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Abstract

The exact solution to a set of equations modeling the event-triggered control of
a multi-agent system is derived and computed up to a specified error on the time
between events. An attempt to minimize the number of events of the solution subject
to bounds on overshoot and convergence time is made using a differential evolution
method. Parameter points which result in a low number of events of the bounded
solution are found.
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1
Introduction

The idea with the control studied in this project is to have a multi-agent system
move in a formation, where each agent only communicates with its neighbors.
Commands to change position are given to only one or a few agents of the system,
and the rest of the agents should follow these "leader agents" while retaining for-
mation. Communications are event-triggered, meaning that agents communicate if
and only if a certain event-triggering condition is met (in contrast to for example
communications happening with a predetermined, constant frequency). The neigh-
bors of each agent are defined through a communication graph, where the links are
undirected, meaning that neighbor relations are mutual. The communication graph
is seen as a constant in this project, but one can imagine this graph also being a
variable. The specific example studied in this project is 1-dimensional, where the
communication graph is a line graph, the number of agents is 4 with one leader and
the command sent to the leader is a step function. However, everything done in the
project can be directly generalized to 3 dimensions, any communication graph and
any number of agents (the transition to a continuous time command for example
might not be as straightforward, but one can always approximate such using step
functions). The formation is thought to exist in the non-varying dimensions, but
this is mainly to avoid introducing unnecessary variables, as specifying a formation
does not introduce complications mathematically. To aid in visualizing the control,
the agents will be thought of as drones in a drone swarm. The control studied comes
from the article An Event-Triggered Distributed Control Architecture for Schedul-
ing Information Exchange in Networked Multiagent Systems [1], which presents
two versions of the control, one we call the sampled version and the other the
solution predictor version. It also contains a stability proof of both versions of the
control and some simulated and real life demonstrations. In this project, primarily
the sampled version is studied as it’s arguably the simpler version of the two, but
many of the ideas can likely be extended to the solution predictor version.

As with most systems depending on a set of parameters, designed to complete
a certain task, one wants to tune the parameters such that the system performs the
task as satisfactory as possible. There is often a balance between performance and
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Chapter 1. Introduction

cost: improving performance often increases cost and vice versa. Thus, the subject
of finding good or even optimal parameters often becomes a subject of study, and
developing reliable methods for tuning such parameters is often interesting. In this
case, the cost is the number of communication events between the drones, and
the performance is bounded by requiring the dynamics to stay inside bounds on
overshoot and convergence time. The goal with the project is to minimize this cost.

The initial optimization idea relied on the assumption that the theoretical dynamics
changes continuously with the parameters, which allows for gradient based opti-
mization which is very developed and commonly used. However, as it turns out the
dynamics as a function of the parameters has a high density of discontinuities, and
is in general very "spiky". This makes the gradient less useful. The source of the
spiky shape is believed to be discontinuities at trigger order changes of neighboring
drones. Instead of using a gradient based approach, a derivative free differential
evolution method was used.

The implementation of the theoretical model used in [1] is a multi-threaded Euler-
approximation, with one thread for each drone. In this project, a method of evaluat-
ing the theoretical dynamics to high accuracy is developed. This is used to compare
the theoretical model with the implementation used in [1]. As a reference, a single-
threaded Euler approximation is used to illustrate the convergence of the Euler
approximation to the theoretical model as dt → 0. The function that is optimized is
the number of events of the theoretical model, which can be seen as the number of
events in the implementation in [1] as the sampling frequency goes to infinity. Many
sets of parameters resulting in a low number of events for the theoretical model are
found. However, in order for the found parameters to also result in a low number of
events for the implementation in [1] and the single-thread Euler approximation, dt
has to be made sufficiently small.

There are many interesting points in this project. One is that it is shown how
the theoretical model for the dynamics of an event-triggered system of this type can
be evaluated to both high precision and efficiency. Efficient computation allows for
better optimization, and precise computation means that the output is very close
to the theoretical model. One reason the ability to precisely evaluate a model can
be desirable, is that it can give a better understanding of the model, as we can be
sure that the particular output of the computation for a set of parameters is not in
large due to error in the approximation method. Thus it might give hints on what
to change in the underlying model if the output is undesirable, for example. The
observation that the dynamics as a function of the parameters can be discontin-
uous at points which result in simultaneous events of neighboring drones is also
interesting, as it could be a quite general fact for systems which have a distributed
event-triggered control where state-derivatives change discontinuously at events.
Finally, the concept of letting some property of the system dictate when the agents
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Chapter 1. Introduction

communicate by using an event-triggering condition is interesting, as this allows
for a communication frequency which adjusts itself as the control progresses. In
principle, this should allow for a lower amount of network utilization than for ex-
ample having communications occur with a predetermined constant frequency.

Some examples of possible applications of drone swarms include search and rescue
operations, military applications and surveillance. To explore the search and rescue
application into a bit more detail, imagine that a person has gone missing. To find
the person, a search is conducted. In this search, one can imagine having a large
number of drones, say 1000, fly in a line formation, each with a camera filming the
terrain below. The footage can be analyzed by an AI, and if the AI deems that there
is a high likelihood that the person is on a part of the footage, this can be alerted
to the search and rescue team. The usefulness in this is that many drones flying in
formation can quickly cover a large area.

The presentation of this work is structured into four parts. The first part describes
the dynamical system and the approach taken to compute the dynamics up to a
specified error on the time between events. The approach is to first analytically
solve the dynamics between events, then to use this solution to compute the time to
the next event where a parameter of the control is a line, and finally to use this time
as a lower bound to the time to the next event in an iterative procedure. It concludes
with plots of the dynamics and plots of the number of events as a function of two
varying parameters, keeping the others fixed. The purpose of this part of the work is
to efficiently and precisely compute the dynamics of the theoretical model resulting
from a set of parameters. The second part describes the bounds set on performance
and how the optimization was performed. The third part consists of a discussion,
where some ideas for future research are presented. The main findings in the project
are summarised in the fourth part, which concludes the presentation of the project.
An appendix containing details on how all computations were performed is found
last in the document.

All computations were done using the programming language Julia.
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2
Description and
computation of the
dynamics

2.1 Description of the dynamics

In the section "Foundation", the graph defined by Laplacian L is assumed to be
connected and undirected. See the section "Properties of the Laplacian" in the ap-
pendix for definitions of these properties and proofs of the statements made in this
section.

Foundation
The control in [1] is based on the dynamics defined by:

µ̇i = α(∑
j∼i

µ j −µi), (2.1)

where α is a scalar with unit s−1. The notation j ∼ i means that node j is a neighbor
of node i, so that the sum is over all neighbors of node i. In the analysis presented
in the following sections, these indices will refer to drones in the swarm, such that
each drone has a unique fixed index. In vector form (2.1) can be written as:

µ̇ =−αLµ, (2.2)

where L is the Laplacian matrix of the communication graph. The dynamics defined
by this equation converges to a vector of ones times the mean of the initial value of
µ . Equations (2.1) and (2.2) can be used as a model for many different processes.
An illustrative example is the diffusion of a substance between a set of nodes on
a graph, where the outflow from a node is proportional to the concentration at the
node and evenly distributed over the outgoing links. The variable µi would then
denote the concentration at node i. The variable µi can also be the position of a
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2.1 Description of the dynamics

drone in a drone swarm, and to specify a formation for the swarm, one can modify
the equation using formation parameters hi as:

µ̇i = α(∑
j∼i

(µ j −h j)− (µi −hi)). (2.3)

This results in a shift hi of coordinate i of the fixed point. In the diffusion example,
this would correspond to shifting where 0 is on the gauges measuring the concen-
trations, so that the gauge at node i returns µi when the concentration actually is
µi − hi. This implies that µi is what the gauge at node i is returning, not the actual
concentration at node i. The fixed point can be set to c times a vector of ones by
modifying the dynamics to:

µ̇i = α((∑
j∼i

µ j −µi)+ ki(c−µi)), (2.4)

where ki > 0 if i is the index of the leader drone and zero otherwise. We call such c
a command. In the diffusion example, this can be visualized as connecting a source
node with constant concentration c and infinite supply to the nodes corresponding to
ki > 0. To specify a formation and a command, one can use the following equation:

µ̇i = α([∑
j∼i

(µ j −h j)− (µi −hi)]+ ki[c− (µi −hi)]), (2.5)

which converges to c+ h, where c = c1 and 1 is a vector of ones. In matrix form,
(2.5) can be written as:

µ̇ =−α((L+K)(µ −h)−Kc) (2.6)

where K is diagonal and K(i, i) = ki. An intuitive way of looking at the control in
[1], is to see it as a way of approximating the trajectories defined by these equations
using an event-triggered and distributed control. For more details on the dynamics
originating from (2.1), the reader is referred to [2].

Event-triggered approximation of the Laplacian dynamics
What follows is a description of the event-triggered control presented in [1]. There
are 6 parameters, γ1, γ2, ε , φ f , φ0, and κ , and four state variables, x, xm, µ and µ̂

(meaning that they are functions of time and determined by the dynamical equations
of the model). The variable x denotes the positions of the 4 drones, and the purpose
of the other 3 is to get a stable distributed event-triggered control. The variable µ can
be seen as a reference trajectory seeking to approximate the Laplacian trajectory,
and µ̂ are broadcasts of the reference trajectory to neighboring drones. Each drone
has access to its own values of x, xm, µ and µ̂ , and access to the values of µ̂ of
neighboring drones. The derivatives of x, xm and µ are defined as:
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Chapter 2. Description and computation of the dynamics

ẋi =−γ1(xi − µ̂i), (2.7)

ẋmi =−γ1(xmi −µi), (2.8)

µ̇i =−γ2((∑
j∼i

µ̂i − µ̂ j)+ ki(µ̂i − c)), (2.9)

where ki = 1 if i is the index of the leader drone and 0 for all other i. Equation (2.9)
can be written in vector form using the Laplacian as:

µ̇ =−γ2((L+K)µ̂ −Kc). (2.10)

In this case, c will be a step function and the graph a line graph, meaning that L is
defined as:

L =


1 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 1

 . (2.11)

Drone 1 will be the leader drone, which means that K is defined as:

K =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 . (2.12)

The states are required to satisfy the following inequality, called the event-triggering
condition:

|µi − µ̂i|< ε|xi − xmi|+φ(t), (2.13)

where φ(t) = (φ0 −φ f )e−κt +φ f , where t is elapsed time counting from the initial
time of the dynamics t0 = 0. If this equality is not satisfied for some drone, this drone
triggers and communicates an update of µ̂ to its neighbors. For the update, there are
two versions of the control. One is the sampled version, and the other the solution
predictor version. In this project, mainly the sampled version of the control was
studied, which simply sets µ̂i = µi when drone i triggers. This will be the assumed
version henceforth. Given a command c, parameter values and an initial condition,
equations (2.7) to (2.13) together with the update rule for µ̂ determine the dynamics
of the system. A stability proof for this control is found in [1]. The proof shows that
for certain parameter values, the drones will converge to a bounded region centered
at c, i.e. |xi − c| ≤ d as t → ∞, where d ≥ 0 is a finite number. The idea of the proof
is to show the existence of a Lyapunov function.
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2.2 Computation of the dynamics

2.2 Computation of the dynamics

Exact solution to the dynamical equations between events
Between events, it is straightforward to solve the dynamical equations. This gives
the states as functions of time elapsed from the previous event and is valid until the
next event, which can either be the trigger of a drone or a change in the step function
c. Let the variable τ be the time counting from any initial time that is after the most
recent event, and view the states as functions of τ . Until the next event, it then holds
that µ̂ is constant, µ(τ) a line:

µi(τ) = µi(0)− τγ2((∑
j∼i

µ̂i − µ̂ j)+ ki(µ̂i − c)) = µi(0)+qiτ = µi0 +qiτ, (2.14)

and x(τ) a decaying exponential:

x(τ) = (x0 − µ̂)e−γ1τ + µ̂, (2.15)

where qi = −γ2((∑ j∼i µ̂i − µ̂ j)+ ki(µ̂i − c)), µ0 = µ(0) and x(0) = x0. Using the
expression for µ in the differential equation for xm (equation (2.8)), we get:

ẋm =−γ1(xm − (qτ +µ0)). (2.16)

Multiplying both sides with eγ1τ and using the product rule, we get:

d
dτ

(eγ1τ xm) = γ1(qτ +µ0)eγ1τ . (2.17)

The integral of qτeγ1τ can be computed using partial integration:∫
τ

0
qseγ1sds = [

qs
γ1

eγ1s]τ0 −
∫

τ

0

q
γ1

eγ1sds =
qτ

γ1
eγ1τ − [

q
γ2

1
eγ1s]τ0

=
qτ

γ1
eγ1τ +

q
γ2

1
(1− eγ1τ) =

q
γ2

1
+ eγ1τ(

qτ

γ1
− q

γ2
1
). (2.18)

Thus, integrating both sides of (2.17) gives:

xm(τ)eγ1τ − xm(0) = µ0eγ1τ −µ0 +
q
γ1

+ eγ1τ(qτ − q
γ1
) =⇒

xm(τ) = (xm0 −µ0 +
q
γ1
)e−γ1τ +qτ +µ0 −

q
γ1
, (2.19)

where xm0 = xm(0). Between events, the dynamics can be updated exactly according
to the model using (2.14), (2.15) and (2.19).
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Chapter 2. Description and computation of the dynamics

Equations for the time to the next trigger event
Let τ be the time elapsed counting from a chosen initial time after the most recent
event. The time to the next trigger event is then the smallest τ such that the event-
triggering equation:

|µi − µ̂i|= ε|xi − xmi|+φ , (2.20)

is satisfied for at least one drone. Using (2.14), (2.15) and (2.19), and dropping the
index i, the event-triggering equation can be written as:

|µ0+qτ − µ̂|= ε|(x0− µ̂)e−γ1τ + µ̂ −(xm0−µ0+
q
γ1
)e−γ1τ −qτ −µ0+

q
γ1
|+φ(τ).

(2.21)
Define µ̃0 = µ0 − µ̂ , x̃0 = xm0 − x0 and z = µ̃0 − x̃0 − q

γ1
. In these variables the

equation becomes:

|µ̃0 +qτ|= ε|ze−γ1τ −qτ +
q
γ1

− µ̃0|+φ(τ). (2.22)

The time ∆ to the next trigger event, is the smallest τ such that this equation is
satisfied for at least one drone. Note that everything except φ and τ is constant in this
equation. One way of computing ∆ is to, for each drone, compute the smallest time
which satisfies its event-triggering equation, and pick the smallest of the solutions.
This can be done by noting that the solution δ to the equation for one drone satisfies
one of the following equations:

qδ + µ̃0 = ε(ze−γ1δ − µ̃0 +
q
γ1

−qδ )+φ(δ ), (2.23)

qδ + µ̃0 =−ε(ze−γ1δ − µ̃0 +
q
γ1

−qδ )+φ(δ ), (2.24)

−(qδ + µ̃0) = ε(ze−γ1δ − µ̃0 +
q
γ1

−qδ )+φ(δ ), (2.25)

−(qδ + µ̃0) =−ε(ze−γ1δ − µ̃0 +
q
γ1

−qδ )+φ(δ ). (2.26)

If we solve each one of these equations, we know that our sought δ is one of the four
solutions. To pick the correct solution, we impose the condition that the quantities
which were previously inside the absolute values are positive. In other words, the
sought solution will be the smallest δ > 0 which satisfies the three conditions:

sl(qδ + µ̃0)≥ 0, (2.27)

srε(ze−γ1δ − µ̃0 +
q
γ1

−qδ )≥ 0, (2.28)

where sl is either 1 or −1, sr is either 1 or −1 and:

sl(qδ + µ̃0) = srε(ze−γ1δ − µ̃0 +
q
γ1

−qδ )+φ(δ ). (2.29)
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2.2 Computation of the dynamics

Equation (2.29) can be written as:

aδ +becδ +d = φ(δ ), (2.30)

where a = (sl + srε)q, b =−srεz, c =−γ1 and d = sl µ̃0 + srε(µ̃0 − q
γ1
). There are

many different possible approaches to solving equations of this form. The approach
taken in this project is to first express the exact solution to (2.30) when φ is a line
in terms of the Lambert W function, and then to use this solution to compute lower
bounds to the time to the next event when φ is an exponential. This leads to a
method for computing the time to the next event up to a specified error when φ is
an exponential.

Solution when φ is a line
Let φ(δ ) = αδ +β . Equation (2.30) then becomes:

aδ +becδ +d = αδ +β . (2.31)

By defining ã = a−α and d̃ = d −β , it can be rewritten as:

ãδ +becδ + d̃ = 0. (2.32)

Subtracting becδ from both sides and then multiplying with − c
ã e−cδ−cd̃/ã gives:

−(cδ +
cd̃
ã
)e−(cδ+cd̃/ã) =

bc
ã

e−cd̃/ã. (2.33)

By defining g(δ ) =−(cδ + cd̃
ã ) and ξ = bc

ã e−cd̃/ã, the equation becomes:

g(δ )eg(δ ) = ξ . (2.34)

The function f (x) = xex is plotted in Figure 1 for x ∈ [−4,0.5]. The plot illustrates
the fact that xex = y has no real solution if y <−1/e, two real solutions if −1/e ≤
y < 0, and one real solution if y ≥ 0. The Lambert W function has the property

xex = y =⇒ x =W (y), (2.35)

for one of the branches of W [3]. In other words, W (y) returns the solution x to
xex = y. For real arguments, the branches of W are W0 and the W−1, where W0(z)
is defined for z ≥−1/e, and W−1(z) is defined for −1/e ≤ z < 0. The branches W0
and W−1 can be seen as the x-values corresponding to the blue curve in Figure 2.1
right and left of x =−1, respectively.
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Chapter 2. Description and computation of the dynamics

Figure 2.1 Plot of the function y = xex. The Lambert W function W (y) returns the
solution x to the equation y = xex, given that a branch of W is specified (i.e. which
solution to return).

Using the Lambert W function, the solution to (2.31) can be expressed as:

g(δ ) =W (ξ ) ⇐⇒ −(cδ +
cd̃
ã
) =W (ξ ) (2.36)

⇐⇒ δ =−d −β

a−α
− 1

c
W (ξ ). (2.37)

The procedure used for computing the time to the next trigger event for one drone
when φ(δ ) = αδ +β can now be explained as follows:

• For the four combinations given by sl = ±1 and sr = ±1, compute all real
solutions to (2.29) by evaluating the right hand side of (2.37).

• This means that for each combination of sl and sr, if ξ ≥ 0 one candidate
solution is obtained by evaluating W0(ξ ), if −1/e ≤ ξ < 0 two candidate
solutions are obtained by evaluating both W0(ξ ) and W−1(ξ ), and if ξ <−1/e
no candidate solution is obtained.

• Pick the smallest positive candidate solution which satisfies inequalities
(2.27) and (2.28) as the time to the next trigger event for the drone.

The time to the next trigger event when φ(δ ) = αδ +β will then be the smallest
obtained time out of all the drones.
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2.2 Computation of the dynamics

Iteration step for φ exponential
The event-trigger inequality can be rewritten as:

|µi − µ̂i|− ε|xi − xmi|< φ . (2.38)

Between events, this inequality is always satisfied. By defining hi(τ) = |µi(τ)−
µ̂i|− ε|xi(τ)− xmi(τ)|, the time to the next trigger event for drone i can be seen as
the first positive point of intersection between hi(τ) and φ(τ). It is also true that if φ

is a decaying exponential and T is a tangent to φ , then T (τ)≤ φ(τ) for all τ . Thus,
computing the time to the next trigger event where φ is replaced with a tangent to
φ will always yield a lower bound to the time to the next trigger event. Using this
fact and assuming that the errors in all function evaluations, including evaluations
of W , are negligible, the exact dynamics can be computed up to the error E on the
time between events by using the following iteration step:

• Let t be the current point of time in the iteration of the dynamics.

• Let Tt be the tangent to φ at t.

• Compute the time to the next trigger event with φ replaced by Tt as outlined
in the section "Solution when φ is a line". Denote this time ∆̃.

• If c(t + ∆̃) ̸= c(t), let dt be the time to the next change in c and update the
states to time t +dt using (2.14), (2.15) and (2.19).

• If c(t + ∆̃) = c(t), let dt = ∆̃+E and update the states to t +dt using (2.14),
(2.15) and (2.19). For all i which |µi− µ̂i|−ε|xi−xmi| ≥ φ(t+dt), set µ̂i = µi.

• Update t to t +dt.

• Repeat until t ≥ tend , the end time of the dynamics.

The idea of the iteration process is illustrated in Figure 2.2.
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Chapter 2. Description and computation of the dynamics

Figure 2.2 Illustration of the iteration. Computing the time to the next event with
φ replaced with its tangent at the current t gives a lower bound ∆̃. The dynamics are
updated to the time t + ∆̃+E, where E is the specified error on time between events.
The proportions between quantities in the figure are not representative of the typical
scenario to help illustrate the idea. In particular, φ is almost equal to its tangent and
E ≪ ∆̃ for most computations.

An example of the dynamics of the theoretical model is shown in Figure 2.3. Figure
2.4 shows a 3D-plot of the number of events for varying γ1 and γ2, keeping the
other parameters fixed. The plots were computed using the method outlined in this
section, with E = 10−11 s. For initial conditions, exact parameter values and all other
details required to reproduce these plots, see the section "Simulation specifications"
in the appendix. This section contains all specific information required to reproduce
the data generated in the remainder of this report.
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2.2 Computation of the dynamics

Figure 2.3 Example of dynamics resulting from computation of the theoretical
model. Trigger events for each drone are marked with small dots on the trajectory of
each drone.

Figure 2.4 3D plot of number of events for γ1 ∈ [0.2,1] and γ2 ∈ [2,3.4]. The other
parameters are kept fixed. Yellower colors correspond to more events, and darker
to less events. The function is very spiky, and we note that there is an "average
gradient". The direction of the gradient is towards higher γ2-values and smaller γ1-
values in this case.
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Chapter 2. Description and computation of the dynamics

2.3 Discontinuous points

As is apparent in Figure 2.4, the number of events as a function of the parame-
ters can be described as "spiky". One likely source of this shape is the fact that
the dynamics as a function of the parameters has discontinuities at trigger-order
changes of neighboring drones. What follows is an investigation of the origins of
these discontinuities.

Assume two drones, say drones 1 and 2, are neighbors. Assume also that the
two drones trigger almost at the same time, but with drone 1 triggering slightly
before drone 2. Now we perturb the parameters slightly so that they trigger exactly
at the same time, and then a tiny bit more so that drone 2 triggers slightly before
drone 1. This results in a trigger-order change, from drone 1 being first to drone 2
being first, and the question is: Do the dynamics change continuously as the trigger
order changes? To answer this question, we look at the trigger inequality of drone i:

|µi − µ̂i|− ε|xi − xmi|< φ . (2.39)

Denote hi(t) = |µi − µ̂i| − ε|xi − xmi|. When drone 2 triggers, it communicates an
update of µ̂2 to drone 1 since they are neighbors. This does not change the value
of h1, as h1 only depends on state variables of drone 1. But µ̇1 depends on µ̂2,
since µ̇i= −γ2((∑ j∼i µ̂i − µ̂ j)+ ki(µ̂i − c)), and thus the trigger of drone 2 causes
a discontinuous change of ḣ1. Say that the drones trigger exactly at the same time,
and the simultaneous event occurs at time tsim. Then, as drone 2 is made to trigger
infinitesimally before drone 1, if the discontinuous change in ḣ1(tsim) that happens
as a consequence of the trigger of drone 2 results in ḣ1(tsim) < φ̇(tsim), h1 will not
intersect φ at t = tsim, i.e. there is a finite change in the dynamics resulting from an
infinitesimal perturbation in the parameters, in other words a discontinuity. (Note
that as h1(t) < φ(t) for t < tsim and h1(t) ≈ φ(t) for t ≈ tsim, h1 will intersect φ

at t = tsim if ḣ1(tsim) > φ̇(tsim), and only if ḣ1(tsim) ≥ φ̇(tsim).) Thus, any point in
parameter space that results in there being a simultaneous event of neighboring
drones at any point in the dynamics can be a point of discontinuity. Figure 2.5
illustrates one of these discontinuities. The only difference in input when computing
the two plots is a difference in γ2 of 10−10.
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2.4 Convergence analysis of implementation

Figure 2.5 In the left plot, drones 2 and 3 (blue and green respectively) have an
almost simultaneous event around t ≈ 42.1. In this plot, drone 3 is triggering slightly
before drone 2. In the right plot, γ2 is permuted by 10−10, which causes drone 2 to
trigger slightly before drone 3. This changes the time to the next trigger of drone 3
by a finite amount, resulting in a discontinuity.

2.4 Convergence analysis of implementation

To test the model in a real world experiment, [1] uses a multi-threaded Euler approx-
imation of the theoretical model, with one thread for each drone and dt = 0.1 s. For
more details, see [1]. One question is how well this implementation corresponds
to the theoretical model. To investigate this, the convergence of this implementa-
tion to the theoretical model was studied for decreasing dt. The convergence of
a single-thread Euler approximation with constant time-step was also studied as a
reference, see "Simulation details" in the appendix for details on the computation.
To illustrate the correspondence for decreasing dt between the two approximations
and the theoretical model, the time between events as a function of event number is
plotted in Figure 2.6. The plot indicates that the correspondence between all 3 mod-
els improves as dt is decreased to roughly 10−3. When dt is decreased further, the
correspondence between the single-thread Euler approximation and the theoretical
model improves greatly. This does not seem to be the case for the implementation
in [1], as it seems to break down around dt = 10−5. See the caption for a detailed
description of the plot.
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Chapter 2. Description and computation of the dynamics

Figure 2.6 Plots of time between events for decreasing dt in the two approxima-
tions. The unit on dt is seconds. Data points coming from the implementation in [1],
single-thread Euler and the method outlined in Section 2.2 are named "Implemen-
tation", "Single-thread Euler" and "Theoretical model", respectively. When going
from dt = 0.1 to dt = 0.001, the correspondence between the 3 models is greatly
improved for the 10 first events. However after these 10 first events, significant de-
viations start to occur. When going to dt = 10−5, the correspondence between the
single-thread Euler approximation and the theoretical model is greatly improved, as
is expected. However this is not the case for the implementation in [1], as it seems to
break down around these values of dt. For this reason, only the single-thread Euler
and the theoretical model are compared in the bottom right plot. As expected, the
Euler approximation corresponds even closer to the theoretical model for dt = 10−7.
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3
Optimization

3.1 Bounds

To get a well-posed optimization problem, some constraints on performance are
necessary. It was decided that suitable constraints in this case were bounds on
overshoot and convergence time. The overshoot for one drone was defined as the
maximum deviation of the position of the drone from c after it had passed the
current value of c. In other words, for a step function with 3 steps, each drone gets
3 overshoots, where each overshoot is the maximum deviation from the command
after the command is passed. The overshoot of the dynamics was then defined as the
maximum over the overshoots of all drones. To define convergence time, a conver-
gence condition was defined as a function of two parameters dc and τc. For a given
value of c, the condition was the following: If all drones are within the distance dc
from c for time τc, then they have converged to c. This definition of convergence
is illustrated in Figure 3.1. The convergence time for a given c was then defined
as the time from the last change of c to the time the drones had converged. For a
step function with 3 steps, this results in 3 times. The convergence time was taken
as the maximum out of the three. If the drones didn’t converge to c for any of the
steps before c was changed, the convergence time was set to a large number greater
than the bound on convergence time. The overshoot was computed by computing
the deviation from c of all drones after each step of the iteration, which is enough
information since ẋi does not change sign between events. The convergence time
was computed by analytically computing the intersection points of all drones with
the convergence zone in every iteration step. This information was then used to
check if the convergence condition was fulfilled in the taken step, and if so when it
was fulfilled.

To enforce the bounds, barrier functions were used. The barrier functions were
simply set to 0 inside the bounds and a large value (106) outside the bounds. In
other words, the cost function to be minimized was defined as:

f (x) = Ev(x)+Bos(x)+Bct(x), (3.1)
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Chapter 3. Optimization

Figure 3.1 The convergence time was defined as a function of the two parameters
dc and τc.

where Ev(x) is the number of events for parameters x and:

Bos(x) =

{
106, if overshoot ≥ osb
0, otherwise

, (3.2)

Bct(x) =

{
106, if convergence time ≥ ctb
0, otherwise

. (3.3)

The overshoot bound osb was set to 0.1 m and the bound on convergence time ctb
was set to 20 s. The parameters used to define convergence were set to τc = 2 s and
dc = 0.05 m. Evaluation of f was done by using the iteration scheme described in
Section 2.2. In Figure 3.2, a heatmap of f (x) is compared with a heatmap of the
number of events.
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3.2 Optimization of f (x)

Figure 3.2 Left: Heatmap of the number of events for γ1 ∈ [0.2,1] and γ2 ∈ [2,3.4],
keeping the other parameters fixed. Right: Same plot with bounds on overshoot and
convergence time. Yellow areas are out of bounds.

When conducting the optimizations, it was found that the optimizer sometimes got
stuck at certain parameter points. The reason was that the number of events tended
to infinity at these points. This is not unexpected to happen, as if the time to the next
event goes to 0, the number of events can go infinity. Specifically, if |x− xm| → 0,
φ → 0 and d

dt |µ − µ̂|> d
dt (ε|x−xm|+φ), then it seems plausible that the number of

events goes to infinity. To deal with these points, a maximum number of events was
set to 2000, so that if the number of events was greater than this number at some
parameter point, then this point was considered out of bounds.

3.2 Optimization of f (x)

After testing some different optimization ideas and optimization packages written
for Julia, the methods which seemed best performing were a set of differential
evolution methods found in the package BlackBoxOptim.jl [4].

The optimization which resulted in the best set of parameters was conducted as
follows: A large search region was defined as the 6D hypercube with sides (0.05,5).
For this search region, the DE method "adaptive_de_rand_1_bin_radiuslimited"
with default settings from the BlackBoxOptim package was set to minimize f (x)
for 8 hours. The best parameters found in this optimization and the corresponding
number of events are displayed in Table 3.1. After this optimization was performed,
another optimization was conducted over a narrower search region centered at the
found point using the same method. The result is displayed in Table 3.2. The dy-
namics of the theoretical model for the best parameters found are plotted in Figure
3.3.
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Chapter 3. Optimization

Table 3.1 Optimization over a large search region using one of the DE-methods of
BlackBoxOptim.

Search region γ1 ∈ [0.05,5], γ2 ∈ [0.05,5], ε ∈ [0.05,5], φ f ∈ [0.05,5], φ0 ∈ [0.05,5], κ ∈ [0.05,5]
Method adaptive_de_rand_1_bin_radiuslimited (default settings)

Termination criterion Optimize for 8 hours
Best point γ1 = 0.747785, γ2 = 2.81739, ε = 0.0863887, φ f = 0.289035, φ0 = 1.52821, κ = 1.43711

Number of trigger events 108

Table 3.2 Optimization over a narrow search region roughly centered at the best
point in Table 3.1 using one of the DE-methods of BlackBoxOptim. The only differ-
ence in the resulting best point is an increase in γ2 of 10−4.

Search region γ1 ∈ [0.7,0.8], γ2 ∈ [2.76,2.86], ε ∈ [0.04,0.14], φ f ∈ [0.24,0.34], φ0 ∈ [1.47,1.57], κ ∈ [1.39,1.49]
Method adaptive_de_rand_1_bin_radiuslimited (default settings)

Termination criterion Optimize for 500 seconds
Best point γ1 = 0.747785, γ2 = 2.81749, ε = 0.0863887, φ f = 0.289035, φ0 = 1.52821, κ = 1.43711

Number of trigger events 102

Figure 3.3 Dynamics of the theoretical model for the parameters "best point" in
Table 3.2. The convergence time is 12.93s and the overshoot is 0.07233m (as de-
fined in Section 3.1). It is worth noting that the trajectories are very similar to the
trajectories in Figure 2.3, while the number of events is significantly less.

Let popt be the set of parameters denoted "best point" in Table 3.2. For the parame-
ters popt , the number of events resulting from the single-thread Euler approximation
and the implementation in [1] as a function of decreasing dt are shown in Figure 3.4.
The implementation in [1] again seems to break down around dt ≈ 10−4. The single-
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3.2 Optimization of f (x)

thread Euler approximation however results in 102 events for dt = 10−7. The plot
suggests that for these parameters and this experimental setup, if one were to use
an Euler approximation to implement the theoretical model, a sampling frequency
of greater than roughly 105 Hz might result in a good correspondence between the
implementation and the theoretical model.

Figure 3.4 Number of events as a function of decreasing dt for the implementation
in [1] and the single-thread Euler approximation for the parameters popt . For these
parameters, the correspondence between the single-thread Euler approximation and
the theoretical model seems to be very good for dt ≤ 10−5. The number of events
for dt = 10−7 is 102 for the single-thread Euler approximation.

It should be noted that other optimizations were performed using the DE-methods
from the BlackBoxOptim package. The methods generally found a point with a
number of events in the 110− 150 range quite quickly, say in less than 5 minutes.
The points were however generally not located close to popt . This indicates that
there likely exists many points which are close to optimal. There is also no reason
to believe that popt is a global minimum.
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4
Discussion

4.1 Sensitivity of system

While the overall dynamics of the theoretical model might be reasonably robust to
changes in input, it is apparent that this is not the case for the number of events. To
illustrate this sensitivity, we define a sensitivity measure at point x as the following
expectation:

Sensitivity at point x = E(|g(x)−g(x+∆)|), (4.1)

where the perturbation ∆ is a random variable and g is the function we are measur-
ing. To study the sensitivity of the number of events with respect to the parameters
at popt , we let x = popt , g(s) = Ev(s) and the perturbation distribution be a 6D mul-
tivariate normal distribution with covariance matrix Σ = σ I for a scalar σ . We cut of
the tails of the perturbation distribution in each dimension at 2σ to avoid complica-
tions that arise from having tails that go to infinity. For 200 evenly spaced values of
σ between 10−6 and 10−2, the expectation is estimated using N = 500 samples for
each σ . The result is plotted in Figure 4.1, which indicates that the number of events
of the theoretical model is very sensitive with respect to changes in the parameters
at the point popt . This makes it so that optimizing the number of events in any real
life implementation of the model might be difficult, as the number of events might
not be robust to noise and other imprecisions that make the implementation deviate
from the model. One interesting research topic could be to investigate where this
sensitivity comes from, and if it is possible to change the model so that not only the
dynamics are robust, but also the number of events. Perhaps the sensitivity is related
to the fact that the model has discontinuous trigger order changes. Another conse-
quence of the high sensitivity is that if one wants to optimize the number of events
in an implementation of this theoretical model, it might be a necessary to create a
close replica of the implementation to get a function to optimize which corresponds
well enough with the implementation. The reason being that all the details in the
implementation are important due to the high sensitivity.
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4.2 Discontinuities

Figure 4.1 ∆Ev = ∑k |Ev(popt)−Ev(popt +∆k)|/N where ∆k is the k’th sample of
the perturbation distribution, plotted as a function of increasing σ . It is clear from
the plot that small changes in the parameters lead to large changes in the number of
events.

4.2 Discontinuities

A topic which might be related to the sensitivity is the fact that the model has a high
density of discontinuities, originating from trigger order changes of neighboring
drones. One interesting research topic could be to investigate if it is possible to
make a similar model which doesn’t have these discontinuities. Maybe this would
lead to a less sensitive model, which also is easier to optimize. If such a model is
found, it might be possible to use a gradient based optimization.

4.3 Generalisations

There are many possible generalisations to what has been done in this project. One
interesting extension could be to study the dynamics and number of events as a
function of the number of drones. Maybe the sensitivity decreases as the number of
drones increases. Some other extensions are to let c be a more general step function,
3 spatial dimensions instead of 1 and to let the initial conditions be arbitrary within
some bounds. Regarding the optimization, one can also let the graph defined by
the Laplacian L be a parameter and optimize with respect to L as well. However, it
would of course be helpful if it is possible to make a model which is less sensitive
and easier to optimize before trying to optimize the model.
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Chapter 4. Discussion

4.4 Emphasizing robustness

A possible solution to the high sensitivity and the spiky cost landscape is to add
a perturbation to the input to the model, for example the parameters, and define
the cost as the expected value of f , defined in Section 3.1. In this way, we are
not searching for just one very good point, but instead for a neighborhood of good
points. This makes sense from many different perspectives: Practically, we want
the dynamics to be robust to changes in input, as in a real world implementation
there are always sources of noise. Theoretically, this should lead to a less spiky and
smoother cost function, and hence the function should be easier to optimize. How-
ever, evaluating the cost function becomes more difficult, as a brute-force estimate
of the expectation will require many simulations for each point in parameter space.
In principle, an optimal implementation of the framework presented in this project
or a similar framework should result in a very fast computation of the dynamics.
Perhaps the computation can be made fast enough such that it is feasible to opti-
mize a brute-force estimate of the expectation. If not, maybe there are other ways of
estimating the expectation. In any case, the idea of optimizing an expectation could
be an interesting topic for future study. 1

4.5 Increasing simulation time

For this experimental setup, the number of trigger events as a function of the pa-
rameters has a high density of discontinuities in parameter space. An interesting
observation is that this density of discontinuities likely goes to infinity if the simu-
lation time goes to infinity. It could be interesting to study what function the number
of events or number of events per unit time converges to as the simulation time goes
to infinity, and perhaps optimize this function instead.

4.6 A slightly changed model

In this section, a few changes to the studied model are proposed. The proposed
changes are based on intuition.

The equations for the studied model are:

ẋi =−γ1(xi − µ̂i), (4.2)

ẋmi =−γ1(xmi −µi), (4.3)

µ̇i =−γ2((∑
j∼i

µ̂i − µ̂ j)+ ki(µ̂i − c)), (4.4)

1 One can imagine also minimizing the variance for example, if one wants to put more emphasis on
the robustness of the solution.
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4.6 A slightly changed model

Equation (4.4) can be written in matrix form as:

µ̇ =−γ2((L+K)µ̂ −Kc). (4.5)

The event triggering condition is:

|µi − µ̂i|< ε|xi − xmi|+φ(t). (4.6)

In this model, each drone knows its own values on the variables x,xm,µ and µ̂ .
The variable µ can be seen as a reference trajectory approximating the Laplacian
trajectory, and if we want our drones to follow this reference trajectory as closely
as possible, it makes sense to swap xm and x. This makes sense for other reasons
as well, for example swapping xm and x makes it so that ẋ changes continuously at
events instead of discontinuously. Another intuitive change is to change the differ-
ential equation for µ , i.e. (4.5), to:

µ̇ =−γ2((D+K)µ −Aµ̂ −Kc), (4.7)

where A is the adjacency matrix and D is diagonal with di = ∑ j Ai j. This makes it so
that the control for each drone uses the actual µ-values of the drone, instead of the
broadcasted values. Finally, it seems more intuitive to have φ reset at events, instead
of having φ decay over the course of the entire simulation. With these changes, the
equations would be:

ẋi =−γ1(xi −µi), (4.8)

ẋmi =−γ1(xmi − µ̂i), (4.9)

µ̇ =−γ2((D+K)µ −Aµ̂ −Kc), (4.10)

|µi − µ̂i|< ε|xi − xmi|+φ(τ), (4.11)

where τ is time counting from the most recent event and φ(τ) = (φ0−φ f )e−κτ +φ f .
An example of this model is shown in Figure 4.2, where the parameters are the
same as in Figure 2.3 except for φ(τ) which was set to φ(τ) = 1

2 e−5τ . The sampled
version for the broadcast was used.
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Chapter 4. Discussion

Figure 4.2 Euler approximation with dt = 10−5 s of the slightly changed model.
The values on γ1, γ2 and ε are the same as in Figure 2.3, and φ(τ) was defined as
φ(τ) = 1

2 e−5τ .

The convergence in Figure 4.2 is a bit slow, and to improve convergence, one idea
could be to increase the value on ki, so that ki > 1 for the leader drone. This since
then, the flow from the source node to the network increases. Setting k1 = 4 gives
the plot in Figure 4.3.

Figure 4.3 Same setup as in Figure 4.2, except for k1 which was set to k1 = 4.
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4.7 A second order model

4.7 A second order model

One question is: Is there a similar model which doesn’t have discontinuous trigger-
order changes? A possible candidate is the following, written in matrix form:

ẍ =−γ2(ẋ− γ1(−(D+K)x+Ax̂+Kc)), (4.12)

where A is the adjacency matrix, D is diagonal with di =∑ j Ai j, x the positions of the
agents, K is diagonal specifying the leader agents and x̂ are broadcasted estimates
of x, updated at events. The event triggering condition can have the following form:

|x̂− x|< φ , (4.13)

for some function φ . Note that the intuitive idea with (4.12) is to give the Laplacian
velocity as a target for the velocity, instead of giving a target for the position through
ẋ = −γ1(x − µ̂) as in the studied model. The function φ in the event triggering
condition should be viewed as an upper bound on the error between actual x-values
and broadcasted x-values, such that broadcasts occur when the error is greater than
φ . For the broadcasts x̂, the sampled version would be setting x̂i = xi when drone
i triggers. However, a better option similar to the solution predictor curve in [1]
is to set x̂i to an approximation to the solution of (4.12) for drone i when drone i
triggers. The estimates x̂ then becomes functions of time, and one possibility for the
broadcast is to solve (4.12) exactly for an approximation of x̂, and broadcast this
approximate solution. To investigate this, we note that regardless of what x̂ is, the
homogeneous solution to (4.12) for drone i is:

xH
i (τ) = e−

γ2τ

2 (A1eqiτ +A2e−qiτ), (4.14)

where qi =
√
( γ2

2 )
2 − γ1γ2(di + ki) and A1, A2 are constants. The general solution

has the form xi(τ) = xH
i (τ)+ xP

i (τ) for any xP
i (τ) which satisfies (4.12). One idea

is to approximate x̂ with a Maclaurin polynomial, and solve (4.12) for this approxi-
mate x̂. If one uses the 0’th order polynomial, i.e. x̂(τ) = x̂(0), a particular solution
is:

xP
i =

(∑ j∼i x̂ j(0))+ kic
di + ki

, (4.15)

where x̂ j(0) is the value of x̂ j at the event. For this version of the update, drones
would broadcast A1, A2, q and xP at events, which is all information necessary to
define the function x̂i(τ) = xH

i (τ)+ xP
i (τ). Some arguments for this model are the

following:

• It is event-triggered and distributed.

• Since ẋ changes continuously at events, the derivative of the LHS of (4.13)
changes continuously at events. Thus, the model should not have discontinu-
ous trigger order changes. Hence, the number of events as a function of the
parameters might be less spiky, less sensitive and easier to optimize.
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Figure 4.4 depicts the movement of the agents for the same experimental setup as
the one studied in this project. The plots were computed using an explicit RK4 ap-
proximation, with dt = 10−4s. The upper bound on the error φ between broadcasted
and actual values was set to a decaying exponential, which was reset at events (and
thus not as in the model studied in the project, where φ was not reset at events). The
parameters were chosen somewhat arbitrarily. In the left plot, the sampled version
for x̂ was used, and in the right plot x̂i(τ) = xH

i (τ)+ xP
i (τ) was used, where xP

i (τ)
is given by (4.15).

Figure 4.4 Left: Sampled version. Right: x̂i(τ) = xH
i (τ)+ xP

i (τ), where xP
i (τ) is

given by (4.15) and xH
i (τ) is given by (4.14).
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5
Conclusion

The dynamics resulting from the sampled version of the control in [1] can be com-
puted with high accuracy and efficiency by using the analytic solution to the dy-
namics between events and taking time steps which are lower bounds to the time to
the next trigger event. The lower bounds to the time to the next trigger event can
be computed by utilizing that the time to the next trigger event can be expressed
analytically when φ is a line in terms of the Lambert W function. The number of
communication events as a function of the 6 parameters [γ1,γ2,ε,φ f ,φ0,κ] in the
sampled version of the control in [1] is highly discontinuous. The main source of
the discontinuities is believed to be trigger order changes of neighboring drones.
The number of communication events resulting from this control is also very sensi-
tive with respect to changes in the parameters. Differential evolution methods seem
to be suitable for finding parameters which significantly reduce the number of com-
munication events of the sampled version of the control in [1]. The parameters
[γ1,γ2,ε,φ f ,φ0,κ] = [0.747785,2.81749,0.0863887,0.289035, 1.52821,1.43711]
result in 102 communication events for the sampled version, which is the lowest
number of events found in this project for this particular experimental setup.
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6
Appendix

6.1 Properties of the Laplacian

For this project, it is enough to only consider graphs that are connected and undi-
rected. The definitions of these 2 properties are the following:

• Connected graph: For any two nodes A and B in the graph, there is a path from
A to B, meaning that there is a set of links of the form {vA j1 ,v j1 j2 , ...,v jnB},
where the vi j denotes a link from node i to node j.

• Undirected: Links are two way, meaning that if there is a link from A to B,
then there is a link from B to A

Let the adjacency matrix A of a graph be defined as Ai j = 1 if there is a link from
node i to node j and Ai j = 0 if there is no link from node i to node j. Note that this
implies that A is symmetric for an undirected graph. Now let ai = ∑k Aik, and define
D = diag(a). Then the Laplacian L can be written as:

L = D−A. (6.1)

The parameter α in Section 2.1 will be set to α = 1 in the following proofs to
lighten the notation. However, the proofs work for any α > 0. Now for proofs of
the statements in Section 2.1.

• Statement 1: For a connected and undirected graph, the dynamics defined by
ẋ=−Lx converges to a vector of ones times the mean of the initial value x(0).
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6.1 Properties of the Laplacian

Proof: Since L is symmetric, the spectral theorem implies that L is diagonalized by
an orthonormal basis of eigenvectors. Hence, the algebraic and geometric multiplic-
ities of the eigenvalues of L coincide. A proof of this is as follows:

Proof that L symmetric implies that the algebraic and geometric multi-
plicities of L coincide

Let mg(λ ) and ma(λ ) denote the geometric multiplicity and algebraic multi-
plicity of eigenvalue λ , respectively. Since L is symmetric, L is diagonalizable
by the spectral theorem. Thus, mg(λ )= dim(ker(L−λ I))= dim(ker(SΛST −
λ I)) = dim(ker(Λ−λ I)) = ma(λ ), where the last equality follows from the
fact that the eigenvalue matrix Λ is diagonal.

Since the algebraic and geometric multiplicities coincide for L, we refer to both as
just the multiplicity of an eigenvalue. Now let 1 be a vector of ones. We note that 1
is an eigenvector of L with eigenvalue 0, since L1 = 0. A proof that the multiplicity
of the eigenvalue λ = 0 is outlined below.

Proof that λ = 0 has multiplicity 1 for a connected and undirected Lapla-
cian L

Assume that Lv = 0 for a vector v which is not parallel with 1. For such a v,
there is a smallest element vm such that vm ≤ v j ∀ j ̸= m with strict inequality
for at least one j, and a largest element vM such that vM ≥ v j ∀ j ̸= M with
strict inequality for at least one j. Since the graph is connected, there is a path
consisting of n−1 links connecting nodes m and M. Let the nodes on this path
be {u1,u2, ...,un}, where u1 = vm and un = vM . There is a node on this path us
such that us ≤ v j for all neighbors of us and us < vd for at least one neighbor vd
of us.1 Let as be the degree of node us, i.e. the number of neighbors of us. For
such us, the derivative satisfies: −u̇s = asus −∑ j∼s v j ≤ asus − (as − 1)us −
vd < us − us = 0. In other words, −u̇s < 0 which contradicts Lv = 0. Hence
Lv = 0 if and only if v is parallel with 1, which implies that the multiplicity
of λ = 0 is 1.

From the Gershgorin circle theorem, it follows that all eigenvalues of L are greater
than or equal to 0. Hence the matrix −L has one eigenvalue equal to 0 with mul-
tiplicity 1 corresponding to the eigenvector 1, and all other eigenvalues are less
than 0. From this, it follows that the dynamics defined by ẋ = −Lx converges to
1
N ∑k xk(0)1. To see why, we use that L is diagonalized by an orthonormal basis of
eigenvectors. This means that there is a matrix S whose columns are an orthonor-
mal basis of eigenvectors of L, a diagonal matrix Λ with all eigenvalues of L on the

1 The existence of us can be proven as follows: Since u1 < un, at least one node u j on the path from
u1 to un satisfies u j < u j+1. The first node u j on this path which satisfies u j < u j+1 can be chosen as
the node us, since u j = u1 and u j < u j+1.
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diagonal and:
d
dt

x̃ =−Λx̃, (6.2)

where
x̃ = ST x. (6.3)

Since the eigenvalues of L are all positive except for the eigenvalue λ0 = 0 with
multiplicity 1, all components of x̃ goes to 0 except for the component x̃λ0 , corre-
sponding to λ0 = 0 and the eigenvector 1√

N
1. This component is constant in time

and equal to the projection of x(0) on 1√
N

1, i.e. x̃λ0 =
1√
N

1T x(0). Transforming back
to the original coordinates through the equation x = Sx̃, we get that x(t) converges
to 1

N ∑k xk(0)1 as t → ∞.

• Statement 2: For a connected and undirected graph, the dynamics defined by
ẋi = ∑ j∼i(x j −h j)− (xi −hi) converges to 1

N ∑k(xk(0)−hk)1+h.

Proof:
Define y = x− h. From statement 1, it follows that the dynamics ẏ = d

dt (x−h) =
−L(x− h) = −Ly converges to 1

N ∑k yk(0)1 = 1
N ∑k(xk(0)− hk)1 as t → ∞. Since

x = y+h, we get that x goes to 1
N ∑k(xk(0)−hk)1+h.

• Statement 3: For a connected and undirected graph with one or more leader
agents, the dynamics defined by ẋi = (∑ j∼i x j − xi)+ ki(c− xi) converges to
c1, where ki > 0 if i is the index of a leader drone and 0 otherwise.

Proof:
Define c = 1c. Then, the dynamics can be written as ẋ = −(L+K)x+Kc, where
K = diag(k). We note that c is a fixed point of the dynamics, since −(L+K)c+
Kc =−(0+Kc)+Kc = 0. Define y = x− c. The dynamics for y are:

ẏ =−(L+K)y. (6.4)

The matrix L+K is positive semi-definite by the Gershgorin circle theorem. Hence,
if it doesn’t have the eigenvalue λ = 0, it is positive definite. What follows is a
proof that L+K doesn’t have the eigenvalue λ = 0, using the quadratic form of the
matrix. The quadratic form of L is:

Q = xT Lx = ∑
j∼1

x2
1 − x1x j + ∑

j∼2
x2

2 − x2x j + ...=
1
2 ∑

vi j∈E(G)

(xi − x j)
2, (6.5)

where the notation vi j ∈ E(G) means that there is a link from node i to node j, so
that the sum is over all links of the graph. The third equality in (6.5) follows from
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that the graph is undirected.2 For a connected graph, this quadratic form is zero if
and only if x1 = x2 = x3 = ..., i.e. x ∥ 1. One way of seeing this is by noting that
Q = 0 implies that all nodes along any path in the graph have to have the same
value, and since the graph is connected this implies that all nodes have to have the
same value. The quadratic form of L+K is:

Qk = xT (L+K)x = Q+∑
i

x2
i kii. (6.6)

Since ∑i x2
i kii ≥ 0 and Q ≥ 0, Qk = 0 =⇒ Q = ∑i x2

i kii = 0. As Q = 0 =⇒ x = p1
for a scalar p, we get that ∑i x2

i kii = p2
∑i kii. Thus, since kii ≥ 0 with strict inequality

for at least one i, we get that Qk = 0 if and only if p = 0, i.e. if and only if x = 0.
Hence, Qk = 0 =⇒ x = 0, which implies that the matrix L+K does not have the
eigenvalue λ = 0. Thus the matrix −(L+K) is negative definite, which implies that
y → 0 as t → ∞ for the dynamics defined by (6.4). As y = x− c, this implies that
x → c as t → ∞.3

• Statement 4: For a connected and undirected graph with one or more leader
drones, the dynamics defined by ẋi = (∑ j∼i(x j −h j)−(xi−hi))+ki(c−(xi−
hi)) converges to c+h, where ki > 0 if i is the index of a leader drone and 0
otherwise.

Proof:
Define y = x−h. The dynamics for y are:

ẏ =−(L+K)y+Kc. (6.7)

Hence statement 3 implies that y → c as t → ∞. As y = x−h, this implies x → c+h
as t → ∞.

6.2 Simulation specifications

This section contains specific details regarding how the computations were done.
The Lambert W function was evaluated using the package LambertW.jl [6]. The
error on time between events E was set to 10−11 s for all computations of the the-
oretical model. All computations use the same initial conditions, specified in Table
6.1, and the same command c, which was was defined as c = 1.85 for t ∈ [0,25],
c = 3.05 for t ∈ [25,50], and c = 0.65 for t > 50. The end time tend was set to 75

2 See [5] for a detailed proof that xT Lx = 1
2 ∑vi j∈E(G)(xi − x j)

2. The factor 1/2 comes from that one
undirected link is in this case seen as two directed links with one link in each direction.

3 That −(L+K) is negative definite implies y→ 0 as t →∞ can be proven as follows: Define Lyapunov
function candidate V as V (y) = yT y. As d

dt V = 2yT ẏ = 2yT (−(L+K))y ≤ 0, where d
dt V = 0 if and

only if y = 0, it follows that V → 0. Since V = 0 ⇐⇒ y = 0, it follows that y → 0.
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(seconds) for all computations. Table 6.2 specifies the parameter values used for
each plot in sections 2 and 3.

Table 6.1 Initial conditions.

x1(0) x2(0) x3(0) x4(0) xm(0), µ(0), µ̂(0)
3.2 2.3 1.4 0.5 x(0)

Table 6.2 Parameter values for each figure.

Figure γ1 γ2 ε φ f φ0 κ

2.3 0.7 2.5 0.1 0.1 0.5 4/75
2.4 ∈ [0.2,1] ∈ [2,3.4] 0.05 0.1 0.5 4/75
2.5 0.7 2.50110955364 ±10−10 0.1 0.1 0.5 4/75
3.2 ∈ [0.2,1] ∈ [2,3.4] 0.1 0.1 0.5 4/75
3.3 0.747785 2.81739 0.0863887 0.289035 1.52821 1.43711
3.4 0.747785 2.81739 0.0863887 0.289035 1.52821 1.43711

The single-thread Euler approximation was implemented as a function of dt by
using the following iteration step:

• Let t be the current point of time in the iteration of the dynamics.

• Set x(t + dt) = x(t)+ ẋ(t)dt, xm(t + dt) = xm(t)+ ẋm(t)dt and µ(t + dt) =
µ(t)+ µ̇(t)dt, where the derivatives are defined by equations 2.7, 2.8 and 2.9
respectively.

• For all i which |µi(t+dt)− µ̂i(t)|−ε|xi(t+dt)−xmi(t+dt)| ≥ φ(t+dt), set
µ̂i(t +dt) = µi(t +dt).

• Update t to t +dt.

• Repeat until t ≥ tend , the end time of the dynamics.
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