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Abstract
Lakes are an important part of the world’s ecosystems. The ecological state of lakes is

threatened by rising temperatures that affect the biological, physical and chemical cy-
cles. Therefore, it is essential to monitor lake surface water temperature (LSWT) and
its spatiotemporal variabilities. Currently monitoring LSWT employs three primary ap-
proaches: in-situ measurements, satellite remote sensing, and reanalysis products/mod-
elling. Each has its advantages and limitations. In-situ measurements offer accuracy at
the point scale but suffer from inconsistencies and infrequent data collection. Satellite
remote sensing provides relatively high spatial resolution but is affected by cloud cover
and data gaps. Reanalysis products offer all-weather data but often at a coarse spatial
resolution, limiting their ability to capture fine spatial scale variations in LSWT. This
study aims to develop a new spatially complete and daily continuous LSWT by fusing
satellite LSWT product and reanalysis product for Lake Vinern, the largest lake in
Sweden. The reanalysis product ERAS5-Land providing hourly lake temperature at the
spatial resolution of 0.1° was used. Five existing satellite LSWT products were evalu-
ated against in-situ measurements. The MODIS LSWT product was identified as the
most suitable satellite product to be fused with ERAS5-Land data using the Enhanced
Spatial and Temporal Adaptive Reflectance Model (ESTARFM). A bias correction was
conducted to account for systematic bias resulting from the data fusion. The bias-cor-
rected fused LSWT dataset was evaluated against in-situ measurements and showed
higher accuracy than the MODIS and ERAS5-Land data with a mean absolute error of
1.57 °C, root mean square error of 2.04 °C and R? of 0.87. The spatial and temporal
variations of the bias-corrected fused LSWT were in good agreement with the ERAS-
Land and MODIS-derived LSWT, as well as with in-situ measurements. Finally, the
bias-corrected fused LSWT product was used to investigate the spatial and temporal
dynamics of Lake Vinern, revealing the development of a thermal bar and seasonal
LSWT changes. This study demonstrated the good performance of the data fusion ap-
proach in generating a spatially complete and temporally continuous LSWT dataset.
This approach is valuable for LSWT monitoring and further investigation of ecological
changes in lakes associated with shifting LSWT.
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1 Introduction
There are about a hundred million lakes on Earth, storing 87 % of the available fresh-
water, providing important ecosystem services and are crucial for biodiversity
(Woolway et al., 2020). Climate change poses a significant threat to the ecological
function of lakes due to elevated air temperatures, which subsequently affect water tem-
peratures (Dornhofer & Oppelt, 2016). These temperature changes, in turn, alter various
biological, physical, and chemical processes within the lakes (Reinart & Reinhold,
2008). The increasing temperatures lead to earlier algae blooming which increases the
negative effects of eutrophication. Further enhanced temperatures lead to a shifted tim-
ing of stratification leading to an overturn of the lake (Woolway et al., 2020). The dif-
ference between lake surface water temperature (LSWT) and the atmospheric temper-
atures plays a crucial role in governing the exchange of energy and water between these
two spheres, thereby directly influencing the energy and hydrological cycles. LSWT
serves as a valuable indicator of climate change and represents one of the essential cli-
mate variables to monitor the magnitude of change on a regional scale (Reinart &
Reinhold, 2008). Lakes offer a robust proxy for assessing the impact of climate change,
owing to their extensive research history, global distribution, and their immediate re-

sponsiveness to climate and environmental changes (Adrian et al., 2009).

Therefore, it is important to consistently monitor the spatial and temporal dynamics of
LSWT. The primary techniques employed for monitoring LSWT include in-situ meas-
urements, satellite remote sensing, and reanalysis products, the outcome of Land Sur-
face Models (LSM). In-situ measurements are point-based measurements that are usu-
ally taken in combination with other lake ecology parameters. While this method can
yield highly accurate measurements, such pointed-based measurements are limited in
their ability to adequately capture the spatial dynamics of LSWT due to the typically
sparse network of measurement points. Moreover, the poor temporal sampling fre-
quency (bi-weekly or irregular intervals) of point-based measurements often fails to
adequately capture temporal variations of LSWT. These disadvantages make the in-situ
measurements almost unsuitable to monitor the spatial and temporal dynamics of large
lakes (Reinart & Reinhold, 2008).

The second method, satellite remote sensing, has been widely used to estimate LSWT.
Previous studies have highlighted the utility of remote sensing in complementing the
limited data coverage by leveraging the advantages offered by thermal sensors, as well
as the enhanced spatial and temporal coverage. Satellite remote sensing enables the
monitoring of LSWT changes on a global scale, with the generation of daily data. No-

table satellite sensors, such as the Moderate Resolution Imaging Spectroradiometer



(MODIS) (Chavula et al., 2009; Reinart & Reinhold, 2008), Thermal Infrared Sensor
(TIRS) of Landsat 8 (Dyba et al., 2022) and the (A)ATSR-series (Llewellyn-Jones et
al., 2001; MacCallum & Merchant, 2010; Schneider et al., 2009; Zhang et al., 2021),
have been used and evaluated to investigate the temporal and spatial variations of
LSWT in many lakes. Nevertheless, satellite remote sensing for LSWT estimation is
susceptible to cloud influences, which frequently lead to data gaps or inaccurate esti-
mates (Long et al., 2020).

The third method involves LSM which produces reanalysis products, consisting of
many land variables, which are able to simulate lake water temperatures on an hourly
basis under all weather conditions (Mufioz-Sabater et al., 2021; Stefanidis et al., 2022).
The state-of-the-art reanalysis product, ERA5-Land, is generated by the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF) using their Integrated Forecast
System (IFS). The IFS is a comprehensive numerical weather prediction system that
includes an LSM component called the Hydrology Tiled ECMWF Scheme for Surface
Exchanges over Land (H-TESSEL). The FLake model is included in the IFS, and it is
a one-dimensional model that simulates the vertical temperature and water content pro-
files of a lake. To assure the accuracy of the model the location, the bathymetry and the
preliminary condition of the lake are required. The Freshwater Lake model (FLake) is
able to produce seven predictive variables to describe the state of the lake (Mufioz-
Sabater et al., 2021).

ERAS5-Land provides data on lake temperature at hourly and 0.1 °(9 km) spatial reso-
lution on the global scale (ECMWF, 2023). The spatial resolution is coarse compared
to satellite products (e.g., MODIS 1 km) (Long et al., 2020). Previous studies have
demonstrated the accuracy of ERAS-Land products in estimating LSWT. Stefanidis et
al. (2022) used the skin temperature, total layer temperature, mix layer temperature and
mix layer depth from the ERAS-Land product to investigate the water temperature
change of 51 lakes across Europe. Another study evaluated and compared the ERAS-
Land lake mix layer temperature dataset with other satellite LSWT products (Glo-
boLakes and CGLOPS) to assess their performance for 11 lakes in North America. The
lake mix layer temperature expresses the average temperature at the top water layer of
a lake (Zhang et al., 2021). Both aforementioned studies demonstrated that it is suitable
to use lake mix layer temperature to represent LSWT. In contrast, this study will not
solely focus on the evaluation and comparison of different datasets, nor will it limit its
LSWT products to LSM data alone. Instead, it will expand upon previous work by
combining the reanalysis product with satellite LSWT products.



Previous studies have successfully addressed the issue of cloud gaps in satellite prod-
ucts by merging multiple data sources and employing gap-filling methods (Duan et al.,
2017; Zeng et al., 2018). For example, Duan et al. (2017) used passive microwave data
to account for data gaps in MODIS due to cloud contamination. Passive microwave
measurements have the advantage of penetrating through clouds, enabling temperature
estimation even on cloudy days. However, passive microwave data typically have a
lower spatial resolution (25 km) and relatively lower accuracy (RMSE: 3.5-4.4 °C)
(Long et al., 2020). Zeng et al. (2018) filled the gaps of the satellite-derived Land Sur-
face Temperature (LST) data using NDVI data, but this NDVI-based approach is not
suitable for water surfaces. Additionally, there have been attempts to merge satellite
data with reanalysis products. Long et al. (2020) used the Enhanced Spatial and Tem-
poral Adaptive Reflectance Model (ESTARFM), which is a heritage of the spatial and
temporal adaptive reflectance model (STARFM) developed by Feng et al. (2006), to
combine MODIS LST data with the reanalysis product generated by the China Land
Data Assimilation Model to investigate the land surface temperature dynamics. These
studies demonstrated that the data fusion approach is able to merge two different prod-
ucts; However, all these studies focused on land surfaces rather than water bodies (Long
et al., 2020).

Lake Vinern, with a surface area of 5648 km?, is the largest lake in Sweden and the
European Union. Currently, the limited number (only 3) of existing measurement sta-
tions has made it challenging to capture the spatial and temporal variations of Lake
Vinern. Therefore, there is a need to obtain these variations by other methods. Satellite
LSWT data offer the advantage of high spatial resolution, but they tend to be spatially
and temporally incomplete due to cloud influences. On the other hand, the reanalysis
product ERAS5-Land can provide hourly and spatially complete LSWT data but with a
very coarse spatial resolution. By combining the strengths of satellite and reanalysis
products through a data fusion model like ESTARFM, it is possible to develop a solu-
tion for generating a spatially complete and daily continuous LSWT dataset. Therefore,
this study aims to fuse satellite and ERAS5-Land reanalysis products to leverage their
advantages and create a spatially complete and daily continuous LSWT dataset for Lake
Vinern. To achieve this, the accuracy of various LSWT products for Lake Vanern will
be first investigated to determine the most suitable products for data fusion. There are
several LSWT products available, however, first, the accuracy of these products for
Lake Viénern needs to be investigated to further decide which product will be used in
the data fusion. The study will access the accuracy of the MODIS, TIRS, Copernicus
Global Land Operations (CGLOPS), GloboLakes and ACR-Lake LSWT products as
well as the lake mixed layer temperature of the ERAS5-Land product. To achieve the
overall aim, three specific objectives are defined in this study:



(1) Evaluating the accuracy of multiple satellite-derived LSWT products and ERAS-
Land reanalysis product against in-situ measurements.

(2) Developing and evaluating a data-fusion approach for generating a merged LSWT
dataset.

(3) Analyzing the spatial and temporal variability of LSWT in Lake Vénern using the
generated LSWT dataset.

This thesis will answer the following research questions:

(1) Do satellite-derived LSWT products and the ERA5-Land product accu-
rately represent the LSWT of Lake Vinern when compared to previous
studies?

(2) Can the proposed data-fusion method fill data gaps in satellite-derived
LSWT products and enhance the accuracy of LSWT estimates compared
to the already existing LSWT products?

(3) Does the generated LSWT product show a similar temporal and spatial

pattern compared to previous studies?

2 Theoretical background
This chapter provides a theoretical background for the thesis, introducing fundamental
concepts related to remote sensing. Furthermore, it explains how lake surface tempera-
tures can be estimated from satellite sensors and the reanalysis product ERAS-Land and
finally, describes the concepts of the data fusion approach.

2.1 Satellite remote sensing of lake surface water temperature

Remote sensing is the process of observing the Earth's surface from a distance using
instruments such as satellite sensors. This technique is based on physical theories that
state that every object with a temperature above absolute zero (0 Kelvin) reflects and
emits energy in every wavelength. Satellite sensors measure the reflectance of the Sun's
light or the emission of electromagnetic (EM) radiation from objects on Earth, allowing
for the identification and detection of properties of objects on a global scale (Read &
Torrado, 2009).

2.1.1 Electromagnetic spectrum

EM radiation is energy transported in the form of photons with the properties of a wave
traveling through space and time. It is swinging in all directions perpendicular to its
travel direction (Emery & Camps, 2017). EM radiation can be characterized by two
measures: wavelength and frequency. A wavelength describes the distance between the
peaks of two waves and is expressed in units of length (meters, micrometres (um) or

nanometres (nm)). The frequency is defined as the number of cycles per one-second



period and has its units in hertz (Hz), megahertz (MHz) or gigahertz (GHz) (Martin,
2014). Wavelength and frequency are inversed to each other, meaning that a higher
frequency results in shorter wavelengths (Emery & Camps, 2017). The transported en-
ergy (E) can be described in following equation:

E=fXh

where f is the frequency and h represents the Planck constant (6.62607x10734 J-s). EM
radiation is commonly described as a flux of energy or power, in either joule per second
or Watts (W), radiation incident on or emitted by an object (Martin, 2014).

The EM radiation spreads over a large spectrum of wavelengths and frequencies and
can be split into different ranges along the EM spectrum (Figure 1). The most known
spectrum is the visible range between 0.4 to 0.7 um (1077). Since it is the range in which
the human eye can detect EM radiation and therefore contains a lot of essential infor-
mation for the human. The satellite sensor, however, captures a wider part of the EM
spectrum, which makes remote sensing an important asset to humanity. It detects
shorter wavelengths known as gamma, X-ray and ultraviolet but also longer wave-
lengths in the near-infrared (NIR) (107- 107), thermal infrared (TIR) (107 to 10~ m)
up to microwave (1 mm to 1 m) range. The radiation in the shorter wavelength up to
the NIR is mainly reflected radiation from the sun, while the mid and longer infrared
wavelengths contain wavelengths emitted by an object making them important for the

determination of thermal properties (Emery & Camps, 2017).
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Figure 1. Electromagnetic spectrum. Modified from Emery & Camps, 2017; Martin et al. 2014.

The radiation received or emitted by a surface can be expressed as the radiant flux den-
sity (A®), which is measured in W/m?. The received radiation at the surface coming
from an external source is called irradiance, while the emitted radiance from a surface
is defined as the exitance. The intensity of radiation is the radiant flux density for a
solid angle, which can be described as the flux of radiation traveling from a point source
through a cone in a certain angle onto a surface measured in W per steradians (Emery
& Camps, 2017). The intensity can be further defined as radiance (L), which can be

described in the following equation:
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Radiance describes the radiance flux (A®) emitted by a surface (A4) for a solid angle

(AQ) and certain incline (0) for a given direction. Radiance represents the measure that
is detected by satellite sensors in W m2 sr'! (Martin, 2014).

The radiance from each of the spectra can be used to observe and identify different
properties of objects. The variation of the reflected, absorbed or transmitted energy of
an object by wavelength can be described as the spectral signature (Emery & Camps,
2017). However, the energy also varies with different angles of incidence and is influ-
enced by atmospheric conditions. Therefore, objects can rather be distinguished based
on their spectral response patterns than their spectral signature (Read & Torrado, 2009).

2.1.2  Estimation of lake surface water temperature using remote sensing

As stated before, the longer infrared wavelengths can be used to determine the thermal
properties of objects. This is done using the TIR channels of a sensor. Either way, the
measured radiance at the sensor can only be converted to the top of the atmosphere
temperature (TOA) and that is why it is necessary to determine the ground emissivity
which can be achieved by the normalized difference vegetation index, also known as
NDVI. The ground emissivity and the top of the atmosphere temperature can be used
to calculate the land surface temperature (Avdan & Jovanovska, 2016). Furthermore, a
water/land mask as well as land cover information is used to distinguish between land
and water. The previous steps are conducted using algorithms. The most common al-
gorithms to generate LST products, which include LSWT data, are the single-channel,
the split-window/dual-window, the temperature and emissivity separation as well as the
physics-based day/night algorithm. The single-channel and the split-window/dual-win-
dow require the land surface emissivity to estimate, but the processing can be consid-
ered simple (Li et al., 2023). Sensors such as TIRS and MODIS use the single-channel
(TIRS) and the split-window/dual-window (MODIS) algorithms to generate LST prod-
ucts (Li et al., 2023; Sayler, 2023; Wan, 2006). The other two algorithms are able to
generate the LST without knowing the emissivity, however, they also come with their
disadvantages such as complexity and their dependency on the accuracy of the atmos-

pheric correction and geometric registration.

The ASTER sensor onboard of Terra platform uses temperature and emissivity separa-
tion algorithm to generate its LST product. The physics-based day/night algorithm is
used to generate the 8-days, 16-days and monthly 6 km spatial resolution level 3 LST
products of MODIS (Li et al., 2023). Not only the LST can be estimated using the
thermal bands of the sensors, further the LSWT can be determined by it. ARC-Lake is



a LSWT dataset, which was generated using the ATSR series. This was done by com-
bining the three infrared channels of the ATSR-1, ATSR2 and AATSR. The authors
used a simplified version of the inverse problem, which was originally used to deter-
mine sea surface temperature. The LSWT was estimated using the optimal estimation
method. The method combines observations of the lake's surface water temperature
with information about the predicted state of the atmosphere in terms of total column
water vapor to account for the influence of clouds (MacCallum & Merchant, 2012). The
microwave spectrum is used to distinguish between vegetation, snow as well as surface
and ocean roughness (Emery & Camps, 2017). The radio wavelengths at about 1 m are
mostly used for communication applications and are therefore not relevant for remote
sensing (Martin, 2014).

2.1.3  Satellite sensors

Satellites are equipped with different sensors which detect the reflected and emitted EM
radiance by objects for different wavelengths. This is called multispectral remote sens-
ing (Emery & Camps, 2017), where the sensor measures simultaneously different
ranges within the EM spectrum to generate bands for each wavelength (Read &
Torrado, 2009). The most used wavelengths are in the visible and infrared spectrum.
Nevertheless, atmospheric conditions such as clouds, fog and aerosols are disturbances
in these wavelengths that affect the accuracy of these measurements (Martin, 2014).
The sensor stores the received signal as digital numbers which can be used to analyse
the radiance numerically or visualise the variation of the photon’s intensity with differ-

ent wavelengths (Emery & Camps, 2017).

Over the past decades, numerous satellite missions have been launched, each charac-
terized by unique technical properties. The main differences among these missions lie
in their temporal, spatial, spectral, and radiometric resolutions. The different resolutions
determine various aspects, such as their revisit time, the size of the smallest detectable
object, the number of bands as well as the number of brightness pixels (Read & Torrado,
2009). One notable satellite mission is the ERS-2 mission, which was launched in 1995
and ended in 2011. The mission featured a platform equipped with seven sensors, each
serving various applications (ESA, n.d.-b). The primary goals of the mission were to
study sea surface temperatures, winds, and atmospheric ozone. One of the onboard sen-
sors was the ATRS-2 which had 7 bands ranging between the visible and the thermal
spectrum. The spatial resolution was 30 m with a revisit time of 35 days (EoPortal,
2012). The thermal bands of the ATSR-2 sensors were utilized to contribute to the pro-
duction of the GloboLakes LSWT product (MacCallum & Merchant, 2012).



The Envisat mission was launched in 2002 and extended the ERS mission with more
instruments, however, the mission ended in 2012. The platform carried 10 sensors such
as the AATSR. The objective of the mission was to investigate atmospheric chemistry
and ocean studies (ESA, n.d.-a). The AATSR sensor was a heritage of the ATSR2 sen-
sor. The sensor was designed to measure sea surface temperature using its seven bands
ranging between the visible and TIR part of the spectrum with a spatial resolution of 1
km (Llewellyn-Jones et al., 2001). The AATSR sensor contributed, like ATSR2, to the
GloboLakes LSWT product (MacCallum & Merchant, 2012).

The Terra/Aqua satellite is a mission that has operated since February 2000 up until
today. The platform hosts several sensors such as MODIS, the Advanced Spaceborne
Thermal Emission and Reflection Radiometer, Clouds and Earth Radiant Energy Sys-
tem, Multi-angle Imaging SpectroRadiometer and Measurement of Pollution in the
Troposphere. The satellite operation is observing the atmosphere, land surface and
oceans as well as snow, ice and energy budget (NASA, 2023). MODIS has a high tem-
poral resolution with a revisit time of at least once a day, it also covers 36 spectral bands
which range between 250 and 1000 m spatial resolution (Read & Torrado, 2009). Since
MODIS has this high spatial-temporal and spectral resolution it is very useful for many
applications, which vary between cloud detection, estimation of LST up to photosyn-
thetic activity (NASA, 2023). The LST product of MODIS is covering water bodies as
well, which enables the monitoring of LSWT.

Another satellite mission launched in early 2000 was the MetOpA satellite, which
started in 2006 and ended in 2021 (Eumetsat, n.d.). The satellite carried, among others,
the Advanced Very High-Resolution Radiometer (AVHRR) sensor which has a tem-
poral resolution of a day, and measures radiation with five bands with a spatial resolu-
tion of 1.1 km. Originally, the sensor was built to globally monitor clouds, land surface
temperature and vegetation, but, it was also used to observe fires, volcanic activity,
radiation, snow and ice (Xiong et al., 2018). The AVHRR sensor was also utilized to
contribute to the GloboLakes dataset (MacCallum & Merchant, 2012)

Relative new missions are the Landsat 8 and Landsat 9 satellite. The Landsat 8 has been
operating since February 2013 and is continuing. The platform hosts two sensors the
operational land image and TIRS with a temporal resolution of 16 days. The former
covers nine spectral bands with eight of them with a spatial resolution of 30 m and one
with 15 m. The latter has a temporal resolution of 16 days and two bands in the thermal
infrared regime with a spatial resolution of 100 m. The thermal sensors of Landsat 8
can be used to estimate lake temperatures. The Band 10 of the collection 2 level 2 data
represents the computed surface temperature, which also includes LSWT (Ihlen, 2019).



Other relatively new satellite operations are the Sentinel-3A satellite, which was
launched in 2016, and its twin satellite Sentinel-3 B in 2018. On the Sentinel-3A four
sensors are installed, namely Ocean and Land Colour Instrument, the Sea and Land
Surface Temperature Radiometer (SLSTR), Synthetic Aperture Radar Altimeter and
the Microwave Radiometer. The sensors serve different purposes such as monitoring
sea level and sea surface temperature, land cover mapping, vegetation health and others.
The sensors vary in their temporal, spatial and spectral resolution. The SLSTR sensor
has a temporal resolution of 27 days and covers 9 spectral bands with a spatial resolu-
tion of 500 m for the visible range and 1 km for the thermal infrared channels. The
Ocean and Land Colour Instrument has the same temporal resolution as the SLSTR,
however, it has 21 spectral bands and a higher spatial resolution of 300 m (ESA, n.d.-
c¢). The CGLOPS LSWT product is an outcome of the SLSTR sensor, where the SLSTR
sensor is used to generate LSWT estimations since 2016 (Carrea & Merchant, 2020b).

2.2 ERAS5-Land reanalysis product for lakes

The land surface is only one part of the earth’s complex system but since its processes
affect society and ecosystems it is important to model the changes of these processes
due to climate change to make projections of how society will be affected. This can be
done through LSM, which are models that offer the ability to solve complex interactions
between the land surface and the atmosphere which includes water, energy, and carbon
fluxes, through a numerical approach. They also consider direct and indirect anthropo-
genic impacts as well as ecological dynamics (Fisher & Koven, 2020). The original
purpose of LSM was to set physical boundary conditions to model the impact of the
land surface on the atmosphere. LSMs have since then further developed and cover
nowadays a range of land surface processes such as surface hydrology, soil moisture
dynamics and land surface heterogeneity (Pal & Sharma, 2021).

A commonly used product generated by the H-Tessel LSM is the ERAS5-Land reanaly-
sis product, which is able to generate various variables that represent the state of land
components. ERA5-Land is based on the ERAS and takes advantage of its atmospheric
forcing. The spatial resolution of ERAS5-Land (9 km) is higher compared to ERAS (31
km). ERA5-Land is based on the H-Tessel model using version CY41R2 which is pro-
vided by the ECMWEF IFS. The ERAS5-Land data covers a 31 km horizontal grid and
divides the atmosphere into 137 layers between the Earth’s surface and an 80 km height
which makes it a finer and more frequent product compared to previous products
(Munoz-Sabater et al., 2021). It is based on a single simulation, which improves the
computing time of the model. The model's purpose is to simulate the surface exchanges
including the land surface hydrology (ECMWF, 2023). The ERAS5-Land product



includes the FLake. It is a one-dimensional model which works with the assumption
that the temperature profile of a lake has a specific shape. The lake is separated into
two layers, the uppermost (mixed) and the bottom (thermocline) level. The model pro-
vides several variables to represent the state of a lake: mix layer temperature which
represents the average uppermost layer’s temperature of lakes, the mixed-layer depth
describing the thickness of the top layer, the bottom temperature, the mean temperature
of the water column as well as the surface temperature of the upper ice as well as its ice
thickness (Mufioz-Sabater et al., 2021; Zhang et al., 2021). ERAS5-Land is able to gen-
erate spatially complete datasets of LSWT (Zhang et al., 2021) with high accuracy
(Munoz-Sabater et al., 2021; Stefanidis et al., 2022), as well as its higher spatial reso-
lution compared to other reanalysis products, thus the ERA5-Land data will be further
used in this study.

2.3 Data fusion concepts

Data fusion can be described as the approach of merging different data sources together
to gain an improved dataset (Zhang, 2010), which either supplements the incomplete
data of one sensor with data from other sensors or improves the estimation of a dataset
by combining different data sources (Schmitt & Zhu, 2016). Schmitt and Zhu (2016)
divided the methods of data fusion into four steps: data alignment, data correlation,
attribute estimation and identify assessment. The first two steps validate that the data
sources have a relationship with each other but also with the research object. The data
alignment makes sure that the transformation, the units, and the spatial and temporal
resolution of the object of interest correspond with each other between each input var-
iable to gain a universal representation. The last two steps can be described as data
fusion, which is the combination of aligned and correlated data. The aim of the steps is
the optimization of the object of interest by fusing the information from different
sources in an accurate framework (Schmitt & Zhu, 2016).

In the last decades, a range of various data fusion methods have been developed to
advance the spatiotemporal resolution of datasets such as the Spatial and Temporal Ad-
aptative Reflectance Model (STARFM) (Feng et al., 2006) or the flexible spatiotem-
poral data fusion method (Zhu et al., 2016). The approaches aimed to fuse satellite
products varying in their spatial and temporal resolution to synthesize their advantages.
This was achieved by blending sources with a high spatial but low temporal resolution
(e.g., Landsat) with low spatial but high temporal resolution data (e.g., MODIS). In
STARFM a set of fine and coarse-resolution images, acquired at the same time, as well
as one coarse image at a prediction time is needed to forecast the pixel value of the fine-
resolution image at the prediction time. The model searches for similar pixels within a

moving window using fine-resolution data. Furthermore, the quality of the pixels needs
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to be ensured to then weight the pixels based on their spectral, temporal and spatial
distance using the fine and coarse data. The previous step is then used to predict the
fine-resolution pixel (Feng et al., 2006).

In terms of data fusion for temperature retrieval purposes, previous studies have used
data fusion models such as the ESTARFM (Long et al., 2020), a heritage of STARFM,
multiresolution Kalman filter algorithm (Dong et al., 2022) to combine satellite and
LSM data to fill gaps in the satellite data, conquer the scale difference between the
sources, gain high spatial and temporal resolution and improve their accuracy. Dong et
al. (2022) were able to generate a spatially complete and hourly LST available dataset
that followed the spatial pattern and diurnal variation of LST well. The algorithm is
based on the Kalman filter, but instead of treating the temporal dimension, it addresses
the scale differences between different data sources. The multiresolution Kalman filters
from the fine to the coarse resolution but also smoothens from the coarse to the fine
resolution, which leads to spatial complete data (Dong et al., 2022). The validation of
the proposed method reported an RMSE of 3.08-3.38 °C (Dong et al., 2022). Other
methods such as the ESTARFM data fusion approach, used by Long et al. (2020), in-
dicated a similar accuracy with an RMSE ranging between 2.77 and 3.96 °C. ES-
TARFM was developed to combine data sources with different spatial and temporal
resolutions to make use of their advantages, to finally, gain a high spatial and temporal
resolution dataset. This was achieved by integrating a linear spectral mixing model,
consideration of distances between pixels and their similarity as well as their temporal
correlation (Long et al., 2020). The different data fusion methods have shown that the
combination of multisource data is able to fill gaps in satellite data, gain a high spatial

and temporal resolution and finally, is able to keep a high accuracy.

3 Study area

The study focuses on Lake Vénern in Sweden, which is the largest lake in the European
Union (58-60°N 12-14 °E) (Figure 2). The area of interest covers 5648 km? and is in-
fluenced by a maritime on the border to Central European climate (Reinart & Reinhold,
2008). Lake Vénern hosts a variety of fish communities and is an important freshwater
supplier for the region. The lake's temperature varies spatially, due to the large size of
Lake Vinern. During the winter months, Lake Vénern rarely freezes, only in areas close
to the shore (Kvarnids, 2001). The bathymetry of Lake Vénern is characterized by two
basins which are located on the West and East of the lake. The maximum depth is about
100 m which is reached in the southwest as well as in the centre of the eastern part of
the lake (Figure 2).
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4 Data and methodology
This study utilized data from multiple satellite sensors, resulting in five satellite LSWT
products, as well as in-situ measurements and ERA5-Land reanalysis output. The used
datasets and their spatial resolution, temporal length and data source can be retrieved
from Table 1.

Table 1. Summary of in-situ measurements, satellite LSWT products and ERA5-Land
reanalysis product along with their data source, spatial and temporal properties.

Satellite Source/ Dataset Spatial/ Temporal Data Source
mission Sensor temporal length
resolu-
tions
Point / ~ o
. 1973 - miljo-
/ In-Situ / 10/year 2022 data.slu.se
Lake Mix- 0.1°(9 1950 cds.cli-
/ ERAS-Land Layer km) / tod mate.coperni-
oda
Temperature hourly Y cus.eu
Terra/ 1 km/ 2000 —  earthdata.nasa
MODIS MODI11A1 .
Aqua daily today .gov
Landsat 8 100 m/16 2013 —
TIRS Band 10 usgs.gov
days today
0.05°/
ERS-2/ ATSR2/ . 1995 —
ARC-Lake daily laketemp.net
ENVISAT | AATSR 2012
average
ERS-2/ ATSR2/ 0.025°/ 1995 cata-
ENVISAT | AATSR/ GloboLakes daily 2016 logue.ceda.ac.
/ MetOpA | AVHRR average uk
0.0083 (1 2002-2012 .
ENVISAT land.coperni-
AATSR/ km) /10 2016- i
/ CGLOPS cus.vgt.vito.b
. SLSTR days today
Sentinel-3 e
average

4.1 In-situ measurements

The in-situ measurements utilized in this study were collected from three observation
stations located in Lake Vinern: Tarnan, Megrundet and Dagskérsgrund (Figure 2). In-
situ measurements from those three stations for Lake Vénern are available from 1973

to the present (Table 1), the measurements were taken at different depths between April
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and October, but this study focuses on LSWT and thus we only used measurements
within the first 0.5 m depth. The dataset shows variation in the number of measure-
ments, for some years with a minimum of five measurements in 2011 and a maximum
of ten measurements in 2004, 2006 and 2019. The complete dataset spanning the entire
temporal length was utilized in this study to evaluate the performance of satellite and

reanalysis products.

4.2 Satellite LSWT products

A total of five satellite LSWT products were evaluated in this study, each providing
coverage over different spatial extents and temporal lengths. The specific properties of

these products are summarized in Table 1.

4.2.1 MODIS

The land surface temperature/emissivity Level 3 product (MOD11A1) of Collection 6.1
was utilized in this study to evaluate the accuracy of the product compared to the in-
situ measurement. The LST product is available daily with a spatial resolution of 1 km
in a 1,200 by 1,200 km grid. MODIS passes Lake Vénern approximately at 9:30 am
(Reinart & Reinhold, 2008) and therefore, the MODIS daytime LST product was cho-
sen. The product is a Level 3 product and was obtained from the MOD11 L2 swath
product (Wan et al., 2021). The evaluation of the product was conducted through the
comparison with in-situ measurements on clear days following the common practices
(Duan et al., 2019; Wan et al., 2004).

4.2.2 TIRS

The thermal infrared sensor (TIRS) installed on Landsat 8 obtains the surface temper-
ature of the Earth. The used surface temperature data was derived from the Landsat 8
Collection 2 Level 2 data which was created with a single channel algorithm from band
10 of the Level 1 data using TOA reflectance, TOA brightness temperature, advanced
spaceborne thermal emission and reflection radiometer global emissivity dataset data
and normalized differenced vegetation index, atmospheric profiles of geopotential alti-
tudes, humidity data, reanalysis data of and air temperature (Sayler, 2023). The valida-
tion of the Landsat LST product over water surfaces was conducted at nine sites at the
border between Canada and the USA. The validation results reported RMSE values of
1.1 °C, 0.9 °C and 0.9-1.3 °C for Lake Eri, Lake Superior and Lake Michigan, respec-
tively (Duan et al., 2021).

4.2.3 GloboLakes

The GloboLakes dataset contains daily estimates of LSWT with a 0.05 °C spatial reso-
lution for 1000 lakes between 1995 and 2016. The estimates were derived from multiple
sensors namely the AVHRR, AATSR and the ATSR2 using the optimal estimation
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algorithm. The satellite data was harmonized with each other to gain a finer resolution
than its predecessor ARC-Lake and to extend its temporal length as well as the number
of processed lakes (Carrea & Merchant, 2019).

4.2.4 CGLOPS

CGLOPS is a 10-day averaged LSWT product that provides similar to GloboLakes
1000 lakes in a spatial resolution of 1 km. The data can be split into three types: histor-
ical, reprocessed and near-real-time. The historical data were obtained from the AATSR
sensor, covering the period from 2002 and 2012. The reprocessed and near real-time
data were obtained by the SLSTR-A and SLSTR-B sensors operating on Sentinel-3.
Specifically, the LSWT data were obtained from SLSTR-A for the period between
April 2018 and August 2020. However, the SLSTR-A data obtained between June 2016
and April 2018 represented reprocessed data due to technical issues. From August 2020
onwards, the SLSTR-A data was combined with the tandem sensor SLSTR-B to en-
hance the quality of the LSWT product. The LSWT product is based on Level-3 data,
which have been divided into intervals corresponding to specific time periods within a
month. These intervals cover the 1 to the 10™, 11™ to the 20™, and the 21 until the end
of the corresponding month (Carrea & Merchant, 2020b). The evaluation of the product
was conducted through the comparison with in-situ measurements and quality control
during and post-processing. Additionally, the reprocessed data was evaluated against
the near real-time data. The combined LSWT obtained from SLSTR-A and B was com-
pared against the measurements of SLSTR-A to show the improvement of the product
by incorporating SLSTR-B (Carrea & Merchant, 2020a). The validation of CGLOPS
reported a mean bias of <-0.469 °C for AATSR derived and < -0.375 °C for SLSTR-
A LSWT with a quality level above three. The 10-day average product validation for
Lake Vénern indicated a high accuracy with a mean bias of -0.139 °C for AATSR and
-0.104 °C for SLSTR-A (Carrea & Merchant, 2020a).

4.2.5 ARC-Lake

The ARC product contained two LSWT datasets derived from the ATSR2 and the
AATSR sensors, installed on the ERS-2 and ENVISAT satellites, respectively. From
the ARC dataset, two LSWT sets were retrieved the datasets obtained by the ATSR2
and AATSR satellites (Table 1) (Merchant & Maccallum, 2018a). The temporal cover-
age of the product was from 1995 until 2012, covering approximately 250 lakes with a
spatial resolution of 0.05 °. For each sensor, a day and a night dataset were provided.
The used product contained unaveraged per lake estimations split into observations or
reconstructions on a daily timestep. For this study, only the daytime observational data
was used. The author created the dataset by first applying a Bayesian approach to detect
clouds, next the optimal estimation algorithm was used to retrieve the LSWT (Merchant
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& Maccallum, 2018a). The dataset was validated by comparing the LSWT estimation
with 54 in-situ measurements across 18 lakes with a mean bias of -0.34 °C (MacCallum
et al., 2013)

4.3 ERAS5-Land reanalysis product

This study used the ERA5-Land product which is obtained from the ECMWF. The data
is an hourly reanalysis product covering the time range from 1950 up to today. The
reanalysis product was chosen because of its high temporal resolution and its relatively
high spatial resolution. The ERAS5-Land data has been validated against in-situ meas-
urements of 51 lakes across Europe and North America (Stefanidis et al., 2022; Zhang
et al., 2021). In this study, the lake mix layer temperature dataset was used as a repre-
sentation of the LSWT. Previous studies have demonstrated the dataset's capability to
accurately represent LSWT, reinforcing its suitability for use in this study (Zhang et al.,
2021). Zhang et al. (2021) have pointed out that the in-situ measurements are taken at
a different depth compared to satellite estimation which represents the skin temperature
of the lake, while the mix layer temperature dataset of ERA5-Land represents the aver-
age temperature of the lake’s top layer (Zhang et al., 2021). The data was retrieved daily
for the time period between 1973 and 2022 to cover the temporal length of the in-situ
measurements. The spatial resolution of the ERAS5-Land product is 9 km (Table 1). To
ensure consistency and comparability with the respective LSWT products, the ERAS-
Land data underwent a resampling process. The spatial resolution was adjusted to match
the size of each specific LSWT product, ensuring that the datasets are aligned and can
be effectively compared and analysed in the study.

4.4 Data fusion and bias correction

4.4.1 Overall data fusion framework
Figure 3 shows the overall framework used in the study. The study followed the meth-

odology outlined by Long et al. (2020), which was supplemented with an additional
step to compare and evaluate the accuracy of the satellite and reanalysis products
against the in-situ measurements. After the comparison, the satellite products were split
into cloudy and cloud-free days. The cloud-free days were used to feed into the ES-
TARFM model by Zhu et al. (2010), which fused the coarse spatial resolution ERAS-
Land data with the fine resolution satellite data to generate a spatially complete and
daily available LSWT dataset. The detailed steps of the model will be further explained
in Chapter 4.4.2. Subsequently, the newly generated dataset underwent bias correction
using the cloud-free pixels on cloudy days through linear and variance scaling. Finally,
the bias-corrected dataset was evaluated using the in-situ measurements. The fusion

model ESTARFM and the corresponding bias correction were selected based on the
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findings of Long et al. (2020), which demonstrated their ability to generate a highly
accurate LST dataset with a high spatial and temporal resolution. Furthermore, the pro-
posed method eliminated the need for additional data reconstruction, unlike other ap-

proaches such as gap-filling methods.
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Figure 3. Overall data fusion framework. Modified from Long et al., 2020 & Zhu et al., 2010.

4.4.2 Pre-processing for data fusion and theoretical introduction of ESTARFM

The used data fusion model in this study is the ESTARFM by Zhu et al. (2010). For the
implementation of the model, it was necessary to first resample the ERAS5-Land data to
the resolution of the satellite-derived LSWT product. This was done using the bilinear
resampling method. Further, the satellite LSWT product was split into two subsets
based on if the day corresponds to a clear or cloudy day. This chapter will discuss the
data fusion method used, as well as the bias correction applied to the fused LSWT prod-

uct. The bias correction was chosen to correct a systematic error in the fusion model.
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Long et al. (2020) were able to significantly reduce the systematic error by following

the steps outlined in the proposed bias correction (Chapter 4.4.2.3).

4.4.2.1 Division of datasets
The first step in implementing the model involved dividing the data from each satellite

product into two groups: cloud-free days and cloudy days. This was done by examining
specific layers within the product or quality flags associated with each satellite product.
The approach by Long et al. (2020) was followed for MODIS, where a pixel with a
quality flag of “cloud” and a “LST error > 3 K” was defined as a cloudy pixel. Addi-
tionally, days with pixels that did not have a corresponding LSWT value were also
classified as cloudy days. For the ARC-Lake product, the division was based on the
number of cloudy pixels present on each day. If the number of cloudy pixels exceeded
zero, the day was considered as cloudy. According to the CGLOPS documentation, the
effect of clouds had already been considered and a cloud detection algorithm was used
to create the product. Therefore, days with pixels that contained no data or poor-quality
levels were defined as cloudy days. For the GloboLakes product, the division was based
on the quality of the data. Days with pixels lower than the quality flag of 4 were defined
as cloudy days. For TIRS the pixel quality assessment band provided cloud confidence

data, which was utilized to identify cloudy days.

4.4.2.2 Theoretical basis of ESTARFM

This study followed the data fusion approach ESTARFM proposed by Zhu et al. (2010).
The ESTARFM is an advancement of the STARFM model developed by Feng et al.
(2006). The STARFM has demonstrated its effectiveness in generating satellite-sensed

data at a high spatial and temporal resolution. However, it does have limitations, par-
ticularly in heterogeneous landscapes. These limitations prompted the development of
ESTARFM, which leverages the correlation between high and low spatial resolution
data to obtain a high-resolution and temporally continuous dataset while also reducing
systematic biases. Originally, the ESTARFM was developed to generate daily surface
reflectance from MODIS and Landsat imagery. Long et al. (2020) was the first study
that demonstrated the use of the ESTARFM for fusing LST.

The ESTARFM model requires a minimum of two pairs of coarse (e.g., ERA5-Land)
and fine (e.g., MODIS) images acquired on the same day, as well as a coarse image for
the desired prediction day. The underlying assumption of the model is that data obtained
from different products for the same region are correlated and comparable, with mini-
mal systematic bias, as long as they are acquired simultaneously and appropriately pre-
processed. The pre-processing steps involve radiometric calibration, atmospheric cor-
rection, geometric rectification, and resampling of the coarse data to match the spatial
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resolution of the fine data source. The model can be divided into four main steps (Figure
3). Firstly, the two fine-resolution images (F) are utilized to identify pixels within a
moving window that exhibit similar characteristics. Subsequently, weights are calcu-
lated for these similar pixels, and conversion coefficients are computed through linear
regression. Finally, the conversion coefficients and weights are applied to the coarse
image (C) to generate temperature estimations for the fine-resolution image on the pre-
diction date (Zhu et al., 2010). The model is based on a linear spectral mixing model,

which can be expressed as followed:

N
Fk(xw/Z'yw/Z'tp) = F(xW/Z'yw/Z'tk) + 2 ]/Vl Vi(C(xiryirtp) - C(xilyil tk)

=1
where F and C correspond to the fine and coarse spatial resolution LSWT, respectively;
the size of the moving window is expressed as w with the central pixel at the location
Xwi2, Vw2 ; tk represents the time of the acquired high-resolution LSWT (k = m, n) while
t, is the prediction time; the number of pixels is expressed by N; the weight and the

conversion coefficient of the similar pixel i can be described as W; and V;, respectively.

The calculation of the high-resolution LSWT at the prediction time is based on the high-
resolution LSWT acquired at a known time and the weights and conversion coefficients
of similar pixels found in the coarse resolution LSWT. The weight of a similar pixel is
determined by its similarity between the fine and coarse resolution image and its dis-
tance to the center of the moving window. A shorter distance and higher similarity lead
to a higher weight of the similar pixel. The similarity is calculated by the correlation
coefficient between the similar pixel and its corresponding coarse-resolution pixel. The
similarity is based on the correlation coefficient of the similar pixel and the correspond-
ing coarse-resolution pixel. To improve the accuracy of the calculations of the high-
resolution temperature product a temporal weight was applied based on the distance to
the prediction date (Zhu et al., 2010). The final high-resolution LSWT can be calculated
using the equation below:

F(xw/z'yw/z'tp) = Tm * Fm(xw/ZIyw/Zrtp) + Tn * Fn(xw/ZIyw/Zrtp)

where the variables used in the previous equations were supplemented with 7 as the
temporal weight, which indicates the magnitude of change between the coarse reso-

lution LSWT at time # and the prediction time #.

4.4.2. Bias correction
The ESTARFM model reduces the systematic biases of the used data, however, the bias
might not be completely eliminated. Therefore, an additional bias correction approach

was used by Long et al. (2020) to minimize the bias of the final fused results. We tested
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this additional bias correction approach in our study. For this approach, the systematic
biases were eliminated by using clear pixels of cloudy days from the fine-resolution
LSWT product. The first step involved employing a linear scaling approach, which cal-
culated the difference of the mean of the fused LSWT of clear pixels on clear days (7p%)
and the LSWT of clear pixels on cloudy days (71*) using this equation:

bias = u(Tp) — u(Thy)

The calculated bias was then subtracted from the fused LSWT values before the linear
scaling to obtain a linear-corrected fused LSWT (Tp?).

T = T — bias

In addition to the linear scaling approach, a variance scaling approach was imple-
mented. This was done by normalizing Tp” by subtracting its mean (u7p") to shift the
mean to zero. The normalized LSWT was expressed as 7p°. Furthermore, the standard
deviation of the difference was scaled using the ratio of the standard deviation of 7/
and 7p° and was finally summed up with the mean of the scaled-corrected LSWT.

T§ = Tp — u(Tp)
d_ b a(Ty)
T8 = u(Tg) + T§ s
Tp" was further adjusted by dividing it by its standard deviation (std (T»%)) and finally,

bias-corrected by multiplying it by the standard deviation of T, (std (Ts%).

Tp

std(T?)
Corrected LSWT =  Adjusted LSWT * std(Tg)

Adjusted LSWT =

4.5 Evaluation of LSWT products and fused dataset against the in-situ measure-
ments

The in-situ measurement represents a point measurement of the LSWT, while the sat-
ellite LSWT products have a spatial resolution ranging from 100 m up to 5 km. This
spatial mismatch can introduce bias, especially when coastline pixels are included.
Therefore, it is essential to consider this spatial mismatch when comparing the in-situ
measurements with satellite data. Previous studies have mitigated the effects of spatial
mismatch by employing a 3x3 grid centered around each measurement station (Reinart
& Reinhold, 2008; Schneider et al., 2009). The grid accounts for the possible error due
to shoreline pixels and simultaneously represents are large area of the lake (Schneider
et al., 2009). The satellite pixels within the 3x3 grid were averaged and the standard
deviation for each pixel within the grid was calculated to identify areas with homoge-

nous temperatures. If the standard deviation of a pixel was above 0.75, then the
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corresponding data was rejected (Reinart & Reinhold, 2008). This procedure was ap-
plied for all satellite-derived LSWT products, as well as for the fused and bias-corrected
LSWT product.

Additionally, the correctness of each pixel was accessed for the products with a quality
control layer. For the CGLOPS and GloboLakes products, only pixels with a quality
flag higher than 3 were considered, ensuring that only pixels with acceptable or higher
quality were included in the analysis. For the MODIS product, the data needed to be
considered as good data and the LST error below 3. The TIRS data was only used when
the quality layer indicated clear skies. For ARC-Lake no quality control layer was avail-
able, therefore, no quality control requirement was applied.

The ERAS5-Land product was also compared to the in-situ measurements. Due to the
high difference in spatial resolution between the LSM data and the in-situ measure-
ments, it was decided to follow a station-based observation space approach which was
previously used in Yilmaz (2023). The approach obtained the LSWT value of the
ERAS-Land dataset for the cell in which the observation station was located (Yilmaz,
2023).

To evaluate the accuracy of each LSWT product and the fused dataset against the in-
situ measurements, the mean absolute error (MAE), the root mean square error (RMSE)
and the R2-value. Additional to the calculation between fused and clear pixels on cloudy
days, the bias (biasm-sin,) between the satellite-derived LSWT and in-situ measurement

was calculated. This was done by using following equations:

N
1
i=1
TiLi(P = 0,)?

RMSE =
N

R? = CiL1(0; — 0)(P; — P))?
T YN0, - 023N (P, — P))?

biasln_situ = SatelliteLSWT - InSituLSWT

where, N represents the number of observations, O; and O;the observation and mean

observation data and P; and P; the fused and mean fused LSWT, respectively.
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5 Results

5.1 Comparisons of LSWT variation between the measurement stations

After comparing the measured LSWT from the three measurement stations, it was
found that there were 61 matching days. On average, there were 2.26 matching days
per year since 1996. There were no matching dates for all three measurement stations
before the year 1996. Spatial variations in LSWT were observed (as shown in Figure
4). No specific general pattern was discovered, but on average, Dagskérsgrund showed
a higher temperature with an average LSWT of 8.79 °C compared to Tdrnan and
Megrundet with 7.82 °C and 8.15 °C, respectively. The maximum variation in LSWT
on a single day was observed between Dagskdrsgrund and Térnan, with a difference of
7.1 °C. This highlights the spatial variability in LSWT among the measurement sta-

tions.
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Figure 4. Lake surface water temperature (LSWT) measurements for each station on
days with available measurements for all three stations.

5.2 Evaluation of satellite LSWT products against in-situ measurements

Figure 5-7 shows the comparison of all six satellite LSWT products against in-situ

measurements with their evaluation metrics presented in Table 2. The TIRS product
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only matched with the in-situ measurements on five days, which was the lowest number
of matches among all the satellite-derived products. The MAE and RMSE were 0.91
°C and 1.11 °C, respectively, indicating a high accuracy in estimating LSWT in Lake
Viénern, Additionally, a R?-value of 0.96 was observed. It was found that TIRS under-
estimated the LSWT compared to the in-situ measurement by -0.83 °C on average. In
contrast, a total of 139 matching days were found for the MODIS product, which was
the highest number of matches among all the satellite products. This suggests a better
temporal overlap between MODIS and the in-situ measurements than other satellite
products. The evaluation metrics show that the MODIS product had an MAE of 1.13 ©
and RMSE of 1.64 °C, which were relatively higher compared to the other satellite
products. The R? value was 0.93. Similar to TIRS, an underestimation of -0.57 °C was
found (Table 2).
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Figure 5. Comparisons of satellite lake surface water temperature (LSWT) products
from TIRS (a) and MODIS (b) against in-situ measurements.

The GloboLakes dataset matches 68 times with the observation data, which was the
second-highest value. Furthermore, the second highest accuracy of all the datasets with
an MAE of 0.56 °C, RMSE of 0.79 and an R? value of 0.97. The dataset and the in-situ
measurements had a strong positive correlation (Figure 6a). In contrast to the other
LSWT products, it can be seen that GloboLakes overestimated the LSWT with an av-
erage bias of 0.04 °C, which is also the second lowest bias (Table 2). The CGLOPS
product corresponded 21 times with the in-situ measurements. The evaluation metrics
illustrate an MAE of 1.26 °C and RMSE of 1.82 °C and an R? of 0.93. The R? was
higher compared to the other products, but at the same time, the RMSE was higher
compared to the ARC-Lake, GloboLakes and TIRS datasets, while compared to
MODIS it was lower. Like MODIS and GloboLakes a strong positive relationship with

the in-situ measurement was seen (Figure 6b). The bias between CGLOPS and the in-
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situ measurements indicated, similar to previous LSWT products, that CGLOPS was
underestimating the LSWT, on average by -0.36 °C (Table 2).

" GloboLakes vs. In-Situ LSWT Measurements %0 CGLOPS vs. In-Situ LSWT Measurements
a) s GO b)

18 GAT DO 18

16 9 16
5} cS H
14 . % Q14
312 o .2 g 12}
: & =
& 10 o 2 10|
"S‘:v 8t - Y
2 oo MAE: 056 | S MAE: 1.26
S 6 8% RMSE: 0.79| & 6/ 97 o RMSE: 1.79
© &0 R2:0.97 o R2:0.93

4 B n: 68 4] n: 21

e G} 0 Measurements 21 ) ©  Measurements

Regression Line: y=0.99 * x + 0.1 Regression Line: y= 0.9 * x + 0.63

L 1 0 L n n
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20

In-Situ Measurement [°C] In-Situ Measurement [°C]

Figure 6. Comparisons of satellite lake surface water temperature (LSWT) products
from GloboLakes (a) and CGLOPS (b) against in-situ measurements.

The AATSR dataset of ARC-Lake matched 13 times with the in-situ measurement. For
these matches, it was found that the MAE and RMSE with 0.75 °C and 1.06 °C, respec-
tively, were lower compared to other LSWT products. The R2-value was 0.96 °C. The
relationship between the AATSR and the field measurements showed a high correlation
with 0.89. (Figure 7a). The AATSR LSWT product slightly overestimated the LSWT
with 0.03, which is the lowest bias of all LSWT products (Table 2). ATSR2 corre-
sponded six times with the in-situ measurements, which is less compared to other
LSWT products. The MAE and the RMSE of the ATSR2 dataset were 0.32 °C and 0.46
respectively, which were the lowest compared to the other LSWT products. The R? was
very high with a value of 1 (Figure 7b). In contrast to AATSR, it was calculated that
the ATSR2 dataset estimated lower LSWT for the measurement stations and therefore
underestimated the LSWT by -0.31 °C on average (Table 2).

24



AATSR vs. In-Situ LSWT Measurements 18 ATSR2 vs. In-Situ LSWT Measurements
a) b)

(o] )

MAE: 0.32
RMSE: 0.46
R2:1

n: 6

AATSR 3x3 Mean [°C]
O
ATSR2 3x3 Mean [°C]

©  Measurements | 2} o ©  Measurements
Regression Line: y=0.89 * x + 1.37 | Regression Line: y=1.01 * x -0.45

: L N
0 5 10 15 20 25 0 2 4 6 8 10 12 14 16 18
In-Situ Measurement [°C] In-Situ Measurement [°C]

Figure 7. Comparisons of lake surface water temperature (LSWT) products from
AATSR (a) and ATSR?2 (b) against in-situ measurements.

Table 2. Biasi-sin, MAE, RMSE, R’ and number of matches between lake surface wa-
ter temperature product and in-situ measurements.

Biasmsia MAE (°C) RMSE R2  Number of

°O) °O) Matches
MODIS -0.56 1.13 1.64 0.93 139
TIRS -0.83 0.91 1.11 0.96 5
Glo- 0.04 0.56 0.79 0.97 68
boLakes
CGLOPS -0.36 1.26 1.79 0.93 21
ATSR2 -0.31 0.32 0.46 1 6
AATSR 0.03 0.75 1.06 0.96 13
ERAS- 0.50 1.32 1.62 0.93 780
Land

5.3 Evaluation of ERAS5-Land reanalysis product against in-situ measurements

Figure 8 shows the comparison of the ERA5-Land product with the in-situ measure-
ment. The accuracy of the ERA5-Land product is presented in Table 2. In total 780
matches were found during the temporal length of the observation data from 1973 to
2022. The ERA5-Land product agreed well with the in-situ measurements with an R?
value 0f 0.93. The error was low with an MAE of 1.32 °C and RMSE of 1.62 °C, which
was similar to the error of the CGLOPS and MODIS products.
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25 - I
0 & 0
& 8o ©
» 0
520
2
2
<
o 15
o
g
(]
=
)
10
,_] MAE: 1.32
X RMSE: 1.62
% R2: 0.93
=< s+ n: 780
=
0 Measurements
ol Regression Line: y=1.06 * x -0.19

0 5 10 15 20 25
In-Situ Measurement [°C]

Figure 8. Evaluation of ERA5-Land against in-situ measurements.

54 Generation of fused LSWT dataset and evaluation

5.4.1 Division of satellite LSWT products

Table 3 shows the clear and cloudy days for each satellite-derived LSWT product. The
performance of the model is depending on the accuracy of the input data. Since it can
be assumed that for clear days the accuracy is high the dataset was split into clear and
cloud days to use the clear days as an input for the model. During the time period 2000-
2023, the MODIS product had a total of 273 clear days and 8,051 cloudy days. The
ARC-Lake product was split into 592 clear days for ATSR2 and 731 clear days for
AATSR for the time period 1995-2012. The GloboLakes product had the third lowest
number of clear days, with only 19 days identified as clear during its 21 yearlong
lengths For the CGLOPS product, only 8 clear days were found throughout its opera-
tional time so far. TIRS has been operating since 2016, however, due to its poor tem-
poral resolution, only every 16 days data is available. This caused a generally low num-
ber of matches in which none of those days had a complete dataset or were completely
free of clouds.

The highest number of clear days were found in ARC-Lake; however, these products
ended in 2012, due to the discontinuance of the ATSR2 and AATSR sensors. Therefore,
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finally based on the availability of clear days, good spatial and temporal resolution, and
continuous dataset, it was decided to conduct the data fusion using the MODIS product

in this study.

Table 3. Number of clear and cloudy days for each lake surface water temperature
product.

MODIS TIRS GloboLakes CGLOPS ATSR2 AATSR

Clear 273 / 19 8 592 731
Days

Cloudy 8051 166 3829 552 1043 1505
Days

5.4.2  Evaluation of the fused LSWT dataset without bias correction

The data fusion was conducted for the time period between 2018 and 2019 using the
MODIS dataset. The time period was chosen because 37 clear days (23 in 2018 and 14
in 2019) as well as 18 in-situ measurements were available during this time period. It
was the second highest number of in-situ measurements for two years, only 2003/2004
and 2006/2007 had one extra in-situ measurement. However, 2018/2019 had with 37
clear days a higher number of clear days compared to 2003/2004 with 18 and 2006/2007
with 24 clear days. The uncorrected fused LSWT product will be further named as the
fused product, while the bias-corrected LSWT product will be referred to as the cor-
rected LSWT product.

Figure 9 illustrates the spatial pattern of the LSWT on a clear day next to the fused
LSWT pattern on the 3™ of June 2018. As can be seen, the fused LSWT not only cap-
tured the spatial pattern well, but it also reflected the magnitude of the LSWT on the

clear day in a similar range.

a) MODIS b) Fused

< I =
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Figure 9. Spatial LSWT pattern of the MODIS lake surface water temperature
(LSWT) (a) and the fused (b) LSWT on a clear day in June 2018.
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Figures 10 and 11 show the LSWT spatial variation of the MODIS, ERAS5-Land, fused
and bias-corrected LSWT for the 7" of July 2018 and the 20™ of January 2019. The
dates were chosen to illustrate the difference between the LSWT during summer and
winter. As it can be seen the MODIS LSWT indicated data gaps due to clouds. Higher
temperatures were seen in the center, the minimum varied much for the rest of the re-
gion. In contrast, the ERA5-Land LSWT had no data gaps, although the spatial resolu-
tion was spare. The maximum temperature for this day was reached in the North of
Lake Vidnern and the minimum temperature was found in the center, indicating a dif-
ferent spatial variation of LSWT than MODIS. The fused LSWT was able to illustrate
the LSWT in a high spatial resolution and a similar pattern as the ERA5-Land but with
a lower magnitude. Like the ERAS5-Land, the highest LSWT was reached in the North
of the Eastern basin as well as in the South of the Western basin. The minimum was
slightly more south-located than the ERAS5-Land (Figure 10).

a) MODIS b) ERAS-Land
LSWT LSWT

¢) Fused d) Corrected
LSWT LSWT
e aan
.

14 19 25 No Data

Figure 10. Lake surface water temperature (LSWT) for MODIS (a), ERA5-Land (b),
fused (c) and bias-corrected (d) LSWT in July 2018.
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Similar to Figure 10, the MODIS LSWT indicated a spatially incomplete dataset, while
the ERAS5-Land data represented the LSWT with a low spatial resolution. The fused
LSWT product was able to fill the gaps of MODIS as well as maintain a high spatial
resolution. In contrast to Figure 10, it can be seen in Figure 11 that the spatial dynamics
between the LSWT products did not vary as much. All LSWT products reach their
maximum temperatures in the center of Lake Vénern. MODIS showed a slightly lower
temperature. The minimum temperatures were found close to the shore for MODIS and
ERAS-Land. The fused LSWT product showed its lowest temperature in the south of
the western basin of Lake Vanern (Figure 10).

a) MODIS b) ERAS-Land
LSWT LSWT
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-4 0 No Data

Figure 11. Lake surface water temperature (LSWT) variation for MODIS (a), ERAS5-
Land (b), fused (c) and bias-corrected (d) LSWT product in January 2019.
Figure 12 shows the statistical measures for the fused LSWT pixels against the clear
pixels of cloudy days of MODIS. Each pixel represents the mean value of the statistical
measure. The MAE showed a generally low value with 1 °C for the whole lake. The
maximum value of 3.09 °C was reached close to the shore (Figure 12b). The bias had

slightly higher values with about 1.5 °C for the center of the lake. Lower values were
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found in the North of the Lake where the values were about 0.5 °C (Figure 12c). The
RMSE followed a similar pattern to the MAE with higher values closer to the shore.
The maximum RMSE is 4.16 °C and the lowest RMSE value was about 1.43 °C (Figure
12d). The R? pattern did not follow an overall trend. However, the R? generally showed
a high value for the whole lake with a maximum R? of 0.99 and a minimum of 0.93
(Figure 12e).

a) Pixel Number =~

0.88

. 0.80

Figure 12. Spatial dynamics of mean statistical measures of pixel number (a), MAE
(b), Bias (c), RMSE (d) and R2(e) between fused lake surface water temperature pix-
els and clear pixels on a cloudy day of MODIS pixel.

Figure 13 shows the evaluation of the MODIS, ERAS-Land and the fused LSWT
against the in-situ measurements for the time period 2018/2019. For the MODIS prod-
uct, only six days were found where MODIS had sufficient data. The low number of
matches was caused by clouds which result in data gaps. The evaluation metrics show
that the MODIS LSWT product had a low accuracy in terms of RMSE, MAE and R?
with 2.21 °C, 3.64 °C and 0.41, respectively. Additionally. The ERAS5-Land product
also had much more days where it matched with the in-situ measurements. The ERAS-
Land performed better with an MAE of 1.65 °C, RMSE of 2.13 °C and an R? of 0.88,
the fused LSWT had the same number of matches with the in-situ measurements as the
ERAS-Land. The fused LSWT indicated a higher accuracy compared to the MODIS
and ERAS5-Land LSWT in terms of the MAE with 1.49 °C, however, the RMSE of 2.15
°C and R? 0f 0.87 was slightly lower compared to the ERAS5-Land LSWT. Indicating it
was able to reach the accuracy of ERAS5-Land (Figure 13).
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MODIS vs. In-Situ LSWT Measurements : ERAS-Land vs. In-Situ LSWT Measurements
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Figure 13. Evaluation of MODIS LSWT (a), ERA5-Land (b), fused (c) and bias-cor-
rected lake surface water temperature (LSWT) (d) against in-situ measurements for
the period 2018/2019.

5.4.3 Evaluation of the bias-corrected LSWT product
The fused LSWT was corrected based on a linear and variance scaling approach to

account for the systematic bias in the results. In Figure 10 and 11 the spatial dynamics
of LSWT products were displayed. The fused LSWT product was able to illustrate the
LSWT in a high spatial resolution, this was also seen for the bias-corrected LSWT.
Similar to the fused LSWT product, the bias-corrected LSWT found higher tempera-
tures in the North of the Eastern basin and in the South of the Western basin in July
2018, although, with a higher magnitude (Figure 10). Figure 11 presents the spatial
dynamics of the fused and bias-corrected LSWT in January 2019, displaying that the
fused LSWT indicated higher temperature in the center of Lake Vénern, and the lowest
temperatures were found in the South of the Western basin. This trend was also found
in the bias-corrected LSWT product, however, similar to Figure 10, it was seen that the
magnitude of the LSWT is higher (Figure 11).
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In Figure 13 the MODIS LSWT, the ERAS5-Land, the fused and the bias-corrected
LSWT products were compared against the in-situ measurements. After the bias cor-
rection, it can be seen that the bias-corrected LSWT was able to maintain the high num-
ber of matches with the in-situ measurements, nonetheless, the MAE was somewhat
higher with 1.57 °C compared to the fused LSWT. In contrast, the RMSE (2.03 °C))
indicated that the bias-corrected LSWT performed slightly better than the fused and the
MODIS LSWT. The R? did not change (Figure 13).

Further, the temporal variation of the bias-corrected LSWT was compared to the ERAS-
Land, clear pixel of MODIS LSWT as well as the in-situ measurement to assess if the
LSWT products followed a similar temporal pattern. The temporal variation of the
LSWT products for each station is displayed in Figure 14-16. Gaps in the MODIS data
are due to clouds influence and therefore no data was available for that day/period.
Moreover, it has to be noted that between the 21% of February 2018 and the 7" of April
2018, no ERA5-Land data was available for the measurement stations, therefore, the
corresponding values in the bias-corrected LSWT were set to not a number. In the Fig-
ures, it can be seen that all three products followed a similar trend in the range of the
in-situ measurement for all three measurement stations. Only for Dagskirsgrund a
slight difference between the in-situ measurements and the LSWT products was seen
(Figure 16). An interesting finding to point out is that the bias-corrected aligned with
the available clear pixels almost perfectly. When no clear pixel was available the bias-
corrected LSWT showed a higher magnitude compared to ERAS5-Land LSWT, this was

mainly the case during the winter months.
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Temporal LSWT Variation of Corrected, ERAS-Land, MODIS LSWT
and In-Situ Measurement at the Tarnan Measurement Station
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Figure 14. Daily lake surface water temperature (LSWT) of the bias-corrected, clear
pixels of MODIS and ERAS5-Land products at the Tdrnan measurement station from
January 2018 to December 2019.

Temporal LSWT Variation of Corrected, ERAS-Land, MODIS LSWT
and In-Situ Measurement at the Megrundet Measurement Station
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Figure 15. Daily lake surface water temperature (LSWT) of the bias-corrected, clear
pixels of MODIS and ERA5-Land products at the Megrundet measurement station from
January 2018 to December 2019.
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Temporal LSWT Variation of Corrected, ERAS-Land, MODIS LSWT
and In-Situ Measurement at the Dagskirsgrund Measurement Station
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Figure 16. Daily lake surface water temperature (LSWT) of the bias-corrected, clear

pixels of MODIS and ERA5-Land products at the Dagskdrsgrund measurement station
from January 2018 to December 2019.

5.5 Spatial and temporal dynamics of lake surface water temperature

5.5.1 Temporal variability of lake surface water temperature of Lake Vinern

As described above the temporal variation of the bias-corrected product followed the
ERAS5-Land data good, therefore, the monthly mean temporal LSWT variation of the
study period as well as the spatial variation of the monthly means of each year will be
further investigated. Figure 17 illustrates the monthly mean LSWT of the bias-corrected
LSWT product. The monthly mean LSWT was calculated by lake-wise averaging the
LSWT and further, the mean of all daily bias-corrected LSWT was taken to obtain the
monthly average LSWT.

Figure 17 shows that the year 2018 started with a mean LSWT. In January, which was
followed by a decrease in February and further reached its minimum in March. After-
ward, the LSWT started to rise and reached its maximum in August and then decreased
in December. The year 2019 followed a similar trend, however, it started with the low-
est temperatures in January with and increased up until July when it reached its maxi-
mum. Except for January, it can be seen that 2019 indicated a higher mean LSWT up
until August compared to 2018. The fall LSWT was in the same magnitude for both
years. Comparing the two years with each other no clear trend was seen for the first

three months. However, for both years a strong positive trend in temperature was
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detected and was peaking in the summer months. The following month the trend for the

years a similar indicating a strong decrease in temperature (Figure 17).
Temporal Mean LSWT Variation in 2018 and 2019
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Figure 17. Monthly mean lake surface water temperature (LSWT) of Lake Viinern in
2018 and 2019.
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5.5.2  Spatial variability of lake surface water temperature of Lake Vinern

To further investigate the spatial dynamics of Lake Vénern the monthly mean temper-
ature for each pixel was calculated for 2018 and 2019. Figure 18 illustrates the spatial
variation of the monthly averages for Lake Véanern. The results show that the bias-cor-
rected LSWT not only filled the data gaps of MODIS but was also able to provide
detailed spatial dynamics found for each month. Low LSWT were found in the winter
months for both years. The year 2018 indicated slightly higher temperatures in the East-
ern basin in January. The winter of 2019 showed lower temperatures compared to the
previous year. During May and June, the spatial variation and magnitude of LSWT was
comparable between the years, showing lower temperatures in the basins and higher
temperatures closer to the coast. 2019 reached its maximum already in July, while the
highest temperature in 2018 was in August with a lower magnitude compared to the
following year. The LSWT decreased for both years from September on, following a
similar pattern with decreasing LSWT at the coast faster (Figure 18).
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Figure 18. Spatial dynamics of monthly mean lake surface water temperature of Lake
Vinern in 2018 (a) and 2019 (b).

6 Discussion

6.1 Evaluation of the satellite and reanalysis LSWT products

The evaluation of the LSWT products indicates that all of them were able to capture the
LSWT with high accuracy, however, variations in their accuracy were found. Overall,
the MAE varied between 0.32 and 1.32 °C, the RMSE ranged between 0.46 and 1.73
°C. The results indicate that the ATSR2 and GloboLakes LSWT products performed
with higher accuracy. Comparing the results of this study with previous studies it can
be found that the LSWT products fall into the same range or even outperform previous
studies. The MAE and RMSE of MODIS found in this study of 1.13 °C were coherent
with the MAE range found in Sima et al. (2013) (0.8-1.9 °C) and the RMSE <2 °C in
Lazhu et al. (2022). A higher accuracy compared to previous studies was found for
GloboLakes, CGLOPS, ARC-Lake and TIRS. Zhang et al. (2021) indicated that the
RMSE for GloboLakes and CGLOPS was approximately 2.91 and 2.33 °C, respec-
tively, which was significantly higher compared to the RMSE found in this study for
GloboLakes with 0.79 °C. The RMSE of CGLOPS was in a comparable range with
1.79 °C (Table 2). During the validation of ARC-Lake, the mean difference of both
subsets to in-situ measurement was found to be 0.3 £ 0.9 °C (MacCallum & Merchant,
2010), covering similar ranges seen in this study with a bias-sis ranging from -0.31 to
0.03 for ATSR2 and AATSR, respectively. Table 2 shows that TIRS had a similar ac-
curacy compared to the results seen in Sharaf et al. (2019), which displayed an RMSE
of 0.73 °C, an MAE of 0.71 °C and an R?-value of 0.97. Last but not least, the ERAS5-

Land lake mix layer temperature dataset was evaluated against the in-situ measurement.
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The results show that the values discovered in this study were significantly higher than
those found in Zhang et al. (2021). The previous study indicated that the RMSE was
3.41 °C and the biasm-sia 1.64 °C, which did not align with the values presented in Table
2. Since no LSWT product showed a significantly lower accuracy compared to previous
studies it can be said that all evaluated products represented the LSWT accurately. The
presented MAE and RMSE of ERAS5-Land are lower compared to other studies
(Munoz-Sabater et al., 2021; Zhang et al., 2021), indicating a better performance for

Lake Vinern.

It has to be noted that the satellite-based LSWT estimations represent the skin temper-
ature of the lake, while the in-situ measurements indicate the bulk temperature of the
lake. The cool skin of the lake causes the LSWT products to underestimate the LSWT
compared to the in-situ measurements (Carrea & Merchant, 2020a; Dornhofer &
Oppelt, 2016; Zhang et al., 2021). The literature reports that the skin effect can cause
bias ranging between 0.1 and 0.6 °C (Sima et al., 2013). The relationship between the
bulk and skin temperature is influenced by the heat flux between the atmosphere and
the lake as well as the water column’s thermal stratifications. The relationship is also
determined by wind speed, the time of the day as well as the depth of the measurement
(Reinart & Reinhold, 2008). Additional to the skin temperature effect other factors such
as satellite biases, errors in the in-situ measurements and near-surface stratification in-
fluence the accuracy of the LSWT product (Carrea & Merchant, 2020a). The negative
values of the biasm-siu can be seen for almost all satellite-derived LSWT products in
this study. According to the quality assessment report of CGLOPS, the bias ranges be-
tween -0.24 °C £ 0.88 °C, supporting the findings of this study for CGLOPS. Only
GloboLakes and AATSR indicate an overestimation, however, the bias is comparably
low (Table 2). This study is not addressing the bias caused by the cooling effect, since
the wind speed and heat exchange parameters are unknown. In contrast to the satellite-
obtained LSWT products, the ERAS5-Land overestimates the LSWT showing positive
values. The overestimation of ERAS5-Land is caused by the dependency on the accuracy
of the lake depth in the input data (Mufioz-Sabater et al., 2021).

It is also important to note that all satellite-derived LSWT products show a very low
number of matches compared to available in-situ measurements. For instance, the Glo-
boLakes dataset was available daily for 21 years, during that time 180 in-situ measure-
ments were taken, however, the evaluation shows that only 68 matches with the in-situ
measurements were found (Table 2). The low number of matches was due to missing
data because of pixels with low quality and high variation of LSWT within the 3x3
mismatch matrix. That underlines the need for a spatially complete and temporal con-
tinuous LSWT dataset.
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6.2 Evaluation of the generated LSWT dataset

The data fusion was conducted by combining the ERA5-Land data with the MODIS
data. As described before MODIS did not perform as well as GloboLakes or the ARC-
Lake subsets. However, the accuracy was still considered as good, as well due to the
fact that MODIS is still continuing it was decided to conduct with it. Additionally, it
could be argued that the ERAS5-Land data represents the LSWT accurately enough,
however, the poor spatial resolution of the product cannot account for the spatial dy-
namics found in lakes and therefore it is necessary to obtain an LSWT with a high

spatial resolution.

The comparison of the fused LSWT with the MODIS LSWT on a clear day shows that
the approach was able to represent the LSWT with similar spatial patterns and magni-
tude (Figure 9). The results of the conducted data fusion supported that the method was
able to fill the gaps of MODIS and therefore generated a spatially complete LSWT
dataset for Lake Vanern . Additionally, it was able to create a dataset that has a higher
spatial resolution, compared to ERAS5-Land, providing more detailed spatial infor-
mation. The evaluation of the fused LSWT against the clear pixels on cloudy days in-
dicates that there was a negative bias but that the overall accuracy as well as the corre-
lation was high (Figure 12). Compared to Long et al. (2020) the range of the MAE and
RMSE was slightly lower in the fused LSWT, while the range of R? shows a similar
range (Figure 12). Long et al. (2020) argue that the bias is caused by different land
cover classes for LST studies, however, this is not the case for this application. There-
fore, other factors influence the systematic error in the model, which needs to be further
investigated. Feng et al. (2006) reported that the systematic error in the original
STARFM method is due to the difference in the data processing of the sources, the
discrepancy of the acquisition time and the bandwidth as well as geolocation errors.
Even though the ERAS5-Land data is not considered a satellite product and therefore the
difference in bandwidth cannot be attributed to the error found in the generated dataset.
Nevertheless, due to the different nature of the input data, it can be assumed that this

causes an inaccuracy in the output.

To account for the systematic bias found in the fused LSWT a bias correction was con-
ducted. Even though the bias-corrected LSWT shows a higher agreement with the in-
situ measurement in terms of the RMSE compared to the fused LSWT product, the
error did not decrease enough to account for the systematic error. Comparing the dif-
ference of the RMSE before and after the bias correction with the results reported by
Long et al. (2020) it shows a rather small decrease in the error. Nevertheless, the results
indicate that the bias correction is suitable to correct for biases in the LSWT application.

38



It can be said that the spatial pattern of the fused and bias-corrected LSWT product is
in good agreement with the ERAS5-Land data, however, does not follow as much the
spatial dynamics found in the MODIS LSWT data (Figure 10 & Figure 11) Finally,
comparing the accuracy of the generated LSTW product with the evaluated LSWT
products, it can be seen that the accuracies fall in a similar range. Previous studies such
as Schwab et al. (1999) developed an approach where the data gaps in AVHRR were
filled with temperature estimation based on earlier temperatures. The results shown in
Figure 13d show are comparable to the RMSE of 1.10-1.76 °C found by Schwab et al.
(1999), however, the spatial resolution in our study is higher with 1 km compared to
2.6 km. More recent studies made use of the MODIS cloud product by merging it with
the MODIS LST product to obtain spatially complete data. The results indicated an
RMSE ranging between 1.17 and 2.05 °C. It is important to note, that the cloud layer
comes with an uncertainty of +5 °C, which affects the accuracy of the results
(Moukomla & Blanken, 2016). The range of the RMSE in this study is similar to the
reported from previous studies, indicating that the method is suitable to generate spa-
tially complete LSWT maps although with a lower accuracy than the ERAS-Land
LSWT.

The evaluation of the spatial dynamics of the generated LSWT product showed that the
fused and the bias-corrected LSWT products follow the spatial pattern of the ERAS-
Land LSWT product. However, this was not expected since it can be seen that in equa-
tion 3 the fine-resolution data provides detailed information on spatial variation, which
should determine the accuracy of the LSWT at the prediction time more than the coarse-
resolution image. The relatively low number of clear days could have caused, that the
fused and bias-corrected LSWT shadowed rather the ERA5-Land than the MODIS
LSWT product.

The results of the temporal pattern indicated a good alignment of the bias-corrected
with both the ERAS5-Land LSWT and the clear pixels of the MODIS LSWT at all three
measurement stations (Figure 14-16). Long et al. (2020) found a similar relationship
with the MODIS and bias-corrected data, although, the paper mainly compared the in-
situ measurement with the bias-corrected data. Since all three products implied a slight
shift discrepancy to the in-situ measurements for the Dagskirsgrund measurement sta-
tion, indicating that the accuracy of the bias-corrected might be influenced by this dif-
ference. Long et al. (2020), suggested that the temporal distance between the MODIS
images does not influence the results of the data fusion as much, rather the accuracy of
the MODIS LSWT may be the main influence of the accuracy. Our study had a similar
result, the highest discrepancy between the in-situ measurement was found on days
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where no clear pixel was found (Figure 14-16). Overall, it can be said that if clear pixels
were available the bias-corrected LSWT represented the trend and magnitude of the
MODSI LSWT perfectly, while for the ERAS-Land a positive bias was visible. This
supports the effectiveness of the bias correction approach to partly account for the sys-

tematic error.

6.3 Spatial and temporal analysis of LSWT variation of Lake Vinern

The data fusion method was able to generate a spatially complete and temporal contin-
uous dataset for Lake Vénern with good accuracy in terms of temporal and spatial var-
iation, thus, the newly generated dataset was used to investigate the spatial and temporal
dynamics of Lake Vénern.

The results in this study did not show a matching trend in LSWT for the beginning of
the years. In 2018 a decrease in LSWT from January to February was found, while 2019
showed a slow steady increase in temperature for the first three months. Similar results
were found in Reinart and Reinhold (2008) where no clear trend was seen at the begin-
ning of the years. The LSWT in January 2018 showed higher temperatures , this might
be due to the great heat capacity of large lakes (Kvarnis, 2001), which causes the LSWT
cools down slower resulting in higher temperatures in winter. The decrease in the
LSWT in February and March might be caused due to the previously mentioned miss-
ing data at the beginning of 2018, which influences the accuracy of the spatial pattern.
Previous studies link that the strong increase in LSWT in the following month was due
to increasing air temperatures, which positively influences the LSWT (Kvarnés, 2001;
Reinart & Reinhold, 2008). The year 2018 shows a faster decrease in LSWT for the fall
months compared to 2019. This trend is not supported in other studies, since a later
maximum of LSWT usually results in relatively higher temperatures for the following
month. The strong decline in temperature in fall can be an indicator of strong winds

which usually increase in fall (Kvarnés, 2001).

The spatial dynamics of Lake Vénern follow a distinct pattern for most of the years.
Only in January, a significant difference was found between the years. As can be seen
in January 2018, the basins of the LSWT still indicate higher temperatures compared
to the other regions of the lake (Figure 18). This is due to the previously mentioned heat
capacity of deep waters (Kvarnis, 2001; Reinart & Reinhold, 2008). This was not seen
in January 2019, but looking at the spatial pattern of December 2018 the LSWT did not
vary as strong which might cause that January shows a rather similar pattern in LSWT
for the whole lake. In the following month, it can be seen that a so-called thermal bar
was developed. The thermal bar represents a border of 4 °C between coastal and central

areas and moves with increasing water further into the center of the lake. In the area
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between the thermal bar and the coasts, the LSWT increases and develops a thermo-
cline. This was not seen as fast in the central area of the lake due to the depth of the
basin which requires more heat per surface area is needed resulting in delayed warming.
This trend was described in previous studies and is a common process in larger lakes
(Kvarnis, 2001; Reinart & Reinhold, 2008). However, the results indicate that this phe-
nomenon does not happen during the fall months, which was also reported by Reinart
and Reinhold (2008).

6.4 Limitations of this study and recommendations for future studies

Although the results of the study indicate a high accuracy of the applied method several
limitations were found. The evaluation of the LSWT products could have been im-
proved by a higher number of measurements per station which could improve the num-
ber of matches with the LSWT products, especially products with a low temporal reso-
lution such as the TIRs and the CGLOPS dataset. Additionally, the low number of
measurement stations limited the evaluation of the LSWT products to the three meas-
urement stations, which makes it difficult to extrapolate the accuracy for the whole lake.
To overcome this limitation, it was planned to conduct drone measurements to obtain
LSWT measurements for a greater area and assess the spatial variation of LSWT in
Lake Vénern, however, due to the latency of ERA5-Land with 2-3 months it was not

possible to conduct this step at this point, however, will be conducted at a later time.

Another limitation that came across was the difference in the spatial resolution between
MODIS and ERAS5-Land. Due to the coarse spatial resolution of ERAS5-Land the gen-
erated LSWT product included pixels of the shore. This caused that the results needed
to be cropped to a smaller extent excluding parts of Lake Vénern. The coarse resolution
of ERAS5-Land also makes this approach unsuitable for smaller lakes. The evaluation
of the generated dataset could have been expanded by investigating the performance of
the product over a longer period to include more in-situ measurements, however, due
to long computing times the study period was limited to two years. Additionally, as
previously mentioned the missing data for ERAS-Land for spring 2018 causes uncer-
tainty in the accuracy of the results during that period.

For future studies, it is recommended to improve the spatial and temporal frequency of
in-situ measurements for a better evaluation. Furthermore, the presented LSWT prod-
ucts should be tested to investigate if other LSWT products are able to improve the
accuracy of the fusion method. Since the proposed bias correction method was not able
to remove the systematic error completely, it is recommended to apply the bias correc-
tion method for each season or explore further bias correction methods. Last but least,
the data fusion should be conducted for a longer period to investigate the impact of

41



external factors, such as the air temperature, on the spatial and temporal variation of
LSWT.

7 Conclusion

This study aimed to develop a new spatially complete and daily continuous lake surface
water temperature (LSWT) for Lake Vinern, Sweden by fusing satellite and reanalysis
products. Firstly, 6 different LSWT products were evaluated against the in-situ meas-
urements, MODIS, TIRS, GloboLakes, CGLOPS ARC-Lake and ERA5-Land. Results
showed that the GloboLakes and the ATSR2 product performed the best in terms of
MAE (0.56 °C and 0.32 °C), RMSE (0.79 °C and 0.46 °C) and R? (0.97 and 1). The
accuracy of all other LSWT products was within an acceptable range (MAE: 0.75-1.32
°C, RMSE: 1.06-1.79 °C, R2: 0.92-0.96). The MODIS product was identified as the
most suitable satellite LSWT to be fused with the reanalysis product ERA5-Land be-
cause of its high temporal and spatial resolution as well as the ongoing data collection
of the sensor. The results prior to bias-correction revealed that the applied data fusion
method effectively filled data gaps and enhanced the accuracy of the MODIS LSWT
product. Specifically, the MODIS dataset exhibited an MAE of 2.21 °C, RMSE of 3.64
°C, and R? of 0.41 °C, whereas the fused dataset demonstrated improved performance
with an MAE of 1.49 °C, RMSE of 2.15 °C, and R? of 0.87. Notably, the spatial reso-

lution of 1 km was successfully maintained throughout the data fusion process.

Furthermore, the fused LSWT underwent bias correction to address systematic bias,
resulting in improved RMSE (2.03 °C)). However, the MAE increased from 1.49 °C to
1.57 °C. Overall, the applied data fusion and bias correction method successfully gen-
erates reasonable LSWT estimations and improved the accuracy of the LSWT data
compared to MODIS and ERAS-Land. The evaluation of the corrected LSWT showed
that it captured the temporal dynamics, in good agreement with the MODIS LSWT.
When comparing the temporal variation to in-situ measurements, it was observed that
the discrepancy was highest when clear pixels were unavailable. This suggests that the

bias correction contributed to the improvement of the fused LSWT.

Finally, the spatial and temporal dynamics of LSWT in Lake Vanern were investigated.
The results revealed that the LSWT was lower at the beginning of the year but experi-
enced a significant increase in temperature from April onwards due to rising air tem-
peratures. The LSWT reached its maximum in July/August followed by a linear de-
crease of the LSWT. The temporal dynamics were reflected in the spatial pattern of the
LSWT. The pattern exhibits the development of a thermal bar, which can only be seen

in the spring. The bar can be connected to the gradient in temperature, which is mainly
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caused by the bathymetry. As the LSWT rises, the thermal bar moved towards the cen-
ter of the lake and finally disappeared once the LSWT exceeds 4 °C.

Overall, this study confirms the suitability of the existing LSWT products and demon-
strates the good performance of the data fusion method in generating a spatially com-
plete and temporal continuous LSWT dataset for Lake Vanern. This method and gen-
erated new dataset are valuable for LSWT monitoring and further investigation of eco-

logical changes in lakes associated with shifting LSWT.
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