.022 0.486 ˘0.026 0.366 ˘0.020

Macro avg 0.528 ˘0.011 0.536 ˘0.009 0.512 ˘0.013
K-nearest neighbour

16 classes
Legit 0.748 ˘0.016 0.838 ˘0.013 0.79 ˘0.012
Fraud 0.294 ˘0.036 0.196 ˘0.028 0.236 ˘0.035

Macro avg 0.522 ˘0.023 0.518 ˘0.019 0.512 ˘0.019

55 classes
Legit 0.748 ˘0.015 0.83 ˘0.007 0.786 ˘0.005
Fraud 0.298 ˘0.016 0.206 ˘0.011 0.24 ˘0.01

Macro avg 0.522 ˘0.004 0.518 ˘0.004 0.514 ˘0.005

Table 4.11: Classification report for linguistic analysis with logistic regression and k-
nearest neighbours as classifiers.

4.3 Summary of Results

To get an overview of all results, the best F1-score for all NLP-architectures for both
data sets will be presented in Table 4.12. For example, for linguistic analysis for audio
data, the best F1-score out of logistic regression with 16 and 55 classes and K-nearest
neighbor with 16 and 55 classes will be presented in the summary table.

NLP-Technique Version/Classifyer Macro F1

Audio data

TF-IDF (8 features) logistic regression 0.582 ˘0.026
BERT CLS with LSTM 0.560 ˘0.026

word2vec logistic regression 0.541 ˘0.038
Linguistic (55 classes) logistic regression 0.536 ˘0.030

Text-form data

TF-IDF (328 features) logistic regression 0.560 ˘0.023
BERT BERT fine-tune 0.574 ˘0.009

word2vec logistic regression 0.560 ˘0.021
Linguistic (55 features) k-nearest neighbor 0.514 ˘0.005

Table 4.12: Summary of all results. The table shows the best result for all NLP-
techniques and for both data sets.

31

Chapter 5
Discussion

5.1 Results

Some of the methods show a small ability to generalize the data, with confidence
intervals for Macro F1-score being strictly above 50 %. An F1-score of above 50%
indicates that the model is learning something and that it is better than just guessing.

TF-IDF performed quite well for both the Audio data and the Text-form data. This
seemed a bit surprising for a model that basically only counts words. However, there
is a rather big risk that these positive results stem from a bias in the claim type. If
we look at the most significant features, most of them are words that seem to be
connected to one type of insurance case. For example "mobilen" (mobile phone),
"bilen" (the car), and "guld" (gold) are probably only occurring in calls relating to
certain claim types. Furthermore, none of the parameters for the Audio data, even
in the reduced TF-IDF model, are significantly different from zero. For the Text-form
data, some are, but when the logistic regression was done on only those parameters
the F1-score decreased. For these two reasons, TF-IDF might not be that reliable
despite having a Macro F1-score significantly over 50 %.

For the Audio data, a hierarchical BERT architecture was used. This was in turn com-
bined with two different techniques for classifying, logistic regression and an LSTM
network. The LSTM network performed best. One reason for the good performance
of the LSTM network is probably its ability to capture relations between inputs far
away from each other, which makes it useful for sequential data.

For the BERT model on audio data, it was fine-tuned for different parts of the audio
data (beginning, middle, and end). This was done for two reasons. To see if it could
be beneficial to fine-tune BERT and to see if there could be any conclusion drawn on
where in a conversation a lie is being told. Furthermore, fine-tuning BERT has been
done previously with good results. The mean of all Macro F1-scores is below 50%,
suggesting that fine-tuning BERT for the audio data did not create a better model.
Further, it indicates that for the Audio data, the BERT model couldn’t predict lies
better in a specific part of the data. This result was not surprising. Calls in audio data
look very different and it is not unlikely that fraud takes place in the beginning of
some calls and the end of some calls. Furthermore, this approach doesn’t utilize all
the data, which might be a reason that it can’t model the data.

32

5.2. Imbalanced data

word2vec gave a Macro F1-score with a confidence slightly over 50% for both the
Audio data and the Text-form data, when used together with a weighted logistic re-
gression. This suggests that fraudulent sequences of text are placed somewhat closer
to each other in their vector representations compared to legitimate ones.

The Linguistic analysis did not perform that well. The authors of [20] construct a
somewhat similar model with good results. There are a few reasons that the Linguis-
tic analysis performed in this thesis does not perform as well. One reason could that
the information in the different word classes is not informative enough for the data
at hand. The word classes used from UDpipe differ a bit from LIWC. Another reason
could be the fact that the data is different in [20]. In that article, the subjects are asked
to produce a lie in the form of an opinion that is not their own. How lies are told
might be different between arguing for your opinion and telling an actual series of
events. Furthermore, the subjects in [20] are told by a supervisor to lie, as opposed to
initializing it themselves as in this project.

5.2 Imbalanced data

One difficulty throughout the project was the imbalanced data sets. This was handled
by using weighted loss functions, nudging the models to predict the less common
class more often. Another possible way of dealing with this is to downsample the
larger of the two classes until the data set is balanced. This was not done mainly
for one reason. The data sets are both rather small, and downsampling would mean
sacrificing a lot of the available data.

5.2.1 Effects of Weighted Loss Function

Apart from increasing the Macro F1-score for all models it was used on, it also bal-
ances the other measures. The Recall for the most common class becomes lower
whereas the Recall for the uncommon class is increased. Furthermore, the Precision
for the common class is increased whereas the precision for the uncommon class is
decreased. This is an expected result. With a weighted loss function, the loss function
penalizes false predictions higher if it is on the less common class. Thus, the model
will learn to predict the less common class more often, resulting in a higher recall for
that class.

A more balanced distribution between Precision and Recall for the two classes is not
necessarily desired. Failing to label one class could be more expensive than mislabel-
ing the other class. In the context of this thesis, one could compare the cost of a false
positive (legitimate claim classified as fraud) with a false negative (fraudulent claim
classified as legitimate). The effect of these wrong labels would probably be: 1. the
company pays insurance money they would not have needed to pay and 2. the com-
pany needs to re-investigate the legitimate claim and pay the (rightfully) insurance.
It might be more expensive to reimburse a fraudulent claim than re-investigating a
legitimate claim or vice versa. Because of this, the highest Macro F1-score might not
always be the best model for the purpose even if it is the model that best generalizes
to the data. Furthermore, the cost of paying a fraudulent claim vs re-investigating a
legitimate one might differ depending on what type of case it is. For example, pay-

33

5.3. Quality of transcription and diarization

ing for a car reparation is more expensive than changing the screen on a telephone.
With this in mind, it could be useful to create separate models for different insurance
types, with different weights for the loss function.

5.3 Quality of transcription and diarization

One factor that could have affected the result is the quality of transcriptions and di-
arizaiton. Even if all transcriptions were quickly reviewed there were still transcrip-
tions and diarizaitons that were not perfect. Furthermore, bad transcriptions and/or
diarizations forced data points to be removed. This leads to two issues for the mod-
eling. First off, it means fewer data points and in turn less data to train on. Secondly,
the data contains errors such as lousy transcribed parts and remaining text from the
company representative. With a higher quality of transcription and diarization the
result could possibly have been more reliable. However, perfect data is rarely (never)
the case when building these types of models.

5.4 Fraud vs Lie

One important thing to note about this project is that all modeling is based on labels
from the insurance company. This means that the ground truth, per se, is not whether
someone is lying or not, but in fact, if the insurance company assesses this claim to
be fraudulent or not. Furthermore, fraudulent insurance claims can look different. A
fraudulent claim could vary from a customer already being reimbursed by another
insurance company to a customer lying about jewelry being stolen.

The distinction between a fraudulent claim and a lie might seem small, but it is still a
difference to note. The models in this project should not be seen as lie detectors, but
rather as fraud detectors.

5.5 Limitation of Swedish models

The pool of available NLP-models is a lot smaller for Swedish compared to English
models. For example, there is no Longformer pre-trained in Swedish. This excluded
some possible techniques for the modeling. Furthermore, most models are trained on
much more data in English compared to Swedish. This gives English models a better
condition to perform well. On the other hand, most of the models are pre-trained on
text from Wikipedia or news. It is not certain that pre-training models on more of
these types of texts will improve their performance on fraud classification.

5.6 Further research

Machine Learning and NLP is a fast-growing field. New and better models are
trained and produced at a fast pace. Redoing a similar project like this in a few years
could give more promising results.

34

5.6. Further research

Due to the sensitive nature of the data, online tools have been excluded. A large and
strong model like GPT-4 could possibly perform better than the ones tested in this
project.

Another interesting take could be to combine the results and models from this project
with the ones from Steneld’s [10]. In other words, combining the tonality of speech
with what is actually said. It might be challenging to combine these techniques, but
it should be possible.

35

Chapter 6
Conclusion

There were two questions that we wanted to answer with this master thesis.

• Is it possible to predict insurance fraud with NLP-techniques from conversa-
tion recordings between a customer and company representative or text data
entered by the customer either in free text form or from Question & Answers?

• How do different NLP-techniques compare to each other when it comes to pre-
dicting fraud?

We analyzed three different NLP-techniques: BERT, word2vec and linguistic analysis,
and also included TF-IDF as our naive model. To answer the second question we look
at our results. For the audio data, TF-IDF together with logistic regression scored the
highest Macro F1-score of 58.2% ˘2.6%. For the text data, our fine-tuned BERT model
scored the highest Macro F1-score of 57.4% ˘0.9%. Worst performed the BERT model
that was fine-tuned on the first, middle, and last part of each call in the audio data,
which could be expected as it loses a large part of the context.

To answer the first question is much harder. Being able to predict insurance fraud
based on what is being said or written is a really complex problem. No one has really
created a consistently working lie detector before, and there might be a reason for
that. While we aren’t exactly trying to predict truths and lies, as a lie detector would,
the task of detecting insurance fraud is still very hard. Our models gave predictions
that were better than tossing a coin, so they were actually able to learn something
from the data, but what that something is, is hard to tell. The reason that TF-IDF
and word2vec perform better than guessing could be due to bias in the data set as
discussed in the previous chapter. Certain words might appear more often in types
of insurance cases where fraud is more common, which would "fool" the model. Due
to the "black-box" nature of deep learning, we can’t really look at what models like
BERT and LSTM learned, and therefore it is harder to determine if it actually learned
to predict fraud or if it learned something else. Theoretically, they should be able to
capture more complex linguistic traits in a text than the other models, but this can
only be assured through more testing.

We believe that there could be future potential in using these kinds of techniques to
detect insurance fraud. Complex Large Language Models (LLM), such as BERT and
Chat-GPT, have become insanely good in the last months. This is mainly because

36

of the enormous amount of data it has been trained on. With the right amount of
computing power and a large enough data set, it is possible that a model could be
developed to be able to detect insurance fraud with much better precision than we
were able to in this project.

37

Bibliography

[1] Max Bain, Jaesung Huh, Tengda Han, and Andrew Zisserman. “WhisperX:
Time-Accurate Speech Transcription of Long-Form Audio”. In: INTERSPEECH
2023 (2023).

[2] Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The Long-
Document Transformer. 2020. arXiv: 2004.05150 [cs.CL].

[3] Jia-Wei Chang, Neil Yen, and Jason Hung. “Design of a NLP-empowered fi-
nance fraud awareness model: the anti-fraud chatbot for fraud detection and
fraud classification as an instance”. In: Journal of Ambient Intelligence and Hu-
manized Computing 13 (Mar. 2022).

[4] Padraig Cunningham and Sarah Jane Delany. “k-Nearest Neighbour Classifiers
- A Tutorial”. In: ACM Computing Surveys 54.6 (July 2021), pp. 1–25.

[5] DeepLearning.AI. A complete guide to Natural Language Processing. URL: https:
/ / www . deeplearning . ai / resources / natural - language -
processing/. (accessed: 8-May-2023).

[6] Google for developers. Machine Learning Glossary. URL: https : / /
developers.google.com/machine-learning/glossary/. (accessed:
29-May-2023).

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. 2019.
arXiv: 1810.04805 [cs.CL].

[8] Nicholas D. Duran, Charles Hall, Philip M. McCarthy, and Danielle S. McNa-
mara. “The linguistic correlates of conversational deception: Comparing natu-
ral language processing technologies”. In: Applied Psycholinguistics 31.3 (2010),
pp. 439–462.

[9] Larry Hardesty. Explained: Neural networks. URL: https://news.mit.edu/
2017/explained-neural-networks-deep-learning-0414. (accessed:
11-May-2023).

[10] Henrik Steneld. Estimating the risk of insurance fraud based on tonal analysis. eng.
Student Paper. Lund University, 2022.

[11] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-term Memory”. In:
Neural computation 9 (Dec. 1997), pp. 1735–80.

[12] tf-idf. tf-idf — Wikipedia, The Free Encyclopedia. 2023. URL: https : / / en .
wikipedia.org/wiki/Tf-idf. (accessed: 15-March-2023).

38

https://arxiv.org/abs/2004.05150
https://www.deeplearning.ai/resources/natural-language-processing/
https://www.deeplearning.ai/resources/natural-language-processing/
https://www.deeplearning.ai/resources/natural-language-processing/
https://developers.google.com/machine-learning/glossary/
https://developers.google.com/machine-learning/glossary/
https://arxiv.org/abs/1810.04805
https://news.mit.edu/2017/explained-neural-networks-deep-learning-0414
https://news.mit.edu/2017/explained-neural-networks-deep-learning-0414
https://en.wikipedia.org/wiki/Tf-idf
https://en.wikipedia.org/wiki/Tf-idf

Bibliography

[13] Nathalie Jeans. How I Classified Images With Recurrent Neural Networks. URL:
https : / / medium . com / @nathaliejeans / how - i - classified -
images - with - recurrent - neural - networks - 28eb4b57fc79. (ac-
cessed: 30-may-2023).

[14] Hoa Le. Paper Dissected and Recap #4 : which BERT for long text ? URL: https://
lethienhoablog.wordpress.com/2020/11/19/paper-dissected-
and- recap- 4- which- bert- for- long- text/. (accessed: 15-March-
2023).

[15] Kenneth Leung. Micro, Macro Weighted Averages of F1 Score, Clearly Explained.
URL: https://towardsdatascience.com/micro-macro-weighted-
averages-of-f1-score-clearly-explained-b603420b292f. (ac-
cessed: 29-May-2023).

[16] Lie Detection. Lie Detection — Wikipedia, The Free Encyclopedia. [Online; accessed
29-March-2023]. 2023. URL: https://en.wikipedia.org/wiki/Lie_
detection.

[17] Maher Maalouf. “Logistic regression in data analysis: An overview”. In: Inter-
national Journal of Data Analysis Techniques and Strategies 3 (July 2011), pp. 281–
299.

[18] Markus Sagen. Large-Context Question Answering with Cross-Lingual Transfer.
eng. Student Paper. Uppsala University, 2021.

[19] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient Estimation
of Word Representations in Vector Space. 2013. arXiv: 1301.3781 [cs.CL].

[20] Matthew L. Newman, James W. Pennebaker, Diane S. Berry, and Jane M.
Richards. “Lying Words: Predicting Deception from Linguistic Styles”. In: Per-
sonality and Social Psychology Bulletin 29.5 (2003), pp. 665–675.

[21] NLTK. Documentation. URL: https://www.nltk.org/api/nltk.text.
html?highlight=stopwords. (accessed: 18-April-2023).

[22] NVIDIA. User-guide for NeMo Speaker Diarization. 2023. URL: https://docs.
nvidia.com/deeplearning/nemo/user-guide/docs/en/stable/
asr/speaker_diarization/intro.html#. (accessed: 09-June-2023).

[23] Raghavendra Pappagari, Piotr Żelasko, Jesús Villalba, Yishay Carmiel, and Na-
jim Dehak. Hierarchical Transformers for Long Document Classification. 2019. arXiv:
1910.10781 [cs.CL].

[24] James Pennebaker, Martha Francis, and Roger Booth. “Linguistic inquiry and
word count (LIWC)”. In: (Jan. 1999).

[25] Rukshan Pramoditha. k-fold cross-validation explained in plain English. URL:
https://towardsdatascience.com/k-fold-cross-validation-
explained-in-plain-english-659e33c0bc0. (accessed: 29-may-2023).

[26] Hirad Rezaei, Alireza Amjadian, Mohammad Sebt, Reza Askari, and Abolfazl
Gharaei. “An ensemble method of the machine learning to prognosticate the
gastric cancer”. In: Annals of Operations Research (Sept. 2022).

[27] Yutaka Sasaki. “The truth of the F-measure”. In: Teach Tutor Mater (Jan. 2007).

39

https://medium.com/@nathaliejeans/how-i-classified-images-with-recurrent-neural-networks-28eb4b57fc79
https://medium.com/@nathaliejeans/how-i-classified-images-with-recurrent-neural-networks-28eb4b57fc79
https://lethienhoablog.wordpress.com/2020/11/19/paper-dissected-and-recap-4-which-bert-for-long-text/
https://lethienhoablog.wordpress.com/2020/11/19/paper-dissected-and-recap-4-which-bert-for-long-text/
https://lethienhoablog.wordpress.com/2020/11/19/paper-dissected-and-recap-4-which-bert-for-long-text/
https://towardsdatascience.com/micro-macro-weighted-averages-of-f1-score-clearly-explained-b603420b292f
https://towardsdatascience.com/micro-macro-weighted-averages-of-f1-score-clearly-explained-b603420b292f
https://en.wikipedia.org/wiki/Lie_detection
https://en.wikipedia.org/wiki/Lie_detection
https://arxiv.org/abs/1301.3781
https://www.nltk.org/api/nltk.text.html?highlight=stopwords
https://www.nltk.org/api/nltk.text.html?highlight=stopwords
https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/stable/asr/speaker_diarization/intro.html#
https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/stable/asr/speaker_diarization/intro.html#
https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/stable/asr/speaker_diarization/intro.html#
https://arxiv.org/abs/1910.10781
https://towardsdatascience.com/k-fold-cross-validation-explained-in-plain-english-659e33c0bc0
https://towardsdatascience.com/k-fold-cross-validation-explained-in-plain-english-659e33c0bc0

Bibliography

[28] Robin M. Schmidt. Recurrent Neural Networks (RNNs): A gentle Introduction and
Overview. 2019. arXiv: 1912.05911 [cs.LG].

[29] Bryan Shalloway. Weighting Confusion Matrices by Outcomes and Observations.
URL: https://www.bryanshalloway.com/2020/12/08/weighting-
classification-outcomes/. (accessed: 29-May-2023).

[30] Jiri Stastny, Vladislav Skorpil, and Jiří Fejfar. “Visualization of Uncertainty in
LANDSAT Classification Process”. In: Jan. 2014.

[31] Universal Dependencies. Universal POS tags. 2022. URL: https : / /
universaldependencies.org/u/pos/. (accessed: 10-June-2023).

[32] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention Is All You Need.
2017. arXiv: 1706.03762 [cs.CL].

[33] Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Al-
berti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang,
and Amr Ahmed. Big Bird: Transformers for Longer Sequences. 2021. arXiv: 2007.
14062 [cs.LG].

40

https://arxiv.org/abs/1912.05911
https://www.bryanshalloway.com/2020/12/08/weighting-classification-outcomes/
https://www.bryanshalloway.com/2020/12/08/weighting-classification-outcomes/
https://universaldependencies.org/u/pos/
https://universaldependencies.org/u/pos/
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2007.14062
https://arxiv.org/abs/2007.14062

Master’s Theses in Mathematical Sciences 2023:E64
ISSN 1404-6342

LUTFMS-3489-2023

Mathematical Statistics
Centre for Mathematical Sciences

Lund University
Box 118, SE-221 00 Lund, Sweden

http://www.maths.lu.se/

	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Introduction
	Problem background
	Problem formulation
	Research questions
	Data & Approach

	Background and Related Work
	Background
	Related Work

	Theory
	Related Machine Learning (ML)
	NLP-techniques
	Evaluation methods

	Method Results
	Audio data
	Text-form data
	Summary of Results

	Discussion
	Results
	Imbalanced data
	Quality of transcription and diarization
	Fraud vs Lie
	Limitation of Swedish models
	Further research

	Conclusion
	Bibliography

