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Abstract  
Lakes are an important part of the world’s ecosystems. The ecological state of lakes is 
threatened by rising temperatures that affect the biological, physical and chemical cy-
cles. Therefore, it is essential to monitor lake surface water temperature (LSWT) and 
its spatiotemporal variabilities. Currently monitoring LSWT employs three primary ap-
proaches: in-situ measurements, satellite remote sensing, and reanalysis products/mod-
elling. Each has its advantages and limitations. In-situ measurements offer accuracy at 
the point scale but suffer from inconsistencies and infrequent data collection. Satellite 
remote sensing provides relatively high spatial resolution but is affected by cloud cover 
and data gaps. Reanalysis products offer all-weather data but often at a coarse spatial 
resolution, limiting their ability to capture fine spatial scale variations in LSWT. This 
study aims to develop a new spatially complete and daily continuous LSWT by fusing 
satellite LSWT product and reanalysis product for Lake Vänern, the largest lake in 
Sweden. The reanalysis product ERA5-Land providing hourly lake temperature at the 
spatial resolution of 0.1° was used. Five existing satellite LSWT products were evalu-
ated against in-situ measurements. The MODIS LSWT product was identified as the 
most suitable satellite product to be fused with ERA5-Land data using the Enhanced 
Spatial and Temporal Adaptive Reflectance Model (ESTARFM). A bias correction was 
conducted to account for systematic bias resulting from the data fusion. The bias-cor-
rected fused LSWT dataset was evaluated against in-situ measurements and showed 
higher accuracy than the MODIS and ERA5-Land data with a mean absolute error of 
1.57 °C, root mean square error of 2.04 °C and R2 of 0.87. The spatial and temporal 
variations of the bias-corrected fused LSWT were in good agreement with the ERA5-
Land and MODIS-derived LSWT, as well as with in-situ measurements. Finally, the 
bias-corrected fused LSWT product was used to investigate the spatial and temporal 
dynamics of Lake Vänern, revealing the development of a thermal bar and seasonal 
LSWT changes. This study demonstrated the good performance of the data fusion ap-
proach in generating a spatially complete and temporally continuous LSWT dataset. 
This approach is valuable for LSWT monitoring and further investigation of ecological 
changes in lakes associated with shifting LSWT.  
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1 Introduction 
There are about a hundred million lakes on Earth, storing 87 % of the available fresh-
water, providing important ecosystem services and are crucial for biodiversity 
(Woolway et al., 2020). Climate change poses a significant threat to the ecological 
function of lakes due to elevated air temperatures, which subsequently affect water tem-
peratures (Dörnhöfer & Oppelt, 2016). These temperature changes, in turn, alter various 
biological, physical, and chemical processes within the lakes (Reinart & Reinhold, 
2008). The increasing temperatures lead to earlier algae blooming which increases the 
negative effects of eutrophication. Further enhanced temperatures lead to a shifted tim-
ing of stratification leading to an overturn of the lake (Woolway et al., 2020). The dif-
ference between lake surface water temperature (LSWT) and the atmospheric temper-
atures plays a crucial role in governing the exchange of energy and water between these 
two spheres, thereby directly influencing the energy and hydrological cycles. LSWT 
serves as a valuable indicator of climate change and represents one of the essential cli-
mate variables to monitor the magnitude of change on a regional scale (Reinart & 
Reinhold, 2008). Lakes offer a robust proxy for assessing the impact of climate change, 
owing to their extensive research history, global distribution, and their immediate re-
sponsiveness to climate and environmental changes (Adrian et al., 2009).  
 
Therefore, it is important to consistently monitor the spatial and temporal dynamics of 
LSWT. The primary techniques employed for monitoring LSWT include in-situ meas-
urements, satellite remote sensing, and reanalysis products, the outcome of Land Sur-
face Models (LSM). In-situ measurements are point-based measurements that are usu-
ally taken in combination with other lake ecology parameters. While this method can 
yield highly accurate measurements, such pointed-based measurements are limited in 
their ability to adequately capture the spatial dynamics of LSWT due to the typically 
sparse network of measurement points. Moreover, the poor temporal sampling fre-
quency (bi-weekly or irregular intervals) of point-based measurements often fails to 
adequately capture temporal variations of LSWT. These disadvantages make the in-situ 
measurements almost unsuitable to monitor the spatial and temporal dynamics of large 
lakes (Reinart & Reinhold, 2008). 
 
The second method, satellite remote sensing, has been widely used to estimate LSWT. 
Previous studies have highlighted the utility of remote sensing in complementing the 
limited data coverage by leveraging the advantages offered by thermal sensors, as well 
as the enhanced spatial and temporal coverage. Satellite remote sensing enables the 
monitoring of LSWT changes on a global scale, with the generation of daily data. No-
table satellite sensors, such as the Moderate Resolution Imaging Spectroradiometer 
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(MODIS) (Chavula et al., 2009; Reinart & Reinhold, 2008), Thermal Infrared Sensor 
(TIRS) of Landsat 8 (Dyba et al., 2022) and the (A)ATSR-series (Llewellyn-Jones et 
al., 2001; MacCallum & Merchant, 2010; Schneider et al., 2009; Zhang et al., 2021), 
have been used and evaluated to investigate the temporal and spatial variations of 
LSWT in many lakes. Nevertheless, satellite remote sensing for LSWT estimation is 
susceptible to cloud influences, which frequently lead to data gaps or inaccurate esti-
mates (Long et al., 2020).  
 
The third method involves LSM which produces reanalysis products, consisting of 
many land variables, which are able to simulate lake water temperatures on an hourly 
basis under all weather conditions (Muñoz-Sabater et al., 2021; Stefanidis et al., 2022). 
The state-of-the-art reanalysis product, ERA5-Land, is generated by the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF) using their Integrated Forecast 
System (IFS). The IFS is a comprehensive numerical weather prediction system that 
includes an LSM component called the Hydrology Tiled ECMWF Scheme for Surface 
Exchanges over Land (H-TESSEL). The FLake model is included in the IFS, and it is 
a one-dimensional model that simulates the vertical temperature and water content pro-
files of a lake. To assure the accuracy of the model the location, the bathymetry and the 
preliminary condition of the lake are required. The Freshwater Lake model (FLake) is 
able to produce seven predictive variables to describe the state of the lake (Muñoz-
Sabater et al., 2021).  
 
ERA5-Land provides data on lake temperature at hourly and 0.1 °(9 km) spatial reso-
lution on the global scale (ECMWF, 2023). The spatial resolution is coarse compared 
to satellite products (e.g., MODIS 1 km) (Long et al., 2020). Previous studies have 
demonstrated the accuracy of ERA5-Land products in estimating LSWT. Stefanidis et 
al. (2022) used the skin temperature, total layer temperature, mix layer temperature and 
mix layer depth from the ERA5-Land product to investigate the water temperature 
change of 51 lakes across Europe. Another study evaluated and compared the ERA5-
Land lake mix layer temperature dataset with other satellite LSWT products (Glo-
boLakes and CGLOPS) to assess their performance for 11 lakes in North America. The 
lake mix layer temperature expresses the average temperature at the top water layer of 
a lake (Zhang et al., 2021). Both aforementioned studies demonstrated that it is suitable 
to use lake mix layer temperature to represent LSWT. In contrast, this study will not 
solely focus on the evaluation and comparison of different datasets, nor will it limit its 
LSWT products to LSM data alone. Instead, it will expand upon previous work by 
combining the reanalysis product with satellite LSWT products.  
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Previous studies have successfully addressed the issue of cloud gaps in satellite prod-
ucts by merging multiple data sources and employing gap-filling methods (Duan et al., 
2017; Zeng et al., 2018). For example, Duan et al. (2017) used passive microwave data 
to account for data gaps in MODIS due to cloud contamination. Passive microwave 
measurements have the advantage of penetrating through clouds, enabling temperature 
estimation even on cloudy days. However, passive microwave data typically have a 
lower spatial resolution (25 km) and relatively lower accuracy (RMSE: 3.5-4.4 °C) 
(Long et al., 2020). Zeng et al. (2018) filled the gaps of the satellite-derived Land Sur-
face Temperature (LST) data using NDVI data, but this NDVI-based approach is not 
suitable for water surfaces. Additionally, there have been attempts to merge satellite 
data with reanalysis products. Long et al. (2020) used the Enhanced Spatial and Tem-
poral Adaptive Reflectance Model (ESTARFM), which is a heritage of the spatial and 
temporal adaptive reflectance model (STARFM) developed by Feng et al. (2006), to 
combine MODIS LST data with the reanalysis product generated by the China Land 
Data Assimilation Model to investigate the land surface temperature dynamics. These 
studies demonstrated that the data fusion approach is able to merge two different prod-
ucts; However, all these studies focused on land surfaces rather than water bodies (Long 
et al., 2020).  
 
Lake Vänern, with a surface area of 5648 km2, is the largest lake in Sweden and the 
European Union. Currently, the limited number (only 3) of existing measurement sta-
tions has made it challenging to capture the spatial and temporal variations of Lake 
Vänern. Therefore, there is a need to obtain these variations by other methods. Satellite 
LSWT data offer the advantage of high spatial resolution, but they tend to be spatially 
and temporally incomplete due to cloud influences. On the other hand, the reanalysis 
product ERA5-Land can provide hourly and spatially complete LSWT data but with a 
very coarse spatial resolution. By combining the strengths of satellite and reanalysis 
products through a data fusion model like ESTARFM, it is possible to develop a solu-
tion for generating a spatially complete and daily continuous LSWT dataset. Therefore, 
this study aims to fuse satellite and ERA5-Land reanalysis products to leverage their 
advantages and create a spatially complete and daily continuous LSWT dataset for Lake 
Vänern. To achieve this, the accuracy of various LSWT products for Lake Vänern will 
be first investigated to determine the most suitable products for data fusion. There are 
several LSWT products available, however, first, the accuracy of these products for 
Lake Vänern needs to be investigated to further decide which product will be used in 
the data fusion. The study will access the accuracy of the MODIS, TIRS, Copernicus 
Global Land Operations (CGLOPS), GloboLakes and ACR-Lake LSWT products as 
well as the lake mixed layer temperature of the ERA5-Land product. To achieve the 
overall aim, three specific objectives are defined in this study: 
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(1) Evaluating the accuracy of multiple satellite-derived LSWT products and ERA5-
Land reanalysis product against in-situ measurements.  

(2) Developing and evaluating a data-fusion approach for generating a merged LSWT 
dataset. 

(3) Analyzing the spatial and temporal variability of LSWT in Lake Vänern using the 
generated LSWT dataset. 
 

This thesis will answer the following research questions: 
(1) Do satellite-derived LSWT products and the ERA5-Land product accu-

rately represent the LSWT of Lake Vänern when compared to previous 
studies? 

(2) Can the proposed data-fusion method fill data gaps in satellite-derived 
LSWT products and enhance the accuracy of LSWT estimates compared 
to the already existing LSWT products? 

(3) Does the generated LSWT product show a similar temporal and spatial 
pattern compared to previous studies? 

2 Theoretical background  
This chapter provides a theoretical background for the thesis, introducing fundamental 
concepts related to remote sensing. Furthermore, it explains how lake surface tempera-
tures can be estimated from satellite sensors and the reanalysis product ERA5-Land and 
finally, describes the concepts of the data fusion approach.  

2.1  Satellite remote sensing of lake surface water temperature 
Remote sensing is the process of observing the Earth's surface from a distance using 
instruments such as satellite sensors. This technique is based on physical theories that 
state that every object with a temperature above absolute zero (0 Kelvin) reflects and 
emits energy in every wavelength. Satellite sensors measure the reflectance of the Sun's 
light or the emission of electromagnetic (EM) radiation from objects on Earth, allowing 
for the identification and detection of properties of objects on a global scale (Read & 
Torrado, 2009).  

2.1.1 Electromagnetic spectrum 

EM radiation is energy transported in the form of photons with the properties of a wave 
traveling through space and time. It is swinging in all directions perpendicular to its 
travel direction (Emery & Camps, 2017). EM radiation can be characterized by two 
measures: wavelength and frequency. A wavelength describes the distance between the 
peaks of two waves and is expressed in units of length (meters, micrometres (µm) or 
nanometres (nm)). The frequency is defined as the number of cycles per one-second 
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period and has its units in hertz (Hz), megahertz (MHz) or gigahertz (GHz) (Martin, 
2014). Wavelength and frequency are inversed to each other, meaning that a higher 
frequency results in shorter wavelengths (Emery & Camps, 2017). The transported en-
ergy (E) can be described in following equation: 

𝐸 = 𝑓 × ℎ       
 
where f is the frequency and h represents the Planck constant (6.62607×10−34 J·s). EM 
radiation is commonly described as a flux of energy or power, in either joule per second 
or Watts (W), radiation incident on or emitted by an object (Martin, 2014).  
 
The EM radiation spreads over a large spectrum of wavelengths and frequencies and 
can be split into different ranges along the EM spectrum (Figure 1). The most known 
spectrum is the visible range between 0.4 to 0.7 µm (10-7). Since it is the range in which 
the human eye can detect EM radiation and therefore contains a lot of essential infor-
mation for the human. The satellite sensor, however, captures a wider part of the EM 
spectrum, which makes remote sensing an important asset to humanity. It detects 
shorter wavelengths known as gamma, X-ray and ultraviolet but also longer wave-
lengths in the near-infrared (NIR) (10-7- 10-5), thermal infrared (TIR) (10-5 to 10-3 m) 
up to microwave (1 mm to 1 m) range. The radiation in the shorter wavelength up to 
the NIR is mainly reflected radiation from the sun, while the mid and longer infrared 
wavelengths contain wavelengths emitted by an object making them important for the 
determination of thermal properties (Emery & Camps, 2017).  

 

 
Figure 1. Electromagnetic spectrum. Modified from Emery & Camps, 2017; Martin et al. 2014. 

The radiation received or emitted by a surface can be expressed as the radiant flux den-
sity (ΔΦ), which is measured in W/m2. The received radiation at the surface coming 
from an external source is called irradiance, while the emitted radiance from a surface 
is defined as the exitance. The intensity of radiation is the radiant flux density for a 
solid angle, which can be described as the flux of radiation traveling from a point source 
through a cone in a certain angle onto a surface measured in W per steradians (Emery 
& Camps, 2017). The intensity can be further defined as radiance (L), which can be 
described in the following equation:  
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𝐿 = 	 ∆!"
∆#∆$%&'(

       (2) 

Radiance describes the radiance flux (ΔΦ) emitted by a surface (∆A) for a solid angle 
(∆Ω) and certain incline (𝜃) for a given direction. Radiance represents the measure that 
is detected by satellite sensors in W m-2 sr-1 (Martin, 2014). 
 
The radiance from each of the spectra can be used to observe and identify different 
properties of objects. The variation of the reflected, absorbed or transmitted energy of 
an object by wavelength can be described as the spectral signature (Emery & Camps, 
2017). However, the energy also varies with different angles of incidence and is influ-
enced by atmospheric conditions. Therefore, objects can rather be distinguished based 
on their spectral response patterns than their spectral signature (Read & Torrado, 2009).  

2.1.2 Estimation of lake surface water temperature using remote sensing 

As stated before, the longer infrared wavelengths can be used to determine the thermal 
properties of objects. This is done using the TIR channels of a sensor. Either way, the 
measured radiance at the sensor can only be converted to the top of the atmosphere 
temperature (TOA) and that is why it is necessary to determine the ground emissivity 
which can be achieved by the normalized difference vegetation index, also known as 
NDVI. The ground emissivity and the top of the atmosphere temperature can be used 
to calculate the land surface temperature (Avdan & Jovanovska, 2016). Furthermore, a 
water/land mask as well as land cover information is used to distinguish between land 
and water. The previous steps are conducted using algorithms. The most common al-
gorithms to generate LST products, which include LSWT data, are the single-channel, 
the split-window/dual-window, the temperature and emissivity separation as well as the 
physics-based day/night algorithm. The single-channel and the split-window/dual-win-
dow require the land surface emissivity to estimate, but the processing can be consid-
ered simple (Li et al., 2023). Sensors such as TIRS and MODIS use the single-channel 
(TIRS) and the split-window/dual-window (MODIS) algorithms to generate LST prod-
ucts (Li et al., 2023; Sayler, 2023; Wan, 2006). The other two algorithms are able to 
generate the LST without knowing the emissivity, however, they also come with their 
disadvantages such as complexity and their dependency on the accuracy of the atmos-
pheric correction and geometric registration.  
 
The ASTER sensor onboard of Terra platform uses temperature and emissivity separa-
tion algorithm to generate its LST product. The physics-based day/night algorithm is 
used to generate the 8-days, 16-days and monthly 6 km spatial resolution level 3 LST 
products of MODIS (Li et al., 2023). Not only the LST can be estimated using the 
thermal bands of the sensors, further the LSWT can be determined by it. ARC-Lake is 
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a LSWT dataset, which was generated using the ATSR series. This was done by com-
bining the three infrared channels of the ATSR-1, ATSR2 and AATSR. The authors 
used a simplified version of the inverse problem, which was originally used to deter-
mine sea surface temperature. The LSWT was estimated using the optimal estimation 
method. The method combines observations of the lake's surface water temperature 
with information about the predicted state of the atmosphere in terms of total column 
water vapor to account for the influence of clouds (MacCallum & Merchant, 2012). The 
microwave spectrum is used to distinguish between vegetation, snow as well as surface 
and ocean roughness (Emery & Camps, 2017). The radio wavelengths at about 1 m are 
mostly used for communication applications and are therefore not relevant for remote 
sensing (Martin, 2014).  

2.1.3  Satellite sensors 
Satellites are equipped with different sensors which detect the reflected and emitted EM 
radiance by objects for different wavelengths. This is called multispectral remote sens-
ing (Emery & Camps, 2017), where the sensor measures simultaneously different 
ranges within the EM spectrum to generate bands for each wavelength (Read & 
Torrado, 2009). The most used wavelengths are in the visible and infrared spectrum. 
Nevertheless, atmospheric conditions such as clouds, fog and aerosols are disturbances 
in these wavelengths that affect the accuracy of these measurements (Martin, 2014). 
The sensor stores the received signal as digital numbers which can be used to analyse 
the radiance numerically or visualise the variation of the photon’s intensity with differ-
ent wavelengths (Emery & Camps, 2017).  
 
Over the past decades, numerous satellite missions have been launched, each charac-
terized by unique technical properties. The main differences among these missions lie 
in their temporal, spatial, spectral, and radiometric resolutions. The different resolutions 
determine various aspects, such as their revisit time, the size of the smallest detectable 
object, the number of bands as well as the number of brightness pixels (Read & Torrado, 
2009). One notable satellite mission is the ERS-2 mission, which was launched in 1995 
and ended in 2011. The mission featured a platform equipped with seven sensors, each 
serving various applications (ESA, n.d.-b). The primary goals of the mission were to 
study sea surface temperatures, winds, and atmospheric ozone. One of the onboard sen-
sors was the ATRS-2 which had 7 bands ranging between the visible and the thermal 
spectrum. The spatial resolution was 30 m with a revisit time of 35 days (EoPortal, 
2012). The thermal bands of the ATSR-2 sensors were utilized to contribute to the pro-
duction of the GloboLakes LSWT product (MacCallum & Merchant, 2012). 
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The Envisat mission was launched in 2002 and extended the ERS mission with more 
instruments, however, the mission ended in 2012. The platform carried 10 sensors such 
as the AATSR. The objective of the mission was to investigate atmospheric chemistry 
and ocean studies (ESA, n.d.-a). The AATSR sensor was a heritage of the ATSR2 sen-
sor. The sensor was designed to measure sea surface temperature using its seven bands 
ranging between the visible and TIR part of the spectrum with a spatial resolution of 1 
km (Llewellyn-Jones et al., 2001). The AATSR sensor contributed, like ATSR2, to the 
GloboLakes LSWT product (MacCallum & Merchant, 2012). 
 
The Terra/Aqua satellite is a mission that has operated since February 2000 up until 
today. The platform hosts several sensors such as MODIS, the Advanced Spaceborne 
Thermal Emission and Reflection Radiometer, Clouds and Earth Radiant Energy Sys-
tem, Multi-angle Imaging SpectroRadiometer and Measurement of Pollution in the 
Troposphere. The satellite operation is observing the atmosphere, land surface and 
oceans as well as snow, ice and energy budget (NASA, 2023). MODIS has a high tem-
poral resolution with a revisit time of at least once a day, it also covers 36 spectral bands 
which range between 250 and 1000 m spatial resolution (Read & Torrado, 2009). Since 
MODIS has this high spatial-temporal and spectral resolution it is very useful for many 
applications, which vary between cloud detection, estimation of LST up to photosyn-
thetic activity (NASA, 2023). The LST product of MODIS is covering water bodies as 
well, which enables the monitoring of LSWT.  
 
Another satellite mission launched in early 2000 was the MetOpA satellite, which 
started in 2006 and ended in 2021 (Eumetsat, n.d.). The satellite carried, among others, 
the Advanced Very High-Resolution Radiometer (AVHRR) sensor which has a tem-
poral resolution of a day, and measures radiation with five bands with a spatial resolu-
tion of 1.1 km. Originally, the sensor was built to globally monitor clouds, land surface 
temperature and vegetation, but, it was also used to observe fires, volcanic activity, 
radiation, snow and ice (Xiong et al., 2018). The AVHRR sensor was also utilized to 
contribute to the GloboLakes dataset (MacCallum & Merchant, 2012) 
 
Relative new missions are the Landsat 8 and Landsat 9 satellite. The Landsat 8 has been 
operating since February 2013 and is continuing. The platform hosts two sensors the 
operational land image and TIRS with a temporal resolution of 16 days. The former 
covers nine spectral bands with eight of them with a spatial resolution of 30 m and one 
with 15 m. The latter has a temporal resolution of 16 days and two bands in the thermal 
infrared regime with a spatial resolution of 100 m. The thermal sensors of Landsat 8 
can be used to estimate lake temperatures. The Band 10 of the collection 2 level 2 data 
represents the computed surface temperature, which also includes LSWT (Ihlen, 2019). 
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Other relatively new satellite operations are the Sentinel-3A satellite, which was 
launched in 2016, and its twin satellite Sentinel-3 B in 2018. On the Sentinel-3A four 
sensors are installed, namely Ocean and Land Colour Instrument, the Sea and Land 
Surface Temperature Radiometer (SLSTR), Synthetic Aperture Radar Altimeter and 
the Microwave Radiometer. The sensors serve different purposes such as monitoring 
sea level and sea surface temperature, land cover mapping, vegetation health and others. 
The sensors vary in their temporal, spatial and spectral resolution. The SLSTR sensor 
has a temporal resolution of 27 days and covers 9 spectral bands with a spatial resolu-
tion of 500 m for the visible range and 1 km for the thermal infrared channels. The 
Ocean and Land Colour Instrument has the same temporal resolution as the SLSTR, 
however, it has 21 spectral bands and a higher spatial resolution of 300 m (ESA, n.d.-
c). The CGLOPS LSWT product is an outcome of the SLSTR sensor, where the SLSTR 
sensor is used to generate LSWT estimations since 2016 (Carrea & Merchant, 2020b).  

2.2  ERA5-Land reanalysis product for lakes  

The land surface is only one part of the earth’s complex system but since its processes 
affect society and ecosystems it is important to model the changes of these processes 
due to climate change to make projections of how society will be affected. This can be 
done through LSM, which are models that offer the ability to solve complex interactions 
between the land surface and the atmosphere which includes water, energy, and carbon 
fluxes, through a numerical approach. They also consider direct and indirect anthropo-
genic impacts as well as ecological dynamics (Fisher & Koven, 2020). The original 
purpose of LSM was to set physical boundary conditions to model the impact of the 
land surface on the atmosphere. LSMs have since then further developed and cover 
nowadays a range of land surface processes such as surface hydrology, soil moisture 
dynamics and land surface heterogeneity (Pal & Sharma, 2021).  
 
A commonly used product generated by the H-Tessel LSM is the ERA5-Land reanaly-
sis product, which is able to generate various variables that represent the state of land 
components. ERA5-Land is based on the ERA5 and takes advantage of its atmospheric 
forcing. The spatial resolution of ERA5-Land (9 km) is higher compared to ERA5 (31 
km). ERA5-Land is based on the H-Tessel model using version CY41R2 which is pro-
vided by the ECMWF IFS. The ERA5-Land data covers a 31 km horizontal grid and 
divides the atmosphere into 137 layers between the Earth’s surface and an 80 km height 
which makes it a finer and more frequent product compared to previous products 
(Muñoz-Sabater et al., 2021). It is based on a single simulation, which improves the 
computing time of the model. The model's purpose is to simulate the surface exchanges 
including the land surface hydrology (ECMWF, 2023). The ERA5-Land product 
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includes the FLake. It is a one-dimensional model which works with the assumption 
that the temperature profile of a lake has a specific shape. The lake is separated into 
two layers, the uppermost (mixed) and the bottom (thermocline) level. The model pro-
vides several variables to represent the state of a lake: mix layer temperature which 
represents the average uppermost layer’s temperature of lakes, the mixed-layer depth 
describing the thickness of the top layer, the bottom temperature, the mean temperature 
of the water column as well as the surface temperature of the upper ice as well as its ice 
thickness (Muñoz-Sabater et al., 2021; Zhang et al., 2021). ERA5-Land is able to gen-
erate spatially complete datasets of LSWT (Zhang et al., 2021) with high accuracy 
(Muñoz-Sabater et al., 2021; Stefanidis et al., 2022), as well as its higher spatial reso-
lution compared to other reanalysis products, thus the ERA5-Land data will be further 
used in this study.  

2.3 Data fusion concepts  

Data fusion can be described as the approach of merging different data sources together 
to gain an improved dataset (Zhang, 2010), which either supplements the incomplete 
data of one sensor with data from other sensors or improves the estimation of a dataset 
by combining different data sources (Schmitt & Zhu, 2016). Schmitt and Zhu (2016) 
divided the methods of data fusion into four steps: data alignment, data correlation, 
attribute estimation and identify assessment. The first two steps validate that the data 
sources have a relationship with each other but also with the research object. The data 
alignment makes sure that the transformation, the units, and the spatial and temporal 
resolution of the object of interest correspond with each other between each input var-
iable to gain a universal representation. The last two steps can be described as data 
fusion, which is the combination of aligned and correlated data. The aim of the steps is 
the optimization of the object of interest by fusing the information from different 
sources in an accurate framework (Schmitt & Zhu, 2016).  
 
In the last decades, a range of various data fusion methods have been developed to 
advance the spatiotemporal resolution of datasets such as the Spatial and Temporal Ad-
aptative Reflectance Model (STARFM) (Feng et al., 2006) or the flexible spatiotem-
poral data fusion method (Zhu et al., 2016). The approaches aimed to fuse satellite 
products varying in their spatial and temporal resolution to synthesize their advantages. 
This was achieved by blending sources with a high spatial but low temporal resolution 
(e.g., Landsat) with low spatial but high temporal resolution data (e.g., MODIS). In 
STARFM a set of fine and coarse-resolution images, acquired at the same time, as well 
as one coarse image at a prediction time is needed to forecast the pixel value of the fine-
resolution image at the prediction time. The model searches for similar pixels within a 
moving window using fine-resolution data. Furthermore, the quality of the pixels needs 
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to be ensured to then weight the pixels based on their spectral, temporal and spatial 
distance using the fine and coarse data. The previous step is then used to predict the 
fine-resolution pixel (Feng et al., 2006).  
 
In terms of data fusion for temperature retrieval purposes, previous studies have used 
data fusion models such as the ESTARFM (Long et al., 2020), a heritage of STARFM, 
multiresolution Kalman filter algorithm (Dong et al., 2022) to combine satellite and 
LSM data to fill gaps in the satellite data, conquer the scale difference between the 
sources, gain high spatial and temporal resolution and improve their accuracy. Dong et 
al. (2022) were able to generate a spatially complete and hourly LST available dataset 
that followed the spatial pattern and diurnal variation of LST well. The algorithm is 
based on the Kalman filter, but instead of treating the temporal dimension, it addresses 
the scale differences between different data sources. The multiresolution Kalman filters 
from the fine to the coarse resolution but also smoothens from the coarse to the fine 
resolution, which leads to spatial complete data (Dong et al., 2022). The validation of 
the proposed method reported an RMSE of 3.08-3.38 °C (Dong et al., 2022). Other 
methods such as the ESTARFM data fusion approach, used by Long et al. (2020), in-
dicated a similar accuracy with an RMSE ranging between 2.77 and 3.96 °C. ES-
TARFM was developed to combine data sources with different spatial and temporal 
resolutions to make use of their advantages, to finally, gain a high spatial and temporal 
resolution dataset. This was achieved by integrating a linear spectral mixing model, 
consideration of distances between pixels and their similarity as well as their temporal 
correlation (Long et al., 2020). The different data fusion methods have shown that the 
combination of multisource data is able to fill gaps in satellite data, gain a high spatial 
and temporal resolution and finally, is able to keep a high accuracy.  

3 Study area 
The study focuses on Lake Vänern in Sweden, which is the largest lake in the European 
Union (58-60°N 12-14 °E) (Figure 2). The area of interest covers 5648 km2 and is in-
fluenced by a maritime on the border to Central European climate (Reinart & Reinhold, 
2008). Lake Vänern hosts a variety of fish communities and is an important freshwater 
supplier for the region. The lake's temperature varies spatially, due to the large size of 
Lake Vänern. During the winter months, Lake Vänern rarely freezes, only in areas close 
to the shore (Kvarnäs, 2001). The bathymetry of Lake Vänern is characterized by two 
basins which are located on the West and East of the lake. The maximum depth is about 
100 m which is reached in the southwest as well as in the centre of the eastern part of 
the lake (Figure 2). 
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Figure 2. Location and three in-situ measuring stations and bathymetry of Lake Vä-
nern based on data from European Environment Agency, Eurostat and GLOBathy. 
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4 Data and methodology 
This study utilized data from multiple satellite sensors, resulting in five satellite LSWT 
products, as well as in-situ measurements and ERA5-Land reanalysis output. The used 
datasets and their spatial resolution, temporal length and data source can be retrieved 
from Table 1.  
 
Table 1. Summary of in-situ measurements, satellite LSWT products and ERA5-Land 

reanalysis product along with their data source, spatial and temporal properties. 

Satellite 
mission 

Source/ 
Sensor 

Dataset Spatial/ 
temporal  
resolu-
tions 

Temporal 
length 

Data Source 

/ In-Situ / 
Point / ~ 
10/year 

 

1973 - 
2022 

miljo-
data.slu.se 

/ ERA5-Land 
Lake Mix-

Layer  
Temperature 

0.1 ° (9 
km) / 
hourly 

1950 –  
today 

cds.cli-
mate.coperni-

cus.eu 
Terra/ 
Aqua MODIS MOD11A1 

1 km / 
daily 

2000 –  
today 

earthdata.nasa
.gov 

Landsat 8 
TIRS Band 10 

100 m /16 
days 

2013 –  
today 

usgs.gov 

ERS-2 / 
ENVISAT 

ATSR2 / 
AATSR 

ARC-Lake 
0.05°/ 
daily  

average 

1995 – 
2012 

laketemp.net 

ERS-2 / 
ENVISAT 
/ MetOpA 

ATSR2 / 
AATSR / 
AVHRR 

GloboLakes 
0.025° / 

daily  
average 

1995 – 
2016 

cata-
logue.ceda.ac.

uk 

ENVISAT 
/  

Sentinel-3 

AATSR / 
SLSTR 

CGLOPS 

0.0083 (1 
km) / 10 

days  
average 

2002-2012 
2016- 
today 

 

land.coperni-
cus.vgt.vito.b

e 

 
4.1  In-situ measurements 

The in-situ measurements utilized in this study were collected from three observation 
stations located in Lake Vänern: Tärnan, Megrundet and Dagskärsgrund (Figure 2). In-
situ measurements from those three stations for Lake Vänern are available from 1973 
to the present (Table 1), the measurements were taken at different depths between April 
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and October, but this study focuses on LSWT and thus we only used measurements 
within the first 0.5 m depth. The dataset shows variation in the number of measure-
ments, for some years with a minimum of five measurements in 2011 and a maximum 
of ten measurements in 2004, 2006 and 2019. The complete dataset spanning the entire 
temporal length was utilized in this study to evaluate the performance of satellite and 
reanalysis products.  

4.2  Satellite LSWT products 

A total of five satellite LSWT products were evaluated in this study, each providing 
coverage over different spatial extents and temporal lengths. The specific properties of 
these products are summarized in Table 1.  

4.2.1  MODIS 
The land surface temperature/emissivity Level 3 product (MOD11A1) of Collection 6.1 
was utilized in this study to evaluate the accuracy of the product compared to the in-
situ measurement. The LST product is available daily with a spatial resolution of 1 km 
in a 1,200 by 1,200 km grid. MODIS passes Lake Vänern approximately at 9:30 am 
(Reinart & Reinhold, 2008) and therefore, the MODIS daytime LST product was cho-
sen. The product is a Level 3 product and was obtained from the MOD11_L2 swath 
product (Wan et al., 2021). The evaluation of the product was conducted through the 
comparison with in-situ measurements on clear days following the common practices 
(Duan et al., 2019; Wan et al., 2004).  

4.2.2  TIRS 
The thermal infrared sensor (TIRS) installed on Landsat 8 obtains the surface temper-
ature of the Earth. The used surface temperature data was derived from the Landsat 8 
Collection 2 Level 2 data which was created with a single channel algorithm from band 
10 of the Level 1 data using TOA reflectance, TOA brightness temperature, advanced 
spaceborne thermal emission and reflection radiometer global emissivity dataset data 
and normalized differenced vegetation index, atmospheric profiles of geopotential alti-
tudes, humidity data, reanalysis data of and air temperature (Sayler, 2023). The valida-
tion of the Landsat LST product over water surfaces was conducted at nine sites at the 
border between Canada and the USA. The validation results reported RMSE values of 
1.1 °C, 0.9 °C and 0.9-1.3 °C for Lake Eri, Lake Superior and Lake Michigan, respec-
tively (Duan et al., 2021).  

4.2.3 GloboLakes 
The GloboLakes dataset contains daily estimates of LSWT with a 0.05 °C spatial reso-
lution for 1000 lakes between 1995 and 2016. The estimates were derived from multiple 
sensors namely the AVHRR, AATSR and the ATSR2 using the optimal estimation 
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algorithm. The satellite data was harmonized with each other to gain a finer resolution 
than its predecessor ARC-Lake and to extend its temporal length as well as the number 
of processed lakes (Carrea & Merchant, 2019). 

4.2.4 CGLOPS 
CGLOPS is a 10-day averaged LSWT product that provides similar to GloboLakes 
1000 lakes in a spatial resolution of 1 km. The data can be split into three types: histor-
ical, reprocessed and near-real-time. The historical data were obtained from the AATSR 
sensor, covering the period from 2002 and 2012. The reprocessed and near real-time 
data were obtained by the SLSTR-A and SLSTR-B sensors operating on Sentinel-3. 
Specifically, the LSWT data were obtained from SLSTR-A for the period between 
April 2018 and August 2020. However, the SLSTR-A data obtained between June 2016 
and April 2018 represented reprocessed data due to technical issues. From August 2020 
onwards, the SLSTR-A data was combined with the tandem sensor SLSTR-B to en-
hance the quality of the LSWT product. The LSWT product is based on Level-3 data, 
which have been divided into intervals corresponding to specific time periods within a 
month. These intervals cover the 1st to the 10th, 11th to the 20th, and the 21st until the end 
of the corresponding month (Carrea & Merchant, 2020b). The evaluation of the product 
was conducted through the comparison with in-situ measurements and quality control 
during and post-processing. Additionally, the reprocessed data was evaluated against 
the near real-time data. The combined LSWT obtained from SLSTR-A and B was com-
pared against the measurements of SLSTR-A to show the improvement of the product 
by incorporating SLSTR-B (Carrea & Merchant, 2020a). The validation of CGLOPS 
reported a mean bias of < -0.469 °C for AATSR derived and < -0.375 °C for SLSTR-
A LSWT with a quality level above three. The 10-day average product validation for 
Lake Vänern indicated a high accuracy with a mean bias of -0.139 °C for AATSR and 
-0.104 °C for SLSTR-A (Carrea & Merchant, 2020a).  

4.2.5  ARC-Lake 
The ARC product contained two LSWT datasets derived from the ATSR2 and the 
AATSR sensors, installed on the ERS-2 and ENVISAT satellites, respectively. From 
the ARC dataset, two LSWT sets were retrieved the datasets obtained by the ATSR2 
and AATSR satellites (Table 1) (Merchant & Maccallum, 2018a). The temporal cover-
age of the product was from 1995 until 2012, covering approximately 250 lakes with a 
spatial resolution of 0.05 °. For each sensor, a day and a night dataset were provided. 
The used product contained unaveraged per lake estimations split into observations or 
reconstructions on a daily timestep. For this study, only the daytime observational data 
was used. The author created the dataset by first applying a Bayesian approach to detect 
clouds, next the optimal estimation algorithm was used to retrieve the LSWT (Merchant 
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& Maccallum, 2018a). The dataset was validated by comparing the LSWT estimation 
with 54 in-situ measurements across 18 lakes with a mean bias of -0.34 °C (MacCallum 
et al., 2013) 

4.3  ERA5-Land reanalysis product 

This study used the ERA5-Land product which is obtained from the ECMWF. The data 
is an hourly reanalysis product covering the time range from 1950 up to today. The 
reanalysis product was chosen because of its high temporal resolution and its relatively 
high spatial resolution. The ERA5-Land data has been validated against in-situ meas-
urements of 51 lakes across Europe and North America (Stefanidis et al., 2022; Zhang 
et al., 2021). In this study, the lake mix layer temperature dataset was used as a repre-
sentation of the LSWT. Previous studies have demonstrated the dataset's capability to 
accurately represent LSWT, reinforcing its suitability for use in this study (Zhang et al., 
2021). Zhang et al. (2021) have pointed out that the in-situ measurements are taken at 
a different depth compared to satellite estimation which represents the skin temperature 
of the lake, while the mix layer temperature dataset of ERA5-Land represents the aver-
age temperature of the lake’s top layer (Zhang et al., 2021). The data was retrieved daily 
for the time period between 1973 and 2022 to cover the temporal length of the in-situ 
measurements. The spatial resolution of the ERA5-Land product is 9 km (Table 1). To 
ensure consistency and comparability with the respective LSWT products, the ERA5-
Land data underwent a resampling process. The spatial resolution was adjusted to match 
the size of each specific LSWT product, ensuring that the datasets are aligned and can 
be effectively compared and analysed in the study.  
 
4.4  Data fusion and bias correction 

4.4.1  Overall data fusion framework  
Figure 3 shows the overall framework used in the study. The study followed the meth-
odology outlined by Long et al. (2020), which was supplemented with an additional 
step to compare and evaluate the accuracy of the satellite and reanalysis products 
against the in-situ measurements. After the comparison, the satellite products were split 
into cloudy and cloud-free days. The cloud-free days were used to feed into the ES-
TARFM model by Zhu et al. (2010), which fused the coarse spatial resolution ERA5-
Land data with the fine resolution satellite data to generate a spatially complete and 
daily available LSWT dataset. The detailed steps of the model will be further explained 
in Chapter 4.4.2. Subsequently, the newly generated dataset underwent bias correction 
using the cloud-free pixels on cloudy days through linear and variance scaling. Finally, 
the bias-corrected dataset was evaluated using the in-situ measurements. The fusion 
model ESTARFM and the corresponding bias correction were selected based on the 
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findings of Long et al. (2020), which demonstrated their ability to generate a highly 
accurate LST dataset with a high spatial and temporal resolution. Furthermore, the pro-
posed method eliminated the need for additional data reconstruction, unlike other ap-
proaches such as gap-filling methods.  

 

 

 
Figure 3. Overall data fusion framework. Modified from Long et al., 2020 & Zhu et al., 2010. 

4.4.2  Pre-processing for data fusion and theoretical introduction of ESTARFM  
The used data fusion model in this study is the ESTARFM by Zhu et al. (2010). For the 
implementation of the model, it was necessary to first resample the ERA5-Land data to 
the resolution of the satellite-derived LSWT product. This was done using the bilinear 
resampling method. Further, the satellite LSWT product was split into two subsets 
based on if the day corresponds to a clear or cloudy day. This chapter will discuss the 
data fusion method used, as well as the bias correction applied to the fused LSWT prod-
uct. The bias correction was chosen to correct a systematic error in the fusion model. 
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Long et al. (2020) were able to significantly reduce the systematic error by following 
the steps outlined in the proposed bias correction (Chapter 4.4.2.3).  

4.4.2.1  Division of datasets  
The first step in implementing the model involved dividing the data from each satellite 
product into two groups: cloud-free days and cloudy days. This was done by examining 
specific layers within the product or quality flags associated with each satellite product. 
The approach by Long et al. (2020) was followed for MODIS, where a pixel with a 
quality flag of “cloud” and a “LST error > 3 K” was defined as a cloudy pixel. Addi-
tionally, days with pixels that did not have a corresponding LSWT value were also 
classified as cloudy days. For the ARC-Lake product, the division was based on the 
number of cloudy pixels present on each day. If the number of cloudy pixels exceeded 
zero, the day was considered as cloudy. According to the CGLOPS documentation, the 
effect of clouds had already been considered and a cloud detection algorithm was used 
to create the product. Therefore, days with pixels that contained no data or poor-quality 
levels were defined as cloudy days. For the GloboLakes product, the division was based 
on the quality of the data. Days with pixels lower than the quality flag of 4 were defined 
as cloudy days. For TIRS the pixel quality assessment band provided cloud confidence 
data, which was utilized to identify cloudy days.  

4.4.2.2  Theoretical basis of ESTARFM 
This study followed the data fusion approach ESTARFM proposed by Zhu et al. (2010). 
The ESTARFM is an advancement of the STARFM model developed by Feng et al. 
(2006). The STARFM has demonstrated its effectiveness in generating satellite-sensed 
data at a high spatial and temporal resolution. However, it does have limitations, par-
ticularly in heterogeneous landscapes. These limitations prompted the development of 
ESTARFM, which leverages the correlation between high and low spatial resolution 
data to obtain a high-resolution and temporally continuous dataset while also reducing 
systematic biases. Originally, the ESTARFM was developed to generate daily surface 
reflectance from MODIS and Landsat imagery. Long et al. (2020) was the first study 
that demonstrated the use of the ESTARFM for fusing LST. 
 
The ESTARFM model requires a minimum of two pairs of coarse (e.g., ERA5-Land) 
and fine (e.g., MODIS) images acquired on the same day, as well as a coarse image for 
the desired prediction day. The underlying assumption of the model is that data obtained 
from different products for the same region are correlated and comparable, with mini-
mal systematic bias, as long as they are acquired simultaneously and appropriately pre-
processed. The pre-processing steps involve radiometric calibration, atmospheric cor-
rection, geometric rectification, and resampling of the coarse data to match the spatial 
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resolution of the fine data source. The model can be divided into four main steps (Figure 
3). Firstly, the two fine-resolution images (F) are utilized to identify pixels within a 
moving window that exhibit similar characteristics. Subsequently, weights are calcu-
lated for these similar pixels, and conversion coefficients are computed through linear 
regression. Finally, the conversion coefficients and weights are applied to the coarse 
image (C) to generate temperature estimations for the fine-resolution image on the pre-
diction date (Zhu et al., 2010). The model is based on a linear spectral mixing model, 
which can be expressed as followed: 

𝐹!"𝑥"/$, 𝑦"/$, 𝑡%' = 	𝐹"𝑥"/$, 𝑦"/$, 𝑡!' ++𝑊& 	𝑉&(𝐶(𝑥& , 𝑦& , 𝑡%) − 𝐶(𝑥& , 𝑦& , 𝑡!)
'

&()

 

where F and C correspond to the fine and coarse spatial resolution LSWT, respectively; 
the size of the moving window is expressed as w with the central pixel at the location 
xw/2,yw/2 ; tk represents the time of the acquired high-resolution LSWT (k = m, n) while 
tp is the prediction time; the number of pixels is expressed by N; the weight and the 
conversion coefficient of the similar pixel i can be described as Wi and Vi, respectively. 
 
The calculation of the high-resolution LSWT at the prediction time is based on the high-
resolution LSWT acquired at a known time and the weights and conversion coefficients 
of similar pixels found in the coarse resolution LSWT. The weight of a similar pixel is 
determined by its similarity between the fine and coarse resolution image and its dis-
tance to the center of the moving window. A shorter distance and higher similarity lead 
to a higher weight of the similar pixel. The similarity is calculated by the correlation 
coefficient between the similar pixel and its corresponding coarse-resolution pixel. The 
similarity is based on the correlation coefficient of the similar pixel and the correspond-
ing coarse-resolution pixel. To improve the accuracy of the calculations of the high-
resolution temperature product a temporal weight was applied based on the distance to 
the prediction date (Zhu et al., 2010). The final high-resolution LSWT can be calculated 
using the equation below:  
         

𝐹"𝑥"/$, 𝑦"/$, 𝑡%' = 	𝑇* ∗ 𝐹*"𝑥"/$, 𝑦"/$, 𝑡%' +	𝑇+ ∗ 	𝐹+"𝑥"/$, 𝑦"/$, 𝑡%'	  
 
where the variables used in the previous equations were supplemented with Tk as the 
temporal weight, which indicates the magnitude of change between the coarse reso-
lution LSWT at time tk and the prediction time tp.  

4.4.2.  Bias correction 
The ESTARFM model reduces the systematic biases of the used data, however, the bias 
might not be completely eliminated. Therefore, an additional bias correction approach 
was used by Long et al. (2020) to minimize the bias of the final fused results. We tested 
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this additional bias correction approach in our study. For this approach, the systematic 
biases were eliminated by using clear pixels of cloudy days from the fine-resolution 
LSWT product. The first step involved employing a linear scaling approach, which cal-
culated the difference of the mean of the fused LSWT of clear pixels on clear days (TDa) 
and the LSWT of clear pixels on cloudy days (TMa) using this equation:  

𝑏𝑖𝑎𝑠 = 	𝜇(𝑇,-) − 𝜇(𝑇.-)  

The calculated bias was then subtracted from the fused LSWT values before the linear 
scaling to obtain a linear-corrected fused LSWT (TDb).    

𝑇,/ =	𝑇,- − 𝑏𝑖𝑎𝑠       

In addition to the linear scaling approach, a variance scaling approach was imple-
mented. This was done by normalizing TDb by subtracting its mean (μTDb) to shift the 
mean to zero. The normalized LSWT was expressed as TDc. Furthermore, the standard 
deviation of the difference was scaled using the ratio of the standard deviation of TMa 
and TDc and was finally summed up with the mean of the scaled-corrected LSWT.  

𝑇,0 = 𝑇,/ − 𝜇(𝑇,/)       

𝑇,1 = 𝜇"𝑇,/' + 𝑇,0
2(4!
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2(4#
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TDb was further adjusted by dividing it by its standard deviation (std (Tbd)) and finally, 
bias-corrected by multiplying it by the standard deviation of Tbd (std (Tbd). 

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑	𝐿𝑆𝑊𝑇 =
𝑇,/

𝑠𝑡𝑑(𝑇,/)
 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑	𝐿𝑆𝑊𝑇 = 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑	𝐿𝑆𝑊𝑇 ∗ 	𝑠𝑡𝑑(𝑇,1) 

4.5  Evaluation of LSWT products and fused dataset against the in-situ measure-
ments 

The in-situ measurement represents a point measurement of the LSWT, while the sat-
ellite LSWT products have a spatial resolution ranging from 100 m up to 5 km. This 
spatial mismatch can introduce bias, especially when coastline pixels are included. 
Therefore, it is essential to consider this spatial mismatch when comparing the in-situ 
measurements with satellite data. Previous studies have mitigated the effects of spatial 
mismatch by employing a 3x3 grid centered around each measurement station (Reinart 
& Reinhold, 2008; Schneider et al., 2009). The grid accounts for the possible error due 
to shoreline pixels and simultaneously represents are large area of the lake (Schneider 
et al., 2009). The satellite pixels within the 3x3 grid were averaged and the standard 
deviation for each pixel within the grid was calculated to identify areas with homoge-
nous temperatures. If the standard deviation of a pixel was above 0.75, then the 



 

  21  

corresponding data was rejected (Reinart & Reinhold, 2008). This procedure was ap-
plied for all satellite-derived LSWT products, as well as for the fused and bias-corrected 
LSWT product.  
 
Additionally, the correctness of each pixel was accessed for the products with a quality 
control layer. For the CGLOPS and GloboLakes products, only pixels with a quality 
flag higher than 3 were considered, ensuring that only pixels with acceptable or higher 
quality were included in the analysis. For the MODIS product, the data needed to be 
considered as good data and the LST error below 3. The TIRS data was only used when 
the quality layer indicated clear skies. For ARC-Lake no quality control layer was avail-
able, therefore, no quality control requirement was applied. 
 
The ERA5-Land product was also compared to the in-situ measurements. Due to the 
high difference in spatial resolution between the LSM data and the in-situ measure-
ments, it was decided to follow a station-based observation space approach which was 
previously used in Yilmaz (2023). The approach obtained the LSWT value of the 
ERA5-Land dataset for the cell in which the observation station was located (Yilmaz, 
2023).  
 
To evaluate the accuracy of each LSWT product and the fused dataset against the in-
situ measurements, the mean absolute error (MAE), the root mean square error (RMSE) 
and the R2-value. Additional to the calculation between fused and clear pixels on cloudy 
days, the bias (biasIn-situ) between the satellite-derived LSWT and in-situ measurement 
was calculated. This was done by using following equations: 
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where, N represents the number of observations, Oi and 𝑂+)the observation and mean 
observation data and Pi and 𝑃+) the fused and mean fused LSWT, respectively. 
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5  Results 

5.1 Comparisons of LSWT variation between the measurement stations 

After comparing the measured LSWT from the three measurement stations, it was 
found that there were 61 matching days. On average, there were 2.26 matching days 
per year since 1996. There were no matching dates for all three measurement stations 
before the year 1996. Spatial variations in LSWT were observed (as shown in Figure 
4). No specific general pattern was discovered, but on average, Dagskärsgrund showed 
a higher temperature with an average LSWT of 8.79 °C compared to Tärnan and 
Megrundet with 7.82 °C and 8.15 °C, respectively. The maximum variation in LSWT 
on a single day was observed between Dagskärsgrund and Tärnan, with a difference of 
7.1 °C. This highlights the spatial variability in LSWT among the measurement sta-
tions. 

 
Figure 4. Lake surface water temperature (LSWT)  measurements for each station on 

days with available measurements for all three stations. 

5.2  Evaluation of satellite LSWT products against in-situ measurements 

Figure 5-7 shows the comparison of all six satellite LSWT products against in-situ 
measurements with their evaluation metrics presented in Table 2. The TIRS product 
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only matched with the in-situ measurements on five days, which was the lowest number 
of matches among all the satellite-derived products. The MAE and RMSE were 0.91 
°C and 1.11 °C, respectively, indicating a high accuracy in estimating LSWT in Lake 
Vänern, Additionally, a R2-value of 0.96 was observed. It was found that TIRS under-
estimated the LSWT compared to the in-situ measurement by -0.83 °C on average. In 
contrast, a total of 139 matching days were found for the MODIS product, which was 
the highest number of matches among all the satellite products. This suggests a better 
temporal overlap between MODIS and the in-situ measurements than other satellite 
products. The evaluation metrics show that the MODIS product had an MAE of 1.13 ° 
and RMSE of 1.64 °C, which were relatively higher compared to the other satellite 
products. The R2 value was 0.93. Similar to TIRS, an underestimation of -0.57 °C was 
found (Table 2).  
 

 
Figure 5. Comparisons of satellite lake surface water temperature (LSWT) products 
from TIRS (a) and MODIS (b) against in-situ measurements.  

The GloboLakes dataset matches 68 times with the observation data, which was the 
second-highest value. Furthermore, the second highest accuracy of all the datasets with 
an MAE of 0.56 °C, RMSE of 0.79 and an R2 value of 0.97. The dataset and the in-situ 
measurements had a strong positive correlation (Figure 6a). In contrast to the other 
LSWT products, it can be seen that GloboLakes overestimated the LSWT with an av-
erage bias of 0.04 °C, which is also the second lowest bias (Table 2). The CGLOPS 
product corresponded 21 times with the in-situ measurements. The evaluation metrics 
illustrate an MAE of 1.26 °C and RMSE of 1.82 °C and an R2 of 0.93. The R2 was 
higher compared to the other products, but at the same time, the RMSE was higher 
compared to the ARC-Lake, GloboLakes and TIRS datasets, while compared to 
MODIS it was lower. Like MODIS and GloboLakes a strong positive relationship with 
the in-situ measurement was seen (Figure 6b). The bias between CGLOPS and the in-
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situ measurements indicated, similar to previous LSWT products, that CGLOPS was 
underestimating the LSWT, on average by -0.36 °C (Table 2). 
 

 
Figure 6. Comparisons of satellite lake surface water temperature (LSWT) products 
from GloboLakes (a) and CGLOPS (b) against in-situ measurements. 

The AATSR dataset of ARC-Lake matched 13 times with the in-situ measurement. For 
these matches, it was found that the MAE and RMSE with 0.75 °C and 1.06 °C, respec-
tively, were lower compared to other LSWT products. The R2-value was 0.96 °C. The 
relationship between the AATSR and the field measurements showed a high correlation 
with 0.89. (Figure 7a). The AATSR LSWT product slightly overestimated the LSWT 
with 0.03, which is the lowest bias of all LSWT products (Table 2). ATSR2 corre-
sponded six times with the in-situ measurements, which is less compared to other 
LSWT products. The MAE and the RMSE of the ATSR2 dataset were 0.32 °C and 0.46 
respectively, which were the lowest compared to the other LSWT products. The R2 was 
very high with a value of 1 (Figure 7b). In contrast to AATSR, it was calculated that 
the ATSR2 dataset estimated lower LSWT for the measurement stations and therefore 
underestimated the LSWT by -0.31 °C on average (Table 2).  
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Figure 7. Comparisons of lake surface water temperature (LSWT) products from 
AATSR (a) and ATSR2 (b) against in-situ measurements.  

Table 2. BiasIn-situ, MAE, RMSE, R2 and number of matches between lake surface wa-
ter temperature product and in-situ measurements. 

 BiasIn-situ 
(°C) 

MAE (°C) RMSE 
(°C) 

R2 Number of 
Matches 

MODIS -0.56 1.13 1.64 0.93 139 
TIRS -0.83 0.91 1.11 0.96 5 
Glo-

boLakes 
0.04 0.56 0.79 0.97 68 

CGLOPS -0.36 1.26 1.79 0.93 21 
ATSR2 -0.31 0.32 0.46 1 6 

AATSR 0.03 0.75 1.06 0.96 13 
ERA5-

Land 
0.50 1.32 1.62 0.93 780 

 

5.3  Evaluation of ERA5-Land reanalysis product against in-situ measurements  

Figure 8 shows the comparison of the ERA5-Land product with the in-situ measure-
ment. The accuracy of the ERA5-Land product is presented in Table 2. In total 780 
matches were found during the temporal length of the observation data from 1973 to 
2022. The ERA5-Land product agreed well with the in-situ measurements with an R2 
value of 0.93. The error was low with an MAE of 1.32 °C and RMSE of 1.62 °C, which 
was similar to the error of the CGLOPS and MODIS products. 
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Figure 8. Evaluation of ERA5-Land against in-situ measurements. 

5.4  Generation of fused LSWT dataset and evaluation 

5.4.1  Division of satellite LSWT products 
Table 3 shows the clear and cloudy days for each satellite-derived LSWT product. The 
performance of the model is depending on the accuracy of the input data. Since it can 
be assumed that for clear days the accuracy is high the dataset was split into clear and 
cloud days to use the clear days as an input for the model. During the time period 2000-
2023, the MODIS product had a total of 273 clear days and 8,051 cloudy days. The 
ARC-Lake product was split into 592 clear days for ATSR2 and 731 clear days for 
AATSR for the time period 1995-2012. The GloboLakes product had the third lowest 
number of clear days, with only 19 days identified as clear during its 21 yearlong 
lengths For the CGLOPS product, only 8 clear days were found throughout its opera-
tional time so far. TIRS has been operating since 2016, however, due to its poor tem-
poral resolution, only every 16 days data is available. This caused a generally low num-
ber of matches in which none of those days had a complete dataset or were completely 
free of clouds.  
 
The highest number of clear days were found in ARC-Lake; however, these products 
ended in 2012, due to the discontinuance of the ATSR2 and AATSR sensors. Therefore, 
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finally based on the availability of clear days, good spatial and temporal resolution, and 
continuous dataset, it was decided to conduct the data fusion using the MODIS product 
in this study.  
 
Table 3. Number of clear and cloudy days for each lake surface water temperature 
product. 

 MODIS TIRS GloboLakes CGLOPS ATSR2 AATSR 

Clear 
Days 

273 / 19 8 592 731 

Cloudy 
Days 

8051 166 3829 552 1043 1505 

5.4.2  Evaluation of the fused LSWT dataset without bias correction 
The data fusion was conducted for the time period between 2018 and 2019 using the 
MODIS dataset. The time period was chosen because 37 clear days (23 in 2018 and 14 
in 2019) as well as 18 in-situ measurements were available during this time period. It 
was the second highest number of in-situ measurements for two years, only 2003/2004 
and 2006/2007 had one extra in-situ measurement. However, 2018/2019 had with 37 
clear days a higher number of clear days compared to 2003/2004 with 18 and 2006/2007 
with 24 clear days. The uncorrected fused LSWT product will be further named as the 
fused product, while the bias-corrected LSWT product will be referred to as the cor-
rected LSWT product. 
 
Figure 9 illustrates the spatial pattern of the LSWT on a clear day next to the fused 
LSWT pattern on the 3rd of June 2018. As can be seen, the fused LSWT not only cap-
tured the spatial pattern well, but it also reflected the magnitude of the LSWT on the 
clear day in a similar range. 
 

 
Figure 9. Spatial LSWT pattern of the MODIS lake surface water temperature 
(LSWT) (a) and the fused (b) LSWT on a clear day in June 2018.  
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Figures 10 and 11 show the LSWT spatial variation of the MODIS, ERA5-Land, fused 
and bias-corrected LSWT for the 7th of July 2018 and the 20th of January 2019. The 
dates were chosen to illustrate the difference between the LSWT during summer and 
winter. As it can be seen the MODIS LSWT indicated data gaps due to clouds. Higher 
temperatures were seen in the center, the minimum varied much for the rest of the re-
gion. In contrast, the ERA5-Land LSWT had no data gaps, although the spatial resolu-
tion was spare. The maximum temperature for this day was reached in the North of 
Lake Vänern and the minimum temperature was found in the center, indicating a dif-
ferent spatial variation of LSWT than MODIS. The fused LSWT was able to illustrate 
the LSWT in a high spatial resolution and a similar pattern as the ERA5-Land but with 
a lower magnitude. Like the ERA5-Land, the highest LSWT was reached in the North 
of the Eastern basin as well as in the South of the Western basin. The minimum was 
slightly more south-located than the ERA5-Land (Figure 10).  

 
Figure 10. Lake surface water temperature (LSWT) for MODIS (a), ERA5-Land (b), 

fused (c) and bias-corrected (d) LSWT in July 2018. 
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Similar to Figure 10, the MODIS LSWT indicated a spatially incomplete dataset, while 
the ERA5-Land data represented the LSWT with a low spatial resolution. The fused 
LSWT product was able to fill the gaps of MODIS as well as maintain a high spatial 
resolution. In contrast to Figure 10, it can be seen in Figure 11 that the spatial dynamics 
between the LSWT products did not vary as much. All LSWT products reach their 
maximum temperatures in the center of Lake Vänern. MODIS showed a slightly lower 
temperature. The minimum temperatures were found close to the shore for MODIS and 
ERA5-Land. The fused LSWT product showed its lowest temperature in the south of 
the western basin of Lake Vänern (Figure 10).  

 
Figure 11. Lake surface water temperature (LSWT)  variation for MODIS (a), ERA5-

Land (b), fused (c) and bias-corrected (d) LSWT product in January 2019. 

Figure 12 shows the statistical measures for the fused LSWT pixels against the clear 
pixels of cloudy days of MODIS. Each pixel represents the mean value of the statistical 
measure. The MAE showed a generally low value with 1 °C for the whole lake. The 
maximum value of 3.09 °C was reached close to the shore (Figure 12b). The bias had 
slightly higher values with about 1.5 °C for the center of the lake. Lower values were 
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found in the North of the Lake where the values were about 0.5 °C (Figure 12c). The 
RMSE followed a similar pattern to the MAE with higher values closer to the shore. 
The maximum RMSE is 4.16 °C and the lowest RMSE value was about 1.43 °C (Figure 
12d). The R2 pattern did not follow an overall trend. However, the R2 generally showed 
a high value for the whole lake with a maximum R2 of 0.99 and a minimum of 0.93 
(Figure 12e).  
 

 
Figure 12. Spatial dynamics of mean statistical measures of pixel number (a), MAE 
(b), Bias (c), RMSE (d) and R2(e) between fused lake surface water temperature pix-
els and clear pixels on a cloudy day of MODIS pixel. 

Figure 13 shows the evaluation of the MODIS, ERA5-Land and the fused LSWT 
against the in-situ measurements for the time period 2018/2019. For the MODIS prod-
uct, only six days were found where MODIS had sufficient data. The low number of 
matches was caused by clouds which result in data gaps. The evaluation metrics show 
that the MODIS LSWT product had a low accuracy in terms of RMSE, MAE and R2 
with 2.21 °C, 3.64 °C and 0.41, respectively. Additionally. The ERA5-Land product 
also had much more days where it matched with the in-situ measurements. The ERA5-
Land performed better with an MAE of 1.65 °C, RMSE of 2.13 °C and an R2 of 0.88, 
the fused LSWT had the same number of matches with the in-situ measurements as the 
ERA5-Land. The fused LSWT indicated a higher accuracy compared to the MODIS 
and ERA5-Land LSWT in terms of the MAE with 1.49 °C, however, the RMSE of 2.15 
°C and R2 of 0.87 was slightly lower compared to the ERA5-Land LSWT. Indicating it 
was able to reach the accuracy of ERA5-Land (Figure 13).  
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Figure 13. Evaluation of MODIS LSWT (a), ERA5-Land (b), fused (c) and bias-cor-
rected lake surface water temperature (LSWT) (d) against in-situ measurements for 

the period 2018/2019. 

5.4.3  Evaluation of the bias-corrected LSWT product 
The fused LSWT was corrected based on a linear and variance scaling approach to 
account for the systematic bias in the results. In Figure 10 and 11 the spatial dynamics 
of LSWT products were displayed. The fused LSWT product was able to illustrate the 
LSWT in a high spatial resolution, this was also seen for the bias-corrected LSWT. 
Similar to the fused LSWT product, the bias-corrected LSWT found higher tempera-
tures in the North of the Eastern basin and in the South of the Western basin in July 
2018, although, with a higher magnitude (Figure 10). Figure 11 presents the spatial 
dynamics of the fused and bias-corrected LSWT in January 2019, displaying that the 
fused LSWT indicated higher temperature in the center of Lake Vänern, and the lowest 
temperatures were found in the South of the Western basin. This trend was also found 
in the bias-corrected LSWT product, however, similar to Figure 10, it was seen that the 
magnitude of the LSWT is higher (Figure 11).  
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In Figure 13 the MODIS LSWT, the ERA5-Land, the fused and the bias-corrected 
LSWT products were compared against the in-situ measurements. After the bias cor-
rection, it can be seen that the bias-corrected LSWT was able to maintain the high num-
ber of matches with the in-situ measurements, nonetheless, the MAE was somewhat 
higher with 1.57 °C compared to the fused LSWT. In contrast, the RMSE (2.03 °C)) 
indicated that the bias-corrected LSWT performed slightly better than the fused and the 
MODIS LSWT. The R2 did not change (Figure 13). 
 
Further, the temporal variation of the bias-corrected LSWT was compared to the ERA5-
Land, clear pixel of MODIS LSWT as well as the in-situ measurement to assess if the 
LSWT products followed a similar temporal pattern. The temporal variation of the 
LSWT products for each station is displayed in Figure 14-16. Gaps in the MODIS data 
are due to clouds influence and therefore no data was available for that day/period. 
Moreover, it has to be noted that between the 21st of February 2018 and the 7th of April 
2018, no ERA5-Land data was available for the measurement stations, therefore, the 
corresponding values in the bias-corrected LSWT were set to not a number. In the Fig-
ures, it can be seen that all three products followed a similar trend in the range of the 
in-situ measurement for all three measurement stations. Only for Dagskärsgrund a 
slight difference between the in-situ measurements and the LSWT products was seen 
(Figure 16). An interesting finding to point out is that the bias-corrected aligned with 
the available clear pixels almost perfectly. When no clear pixel was available the bias-
corrected LSWT showed a higher magnitude compared to ERA5-Land LSWT, this was 
mainly the case during the winter months.  
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Figure 14. Daily lake surface water temperature (LSWT) of the bias-corrected, clear 
pixels of MODIS and ERA5-Land products at the Tärnan measurement station from 
January 2018 to December 2019. 

 
Figure 15. Daily lake surface water temperature (LSWT) of the bias-corrected, clear 
pixels of MODIS and ERA5-Land products at the Megrundet measurement station from 
January 2018 to December 2019. 
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Figure 16. Daily lake surface water temperature (LSWT) of the bias-corrected, clear 
pixels of MODIS and ERA5-Land products at the Dagskärsgrund measurement station 
from January 2018 to December 2019. 

5.5  Spatial and temporal dynamics of lake surface water temperature 

5.5.1  Temporal variability of lake surface water temperature of Lake Vänern 
As described above the temporal variation of the bias-corrected product followed the 
ERA5-Land data good, therefore, the monthly mean temporal LSWT variation of the 
study period as well as the spatial variation of the monthly means of each year will be 
further investigated. Figure 17 illustrates the monthly mean LSWT of the bias-corrected 
LSWT product. The monthly mean LSWT was calculated by lake-wise averaging the 
LSWT and further, the mean of all daily bias-corrected LSWT was taken to obtain the 
monthly average LSWT.  
 
Figure 17 shows that the year 2018 started with a mean LSWT. In January, which was 
followed by a decrease in February and further reached its minimum in March. After-
ward, the LSWT started to rise and reached its maximum in August and then decreased 
in December. The year 2019 followed a similar trend, however, it started with the low-
est temperatures in January with and increased up until July when it reached its maxi-
mum. Except for January, it can be seen that 2019 indicated a higher mean LSWT up 
until August compared to 2018. The fall LSWT was in the same magnitude for both 
years. Comparing the two years with each other no clear trend was seen for the first 
three months. However, for both years a strong positive trend in temperature was 
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detected and was peaking in the summer months. The following month the trend for the 
years a similar indicating a strong decrease in temperature (Figure 17). 

 
Figure 17. Monthly mean lake surface water temperature (LSWT) of Lake Vänern in 

2018 and 2019. 

5.5.2  Spatial variability of lake surface water temperature of Lake Vänern 
To further investigate the spatial dynamics of Lake Vänern the monthly mean temper-
ature for each pixel was calculated for 2018 and 2019. Figure 18 illustrates the spatial 
variation of the monthly averages for Lake Vänern. The results show that the bias-cor-
rected LSWT not only filled the data gaps of MODIS but was also able to provide 
detailed spatial dynamics found for each month. Low LSWT were found in the winter 
months for both years. The year 2018 indicated slightly higher temperatures in the East-
ern basin in January. The winter of 2019 showed lower temperatures compared to the 
previous year. During May and June, the spatial variation and magnitude of LSWT was 
comparable between the years, showing lower temperatures in the basins and higher 
temperatures closer to the coast. 2019 reached its maximum already in July, while the 
highest temperature in 2018 was in August with a lower magnitude compared to the 
following year. The LSWT decreased for both years from September on, following a 
similar pattern with decreasing LSWT at the coast faster (Figure 18).  
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Figure 18. Spatial dynamics of monthly mean lake surface water temperature of Lake 

Vänern in 2018 (a) and 2019 (b). 

6 Discussion 

6.1  Evaluation of the satellite and reanalysis LSWT products 

The evaluation of the LSWT products indicates that all of them were able to capture the 
LSWT with high accuracy, however, variations in their accuracy were found. Overall, 
the MAE varied between 0.32 and 1.32 °C, the RMSE ranged between 0.46 and 1.73 
°C. The results indicate that the ATSR2 and GloboLakes LSWT products performed 
with higher accuracy. Comparing the results of this study with previous studies it can 
be found that the LSWT products fall into the same range or even outperform previous 
studies. The MAE and RMSE of MODIS found in this study of 1.13 °C were coherent 
with the MAE range found in Sima et al. (2013) (0.8-1.9 °C) and the RMSE < 2 °C in 
Lazhu et al. (2022). A higher accuracy compared to previous studies was found for 
GloboLakes, CGLOPS, ARC-Lake and TIRS. Zhang et al. (2021) indicated that the 
RMSE for GloboLakes and CGLOPS was approximately 2.91 and 2.33 °C, respec-
tively, which was significantly higher compared to the RMSE found in this study for 
GloboLakes with 0.79 °C. The RMSE of CGLOPS was in a comparable range with 
1.79 °C (Table 2). During the validation of ARC-Lake, the mean difference of both 
subsets to in-situ measurement was found to be 0.3 ± 0.9 °C (MacCallum & Merchant, 
2010), covering similar ranges seen in this study with a biasIn-situ ranging from -0.31 to 
0.03 for ATSR2 and AATSR, respectively. Table 2 shows that TIRS had a similar ac-
curacy compared to the results seen in Sharaf et al. (2019), which displayed an RMSE 
of 0.73 °C, an MAE of 0.71 °C and an R2-value of 0.97. Last but not least, the ERA5-
Land lake mix layer temperature dataset was evaluated against the in-situ measurement. 
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The results show that the values discovered in this study were significantly higher than 
those found in Zhang et al. (2021). The previous study indicated that the RMSE was 
3.41 °C and the biasIn-situ 1.64 °C, which did not align with the values presented in Table 
2. Since no LSWT product showed a significantly lower accuracy compared to previous 
studies it can be said that all evaluated products represented the LSWT accurately. The 
presented MAE and RMSE of ERA5-Land are lower compared to other studies 
(Muñoz-Sabater et al., 2021; Zhang et al., 2021), indicating a better performance for 
Lake Vänern. 
 
It has to be noted that the satellite-based LSWT estimations represent the skin temper-
ature of the lake, while the in-situ measurements indicate the bulk temperature of the 
lake. The cool skin of the lake causes the LSWT products to underestimate the LSWT 
compared to the in-situ measurements (Carrea & Merchant, 2020a; Dörnhöfer & 
Oppelt, 2016; Zhang et al., 2021). The literature reports that the skin effect can cause 
bias ranging between 0.1 and 0.6 °C (Sima et al., 2013). The relationship between the 
bulk and skin temperature is influenced by the heat flux between the atmosphere and 
the lake as well as the water column’s thermal stratifications. The relationship is also 
determined by wind speed, the time of the day as well as the depth of the measurement 
(Reinart & Reinhold, 2008). Additional to the skin temperature effect other factors such 
as satellite biases, errors in the in-situ measurements and near-surface stratification in-
fluence the accuracy of the LSWT product (Carrea & Merchant, 2020a). The negative 
values of the biasIn-situ can be seen for almost all satellite-derived LSWT products in 
this study. According to the quality assessment report of CGLOPS, the bias ranges be-
tween -0.24 °C ± 0.88 °C, supporting the findings of this study for CGLOPS. Only 
GloboLakes and AATSR indicate an overestimation, however, the bias is comparably 
low (Table 2). This study is not addressing the bias caused by the cooling effect, since 
the wind speed and heat exchange parameters are unknown. In contrast to the satellite-
obtained LSWT products, the ERA5-Land overestimates the LSWT showing positive 
values. The overestimation of ERA5-Land is caused by the dependency on the accuracy 
of the lake depth in the input data (Muñoz-Sabater et al., 2021).  
 
It is also important to note that all satellite-derived LSWT products show a very low 
number of matches compared to available in-situ measurements. For instance, the Glo-
boLakes dataset was available daily for 21 years, during that time 180 in-situ measure-
ments were taken, however, the evaluation shows that only 68 matches with the in-situ 
measurements were found (Table 2). The low number of matches was due to missing 
data because of pixels with low quality and high variation of LSWT within the 3x3 
mismatch matrix. That underlines the need for a spatially complete and temporal con-
tinuous LSWT dataset.  
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6.2  Evaluation of the generated LSWT dataset  

The data fusion was conducted by combining the ERA5-Land data with the MODIS 
data. As described before MODIS did not perform as well as GloboLakes or the ARC-
Lake subsets. However, the accuracy was still considered as good, as well due to the 
fact that MODIS is still continuing it was decided to conduct with it. Additionally, it 
could be argued that the ERA5-Land data represents the LSWT accurately enough, 
however, the poor spatial resolution of the product cannot account for the spatial dy-
namics found in lakes and therefore it is necessary to obtain an LSWT with a high 
spatial resolution.  
 
The comparison of the fused LSWT with the MODIS LSWT on a clear day shows that 
the approach was able to represent the LSWT with similar spatial patterns and magni-
tude (Figure 9). The results of the conducted data fusion supported that the method was 
able to fill the gaps of MODIS and therefore generated a spatially complete LSWT 
dataset for Lake Vänern . Additionally, it was able to create a dataset that has a higher 
spatial resolution, compared to ERA5-Land, providing more detailed spatial infor-
mation. The evaluation of the fused LSWT against the clear pixels on cloudy days in-
dicates that there was a negative bias but that the overall accuracy as well as the corre-
lation was high (Figure 12). Compared to Long et al. (2020) the range of the MAE and 
RMSE was slightly lower in the fused LSWT, while the range of R2 shows a similar 
range (Figure 12). Long et al. (2020) argue that the bias is caused by different land 
cover classes for LST studies, however, this is not the case for this application. There-
fore, other factors influence the systematic error in the model, which needs to be further 
investigated. Feng et al. (2006) reported that the systematic error in the original 
STARFM method is due to the difference in the data processing of the sources, the 
discrepancy of the acquisition time and the bandwidth as well as geolocation errors. 
Even though the ERA5-Land data is not considered a satellite product and therefore the 
difference in bandwidth cannot be attributed to the error found in the generated dataset. 
Nevertheless, due to the different nature of the input data, it can be assumed that this 
causes an inaccuracy in the output. 
 
To account for the systematic bias found in the fused LSWT a bias correction was con-
ducted. Even though the bias-corrected LSWT shows a higher agreement with the in-
situ measurement in terms of the RMSE  compared to the fused LSWT product, the 
error did not decrease enough to account for the systematic error. Comparing the dif-
ference of the RMSE before and after the bias correction with the results reported by 
Long et al. (2020) it shows a rather small decrease in the error. Nevertheless, the results 
indicate that the bias correction is suitable to correct for biases in the LSWT application.  
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It can be said that the spatial pattern of the fused and bias-corrected LSWT product is 
in good agreement with the ERA5-Land data, however, does not follow as much the 
spatial dynamics found in the MODIS LSWT data (Figure 10 & Figure 11) Finally, 
comparing the accuracy of the generated LSTW product with the evaluated LSWT 
products, it can be seen that the accuracies fall in a similar range. Previous studies such 
as Schwab et al. (1999) developed an approach where the data gaps in AVHRR were 
filled with temperature estimation based on earlier temperatures. The results shown in 
Figure 13d show are comparable to the RMSE of 1.10-1.76 °C found by Schwab et al. 
(1999), however, the spatial resolution in our study is higher with 1 km compared to 
2.6 km. More recent studies made use of the MODIS cloud product by merging it with 
the MODIS LST product to obtain spatially complete data. The results indicated an 
RMSE ranging between 1.17 and 2.05 °C. It is important to note, that the cloud layer 
comes with an uncertainty of ±5 °C, which affects the accuracy of the results 
(Moukomla & Blanken, 2016). The range of the RMSE in this study is similar to the 
reported from previous studies, indicating that the method is suitable to generate spa-
tially complete LSWT maps although with a lower accuracy than the ERA5-Land 
LSWT. 
 
The evaluation of the spatial dynamics of the generated LSWT product showed that the 
fused and the bias-corrected LSWT products follow the spatial pattern of the ERA5-
Land LSWT product. However, this was not expected since it can be seen that in equa-
tion 3 the fine-resolution data provides detailed information on spatial variation, which 
should determine the accuracy of the LSWT at the prediction time more than the coarse-
resolution image. The relatively low number of clear days could have caused, that the 
fused and bias-corrected LSWT shadowed rather the ERA5-Land than the MODIS 
LSWT product.  
 
The results of the temporal pattern indicated a good alignment of the bias-corrected 
with both the ERA5-Land LSWT and the clear pixels of the MODIS LSWT at all three 
measurement stations (Figure 14-16). Long et al. (2020) found a similar relationship 
with the MODIS and bias-corrected data, although, the paper mainly compared the in-
situ measurement with the bias-corrected data. Since all three products implied a slight 
shift discrepancy to the in-situ measurements for the Dagskärsgrund measurement sta-
tion, indicating that the accuracy of the bias-corrected might be influenced by this dif-
ference. Long et al. (2020), suggested that the temporal distance between the MODIS 
images does not influence the results of the data fusion as much, rather the accuracy of 
the MODIS LSWT may be the main influence of the accuracy. Our study had a similar 
result, the highest discrepancy between the in-situ measurement was found on days 
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where no clear pixel was found (Figure 14-16). Overall, it can be said that if clear pixels 
were available the bias-corrected LSWT represented the trend and magnitude of the 
MODSI LSWT perfectly, while for the ERA5-Land a positive bias was visible. This 
supports the effectiveness of the bias correction approach to partly account for the sys-
tematic error. 

6.3  Spatial and temporal analysis of LSWT variation of Lake Vänern 

The data fusion method was able to generate a spatially complete and temporal contin-
uous dataset for Lake Vänern with good accuracy in terms of temporal and spatial var-
iation, thus, the newly generated dataset was used to investigate the spatial and temporal 
dynamics of Lake Vänern.  
 
The results in this study did not show a matching trend in LSWT for the beginning of 
the years. In 2018 a decrease in LSWT from January to February was found, while 2019 
showed a slow steady increase in temperature for the first three months. Similar results 
were found in Reinart and Reinhold (2008) where no clear trend was seen at the begin-
ning of the years. The LSWT in January 2018 showed higher temperatures , this might 
be due to the great heat capacity of large lakes (Kvarnäs, 2001), which causes the LSWT 
cools down slower resulting in higher temperatures in winter. The decrease in the 
LSWT in February and March might be caused due to the previously mentioned miss-
ing data at the beginning of 2018, which influences the accuracy of the spatial pattern. 
Previous studies link that the strong increase in LSWT in the following month was due 
to increasing air temperatures, which positively influences the LSWT (Kvarnäs, 2001; 
Reinart & Reinhold, 2008). The year 2018 shows a faster decrease in LSWT for the fall 
months compared to 2019. This trend is not supported in other studies, since a later 
maximum of LSWT usually results in relatively higher temperatures for the following 
month. The strong decline in temperature in fall can be an indicator of strong winds 
which usually increase in fall (Kvarnäs, 2001). 
 
The spatial dynamics of Lake Vänern follow a distinct pattern for most of the years. 
Only in January, a significant difference was found between the years. As can be seen 
in January 2018, the basins of the LSWT still indicate higher temperatures compared 
to the other regions of the lake (Figure 18). This is due to the previously mentioned heat 
capacity of deep waters (Kvarnäs, 2001; Reinart & Reinhold, 2008). This was not seen 
in January 2019, but looking at the spatial pattern of December 2018 the LSWT did not 
vary as strong which might cause that January shows a rather similar pattern in LSWT 
for the whole lake. In the following month, it can be seen that a so-called thermal bar 
was developed. The thermal bar represents a border of 4 °C between coastal and central 
areas and moves with increasing water further into the center of the lake. In the area 
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between the thermal bar and the coasts, the LSWT increases and develops a thermo-
cline. This was not seen as fast in the central area of the lake due to the depth of the 
basin which requires more heat per surface area is needed resulting in delayed warming. 
This trend was described in previous studies and is a common process in larger lakes 
(Kvarnäs, 2001; Reinart & Reinhold, 2008). However, the results indicate that this phe-
nomenon does not happen during the fall months, which was also reported by Reinart 
and Reinhold (2008).  

6.4  Limitations of this study and recommendations for future studies	

Although the results of the study indicate a high accuracy of the applied method several 
limitations were found. The evaluation of the LSWT products could have been im-
proved by a higher number of measurements per station which could improve the num-
ber of matches with the LSWT products, especially products with a low temporal reso-
lution such as the TIRs and the CGLOPS dataset. Additionally, the low number of 
measurement stations limited the evaluation of the LSWT products to the three meas-
urement stations, which makes it difficult to extrapolate the accuracy for the whole lake. 
To overcome this limitation, it was planned to conduct drone measurements to obtain 
LSWT measurements for a greater area and assess the spatial variation of LSWT in 
Lake Vänern, however, due to the latency of ERA5-Land with 2-3 months it was not 
possible to conduct this step at this point, however, will be conducted at a later time.  
 
Another limitation that came across was the difference in the spatial resolution between 
MODIS and ERA5-Land. Due to the coarse spatial resolution of ERA5-Land the gen-
erated LSWT product included pixels of the shore. This caused that the results needed 
to be cropped to a smaller extent excluding parts of Lake Vänern. The coarse resolution 
of ERA5-Land also makes this approach unsuitable for smaller lakes. The evaluation 
of the generated dataset could have been expanded by investigating the performance of 
the product over a longer period to include more in-situ measurements, however, due 
to long computing times the study period was limited to two years. Additionally, as 
previously mentioned the missing data for ERA5-Land for spring 2018 causes uncer-
tainty in the accuracy of the results during that period. 
 
For future studies, it is recommended to improve the spatial and temporal frequency of 
in-situ measurements for a better evaluation. Furthermore, the presented LSWT prod-
ucts should be tested to investigate if other LSWT products are able to improve the 
accuracy of the fusion method. Since the proposed bias correction method was not able 
to remove the systematic error completely, it is recommended to apply the bias correc-
tion method for each season or explore further bias correction methods. Last but least, 
the data fusion should be conducted for a longer period to investigate the impact of 
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external factors, such as the air temperature, on the spatial and temporal variation of 
LSWT.  

7 Conclusion 

This study aimed to develop a new spatially complete and daily continuous lake surface 
water temperature (LSWT) for Lake Vänern, Sweden by fusing satellite and reanalysis 
products. Firstly, 6 different LSWT products were evaluated against the in-situ meas-
urements, MODIS, TIRS, GloboLakes, CGLOPS ARC-Lake and ERA5-Land. Results 
showed that the GloboLakes and the ATSR2 product performed the best in terms of 
MAE (0.56 °C and 0.32 °C), RMSE (0.79 °C and 0.46 °C) and R2 (0.97 and 1). The 
accuracy of all other LSWT products was within an acceptable range (MAE: 0.75-1.32 
°C, RMSE: 1.06-1.79 °C, R2: 0.92–0.96). The MODIS product was identified as the 
most suitable satellite LSWT to be fused with the reanalysis product ERA5-Land be-
cause of its high temporal and spatial resolution as well as the ongoing data collection 
of the sensor. The results prior to bias-correction revealed that the applied data fusion 
method effectively filled data gaps and enhanced the accuracy of the MODIS LSWT 
product. Specifically, the MODIS dataset exhibited an MAE of 2.21 °C, RMSE of 3.64 
°C, and R2 of 0.41 °C, whereas the fused dataset demonstrated improved performance 
with an MAE of 1.49 °C, RMSE of 2.15 °C, and R2 of 0.87. Notably, the spatial reso-
lution of 1 km was successfully maintained throughout the data fusion process.  
 
Furthermore, the fused LSWT underwent bias correction to address systematic bias, 
resulting in improved RMSE (2.03 °C)). However, the MAE increased from 1.49 °C to 
1.57 °C. Overall, the applied data fusion and bias correction method successfully gen-
erates reasonable LSWT estimations and improved the accuracy of the LSWT data 
compared to MODIS and ERA5-Land. The evaluation of the corrected LSWT showed 
that it captured the temporal dynamics, in good agreement with the MODIS LSWT. 
When comparing the temporal variation to in-situ measurements, it was observed that 
the discrepancy was highest when clear pixels were unavailable. This suggests that the 
bias correction contributed to the improvement of the fused LSWT. 
 
Finally, the spatial and temporal dynamics of LSWT in Lake Vänern were investigated. 
The results revealed that the LSWT was lower at the beginning of the year but experi-
enced a significant increase in temperature from April onwards due to rising air tem-
peratures. The LSWT reached its maximum in July/August followed by a linear de-
crease of the LSWT. The temporal dynamics were reflected in the spatial pattern of the 
LSWT. The pattern exhibits the development of a thermal bar, which can only be seen 
in the spring. The bar can be connected to the gradient in temperature, which is mainly 
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caused by the bathymetry. As the LSWT rises, the thermal bar moved towards the cen-
ter of the lake and finally disappeared once the LSWT exceeds 4 °C.  
 
Overall, this study confirms the suitability of the existing LSWT products and demon-
strates the good performance of the data fusion method in generating a spatially com-
plete and temporal continuous LSWT dataset for Lake Vänern. This method and gen-
erated new dataset are valuable for LSWT monitoring and further investigation of eco-
logical changes in lakes associated with shifting LSWT. 
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