
MASTER’S THESIS 2023

Gamifying User Feedback
Collection on Static Analysis
Tools
Emma Dahlbo, Essie Lundmark

ISSN 1650-2884
LU-CS-EX: 2023-18

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2023-18

Gamifying User Feedback Collection on
Static Analysis Tools

Gamifiering av feedbackinsamling om
statiska kodanalysverktyg

Emma Dahlbo, Essie Lundmark

Gamifying User Feedback Collection on
Static Analysis Tools

Emma Dahlbo
emma.dahlbo.8242@student.lu.se

Essie Lundmark
essie.lundmark.2178@student.lu.se

June 21, 2023

Master’s thesis work carried out at

the Department of Computer Science, Lund University.

Supervisors: Emma Söderberg, emma.soderberg@cs.lth.se
Lisa Eneroth, lisa.eneroth@axis.com

Examiner: Martin Höst, martin.host@cs.lth.se

mailto:emma.dahlbo.8242@student.lu.se
mailto:essie.lundmark.2178@student.lu.se
mailto:emma.soderberg@cs.lth.se
mailto:lisa.eneroth@axis.com
mailto:martin.host@cs.lth.se

Abstract

Static analysis tools can be highly beneficial in software development, but de-
velopers’ engagement with these tools is often limited. One method to better
understand these tool issues is through user feedback collection. However, this
is another activity that often sees low user engagement. A proposed way to in-
crease engagement is by incorporating gamification.

This thesis investigated whether gamification can increase user engagement
in feedback collection on analysis tools. First, a literature review and user re-
search at a large tech company examined static analysis usability issues, feedback
collection obstructions, and gamification possibilities. Then, a system was de-
veloped for giving analysis feedback in Gerrit; it was deployed to around 900 de-
velopers over 14 days, with half of the users using a gamification version. Finally,
the engagement results for gamification users and the control group were eval-
uated to determine if gamification is a promising method for increasing static
analysis feedback.

Our results show that while gamification did not particularly increase the
number of feedback givers, it did increase user engagement among the active
users; the gamification group was found to leave 147% more feedback than the
control group and have a slightly prolonged system engagement time. These
results, however, were not entirely supported by the follow-up interviews, where
most participants did not express any particular enthusiasm for the gamification
features.

Keywords: feedback collection, gamification, static analysis, user engagement

2

Acknowledgements

We would wholeheartedly like to thank our supervisor at Axis, Lisa Eneroth, for her continu-
ous support and enthusiasm throughout our entire thesis work and for her impressive ability
to find the right people for us to talk to. We would as warmly like to thank our LTH supervi-
sor Emma Söderberg for her invaluable support and input, and our examinator Martin Höst
for his guidance.

Furthermore, we want to thank all involved employees at Axis, including everyone that
participated in interviews, answered questionnaires, participated in early user tests, and in
the final feedback collection and evaluation. We would also like to thank the many employees
who helped us with the system design and implementation setup. While they are too many
to mention all by name, special thanks go to David Åkerman, Tobias Hagelborn, Evgeni
Ivanov, and Rikard Almgren. An honorable mention goes to Stefan KW Andersson for his
enthusiasm and valuable input during this project.

3

4

Contribution statement

Research and report
Both authors have been equal participants in preparing questions and other material for
meetings and interviews. During the interviews, Essie asked the questions while Emma took
notes.

Emma was responsible for researching static code analysis and feedback acquisition for
our literature review, while Essie was responsible for the gamification research.

Both authors contributed to the initial outline of the thesis, and the initial drafts of chap-
ters and sections were a combination of subsections from both co-authors. Initial drafts
where one person had significant responsibility were: 4.1, 4.2, 5.2, 6.2 (Emma); and 3, 4.3, 5.1,
6.1, 6.3 (Essie).

A second draft of the report was produced by Essie, focusing on restructuring to remove
irrelevant parts and cohesion: content-wise and language-wise. Again, both authors were
involved in proofreading and finalizing the report.

Design and implementation
Both authors have been equal participants in the research phase of the implementation, where
different design ideas were researched and discussed; this also applies to the final design of
how the different parts should interact. For the technical implementation work, the division
was as follows:

• Emma wrote most of the Gerrit plugin components – the frontend UI, the backend
REST API and SSH command module, the configuration authentication, separate plu-
gin logging functionality, and documentation – and was responsible for integrating
Essie’s code into the plugin.

• Essie wrote most of the gamification logic and rules, including the code for gamifi-
cation logic later incorporated in the Gerrit plugin. She also designed the Conflu-
ence space and wrote the game dashboard scripts. She designed and implemented the
database and Elastic connections and the Kibana dashboards on the Confluence space.
Furthermore, the code in the Jenkins pre-submit job was written by Essie.

5

6

Contents

1 Introduction 11
1.1 Objectives . 11

1.1.1 Research questions . 12
1.1.2 Delimitations . 12

1.2 Report overview . 12
1.3 Contributions . 13
1.4 Glossary . 13
1.5 Related work . 14

1.5.1 Tricorder . 14
1.5.2 MEAN . 15

2 Software development at Axis 17
2.1 Development processes . 17
2.2 SCA tools practices . 18

2.2.1 Local programming . 19
2.2.2 Code review . 19
2.2.3 Frequency of SCA . 19
2.2.4 SCA tool decisions . 20

2.3 Coverity use at Axis . 20
2.3.1 History of Coverity at Axis . 20
2.3.2 Previous Coverity feedback through Gerrit 21
2.3.3 Existing data from Gerrit to Elastic 21

2.4 Work culture at Axis . 22
2.4.1 Advent of code . 23

3 Method 25
3.1 Literature review . 27

3.1.1 Static code analysis theory . 27
3.1.2 Feedback theory . 27
3.1.3 Gamification theory . 27

7

CONTENTS

3.2 User research . 28
3.2.1 Goals of user research . 28
3.2.2 Initial informal interviews . 29
3.2.3 Semi-structured interviews . 29
3.2.4 Questionnaire . 32

3.3 Design and implementation . 33
3.3.1 Design steps . 33
3.3.2 Testing the implementation . 33

3.4 System deployment and evaluation . 34
3.4.1 Deployment setup . 34
3.4.2 Test groups . 34
3.4.3 Announcements . 35
3.4.4 Evaluation of the system approach 35

4 Theory 39
4.1 Static code analysis . 39

4.1.1 Overview . 39
4.1.2 Tool-developer interaction . 41
4.1.3 Usability . 42

4.2 Software user feedback . 43
4.2.1 Feedback types . 43
4.2.2 Feedback acquisition methods . 43
4.2.3 Likelihood to give feedback . 44
4.2.4 Feedback response statistics . 46
4.2.5 Categorization of users . 47

4.3 Gamification . 47
4.3.1 Definition . 47
4.3.2 Goals of gamification . 48
4.3.3 Gamification approaches . 49
4.3.4 Gamification in different contexts 54
4.3.5 Efficacy of gamification . 56
4.3.6 Possible pitfalls . 57
4.3.7 Static analysis feedback gamification 60
4.3.8 Gamification frameworks . 61
4.3.9 Current state of research . 62

5 User research results 65
5.1 Interview findings . 65

5.1.1 T1.2: Views and experiences of SCA tools 65
5.1.2 T2: Leaving feedback on SCA tool warnings 70
5.1.3 T3: Experiences and thoughts on competition 72
5.1.4 T4: Motivation by work efficiency and work results 74

5.2 Questionnaire findings . 76
5.2.1 Control variables . 76
5.2.2 Hexad player types . 77
5.2.3 Feedback on SCA warnings . 78

5.3 Conclusions of user research . 81

8

CONTENTS

6 System design 83
6.1 Technical system design . 83

6.1.1 Jenkins code . 83
6.1.2 Gerrit plugin . 84
6.1.3 Elastic database . 84
6.1.4 Confluence space . 85

6.2 Feedback interface design . 85
6.2.1 Feedback form . 86
6.2.2 Design motivations . 89
6.2.3 Statistics in Confluence . 90

6.3 Game design . 92
6.3.1 Game elements . 92
6.3.2 Game rules . 95
6.3.3 Moral and ethical principles . 96

7 System evaluation results 99
7.1 General statistics . 99
7.2 User engagement . 100

7.2.1 Feedback form . 100
7.2.2 Game elements . 107
7.2.3 Confluence space . 109
7.2.4 Misuse/cheating . 110

7.3 User motivation . 110
7.3.1 Feedback form . 110
7.3.2 Confluence . 111
7.3.3 Gamification . 111

7.4 User satisfaction . 112
7.4.1 Feedback form . 112
7.4.2 Confluence . 112
7.4.3 Gamification . 112

7.5 Feedback content . 113
7.5.1 Satisfaction . 113
7.5.2 Issue tags . 114

8 Threats to validity 117
8.1 Conclusion validity . 117

8.1.1 Short test period . 117
8.1.2 Company culture misinterpretation 118

8.2 Internal validity . 118
8.2.1 Selection bias . 118
8.2.2 Causal influences . 119
8.2.3 Diffusion or imitation of group behavior 120
8.2.4 Conscious altering of user behavior 120

8.3 External validity . 120
8.4 Construct validity . 121

8.4.1 Metric definition . 121
8.4.2 Insufficient metrics . 121

9

CONTENTS

8.4.3 Questionnaire clarity . 122

9 Discussion 123
9.1 Reasons for feedback results . 123

9.1.1 System not noticed . 124
9.1.2 System not available . 125
9.1.3 No purpose to give feedback . 125
9.1.4 Prioritization of work efficiency 126
9.1.5 Philanthropy . 126
9.1.6 Feedback giver user types . 126

9.2 Gamification efficacy . 127
9.2.1 Game design specifics . 127
9.2.2 No team organizers . 129

9.3 Possible method improvements . 129
9.4 Alternative system design ideas . 129
9.5 Comparison to MEAN and Tricorder . 130

10 Conclusions 133
10.1 Summary of findings . 133
10.2 Future work . 134

References 141

Appendix A Interview consent form 145

Appendix B Interview protocol 147
B.1 Background questions . 147
B.2 SCA tool questions . 147
B.3 Gamification questions . 149
B.4 End question . 150

Appendix C Questionnaire 151
C.1 Control variables . 151
C.2 Hexad player types . 152
C.3 Leaving feedback on static code analysis tools 153
C.4 GDPR . 153

Appendix D Chat interview protocol 155
D.1 Informed consent . 155
D.2 Questions . 155

10

Chapter 1

Introduction

Using static code analysis tools can be highly beneficial in software development, for instance,
to verify that the code holds up to security standards and requirements [1]. Meanwhile, pre-
vious research shows that developers’ engagement with static code analysis often is limited,
which can be linked to several usability issues [1], [2]. One method to better understand the
issues with static code analysis (SCA) tools and how to handle them is to collect developer
tool feedback. However, feedback collection is another task that often sees low user engage-
ment [3], [4], [5], [6]. One possible way to tackle this issue is through gamification.

This thesis aims to investigate and evaluate gamification as a way to increase engagement
in leaving feedback on static code analysis tools. We conducted the work in the context of
SCA tools and processes at Axis Communications, which will be described in Chapter 2.

This introductory chapter begins with the thesis objectives, presenting our research ques-
tions and the project’s delimitations. Then, we provide an overview of the report and its
structure, describe how this thesis contributes to current research, and present a glossary of
terms used throughout the report. Last, we review some related work on the subject.

1.1 Objectives
The overall objectives of the thesis were the following: To develop a system for collecting
feedback from developers on SCA tools, specifically the vulnerability scan tool Coverity [7];
explore in which ways gamification strategies can be applied to improve the amount of feed-
back collected; and pinpoint what is hindering engagement with current static security anal-
ysis tools at Axis. The last point was achieved through user research and evaluation of the
collected feedback. Thus, the thesis has three main themes: usability issues in static code
analysis tools, increasing engagement in feedback collection, and evaluating the effects of
gamification on feedback collection.

11

1. Introduction

1.1.1 Research questions
Several research questions (RQ1-RQ5) were formulated based on the aforementioned objec-
tives:

• RQ1: What does previous research say on the effectiveness of different gamification
methods?

• RQ2: What does previous research say on usability issues with static analysis tools, and
on giving feedback on software like these tools?

• RQ3: From a developer’s perspective, which aspects hinder interest and engagement
with static analysis tools and with giving feedback on these tools?

• RQ4: In which ways can gamification be used to increase the engagement with giving
feedback on static analysis tools?

• RQ5: When evaluated at Axis Communications, does gamification increase interest
and engagement for giving feedback on static analysis tools?

1.1.2 Delimitations
The thesis’s main focus was to evaluate the effects of gamification on feedback collection.
The collected feedback will also provide insight into usability issues of SCA tools and how
these can be handled at Axis; this is an objective for the company but will not be the main
objective of the thesis per se and will thus not be analyzed in depth.

1.2 Report overview
This report describes the thesis work, from research to system design and final results. After
this introduction, an overview is given of the context in which this thesis was conducted, i.e.,
how Axis works with SCA tools (Chapter 2). Then, our method is described (Chapter 3),
followed by a literature review (Chapter (4) of the following relevant topics: SCA tools and
practices, feedback acquisition in software, and gamification. This is followed by our user re-
search results (Chapter 5), given by interviews and a questionnaire distributed at Axis. Based
on literature and user research results, our feedback system design is presented (Chapter 6),
followed by the results of the system evaluation and a small follow-up user research study
(Chapter 7). The report is concluded with a discussion around threats to validity (Chap-
ter 8), and a discussion about the results, both user research and system evaluation results
(Chapter 9). At the very end of the report, we list the conclusions of this thesis (Chapter 10).

12

1.3 Contributions

1.3 Contributions
This thesis contributes to current research with the results from a 14 days trial of a gamified
feedback acquisition system at a large tech company in Sweden. The gamification design was
customized to a work culture where enthusiasm about work quality and efficiency is already
highly valued, but previous attempts at feedback acquisition have seen low engagement. Our
results contribute to the research on the effectiveness of gamification in the given context.
Furthermore, by findings both in our user research and the evaluation of the feedback system,
the thesis contributes insights into feedback collection preferences by users in this context.

Additionally, this thesis offers clear and comprehensive instructions on methodology and
material for repeating similar research; the method describes all steps from initial research
to system design and evaluation. The method is also agnostic to the context in which it is
applied.

1.4 Glossary
This section lists a few terms used throughout this report which will be important for the
reader’s understanding of the background and the system design. This includes short de-
scriptions of some development tools used at Axis.

CI Continuous Integration.

Code review regards manually analyzing a program to ensure that code holds up to set stan-
dards.

Confluence [8] is a web-based wiki tool provided by Atlassian, aimed at companies to use
for employee collaboration and sharing informational pages.

Coverity [7] is a static code analysis tool focused on security vulnerabilities, supporting 22
different programming languages, e.g., C, C++, and Java.

Coverity issue is a warning by Coverity about some problem in the code.

Elastic Stack [9] is a set of SaaS (Software as a Service are cloud-based tools users can access
over the internet) tools developed by Elastic NV, consisting of Elasticsearch, Kibana,
Beats, and Logstash. This thesis references Elasticsearch, a NoSQL database and search
tool, and Kibana, a data visualizer.

Gerrit [10], [11] is a free, web-based code review system where developers can review each
other’s code before committing to the real repository. Gerrit uses Git for handling
version control.

Gerrit change is a commit that has been pushed for review.

Gerrit patchsets are iterations of a commit achieved by amending an existing commit.

Gerrit robot comment is a comment in the code view in Gerrit published by a process rather
than a person.

13

1. Introduction

IDE Integrated Development Environment. Examples include Visual Studio Code, Eclipse,
and IntelliJ IDEA.

Jenkins [12] is an open-source automation server where projects can be built, tested, and
deployed.

SCA Static Code Analysis.

SCA checks are specific options in a SCA tool that look for specific errors in the code.

1.5 Related work
Two previous thesis projects have been made as a collaboration between Lund University
and Axis about feedback on static code analysis. During the first thesis [13], the open-source
system MEAN (MEta ANalyzer) [14] was developed based on the success factors of Google’s
code analysis platform Tricorder [15]. The subsequent thesis [16] was conducted to improve
the existing MEAN system. Both Tricorder and MEAN partly aim to collect developer feed-
back on SCA tools. However, they also focus on making immediate changes to the SCA tools
based on the provided feedback, which is not considered in this thesis. MEAN was the system
that initially inspired and motivated our thesis work.

1.5.1 Tricorder
One of the main inspirations for the development of MEAN was Google’s internal static
code analysis system Tricorder, as well as five main principles that Sadowski et al. [17] have
identified as the key to Tricorder’s success at Google:

1. The users should decide what is considered a false positive and have the ability to affect
the functionality of the tools.

2. Tricorder heavily encourages user contribution.

3. Usability improvements to the tools are achieved via a data-driven, user-data feedback
loop.

4. The tools must be sufficiently integrated into the workflow.

5. Tools should allow customization at a project level, not a user level, which enables
teams to work in a more unified way.

Especially point 3, regarding the feedback loop and how this was handled in the MEAN
system, is interesting for this thesis.

14

1.5 Related work

1.5.2 MEAN
The primary motivation behind MEAN was to see if the Tricorder factors listed above also
would work in a different context [14]. MEAN is integrated into the code review tool Gerrit
(following the fourth principle) and runs a selection of custom static analysis tools when code
is submitted for review – the results of the analyzers are then presented as robot comments in
Gerrit. Each robot comment has buttons that allow user feedback to be collected (for exam-
ple, if a particular comment was not useful). This feedback was forwarded to the maintainers
of the system, who would tweak which checks were included in the analysis (following the
first, second, and third principles) in global and local (repository-specific) configuration files
(fifth principle).

The MEAN system was gradually deployed at Axis over 11 weeks and was used by 446
developers across R&D [13].

During the second thesis [16], suggested fixes (generated from the analyzers) for the SCA
warnings were added to the robot comments.

User engagement is defined in the MEAN paper [14] as the number of clicks on any robot
comment divided by the total number of generated robot comments – this is an important
metric for feedback systems like this and Tricorder. With this definition of user engagement,
one major success of MEAN is the increased engagement numbers compared to Tricorder
– 2.9% (863 clicks for 20,834 generated comments during the deployment time) versus 0.8%
(764 clicks for 93,000 generated comments as daily averages).

15

1. Introduction

16

Chapter 2

Software development at Axis

In this section, we account for some Axis-specific background information that may be useful
to the reader as context for this thesis. An overview is given of development, code review,
and SCA practices used at Axis, and more specifically, of the Coverity use. An overview is
also given of the relevant work culture at Axis.

However, it should be noted that the tool setup at Axis, and the processes around this,
vary greatly between different teams and even subteams, sometimes even within teams due
to personal preferences. Developers are often unaware of other teams and developers’ setups.
Thus, a conclusive overview of the development setup cannot be given.

Most information in this chapter has been extracted from the developer interviews (both
informal and semi-structured) done during our user research.

2.1 Development processes
Regarding version control and code reviews, most Axis developers use Gerrit; while some use
GitHub, this thesis will only focus on Gerrit users. The Gerrit settings differ slightly between
teams and repositories, but a typical workflow can be summarized as follows: A commit
is created or amended and then pushed for review, creating a new patchset in Gerrit; the
patchset will be available in either a new change (with a new change ID) or an existing change
(if amended). Several tasks must then be scored and approved to allow code submission.
Typically, scores range between -2 (do not submit) and +2 (approved), and how many votes,
and of which kinds, are needed for code approval vary between repositories. Commonly, a
+2 vote is required for full approval. Tasks have individual permissions, and users may only
have permission to vote -1 or +1 on a -2/+2 task. Figure 2.1 gives an overview of the Axis
development workflow.

One of these tasks is called Code-Review and is the process of assigned reviewers manually
inspecting the code. The needed votes and the number of reviewers differ between different
team practices. Other tasks, where automatic processes score the code, can also be configured,

17

2. Software development at Axis

Figure 2.1: Overview of the general development setup at Axis,
though not uniform among all teams. Green boxes indicate auto-
matic processes, while blue boxes indicate processes conducted by
humans.

often with ratings from -1 to +1. One such automated task is to trigger a Jenkins pre-submit
job, which, for example, can build and run tests on the code. The results from the pre-submit
job are commonly returned to Gerrit in the form of a comment on the relevant patchset.

Another part of the development environment is git hooks; git hooks automatically trig-
ger a script upon a specific git event. Teams may optionally configure their own git hooks,
for example, in order to prevent something from being pushed if the code does not pass some
specific check.

2.2 SCA tools practices
This section describes some common SCA tool practices and setup details in Axis; which
SCA tools are used by teams and individuals depends on many factors, such as which pro-
gramming languages the team uses. Much of the Axis code base is written in C and C++,
while Python is frequently used for tests. SCA tools are often used for all these languages,
for example, type-checking for Python and Coverity for C and C++. Some teams have also
recently started to use Rust; in a few teams, this is the main programming language.

18

2.2 SCA tools practices

2.2.1 Local programming
When it comes to local programming (i.e., the tasks developers do, confined to their local
computer [18]), the SCA setup at Axis is very developer-dependent. Many developers mainly
use the terminal for development, others use IDEs such as VSCode [19], which may harbor
SCA extensions such as Pylint [20] and mypy [21]. In this context, formatting tools, which are
a kind of SCA tool, are commonly applied. Some other examples of SCA tools often applied
during local programming are clangd [22], PEP 8 [23], clang-tidy [24], ESLint [25], Black [26],
and Sparse [27] Also, git hooks are used by some teams for running SCA programs at code
pushes; the most common SCA task in this context seems to be code formatting. Notably, at
least one team at Axis uses the SCA tool cppcheck [28] as a git hook.

2.2.2 Code review
After local programming, during the code review context, SCA tools are often applied in
a different manner. Commonly, one or more SCA jobs or tests are run via automatically
triggered Jenkins jobs when a commit is pushed to Gerrit for review. The most notable of
these SCA tools is Coverity, which runs on almost all C and C++ code that is pushed to Gerrit.

Coverity is triggered upon patchset-upload and runs from a Jenkins pre-submit job. After
analysis completion, the results (passed/failed with issues) are posted in a Gerrit comment at
the relevant change. If the analysis failed, the Coverity issues can be viewed by developers in
a couple of different ways, via:

• The Coverity UI: A web-based tool by Synopsys, where all Coverity issues for whole
projects can be viewed.

• An HTML page: A web page displaying all current issues in the given repository, in
a table format. Each table row has a link to another HTML page, which displays the
relevant issue as a stack trace incorporated in the code.

• A JSON file: A text file showing more details for the new, local issues, i.e., the ones
that were introduced by this patchset.

In addition to posting the analysis results, Coverity also votes on the Verified label of the
patchset (-1 if failed, +1 if passed). The role of the vote differs depending on repository con-
figurations. In some teams, a -1 vote from Coverity makes code merging impossible before
the issues are fixed. Other teams’ repositories allow for the developer to ignore a Coverity
vote and submit the code anyway, or delete the vote with a written justification. Other teams
have fully disabled the Coverity analysis on some repositories.

2.2.3 Frequency of SCA
How often and much the SCA tools are used at Axis varies greatly between teams. Some
teams use no other SCA tools than formatting tools and analysis provided by the compiler.
Others use a much more extensive SCA-tool setup, and report that SCA is done on all code
they write, by continuously running SCA tools in their IDE and triggering SCA on code
pushes to Gerrit. Meanwhile, some developers might only run local SCA tools if they think
the code might fail the git hooks or Coverity checks.

19

2. Software development at Axis

2.2.4 SCA tool decisions
An important part of the SCA-tool setup is how decisions are made, and by whom, about
which tools to use. This also varies between teams. Developers generally have a lot of indi-
vidual control over their tool use. Developers within teams may have an important influence
on if and how SCA tools are introduced into their team setup; this is very much up to the
individuals in the team - meaning that teams without individuals with this drive may end up
without SCA tools at all.

Meanwhile, git hooks are generally configured on a repository basis, and Jenkins jobs such
as Coverity are on a more company-wide level. The use of Coverity is more or less enforced
for all code in C or C++, though it has been disabled by certain teams, and the analysis results
similarly can be ignored, at least this is possible with some teams’ setup. This SCA tool was
added externally, outside of the teams’ control; some developers do not know who configured
Coverity.

2.3 Coverity use at Axis
In this report, the focus will be on the static code analysis tool Coverity [7], a tool distributed
by Synopsys, which on Axis is run on almost all C and C++ code.

Due to licensing decisions, Axis currently holds significantly fewer licenses than they have
users, and only the license-holding users have access to the Coverity UI. However, all users
can view both the HTML file and the JSON file with the Coverity analysis results; although,
these files are only available for a limited period of time due to storage management. This
workaround with the HTML file was originally created both due to the lack of licenses and
to avoid the slow Coverity UI.

2.3.1 History of Coverity at Axis
Coverity was first introduced at Axis in 2018. First, the tool underwent an internal trial and
proof-of-concept to check if the tool would be useful, and if it could integrate well enough
into the workflow to motivate its use. This was conducted in three phases: trial (week 20
2018), proof of concept (August 2018), and rollout (September 2018 to mid-2019).

In the first part of the trial (week 20 2018), it was found practicable to run Coverity on the
entire firmware code base. During this time, the issues found by Coverity in 9 modules were
manually triaged by developers, and the result indicated that less than 10% of the reported
issues were false positives. The Coverity UI also received positive feedback from developers.
The trial conclusion was that Coverity finds real code issues, that the false positive ratio was
acceptable, and that the trial should continue with a proof of concept by looking into how
well Coverity could integrate into the workflow.

In February 2020, Coverity feedback was collected via interviews with a few developers in
different teams. The reported results indicate negative results. The rate of dismissed Coverity
issues compared to actual bugs was 68%, which is reported as a false positive ratio (though,
there may be threats to the validity of these results, for example, if developers were more
inclined to report false positives than to report when warnings were not false positives). The
results state that Coverity is not worth the effort for all legacy code, since it takes effort to

20

2.3 Coverity use at Axis

go through and triage all the old issues; Coverity is also said to not integrate well with the
workflow, even for reporting issues in new code. Instead, it is most useful when run on a
select few high-risk components.

In October 2020, another update report was published. At this point, Coverity was uti-
lized by almost all development teams, both when developing new software and for integra-
tion and regression testing. It was stated in the report that Coverity finds many issues which
would otherwise have been missed and that the tool saves time since developers by themselves
do not have to find and verify these issues. Some teams criticized that the UI was slow, but
the conclusion of the presentation was that most teams found the tool very valuable.

Since then, the benefit of Coverity has been questioned internally at Axis, and the per-
ception within the Coverity license management team became that the developers generally
were opposed to the tool. In November 2022, Axis disabled the use of Coverity in all projects
since the Coverity credentials had not been renewed. When this happened, teams objected
and claimed that they needed Coverity; eventually, several licenses were put back in place.
As pointed out above, there are currently fewer user licenses than users, so not everyone is
able to access the UI, though this does not limit how many receive the analysis results.

The team that has been responsible for evaluating Coverity at Axis has voiced concern
with the difficulties to understand and optimize the use of this tool, compared to other secu-
rity practices such as threat modeling and testing. Even though there have been attempts, as
described above, the team has experienced a lack of tools for measuring Coverity activities,
usage data, and developer opinions. This uncertainty of the tool’s worth, and the need for it,
is a large motivating factor for this thesis. One aim is to get data points for making better
decisions with regard to SCA tools.

2.3.2 Previous Coverity feedback through Gerrit
There was a previous attempt at gathering developer feedback on the Coverity analysis through
Gerrit; this feedback mechanism was only available for a limited period of time. However,
it was pointed out to us by the implementer that since the feature mimicked the regular
Gerrit functionality (with voting -1 and +1 on if the Coverity analysis was helpful or not),
the mechanism might have been misunderstood by developers and the validity of the data
can therefore be questioned. One theory is that developers interpreted the vote as a vote
on whether the Coverity analysis was correctly done or not, which would be similar to the
Gerrit-native implementation.

2.3.3 Existing data from Gerrit to Elastic
Axis already collects a large amount of data from Gerrit via an integration between Axis’
Elasticsearch instance and Axis’ Gerrit instance. Via this integration, Elasticsearch collects
data about all Gerrit events, such as commits and comments added. Since each Coverity
result in Gerrit is presented in a Gerrit comment and a Verified vote on the patchset, the
results history (pass/fail of Coverity) can be extracted from Elasticsearch. This has previously
been used for presenting data on Coverity usage and results on a company level. Figure 2.2
shows an example of a graph that can be extracted from the Coverity data already collected
in Axis’ Elasticsearch.

21

2. Software development at Axis

Figure 2.2: Graph on Coverity results data collected in Axis’ Elastic-
search instance.

2.4 Work culture at Axis

This section gives a short overview of the work culture at Axis since this will be important
for designing the user research method and for interpreting the results. The information here
is based on public company information from 2023, as well as input from our supervisor and
her colleagues at Axis.

Axis Communications was founded in 1984 and is mainly known for developing network
camera solutions, though they also have other network technology such as door stations and
speaker solutions [29]. The company is mainly concentrated in one large head office in Lund,
Sweden, where there are around 3,000 employees (including consultants, which is only a
small minority) as of May 2023; the whole company includes around 4,000 employees in total.
While there are many other Axis offices, in around 50 different countries, especially devel-
oper employees mainly reside in the Lund office. These developers are parted into different
departments and teams, where each team and even subteam is to a large degree self-managed
with a lot of autonomy.

At Axis, activities “for fun” during working hours are typically very encouraged, for ex-
ample organizing “Lucia-tåg” and Christmas performances. Another indication of this rather
relaxed work culture is the tendency for teams to give themselves playful team names, inspired
by comic books or similar references.

Employees log their own hours according to a flextime principle, and typically no time
stamping is used. At least in the R&D department, where the majority of our test group
participants are based, the salary is performance-based. However, also contributing to fun
activities as those mentioned above can typically be brought up during salary discussions as
an indication of engagement in the workplace.

22

2.4 Work culture at Axis

2.4.1 Advent of code
One recurring event at Axis is the company-wide participation in Advent of Code, a coding
problem-solving competition by Wastl, held as an advent calendar each year. It is volun-
tary for Axis employees to participate, and is not something done during working hours.
Still, each year there is an Axis leaderboard for competitors, and rewards such as T-shirts
are handed out after the competition. This has been held for the last two years, with a large
increase in interest the last time (December 2022), and it is expected to increase also this
following December. The first year, there were two separate Axis leaderboards, one internal
(only for Axis users) and one external; the last year, there was one single leaderboard for all
users, where 233 employees and 177 non-employees participated. Of these, 371 got at least
one point, i.e., actually submitted some successful solution in an advent of code challenge.

23

2. Software development at Axis

24

Chapter 3

Method

In this chapter, we describe the method used in this thesis project, which consisted of the
following subsequent steps: a literature review to gather sufficient foundational knowledge
on the subject; user research; system design; and evaluation. A basic overview of the different
parts of the method is visualized in Figure 3.1.

Figure 3.1: An overview of the different project steps and in which
order they were conducted.

There exist many different process frameworks and recommendations for designing and eval-
uating gamification systems. In this thesis, we used a process inspired by some of the generic
frameworks found in previous works, especially the ones presented in the framework litera-
ture review by Mora et al. [30]. Below, the general process is described; some of these steps
are later expanded on in sections of this chapter.

1. Literature study: This was conducted to gather sufficient foundational knowledge for
the following steps and to answer RQ1 (What does previous research say on the effectiveness
of different gamification methods?) and RQ2 (What does previous research say on usability
issues with static analysis tools, and on giving feedback on software like these tools?).

2. User research: This aimed to answer RQ3 (From a developer’s perspective, which aspects
hinder interest and engagement with static analysis tools and with giving feedback on these

25

3. Method

tools?), and, together with the literature study, provided a basis for the design of the
feedback system. In short, the main goal was to examine developers’ motivational
drives for using and giving feedback on SCA tools, as well as developers’ opinions on
gamification. We also studied the parts of the company culture that may be relevant
to how gamification can be applied, as encouraged by Werbach and Hunter, cited in
Dal Sasso et al. [31].

3. Analyze the data and plan: We concertized the current SCA tool usability issues and
issues with collecting feedback and specified reasons and desired outcomes for the
gamification of a feedback system. We also defined moral principles and ethical values
that were important for the given gamification context, as recommended by Versteeg
according to Mora et al. [30].

4. Design the overall system and the gamification features: We decided which game prin-
ciples and elements would be used, based on the user research results, including the
distribution of player types. The system design was also based on the previous litera-
ture study and user research. This examined different possibilities regarding RQ4 (In
which ways can gamification be used to increase the engagement with giving feedback on static
analysis tools?).

5. Plan the evaluation: At this point, we defined fixed quality parameters to measure the
desired outcomes and possible other outcomes.

6. Implement the system: Two versions of the system were developed: One with gamifi-
cation and one without.

7. Pilot-test the design: Early user testing is recommended, for example, by Morschheuser
et al. [32]; since time did not permit us to develop Lo-Fi and Hi-Fi prototypes, we
settled on some limited pilot testing before deployment. At the same time, we also
tested the system against cheating and rule-bending, as also recommended by the same
paper.

8. Deploy and test: We tested the system in two different, parallel versions as recom-
mended by Hamari et al. [33]. The system was tested for two weeks for all Axis Gerrit
users by dividing them into one gamification group and one control group, each testing
a different version.

9. Evaluate the system, with the primary goal to provide an answer for RQ5 (When eval-
uated at Axis Communications, does gamification increase interest and engagement for giving
feedback on static analysis tools?). According to Monteiro et al. [34], gamification eval-
uation should use a mix of qualitative and quantitative data collection and analysis,
with both subjective and objective inputs. In accordance with this, we analyzed data
collected automatically by the tool and conducted a few chat interviews to nuance our
findings.

As recommended in Morschheuser et al. [32], gamification processes should preferably be
iterative with many progressive improvements and user evaluations. However, because of
the thesis time restrictions, only one major design process iteration could be achieved.

26

3.1 Literature review

3.1 Literature review
The initial literature review was conducted as three separate endeavors: SCA tool usability
issues, feedback collection methods, gamification solutions, and previous gamification re-
sults. Though similar methods were used for all three studies, they are described separately
for clarity.

3.1.1 Static code analysis theory
Regarding previous research on SCA tool usability issues, an initial set of resources ([1], [2],
[14], [15]) was provided by the supervisors of this thesis project. From there, we used for-
ward and backward snowballing to find other relevant sources. We also used keyword-based
searches on Scopus, using mainly variations of static code analysis/code analysis/static analy-
sis/SCA, and +usability. In some searches, bugs was added to filter out outside sources that did
not regard software analysis.

The final sources included in the literature review were chosen either based on being
well-cited or recently published, with relevant topics.

3.1.2 Feedback theory
For this part of the literature review, we used a combination of keyword-based searches on
Google Scholar and forward and backward snowballing wherever relevant. In this way, we
found well-established and referenced studies, as well as more specific studies for applying
to our research. All keyword-based searches started with the phrase feedback acquisition.

3.1.3 Gamification theory
To gather information about gamification and the current state of gamification research, an
initial broad search was done, and the results were then narrowed down step by step to get
more specific references about software engineering and feedback collection gamification.
Overall, we used multiple different search phrases and keyword combinations to avoid rele-
vant studies being omitted. Searches were done on Google Scholar, Scopus, and LUBSearch
with similar search terms, of which a few are accounted for below. On occasion, we addition-
ally used backward snowballing, for example, in Hamari’s literature review paper [33], where
we picked out the most relevant studies for consideration as references.

The initial broad search term on Google Scholar, which resulted in 18500 hits, was:

(gamif* OR gameful) AND ("software engineering" OR ~development
OR "static code analysis" OR "software test*")

The much more specific search term on Google Scholar, which gave only 35 results, was:

allintitle: (gamification OR gamifying OR gameful)
AND ("software engineering" OR “software development”
OR "static code analysis" OR "software test*")
-education -learning -training -course

27

3. Method

Variants of this term were also tried, for example, to find information about gamification in
SCA tools, which was not a very common research topic.

Throughout the search, the results were narrowed down by disregarded papers with one
or multiple of the following traits:

• Focused on specific gamification contexts irrelevant to us (health, education, and sim-
ilar).

• More focused on serious games or real full-fledged games than gamification.

• Could not be accessed by us without buying additional database rights.

We also aimed to mainly use peer-reviewed papers (journals or conference articles, for exam-
ple, from IEEE, that guarantee peer-review). However, this proved difficult because of the
relatively small amount of relevant research.

3.2 User research
This section describes how the user research was conducted and how the results were eval-
uated. A mix of interviews and questionnaires was conducted during February and March
2023. First, four initial informal interviews were held, and the main data gathering con-
sisted of eight more thorough interviews and a questionnaire. We used both interviews and
questionnaires to triangulate our data; however, because of time limitations, we used both
methods in parallel instead of using the results from one study for designing the next.

Note that all questionnaires were in English, but all interviews were held in Swedish since
all interview participants happened to speak Swedish. This means that all interview quotes
are translations.

3.2.1 Goals of user research
The general goal of the user research was to address RQ3 (From a developer’s perspective, which
aspects hinder interest and engagement with static analysis tools and with giving feedback on these
tools?) and RQ4 (In which ways can gamification be used to increase the engagement with giving
feedback on static analysis tools?). After having conducted the literature review and the initial
informal interviews, we formulated the following more fine-grained goals for our main user
research:

• Get insight into the current SCA tool usage at Axis. Which experience with SCA
tools do developers have, how do they use them, and how are they integrated into the
workflow? This was important to know as a basis for our system design.

• Get insight into developers’ general experience with SCA tools and SCA tool warnings,
developers’ motivation to use the tool and fix warnings, likes/dislikes, and contributing
factors to this.

• Get insight into developers’ motivation for leaving feedback on SCA tools. How mo-
tivated do they think they would be to leave feedback, have there been previous possi-
bilities to leave feedback, and what would motivate them to do it?

28

3.2 User research

• Get insight into demographic data, such as age distribution, sex, and tenure in the
intended users. This was a goal to understand the company culture better.

• Examine developers’ preferred gamification elements and the differences in preferences
across the company. This was done by examining developers’ Hexad player types [35]
and asking for opinions on some specific gamification elements, which were deemed
likely to provoke strong opinions, during the interviews.

• Get insight into developers’ thoughts on sharing data, especially gamification data.
This was to better design the gamification system in a moral and considerate way that
could appeal to as many users as possible.

3.2.2 Initial informal interviews
As a first step in the user research, we held four informal discussions with different developers
and team representatives at Axis (five participants in total since one interview was with
two persons simultaneously). This was both to get a better overview of the development
setup and to plan in more detail what to ask in the following more thorough interviews.
These interviews were conducted as 30-minute informal discussions with open questions.
The interview subjects received a short description of our thesis and questions before the
meeting. Things discussed included the team structure and development setup, the team’s
general attitude toward SCA tools and their use of these tools, and their general attitude and
previous experiences with gamification at work.

3.2.3 Semi-structured interviews
Eight more thorough interviews were conducted, with a semi-structured interview approach
to get the benefits from both the structured nature, while also being able to ask further
questions to get more qualitative data.

User sampling
In order to find suitable interview subjects, both for the initial interviews and the semi-
structured interviews, we reached out to developers at Axis, whom our supervisor and her
contacts guessed would have opinions on the subject. Additional subjects were then found
via snowball sampling by encouraging the interview subjects and others who declined to ask
colleagues if they wanted to partake; notably, one interviewee collected a list of team mem-
bers who would be willing to participate, of whom we interviewed two. For the sampling, the
only restriction was that the subjects should work with or recently had worked with develop-
ment at Axis and use Gerrit as their code review tool. We also tried to include different types
of teams and sub-teams from different company departments. This, and the small number
of restrictions, was done to get a broad picture of the company culture.

We also sent out a form with the questionnaire as a name gathering for people interested
in helping out. Of the seven people who sent their names as a notice of interest, two were
asked for interviews (since they seemed to complement the previous interviewees), and one
responded and participated.

29

3. Method

Table 3.1: A summary of the tenure and roles of the interview sub-
jects. The given values are estimations made by the interviewees,
rounded to whole years.

ID Years at Axis Years as developer
I1 3 3
I2 10 10
I3 2 5
I4 1 1
I5 3 15
I6 25 25
I7 4 4
I8 6 6

Interview participants
The eight chosen interviewees were from two different departments in Axis, the R&D de-
partment and the New Business department, and within these departments, the interviewees
were scattered between different teams. All interviewees currently had some part of devel-
opment tasks, but multiple also had additional roles such as scrum masters, architects, and
security leads, though they previously worked with more development-focused tasks at Axis.

A summary of the interviewees’ roles and tenure is presented in Table 3.1. All interviewees
were men. The listed interviewee IDs will be used for references in the user result section,
Section 5.1.

There was an overlap between people that participated in the initial informal interviews
and those that participated in the semi-structured interviews since all the initial five inter-
viewees were asked to participate again. There is also an overlap of people participating in
the final pilot testing, described in Section 3.3.2, and the chat interviews described in Section
3.4.4. This overlap is visualized in Figure 3.2.

Figure 3.2: The overlap of participants in different steps of this
project’s user data gathering.

30

3.2 User research

Interview structure
The interviews were estimated to take 30-45 minutes and were scheduled as 45-minute meet-
ings. The mean interview time was 32 minutes. During this time, one of the authors asked
questions while the other took notes and added clarifying questions if needed. The interviews
were also recorded after informed consent. Afterward, the recordings were listened through,
and the notes were supplemented into transcribed data, though not in extreme detail, for
example, regarding grammar, repetitions, voice changes, and body language. The recordings
were occasionally revisited later for some clarifications and extracting of quotes.

The questions asked were semi-structured and open-ended, encouraging reflection by
the interviewees. The discussion revolved around a few main areas: background information
(e.g., team and development setup), SCA tool experience, attitudes toward gamification, and
thoughts about sharing gamification data. The interviewer followed an interview protocol
found in Appendix B, though follow-up questions were asked, and the question order was
changed when found appropriate based on the interviewee’s previous answers.

Before the interview, the interviewee was informed about their rights and data handling,
and all present signed an interview consent form. The form can be found in Appendix A.

Thematic data analysis
The interview transcriptions and recordings were analyzed with a thematic analysis in six
phases, as described by Braun and Clarke [36], though in a slightly lighter variant, to find
themes and subthemes in the collected data and to extract the information relevant to our
research questions (mainly RQ3 (From a developer’s perspective, which aspects hinder interest and
engagement with static analysis tools and with giving feedback on these tools?). This method was
chosen because of its flexibility and because it is a well-known and often-used approach for
interview data.

More specifically, we used an inductive bottom-up approach by grouping codes and themes
by what we found in the data rather than previously defining groups and themes. This was
done to lessen bias and not to miss anything brought up in the interviews. (However, since the
questions, in a way, were deductive, to debunk or support certain theories on, for example,
SCA tools usage, parts of the analysis can be viewed as deductive as well.)

Below is a list of the six phases of thematic analysis according to Braun and Clarke [36],
as we adapted them for our interview analysis:

1. We familiarized ourselves with the data by reading through it multiple times. The
note-taking author did this by listening through the recordings afterward and adding
possibly missed parts in the transcription notes. During this phase, we also reflected
on possible assumptions made by the interviewees and noted these informally in the
interview notes. The recordings were checked where clarifications were needed.

Then, both authors read through the notes again, marked the interesting parts, and
annotated, for our convenience, how data could be extracted from these parts.

2. We created the initial codes, i.e., the building blocks of subthemes and themes, which
groups data or interpretations of data. An example code could be “irritation over false
positives”. Each transcript chunk may have multiple or no codes. The codes were
created by once again reading through the transcripts and the previous annotations
and marking chunks with suitable low-level codes.

31

3. Method

3. We started looking for themes by grouping codes first into a few subthemes and then
grouping subthemes into themes. We included a misc theme for codes and subthemes
that were difficult to group.

4. We reviewed potential themes and revised them multiple times, with both authors
considering and discussing the transcriptions as well as the theme set.

5. We did the final definition and naming of themes and created a thematic map over
the themes to provide a clearer overview.

6. We produced the analysis report in the result Section 5.1.

3.2.4 Questionnaire
In parallel with the interviews, a questionnaire (Google Forms) was sent out internally in
Axis; it was open for 15 days (nine business days) and received 63 answers. The main goals of
the questionnaire were to examine developers’ feedback-leaving preferences (what motivates
developers to leave feedback) and to determine the composition of gamification player types
among Axis developers. This was done both to see the variety in individual preferences and
to map the overall company culture at Axis. The player types were examined by using the
Hexad framework, which is described in Section 4.3.

User sampling
The questionnaire was distributed in Axis by multiple channels to reach as many employees
as possible: The Coverity Teams channel, sent to almost all previous interview subjects and
encouraged them to forward to their teams (i.e., a snowballing method) and emailed by our
supervisor to people that could spread the survey further. For example, one of our supervisor’s
contacts sent the questionnaire to the entire Tech department email list. Because of this
method, the questionnaire likely reached a lot of employees; it is impossible to tell how many,
and thus difficult to estimate the response rate.

The questionnaire was aimed only at Axis developers, which was clarified both in the
info text and in the first questionnaire question. Still, there is no way to control that only
developers answered. No other user sampling restrictions were used.

Questionnaire format
The questionnaire was parted into three sections: One for the control variables age, sex,
and tenure; one for determining the user’s Hexad player types; and one for examining the
user’s feedback-leaving preferences, i.e., their motivation to leave feedback in different cir-
cumstances. The questions are listed in Appendix C. All the questions in this survey are
answered on a 7-point Likert scale, in random order, with four questions for each player
type. The user’s score for each player type is then calculated by adding the scores for the four
relevant questions.

The method of Hexad player types was chosen since it has been evaluated as effective
by Tondello et al. [37], and because most other player types questionnaires, for example, the

32

3.3 Design and implementation

classic Bartle [38] player types and the player types by Yee et al. [39], are based on real, com-
plete games and not gamification. We determined that it was preferable to use a player-type
framework over only directly asking users which gamification elements they would prefer
since users might not know this terminology, have different associations with the terms, or
not know their preferences before trying; this is in line with the arguments given for player
types by Tondello et al. [37].

The users were offered the choice of entering their email in the form and thus getting an
email with their player-type results. This was used as a technique to increase the response
rate since it might have been an incentive for people to respond to the questionnaire.

Note that the part of the questionnaire regarding feedback-leaving preferences was not
mandatory for respondents to answer and thus might have received fewer responses. This
questionnaire design was chosen since not every developer might have previous experiences
with SCA tools, and the questions directly regarded leaving feedback on SCA tools.

Data analysis
The questionnaire was analyzed by studying the collected data in Google Forms and creating
visualizations via that tool. The player types and player type ratios were calculated according
to the Hexad framework [35], [37].

3.3 Design and implementation
During the design and implementation phase, we designed the system and the gamification
elements while implementing it. We got continuous feedback from our supervisors and a few
other Axis employees, mainly regarding the technical system design and the possibilities for
this.

3.3.1 Design steps
During the initial design of the system, a few steps were taken based on the user research
data and the insights given from the literature review: We specified the reasons for gamifi-
cation in our context and the desired outcomes of gamification; we defined moral principles
and ethical values important for the given gamification context; we decided on which game
principles and game elements should be used in the gamification design; and we decided on
fixed quality parameters to use as metrics during the later system evaluation.

In previous literature, a few different gamification design frameworks and recommen-
dations exist, some general and some quite specific. We considered adapting to a particular
framework but chose not to since most frameworks (examined in the literature review in
Section 4.3.8) were found either too general (and thus not very useful) or too specific and
therefore not applicable to our context.

3.3.2 Testing the implementation
Before deployment, the implementation was tested during many iterations, first locally and
then on the Axis staging environment. The testing involved the authors doing manual system

33

3. Method

tests, including as many use cases as possible. Each time errors or issues were found during
this testing, the system was revised, and the implementation was updated.

Pilot tests
Just before deployment, we also conducted a small pilot test with two users, where each user
tested the system for around 45 minutes while thinking aloud and showing their screen to
the authors. The tests consisted of several use cases given to test subjects, who then tried
to follow the use cases in the staging area. We also asked the participants to “try to cheat
the system” so that the system was tested against cheating and rule-bending (or at least so
that insight was given into the possible ways to cheat), as recommended by Morschheuser et
al. [32].

The two developers that partook in the pilot testing were found from previous contacts,
and the overlap to previous user research subjects can be seen in Figure 3.2.

After the pilot test, minor updates were made to the design after the insights from this
test. Notably, the final game constants (how easy it is to get rewards and similar) were based
on insights from the pilot testers.

3.4 System deployment and evaluation
The feedback system was deployed for two weeks, during May and June 2023, for all Gerrit
users at Axis. It was then evaluated by analyzing the collected feedback and usage statistics
and conducting small chat interviews over Teams with a few selected participants.

3.4.1 Deployment setup
The testing phase, during which the feedback system was deployed, was conducted over 14
days (nine business days). The feedback system consisted of two visible parts to users (see 6.1
for more details): the possibility to leave feedback via Gerrit and view feedback and game
data in Confluence. The feedback feature was deployed to Axis Gerrit and thus could be used
by any Gerrit user but was only visible on changes where Coverity analysis had been run.

The testing phase lasted relatively short because of time constraints and because the
system was never intended to be run for a long time but rather as a short-term feedback-
gathering system for getting data for later evaluation.

3.4.2 Test groups
Before deployment, the relevant users for our test groups were extracted by finding all users
that, during the previous three months, had triggered or taken part in any Gerrit event at
Axis. This group consisted of 929 users, which we randomly divided into two groups: gami-
fication users (464 users) and control group users (465 users). Members of both groups used
the same feedback system, but the game features were only used by and visible to users in the
gamification group.

There was no guarantee that a user in our test groups was still an active Gerrit user, or that
the user regularly interacted with Coverity analyses, as only a subset of Axis Gerrit users use

34

3.4 System deployment and evaluation

Coverity in their repositories. However, we chose to make the feedback system visible for all
Gerrit users, in order to collect as much feedback as possible, and because there was no prior
foolproof way of knowing which Gerrit users interacted with Coverity and not. Since the
division between the gamification group and control group was made randomly, we hoped
there would be a somewhat equal number of relevant users in each group.

After the experiment, we followed up on the test group distributions. This was exam-
ined in an approximate manner, by checking which users, during the system deployment
time, had been active (by triggering or partaking in a Gerrit event) in any repository where
our feedback system was interactable for at least one Gerrit change (i.e. where it was possible
to leave feedback). These users were more likely (though they may not be exclusive) to have
visited Gerrit changes where the feedback form was present. Note that they must not nec-
essarily have visited such changes, even though they were active in repositories where such
changes existed. Note also that also other users are likely to have interacted with other parts
of the feedback system (our Confluence space) since most of our originally intended user base
received information about the system.

The results of the examination show that there were 161 repositories in which our system
was interactable for at least one Gerrit change. In these repositories, 302 Gerrit users were
active during system deployment time. Of the users to engage with our feedback system, all
were part of this group of 302 users; thus, this could be said to have been our effective test
group. Of the 302 users, 139 could be found in our gamification group, and 159 in our control
group - 4 users were in none of these groups, and would automatically have been handled as
control group users by the system. This means that the effective test groups consisted of 139
gamification users and 163 control group users. (Note that all users that actually engaged
with our feedback system were present either in our original gamification group or original
control group.)

3.4.3 Announcements
When the system was initially deployed, two methods were used to make users notice the
system and to explain its use: an email was sent to the whole user group (though around
70 of the addresses could not receive emails), and there were announcements made in two
different channels in Microsoft Teams that were theorized to reach a large, general fraction
of Axis developers.

After the system had been deployed around nine days (six working days), a reminder
email was sent to the same email list. This was done since the gathered feedback amount was
very low, and it was theorized that many users had not noticed the system’s existence.

3.4.4 Evaluation of the system approach
After the testing phase weeks, we evaluated the feedback system and the gamification ap-
proach by analyzing the collected data and usage statistics and by examining users’ view-
points with the help of a few semi-structured chat interviews. This section first goes through
the metrics the analysis aimed to measure and then describes how the chat interviews were
conducted.

35

3. Method

Metrics
Previous gamification literature offers some different suggested evaluation methods, though
their effectiveness will depend on what is measured, and at present, there does not seem to
be a reliable, frequently used gamification evaluation framework [34]. However, the most
common evaluation criteria are engagement, performance, satisfaction, and motivation [34]
– we will focus on most of these.

Based on our research questions, we decided on a few fixed-quality parameters to measure
our tool, which is given in the list below. Each of these parameters was evaluated for both
the gamification and control groups.

User engagement : How much users engaged with the feedback system features, for example,
by providing feedback or visiting the Confluence space. This is measured by metrics
such as the amount of collected feedback, the number of active users, and the form
completeness.

User satisfaction : How satisfied the users were with the feedback system.

User motivation : How motivated developers were to use the feedback system.

Please note that this definition of user engagement includes additional metrics than in the
MEAN paper [14]. From this point onward, we will refer to user engagement as defined above
unless explicitly stated otherwise.

While user engagement will mainly be evaluated with quantitative user data from the
system, satisfaction and motivation will primarily be assessed by the chat interviews since
these can provide more thorough insights into how developers reasoned during their system
use.

It is important to note the difficulty of clearly defining engagement, satisfaction, and
motivation, mainly if they are meant to map to similar terms as previous research to allow
comparisons. Previous research uses different ways of measuring these aspects. Notably, cri-
tique has been voiced that user engagement has been used to mean user participation, though
they are different things; a user might show up to work or participate in a gamification plat-
form without being engaged in it [40]. However, our measure of engagement will show users
actively taking part in the feedback system since leaving feedback or visiting the Confluence
page is not something developers need to do in their usual workflow.

Chat interviews
Ten chat interviews were conducted to evaluate users’ satisfaction with and motivation to
use the system. We contacted 16 users over Microsoft Teams, with a few written questions, as
presented in Appendix D. In a semi-structured manner, follow-up questions were then asked
in the same chat depending on the given answers to provide more deep insights and to get
clarifications.

We aimed to contact the same amount of gamification users as control group users. We
created two groups of the same size: people who had already participated in our earlier in-
terviews or shown interest in helping with the project during the questionnaire distribution
(first group); and people who had shown engagement with the project by leaving feedback
(second group).

36

3.4 System deployment and evaluation

Table 3.2: Chat interviewees by ID and test group, and whether they
had expressed a prior interest in our project through participation
or the contact form.

ID Group Prior interest
P1 Gamification No
P2 Gamification No
P3 Gamification Yes
P4 Control No
P5 Control Yes
P6 Gamification No
P7 Control No
P8 Gamification No
P9 Control No
P10 Control No

In the first group, we prioritized people we had already been in contact with through
interviews or testing, and supplemented with others (randomized) from the contact form to
get evenly-sized groups. In the end, we had two people we had been in contact with from
the gamification group, four from the control group, and two people from the contact form
gamification group.

In the second group, we randomized some but additionally chose people who would com-
plement each other; some people were selected because they had submitted many forms, some
because they had gotten many points, and others because they had provided very little feed-
back (yet still feedback). Due to the nature of the split, the first group contained primarily
people who had left little to no feedback. In contrast, the other group was explicitly chosen
to include people who had been at least semi-actively participating – with this distribution;
we hoped to get a good representation from most of the user base.

Of the 16 contacted users, twelve answered and ten participated in the interviews; more
details about the participants can be found in Table 3.2. The discrepancy between answers
and participants can be explained by two people not noticing any changes in Gerrit, and thus
we assume that none of their projects were included in the testing.

The response rates between the two selection groups varied (see “Prior interest” in Figure
3.2). The first group (“Prior interest = Yes”) had a response rate of only 25%, compared to the
second group (“Prior interest = No”) which had a response rate of 100%.

37

3. Method

38

Chapter 4

Theory

This chapter examines previous research on three topics: static code analysis tools and com-
mon usability issues with these, feedback acquisition on software systems, and gamification.

4.1 Static code analysis
Program analysis is the process of analyzing code to understand it better. The scope of pro-
gram analysis is broad, including finding problems such as general bugs, security vulnerabil-
ities, memory handling issues, and design issues, in order to help developers write quality
code. There are two main types of program analysis: static analysis, where code can be an-
alyzed without being executed, and dynamic analysis, which requires execution. Dynamic
code analysis often occurs during testing, while static code analysis is helpful in supporting
developers early in the development process [1], [41].

Static code analysis (SCA) can be conducted by humans via code review and can be au-
tomated with SCA tools, which often is a both faster and cheaper option [1]. SCA tools
can also help detect issues early in the development process [2]. Despite this, research shows
that engagement with SCA tools is low [1], and researchers often struggle with achieving
long-lasting use among many users [15].

This section expands on what SCA tools are and how they benefit developers to provide
context for this thesis and to aid the feedback system design. We outline previous research on
factors that hinder SCA tool adoption and developers’ wishes about SCA tool functionality.

4.1.1 Overview
There is a great variety of static code analysis tools and their use cases - from linters (e.g.,
ESLint) to bug finders (e.g., FindBugs) to tools that run more complex security scans (e.g.,
Coverity). This section outlines a short, general overview of SCA tools and their usage for
readers unfamiliar with the topic.

39

4. Theory

Warnings
Commonly, SCA tools identify and present code problems of different types to the user. Such
presented flaws will, in this thesis, be referred to as warnings; other literature may refer to
them as alerts. A warning which is falsely reported, i.e., does not represent an actual error in
the code, is called a false positive.

Usage
A SCA tool may integrate into any part of the development process, and examples of inte-
gration points include the IDE, code review, and continuous integration pipelines.

The participants in the 20 interviews conducted by Johnson et al. [1] said that they find
value in using SCA tools both during the early stages of development to find newly created
bugs and also later – however, they do not mention how many participants held this view-
point. Vassallo et al. [18] found that while developers found SCA tools generally useful during
the entirety of the development process, they tended to focus on different flaws depending
on the context they were in at the moment.

This may also depend on the runtime of the tools since some SCA tools (also depending
on code size) may execute in a moment while others may even have to run overnight.

Vassallo et al. [18] also presented three so-called development contexts in which SCA tools
are used differently. The contexts are local programming, where developers write the code,
for example, in an IDE or text editor, and where SCA tools are often integrated as plugins;
code review, where SCA is done manually, often with the help of checklists, coding stan-
dards, and SCA tool warning reports; and continuous integration, where code committed by
developers is automatically built and tested, and where SCA tools can be run automatically
as a part of the pipeline, to ensure certain code quality and standard.

Motivations for use
During this literature study, we have found that motivations for using SCA tools generally fall
into one of two categories: technical motivations, i.e., arguments about why SCA improves
quality in some way, and subjective motivations, i.e., reasons that developers themselves give
for using SCA tools.

From a technical standpoint, code analysis can help detect various flaws in the code that,
if not fixed, could lead to vulnerabilities. In this way, SCA tools contribute to system security.
Many flaws checked by SCA may seem unrelated to security at first glance but often relate to
security in the long run. An example of this is bad coding style; it may lead to low readability
and understanding, which can become a security concern if code maintainers unintentionally
introduce vulnerabilities due to misinterpretations. Research also shows that the same kinds
of flaws are introduced into code repeatedly, despite being generally understood and having
existing solutions [41]. Tahaei et al. [41] suggest that this is due to a lack of awareness and/or
support for developers, something that SCA tools ideally solve.

From the developers’ point of view, SCA tools are useful for helping them code better;
Do et al. [42] found that 78.3% of the participants in their survey (87 developers at Software
AG) motivated their use of SCA tools this way. More specifically, reasons that have been
mentioned as developer motivation for SCA tool usage are: to detect security-related code
issues [43], [41], [42], assist with using best practices [43], [41], and ensuring correct coding

40

4.1 Static code analysis

style [41]. Studies found that developers also care about discovering concurrency-related
issues, code performance, and memory consumption [43], [42]. In the same study by Do et
al. [42], 21.7% said that they also use these tools because it makes the coding process quicker.
On a smaller scale, company policy was also found to be a motivating factor for SCA tool use.
In Do et al. [42], 30% of participants said that their use was in part motivated by company
policies – the company where the survey was conducted heavily encourages the use of SCA
tools, which most likely contributed to this number.

4.1.2 Tool-developer interaction
This section gives an overview of previous research on the interaction between developers
and SCA tools, focusing on how developers understand, prioritize and fix SCA warnings.

Understanding warnings
In order to properly prioritize and fix warnings, they must first be understood. Do et al. [42]
found that only 36.1% of investigated warnings were sufficiently understood on average, though
the results varied between 0% and 80% between developers. The three main reasons for this
were noted as the following: the developer being unfamiliar with the reported issue and un-
sure how to fix it without breaking other areas of the code; the warning explanation from the
SCA tool being perceived as unclear; and that the warning covered too much code so that
fixing it would need changes in many different places in the code base.

When developers do not understand a warning, Do et al. [42] found that the most frequent
behaviors are to leave the warning for later or to ask for help. Sometimes, a warning is also
ignored. Things such as researching and fixing the bug or suppressing the warning were only
done by less than 10% of developers in the Do et al. study [42].

Prioritizing warnings
Since the number of warnings developers are tasked with is generally relatively high, they
often have to prioritize which warnings to fix. Do et al. [42] found in observations that how
many warnings are looked into varied greatly between developers, from 20% to 100% of the
warnings (in general 65.1%).

Regarding how warnings are prioritized, both Vassallo et al. [18] and Do et al. [42] found
that the severity of the warning was one of the most important determining factors. Do
et al. [42] also found that developers, to roughly the same amount, prioritize warnings by
whether they affect their own code (as opposed to warnings introduced in others’ code).

Vassallo et al. [18] also argue that which warnings developers pay attention to is affected
by development context, i.e., if SCA is applied during local programming, code review, or
continuous integration, for example, during the local programming context, developers may
focus more on warnings relating to code structure, style convention, and redundancies, com-
pared to an additional focus during code review on naming conventions and simplifications.
Still, the results from Vassallo et al. [18] suggest that developers themselves are not fully aware
that they are doing this context-based prioritization.

41

4. Theory

4.1.3 Usability
In addition to finding bugs, SCA tools are meant to provide good usability and help develop-
ers solve the found issues by adequately explaining and presenting them [44]. However, SCA
tools have often generally been deemed to have various usability issues, which have made the
tools less popular among developers [1]. This section outlays some literature on SCA tool
usability aspects, statistics on how common these issues are, and developers’ thoughts on
them.

Warnings
Most SCA usability issues mentioned in the literature related to how warnings are generated,
selected, and presented.

One common issue is the large number of warnings that are commonly generated, making
the cost of manual inspection very high [45]. In the interviews conducted by Johnson et al. [1],
participants mentioned that it would be easier to deal with a large number of warnings and
false positives if they were better displayed in the interface.

Another problem is the often large number of false positives among these warnings; the
amount, which can be in the thousands, has been identified as one factor which hinders the
adoption of SCA tools [1]. Meanwhile, a very small amount of false positives might mean that
the analysis is less intricate and finds fewer true positives. Therefore, it is useful to know to
which degree developers are willing to overlook false positives to gain the benefits of SCA
tools. Christakis et al. [43] found that half of the participants in their study valued finding
many true positives even though it came with the cost of false negatives. In contrast, the
other half had the opposite opinion. The study’s authors recommend that the false positive
rate not fall above 15-20%

As explained in Section 4.1.2 above, another issue with warning messages is that they
often are not properly understood. Bad warning messages are a complaint found in much of
the research surrounding usability issues in SCA tools – developers feel that the warnings do
not give sufficiently clear information regarding the problem and how they should approach
fixing it [1], [2], [17], [43]. In a SCA tool evaluation by Nachtigall et al. [44], 30 out of the
46 tools were judged to have bad warning messages – only three tools were considered to
give good warning messages. The messages were considered flawed based on lacking things
like explanations for why something is an issue, examples for further understanding, further
resources to read more about the issue, etc. Furthermore, almost none of the investigated
tools had sufficiently implemented support for developers during the fixing process, such as
step-by-step guides, previewing of fixes, examples, and presenting alternative fixes. In this
category, a feature offering quick fixes was the most widely used, with a little over 20% of
tools providing this feature.

Workflow integration
One of the most important factors for avoiding SCA tool abandonment is that the SCA tool
integrates well into the developers’ workflow and does not interfere with it [1]. Johnson et
al. [1] found in their study that most participants were unhappy with how SCA tools inte-
grate into their development process. Do et al. [42] found that the vast majority (74.5%) of
developers prefer to have one single place of integration, where multiple tools would report

42

4.2 Software user feedback

their results to the same place. It is especially important that the tool does not force develop-
ers to leave the environment they already use, especially if they are using an IDE. Christakis
et al. [43] found that most developers would prefer the output of the analysis tool to be dis-
played in the editor; in second place came displaying in the build output, then in code review,
and last in a browser. Similar results were found by Do et al. [42], which notes the two most
popular places to display analysis results as the code editor and the build output. The results
differ from there, where code review came in fifth place after displaying in the dedicated tool
and email.

4.2 Software user feedback
Getting users to give feedback is generally a difficult task and often faces low user engage-
ment [6], possibly due to multiple factors. This section outlines current research on how
feedback can be collected, why it is difficult to reach high user engagement in feedback-
leaving tasks, and possibilities to increase this user engagement. One option to increase user
engagement may be to use gamification; research on gamification and its possibilities for
feedback collection is further studied in Section 4.3.

Most studies in this section look specifically at feedback acquisition for software systems,
and it will be noted when this is not the case.

4.2.1 Feedback types
In a mixed-method study by Almaliki et al. [3], they looked at users’ preferred method for
giving feedback through a survey with 100 participants and identified two different feedback
types: explicit and implicit feedback.

Explicit feedback is collected by prompting the user to give feedback and consists of
the subtypes: qualitative feedback, quantitative feedback, and a combination of the two.
(Generally, explicit feedback was not appreciated, receiving negative responses from 70% of
participants.) Leaving qualitative feedback includes writing free-text descriptions, which
was not particularly popular among participants in the study by Almaliki et al. [3] (only 9%
preferred it). Quantitative feedback included simple ratings and multiple-choice questions
and was the second most popular option in the study (48%

Implicit feedback is when feedback is collected without explicitly prompting the user to
provide feedback, for example, by gathering data from usage patterns. In the Almaliki et
al. study [3], this was only preferred by less than 20% of users, which the authors explain
with users’ concerns about privacy and ethics. However, Stade et al. [5] find that users have
different wants and needs regarding feedback providing; some are concerned with privacy
while others are not.

4.2.2 Feedback acquisition methods
There are different ways user feedback can be acquired; Almaliki et al. [3] identify four dif-
ferent methods to gather feedback and study how popular these methods are among users;
the results are presented from their 100-participant study.

43

4. Theory

The most popular feedback option, according to Almaliki et al. [3], was to give feedback
online while using the software that feedback is given on, for example, via a popup directly
in the program; this was appreciated by 54% of participants. This is confirmed in the study
by Dzvonyar [6], where the results suggest that most, if not all, participants agree that being
able to give feedback directly in the application was very useful – 87% strongly agreed with
this, on a 5-point Likert scale. Another popular option according to Almaliki et al. [3] is for
users to give feedback on their own accord, without being explicitly asked by the program, for
example, by submitting a form online; this was appreciated by 51%. The two other feedback
options presented by the same study [3] are: Being prompted for feedback, for example, via
email, after using the program (appreciated by 33%), and being prompted directly in the
program to go to a specific site to provide feedback (appreciated by 31%).

Regarding feedback acquisition, there is also a question about the privacy of the feedback
leaver, and how the data is handled. As previously mentioned, Stade et al. [5] found that users
have different opinions on the importance of privacy; some may not want their feedback to
be posted online, while others want this in order to get input from other users, for example
in a forum.

4.2.3 Likelihood to give feedback
Several different factors linked to users’ motivation to respond to feedback requests, either
increasing or decreasing the likelihood of receiving feedback, have been identified across
various studies. Some of these factors are outlined in this section.

General motivations
In general, users seem to have low motivation to give feedback. In a study by Dzvonyar [6],
73% of participants said they very rarely (or even never) give feedback on applications, despite
knowing the value of doing so. Their primary motivation for giving feedback at all was when
they encountered a problem, or they disliked something about the application. However,
these findings were abstracted from only 15 interviews about a specific feedback system called
CAFE and may, therefore not be entirely generalizable.

Timing, quantity, and frequency of requests
Three important factors of feedback response rates are the timing, quantity, and frequency
of feedback requests.

First, interrupting users in their current task, by requesting feedback, was found by
Fotrousi et al. [46] to be perceived as disturbing to users. Similarly, Almaliki et al. [3] found
that 75% of participants were less likely to respond to feedback requests if they were being
interrupted in their workflow.

Second, burdening the users with too many feedback requests is likely to negatively im-
pact their willingness to give feedback [3], [46], sometimes even impeding the usage of the
software itself [3]. In the study by Almaliki et al. [3], 53% of the participants said that they
often ignore feedback requests that show up too often and generally consider it spam. Fur-
thermore, 21% said that they tend to stop using software that sends large amounts of requests,
but 13% said that they do not mind the feedback requests as long as they are not forced to

44

4.2 Software user feedback

answer them. Interestingly, 7% said that they were more likely to give negative feedback if
they were annoyed by the requests.

According to Pagano and Maalej [47], users’ general motivation to give feedback can also
lessen over time. In the study, [47] found that most feedback is given during the first days
after an application release, and the feedback quantity quickly decreases after that.

Perceived effort
The effort associated with giving feedback is another influencing factor for feedback-leaving
motivation since users generally do want to spend a lot of time giving feedback [3]. If the
effort is perceived to be high, this may decrease response rates [3], [5]. This is connected
to the simplicity of the feedback-leaving interface; providing less time-consuming options,
like multiple-choice as opposed to text feedback, can increase user engagement from most
users [3].

If feedback is to be collected spontaneously by users, it is extra important that it is both
fast and easy for the user to leave feedback [4].

Purpose and impact
Knowing the purpose of the feedback collection and the positive impact the feedback may
have on the system is also a contributing factor to feedback-leaving motivation [3]; users feel
more positively toward giving feedback if they feel that it serves a purpose [46]. Moreover,
Stade et al. [5] found that if the feedback receivers do not respond to the feedback, users
might feel that nobody is listening, which might influence them not to leave feedback.

Similarly, suppose users do not feel that the feedback request aligns with their purpose
and impact wishes, i.e., it does not allow them to provide the kind of feedback they want. In
that case, this may negatively affect their motivation to provide feedback [46].

Familiarity and opinion of software
Another factor influencing feedback-leaving motivation is the users’ familiarity with the soft-
ware they are to leave feedback on; this affected 42% of participants in the study by Almaliki
et al. [3]. Furthermore, if users do not have an opinion about what they are to give feedback
on due to little exposure, this might decrease their motivation [46].

Social factors
Persuading users to give feedback through social factors can be effective [48] (however, note
that this study did not specifically look at feedback on software). In the study by Almaliki
et al. [3], two notable social factors were mentioned. First, it did not seem important to 63%
of users whether the feedback-giving was seen as a “social or game activity”, for example,
by being able to see what feedback was provided by other people in their circles – however,
37% (the rest) indicated positive interest. Second, being recognized in some way socially as
a feedback contributor seems to be somewhat of a motivating factor (for 57% in Almaliki et
al.’s study), but this can be both positive and negative, as some participants pointed out that
they would prefer to be anonymous and not show their feedback to people in their social
network.

45

4. Theory

Feedback request

The way in which the feedback request is designed also affects users’ motivation to give feed-
back. The most important factor, according to [3], is how well the request design and content
fits into the context where it is given, for example, being responsive to the use of smartphones
and tablets and adopting how much information is given to the user. The tone and clarity
of the language used in the feedback form also seem to be a contributing factor for feedback
motivation [3].

Previous feedback

Almaliki et al. [3] also found that users’ willingness to provide feedback increased when only a
few people previously had provided feedback on the same service, although some participants
said that this did not affect their motivation. Meanwhile, around half of the participants in
the study were more likely to give feedback if they could see other people’s feedback and
compare it to their own. The rest of the participants claimed that this had no effect on their
motivation.

4.2.4 Feedback response statistics
This section outlines some statistics on user feedback found in previous research, more specif-
ically on the common types of content, level of detail, and quantity found in collected user
feedback.

In a study looking at feedback reviews on applications in market stores, [47] found that
the most common feedback content (75%) was praise for the app. In second place came stories
about situations where the app had been helpful to the user (22%).

Regarding the level of detail users are willing to give in their feedback, a study by Broekens
et al. [49] found that users typically offer more details about things they have opinions on
(however, note that this study did not specifically look at feedback on software). The study
in [47] found that the median length of text responses was correlated to the rating the user
gave of the app; the higher the rating, the less text feedback was typically entered. The au-
thors theorize that this is due to there not being many things that content users feel need
improvement, which otherwise would be what text feedback would consist of. One take-
away from this is that options to give detailed feedback can be hidden in the interface if the
user does not have a strong opinion, and maybe even if they have a positive opinion – thus
simplifying the interface.

It was also noted in [6] that participants who had previously been introduced to the feed-
back system and gotten information about its different features, provided more feedback
through these features. Note that this does not mean that the users provided more feed-
back overall, just that the feedback-leaving features were utilized more. It is worth noting
that the sample size of these users in the study was small (15 participants), which affects the
generalizability of the results.

46

4.3 Gamification

4.2.5 Categorization of users
As a conclusion of the survey analysis by Almaliki et al. [3], four different user groups were
defined by how the users approach feedback collection. Cluster one (Feedback antagonists) and
two (Passive and stingy people) consist of users who generally have a negative perception of all
ways of giving feedback. They do not like to be asked to provide feedback, or to be reminded
when they do not. However, cluster one prefers online feedback, while cluster two prefers
passive data collection feedback, with online feedback as their second choice.

Meanwhile, cluster-three users (Privacy fanatic and generous people) have the most positive
perception of providing feedback. They like to be asked for feedback, even offline, and they
want it to be explicit requests since they value privacy. They might become even more mo-
tivated to give feedback if they see that other people have given a lot of previous feedback
if they can see the contents of this feedback, and if they are socially recognized for their
contributions.

Cluster four (Privacy tolerant and socially ostentatious people) also consists of people with a
generally positive view of giving feedback. However, they do not like to be asked or reminded
but are motivated by many of the same social factors as cluster three – but the correlations
sometimes differ. This group is instead more motivated to leave feedback if they see that few
other people have given a lot of previous feedback if they can see the contents of this feedback
(and it is similar to their own), and if they are socially recognized for their contributions, and
if they can leave feedback as a social activity. As hinted by the cluster name, these users
are not overly concerned about privacy and therefore are not opposed to implicitly gathered
feedback.

4.3 Gamification
This section describes previous research on gamification, including different approaches, mo-
tivations for and against gamification, and possible outcomes. More specific research on gam-
ification for our context (user feedback systems and software engineering) is also presented.

4.3.1 Definition
Gamification was first used in 2008 and grew in popularity and use in 2010 [50] – but since the
beginning, there have been multiple different contending definitions of the term. The likely
most widespread definition [51] is given by Deterding et al. [50], and specifies gamification
as “[t]he use of game design elements in non-game contexts”.

Gamification can also be seen as a type of persuasive technology, i.e., a technology aimed
to affect user behavior in certain ways without coercion or force. In gamification, this can
be done by increasing users’ motivation for certain actions and users’ ability to make these
actions by facilitating user learning and confidence [52].

Taking a step back, it is essential for gamification purposes to also define what is meant
by game. McGonigal [53] lists four defining traits of games: they have a goal (giving a sense of
purpose), rules (to motivate creativity and strategy), feedback to the user (gives motivation),
and voluntary participation (making the game a safe experience).

47

4. Theory

4.3.2 Goals of gamification
Gamification has been applied for multiple different purposes. The general idea is that games
can make users more focused and motivated and that game elements can create a more fun
user experience for tasks often perceived as tedious and see low user engagement [54], e.g.,
knowledge sharing and feedback collection.

The possible outcomes of gamification can be divided into behavioral and psychological
outcomes [33]. Behavioral outcomes consist of changes to users’ behaviors, for example, in-
creased interaction with certain features. Psychological outcomes are inward positive results
on the users, for example, their perceived motivation and enjoyment [33], creativity [55], or
overall job satisfaction [40].

Two reasons for gamification, often mentioned in the research, are motivation (psycho-
logical) and user engagement (behavioral). These are described in more detail in the following
sections. In addition, gamification has often been suggested to solve social problems, e.g., to
increase collaboration and team and organization awareness [55]. Gamification can also be
applied to create a more coherent internal company ecosystem and community [40].

Motivation
There are many different theories of what motivates users (specifically developers) and how
gamification can leverage this. Using game elements for increasing user motivation is based
on the idea that games, at least good games, often include tedious and repetitive tasks but
still manage to motivate their users [54].

Motivation is often divided into two categories: Extrinsic motivation is the want to do a
task in order to get a reward or avoid some punishment, e.g., get praise or an increased salary,
while intrinsic motivation is the want to do a task since the task itself is found enjoyable or
meaningful [56]. Gamification is strongly connected with the idea of increasing the users’
intrinsic motivation [57], but the methods used are often to add different types of extrinsic
rewards. According to McGonigal [53], the rewards that users get out of games should not be
the points or badges per se, but rather more deep-laying rewarding feelings, such as satisfying
work, the experience or hope of success, and social connections [53].

In gamification research, one extensively cited motivation theory is the Self-determination
theory (SDT). The theory states that three human needs must be fulfilled in order to achieve
intrinsic motivation:

Autonomy is the need to have a perceived free will [57]. It regards both the user’s decision
freedom and how much the task seems to align with the user’s own goals, i.e., if they
find the task meaningful [58].

Competence is the need to feel competent and efficient [57], and the need for mastering
activities and environments [59].

Relatedness is the need to feel connected to others [57], and to the community as a whole [58];
or, in another interpretation, the need to see that one’s actions have consequences (in
the game world) [60].

SDT has been connected to multiple gamification aspects and has served as an explanation
for why certain game elements manage to motivate users.

48

4.3 Gamification

The motivation of developers specifically has also been studied in the gamification con-
text. One of the most important motivators for a developer, according to Foucault et al. [61],
is to identify with the task at hand, i.e., to feel that the task is meaningful to them. However,
this might be difficult to achieve for some more tedious tasks [61], such as feedback collection
or using SCA tools.

User engagement
Increasing user engagement is a common goal for applications that struggle with motivating
users to take part in activities. However, user engagement (and developer engagement) is
somewhat difficult to define and is not the same as mere participation in a task, though it is
sometimes measured in this way [40]. According to Stol et al. [40], developer engagement is
achieved when the developer identifies with the software development community and tries
to improve their own development skills.

In gamification research, the most commonly addressed user engagement problem is in
systems where users should add information and content into software systems [62]. Engage-
ment is also an issue in environments that need a set amount of people, a community, in order
to be meaningful for users to participate in [63], e.g., online forums.

4.3.3 Gamification approaches
There are many different approaches to gamification; this section first defines in which di-
mensions gamification approaches may differ and then describes the general, common ways
of designing gamification, as well as which game elements have been used or suggested in
research.

Levels of game design
Gamification design efforts are usually divided into categories based on granularity, e.g.,
game mechanics, game elements, and game interface elements (as stated by Darejeh and
Salim [62]), though the terms are often named and used slightly differently between studies,
making it difficult to keep the terms apart in a systematic way. In this thesis, we will mainly
concentrate on game design methods (the process of designing gamification) and game design
elements, which could be categorized as high-level and low-level elements for simplicity.

It is, in general, also difficult to limit what can be counted as a game element and not [50];
i.e., which elements can be said to bring gamification to an application. Game elements
have been defined as elements “characteristic” for games, i.e., commonly appearing in games,
though not necessarily in all games, and not as commonly found in applications that are not
games [50]; though this is not always an unambiguous definition.

General gamification approaches
According to Kapp [64], there are two types of gamification: structural gamification and con-
tent gamification. Structural gamification is the idea of adding a layer of game elements on
top of an existing application while keeping the actual content of the application non-game-
like. Content gamification is to make the actual content in the existing application more

49

4. Theory

gameful and fun. Of these, structural gamification is by far the most common in practice
and in research, though this is not necessarily true for all gamification contexts [62].

Gamification systems often turn out to revolve around either inducement prices (com-
petition for points, leaderboard positions, and similar), collective action (collaboration and
crowdsourcing), or virtual economies [31]. In most gamification studies, the focus is on low-
level game elements, such as the inclusion of badges and leaderboards. Meanwhile, multiple
studies, e.g., Morschheuser et al. [32], and Do and Bodden [60], advocate for a more complete
gamification, since simple game elements may not be enough to facilitate a good game ex-
perience [32]. In fact, successful gamification systems often include multiple game elements,
making them more multi-faceted [32].

In general, gamification should, according to Marques et al. [65], not just be added on top
of a service; instead, it should be tailor-made to solve real problems, previously noticed by the
users, so that the users experience that there is real meaning for the gamification. The needed
context knowledge should be collected in a large pre-study in the context where gamification
is to be applied.

High-level game elements
This section lists the elements we have found in previous studies which may be categorized
as high-level and considered in a gamification solution. Multiple synonyms of these elements
exist throughout the research; the names used here will be the ones we reference throughout
the rest of the report, regarding design decisions and similar.

Playful user interface is to use playful game aesthetics in the gamification application, for
example using visual metaphors. This may be used to make a clear distinction toward
other, more dull tools [40], or in order to create an emotional response in the users [54].

Social reputation is the idea to leverage users’ want for a good social reputation, for example,
by connecting social reputation value to elements such as leaderboard positions, ranks,
or badges, and thus increasing the perceived worth of these tokens [40].

Immediate and continuous feedback keeps users informed about how they are doing in the
game [62]. According to Foucault et al. [61], feedback should be presented in as small,
precise, and actionable chunks as possible. Individual feedback can also promote col-
laboration and teamwork since it serves as a ground for discussion, comparison, and
goal-setting [61]. Furthermore, positive feedback supports the competence mechanic
of Self-determination theory [57].

Clear goals , both long-term and short-term, are emphasized as important by many gamifi-
cation studies [56]. For example, the system can provide the user with specific tasks or
milestones [62].

Teamwork can be in the form of in-game groups, chats, and social network connections.
This supports the relatedness mechanic of Self-determination theory [57], [58]. Teams
can induce conflict, collaboration, and competition [58]. In teams that use a gami-
fication system together, Foucault et al. [61] suggests assigning an organizer role to
one teammate, who can serve as a traction force for making others interested in the
gamification tool [61].

50

4.3 Gamification

Collaboration is when a few players or a group work toward the same goals. According to
Snipes et al. [66], many developers might even be more motivated with team goals and
collaboration than with individual game goals.

Competition against other users is a common game element [56], but might be difficult to
get right, since it may not be appreciated by all users. It could also be common for
users to prefer competition within smaller settings, such as in teams rather than on an
organization level [67].

Self-expression allows the user to show their uniqueness via the game [56], for example by
the use of an avatar.

Altruism is when one player’s positive actions lead to rewards for a whole group of players,
or the whole game world [56].

Progressive difficulty means that the difficulty increases throughout the game-play, and is
matched toward the player’s increased skill level. This, compared to serving the user
all difficulty levels’ tasks at the same time, is also good for decreasing the cognitive
burden of the player [54].

Fiction/Narrative is the inclusion of scenarios, themes, stories, and/or problem settings in
the game, often in the context of fantasy [54].

Framing is the act of adapting the game mechanics for the specific user, for example by per-
sonalization, by including/excluding certain elements, and by changing the difficulty
based on the user. The skill level and preferences of the user can either be directly
entered by the user or interpreted from user data [54].

Surprise and unexpected delight can be included to make a system more gameful and fun.
An example is to give a sudden and unexpected badge for “having great hair” [63].

Collecting is the in-game act of collecting tokens such as badges, which is an activity that
may motivate some users. For this to be effective, there must be some scarcity of the
objects that are being collected. The collective behavior can be made more complex by
allowing trading of the items [63].

Organizing and creating order might be another motivating drive for some users in a game
environment, for example, if there are possibilities of arranging virtual cities [63].

Gifting may occur in the game if users are allowed to trade or transfer items with each
other [63].

Low-level game elements
In this section, we list some low-level game elements extracted from previous research. Ac-
cording to Priyadi et al. [68], the choice of (low-level) game elements may be the most im-
portant decision for the success of a gamification system.

51

4. Theory

Points are a numerical measure of a user’s progress in the game and are typically used as
a reward for user involvement [69], and as a way to provide the user with individual
feedback [55]. Points are supported by the competence mechanic of Self-determination
theory [57], [58].

Achievements defines objectives to be reached by the user [55]; e.g., reaching a set amount of
points or completing a challenge. Typically, the user knows beforehand which tasks will
lead to completing an achievement, thus achievements can serve as goals for the user.
The achievement also commonly leads to some type of reward, beyond the achievement
itself [56].

Badges are visual representations of achievements [55], often presented in a medal-like shape [62].
Badges may act both as feedback that the user has done something good and as visual
status symbols. A badge commonly aims to steer users toward certain actions [70].
Badges are supported by the competence mechanic of Self-determination theory [58].

Virtual economies is the use of some in-game currency that can purchase in-game and/or
out-game goods. However, the line between virtual and real economies typically be-
comes blurry and is difficult not to cross [31].

Avatars are visual representations of a user’s profile which may be constructed and changed
by the user [55], [62]. Avatars increase the users’ decision freedom [58] and are thus
a motivational drive according to the autonomy mechanic of Self-determination the-
ory [57].

Awards are similar to badges but are typically given on a more exclusive basis. An example
is rolling awards, where an exclusive title such as “best player this week” is given to a
player for one week [71].

Leaderboards are visual representations of competitive user rankings based on points, en-
gagement level, or similar [55]. There are two main types: classic leaderboards, showing
the high score of the most high-ranking individuals; and the no-disincentive leader-
board, where the player sees themselves in the middle and mainly gets to know how
far it is to the position above and below them. It could, however, be preferable to let
players customize leaderboards, or base the leaderboard view on player skill level [63].
Leaderboards are supported by the competence mechanic of Self-determination the-
ory [57], [58].

Levels define different steps for the user to reach and can be used to demonstrate progress [55].
A user typically levels up after certain achievements, but levels are often not linear [56].
Similar game elements mentioned in some sources are status and roles, where the user
is assigned in-game roles such as “Officer” to show their status in the game [62]. Levels
support the competence mechanic of Self-determination theory [57].

Story is an underlying narrative of the game, which aims to put the other game elements
into context and give them meaning. A story can be in the form of a scenario, or be
theme-based [62]. A meaningful story plays on the Self-determination theory auton-
omy mechanic since it gives task meaning, and it can also be connected to relatedness
if the story gives rise to a common goal in the community [58].

52

4.3 Gamification

Quests are tasks or challenges presented to the users [55], often in a surrounding story to
make them more engaging [69], and are often used to drive user action [55]. Quests are
often unlocked after the user has achieved a certain level or some other task [56].

Challenges are similar to quests; they are special tasks presented to the users, often with a
reward as a goal, but are more often than quests performed in competition with other
users, and often under time pressure [62]. Challenges are motivated by the competence
mechanic of Self-determination theory [57].

Visible progress is often shown in the form of progress bars or a percentage value, to keep
users informed about how close they are to some goal [62].

Performance graphs gives the user information about their performance and thus lets the
user compete against themselves [58]. Performance graphs are supported by the com-
petence mechanic of Self-determination theory [58].

Social graphs represents a social network in the game and can be used to showcase collabo-
ration and community [55].

Maps are visual representations of the game world and also often show the user’s progress
and tasks to perform [62].

Voting is when users can vote on different game options or other users’ achievements. If
a user gets a lot of votes, this often results in some in-game reward [69]. Voting is
common for example in gamified requirements engineering, where users vote on re-
quirements [72].

Betting is the possibility for users to bet on the outcome of certain events. The winner of
the bet usually receives a reward [69].

Time-pressure and time-limits can make task execution both more engaging and more effi-
cient [62].

As found by Priyadi et al. [68], the most commonly used game element in current research
is points, followed by levels, badges, challenges, quests for social engagement, leaderboards,
voting, and betting.

Reward types
Rewards can come in many different forms, such as badges, levels, and in-game status. Re-
wards can also be grouped into contextual categories. Some different reward types, as grouped
by Darejeh and Salim [62], are: fixed action rewards, when the action that triggers the reward
is clearly stated for the user; sudden rewards, when the trigger is not clearly stated; random re-
wards, where the trigger is stated but the nature of the reward is unknown; rolling rewards,
which are given at random to someone from a certain pool of users; price pacing rewards,
where multiple sub-rewards lead up to the main reward; and social rewards, which are given
to the user by other users. Of these, fixed action rewards is the most common reward type.

As described by Darejeh and Salim [62], there are also three main ways to use rewards:
achievement game, e.g., a badge or points as a sign of progress; in-game rewards such as the

53

4. Theory

possibility to level up or buy something with virtual currency; and out-game rewards, e.g.,
real money or gifts. In existing gamification solutions, the achievement game is the most
commonly implemented reward usage [62].

4.3.4 Gamification in different contexts
The success of a gamification system will depend on how well-catered it is to the context
where it is applied, as well as the culture and preferences of the involved users [56]. There-
fore, before developing a gamification service there should be an understanding of both the
underlying context and the users’ needs, motivations, and behaviors [32]. In this section, the
impact on gamification of context, culture, and user types is examined.

Context
Gamification seems more fitting for some application areas than others. The best contexts,
according to Hamari et al. [33], are those in which users continuously use the service (and
not only sporadically), in order for them to have time to get invested. Currently, the overall
most common gamification context is education and learning; here, gamification has also
been extensively shown to have positive outcomes, though with some possible caveat from
the increased competition [33].

Culture
The culture (and company culture, for industry gamification) is important to consider in the
gamification design [56]. Cultural biases significantly impact how users react to elements
that try to change their behavior, and which behaviors feel most natural for them in the first
place. These cultural biases can often be seen in a person’s or a group’s habits and decision-
making. For example, does the culture mostly value individualism or collectivism; do people
view themselves as dependent on a group or as independent individuals? Because of this,
it is important to study the culture of the intended users before finalizing any gamification
design.

User types
The users’ qualities, demographics, and expectations also heavily affect the success of a gami-
fication effort [73]; different users interact with game features for different reasons, in differ-
ent ways, and with different results [74]. Generally, it is not possible to use a one-size-fits-all
approach to gamification, so the service should be developed to fulfill different types of users’
wants and needs [69], [74]. The game design should preferably also be customizable to allow
for users’ self-expression, though the user should not be overloaded with the need to make a
lot of decisions [63].

Examples of demographic factors that can affect users’ interaction with gamification ele-
ments are age, sex, and previous gaming experience [73]. A lot of research has been done on the
social dynamics of regular games, and according to Barik et al. [54], this research should also
be considered for gamification efforts. For example, some studies show that female players,
compared to male players, are often more interested in social game aspects than competitive

54

4.3 Gamification

aspects. Such findings motivate the usage of more narrative and social game elements, as a
complement to competitive elements, to appeal to a more diverse user base [54].

Furthermore, there are differences between users’ individual preferences. Humans enjoy
playing games for many different reasons, which are likely to differ between persons. For
example, some enjoy the game mechanics of collecting and ordering things (like building
nice, orderly cities), while others enjoy the status and recognition they get from achieve-
ments [63]. Some users might also especially dislike some game elements, such as competition
features [33]. Categorizing players is a large subject within regular game design. However,
these frameworks were often designed for MUD games such as World of Warcraft, and even
though they are commonly used for gamification design, this is not a good practice according
to [35].

An alternative player categorization framework, created especially for gamification, is
the Hexad types [35]. This framework is based on motivation research, for example, Self-
Determination theory and the idea of intrinsic and extrinsic motivation, which might moti-
vate different users to different extents [35]. The accuracy of the framework has been empiri-
cally evaluated with positive results in a follow-up study by Tondello et al. [37]. The list below
goes through the six Hexad player types and suggested game elements for each type, as de-
scribed by Tondello et al. [35], with improvement suggestions from the follow-up study [37].
The suggested game elements are sometimes slightly tweaked by using synonyms or similar,
in order to map directly to the list of game elements given in Section 4.3.3 and Section 4.3.3
(these elements are italicized for clarity). Some elements referenced in the Hexad framework
which do not map to our previously listed elements are also mentioned here.

Philanthropists are motivated by helping others in an altruistic way, without wanting any
extrinsic reward, and by finding a more important purpose and meaning in the game.
Suggested game elements: collecting, with trading possibilities; and gifting. Also knowl-
edge sharing and the use of “administrative roles”.

Socializers are motivated by the relatedness mechanic of Self-Determination theory. Their
main purpose in the game is to socialize and interact with other players. Suggested
game elements: teamwork; and (social) competition. Also social comparison and “social
discovery”.

Free spirits are motivated by the Self-Determination theory’s autonomy mechanic. They
value freedom, self-expression, and exploration, and do not like being told what to
do. Suggested game elements: (exploration) quests, surprise and unexpected delight (in
the form of “Easter eggs”), self-expression (in the form of creativity and customization),
progressive content-unlocking; and, according to the follow-up by Tondello et al. [37],
challenges, learning, anonymity, and “anarchic gameplay”.

Achievers are motivated by mastery and self-improvement, i.e., by the competence mechanic
of Self-Determination theory. They enjoy tasks, progressive difficulty, and proving
themselves. Suggested game elements: challenges; (epic) challenges; quests; progressive
levels, and “learning new skills”. However, according to the follow-up by Tondello et
al. [37], achievers are not motivated by epic challenges but are slightly motivated by
badges, achievements, and anonymity.

55

4. Theory

Players are motivated by the actual, extrinsic game rewards, such as the badges, and value
these more than the activities leading up to the rewards. Suggested game elements:
points, leaderboards, badges, achievements, virtual economies, lotteries/luck games, and re-
wards in general. Though, according to the follow-up by Tondello et al. [37], players
are not motivated by lotteries or luck, but instead by levels, collecting and trading, so-
cial competition, challenges, quests, progression, social comparison and discovery, and
anonymity.

Disruptors are motivated by change. They want to sabotage the game and interfere with
it, by positive or negative change (disturbing or improving the system) or even by
cheating. Suggested game elements: voting, anonymity, “innovation platforms”, and
“anarchic gameplay”. Though according to Tondello et al. [37], disruptors are not mo-
tivated by anonymity; instead, they are motivated by challenges, social competition, and
creativity.

Note that there can be some overlap between the different Hexad types and that most players
will have traits of multiple types to some extent [35]. It may also be common that players take
on different roles depending on the game, and may also alternate between types or adhere
to multiple types at the same time [56]. In the empirical evaluation of Hexad [37], it was
found that the most common types are Philanthropists, Free spirits, and Achievers, and the
least common type is Disruptors. It was also found that gender and age correlate to the user
types [37].

4.3.5 Efficacy of gamification
It is generally difficult to evaluate if gamification as a concept has the ability to achieve the
goals of increased user motivation and user engagement (or other stated goals). This is partly
due to the term having been popularized and often evokes strong, differing opinions among
users and researchers, sometimes mostly based on anecdotal evidence [33], [69]. There are
also difficulties with evaluating different game elements in isolation, and the endless varia-
tion of gamification designs and contexts in research lead to very different results [33]. As
noted by Sailer et al. [58] and Morschheuser et al. [32], reported effects on gamification might
be misleading since many game elements are often evaluated together; especially successful
gamification solutions often include multiple game elements [32].

Secondary studies of gamification experiments showcase that almost only positive results
of gamification have been reported in research. In the 2014 literature review by Hamari et
al. [33], gamification is concluded to “work” for its purposes, although with some caveats; all
the found studies reported positive effects of gamification at least from some users, but most
studies also reported some neutral or negative effects from other users. Similarly, in the 2016
literature review by Darejeh and Salim [62], which focused on gamification for user engage-
ment, 80% of the studies reported positive results, 0% negative results, 8% neutral results, and
11% partially positive results. The authors conclude that gamification is suitable for increas-
ing user engagement, and also that gamification does not have any serious impediments to
the usability of software. Also, the 2015 literature study in Seaborn and Fels [73] noted that
gamification research gives mainly positive results, though inconclusive.

However, there may be many reasons for these positive results: They might be because
of the relatively small number of studies, which perhaps cannot give a reliable mean value of

56

4.3 Gamification

gamification effectiveness, or the “file-drawer effect”, i.e., that only positive results get pub-
lished [73]. The positive results might overshadow legitimate concerns about gamification
risks and dangers, which have also been indicated by a small number of studies [73]. Another
explanation of the positive results could be the novelty effect of the new gamification service,
which may give behavioral short-term user outcomes (which is what is typically measured in
these studies) but no long-term effects [33].

In a large experiment (N=419) on the effect of different game elements, Sailer et al. [58]
concluded that gamification might not be effective per se, but that different game elements
can impact user motivation in different ways. For example, the users’ feeling of compe-
tence and autonomy was affected by the change in task meaningfulness introduced by badges,
leaderboards, and performance graphs. Meanwhile, relatedness was positively influenced by
avatars, meaningful stories, and the existence of teammates.

4.3.6 Possible pitfalls
While gamification in general has shown positive results, it has faced a lot of criticism, and
there are many challenges for gamification designers to overcome. Some of these possible
pitfalls, commonly raised by studies on the subject, are described in this section.

Bad game design

In 2012, Gartner [75] predicted that 80% of the gamified applications in 2014 would fail to
meet their business goals specifically because of poor design, a prediction that has been cited
by many gamification studies since. Gartner argued that most gamification efforts were too
driven by hype and too poorly designed to succeed; too focused on merely adding simple game
elements such as points and badges rather than on more complex issues such as balancing
rewards and the usage of virtual currencies.

In many ways, game design is a challenging matter. Since gamification must also work
together with already existing systems, for example, a software tool stack, there is also the
major challenge of integrating the gamification aspects into the existing services [69]. There
is currently a lack of research on how such integrations should optimally be done, and most
research experiments with gamification are ad-hoc solutions; at the same time, gamification
might only succeed if it builds on a smooth integration and is not just a new, standalone
tool [69]. This is especially important in software engineering, where the tool stack infras-
tructure often is part of the organization’s culture and a key part of developers’ workflow [69].
One commonly brought-up problem with gamification in software engineering is that it may
disrupt the workflow and become a nuisance for developers, thus it is important to design
game elements so that they do not interfere with effectiveness and productivity [60].

It is also important to avoid bugs in the game design; otherwise, developers might change
their habits to get around the bugs. An example is found in the study by Foucault et al. [61]:
There was a bug in the gamification score counter for merges, making some developers try
to merge their code less in order to not lose legitimate points.

57

4. Theory

Shallow gamification
Another common criticism of existing gamification solutions, and gamification in research,
is that they are so-called shallow solutions [76], or narrow as called in Barik et al. [54]. Shal-
low gamification only focuses on one dimension of game design, namely the reward system,
often with fixed rewards in the form of points, badges, and leaderboards as extrinsic motiva-
tions [54]; this is overall the most common gamification approach [62]. Often, these designs
are directly or indirectly based on the idea of behaviorism, i.e., that rewarding and punishing
behaviors will steer later long-term behavior patterns - but behaviorism has been thoroughly
proven not to work long-term since users’ behaviors only change while the reward or punish-
ment is present [31]. Partly because of this, shallow gamification has been criticized by many
experts in the field [76].

Another problem with reward-focused shallow gamification is that user’s pleasure will
not increase with the number of rewards, or, as phrased by Groh [59]: “Pleasure is not addi-
tive”. This type of gamification might even have harmful long-term effects, as the experienced
pleasure from an activity may decrease after the removal of gamification features, to a level
lower than initially [59]. Reward- and competition-based gamification may also scare away
some users while appealing to others, which impedes diversity and can give long-term nega-
tive effects on the platform [54].

Gamification systems could, according to Darejeh and Salim [62], likely reach higher
quality if they included more game mechanics and elements. As said by Barik et al. [54], a
better gamification solution would be to focus more on the complete system and re-imagining
the system as some type of full-fledged game. At least, the elements included in the system
should align with the actual purpose of the tasks the users are carrying out [54]. Another
way to make gamification less shallow is to add framing; user personalization such as avatars;
narrative; and fiction, for example by adding small, playful narrative aspects to badges [54].
Overall, a mixture of various game elements and reward types should be used, e.g., both in-
game and out-game rewards, as recommended by Darejeh and Salim [62].

Encouraging the wrong behavior
Adding an extrinsic reward system also comes with the risk of shifting the users’ focus toward
the gamification features and away from the actual, meaningful task that the system was
originally intended for. Extrinsic rewards may come to substitute the intrinsic motivation for
the task, making the task seem even less fun than before, and change developer behaviors to
focus on getting game rewards instead of optimizing their work [33]. For example, if rewards
are given mainly for quantitative work, users might change their behaviors to do smaller, less
meaningful, or unnecessarily fine-grained tasks, as was noted for example in the study in Frącz
and Dajda [77]. In a study on user behavior in the gamified StackOverflow forum [78], it was
discovered that users would work hard with certain tasks before acquiring a badge, and then
rapidly decrease this activity when the badge was acquired. This implies that user behavior
shifted toward the game goals instead of the actual task goals. This shows that the badge
“works as intended”, but this type of user behavior might not always be a desired outcome
of the system. The phenomenon also goes against one of the main ideas of gamification, to
increase intrinsic motivation. Replacing real incentives with fictional incentives has been
referred to as “exploitationware”, and it may be especially bad if the original task was, before
gamification, perceived as rather engaging [31].

58

4.3 Gamification

Another risk with an extrinsic reward system is that it may be perceived as lessening the
players’ autonomy (which according to SDT is one of the three main intrinsic motivators).
The users might feel micromanaged and the reward system may seem to coerce them to do
actions they did not choose themselves. This can be mitigated by using more informational
game feedback than controlling feedback, and by having shared goals on the platform rather
than individual goals, even if they are pursued in an individual fashion by users [59].

Related to unwanted user behaviors, cheating and gaming the system are common prob-
lems for gamification systems, especially regarding gamification for software developers and
other software-confident users [79]. These issues must be addressed by using a well-designed
and fair reward system in order for the gamification solution to remain enjoyable and fair
for everybody.

Not appreciated by all users
Some people, for example, some developers, hold strong negative opinions on gamification
or aspects of gamification. Some reasons for this (brought up in developer interviews in the
paper by Snipes et al. [66]) are that gamification is seen as childish, can increase competi-
tion between teams in an already competitive environment, and that developers should be
motivated by doing a good job rather than by game rewards.

The fact that gamification does not attract all people highlights the importance of keep-
ing participation voluntary. This can be achieved by making the game elements opt-in, so
that developers can choose when and how to participate, and optimally also with whom they
share their data [61]. This idea of voluntariness also goes hand in hand with viewing gamifi-
cation as a persuasive technology, which does not force users with coercion but rather only
influences them to change their behaviors [52].

Perhaps most importantly, gamification solutions should only be applied when trying to
solve real problems noticed by the intended users [65]. Otherwise, users might not under-
stand the reason for gamification and perceive that game elements are not there for their sake
but for some other reason, which can lead to frustration and unwillingness to participate in
the game elements.

Privacy and data control
One commonly raised worry about gamification in industry settings is the vast amount of user
data that is commonly collected and displayed [31]. Users may experience the data collection
as a mechanism for management surveillance, evaluation, and control, which can lead to
worries or repulsion for the game elements [31], [67]. This can especially be an issue when
there are leaderboards that might serve as simplified, and sometimes misleading, charts over
employee performance [61].

This issue can be solved by increasing the anonymity of the gamification tool [67], and/or
having clear and formally stated data usage policies, both to avoid worries and to hinder
actual misuses of the data [61]. Handling such ethical issues might be crucial for the success
of the gamification system [61]. Also, developers are likely more positive to data sharing if
it is done in a smaller environment, such as within the team, thus team collaboration and/or
competitions could be used as alternative game elements [66].

59

4. Theory

4.3.7 Static analysis feedback gamification
As described earlier, the success and outcomes of gamification are often very context-dependent.
In this thesis, the gamification context is feedback collection on SCA tools, in a software
development environment where the users are developers. In this section, we focus on gam-
ification of software engineering (SE) tasks, as well as feedback collection, in order to get a
more specific view of current research on the relevant area.

Software engineering gamification
Gamification has been applied to many different aspects of the SE process: implementation,
testing, configuration management, requirements engineering, and more [69]. In general, SE
has been a popular area for gamification, and according to Pedreira et al. [69], it is a promising
field for gamification because of the human-intensive nature of the processes [69]. Especially
some aspects of SE, namely development, testing, and requirement engineering, share fea-
tures that make them well-suited for gamification: They are often difficult, tedious, and re-
quire intense collaboration between people, commonly leading to a lack of user engagement
and intrinsic motivation [69]. Another gamification-suited aspect is quality improvement of
different kinds, which is usually not perceived as the most engaging task by developers [61].

In a literary review on SE gamification [51], examining 130 studies between 1987 to 2020,
it was noted that the practical results of gamification are still unclear, which is similar results
to those of literature reviews on general gamification.

Static analysis gamification
There is not much previous research done on the gamification of SCA tools [60]. Still, ac-
cording to Do and Bodden [60], SCA tools are a promising area for gamification because
of the workflow similarities with the flow of video games, with repetitive and challenging
tasks, requiring a high understanding of the task and searching for solutions to problems.
While video games, however, are developed for high user engagement, SCA tools are noto-
rious for their lack of this [60], as described in Section 4.1.3. SCA tools have many features
that impede users’ intrinsic motivation according to Self-determination theory. For example,
the slow feedback that results from the time it takes to run the analysis is directly contrary
to game design recommendations and can decrease both the feeling of competence and re-
latedness among developers. SCA tools can also be said to provide the user with too much
autonomy, since the warnings are often shown in a redundant amount and without proper
prioritization, leaving this task to the user [60].

Feedback collection gamification
A few studies have been done on gamification of feedback systems, and similarly in other in-
formation crowdsourcing or knowledge-transfer settings, such as for building up organization-
internal wikis [71]. Typically, tasks such as user feedback see low engagement among potential
feedback-givers [80]; in companies, employees often prefer spending their time with more
pressing (and fun) tasks than knowledge-sharing [71]. Therefore, this seems like a promising
area for gamification.

60

4.3 Gamification

However, different people have different motivations for leaving feedback, and these mo-
tivations can also vary considerably between cultures [80]. For example, users can be affected
by the visibility, amount, and similarity of previously given feedback; some are motivated
by the social recognition they may get by providing feedback, others are not motivated by
this, and yet others are only motivated by social recognition if it is connected to having their
feedback actually lead to visible changes. These different motivations can be utilized in a
gamification setting, where social recognition can be nurtured via badges or similar status
symbols, and by making previous feedback visible to users [80].

4.3.8 Gamification frameworks
There have been many frameworks developed for the design and design process of gamifi-
cation systems [31], and the utilized framework can be crucial for the success or failure of
gamification [30]. Most existing frameworks focus on psychology rather than technology, for
example, on social influence and personalization, which might be reasonable since it has been
theorized that gamification is only 25% technology and 75% psychology [30].

However, while the interest to develop conceptual gamification frameworks has grown
rapidly since 2012, the presented frameworks have some shortcomings, for example in their
lack of addressing ethics, balancing, and sustainability [81]. Ethical aspects are very important
for gamification solutions, because of the data handling privacy needed, but also because the
gamification aim is to directly impact the user’s motivation and/or behavior; frameworks
must effectively make sure that gamification is not implemented solely for business purposes
that ignore the user’s wants and well-being [81].

Design frameworks
Some gamification design processes have been specified in previous research, for example, the
one by Nicholson [82], and by Dal Sasso et al. [31]. However, while some frameworks are very
general (as Nicholson’s), others are very specific, such as the one by Dal Sasso et al., which
seems best adaptable to a badge system. This may make the frameworks difficult to effectively
apply in specific contexts. However, there are also many general ideas and recommendations
on how to design gamification, which may be easier to adapt.

One such general design recommendation, by Barik et al. [54], is that the game should be
easy to understand and lightweight enough to not require a manual. Features should prefer-
ably be found by the user by experimentation, and if meta-information must be given, it
should be in an in-game manner [54]. Specifically, the first few minutes the user interacts
with the system, which are crucial for further engagement, they should not be hampered by
information [63].

Process frameworks
Many gamification process frameworks of different types are presented in the 2015 liter-
ary review of Mora et al. [30]; multiple approaches are very similar to each other. Some
common aspects are the importance put on business objectives (some frameworks consider
economic issues and stakeholder participation in the design, others do not); and most use
a human-centered design with the player and player psychology in focus, compared to, for

61

4. Theory

example, technology-based or goal-based design [30]. However, a generic, complete gamifi-
cation framework does not yet exist.

Others have also highlighted the importance of catering the gamification design to the
specific context and the individuals that will use the gamification service, for example by
defining user personas and basing the design on these [40].

In a 2023 SE gamification literature review [68], it was noted that no studies from the
last five years used a common gamification process framework and that the designers instead
built the frameworks by themselves. This might imply that there, even though there are many
frameworks, are no great and well-known frameworks to use, or simply that no framework
has gained more traction than others.

Evaluation frameworks
There have also been some frameworks developed for how to evaluate gamification results
in order to more systematically define the success of different gamification studies and be
able to compare them. However, a literature review of 100 studies (2011-2020) on SE gami-
fication [34] found no good, general framework for gamification evaluation - all studies use
different approaches. There are, however, some patterns in the evaluations; usually, they fo-
cus on the user experience of the gamification elements and on the outcomes of the users
and the context. The most commonly used evaluation criteria are engagement, performance,
satisfaction, and motivation [34]. In the literature review conducted by Hamari et al. [33], it
was noted that most studies measure behavioral outcomes.

The optimal gamification evaluation method will depend on what is to be tested, but
according to Monteiro et al. [34], the evaluation should generally use a mix of qualitative and
quantitative data collection and analysis, with both subjective and objective inputs. Accord-
ing to Hamari et al. [33], there should also always be control groups when doing gamification
user tests, which historically (at least in 2015 when Hamari’s paper was written) has been
lacking in gamification evaluation research.

4.3.9 Current state of research
There have been many primary studies and experiments on gamification. In 2021, Porto
et al. [72] noted that studies on SE gamification have increased in the last years, indicating
increased awareness of the topic [72]. Furthermore, there are multiple secondary studies and
literary reviews on gamification research, for example [30], [33], [73], and more specifically
on gamification in software engineering, such as [51], [68], [69], [72].

However, in all or almost all studied literature reviews, there have been voiced com-
plaints that gamification research, in general, is not of high enough quality and lacks certain
types of studies. The studies conducted are said to be too basic and only include very simple
gamification elements such as points and badges [62], [69], [72] - i.e., so-called shallow gami-
fication. Also, Pedreira et al. [69] noted in 2015 that SE gamification research was still in an
initial state, with most studies being workshops or conference studies and not peer-reviewed
journal articles. In general, the studies seldom give any empirically valid support for gami-
fication [69], and most studies merely give suggestions for gamification approaches without
any real experimental evaluation [69]. Most studies at this time were also not systematic and
lacked a sound methodological approach; for example, they did not compare a system in both

62

4.3 Gamification

its gamified and non-gamified version [69]. Still, in 2018, Morschheuser et al. [32] claimed
that research on developing successful gamification was still starting. Now, the actual empir-
ical evidence of the benefits of software engineering gamification is limited [72].

A problem for these research endeavors is that gamification applications often are very
context-specific since they commonly build on other tools, and it is thus difficult to show
any empirical result applicable to general contexts [69].

63

4. Theory

64

Chapter 5

User research results

This section presents the results from user research conducted to answer RQ3 (From a devel-
oper’s perspective, which aspects hinder interest and engagement with static analysis tools and with
giving feedback on these tools?). First, we present a thematic analysis of the interview findings,
then the questionnaire results. To conclude the chapter, a summary and conclusions of the
collective user research are given.

5.1 Interview findings
For analyzing the interview data, we used a thematic analysis approach as described in Section
3.2.3. This resulted in a set of themes (T1-T4) and subthemes presented in a thematic map
in Figure 5.1. In this section, each theme is described one by one, divided into subtheme
sections when subthemes do not overlap too much. Note, however, that the overview of the
Axis tool setup (the main part of subtheme T1.1) is not included in this section and instead
serves as a basis for Chapter 2.

Since all eight interviewees use he/him pronouns, these will for convenience be used
throughout this section when referring to interview participants. Participants will also be
referred to as their interview ID given in Table 3.1.

5.1.1 T1.2: Views and experiences of SCA tools
The T1.2 theme presents developers’ thoughts, opinions, and motivations regarding SCA
processes at Axis. Some insights are also given on how the tools are utilized in practice, not
only in theory as described in Chapter 2.

For convenience, since the T1.2 theme has many overlapping subthemes, the findings are
presented in smaller chunks in which multiple subthemes may be handled together. Some
subthemes may be split into different sections.

65

5. User research results

Figure 5.1: Resulting themes and subthemes from the thematic anal-
ysis of the interview data. Each circle with a theme ID (T1-T4) rep-
resents a theme, other circles represent subthemes.

Why SCA tools are used: motivation and coercion
Why are SCA tools used at Axis? All interviewees agree that SCA tools are, at least in theory,
useful for writing better and more secure code.

Most participants express a feeling that SCA tools prevent developers from making mis-
takes, by catching problems in the code that otherwise could lead to serious bugs or vulner-
abilities. In this way, SCA tools provide a feeling of security for developers. As phrased by
I8: “[SCA tools], especially static type checking, are a good complement to tests, to convince me that
the code I’m writing works as I think it should work.” Even participants that are more hesitant to
SCA tools, such as I5, mean that the tools in theory are very useful - if they actually flag real
problems in the code.

Interviewees also use SCA tools for speeding up the development process; letting the
tools catch small mistakes allows the developer to not have all details in their head and in-
stead concentrate on moving forward. As noted by some participants, most encountered
SCA warnings are about common, small problems that often are pretty obvious but may be
overlooked by developers while writing the code. SCA tools may also speed up the develop-
ment process by discovering mistakes and problems earlier in the process. Running the code
through formatting tools and simple checks also lets developers avoid tedious discussions
about these small issues during code reviews.

Another motivator for using SCA tools is that they can make the code more consistent
among developers, by forcing a specific way of writing code - this is especially mentioned

66

5.1 Interview findings

by participants in regard to formatting tools. SCA tools can thus increase code quality and
make it more pleasant to read; “so that it doesn’t become a patchwork of the code” (I1).

SCA tools may be especially appreciated where the developers are not as used to the
code base or the programming practices they are currently working on, as mentioned by one
participant whose team is new to the programming language they use. He appreciates that the
tools can tell him which coding practices are good and bad; without the tool, the team might
have continued using bad practices. In this way, the SCA tool may serve as an “educator”
and make developers change their coding habits. As said by I6: “After having used this for quite
many years, we have learned to program in a way so that cppcheck and Sparse, they don’t find that
much. It’s second nature to do it correctly. However, Coverity still finds pretty much.”

Notably, different SCA tools are used for different purposes and are often perceived to
complement each other. For example, one participant mentions that clangd gives good advice
on best practices for coding, but cannot find logical errors, as Coverity can.

However, motivation for using SCA tools does not only stem from the developers them-
selves but also from company regulations and company culture. I6, who has worked at Axis
for 25 years, says: “Axis has also generally acquired an increased security mindset”; this has made
the company more actively, over the years, encourage developers to use SCA. However, many
participants claim that they would be motivated to use the tools even if they were not en-
forced by the setup, though I8 says that he thinks some developers would ignore the tools if
they could.

SCA tool problems
Some participants are not at all motivated to use static analysis because of factors they dislike
about the tools, and even the more motivated participants often note the same problems. The
SCA problems that were most often brought up during the interviews are listed below:

Long runtime of the analysis tools is mentioned by two participants as frustrating. “[. . .]
sometimes it takes a long time, and half an hour later one gets to know that something didn’t
work, and then one has to context switch back to that change and fix it, and often it’s a pretty
small thing [to fix]” (I8).

Slow UI is brought up by the participants specifically regarding the Coverity UI. The slow
interface is a reason for developers to instead access the analysis through the HTML
file.

Configuration difficulties i.e., the difficulties and effort needed to integrate the SCA tools
in the development setup, is commonly brought up as a source of irritation.

False positives is a SCA-tool problem that the interviewees were specifically asked for their
opinion on. Experiences and opinions varied significantly; while some barely have
encountered this issue, others mention false positives as a major nuisance that may
lead developers to ignore SCA warnings and even entire SCA tools.

Regarding false positives, the vastly different experiences among developers are worth ana-
lyzing. Naturally, the amount and types of false positives depend on the tool. For example,
I6 says that the false positives in Coverity usually are similar to each other and can be under-
stood, while: “With some [false positives] in cppcheck, it’s just wrong. It didn’t think. So it’s worse.

67

5. User research results

One doesn’t get that many, but the ones one gets can in practice be impossible to correct” (I6). The
nature of the false positive may also affect how many false positives developers are prepared
to accept. When I3 points out that his team previously used to have a problem with many
false positives in Coverity, “many” in this case meant one to two false positives per month.

Specifically regarding Coverity, the amount and type of false positives seem to vary greatly
between code bases, and participants in different teams have very different experiences and
opinions. In I2’s team, Coverity commonly produces false positives regarding code in external
libraries that are used in many places in the code base. This leads to I2 thinking that Coverity
is less suited for his team, and it affects how the team regards the output of Coverity. If I2
gets a -1 Gerrit vote from Coverity, he says he checks it “sometimes”.

In connection to this, I6 notes an interesting fact about the history of Coverity: “In my
team, we are a bit fortunate, because Coverity is written from the beginning for being run at the Linux
core, that’s where it comes from. So it’s very good at analyzing what we use it for. Perhaps further up
in the user space they have a lot more false positives, we have seen.”

SCA work process: Getting around problems
In Chapter 2, the general SCA tool setup and processes at Axis are described. However, how
the tools are used in practice may differ, for example, when developers do not want to use
the tools and find workarounds.

Some participants say they usually ignore some SCA warnings, either because they believe
the warnings to be false positives, or just do not find them useful. Participants commonly
mention Pylint and Coverity as having many false positives that they become inclined to
ignore. Three of the interviewees barely use the available SCA tools at all. While Coverity
is automatically run via Gerrit for their repositories, they have altered the setup so that -1
votes from Coverity can be ignored. As said by one of these participants, I2: “Coverity is not
a super important part of the workflow, it is more like another input that one may look at.” I1 thinks
that most developers in his team disregard Coverity: “When it was introduced, people were a bit
against it, then I think it slowly died out how much people cared about it.”

Sometimes, developers do not ignore warnings they disagree with and instead change
their development habits in order to “make the SCA tools happy,” for example, by annotating
their code. This is seen as a tedious and irritating factor of SCA tool use.

Understanding SCA warnings
Most participants say they seldom have problems with understanding SCA warnings; they
often find the warnings clear and as providing enough information, though this is of course
tool dependent. When I8 was prompted to make an estimation for all SCA tools he uses, he
says that around 1 out of 10 warnings may be difficult to understand immediately. I3 says that
he mainly has to search for more information about a warning, in a time-consuming way,
when the warning is a false positive. Regarding Coverity, all participants with experience
with this tool think that Coverity warnings are usually presented in a clear and easy-to-
understand manner. I1 describes the warnings as “pedagogical”.

Multiple participants point out that SCA warnings get easier to understand with time
and that there are no problems once one is experienced. This is especially the case since the
tools often flag similar problems over and over.

68

5.1 Interview findings

Handling false positives
The participants were also asked how they handle false positives, in order to analyze the
problems that false positives may give rise to. From the interviews, three main options for
handling false positives are most often brought up: turning off the warning; leaving the warn-
ing in place but ignoring it; and changing the code that triggered the warning just to make
the tool stop flagging it.

If warnings can be turned off, and to what extent, is tool dependent; all participants were
familiar with the possibility to turn off warnings in at least some tools. When it comes to
Coverity, warnings can be turned off via the Coverity UI (which only developers with licenses
can access), and the knowledge and use of this feature vary between participants - some did
not know of it, while some use it frequently. There may also be some risks with turning
off warnings, as noted by I4, whose team (to his knowledge) does not use this feature in
SCA tools: “Often, something that is perhaps bad at one occasion may be right at another occasion,
so perhaps one does not want to turn it off for the whole code base.” Sometimes, it may also be
difficult to know if a warning is a false positive or just a difficult-to-understand true positive.
There is a worry among some developers that they could risk turning off warnings that might
have flagged an actual problem. I5 also notes that turning off many warnings takes away the
usefulness of the tool; he thinks that in that case, it would be better to just stop using the
tool.

When warnings cannot be turned off or ignored, the developer usually has to make a
workaround in the code. This is how I4 has to solve Coverity false positives (though he has
only encountered a single such warning before) since it to his knowledge is not possible to
override the -1 vote Gerrit in his team. “I don’t really know who I would contact . . . There is surely
someone one could contact if one really wants to, but it’s a little too much effort compared to just
rewriting my code” (I4).

I1’s team, who could not on their own turn off warnings in Coverity, instead used to
add the false positive problems as a ticket in Jira, and ask someone else to mark it as a false
positive. “And it turned out, in the end, that people just kept adding comments on this ticket, when
they found false positives. So, from our perspective, we did not see that it got fixed, we just saw that
we had a problem that was repeated many times” (I1).

Return on investment of SCA
The participants’ views on SCA seem to boil down to the return on investment of the tools:
The SCA setup clearly has both benefits and problems, the question is if the benefits are big
enough to endure the problems.

One important aspect is how good the tools are at finding relevant problems in the code.
Different interviewees have different opinions on this. For example, I3 says that Coverity
cannot find all memory leaks; he himself has found memory leaks that Coverity failed to flag.
Meanwhile, I6 says that Coverity has great functionality when it comes to finding issues.

There is also the aspect of how often one gets warnings; if it is too often it might be
irritating, but if too seldom the tool might seem ineffective and not worth using. Regarding
Coverity, I2 says that when they started using the tool they did not discover many new issues;
meanwhile, I6 says that Coverity gives the largest amount of warnings, and the most useful
warnings, out of his team’s SCA tools.

69

5. User research results

The usefulness of the tools can then be put against the effort of configuration and con-
tinuous use. Multiple participants discuss the cost of the tool, as in the work effort needed;
time to research how to integrate it, long runtimes, and the effort to triage false positives,
are examples of this. I3 also mentions that Coverity costs a lot of money for Axis and that
the tool might not be worth that money.

The verdict - if developers find their SCA tools worth using or not - differs between
participants. Some definitely find the tools worth the irritation and effort. Meanwhile, I5
concludes his dislike for SCA tools with this: “I feel like they are not worth the work, like, since
they mostly complain about things that don’t matter that much. One has to put a lot of time into, like,
massaging them to not complain about little things. They won’t find any larger, more difficult problems
anyways.” As an in-between, I2 thinks that no SCA tool can work as a “silver bullet” that finds
all problems in the code. Instead, he would have preferred to have a set of different tools,
which might change over time, to make overall checks of the whole code base to and from.
He also says that using the tools more seldom, not as a part of the development workflow,
would decrease the workload.

Initiatives for changing SCA practices
Since not all developers are happy with the current SCA setup, or at least have opinions on
it, it is interesting to see what developers do in order to change the situation.

The commitment to improve SCA practices vary notably among interviewees, where the
participants that are generally more positive about SCA are also more engaged in changing
SCA practices and finding new SCA tools. For example, both I7 and I8 have introduced and
encouraged the use of new SCA tools within their team before. Meanwhile, the participants
with an overall negative attitude against SCA seem much less willing to research SCA tools
and to find other practices; to the participants’ knowledge, finding better SCA tools has
not been discussed in their teams. This might indicate both low motivation and a feeling of
hopelessness toward SCA. A notable exception, however, is I6’s team: They previously used
a SCA tool (Lint) which led to too many false positives and a high workload; they did not
only get rid of Lint, but also created a better repertoire of SCA tools.

There is also a middle ground: I1 expresses a wish that SCA tools were used more in his
team. About Coverity, he notes: “But for being able to use it more, one must get others to want to
use it. For if one forces someone to use it and they don’t like it, then I think it would be bad” (I1).

5.1.2 T2: Leaving feedback on SCA tool warnings
This section goes through theme T2, about developers’ thoughts on, and previous experiences
with, leaving feedback on SCA tools. Some participants seem positive to the idea of leaving
feedback on SCA warnings, for example, by noting if a warning was useful or not. However,
multiple factors weigh in on whether participants would appreciate a feedback system or not.

One aspect is how clearly and immediately the feedback has a positive effect on the sys-
tem, either so that the feedback-giver gets the benefit of a better tool, or at least some other
users profits from this. “If one has a suspicion that it [the feedback] only goes into a large database
and no one ever looks at it, it feels a bit thankless to send in that type of feedback. But if it actually
helps oneself or the reality gets better, then it’s more interesting” (I8). For example, I7 notes that

70

5.1 Interview findings

giving feedback on SCA warnings would be useful if the tool adapted immediately and in
the long term based on which warnings the user finds useful and not.

Similarly, I1 would be positive to a feedback system if it could show which warnings had
previously (also by others) been noted as false positives; this is another way in which the
collected feedback could assist users. I3 also mentions that he would want to have more SCA
statistics, both in general and on repository-specific problems. “Now it is pretty closed, one just
gets to know ‘here’s the error’, and one doesn’t get to know anything more” (I3).

In the same spirit, I2 suggests that it would be good to have something similar to Stack-
Overflow internally at the company, i.e., some sort of database with discussions and fix sug-
gestions for SCA warnings, perhaps also including finished modules of code; this would help
developers to quickly find solutions to problems, including SCA problems. However, there
were also some cautionary notes raised about displaying feedback such as SCA warning cate-
gorizations. I1, who still thinks this would be useful, to a degree, also notes that one may put
too much trust in previous feedback: “If someone has reported it as a false positive, then one thinks
‘alright, alright, it’s a false positive’, and then one ignores it.” I2 also notes that on forums such as
StackOverflow, not all information is correct, and one may question if it is the right type of
people that answers the questions; if having a system that displays SCA fix suggestions and
similar, one must think about the possibility that incorrect information is spread.

Meanwhile, I4 thinks it would be useful for a feedback system to mark warnings as not
helpful or as false positives, even if the developer might not be right in their assessment. That
way, the developer could then get answers back from other developers that it was wrong, the
thing could be discussed, and the developer would get to know what is correct instead of
remaining unsure.

Another important factor for the interviewees’ attitudes toward feedback systems is how
much work it would be for them to leave feedback; multiple participants mention that giving
feedback should not be too time-consuming. I5 thinks he would not like a feedback-leaving
system, since he already thinks that SCA tools are mostly in the way – leaving feedback on
warnings would just take even more of his time.

Notably, the interviewees that are less positive about SCA tools are also less positive
about leaving feedback on the system. I2 says that he would be positive to a feedback system
if it could solve the problems that his team has with a large number of false positives, but
since previous complaints have been raised about this without any action being taken, he
does not seem very hopeful that this will be the case. Overall, the participants, especially the
ones that dislike Coverity but still have the tool integrated into Gerrit, seem to feel that they
are not being listened to. This might be the reason for the common suspicion that feedback
will be collected without the results making any real difference, and may also be the cause
for some participants being disinterested in voicing more concerns or trying to improve the
situation.

Some participants mention already existing systems for giving feedback on specific SCA
tool warnings. For example, some know of the possibility in the Coverity UI to mark warnings
as false positives (and thus turn them off) and to leave comments on specific warnings. I6 uses
this frequently, though he does not seem to count it as a feedback system. I3, who cannot use
this function anymore because of withdrawn Coverity licenses, says it would be good to still
have this feature.

71

5. User research results

5.1.3 T3: Experiences and thoughts on competition
The competition culture at Axis was examined in order to see if game elements with compe-
tition aspects could be appreciated or not. This section goes through the results, as well as
participants’ thoughts on privacy issues in the context of gamification and competitions.

Competition culture
When asked if they enjoy competitions, around half of the interviewees are positive, while
others are mildly or strongly against it. Some claim that this is due to personal preferences
since they are simply not competitive people, while I3 says he appreciates competition in
general but not regarding work-related things. “[. . .] in the job I think that competing against each
other, it shouldn’t be competition, instead we .. . you are like a team that delivers a product, and then
one shouldn’t be like: ‘Ah, you have solved the most bugs this week”’(I3).

Currently, there seems to be little to no competition culture at Axis. When asked about
competitions at work, participants mainly mention happenings outside of work hours, such
as AW events, and smaller competitions that are not directly connected to work tasks. “We
have surely had something ’silly’, but no [laughs]. It is more like, what should this project be named, or
so. I can’t think of anything else” (I6). The Axis company culture, or the culture within specific
teams, might even be generally opposed to competition. I6 says: “We are very, very prestigeless
in our team,” and I5 says that he prefers finding ways to collaborate than to compete.

However, this is at least partly contradicted by the competition story of Advent of Code,
which was commonly brought up during the interviews, and which is described in Section
2.4.1. All interviewees had heard of Advent of Code and knew people who had participated,
and some interviewees had participated themselves. The general thought seems to be that
Advent of Code seems fun, but with the major caveat that it is difficult to find time for it
since it has to be done outside of working hours - some say they would be more inclined to
participate if it could be done during working hours. However, some (though not all) par-
ticipants’ appreciation of Advent of Code mainly seems to lie in the problem-solving aspect
rather than the competition element. I3, who participated once, mostly enjoyed discussing
the solutions with others and understanding different ways of to solve the problems.

Competition preferences
When it comes to which types of competition setups the participants would prefer (company-
wide, teams-wide, team-vs-team, or similar), the opinions also differ. Multiple participants
say they would enjoy competing within the team or as a team against other teams most; these
participants enjoy competitions more when they know the ones they compete against, or
together with. I1 notes that company-level competitions would be less personal and I4 thinks
it would be less motivating to compete against a lot of people, with a much smaller chance
of winning. Though, noteworthy, I5 would prefer competitions at an organizational level. “I
think it’s better as an individual on a company level and not within the team. I immediately become
scared that it would create tensions and so within the team. But it depends a lot of course on what
exactly it would be” (I5).

Some participants seem much more positive about the idea of team-vs-team competi-
tions, either because they enjoy collaboration, and/or because they would like to get more
contact with other teams. Some seem positive about the idea of using such competitions

72

5.1 Interview findings

(and intra-team competitions) as team-building activities, especially the collaboration fac-
tor. Others do not appreciate team-vs-team competitions and seem to think it would be
detrimental to team-building. “It leans toward a ’no’. It becomes a little ‘we against them’ feeling.
As I said before, we will still deliver the same product. One wants to be, like, ‘one’, a large group of
teams” (I3).

All interviewees care a lot about the purpose and goal of the competition, though in two
very different ways: Some highlight that they want the competition to regard only useful
things that encourage work efficiency and better practices - others do not want the compe-
titions to be work-related at all. As a voice of the first sentiment, I7 is not very drawn to
competition but is positive if it can motivate others to, for example, use SCA tools more;
though, he himself does not need further motivation. Also I6, who generally is against com-
petitions relating to work, says that team-vs-team competitions in using SCA tools might be
useful if they promoted good SCA practices by showing some teams that other teams work
successfully with for example Coverity. Meanwhile, other participants do not want compe-
titions to relate to work tasks. One reason for this is the risk to foster a more competitive
culture rather than a collaborative one. “But if one separates it from the normal product develop-
ment and says ’Today we’re going to have some kind of competition’, then I would have thought it was
fun” (I8). When it comes to Advent of Code, it seems to hit a middle ground between the two
views found in the interviews, that what is done during working hours should be relevant
for work, and that competitions should not relate to work-related tasks. “It’s very fun. A little
separated from work, but still related. So then it’s fine” (I3).

Concerns about competitions

Multiple participants also brought up more specific worries about how work-related compe-
titions can be difficult to set up, and can give unfair results.

One concern is that it can be difficult to measure relevant metrics, for example for sorting
a leaderboard - it could be easy for results to become misleading and unfair. This could be
especially true for larger competitions, involving multiple teams, because of the differences
in tool setup, work processes, and code bases. During the interviews, the example given by
the interviewer was of competing to get the highest number of solved bugs. This was met
with skepticism among most participants, partly because of the assumed difficulties to find
reliable metrics to compare participants. For example, as pointed out by I3, some bugs just
take longer to solve than others.

Further, there is a worry among some participants that competitions, when connected
to work-related tasks, could motivate wrong behaviors if the competition is poorly designed.
Developers may start to focus on optimizing work for the sake of the competition, and dis-
regard other important aspects, which could be detrimental to overall work efficiency and
results.

Another concern mentioned by multiple participants is that competitions can be stress-
ful. I6 notes, regarding Advent of Code: “It must not be so that one feels pressure to do it because
it’s part of the job. I think it’s more of a private thing that it’s fun” (I6).

73

5. User research results

Privacy and anonymity
Regarding anonymity, all participants say they are comfortable with sharing data such as
competition points. The Axis culture builds on openness, which has shown itself throughout
the interviews. I5 says that he is used to sharing all his data at work, thus it would not feel
bad to share some more. He notes that specifically, data about SCA interaction does not feel
that private, a view shared with multiple other participants. However, as noted by I6: “I think
you will find the whole scale on Axis, privacy and not privacy.”

Especially, participants say they have no problem with sharing data within the team.
When it comes to sharing on a company level, most are equally okay with this, while some
have minor concerns. I1 mentions, even though he would be a little less comfortable with
this type of data sharing: “But at the same time, then there would be so many numbers so no one
probably cares what one’s score is.”

However, some interviewees brought up the risk of competition data becoming a per-
formance indicator, which they often tied to the question about privacy and anonymity. I1
mention that others (though not him) might have concerns about privacy issues even for data
shared within the team if it could become a score of how much one contributes. I8 thinks
that this could be more of a concern when sharing data with the whole organization since
competitors might not know how the data was used and if it would affect one’s position at
Axis. “I don’t know the whole company as well [as I know my team] and I don’t have the same trust
that no one would think of basing salaries on some indicator”(I8). I8 is, however, still positive about
the idea of sharing such data with the whole company.

When it comes to avatars, as a way to achieve anonymity, there are arguments both for
and against them. I7 notes that avatars make it more difficult to get in contact with someone
if one has a question or similar. I8 says that anonymity might be more comfortable, but
also less motivating if one is motivated by the leaderboard. The participants are overall split
regarding if they would want to use the anonymity function or not. Some say they would
not use it, but that it is a good feature for those that feel more comfortable that way. I5,
meanwhile, thinks avatars would feel weird within the company: “If there is something that is
so sensitive, it’s probably better to not have it at all, I think. In practice it feels like it will surface
anyways, it’s a pretty small organization, after all.”

Multiple participants mentioned the importance of having leaderboards, or other similar
data sharing, as an opt-in-opt-out feature. As mentioned by I4, it is not guaranteed that
everyone, or himself, appreciates the competition and the publicity of the results at all times,
so there should be an option to opt-out in periods. “It’s a little weird if one is new at the job, and
is, like, last at the leaderboard. (Laughs.) Doesn’t feel that fun, perhaps” (I4).

5.1.4 T4: Motivation by work efficiency and work
results

Another overarching theme in the interviews, which was visible throughout all the different
interview sections, is the tendency of the participants to value work results and efficiency
over for example playfulness and fun. This is however mostly tied to the actual development
work, which the developers want as fricton-free as possible - the development itself, and
seeing the results of it, seems to be enough reward for their work to be motivating.

74

5.1 Interview findings

Prioritizing work efficiency and results
In general, developers seem hesitant to the idea of gamification. Participants seem to think
that their work, also regarding SCA tools, is already rewarding enough, without the need of
making it more fun or adding rewards. “Now the reward of the tools we use is perhaps to find
bugs. That, after all, has to be the primary reward” (I2). I2 notes that if the developer that puts
in the work feels like they do not get any reward for it, the used tool must be bad, and these
problems should be evaluated rather than adding gamification on top of it. This indicates
that he thinks development tasks should be, and often are, intrinsically motivating enough
by themselves. However, he agrees that this may not be the case for less motivating tasks such
as leaving feedback or crowd-sourcing information.

Also, participants often mention the importance of work efficiency and tools that are
quick and easy to use - for example, they do not want to do multiple clicks to reach the
information they need. Regarding giving feedback or viewing feedback on a separate page,
I5 says: “That becomes an additional [. . .] separate step that doesn’t really bring my work forward and
doesn’t do so that I can deliver results quicker.”

When it comes to prioritization of work results, this was often brought up when asking
participants about their views on competitions at work. Some mention they would be posi-
tive to competition if it could motivate people to increase the quality of the code; others, on
the contrary, are hesitant because they do not see a clear connection between their work and
competitions, indicating that they mainly want to do work-related things during working
hours, and are motivated by this. I6 says: “I don’t do it for ending up at some leaderboard, I do
it for us to deliver good things.” Still, this can be viewed against the fact that all participants
(of those asked this specific question) said they would appreciate Advent of Code more if it
could be done during working hours.

This theme is interesting seeing that some participants clearly are not intrinsically mo-
tivated enough to use SCA tools, to give feedback, or to try and improve the situation. Still,
all participants seem mainly motivated by work quality and efficiency. Those positive to
SCA tools say that their motivation for using SCA is the increased code quality - meanwhile,
those not using SCA seem to note no deterioration of quality, and instead are motivated by
efficiency to not use the tools.

Opinions about playful user interface
One finding that may be connected to work efficiency prioritization is that participants are
generally skeptical of the idea of a playful user interface in development tools. They mostly
want tools to be simple and easy to use, and think a playful user interface would be in the
way. I8 explicitly states that the dominating motivation in his work is to make the products
better, and thus a playful user interface would not motivate him more. I5 says that he probably
quickly would start to disregard the playfulness aspects of the tool. “I like GUI’s that quickly
give an overview and correct information, even if it’s not always the prettiest” (I5). This can also
be linked to the fact that multiple participants say they prefer to use the terminal as their
primary development tool.

Overall, the participants seem to want development and work tools to be serious and
professional and do not seem to see any purpose for a playful user interface. I4 says he wants
to be able to take a tool seriously, which he cannot truly do if it has a playful user interface.
As an example, he mentioned the Python formatting tool Black. “[Black] always gives some

75

5. User research results

emojis when something goes good or bad. It doesn’t always feel that serious with a tool that gives a
cake when you click on it. [. . .] It feels like it doesn’t really fit in” (I4). Others have similar views.
“It’s a little depending on how one does it, of course, but there is perhaps a limit where one thinks that
now it’s just silly. [. . .] One doesn’t want it to look like some kind of mobile game, with a lot of flashy
things” (I1). Both I1 and I5 label themselves as “rather boring” and think in general they would
not appreciate playful design.

When questioned if they would appreciate playfulness if it hypothetically did not hinder
work efficiency, for example if it resided on a separate page not connected to the development
setup, individual preferences differ. Some say they may appreciate it and probably would have
found it fun, others think they would be indifferent and not use visit this separate page often.
“It is more if one should present for someone else, then it’s useful. If it facilitates visualizing something
that can help people understand. But if it’s some funny pictures or something that should spread joy in
everyday life . . . I don’t think that part would be super important” (I2).

Still, some less direct evidence indicates a more playful culture at Axis. One example is the
team names at Axis, partly discussed with one participant. The team names are often more
playful than descriptive, for example, Skeletor and Hajpool, where high has been switched
for the Swedish haj, meaning shark. As mentioned earlier, I6 also noted that his team has had
some “silly” competitions, for example, to decide on project names.

5.2 Questionnaire findings
This section presents the results of the questionnaire, including employees’ Hexad player
types and feedback-giving preferences. A total of 63 answers were submitted.

5.2.1 Control variables
The control variables used in the questionnaire were sex, age, and tenure, and the results are
shown in Figure 5.2. Notably, almost all participants were male, thus we will not be able
to draw any conclusions from how results relate to sex. In terms of age, the distribution
roughly follows a bell curve, where the majority of participants fall between 26 and 50 years
of age, with 31–40 being the most represented age group. Regarding tenure (how long the
participants have worked in development, but not necessarily at Axis), the distribution was
more even. Developers with 10–20 years of experience were the most represented, while
developers with 20+ years were the least represented.

In the question about participants’ sex, an additional option “Other” was given, but since
no participants utilized this option, it is not shown in Figure 5.2a.

The control variables were used in the analysis of the questionnaire to see if there were
major differences between how groups answered the questions. No variations are displayed
in either of the following sections, as no major differences were found that could not be
explained by individual preferences and/or the sample sizes within different control variable
categories.

76

5.2 Questionnaire findings

(a) Sex distribution. (b) Age distribution. (c) Tenure distribution.

Figure 5.2: Distributions of control variable results from the questionnaire.

5.2.2 Hexad player types
The Hexad player types were first evaluated by calculating players’ primary player type, as
suggested by the creators of the framework [35], [37], and the data was then further examined
to give a more nuanced view.

Primary player types

Figure 5.3: Percentage of participants’
primary player types.

A user’s primary player type is defined as the
type for which they got the highest number
of points. The results of this are presented
in Figure 5.3. We introduced the follow-
ing additional terms: Dual, for participants
with two primary types (the same score on
two types), and Mixed, for participants with
three or more primary types.

The most common player type was
Achiever, with 39.7% participants belonging
to this type, and Philanthropist in second
place with 27.0%. The least common pri-
mary player types were Player with 3.2% and
Disruptor with 1.6%. Dual and Mixed types
consisted of 19.0% percent in total.

Group score distribution
Although the Hexad framework [37] only looks at primary player types, this may lead to a
loss of certain nuances, for example since a person’s primary player type may only be a single
point away from their secondary type. Therefore, we also present the raw data on player
scores at a group level. Figure 5.4a shows the absolute percentages of each player type, and
Figure 5.4b clarifies how the absolute scores relate to each other.

77

5. User research results

(a) Absolute percentages of the maximum
achievable score reached for each player type.

(b) Relative percentages between player-type
scores.

Figure 5.4: Player type scores at a group level.

Similar to the primary player type results, the Achiever and Philanthropist types are the
most represented. However, the raw data does not show such a clear distinction as for the
primary player types; participants at a group level score rather similarly for all player types,
and the Player and Disruptor types are no longer underrepresented. The differences in results
may be explained, at least in part, by the Dual and Mixed types being factored into this data.

Score variation
In order to further nuance the results, we also present data on the score variation between
participants within each player type. A larger score variation means that some participants
may strongly adhere to this player type while others do not at all relate to it, making the previ-
ously presented group average a less reliable metric for drawing conclusions about individual
preferences.

Figure 5.5 plots the respondents’ score variation for each player type. It shows that the
Philanthropist and Achiever types have relatively low variation among participants, while
the Player and Disruptor vary significantly more.

5.2.3 Feedback on SCA warnings
The following section contains the results of the third section of the questionnaire, regarding
developers’ motivation to leave feedback on SCA-tool warnings, which is given in the Ap-
pendix C; all the questions were answered on a 7-point Likert scale. Note that all questions
in this section were optional for respondents to answer, and the response rate varied between
questions (on average 60.4 respondents, with a minimum of 59 and a maximum of 61).

Note also that the results are often presented as the distribution between answers on the
Likert scale, where scores 1-3 are reported as “negative”, score 4 as “neutral”, and scores 5-7 as
“positive”. A group that is “more positive” than the average means it had a higher percentage
of participants belonging to the score group 5–7 but does not necessarily mean it had more
in the 1–3 group (this is analogously for “less positive”, “less negative”, and “more negative”).

78

5.2 Questionnaire findings

Figure 5.5: Score variation for each player type. The x-axis ranges
between the minimum possible score (4) and the maximum possible
score (28). The y-axis shows the number of participants that got a
certain score.

Motivation to view and leave feedback
The results regarding if users would like to leave feedback, and/or be able to see others’ feed-
back on SCA warnings, are presented in Figure 5.6. 52.5% of participants were positive about
giving feedback on SCA warnings, while 26.2% were not motivated to do this; 21.3% were
indifferent. When it comes to viewing feedback posted by others, developers were even more
inclined, with 70.0% being different levels of positive and only 16.7% being uninterested.

Figure 5.6: Motivations for leaving/seeing feedback on SCA tool
warnings, on a 7-point Likert scale.

Motivation for leaving different types of feedback
Figure 5.7 presents the results for developers’ motivations to give multiple-choice feedback
(e.g., marking a warning as a false positive), and text feedback (e.g., describing why a warning
is a false positive). Overall, developers seem more motivated to give multiple-choice feedback
(62.3% were positive to this), while the corresponding value for text feedback is lower, at

79

5. User research results

39.3%. Participants were also more often directly negative to text feedback than multiple-
choice feedback. In both cases, the indifference rate was 14.7%.

Figure 5.7: Motivations for leaving different kinds of feedback on
SCA-tool warnings, on a 7-point Likert scale.

Motivation by helping and improving
Respondents were asked about two possible motivators for giving feedback: the possibility
to help other users (without specification of how this would be done), and the possibility of
directly improving the system. The results are given in Figure 5.8. The vast majority of partic-
ipants reported that they would be more motivated to leave feedback both for helping other
users and for improving the system, with positive scores of 85.2% and 88.1%, respectively. No-
tably, more respondents felt very strongly about improving the system, in comparison with
how many felt very strongly about helping other users. Approximately 10% claimed they
would not become more motivated by these factors (9.8% regarding helping users, and 10.2%
regarding improving the system). 4.9% of participants were indifferent when it came to help-
ing other users, while only 1.7% felt indifferent regarding directly improving the system via
feedback.

Figure 5.8: Whether developers would be more motivated to leave
feedback depending on different factors, answered on a 7-point Lik-
ert scale.

Motivation depending on previous feedback
Respondents were also asked if they would feel more motivated to give feedback if there was
no previous feedback given, or if there was previous feedback either with a similar opinion
as their own or a different opinion from their own. As before, the example provided to

80

5.3 Conclusions of user research

the respondents was that they were noting whether a warning was a false positive or a true
positive.

The results are given in Figure 5.9. When it comes to leaving feedback with no previ-
ous feedback given on the topic, answers were only marginally positive and generally quite
distributed around indifferent values (49.2% positive, 27.9% negative, and 22.9% indifferent).
A quite similar result was given regarding the case where it existed previous feedback of the
same opinion as that of the developer, with varied results slightly similar to a normal distribu-
tion around the middle (38.3% positive, 35% negative, and 26.7% indifferent). Comparatively,
developers seem much more motivated to give feedback if there exists previous feedback of
differing opinions than there own (68.3% positive and 18.3% negative).

Figure 5.9: Whether developers would feel more motivated to give
feedback, depending on the previous status of provided feedback on
the topic. Answered on a 7-point Likert scale.

5.3 Conclusions of user research
The user research was conducted based on the goals listed in Section 3.2.1, which have all been
fulfilled and for which the results have been described above. This section lists some overall
conclusions from the user research which will guide our system design. All conclusions are
about developers at Axis and are not necessarily applicable to developers within a different
company culture.

• Opinions on SCA tools vary greatly between individuals and teams, mainly based on
repository-specific SCA problems and opinions on tool usefulness.

• Developers are irritated by multiple SCA usability issues, e.g., configuration problems,
false positives, and slow UI.

• Developers often ignore warnings they find not useful. Especially developers with a
dislike for some SCA tools often find ways to ignore or disable the whole tool.

• Most developers find SCA warnings generally easy to understand and fix, with the
exception of suspected false positives, which takes longer time to research.

• Developers already positive to SCA sometimes take the initiative to use more SCA
tools, while more negatively inclined developers generally do not take the initiative to
find better SCA tools, and instead prefer using no SCA tools.

81

5. User research results

• Most developers would like the option to turn off warnings in tools (which is often
already possible), though some acknowledge a risk with turning off useful warnings.

• The majority of developers would like to be able to give feedback on SCA-tool warn-
ings, and even more would like to be able to see others’ feedback. Seeing others’ feed-
back seems more appealing than giving feedback oneself.

• Developers are more motivated to leave multiple-choice feedback than text feedback.

• Developers are much more motivated to leave feedback if they feel like they are im-
proving the system or helping other users.

• Developers are more motivated to leave feedback if feedback already exists but is of a
different opinion than theirs.

• Developers highly value work efficiency and the quality of their work. They want their
setup to be efficient and serious, without extra steps needed to carry out their work.

• Developers’ opinions on competitions vary greatly; because of a common suspicion
against competitions, they must be well-designed, not used as a performance indicator,
and preferably be opt-in and opt-out.

• Developers enjoy challenges and problem-solving.

• Developers in general are willing to share gamification data and do not find this to be
sensitive data, though they acknowledge the value of anonymity for those that want to
have it.

• All different Hexad player types are well-represented among the developers, however,
people are more united about supporting the Achiever and Philanthropist roles, and
less united when it comes to Disruptors and Players. Socializers and Free spirits rank
somewhere in between this.

82

Chapter 6

System design

This chapter describes the final system design and the decisions (based on the previous liter-
ature review and user research) that led to this design.

The system’s main purpose is to provide a way for developers to give feedback on Cover-
ity, both on the general analyses and on specific warnings. By aiming for a suitable feedback
collection design, the goal was to make the system optimal for collecting as much user feed-
back as possible. Additionally, we designed gamification features that could be added to the
system, in order to examine if these would increase or in other ways affect the submitted
feedback.

6.1 Technical system design
This section presents an overview of the technical design of the feedback system, which con-
sists of many different components and communicating parts; Figure 6.1 gives an overview.
The main four system components are: a function added to a pre-submit Jenkins job, a Gerrit
plugin, an Elastic Stack database with Kibana visualizations, and a Confluence space for the
users to view the feedback results and game data.

6.1.1 Jenkins code
At Axis, all commits pushed to Gerrit will automatically trigger a pre-submit job that is run
in Jenkins. This job may, depending on the type of code in the repository and the commit, in-
clude running a Coverity analysis. In this already existing pre-submit job, written in Groovy,
we added a function that is triggered if a Coverity analysis has been run. The function sends
an SSH call to our Gerrit plugin, enclosing the result of the Coverity analysis and metadata
about the patchset.

83

6. System design

Figure 6.1: An overview of the components and data flow in the sys-
tem design. The clouds show the communication protocol between
parts.

6.1.2 Gerrit plugin
The Gerrit plugin is the central part of the feedback system and was deployed on the Axis
Gerrit site. It was written in Java and Javascript, using the LIT framework. It consists of a
frontend custom element that is added to the Gerrit UI (more details given in Section 6.2.1),
and a backend that handles gamification logic and connections to the Elastic database (via the
Java Elasticsearch API, which sends HTTP requests to the database). The plugin also includes
a REST API for frontend support and a command module that is accessible through SSH.

The plugin’s main functionality is to make it possible for developers to give feedback
on Coverity directly via Gerrit. The plugin adds a feedback section to all changes in Gerrit
for which a Coverity analysis has been run. The section holds some information about the
experiment (including a link to the Confluence page) and a feedback form. The form allows
the user to give general feedback on the Coverity analysis done on this patchset and feedback
on each Coverity issue if the analysis generated any issues. The user can also note if they found
any issues in the code that Coverity overlooked. Feedback can separately be given for each
patchset within the change since a Coverity analysis may be run for multiple patchsets. On
form submission, the plugin posts the feedback data (and calculates and posts gamification
data if the user is a gamification user) to the Elastic database.

The Jenkins pre-submit job calls the Gerrit plugin’s command module; when an SSH call
is received, the plugin posts the received patchset and Coverity analysis data to the Elastic
database. The reason for the plugin handling this task (rather than pushing the data directly
from the pre-submit job) is that this was implementation-wise easier than integrating an
Elastic connection into the Jenkins environment.

6.1.3 Elastic database
The database resides in an Elastic deployment exclusively used for this system. The deploy-
ment consists of multiple indices, storing general data, gamification user data, and metadata
for handling gamification tasks. Each index is shortly described below.

Patchsets stores data about the patchsets in Gerrit for which a Coverity analysis has been
run (for patchsets pushed during the feedback system deployment time). The data

84

6.2 Feedback interface design

consists of patchset metadata and Coverity analysis results, including any issues the
analysis might have flagged.

Feedback stores the feedback submitted by users.

Total-user-data stores the overall data for each gamification user: their points, achieved chal-
lenges, and count of submitted feedback forms. This is for the convenience of quickly
fetching user data.

Points is a more fine-grained store of gamification events: One entry is created each time
some points are awarded to a gamification user, also including data on why the points
were received. This is to allow more fine-grained data evaluation.

Challenges stores static metadata about the gamification challenges.

Milestones stores static metadata about the gamification milestones.

Cookies stores data about the cookie codes used in the gamification setting. For example, it
is noted for each cookie if it has been distributed to a user or not.

6.1.4 Confluence space
For providing info about the experiment and the results, as well as functioning as a game
dashboard, a Confluence space was created at the Axis Confluence server. The space was
made visible to all Axis employees, including all participants in the experiment, though some
pages were only visible to users in our gamification test group. In addition to an overview
front page, the space consists of three main parts: info pages, statistic pages, and a game
dashboard.

The info pages give the user information about this thesis, how the feedback data is col-
lected and handled, and the gamification game rules (which are supposed to be self-explanatory
but might not always be).

The statistic pages present data about the Coverity analysis runs, how much feedback has
been collected, and feedback results. This is presented in Kibana dashboards (created on the
Elastic deployment) that are included via iFrames. Additionally, the statistics pages present a
table that lists all Coverity issues discovered since the start of the feedback tool deployment.

The game dashboard is only visible to gamification users and is user-specific. It shows the
current viewers’ gamification data, including, for example, the user’s points, leaderboard po-
sition, and achieved challenges. This functionality is achieved by including Javascript scripts
directly on the Confluence page; the scripts fetch game data from the database and also do
minor database updates connected to the user’s cookie code management.

Confluence was chosen for these features, instead of hosting a separate web page, since its
use at Axis is already widespread. We wanted to reach developers in environments they were
already used to, in order for the system to seem more natural in the development workflow.

6.2 Feedback interface design
This section presents the interface designs for the feedback form in Gerrit and the feedback
displays on the Confluence space. We review the different UI components, present example

85

6. System design

Figure 6.2: Collapsed view of the Coverity feedback section in Ger-
rit.

figures, and refer back to the literature study and user research to motivate design choices.

6.2.1 Feedback form
The feedback form is the main frontend part of the Gerrit plugin. This section goes over all
the UI components of this interface.

Overview
The feedback form is added as a small section on relevant Gerrit change pages, in between
the Files and the Change Log section on the page. Similarly to items in the change log, the
feedback form is expandable when users click on its top part (buttons to open and close the
forms were also added for clarification). The feedback section is available on all changes
where at least one patchset has an existing Coverity analysis in our database.

An example of the collapsed feedback section is shown in Figure 6.2. When collapsed,
the section only displays a short status message, describing the Coverity analysis state of the
latest uploaded patchset. There are a number of different possible statuses: If no analysis
has (yet) been made on this patchset (but on earlier patchsets), if an analysis was run but
encountered an analysis error, or if there has been a Coverity analysis on the patchset and
feedback can be given.

Once the feedback section is expanded, the user is presented with some information, as
well as the actual feedback form. The feedback form consists of a general feedback section and
two sections for issue-specific feedback. Figure 6.3 gives an overview picture of the expanded
form.

If the Coverity analysis ran correctly, and the user has not previously submitted feedback
on the selected patchset, the feedback form will be visible immediately (as in Figure 6.3). At
the end of the form, there is a Submit button (see (7) in Figure 6.3); to submit a form, at least
one form value must be given – this could be any input, as long as the form is not empty.
Upon submission, the form will be hidden and exchanged for a button that allows the user
to submit additional feedback – pressing this button will re-open the feedback form.

Information
The first part of the expanded feedback section (see (1) in Figure 6.3) contains some informa-
tion for the user. It is noted that not all fields must be filled out to submit the form and that
any feedback provided will be visible (in an anonymous manner) on our Confluence page.
The link to the Confluence page is also included.

86

6.2 Feedback interface design

Figure 6.3: Detailed view of the expanded feedback form with all UI
elements marked.

87

6. System design

If the user is a gamification user and has saturated the number of points that can be
acquired by giving feedback on this specific change, an additional message is given here: (You
can still submit feedback on this change, but cannot get more points).

Patchset drop-down menu
Since Coverity analysis results, and the feedback on these results, are associated with a specific
patchset and not a whole change, we also added a drop-down menu where the chosen patchset
can be selected (see (2) in Figure 6.3). The drop-down is not connected to the similar drop-
down in the Files section of the Gerrit change page, since we wanted to keep all plugin UI
components close to each other, for clarity and consistency.

Next to the patchset drop-down menu, a status message is displayed (see (3) in Figure 6.3),
which is similar to the status message on the collapsed form but dependent on the analysis
state of the selected patchset instead of the newest patchset. The status shows the result of
the Coverity analysis and how many issues Coverity found (0 if no issues were found).

General feedback
The general feedback section (see (4) in Figure 6.3) is visible if the Coverity analysis passed
(no issues found) or failed (issues found). The purpose of the section is to gather data about
the general opinion of Coverity.

The first question (How happy are you with this Coverity analysis?) has two inputs. First,
three radio buttons ((4a) in Figure 6.3) for providing quick feedback about the overall sat-
isfaction of the analysis (Not happy, Neutral, Happy). Then, two free-text fields (4b, 4c) for
allowing more detailed positive and negative feedback about the analysis (What, if anything,
was good/bad with the analysis?). The second question (Did you find any issues in this patchset
that Coverity missed?) also has two inputs, consisting of two radio buttons (4d), and a hid-
den free-text field (4e) that is expanded if the user clicks the “Yes” alternative on the radio
buttons.

Issue-specific feedback
If Coverity found issues for the patchset viewed in Gerrit, the feedback form shows a section
for each issue, where issue-specific feedback can be given. The issues are organized into two
categories: issues local to this change and issues that were present in the git already before
the patchset (see (5) and (6) in Figure 6.3). This categorization was made to give the user
a better overview, and because the issue types differ regarding the amount of information
available from the Coverity analysis. All issues are described by the file, function, and line
they occurred in, as well as the checker name (e.g., BAD_FREE) (see (5a) and (6a) in Figure
6.3), and more information is displayed for local issues (see (5a)). The issue hyperlinks go to
an HTML page containing the Coverity analysis stack trace for the relevant issue. This page
is already presented in other places connected to Coverity analysis results and is thus already
well-known to users.

For each issue, the user can give feedback via multiple inputs. First, there are three radio
buttons ((5b) and (6b) in Figure6.3), for providing quick feedback on whether the issue was
helpful (Not helpful, Neutral, Helpful). Then, there are multiple-choice buttons (5c, 6c) for

88

6.2 Feedback interface design

tagging the issue with different categories. There is also a hidden free-text field (6e) where
more detailed feedback can be added. This field is displayed if the user clicks on a text prompt
(5d, 6d).

The options for the multiple-choice buttons were selected by combining common cri-
tiques on issues found in SCA tool literature and our user research. The complete list of
options and the tooltips visible when hovering the checkbox text are presented below. See
also (5c) and (6c) in Figure 6.3.

Difficult to understand. This issue was difficult to understand.

Unclear how to solve. This issue did not make it clear how to solve it.

Too frequent. I see this issue too frequently.

False positive. This issue seems like a false positive.

Will fix. I will fix/have fixed this issue.

Will not fix. I will not fix this issue.

Relevant. This issue is relevant for code improvement.

Not relevant. This issue is not relevant due to code specifics.

6.2.2 Design motivations
This section expands on and motivates some design choices that were made regarding the
feedback interface.

Functional decisions
The perhaps most important decision about the feedback form was the integration point,
as we wanted to be as close to the user’s working environment as possible, without being
intrusive in the development workflow or setup. The feedback research presented in Section
4.2 also suggests that it is important to keep the feedback functionality close to the users and
provide the possibility to leave feedback online while using the application in question.

Both multiple-choice and full-text feedback options were included in the form. Accord-
ing to our user research, developers often feel more motivated to provide multiple-choice
feedback, and this also gives easier data to process. Meanwhile, full-text feedback allows
more exact insights. Literature on feedback collection (see Section 4.2) also noted that using
both qualitative and quantitative feedback may be the most popular among users. One study
also suggested hiding things like text fields if the user is likely to not have an opinion about
the question, which we also took into consideration.

89

6. System design

Usability decisions
As suggested by research (see Section 4.2), users may be disturbed if the request for feed-
back interrupts their workflow, or they are prompted too often; our feedback form is always
available and accessible but collapsed in order to be as non-intrusive as possible. Users do
not get prompted to give feedback but are rather reminded of the possibility when they see
the collapsed feedback section in Gerrit. This mitigates two of the major usability problems
with feedback requests. Notably, a trade-off we made is that users may overlook the feedback
form if they only look quickly at the Gerrit change page, as the collapsed form is designed to
mimic the Gerrit UI design.

Some of the feedback elements are hidden and expandable, namely the issue-specific full-
text field (see (6e) in Figure 6.3) and the full-text field for reporting missed issues (4e). This
can be argued to save visual space, in order to not overwhelm the user - in the event of many
displayed issues, having a full-text field for each one may make the form look cluttered and
tedious to fill in. Based on our user research, users were also not considered likely to often
find missed issues and want to elaborate on these in text. This is why these specific fields,
and no others, were hidden. However, this is also a trade-off with the risk that interested
users may not find the hidden fields.

Research also suggests that users may become less motivated to give feedback if the per-
ceived effort of giving feedback is high. This was one of our reasons for hiding some fields, to
make the form look more doable. The same insight also motivates the decision to not require
the user to fill in all fields, so that users can submit a form with as many or as few filled-in
fields as they want. The aim of this was to lower the users’ threshold to give feedback. A
possible risk is that users may not understand this (though stated in the information at the
top of the feedback form), and then still become unmotivated by the length of the form.

Aesthetic decisions
The feedback form is designed to fit into the general Gerrit design. Gerrit usually incorpo-
rates colors into their design: Green for good, gray for neutral, and red for bad, e.g., when
voting for the Code-Review task, where -2 and -1 have red buttons, 0 has gray, and +1 and +2
have green. This color scheme was followed in our feedback forms’ radio buttons, as shown
in Figure 6.4.

Red may also signal to the user that something requires their attention. This is used in
the info text on the collapsed feedback form: The text is red if the Coverity analysis has been
completed and feedback can be given, gray if no feedback can be given for the latest patchset,
and green if the user has already provided feedback on the latest patchset.

6.2.3 Statistics in Confluence
The collected feedback, together with other data, could be viewed by users on the Conflu-
ence space’s statistics pages, namely on the pages Feedback results and Feedback statistics. These
pages each showcased one Kibana dashboard which gave an overview of the collected feed-
back (feedback results) and metadata about the feedback collection (feedback statistics). All
statistics and data were given in an anonymous way but could be filtered on repository and
other values. A small part of the feedback results dashboard is shown as an example in Figure

90

6.2 Feedback interface design

Figure 6.4: The general feedback section of the form, with example
input values.

Figure 6.5: A small part of the dashboard on the Confluence feed-
back results page. The data shown is not relevant to the final results.

6.5.
The reason for displaying the feedback in this manner was that our user research suggests

that developers are more likely to give feedback if feedback already exists, especially if it is
of a different opinion than theirs. The showcased feedback may be of the same or differing
opinion to an individual developer, but the idea is still that it may encourage the developer
to give feedback. Here, users can also see if there is not yet any existing feedback on a spe-
cific topic, for example, their team’s repository - this, according to user research, might also
increase some users’ motivation to give feedback (though it may decrease others).

Another finding of the user research is that developers are much more motivated to leave
feedback if they feel like they are improving the system, or helping other users. While we
could not directly manipulate the system based on feedback (such as by turning off warnings
that are marked as false positives), we aimed to showcase that the feedback was listened to
and may be of interest to others, by making it visible at least on the Confluence space.

Showing the feedback results in this direct manner might be uncomfortable for some po-
tential feedback givers, even though the data is not mapped to their identity. We chose to still
do it in this way based on previously mentioned reasons, and because the user research shows
that developers at Axis generally are not overly concerned with data privacy and anonymity.
However, importantly, this assumption is based on discussions in interviews around sharing

91

6. System design

game data, such as points, and not feedback results, which may or may not be perceived as
more sensitive data.

6.3 Game design
The game design consists of a few game elements, which are handled by the Gerrit plugin and
Elastic database, and displayed to users on the Confluence space game dashboard (and partly
in the Gerrit UI). Information about the game and game rules are provided to users via the
Confluence plugin information pages, but the aim was for the game to be self-explanatory,
so that information would only be sought out by curious users.

This section describes the used game elements and game rules and motivates the design
decisions based on our previous literature review and user research.

6.3.1 Game elements
This section lists and describes the included game elements (both high-level and low-level),
and motivates choosing these elements. To provide a clearer view of the design, examples
from the Confluence game dashboard and the Gerrit UI are also given where applicable.

One consideration for the choice of game elements was the distribution of Hexad player
types among the intended users (see Section 5.2.2). Note however that gamification literature
(see Section 4.3) recommends including game elements that cater to players of different types,
also minority types. Additionally, our user research shows that Axis developers overall (in
absolute values) have similar scores for all Hexad player types. Because of this, we chose to
include a set of game elements that may appeal to all different Hexad types. Still, as found in
our user research, the highest-ranking player types were the Achiever and Philantropist types;
they also had the overall highest score percentages and the least variation between scores.
Thus, we especially wanted to include elements that catered to these types. Regarding the
Player and Disruptor types, even though they had quite high overall scores, they still ranked
lowest both overall and as primary player types, and had significant score variation among
participants. Hence, developers might strongly agree or strongly disagree with a design made
for Players or Disruptors, which made us careful with including elements only suitable for
these types.

Some of the used game elements were more prevalent in the design than others, partly
mirrored in the order they are presented in the list below.

Points are the backbone of the game design. A user gets points by submitting feedback in
the Gerrit form. Points were used since this is a simple metric for users to keep track
of, especially if they have only little interest in gamification and do not want to engage
in any other game elements - points are also easy to structure other game elements
around and were thus difficult to avoid including in the game design. Note however
that points are mainly recommended for the Player Hexad type.

Milestones are reached when the user gets a certain number of points. In total, there were
three milestones in our design, and after each reached milestone the user got an ex-
trinsic reward. This may be argued to be similar to the game element Levels, which are
recommended for both the Achiever and Player player types.

92

6.3 Game design

Figure 6.6: An example of the overview game metrics displayed to
users on the Confluence game dashboard, including the progress bar
and the cookie code display.

Figure 6.7: An example view of upcoming and achieved challenges
for a user, at the Confluence game dashboard.

Visible progress was incorporated by displaying a progress bar on the Confluence game dash-
board, showing the user their progress toward reaching the next milestone. Progress is
also shown in other ways at the game dashboard, for example by displaying the user’s
number of achieved challenges. How the progress bar looks at the game dashboard is
illustrated in Figure 6.6. Though not mentioned in the Hexad framework, we theorize
that visible progress may be appreciated at least by the Achiever player type.

Challenges were included as a list of nine “tasks” for the user to achieve, all connected to giv-
ing feedback in Gerrit. When the user achieved a challenge, extra points were awarded
(the number of points was challenge-dependent). The challenges were presented at the
Confluence space, in two separate lists of upcoming and achieved challenges, see Fig-
ure 6.7 for an example of this view. In order to not overwhelm the user and to present
a clearer overview of the UI, only a few (three) challenges were visible in the Your next
challenges list, unless the More button was pressed.

Notably, according to the definition in Section 4.3.3, these tasks are more similar to
quests than challenges (since they are performed without competition or time pres-
sure), and we named them Challenges only for design purposes.

93

6. System design

Challenges (and quests) are a suggested game element for the Achiever, Player, Free
spirit, and Disruptor player types (though Disruptors might specifically like more com-
petitive challenges).

Challenges were also included based on the finding in our user research that developers
at Axis generally seem to enjoy challenges and problem-solving, for example showcased
by the interest taken in Advent of Code. Also in literature (see Section 4.3), Do et
al. [60] recommend focusing gamification solutions (especially regarding SCA tools)
on problem-solving. However, it was difficult to design problem-solving challenges for
feedback collecting, and we settled for a middle ground of challenges that were quite
simple in nature. They were, however, also a way to communicate the next possible
steps for users and to set up clear goals in the game.

Immediate and continuous feedback was utilized in the Gerrit plugin for showing the user
when it made progress. Immediately on form submission, the user was presented with a
small popup in Gerrit, describing the number of points won, as well as if any challenges
or milestones had been achieved. This was done in Gerrit in order to give feedback very
visibly and closely to the time of the actual achievement, instead of forcing the user
to go to the Confluence space to see the points update. An example of the popup
appearance is given in Figure 6.8.

Extrinsic rewards were given to a user after each reached milestone. This was in the form of
cookie codes, which were redeemable at a café in one of the main Axis buildings, for a
cookie or protein bar or similar within a price range. We choose this type of reward
since it would likely be in accordance with many participants’ tastes, as they could
choose themselves from the café, and because it was possible for us to get a budget for
it. The idea was also that this type of relaxed reward might lead away from any idea that
the gamification was connected to work rewards or used as some sort of performance
indicator, as worries about this were expressed during our user research.

The cookie codes consisted of randomized short phrases from a list of words on an-
imals, colors, baked goods, and positive words. Examples are “candy-kangaroo” and
“carrot-cake-nicer”. See Figure 6.6 for an example of how cookie codes were displayed
to users on the Confluence game dashboard.

Competition (Leaderboard) was incorporated at the Confluence space, based on the num-
ber of points the users had achieved, i.e., how much feedback they had provided. The
leaderboard was anonymous and of the no-disincentive type, only showing the user’s
overall position on the board and the number of points needed to climb up one po-
sition (see Figure 6.9). The final five highest-ranking users on the leaderboard were
promised a reward given after the completion of this project.

Social competition (which may be achieved if players, for example, compare leader-
board positions with teammates) is recommended for the Socializer, Player, and Dis-
ruptor Hexad player types; Disruptors are also likely to appreciate leaderboards. How-
ever, it was found during our user research that developers’ opinions on competition
vary greatly, often because of suspicion against performance indicators and against
fostering a less collaborative culture. Preferably, a leaderboard should be opt-in and
opt-out; instead, we choose to make it anonymous in order to not distress some users
who may not appreciate the competition functionality.

94

6.3 Game design

Figure 6.8: An example of the confirmation alert in Gerrit received
after submitting a feedback form.

Figure 6.9: An example of the simple leaderboard on the Confluence
game dashboard.

Progressive difficulty was lightly incorporated by the milestones becoming more and more
difficult to reach (by increasing the needed points between milestones), and by the first
displayed challenges being very easy to achieve while later ones may be harder. This
was done in order to keep players interested in the game for a longer period of time.

Gifting could be said to be included as a game element since the cookie code rewards were
not personal and therefore could be gifted to anyone else, e.g., other users. This possi-
bility was also noted in the Confluence information pages for clarity. Gifting is a game
element especially suited for Philanthropists.

Social graphs were included in a way by showing the general feedback statistics, and Cover-
ity analysis results in the Confluence statistics pages (described more in Section 6.2.3).
This showed feedback progress overall and provided possible filtering on a repository
and similar. This could be said to adhere to “Social comparison and discovery”, which
is recommended for the Socializer and Player player type. However, since these statis-
tics were visible to all users, including control group users, they can be argued to not
count as a game element.

Overall, it can be noted that no visually playful user interface was included, with the excep-
tion of the cookie emojis used in connection to the cookie codes. This was because of the
user research finding that developers at Axis in general want their setup to be efficient and
serious. However, because of other indications of some playfulness in the company culture
(such as playful team names), playfulness was instead achieved in the design at least partly
by using more playful challenge names and cookie code names. The yellow and orange color
palette was mainly chosen in order to have an Axis-themed layout.

6.3.2 Game rules
The rules of the gamification system were defined in an attempt to make the game as fair
and enjoyable as possible. The rules were aimed to be self-explanatory (or in some cases,
not necessary for the user to know about) but were also presented to curious users on the

95

6. System design

Confluence information pages. Multiple rules are explained above in connection with the
respective game elements, while the other overall game rules are listed below.

• For each submitted feedback form, a number of points were rewarded based on the
number and type of the answered questions in the form. Two points were given for a
full-text answer, and one point for answering a radio button or checkbox question.

• There was a max limit on the number of points a user could get from giving feedback on
the same change (i.e., a collection of patchsets). This was done for fairness since some
developers might push 100 patchsets on a change, resulting in many more feedback
opinions than the developer that pushes only two patchsets with more careful changes.
When the point limit was reached, this was displayed for the user in the feedback
form as a disclaimer. However, users could always get challenge points by achieving a
challenge, even if the challenge was achieved by giving feedback on a change where the
point limit had been reached.

• There were only three milestones, and thus only three cookies could be won per user;
this was decided in order to not exceed our budget. However, after achieving the last
milestone, users could still get more points and climb on the leaderboard.

6.3.3 Moral and ethical principles
As recommended by gamification literature (see Section 4.3), we also formulated some ethical
values to adhere to in our gamification design. These are listed and evaluated below.

• The ultimate, long-term goal of the system should be to improve work satisfaction
among the users, not solely to reach business purposes. This could, for example, be a
risk if the feedback was only collected for use in future price negotiations when buying
SCA tool licenses, which might lead the users to feel manipulated and “used”. However,
the Axis goal of wanting feedback is to improve the SCA tool use at Axis for higher
developer satisfaction since the tools are not likely to be used if developers are not
satisfied. We aimed to make this goal clear to the users via the Confluence information
pages.

• The gamification setting should not take unfair advantage of the users by making them
do actions they do not want to or that are outside their work description. For example,
we did not enable developers to rate each other’s feedback (which may be uncomfort-
able to some) and did not include challenges that would encourage developers to do
things such as work during the night.

• The gamification setting should not decrease the users’ autonomy. All actions should
still be, and be perceived to be, the users’ choice and not forced upon them by the need
for rewards or similar.

• No sensitive data (as defined by GDPR) about the users should be collected or used in
the game design.

96

6.3 Game design

• The data usage should be mandated by a data usage policy, both for transparency and
to hinder possible later improper use of the data. Information on how the data was
used, and allowed to be used, was included in the information pages in the Confluence
space.

• The data should not be used or evaluated for any purpose outside of the original gam-
ification setting; for example, there should be no work-related reward/penalization
out-of-game.

• All gamification aspects should be opt-out, and this should clearly be stated so that
users know the possibility, and how-to, of opting out. Competition elements should
also be opt-in. This was not implemented, but the overall design of the gamification
was made so that a user can choose not to participate simply by taking no action and
not visiting the Confluence space. Notably, gamification users cannot opt out of seeing
the Gerrit popup when submitting feedback, but we did not regard this as a major issue.

97

6. System design

98

Chapter 7

System evaluation results

In this chapter, we present the results of our feedback system after it was deployed for 14 days,
with and without gamification. The aim of the experiment was to answer RQ5 (When evalu-
ated at Axis Communications, does gamification increase interest and engagement for giving feedback
on static analysis tools?), by use of the metrics introduced in Section 3.4.4: user engagement,
motivation, and satisfaction.

This chapter starts with an overview of some general statistics from the experiment.
Then, user engagement with the system is examined, and results are compared for the gam-
ification group and control group; this is followed by similar evaluations of user motivation
and satisfaction, though these metrics are based mostly on the follow-up chat interview find-
ings. At the end of the chapter, there is a brief overview of the results from the feedback
acquisition, i.e., the content of the feedback users gave on Coverity.

Similar to the interview participants, all chat interview respondents used he/him pro-
nouns; for simplicity, these will thus be used when referring to participants throughout this
section. Participants will also be referred to by their respective participant IDs, as listed in
Table 3.2.

7.1 General statistics
At the end of the system deployment, a total number of 3317 patchsets with Coverity analysis
results had been stored in the Elastic database (note that the gathering of patchsets started
three days prior to the deployment of the feedback system). Of the stored patchsets, 1657
patchsets had complete Coverity analyses. The rest of the patchsets’ analyses did not produce
any results, for example, if the uploaded files were not C or C++ files, or if there was an internal
analysis error. Of the analyzed patchsets, 1469 had passed the analysis without any issues, and
188 had failed. In the failed analyses, in total 1164 Coverity issues were flagged.

This means that on average, there were 0.702 issues per patchset with a completed anal-
ysis, and on the failed analysis patchsets (with at least one issue), there was a median of three

99

7. System evaluation results

issues. Most reported issues originated in C code, some in C++ code. Notably, some (but few)
patchsets got a large number of warnings, with the maximum number being 47 warnings.
When looking over the type of flagged issues, it is evident (as found also during our user
research) that there is mainly a small group of warnings that are triggered a lot of times. For
example, warnings about unchecked return statements were produced a total of 249 times.

7.2 User engagement
In this section, we present different ways to measure user engagement in the feedback sys-
tem, by derivation from implicit data of the interaction between users and various parts
of the system (the feedback form, the game elements, and the Confluence space), and by
adding complementary insights from the chat interviews. For all relevant engagement statis-
tics, comparisons are also made between the gamification and control groups.

Notably, user engagement is difficult to measure for a number of reasons. First, we assume
test group sizes (929 users: 464 gamification users and 465 control group users) based on
the active number of Gerrit users during the three months prior to deployment, while the
effective groups of relevant users may be considerably smaller. As explained in Section 3.4.2,
the effective user groups can be said to be 302 users: 139 gamification users and 163 control
group users. Second, three days of patchsets analyses were generated before the feedback
system was deployed, during which users could not engage with the data, meaning that there
at deployment time existed a “buffer” of previous entries to engage with. Third, any user
could engage with any feedback form, making it difficult to say how many users (code owners,
reviewers, and others) actually saw the feedback form, versus the ones that interacted with it.
These factors lead to user engagement percentages being difficult to interpret, however, the
more important measure is the comparison between the control group and the gamification
group.

7.2.1 Feedback form
User engagement with the feedback form can be measured in multiple ways: the number of
forms submitted, the number of active users (who submitted at least one form), the quality
and completeness of submitted feedback, and more. Following subsections evaluate these
metrics in order to give a nuanced picture of user engagement with the feedback system,
looking at all relevant values separately for the gamification group and the control group.

Amount of collected feedback
The total number of submitted feedback forms was 66; 47 by the gamification group and 19 by
the control group - i.e., gamification users left 147% more feedback than control group users.
The feedback was given on 65 patchsets, which can be compared to the mentioned amount
of patchsets possible to give feedback on: 1657. This means that 3.92% of the feedback forms
saw any submit engagement. Because of previously discussed difficulties, it is not trivial to
say whether this engagement percentage is high or low; more importantly, a difference can
clearly be seen between the two groups.

100

7.2 User engagement

Figure 7.1: Accumulation of total submitted feedback forms over
time, for both test groups.

Figure 7.1 shows how the submission of feedback forms grew over time both for the con-
trol group and the gamification group. This shows some interesting patterns. First, the long
cease of submitted forms between days 4 and 8, and days 11 and 13, can be explained by the
weekends and public holidays that occurred during these periods. The later sudden spike
may be due to developers returning to work, and/or being influenced by the reminder email
that was sent out after nine days of deployment (see Section 3.4.3 for details). Interestingly,
this spike of engagement mainly originates from gamification users, perhaps since these users
realized from the announcements that there were cookies to be acquired, or just got inter-
ested in the game features. Also, the spike on day eleven can be explained by the fact that
the follow-up interviews took place at this time. Though both game users and control group
users answered our questions, multiple of the asked game users (and no control users) seem
to have taken a new interest in submitting feedback and thus did this after answering our
questions.

Number of active users
For analyzing the engagement data and understanding user behavior, it is also important to
check the number of active users in the two groups. Here, we define an active user as a user
that submitted at least one feedback form (though there were other ways of being active, such
as visiting the Confluence space).

In total, there were 30 active users, which is equal to 3.23% of our intended test group (and
9.93% of the approximated effective test group). Of the active users, 13 were control group
users and 17 were gamification users. Thus, it seems like gamification did not encourage
significantly more users to participate, but rather encouraged the participating users (those
that already made the decision to submit feedback) to engage more. However, if looking at
the approximated effective user groups (consisting of 139 gamification users and 163 control
group users), the percentages of active users were 7.98% for the control group and 12.2% for

101

7. System evaluation results

Figure 7.2: Number of forms that active users submitted in both user
groups.

the gamification group, which indicates a difference that may not only have been due to
individual user choices.

On average, an active control group user submitted 1.46 forms, while an active gamifi-
cation user on average submitted 2.76 forms. However, these numbers may be heavily influ-
enced by individual user behavior. For a more detailed view of how many users submitted
different numbers of feedback forms, see Figure 7.2. The chart shows that almost all active
users only submitted one form, while there are some clear outliers: notably, one gamification
user submitted 18 feedback forms.

It is also interesting to note the time periods of individual user engagement behavior:
when did the active users first submit feedback, and did individual users give feedback during
brief periods of engagement or over a longer time? Of the active control group participants,
the mean days of engagement (between the first and last submitted feedback form, where
users with only one form are counted as having one day of engagement), was 2.15 days. For
game users, the same number was 3.00 days. Figure 7.3 presents a more detailed view of
active users’ engagement over time. New users from the gamification group submitted their
first feedback form throughout the entire test time (with the exception of the holiday in the
middle). In the control group, new users engaged in the system mainly at the beginning of
the test time and after the reminder email (day nine). As can be seen, more gamification
users than control group users show prolonged, recurring engagement. Also, short and more
intense engagements (leaving multiple forms in one day), mainly occurred in the gamification
group, though also a few users in the control group submitted up to three forms on their first
day.

As previously discussed, it is likely that many users in our original test group (as compared
to the effective test groups) were not active in the feedback system since they do not use
Coverity in their repositories. This was confirmed by the chat interview findings; multiple
interviewees noted this as a reason for feeling that there was no purpose for them to give
feedback. P3 said that the little code he is responsible for is not relevant to Coverity, and P10

102

7.2 User engagement

Figure 7.3: The feedback submit-history of all active users; an in-
dividual’s statistics are connected by lines. Larger dots symbolize
overlapping dots.

does not use Coverity much at all. P5 said that without any failed Coverity analyses for his
code, it did not feel meaningful to provide feedback, which shows that also Coverity-using
members of our test group may have felt that there was nothing for them to give feedback
on.

Engagement per repository
It is also interesting to compare the number of submitted feedback forms per repository,
since this may indicate higher user engagement from users from certain code bases, for ex-
ample where Coverity is especially appreciated or disliked. Note, however, that there may be
multiple different reasons for discrepancies between repositories. First, it varies how many
patchsets are uploaded and analyzed within a given time frame, and how probable it is to
get Coverity issues – consequently, it varies how many patchsets and issues there are to give
feedback on. Also, different repositories are maintained and visited in Gerrit by different
amounts of active developers such as reviewers, thus changing the likelihood that one of
these will provide feedback.

Of the total 66 submitted feedback forms, 38 repositories were involved. In Figure 7.4,
the number of feedback forms per repository is shown, as well as the connections to the
number of unique feedback givers on the repository. It is also shown how many patchsets
were possible to give feedback on per repository (repositories with no submitted forms are
not plotted). As shown, there was usually a relatively large amount of available feedback
forms compared to the number of submitted forms. Though some repositories had only a
small amount of available feedback forms, meaning that some active users might have given
more feedback if there were more possibilities in their repositories. This may also be the case
for users in repositories with a lot of available forms, as not all users will have insight into all
changes in a whole repository.

The mean number of submitted feedback forms per repository, if only counting reposito-
ries with at least one submitted form, was 1.74. As also shown in Figure 7.4, most repositories
only got one form submitted, while the most active repository had 8 submitted forms by 4
unique feedback givers. This shows that some repositories had a lot more user engagement,
which did not only depend on individual developers.

103

7. System evaluation results

Figure 7.4: Number of submitted forms, unique feedback givers, and
available forms, for all relevant repositories. Each dot represents a
repository; overlapping dots are shown with larger dot sizes.

Figure 7.5: The number of forms submitted by different feedback-
giver roles, for both test groups.

Types of feedback givers

Another way to examine user engagement behavior is to study which types of developers pro-
vided the most feedback. In our data, each feedback giver was assigned a role based on their
Gerrit relationship with the patchset they gave feedback on. The roles were as follows: owner,
reviewer, uploader-reviewer, and other, where “other” had none of the previously listed re-
lations to the patchset. Figure 7.5 shows the division between feedback forms submitted by
these roles and the differences between the gamification group and the control group. As
seen, most feedback givers were code owners, which was expected since these are most likely
to know enough about the analyzed code to easily give meaningful feedback. Still, a substan-
tial amount of the feedback givers left feedback on patchsets they were only reviewers for.
Also, notably, only gamification users left feedback on patchsets where they had no connec-
tion (at least not as owner, uploader, or reviewer). A theory is that these feedback givers went
the extra mile to give feedback for the sake of the game features, perhaps when they had no
more available forms in changes for which they were code owners or reviewers.

104

7.2 User engagement

Figure 7.6: Distribution of total form completeness, for both test
groups. Note that the bars are stacked.

Form completeness
In order to analyze user engagement in a more fine-grained manner, the completeness and
quality of the collected feedback can be studied. Since feedback forms could be submitted
even if they contained only one filled-in field, the completeness of the collected feedback
forms may vary greatly. We define completeness here as the percentage of questions answered
in the form - note however that different forms had different numbers of questions, based
on the number of discovered Coverity issues.

The distribution of submission completeness is displayed in Figure 7.6. We found that
forms were on average 51.5% complete; 53.89% for the control group and 50.53% for the gam-
ification group, i.e., very similar values in the two groups. As seen in the figure, almost all
forms filled in around 50%, and there is no obvious difference between gamification users
and control group users.

Notably, there can be many different reasons for a form to be more or less filled in. A less
filled-in form must not always mean lower user engagement per se: it is possible that users
sometimes have nothing to say on different values. For example, we provided text boxes both
for negative and positive things about Coverity, while a user perhaps only felt positively or
negatively toward the analysis.

How much the forms are filled in likely also depends on the type of questions. The com-
pleteness percentages for multiple choice questions, vs full-text questions, are shown in Figure
7.7. This clearly shows, as also previously indicated by our user research (which measured mo-
tivation), that users are more easily engaged by multiple-choice questions. All these questions
are usually answered in the forms, while full-text answers are much more rare.

Note also that the completeness of forms means slightly different things between forms
where Coverity passed (and thus no issues existed in the form) and where Coverity failed
since the latter will contain one or multiple issues to fill in except the general values. This
may be one explanation for the outliers in our completeness scores. A theory for the overall
completeness score being around 50% is that the forms regarding passed Coverity analyses
most often were only given multiple choice answers, which in this case (almost always) con-
stituted 50% of the form.

105

7. System evaluation results

Figure 7.7: Distribution of completeness types for multiple choice
and full-text answers, respectively, and for both test groups. Note
that the bars are stacked.

Figure 7.8: Distribution of issue completeness in submitted forms;
in total, for local issues, and for non-local issues.

Issue feedback

Of the 1164 discovered issues, 48 unique issues received feedback at least once, i.e., 4.12%.
In the submitted forms, there were in total 82 opportunities to give feedback on issues; 48
of these issues were in any way given feedback on, i.e., 58.5%, showing that users often had
opinions on specific issues.

To get further insight, we examine the issue completeness of all submitted feedback
forms, defined here as the percentage of filled-in form fields specifically for issues, vs. not-
filled-in fields. In the 12 submitted forms that contained Coverity issues, the average issue
completeness was 43.2%. When splitting between local issues and non-local issues, the issue
completeness change to 57.0% and 34.2%, respectively. This is demonstrated in Figure 7.8.
The data indicates that developers are more prone to filling in fields about local issues, i.e.,
issues introduced by the relevant patchset. This may support a finding made in our literature
review (see Section 4.2), namely that developers prioritize issues that are relevant to their
own code.

106

7.2 User engagement

Figure 7.9: The distribution of acquired points among active gami-
fication users.

7.2.2 Game elements
As a part of evaluating the efficacy of the gamification design, users’ interaction with different
game elements can be measured. This section looks into four of the main game elements in
the feedback system: points, milestones (tightly coupled with extrinsic rewards), challenges,
and the leaderboard, and evaluates statistics for these with regard to user engagement.

These statistics will mainly evaluate the engagement of the active gamification users,
i.e., users that left feedback at least once. As previously mentioned, there were 17 active
gamification users. Since this is a rather small group, statistics in this section should be
observed with some caution, so as not to draw unjustified conclusions.

Similar to other results, the low engagement with gamification features may be partly
due to users not knowing that these features existed, despite emails and announcements.
This was noted by two participants in the chat interviews, who were gamification users and
had provided feedback, but said they had not realized that the gamification features were
accessible to them.

Points

During the whole deployment phase, a total of 177 points were collected by the active gamifi-
cation users; 76.8% of these points came directly from giving feedback, the rest from achiev-
ing challenges. The average number of points for an active gamification user was 10.4 (for all
gamification users in our test group, the number was 0.38 points, and for the effective test
group 1.27 points), and a more detailed distribution is shown in Figure 7.9. As seen in the
figure, most users got a relatively small amount of points, while a few users got significantly
more.

On average, users received 3.85 points per submitted feedback form, i.e., a rather low
number when considering the milestones (see below section for details). This may indicate
that the game design was made too “difficult”, as most feedback forms submitted by game
users apparently were very simple; if these had rewarded more points (or if milestones had
required fewer points), users would perhaps have been more inclined to leave more feedback.

It is however difficult to reason about the user engagement for points since users could
not choose whether to get points or not; points were awarded automatically upon form sub-
mission.

107

7. System evaluation results

Figure 7.10: Achieved challenge count per active gamification user,
and the distribution of which challenges were achieved by users.

Milestones

For all gamification users, the total number of reached milestones was 3, which is the same
amount as cookie codes distributed. Of the distributed codes, none was actually (at the end
of system deployment) used at the café as intended.

The average number of reached milestones per active gamification user was 0.18. One
user reached milestone 1 (20 points), one (another) user reached milestone 2 (40 points),
and zero users reached milestone 3 (65 points). This means that only two individual users
interacted with the milestones.

The reason for the very low engagement with milestones, despite the extrinsic rewards,
is perhaps the difficulty of reaching the milestones. As said earlier, users generally got 3.85
points per submitted feedback form, meaning that 5.19 average forms would be needed only
to reach the first milestone; this is a lot to ask of the users, especially since they might not be
familiar with that many Coverity analyses to give feedback on.

Challenges

In total for all gamification users, 33 challenges were achieved. The average of achieved chal-
lenges per active gamification user was 1.94 challenges/user – the full distribution is presented
in Figure 7.10, which also shows the distribution of different achieved challenges. This does
show some interaction with different challenges, though mainly by a few users. According
to our user research, developers appreciate problem-solving. However, as noted in the sys-
tem design description (Section 6.3.1), the challenges for the feedback system were difficult
to make into problem-solving tasks; rather, they consisted of relatively simple goals for how
to fill in the feedback form. This might be a possible reason for the low engagement with
challenges.

It is worth noting that challenges, just as points, were rewarded automatically; thus, chal-
lenges may have been achieved without intention or awareness, and could therefore not truly
be counted as user engagement (rather as user participation). For example, as can be seen
in Figure 7.10, all active game users achieved Challenge 1, which was achieved when a user
submitted their first feedback form. For most active users, this was also the only challenge
they achieved.

108

7.2 User engagement

Figure 7.11: Unique users per day visiting the Confluence space dur-
ing the system deployment time.

Leaderboard
Notably, user engagement with the leaderboard competition element cannot be measured
only by the implicit data, since engagement would only mean the act of watching the leader-
board count on the game dashboard or engaging with other developers in informal compe-
titions. No evidence of user engagement with the leaderboard was given during the chat
interviews; the leaderboard was only brought up by one participant (on his own accord) as
an example of a game element that could be improved to increase motivation.

7.2.3 Confluence space
As described in Section 6.2.3, the Confluence space consisted of various different pages. Both
overall space analytics and individual page view counts are available through Confluence.
In all statistics presented below, our own page views and influence on the user count are
excluded. Still, the numbers may in some cases be slightly higher than accurate since they
are counted since page creation, and a small amount of Axis employees might have seen the
Confluence space before the feedback system was deployed.

In total, the space front page (likely visited first by most users that visited the space)
received 184 views from 97 unique users. Figure 7.11 shows how the views changed over time
for the whole space. Notably, most new users visited when the system was first deployed, and
after the reminder email was sent out. Except for these times, not many new users found the
Confluence space.

Regarding the whole space, the average view count for the users that visited the space is
3.36 views per user. This indicates that there were not only problems with users not finding
the space but also that the users that found it did not engage much with it.

Since view counts per default are anonymous in Confluence, we cannot tell how many
views were from gamification users and not. However, the view count on the gamification
dashboard page, which was only visible for gamification users, can be examined. In total, the
dashboard received 57 views from 25 unique users; this indicates at least some engagement
from a few users that visited the page more than once - the most active user who visited the
game dashboard did so eight times. Notably, a smaller version of the game dashboard was also
included on the Confluence space front page, thus gamification users could view their points
without visiting the full game dashboard, which might have decreased the number of dash-

109

7. System evaluation results

board views. In the chat interviews, one participant mentioned that he used the Confluence
space to check his points.

The statistics pages in Confluence, in total, received 42 views. Of these, 20 views were on
the Coverity analysis result dashboard and a table of found Coverity issues, and 22 were on
one of the two dashboards regarding feedback results and feedback statistics, i.e., displays of
the collected feedback and collection metadata. The numbers of unique viewers visiting the
feedback results and statistics pages were very small: five and four respectively. This is unex-
pected, seeing that our user research indicated that users are more interested in seeing others’
feedback on SCA tools than giving feedback themselves; in fact, the majority of developers
in our questionnaire claimed they would like to be able to see others’ feedback.

An explanation for the small view count may be that people did not know about the
Confluence space. In the chat interviews, four interviewees (one gamification user, three
control group users) said that they had not visited the Confluence page; P7 and P10 even said
that they were not aware that the Confluence page existed at all, and the same was true for
P3 who only found out close to the end of the deployment time.

Another possible explanation is that developers may have felt that the task to read through
the information or finding the dashboards took away too much from their work time, and/or
was not relevant for them. After all, another finding in the user research was that developers
highly value work efficiency.

7.2.4 Misuse/cheating
As indicated by previous gamification research (see Section 4.3), gamification solutions often
run the risk of some users “cheating the system”. However, we deem this risk low, since the
user engagement with the game elements was so low; had there been more engagement, the
risk of cheating and misuse of the system might have been higher. For example, users might
have submitted meaningless feedback in order to get points. Now, at least when evaluating
the full-text answers, all answers seem to be meaningful feedback.

The only indication of misuse of the system stems from one user, who, after having found
out about the gamification features during the chat interviews, left a lot of simple, Happy,
feedback on multiple repositories and quickly reached two milestones. This is however not
necessarily “meaningless” feedback, and may only show a spike in user engagement.

7.3 User motivation
In this section, user motivation is examined, regarding the feedback form, interaction with
the Confluence space, and interaction with the gamification features - partly to see if gam-
ification increased user motivation. This is mainly done by analyzing the answers from the
follow-up chat interviews.

7.3.1 Feedback form
When asked why they had left feedback or had not left feedback, and what motivated them
to do either, the interviewees mentioned multiple different motivations. All participants had
left feedback at least once.

110

7.3 User motivation

Three of the participants wrote that the reason for them giving feedback was related to
us having asked for feedback, i.e., they engaged with the feedback system in order to help out
with our project.

Another commonly brought up reason for giving feedback was that the feedback may
improve the Coverity system, or, as phrased by P7, their “ways of working.” P3 said that his
motivation for giving feedback “primarily was to help and make sure that what we are doing and
how we are doing it becomes better.” This is a similar finding as from our previous research,
i.e., that developers are motivated by work efficiency, and also are mainly motivated to give
feedback when they think the feedback can leave to system improvement. When participants
were asked if they felt there was any purpose for them to leave feedback, most participants
responded positively for this same reason. P2 felt that “the purpose was to get better tools for code
review,” while P1 noted that “there has been a lot of discussions around how Coverity should be used
over the past months, maybe the feedback can be used for this.”

Another, related motivation for participants to give feedback was for them to voice their
opinions about Coverity, and/or since they felt strongly about the tool (and, for some, wanted
to improve it). Two of the participants gave feedback because they felt that Coverity was im-
portant or useful. Two others saw flaws in the Coverity functionality, such as false positives,
and wanted to report them.

When it comes to participants’ motivation to not give feedback, P7 found that it was
difficult to take time to give feedback while being stressed. He also noted that he has “recurring
false positives that when you read them for the tenth time you lose the motivation to give feedback an
eleventh time.”

7.3.2 Confluence
Regarding motivation for interacting with the Confluence space, P2 said: “[I] took a quick look
at Confluence [and] it did not bring me any value. I was not interested in collecting points.” Also,
though others seemed positive about the space, the rather low user engagement with the
various pages indicates either that it was not well known or that users did not feel motivated
to visit it - likely both.

7.3.3 Gamification
In terms of gamification and its effect on participants’ motivation to give feedback, the in-
terviewees that were also gamification users had mixed responses.

Some interviewees were positive, to different degrees, for example, P8 said that he felt
motivated by the game features and that he “think[s] it is a good way to get good results.” P6
found that gamification motivated better development: “[It] encourages you to look through the
Coverity reports even more thoroughly.” P4 was motivated by the possibility of cookies through
the gamification system – however, he was not part of the gamification group and therefore
did not have access to this feature . Meanwhile, two participants said that their motivation
was not connected to gamification, but rather to the prior mentioned reasons, like reporting
flaws in the functionality.

111

7. System evaluation results

7.4 User satisfaction
Similarly to user motivation, user satisfaction with the feedback form will mainly be eval-
uated via the chat interview findings. This was done partly to see if gamification increased
user satisfaction.

7.4.1 Feedback form
Overall, the participants found that the feedback form was well-integrated into Gerrit, and
did not disturb their workflow significantly; P4 noted that the feedback form was designed
well as “it was so simple” and P9 that it was good to be able to provide quick feedback. Some
explicitly expressed appreciation that the feedback form existed (should they want it), even if
they did not find it relevant to them at the time; P9 said he appreciated the ability to report
likely errors with the Coverity analysis. These findings indicate that the system achieved
the wish, found during user research, to not disrupt the development workflow. It also in-
dicates that developers might want and appreciate the feedback form even though the user
engagement numbers may make it seem like they do not.

Regarding possible improvements, P7 thought that the feedback system worked okay, but
that a better solution might have been to integrate the feedback functionality into the code
view instead of as a separate element in the UI. This solution would have been more similar
to MEAN [13] and its use of robot comments.

7.4.2 Confluence
The participants did not have many direct opinions about the Confluence space. Although,
P6 found the space interesting, specifically for seeing statistics about Coverity.

However, the Confluence space’s display of the gamification features may not have been
clear enough. As said by P8, who did not find the gamification entirely clear: “I received points
but did not see [anything] in Confluence, so [I was] a little confused if I was in [the] gamification
[group] or not.” A similar sentiment was voiced by P2, who thought he was not a part of the
gamification group (despite being so) as he had expected something different than what he
saw on Confluence (this participant was however not interested in collecting points overall,
which may explain a lack of motivation for trying to understand the game features).

7.4.3 Gamification
When asked about their opinions on the gamification features, participants P6 and P8 found
them fun, while others were more skeptical. P3 said that “gamification is an interesting concept
and I think when it is executed in the right way it can be both fun and motivating,” but felt like our
gamification system lacked some functionality, for example, a more comprehensive leader-
board and daily tasks to keep motivation up; similarly, P1, who was generally not a fan of
gamification said: “In the best case it is distracting, in the worst case it makes you feel like a pet
being trained to walk prettily.”

The participant who had mentioned the lack of functionality (P3), especially the more
extensive leaderboard, noted that it would have been more motivating for him if he could

112

7.5 Feedback content

see the entire leaderboard to get a more complete picture. This could still be anonymous
but include the user’s position in relation to everyone else. He added: “[I]f I can see myself in
relation to everybody else in [a list] then the competition element becomes more obvious and you get
clearer visual feedback that you are climbing the ranks.” Furthermore, with such a leaderboard
it would be possible to know in more detail how many points are needed to reach the first
place and similarly, instead of only knowing the required points for reaching the next step
on the ladder.

The game design was also not clear enough, according to some users. As noted by P8, he
felt that it was not entirely clear what the gamification aspects involved. Another insight on
the same topic was given by P8, who, on the question about what he thought on the Con-
fluence space, said that he experienced his points seemingly being counted incorrectly. This
was likely a problem with clarity in the gamification dashboard view, for example, the way
in which challenge points were displayed. It seems like the game rules, or more specifically
the existence and type of the game were not as self-explanatory as they were aimed to be.

7.5 Feedback content
In this section, we present an overview of the content results from the feedback form sub-
missions. Although not directly connected to our research questions, this is important for
discovering correlations in our results. For example, the overall satisfaction of the Coverity
analysis may be representative of true satisfaction among users, or there may be a bias in
which users gave feedback: did more satisfied users give the most feedback, or the other way
around?

7.5.1 Satisfaction
In general, 70.0% of feedback forms received an overall satisfaction score of Happy, 16.7% Neu-
tral, and 7.58% Not happy; the rest of the forms had no entry on this question. The satisfaction
distribution is presented in Figure 7.12. Interestingly, there exists a quite large amount of Neu-
tral feedback, though it has been noted in previous feedback research (see Section 4.2) that
users without any opinions on the subject have less motivation to leave feedback. However,
users may still have given positive/negative feedback on specific issues, even if they found
themselves neutral to the analysis as a whole. As evaluated in Section 7.3, developers may also
be motivated to give feedback by many other reasons than strong opinions, such as wanting
to help us get results, or having an interest in the game elements. This may have led to some
users submitting Neutral feedback rather than submitting no feedback at all.

In order to nuance the data, we also look at the satisfaction of individual users. Figure
7.13 shows how the satisfaction varied between different users and for feedback on specific
repositories. The satisfaction scores have been calculated by assigning numbers (1 for Happy,
-1 for Not happy), and calculating the mean number for each user and for each repository.
The plots show that multiple users only submit positive feedback, and similarly that many
repositories only get positive feedback (this is likely also correlated since single repositories
often only got feedback from one or a few users).

Interestingly, as can also be seen in Figure 7.13, no users left only negative feedback forms
(except those that only submitted one form). This may indicate that users who only feel

113

7. System evaluation results

Figure 7.12: The entered satisfaction options in all forms.

Figure 7.13: Satisfaction scores and number of submitted forms from
individual users, and for repositories. The dot size represents over-
lapping values.

negatively toward Coverity (who exist, as we know from our user research) either do not
have any analyses to leave feedback on, since they have disabled Coverity, or are not willing
to engage with the feedback system. While our literature review (Section 4.2) mentioned
that strong negative opinions may lead to users wanting to give feedback, our user research
found that developers are more intent on improving SCA practices when they have an overall
positive view of SCA; otherwise, they seem to prefer to not engage at all. This may explain the
overall few occurrences of negative feedback. However, some negative feedback was given,
by users only submitting one form; this may indicate that these users both dislike Coverity
overall and are unwilling to engage more in feedback acquisition.

The range of Coverity satisfaction in the feedback also supports the user research finding
that there are very different views on Coverity, positive and negative alike. Noteworthy, the
satisfaction of different users may also depend on which type of analyses they got specifically
during the deployment time, for example, if users appreciated passed analyses more than
analyses that presented issues in the code. Users may (as indicated by our literature review)
be less happy with the SCA tools when a large number of warnings are generated.

7.5.2 Issue tags
The issue tags entered by users in the multiple-choice section in the feedback form are shown
in Figure 7.14. Note that this figure does not show overlap, i.e., two tags could have been given
to the same issue, or to two different issues, and this difference would not reflect in the chart
(as mentioned previously, issues received feedback in total 48 times, indicating a large overlap

114

7.5 Feedback content

Figure 7.14: Tags given to Coverity issues in the submitted feedback.

in the figure). Notably, the only tag never given to an issue in the submitted feedback was
the tag Relevant. The most common tags (False positive, Not relevant, etc.) indicate that users
are not satisfied with the issues, even though the general Coverity feedback showed high
satisfaction. Also, of all issues given feedback on, 25 issues were marked as Not helpful, while
only 3 and 6 were marked as Neutral and Helpful, respectively. Again, this may indicate that
users were predominately satisfied with patchsets that had no issues. It may also indicate
that Coverity issues in general are not helpful - or, simply, that users are more engaged with
giving negative feedback in the case of specific issues. Though, notably, all the issues rated
as Not helpful stemmed from only 6 feedback forms, meaning that a few developers expressed
their discontent with multiple issues at the same time - some of these also ranked other issues
as Helpful, indicating that they may still appreciate the Coverity tool, even though they may
be irritated by usability problems.

115

7. System evaluation results

116

Chapter 8

Threats to validity

This section goes through possible threats to the validity of our thesis results, both regarding
the user research results and the system evaluation results. The categorization of threats is
taken from the list by Wohlin et al. [83]; we discuss threats to conclusion validity, internal
validity, external validity, and construct validity.

8.1 Conclusion validity
Conclusion validity threats may hinder the ability to draw conclusions about whether the
treatment (e.g. using gamification) actually led to the results (e.g. increased user engagement),
i.e., they threaten the accuracy of the conclusions [83]. This section goes through a few such
threats relevant to our thesis.

8.1.1 Short test period
The feedback system was deployed for a very limited amount of time, of which a substantial
number of days were weekends and public holidays. This means that too little data may have
been gathered to give complete results and arrive at confident conclusions; in the threat list
by Wohlin et al. [83], these circumstances could be seen as a part of the low statistical power
threat.

The short test period threat was mitigated by a few different factors: We used an as large
as possible test group in order to collect as much feedback as possible, and we made it possible
to also leave general Coverity feedback, not only feedback on Coverity-generated issues.

Notably, the short test period was specially raised as a concern for the feedback content
results. During our user research, it became evident that Coverity issues, especially false
positives, are relatively uncommon. This may mean that 14 days of testing could not pro-
vide enough data to show for example relations between encountered false positives and user

117

8. Threats to validity

engagement. However, these types of results were not of major importance to our thesis
conclusions.

8.1.2 Company culture misinterpretation
Another possible risk is that our description of the Axis company culture may not mirror the
overall work culture. This is suspected since the results of the user research interviews give
another picture than reported by our Axis supervisors and colleagues. According to them,
Axis has a rather “playful” culture, where developers likely appreciate at least some elements
of a playful user interface. Also, evidence has been shown that Axis developers often have a
competitive drive and commonly like to compete, for example by the high participation in
Advent of Code. Meanwhile, our user research shows a clear tendency against both a playful
user interface and work-related competition.

These discrepancies may have different explanations. First, Axis is a large company and
our interviews only included eight developers, though from some different departments and
teams. Second, there may be a difference between the actual work culture and how employees
view the work culture. Third, there may have been misunderstandings during the interviews,
for example regarding the meaning of “competition” and “playfulness” - this could be classi-
fied as a construct validity threat but is mentioned here for simplicity.

Similarly to other user research risks, misinterpretation on this matter would also affect
our feedback system evaluation, since the system design was based partly on our findings
about the Axis company culture. In the threat list by Wohlin et al. [83], this may be cate-
gorized as a reliability of measures threat; because of lacking exactness in the measures, the
reliability of the results may have been affected.

8.2 Internal validity
Internal validity threats occur when causality problems lead to unjustified cause-and-effect
claims, for example, results depending on unknown factors instead of the measured fac-
tor [83]. In our thesis, both the user research results and system evaluation results have a
few possible internal validity threats, especially since the design of the system evaluation was
based on the user research results, making the results dependent on each other. This section
lists and discusses these threats.

8.2.1 Selection bias
The result of any user study is affected by possible selection bias during the user sampling
process; by Wohlin et al. [83], this threat is simply called selection. In our thesis, selection bias
might have occurred in the interview participants sampling and possibly also in the ques-
tionnaire respondents sampling, if mainly developers interested in the subject of SCA tools
and/or gamification chose to participate. Much of our interviewee sampling was done by ask-
ing Axis employees for colleagues who might be interested in participating. If this turned out
to be a very biased sample, the user research results may have been misleading. This would
also threaten the validity of our feedback system results and the analysis of these results, as
many system design choices were made based on the user research results. For example, the

118

8.2 Internal validity

low engagement in gamification features may have indicated a biased and unsuitable game
design rather than low user engagement for gamification as a whole.

However, we noted that the opinions of interview participants seemed to cover most of
the spectrum of positive/neutral/negative regarding SCA tools. This indicates that possible
selection bias may still not have had a detrimental effect on the distribution of our user
research results.

It is also likely that mainly developers who wanted to help out with our thesis participated
in our user research, and perhaps the same is true regarding the feedback acquisition. For
example, in the questionnaire results, the Philanthropist player type may have been one of
the main Hexad player types since mainly those with philanthropist tendencies wanted to
answer the questionnaire. This is possibly also the case for the chat interview respondents:
Mainly participants that had given feedback in our system also responded to our request
for chat interviews, indicating perhaps that they were simply individuals who liked giving
feedback in general.

8.2.2 Causal influences
One internal validity threat in the list by Wohlin et al. [83] is ambiguity about the direction
of causal influence, which regards the difficulties of determining which factors influence each
other. In our system evaluation, two possible threats on this theme regard the game element
factors and the email reminder factor.

Simultaneous evaluation of game elements
Previous gamification experiments in literature often do not evaluate a game element in iso-
lation, making it difficult to determine the effect of each element. This is the case also for
our study, and thus the evaluations of the game elements given in Section 7.2.2 may not be
entirely accurate: The user engagement for different game elements are likely dependent on
each other and on the system design as a whole. However, this type of system evaluation
was chosen in order to provide a gamification design as complete and suitable for the given
context as possible. While it may have been possible to test each gamification element one by
one, this may also have presented inaccurate results, for example since some game elements
complement each other and since the novelty effect of the system would decline over time
and affect the different game element evaluations.

Influencing users to engage
As explained in Section 3.4.3, users were originally informed about the feedback system via
emails and Microsoft Teams announcements and a reminder email was sent out to all users
after nine days of system deployment. Both the start of the system deployment and the time
after the email reminder saw short spikes in higher user engagement. Since the email reached
(in theory) as many control group users as gamification users, and was identical for all, we
deem that this did not affect the comparison between user engagement between the two
groups. However, it does affect the evaluation of overall user engagement for our feedback
system. It may be argued that users gave feedback since they were prompted to, and in order
to help us get results (which was admitted by some chat interview participants), rather than

119

8. Threats to validity

intrinsic want to give feedback. This would threaten the validity of our user engagement
scores.

A similar effect was seen during and after the chat interviews (which were conducted
during system deployment because of thesis time constraints), where the interviewees were
reminded about the system and the gamification features - some of these users immediately
engaged more with the system.

8.2.3 Diffusion or imitation of group behavior
Wohlin et al. [83] lists the threat diffusion or imitation of treatments, which occurs when a par-
ticipant in an experiment changes their behavior in accordance with the treatment applied
to another test group. In our system evaluation, this may have occurred if the control group
participants believed that they were gamification users. We know that this happened at least
for one user, who in a chat interview said it was a motivation for him to give feedback because
of the possibility of getting cookies. Both groups knew about the existence of the other group
and the treatment they received since this was clarified in the announcements and reminders
sent to all users. Some participants may not have checked, or not have understood how to
check, which group they belonged to. This may have led to some control group users being
motivated to give feedback in order to get game rewards or just to check whether they could
find any game features or not. Similarly, as found in the chat interviews, multiple gamifica-
tion participants that gave feedback had not realized that they were part of the gamification
group and thus could not act by motivation connected to game rewards. These factors may
have influenced our findings on the user engagement difference between the two groups.

8.2.4 Conscious altering of user behavior
Wohlin et al. [83] lists the internal validity threats compensatory rivalry and resentful demoral-
ization, which occurs if participants in one test group think they received worse treatment
than the other group. This may lead to participants changing behavior, either to consciously
alter the results of the experiment or to perform worse because they become demotivated by
not having the benefits of the other test group. In our system evaluation, this may have oc-
curred for example if control group users felt demoralized by the realization that they could
not get cookie codes or take part in the other game features. It may also have occurred if users
in one group were strongly against gamification and wanted to disprove that it could lead to
better results, either by engaging a lot in the system as a control group user, or not engaging
as a gamification user. However, we have not seen any evidence of this occurring in practice.

8.3 External validity
External validity regards the validity of applying the study conclusions outside the context
of the study, i.e., the generalizability of the results [83].

Overall, the user research, game design, and system design were done for an Axis-specific
context. This may lead to our results not being generalizable outside of similar contexts,
as gamification efficacy heavily depends on the culture in which it is examined. However,

120

8.4 Construct validity

our method, such as basing the design on previous user research, and how to choose design
elements, can be generalized to other contexts.

Notably, since both feedback acquisition and gamification are recommended by research
to be closely incorporated into users’ (developers’) workflow, our system design is also rela-
tively context-specific for setups using Gerrit and other mentioned tools. Results may depend
at least partially on how well these tools naturally interact with each other.

8.4 Construct validity
Construct validity is about whether the used constructs actually measure what they claim
to measure, and construct validity threats include both experiment design threats and social
threats [83]. In this section, a few relevant experiment design threats are presented.

8.4.1 Metric definition
Our metrics for the system evaluation (user engagement, user motivation, and user satis-
faction) may not have been sufficiently defined; in the threat list by Wohlin et al. [83], this
problem could be mapped to the threat inadequate preoperational explication of constructs. For
example, we measured user engagement in many different ways which all gave different re-
sults. This situation arose partly since different definitions of these metrics exist in previous
studies, and because we found that presenting just a single user engagement number may give
a misleading picture of the situation. Because of this, we chose relatively loose definitions of
our metrics and instead aimed to present more nuanced results.

It was also difficult to define and measure user motivation and satisfaction, as these must
be examined in a qualitative way by looking at users’ experiences. During the chat interviews,
results may have been affected by participants interpreting our questions and metrics in dif-
ferent ways. For example, when evaluating user satisfaction, one question to the participants
was Did you appreciate the feedback system?. Participants may have interpreted this differently
depending on their interpretation of “appreciate”, which may have led to participants omit-
ting information or giving irrelevant information, making the user satisfaction metric less
accurate.

8.4.2 Insufficient metrics
As mentioned, user engagement with our feedback system was measured in multiple different
ways. However, we did not make a proper comparison regarding the quality of the collected
feedback from the control group and the gamification group. This was partly omitted since
feedback quality would depend on many factors and be difficult to measure objectively. Also,
we did measure feedback quality in a basic way by looking at the completeness of the feedback
forms and the percentages of multiple-choice versus full-text feedback, which did not show
any evident differences between the groups - this may indicate that the feedback quality
was similar for both groups. However, to measure feedback quality in a more accurate way,
controls for “nonsense” feedback, and analysis of the full-text feedback, would have to be
conducted.

121

8. Threats to validity

A hypothesis, based on results from previous gamification studies in other contexts, is
that gamification users would be willing to give large quantitative amounts of low-quality
feedback in order to get game rewards. This would lead to our three metrics (user engage-
ment, motivation, and satisfaction) not being sufficient for measuring the success of gamifi-
cation for feedback collection. It may not be desirable to have the gamification group submit
a lot of feedback, for the sake of the game, if the feedback quality decreased. In the threat list
by Wohlin et al. [83], this may be categorized as the restricted generalizability across constructs
threat, which appears when an experiment setup affects a studied construct (the amount of
feedback) positively, but another, not studied construct (feedback quality) negatively, leading
to an unintended side effect.

8.4.3 Questionnaire clarity
As in all studies using surveys, there is a risk that survey respondents misunderstand some
questions, or the purpose of the questions, since they cannot ask for clarifications in the same
way as during an interview. This may lead to inaccurate responses and flawed conclusions and
is another threat that may be categorized as inadequate preoperational explication of constructs
by Wohlin et al. [83].

The main sections in our questionnaire regarded feedback collection preferences (see
Appendix C.3) and Hexad player types (see Appendix C.2). For the feedback preferences
answers, the results quite closely mirrored previous research results, and the questions were
also voluntary to answer so that participants who did not clearly understand a question could
choose not to answer. Thus, the validity is likely high for the results of this questionnaire part.
Still, we want to note that these questions were possibly difficult for participants to imag-
ine, even with the provided examples, since they required participants to relate to imaginary
situations in which they may never have been.

Regarding the Hexad player types results, the threat to validity might be higher. While
the questions themselves were simply phrased, the context of the questions and the purpose of
asking them may not have been obvious, leading respondents to be unsure of what to answer.
This is theorized since the results show almost equal overall scores for different player types,
which may indicate that many users gave rather similar scores to all questions, due either to
lack of diligence, lack of interest, or lack of understanding. However, it is also possible that
this was an accurate depiction of the player-type distribution for Axis developers.

122

Chapter 9

Discussion

This chapter includes a more thorough discussion of the results presented in this thesis –
both the user research results and the system evaluation results. First, the possible reasons
for the amount and type of provided feedback are discussed. Then, the effects of the gamifi-
cation features, and possible reasons for these, are examined. This is followed by reflections
on possible improvements that could be made to our method as well as alternative design
ideas that have been discussed throughout this thesis work. In the end, a user engagement
comparison is made toward the previous feedback-collecting systems Tricorder and MEAN.

9.1 Reasons for feedback results
This section examines, in more detail, the possible underlying reasons for the amount and
type of collected feedback during the system evaluation experiment, i.e., why users provided
or did not provide feedback.

As noted in the results (Chapter 7), there are many different ways to measure user en-
gagement with our feedback system. For example, the number of submitted forms compared
to the number of patchsets where forms could be submitted was relatively low: 65 of 1657
patchsets (3.92%) had at least one feedback form submitted. Meanwhile, the number of active
users compared to our effective user groups was better (7.98% and 12.2% for the control and
gamification groups respectively). Still, most of these active users only gave feedback once.
An overall low user engagement percentage was in part expected since feedback acquisition
systems, in general, see low user engagement (see Section 4.2).

The results may be due to multiple reasons. One reason, indicated by multiple chat in-
terviews, was practical: The users did not have many interesting Coverity analyses to leave
feedback on. Other possible reasons, both for users submitting feedback and not submitting
feedback, are further discussed in the sections below.

123

9. Discussion

9.1.1 System not noticed
A likely reason for the overall low user engagement is that the feedback system may not have
been noticed by many users. While the system was announced both via email and in Mi-
crosoft Teams groups, these announcements may not have reached all intended users (many
employees may have Teams-channel notifications muted and ignore non-personal emails).
Some recipients may also only have glanced over the information and then judged it as not
relevant to their work.

This was also made evident by many participants in our follow-up chat interviews, who
said that they had not noticed some parts of the system, for example, the Confluence space
or the game features. However, it is worth noting that all of these interviewees had given
feedback at least once prior to being contacted for the interviews; to get a complete un-
derstanding of the situation, the perspectives of people who had not submitted any forms
would be necessary. This was in part given by two users who were contacted but did not
participate in full interviews - however, their reason for neither noticing nor engaging in the
system was that they did not use Coverity in their work, and therefore the feedback form
was not visible for them in Gerrit. One of these users still mentioned that they had noticed
the announcement email and that there existed a Confluence space.

Another possible sign that users had not noticed the feedback system after the first an-
nouncement is the spike in engagement, also from new users, after the reminder email. How-
ever, this may also have occurred if users noticed the system but forgot about it, or did not
feel motivated to give feedback until receiving the reminder.

Gamification not noticed
It may also be the case that specifically gamification users were not fully aware of what it
meant for them to be a part of the gamification group. For example, users may have been un-
aware that they could get cookies from the café, even though this was noted in the announce-
ments and made clear in the game dashboard and Confluence information pages. This may
partly explain the low user engagement with the game elements.

Unintrusive design
The risk of the system being unnoticed was one of the reasons for placing the feedback form
directly in Gerrit, which was supposed to make it difficult to overlook. Meanwhile, another
goal of the system design was to make the system unintrusive, for example by having a col-
lapsed feedback form. While the system achieved the goal of being unintrusive, according
to most chat interview participants, this likely resulted in the form being relatively easy to
glance over, which was also made evident during the pilot testing. However, the alternative
design decision of having the feedback form expanded by default was disregarded during the
design phase. While it may have prompted more feedback, leading to higher user engagement,
it would also likely have been perceived as an annoying and intrusive feedback request and
may have disrupted developers from completing their normal tasks. This is not recommended
by previous feedback acquisition literature and also goes against our user research findings
that developers value work efficiency and simple interfaces. Thus, this decision would likely
have led to significantly worse user satisfaction results.

124

9.1 Reasons for feedback results

9.1.2 System not available
Another, though probably small, reason for the few submitted feedback forms may be the
fact that the feedback system was unavailable during short periods of the test time. This was
unrelated to the system design and due to issues with either Gerrit or Jenkins, which led to
some Gerrit/Jenkins downtime. During this time, it was not possible to access the feedback
forms, and/or feedback form generation was delayed. This may have delayed the in-stream
of feedback or even prevented it altogether in some situations since a user may not have had
the time or interest to revisit a patchset later for giving feedback - or developers may have
gotten stressed by the situation and thus less inclined to take the time to give feedback.

There was also a related, likely more important, issue regarding how the system was de-
ployed. After the announcement of the system, there was a delay of around an hour until
the system deployment. Thus, developers may have read the announcement and visited the
Confluence space and Gerrit, without finding the feedback form (as was also seen to be hap-
pening in the Confluence view count at the time). This may have led users to believe that the
feedback system was not relevant to them, or led them to lose interest and then forget about
the system. Both of these possibilities would likely have negatively affected the probability
of these users giving feedback later.

9.1.3 No purpose to give feedback
One thing mentioned during one of the chat interviews was the lack of information about the
project and its purpose. As said by P3: “I feel that information around that this [the project] existed
and why it existed was inadequate.” He mentions that the likelihood of him giving feedback
would have been higher if those two points had been more clearly communicated. While
this mainly indicates problems in reaching out with information, as discussed above and
confirmed by multiple other chat interviewees that had not found the Confluence page, it
also indicates that the purpose of the system is important to users.

This finding was also supported by other chat interviewees, who noted that they were
motivated to give feedback that would improve the system and the way that Axis works with
static analysis. Also, as found in our user research (both the questionnaire and the interviews),
developers are mainly motivated to give feedback if they feel that the feedback can influence
the system directly, or if they know the feedback can help other users. I.e., a purpose in the
form of some sort of feedback loop is desired.

A feedback loop could have been implemented as a way to increase the sense of purpose
for the users to give feedback, for example, by turning off certain warnings after they were
marked as Not helpful in the feedback, as done for example in the MEAN [13] system. However,
this was not possible in our system design. Instead, a couple of strategies were implemented in
order to make the feedback feel helpful for users and for system improvement: All feedback
was posted visibly to all users, in order to promote discussion and reflection on Coverity,
and the feedback results were aimed to be used for future SCA tool decisions at Axis, such
as licensing decisions.

However, these intended purposes for the feedback system may not have been obvious to
users, though the information was stated on the Confluence information pages and stressed
in the announcements. Or, users may have found that the system’s feedback loop was too
slow, or the possible SCA tool processes improvements too indirect for motivating giving

125

9. Discussion

feedback.

9.1.4 Prioritization of work efficiency
As found during user research, Axis developers often highly value the efficiency of their work
and feel intrinsically motivated by work tasks such as product improvement. This may be
one reason for developers not shifting their focus from their work tasks (which would be
the context in which they visit Gerrit) to open a feedback form and take the time to fill it
out. Giving feedback and visiting the Confluence page may even have been seen as a possible
disruption in the workflow, which both the literature on feedback acquisition and our own
user research suggests can de-motivate users from giving feedback.

9.1.5 Philanthropy
Some users likely gave feedback mainly in order to help out with our thesis, as a service to
us. This is in part indicated by the spike in feedback given after the reminder email (in
which we noted that we needed more feedback for our results); while this could also be due
to other reasons, multiple participants in the chat interviews gave answers in support of this
hypothesis. This also seems to be in accordance with the finding that Philanthropist is the
most common primary player type among Axis developers.

This philanthropy aspect of the Axis culture has also been noted during the rest of our
thesis work when looking for interview participants, questionnaire answers, and others will-
ing to help out during working hours.

9.1.6 Feedback giver user types
While the Hexad player type distribution of Axis developers has been examined and discussed
in this thesis, feedback-giving preferences of different user groups have not been handled in
the same detail. Some possible user categorizations in this context, described in Section 4.2.5,
are feedback antagonists, passive and stingy people, privacy fanatic and generous people, and privacy
tolerant and socially ostentatious people.

Likely, all these user groups exist in our user base. The presence of the first two (feedback
antagonists and passive and stingy people), is partly seen in the questionnaire results, where mul-
tiple users showed no interest in giving feedback on SCA tools. For these user groups, being
asked to provide feedback in the first place, and then reminded through our additional an-
nouncements, might have dissuaded them from providing feedback and even led to irritation
and negative views of the system.

The other two user types (privacy fanatic and generous people and privacy tolerant and socially
ostentatious people) were likely more present in our user research since their participation
indicated a want to help out with our thesis. Probably, these people also stand for the majority
of the provided feedback in the feedback system. It may be argued that most of the chat
interviewees fall into either of these groups since they provided feedback both through the
feedback system and the interviews.

126

9.2 Gamification efficacy

9.2 Gamification efficacy
Overall, the percentages of active users in the gamification group compared to the control
group (12.2% versus 7.98% respectively, if regarding the approximated effective user groups)
indicate that more users were willing to engage with the feedback system if it had gamifi-
cation features. However, since the number of active users was so small, this may still be
due to individual preferences, and thus no definite conclusion can be drawn. Regarding the
overall numbers of submitted forms, the results are similar: Clearly, gamification users pro-
vided more feedback, but the numbers may mainly be due to one single gamification user
who engaged a lot with the system, creating an outlier that skewed most other results.

The user engagement for different game elements, such as the cookie code rewards, seems
very small - most engagement may have come from automatic rewards to users who may have
been more interested in giving feedback than in the gamification aspects. The chat interview
findings conclude that while a few users found the gamification idea to be fun, multiple others
(as already seen in our previous user research) were mainly motivated by work efficiency and
results.

This section elaborates more on the possible reasons for these gamification results, mainly
the reasons for not seeing more engagement with the game elements.

9.2.1 Game design specifics
The gamification results likely depend to a great extent on the specifics of our game design.
While an attempt was made to make the game design optimal for the given context, various
issues (implementation limitations, selection bias in the user research, etc.) may have im-
peded this mission. Thus, the results can perhaps not confidently be interpreted as showing
the success or failure of gamification overall in this context. Though to some point clarified
by the chat interviews and the analysis of our previous user research, it cannot be said if the
low user engagement with our game elements was due to users not being motivated by gami-
fication, or simply due to a sub-optimal game design - likely, both of these aspects mattered.
This section evaluates some of the aspects of our game design that may have had a negative
impact on the resulting user engagement, motivation, and satisfaction.

Game constants
A potential problem is how the constants in the game were set, specifically the milestone
limits (i.e., how many points were needed to reach a milestone and get a cookie code reward),
and how many points were awarded for giving feedback and reaching challenges. Initially,
during implementation, the milestones and point rewards were set in order to make it very
easy to reach the first milestone. This was intended to quickly get users interested in the
program and to make the cookie code functionality evident (since it otherwise might not
have gained attention). However, during pilot testing, testers were asked if they found it too
easy to get rewards, and said that it was way too easy - they recommended that one would
have to give feedback at least 10 times to get a reward. In the end, a middle ground was found,
where we estimated that around 5 average feedback forms would have to be filled in to get
the first cookie code. However, seeing that user engagement for feedback collection usually
is very low, this is a lot to ask of a user.

127

9. Discussion

The possibility to get many points also varied significantly between users. It was likely
difficult for most users to acquire even the points needed for reaching the first milestone,
as they first had to find multiple Coverity analysis results that they knew enough about to
give feedback on. If users could not within a small time frame access this amount of relevant
Coverity analyses, they may have found it too tedious to even try reaching the first milestone,
and thus they got no positive incentive from the promise of extrinsic rewards. All in all, the
game design turned out to be unfair in favor of a few developers. This was impossible to
avoid entirely for our context but could have been mitigated by using more suitable game
constants.

In retrospect, it would likely have been better for the gamification results to keep the
more generous game constants. For example, very few people received any cookie codes.
Had more cookies been given, we theorize that the word about this would have been spread,
making other gamification users realize the opportunity. Now, if participants felt that it was
too difficult to get a cookie code, that may also have impacted their engagement with the
gamification system negatively and possibly even made them negatively inclined toward the
system, thus also decreasing user satisfaction.

Lack of social game elements

Another choice in our game design, which might have been detrimental to its success, was to
not include any teamwork, collaboration, or social elements. During the chat interviews, we
asked the participants if the feedback system had been discussed in their teams; all intervie-
wees answered that the topic had not been brought up at all, except for P2 who had talked
about the feedback system with colleagues whose code he was to review. This, together with
the low user engagement with the game elements, indicates that there was no social team
engagement with the system.

The anonymous leaderboard likely did not contribute much to social competitions, even
though it in theory allowed users to compete informally with colleagues by comparing leader-
board positions. An implementation of a full leaderboard where the user could see their own
position in relation to others (as suggested by one of the participants in the chat interviews),
would have been a way to increase the social aspect of this game element.

Our user research indicates that developers would have appreciated social game elements;
the most appreciated type of competition seemed to be team-based competitions, either as
an intra-team competition or as a team competition against other teams. Also, collabora-
tion generally seemed more appreciated than competition. A theory is that our game design
would have been more appreciated and gained more traction if organized on a team level,
for example, as a collaboration task with team challenges and/or as a simple competition
between teams. Similar game solutions were discussed during our system design phase, but
de-prioritized in favor of keeping the competition anonymous, and because concerns had
been raised during our user research about different teams having different conditions, thus
making competitions unfair. This design choice was also made based on the difficulty of map-
ping certain users to certain teams (which may not always be a many-to-one mapping), and
because this would have obstructed the randomized group assignment of the control group
and the gamification group.

128

9.3 Possible method improvements

9.2.2 No team organizers
One possible way to increase user engagement with the game elements would have been to
assign a sort of organizer role to a teammate in each relevant team, as suggested by previous
research (see Section 4.3.3). This organizer could serve as a motivator for making the other
team members interested in the tool, thus drawing more active users, and at least making the
system known to users. This could be specifically beneficial for our system since one of its
main problems seems to be that developers did not know of its existence. Also, the idea of
team organizers leverages the theory that social game elements would have positive effects.

Notably, having team organizers would not have to be a solution only for the gamification
system, but could also have been beneficial for the non-game feedback system, since users are
probably more likely to engage if encouraged by teammates than if encouraged only by emails
to a mailing list.

During system design, using team organizers was discussed but disregarded due to the
same reasons as social game elements were disregarded, as described above.

9.3 Possible method improvements
Due to this thesis project having many phases and a limited time frame, we have had to
make some sub-optimal decisions regarding the method – we acknowledge that this may
have affected the results.

A possible improvement to the user research method would have been to conduct the
questionnaire and interviews sequentially one after the other. This would have allowed us
to use the results from the first study, for example, the questionnaire results, as a basis for
designing the next study, for example, interview questions. Findings, and the validity of
the findings, could in this way be examined further; the results of the first study could be
supported or debunked by the second study.

Regarding the evaluation of the feedback system, an alternative method (which may or
may not have been an improvement) would be to test the system in two phases: first without
gamification and then with gamification. This approach is recommended by some gamifi-
cation studies [57] and has the advantage of using a larger test group since the user base is
never divided into groups. We instead chose the parallel evaluation approach because of time
constraints, and in order to avoid the risk of a “novelty effect”, i.e., that the system seems
more interesting and leads to higher engagement at the beginning of the deployment, which
may affect results when testing different features in different phases. The parallel approach,
with a control group, is also recommended by other gamification studies, such as Hamari et
al. [33]. We also considered our test group to be large enough to still give accurate results
when divided into two groups.

9.4 Alternative system design ideas
During the system design phase of this project, many different ideas were discussed for the
final feedback system solution as well as for the game design. While many of these have
already been mentioned and discussed previously, a few are evaluated further in this section.

129

9. Discussion

One alternative feedback system design would have been to ask for feedback on specific
Coverity warnings via robot comments in Gerrit, instead of using a general feedback form.
This is how feedback was collected in the MEAN [13] system. This approach would have
allowed developers to give feedback “closer” to the context where the issue appeared since
the robot comments would appear in the actual code that triggered the warning. Another
similar idea, with the same benefits, would have been to prompt feedback on warnings in the
Coverity HTML files where the warnings were displayed to the user. These approaches were
disregarded since we wanted to provide a general feedback form in order to get feedback also
on passed Coverity analyses, and we did not want to use both robot comments and a general
feedback form, since we wanted to minimize confusion and cognitive stress for users. The
approach was also disregarded since we wanted the system to be as non-intrusive as possible;
developers might have felt that the feedback prompts were more annoying if they happened
frequently with visible robot comments directly in the code display at Gerrit.

Another design choice that was discussed was the possibility of including a Gerrit vote
relating to the feedback system. If no feedback had been given on a change, this vote would
automatically have shown -1 on the change; when feedback had been given by some user,
the vote would automatically change to +1. An extreme solution would have been to not let
changes be merged if not having a +1 vote (as is the case of code review votes and similar),
which would have forced users to give feedback. Another option would be to have the vote
only to add users’ incentive to give feedback. However, all of these alternative solutions would
have made the feedback system much more intrusive, and likely been very detrimental to
developer satisfaction. There is also a risk that users would start giving nonsense feedback
only in order to get the +1 vote. Likely, this approach would also not have been recommended
or allowed by the Gerrit-responsible employees at Axis. Because of these issues, this design
choice was never seriously considered, but we found it to be an interesting discussion of how
user engagement could be increased on behalf of other system quality aspects.

Another design choice that was frequently discussed during the system design phase was
whether the game elements should be presented in an opt-in and opt-out manner. This was
often brought up as important by interview participants in our user research, though mainly
regarding competition elements. Originally, we planned to make it possible for a gamification
user to “leave” the gamification group and thus opt out of the game features, alternatively
providing the possibility of opting out of specific game elements such as the leaderboard. An
alternative was to use a default setting of not being in the leaderboard, and letting interested
users actively choose to participate. Data on how many opted in and out would also have
been useful for measuring the appreciation of different game elements. However, this was
disregarded in favor of making the game design anonymous and allowing users to “opt out”
simply by not using the system. If the system was to be deployed for much longer, we believe
it would be preferable to allow the user to customize which game elements they wanted to
participate in, seeing the vastly different opinions on gamification and specific game elements
among users.

9.5 Comparison to MEAN and Tricorder
As mentioned in the introduction of this report (Chapter 1.5), two main inspirations for our
feedback system were Google’s Tricorder and the MEAN system. With MEAN’s definition of

130

9.5 Comparison to MEAN and Tricorder

user engagement (number of clicks per generated robot comment, i.e., number of clicks per
generated warning to give feedback on), they have engagement numbers of 2.9% for MEAN
and 0.8% for Tricorder.

For our system, there are mainly two ways to calculate a similar user engagement percent-
age for comparison. First, we divide the number of submitted feedback forms by the total
number of Coverity analyses that could be given feedback on. This gives 66/1657 = 3.98%.
Second, we divide the number of times feedback was given on Coverity issues (warnings) by
the total number of issues possible to give feedback on. This gives 48/1164 = 4.12%.

Both these numbers indicate a comparative user engagement success of our feedback sys-
tem. However, due to differences in our system design compared to MEAN and Tricorder,
a few factors make it more difficult to directly compare these numbers. Notably, we started
collecting patchsets before it was possible for users to give feedback, meaning that some
forms likely were ignored because users did not visit the old patchsets anymore. However,
calculating user engagement by including only patchsets stored from deployment and on-
ward might also give misleading results, if some feedback submits were on patchsets created
before system deployment. Another reason for comparison difficulties is that more people
could interact with the feedback form in our implementation than in MEAN’s; for example,
people who are not owners or reviewers.

131

9. Discussion

132

Chapter 10

Conclusions

In this chapter, we present our conclusions to this thesis. First, we summarize our findings,
focusing on conclusions surrounding our research questions, then present some ideas of in-
terest for future work within this research area.

10.1 Summary of findings
This thesis answered five research questions regarding feedback on static analysis and the
gamification possibilities of this type of feedback collection.

When examining RQ1 (What does previous research say on the effectiveness of different gam-
ification methods?), we found that previous research shows that gamification may have some
promise for increasing user engagement, although criticism has been directed toward the ac-
curacy and validity of these findings. Gamification, in general, seems to have had the most
effect on tasks that previously has seen low user engagement. Meanwhile, findings related to
RQ2 (What does previous research say on usability issues with static analysis tools, and on giving feed-
back on software like these tools?) show that SCA tool engagement is often low due to multiple
usability issues, such as false positives and workflow integration issues. Giving feedback on
software also faces low user engagement due to things like poor timing of feedback requests
and the effort perceived to be too high.

Our user research confirmed multiple literature review findings, which aimed to answer
RQ3 (From a developer’s perspective, which aspects hinder interest and engagement with static analysis
tools and with giving feedback on these tools?). It was found that the perception and opinion of
SCA tools vary significantly between individuals and teams due to repository-specific SCA
problems. We saw similar reasons for low engagement as in the research, such as false positives
and configuration problems.

As an answer to RQ4 (In which ways can gamification be used to increase the engagement
with giving feedback on static analysis tools?), we developed a feedback system and gamification
solution following findings from previous steps, notably: closely integrated into developers’

133

10. Conclusions

usual workflow, not intrusive, having minimal playful user interface elements, and with an
anonymized leaderboard without stressing the competition element.

The feedback system results answered RQ5 (When evaluated at Axis Communications, does
gamification increase interest and engagement for giving feedback on static analysis tools?). In general,
it was found that while gamification did not particularly increase the number of participants,
it did increase user engagement among active users; the gamification group was found to give
147% more feedback than the control group and have slightly prolonged engagement time
with the system. It was also seen that gamification users interacted more with providing
feedback on things unrelated to them (such as static analyses for code where they were neither
the code owner nor a reviewer). These results, however, were not entirely supported by the
follow-up interviews, where most participants expressed no particular enthusiasm for the
gamification features.

10.2 Future work
Many possibilities exist for further research on the topic of feedback collection on SCA tools
and the gamification of these.

Foremost, the same study as done in this thesis could be conducted again but with the
results presented here used as a stepping stone, both for a better feedback system and a better
gamification solution. Some suggested method improvements are listed in Section 9.3; for
example, the experiment could run longer. Possible enhancements of the gamification solu-
tion are discussed in Chapter 9, e.g., using social game elements, pushing further to make the
system known and visible (since it seems appreciated by the few users that noticed the game
elements), and making the game elements more obvious for users. Since gamification seems
promising for increasing user engagement in feedback collection, but our system seems not
to have gotten the whole way, this could provide further insights into whether gamification,
if done correctly, is the way to go for increasing the amount of collected feedback.

If a similar experiment is done in the same context at Axis, this may also evaluate how
much the novelty effect of the gamification features mattered, if at all. Also, a more thorough
study could consider each game element individually to give a more accurate view of how
different game elements affected user engagement, motivation, and satisfaction.

Another topic on where gamification may be evaluated, and on which little research exists
today, is to gamify directly in static analysis tools, for making the users utilize tools as well.
While this is not the purpose of our study, the lack of such studies was noticed during our
literature review.

134

References

[1] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge. “Why
don’t software developers use static analysis tools to find bugs?” In: 2013 35th Inter-
national Conference on Software Engineering (ICSE). IEEE. 2013, pp. 672–681. doi: 10.
1109/ICSE.2013.6606613.

[2] Nasif Imtiaz, Akond Rahman, Effat Farhana, and Laurie Williams. “Challenges with
responding to static analysis tool alerts.” In: 2019 IEEE/ACM 16th International Confer-
ence on Mining Software Repositories (MSR). IEEE. 2019, pp. 245–249. doi: 10.1109/
MSR.2019.00049.

[3] Malik Almaliki, Cornelius Ncube, and Raian Ali. “The design of adaptive acquisition
of users feedback: An empirical study.” In: 2014 IEEE Eighth International Conference on
Research Challenges in Information Science (RCIS). IEEE. 2014, pp. 1–12. doi: 10.1109/
RCIS.2014.6861076.

[4] Kurt Schneider. “Focusing spontaneous feedback to support system evolution.” In: 2011
IEEE 19th International Requirements Engineering Conference. IEEE. 2011, pp. 165–174.doi:
10.1109/RE.2011.6051645.

[5] Melanie Stade, Farnaz Fotrousi, Norbert Seyff, and Oliver Albrecht. “Feedback gath-
ering from an industrial point of view.” In: 2017 IEEE 25th International Requirements
Engineering Conference (RE). IEEE. 2017, pp. 71–79. doi: 10.1109/RE.2017.9.

[6] Dora Dzvonyar, Stephan Krusche, Rana Alkadhi, and Bernd Bruegge. “Context-aware
user feedback in continuous software evolution.” In: Proceedings of the International
Workshop on Continuous Software Evolution and Delivery. 2016, pp. 12–18. doi: 10.1145/
2896941.2896952.

[7] Coverity. url: https://www.synopsys.com/software-integrity/security-
testing/static-analysis-sast.html (visited on 06/08/2023).

[8] Confluence. url: https://www.atlassian.com/software/confluence (visited
on 06/06/2023).

[9] Elastic. url: https://www.elastic.co (visited on 06/06/2023).

[10] Gerrit code review.url: https://www.gerritcodereview.com (visited on 06/06/2023).

135

https://doi.org/10.1109/ICSE.2013.6606613
https://doi.org/10.1109/ICSE.2013.6606613
https://doi.org/10.1109/MSR.2019.00049
https://doi.org/10.1109/MSR.2019.00049
https://doi.org/10.1109/RCIS.2014.6861076
https://doi.org/10.1109/RCIS.2014.6861076
https://doi.org/10.1109/RE.2011.6051645
https://doi.org/10.1109/RE.2017.9
https://doi.org/10.1145/2896941.2896952
https://doi.org/10.1145/2896941.2896952
https://www.synopsys.com/software-integrity/security-testing/static-analysis-sast.html
https://www.synopsys.com/software-integrity/security-testing/static-analysis-sast.html
https://www.atlassian.com/software/confluence
https://www.elastic.co
https://www.gerritcodereview.com

REFERENCES

[11] Gerrit code review for git. url: https://gerrit- review.googlesource.com/
Documentation (visited on 06/06/2023).

[12] Jenkins. url: https://www.jenkins.io (visited on 06/06/2023).

[13] Anton Ljungberg and David Åkerman. Data-driven Program Analysis Deployment. 2020.
url: https : / / lup . lub . lu . se / luur / download ? func = downloadFile &
recordOId=9021479&fileOId=9021484.

[14] Anton Ljungberg, David Åkerman, Emma Söderberg, Gustaf Lundh, Jon Sten, and
Luke Church. “Case study on data-driven deployment of program analysis on an open
tools stack.” In: 2021 IEEE/ACM 43rd International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP). IEEE. 2021, pp. 208–217. doi: 10.1109/
ICSE-SEIP52600.2021.00030.

[15] Caitlin Sadowski, Jeffrey Van Gogh, Ciera Jaspan, Emma Söderberg, and Collin Win-
ter. “Tricorder: Building a program analysis ecosystem.” In: 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering. Vol. 1. IEEE. 2015, pp. 598–608. doi:
10.1109/ICSE.2015.76.

[16] Kevin Andersson and Mohammad Abo Al Anein. Data-driven Deployment of Program
Analysis Fixes. 2021. url: https://lup.lub.lu.se/luur/download?func=
downloadFile&recordOId=9067212&fileOId=9067213.

[17] Caitlin Sadowski, Edward Aftandilian, Alex Eagle, Liam Miller-Cushon, and Ciera
Jaspan. “Lessons from building static analysis tools at Google.” In: Communications of
the ACM 61.4 (2018), pp. 58–66. doi: 10.1145/3188720.

[18] Carmine Vassallo, Sebastiano Panichella, Fabio Palomba, Sebastian Proksch, Andy
Zaidman, and Harald C Gall. “Context is king: The developer perspective on the usage
of static analysis tools.” In: 2018 IEEE 25th International Conference on Software Analysis,
Evolution and Reengineering (SANER). IEEE. 2018, pp. 38–49. doi: 10.1109/SANER.
2018.8330195.

[19] Visual Studio Code.url: https://code.visualstudio.com/ (visited on 06/11/2023).

[20] Pylint. url: https://pypi.org/project/pylint/ (visited on 06/11/2023).

[21] mypy. url: https://mypy-lang.org/ (visited on 06/11/2023).

[22] clangd. url: https://clangd.llvm.org/ (visited on 06/11/2023).

[23] PEP 8. url: https://peps.python.org/pep-0008/ (visited on 06/11/2023).

[24] clang-tidy. url: https://clang.llvm.org/extra/clang- tidy/ (visited on
06/11/2023).

[25] ESLint. url: https://eslint.org/ (visited on 06/11/2023).

[26] Black. url: https://pypi.org/project/black/ (visited on 06/11/2023).

[27] Sparse. url: https : / / sparse . docs . kernel . org / en / latest/ (visited on
06/11/2023).

[28] Cppcheck. url: https://cppcheck.sourceforge.io/ (visited on 06/11/2023).

[29] Axis History. url: https://www.axis.com/about-axis/history (visited on
05/30/2023).

136

https://gerrit-review.googlesource.com/Documentation
https://gerrit-review.googlesource.com/Documentation
https://www.jenkins.io
https://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=9021479&fileOId=9021484
https://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=9021479&fileOId=9021484
https://doi.org/10.1109/ICSE-SEIP52600.2021.00030
https://doi.org/10.1109/ICSE-SEIP52600.2021.00030
https://doi.org/10.1109/ICSE.2015.76
https://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=9067212&fileOId=9067213
https://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=9067212&fileOId=9067213
https://doi.org/10.1145/3188720
https://doi.org/10.1109/SANER.2018.8330195
https://doi.org/10.1109/SANER.2018.8330195
https://code.visualstudio.com/
https://pypi.org/project/pylint/
https://mypy-lang.org/
https://clangd.llvm.org/
https://peps.python.org/pep-0008/
https://clang.llvm.org/extra/clang-tidy/
https://eslint.org/
https://pypi.org/project/black/
https://sparse.docs.kernel.org/en/latest/
https://cppcheck.sourceforge.io/
https://www.axis.com/about-axis/history

REFERENCES

[30] Alberto Mora, Daniel Riera, Carina Gonzalez, and Joan Arnedo-Moreno. “A litera-
ture review of gamification design frameworks.” In: 2015 7th International Conference on
Games and Virtual Worlds for Serious applications (VS-Games). IEEE. 2015, pp. 1–8. doi:
10.1109/VS-GAMES.2015.7295760.

[31] Tommaso Dal Sasso, Andrea Mocci, Michele Lanza, and Ebrisa Mastrodicasa. “How
to gamify software engineering.” In: 2017 IEEE 24th International Conference on Software
Analysis, Evolution and Reengineering (SANER). IEEE. 2017, pp. 261–271. doi: 10.1109/
SANER.2017.7884627.

[32] Benedikt Morschheuser, Lobna Hassan, Karl Werder, and Juho Hamari. “How to de-
sign gamification? A method for engineering gamified software.” In: Information and
Software Technology 95 (2018), pp. 219–237. doi: 10.1016/j.infsof.2017.10.015.

[33] Juho Hamari, Jonna Koivisto, and Harri Sarsa. “Does gamification work?–A literature
review of empirical studies on gamification.” In: 2014 47th Hawaii International Confer-
ence on System Cciences. IEEE. 2014, pp. 3025–3034. doi: 10.1109/HICSS.2014.377.

[34] Rodrigo Henrique Barbosa Monteiro, Maurício Ronny de Almeida Souza, Sandro Ronaldo
Bezerra Oliveira, Carlos dos Santos Portela, and Cesar Elias de Cristo Lobato. “The di-
versity of gamification evaluation in the software engineering education and industry:
trends, comparisons and gaps.” In: 2021 IEEE/ACM 43rd International Conference on Soft-
ware Engineering: Software Engineering Education and Training (ICSE-SEET). IEEE. 2021,
pp. 154–164. doi: 10.1109/ICSE-SEET52601.2021.00025.

[35] Gustavo F Tondello, Rina R Wehbe, Lisa Diamond, Marc Busch, Andrzej Marczewski,
and Lennart E Nacke. “The gamification user types hexad scale.” In: Proceedings of the
2016 Annual Symposium on Computer-Human Interaction in Play. New York, NY, USA:
Association for Computing Machinery, 2016, pp. 229–243.

[36] Virginia Braun and Victoria Clarke. Thematic analysis. American Psychological Asso-
ciation, 2012.

[37] Gustavo F Tondello, Alberto Mora, Andrzej Marczewski, and Lennart E Nacke. “Em-
pirical validation of the gamification user types hexad scale in English and Spanish.” In:
International Journal of Human-Computer Studies 127 (2019), pp. 95–111. issn: 1071-5819.
doi: 10.1016/j.ijhcs.2018.10.002.

[38] Richard Bartle. “Hearts, clubs, diamonds, spades: Players who suit MUDs.” In: Journal
of MUD Research 1.1 (1996).

[39] Nick Yee, Nicolas Ducheneaut, and Les Nelson. “Online gaming motivations scale: de-
velopment and validation.” In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. New York, NY, USA: Association for Computing Machinery, 2012,
pp. 2803–2806. doi: 10.1145/2207676.2208681.

[40] Klaas-Jan Stol, Mario Schaarschmidt, and Shelly Goldblit. “Gamification in software
engineering: The mediating role of developer engagement and job satisfaction.” In:
Empirical Software Engineering 27.2 (2022), p. 35. doi: 10.1007/s10664-021-10062-
w.

137

https://doi.org/10.1109/VS-GAMES.2015.7295760
https://doi.org/10.1109/SANER.2017.7884627
https://doi.org/10.1109/SANER.2017.7884627
https://doi.org/10.1016/j.infsof.2017.10.015
https://doi.org/10.1109/HICSS.2014.377
https://doi.org/10.1109/ICSE-SEET52601.2021.00025
https://doi.org/10.1016/j.ijhcs.2018.10.002
https://doi.org/10.1145/2207676.2208681
https://doi.org/10.1007/s10664-021-10062-w
https://doi.org/10.1007/s10664-021-10062-w

REFERENCES

[41] Mohammad Tahaei, Kami Vaniea, Konstantin Beznosov, and Maria K Wolters. “Se-
curity notifications in static analysis tools: developers’ attitudes, comprehension, and
ability to act on them.” In: Proceedings of the 2021 CHI Conference on Human Factors in
Computing Systems. 2021, pp. 1–17. doi: 10.1145/3411764.3445616.

[42] Lisa Nguyen Quang Do, James R Wright, and Karim Ali. “Why do software developers
use static analysis tools? A user-centered study of developer needs and motivations.”
In: IEEE Transactions on Software Engineering 48.3 (2020), pp. 835–847. doi: 10.1109/
TSE.2020.3004525.

[43] Maria Christakis and Christian Bird. “What developers want and need from program
analysis: An empirical study.” In: Proceedings of the 31st IEEE/ACM International Confer-
ence on Automated Software Engineering. 2016, pp. 332–343. doi: 10.1145/2970276.
2970347.

[44] Marcus Nachtigall, Michael Schlichtig, and Eric Bodden. “A large-scale study of us-
ability criteria addressed by static analysis tools.” In: Proceedings of the 31st ACM SIG-
SOFT International Symposium on Software Testing and Analysis. 2022, pp. 532–543. doi:
10.1145/3533767.3534374.

[45] Tukaram Muske and Alexander Serebrenik. “Survey of approaches for postprocessing
of static analysis alarms.” In: ACM Computing Surveys (CSUR) 55.3 (2022), pp. 1–39. doi:
10.1145/3494521.

[46] Farnaz Fotrousi, Samuel A Fricker, and Markus Fiedler. “The effect of requests for user
feedback on Quality of Experience.” In: Software Quality Journal 26 (2018), pp. 385–415.
doi: 10.1007/s11219-017-9373-7.

[47] Dennis Pagano and Walid Maalej. “User feedback in the sppstore: An empirical study.”
In: 2013 21st IEEE International Requirements Engineering Conference (RE). IEEE. 2013,
pp. 125–134. doi: 10.1109/RE.2013.6636712.

[48] Agnis Stibe and Harri Oinas-Kukkonen. “Using social influence for motivating cus-
tomers to generate and share feedback.” In: Persuasive Technology: 9th International Con-
ference, PERSUASIVE 2014, Padua, Italy, May 21-23, 2014. Proceedings 9. Springer. 2014,
pp. 224–235. doi: 10.1007/978-3-319-07127-5_19.

[49] Joost Broekens, Alina Pommeranz, Pascal Wiggers, and Catholijn M Jonker. “Factors
influencing user motivation for giving online preference feedback.” In: 5th Multidisci-
plinary Workshop on Advances in Preference Handling (MPREF’10). 2010.

[50] Sebastian Deterding, Dan Dixon, Rilla Khaled, and Lennart Nacke. “From game design
elements to gamefulness: Defining ’gamification’.” In: Proceedings of the 15th International
Academic MindTrek Conference: Envisioning Future Media Environments. 2011, pp. 9–15.
doi: 10.1145/2181037.2181040.

[51] Carlos Futino Barreto and César França. “Gamification in software engineering: A lit-
erature review.” In: 2021 IEEE/ACM 13th International Workshop on Cooperative and Hu-
man Aspects of Software Engineering (CHASE). IEEE. 2021, pp. 105–108. doi: 10.1109/
CHASE52884.2021.00020.

[52] Kevin Werbach. “(Re)defining gamification: A process approach.” In: Persuasive Tech-
nology: 9th International Conference, PERSUASIVE 2014, Padua, Italy, May 21-23, 2014. Pro-
ceedings 9. Springer. 2014, pp. 266–272. doi: 10.1007/978-3-319-07127-5_23.

138

https://doi.org/10.1145/3411764.3445616
https://doi.org/10.1109/TSE.2020.3004525
https://doi.org/10.1109/TSE.2020.3004525
https://doi.org/10.1145/2970276.2970347
https://doi.org/10.1145/2970276.2970347
https://doi.org/10.1145/3533767.3534374
https://doi.org/10.1145/3494521
https://doi.org/10.1007/s11219-017-9373-7
https://doi.org/10.1109/RE.2013.6636712
https://doi.org/10.1007/978-3-319-07127-5_19
https://doi.org/10.1145/2181037.2181040
https://doi.org/10.1109/CHASE52884.2021.00020
https://doi.org/10.1109/CHASE52884.2021.00020
https://doi.org/10.1007/978-3-319-07127-5_23

REFERENCES

[53] Jane McGonigal. Reality is broken: Why games make us better and how they can change the
world. Penguin, 2011.

[54] Titus Barik, Emerson Murphy-Hill, and Thomas Zimmermann. “A perspective on
blending programming environments and games: Beyond points, badges, and leader-
boards.” In: 2016 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). IEEE. 2016, pp. 134–142. doi: 10.1109/VLHCC.2016.7739676.

[55] Gabriela Martins de Jesus, Fabiano Cutigi Ferrari, Daniel de Paula Porto, and Sandra
Camargo Pinto Ferraz Fabbri. “Gamification in software testing: A characterization
study.” In: Proceedings of the III Brazilian Symposium on Systematic and Automated Software
Testing. New York, NY, USA: Association for Computing Machinery, 2018, pp. 39–48.
doi: 10.1145/3266003.3266007.

[56] Stefan Stieglitz, Christoph Lattemann, Susanne Robra-Bissantz, Rüdiger Zarnekow,
and Tobias Brockmann. Gamification using game elements in serious contexts. New York,
NY, USA: Springer International Publishing, 2017.

[57] Andrés Francisco Aparicio, Francisco Luis Gutiérrez Vela, José Luis González Sánchez,
and José Luis Isla Montes. “Analysis and application of gamification.” In: Proceedings
of the 13th International Conference on Interacción Persona-Ordenador. 2012, pp. 1–2. doi:
10.1145/2379636.2379653.

[58] Michael Sailer, Jan Ulrich Hense, Sarah Katharina Mayr, and Heinz Mandl. “How gam-
ification motivates: An experimental study of the effects of specific game design ele-
ments on psychological need satisfaction.” In: Computers in human behavior 69 (2017),
pp. 371–380. doi: 10.1016/j.chb.2016.12.033.

[59] Fabian Groh. “Gamification: State of the art definition and utilization.” In: Institute of
Media Informatics Ulm University 39 (2012), p. 31.

[60] Lisa Nguyen Quang Do and Eric Bodden. “Gamifying static analysis.” In: Proceedings
of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering. 2018, pp. 714–718. doi: 10.1145/
3236024.3264830.

[61] Matthieu Foucault, Xavier Blanc, Jean-Rémy Falleri, and Margaret-Anne Storey. “Fos-
tering good coding practices through individual feedback and gamification: An in-
dustrial case study.” In: Empirical Software Engineering 24 (2019), pp. 3731–3754. doi:
10.1007/s10664-019-09719-4.

[62] Ali Darejeh and Siti Salwah Salim. “Gamification solutions to enhance software user
engagement–a systematic review.” In: International Journal of Human-Computer Interac-
tion 32.8 (2016), pp. 613–642. doi: 10.1080/10447318.2016.1183330.

[63] Gabe Zichermann and Christopher Cunningham. Gamification by design: Implementing
game mechanics in web and mobile apps. Sebastopol, CA, USA: O’Reilly Media, Inc., 2011.

[64] Karl M Kapp. The gamification of learning and instruction: Game-based methods and strate-
gies for training and education. John Wiley & Sons, 2012.

[65] Rita Marques, Gonçalo Costa, Miguel Mira da Silva, Daniel Gonçalves, and Pedro
Gonçalves. “A gamification solution for improving Scrum adoption.” In: Empirical Soft-
ware Engineering 25.4 (2020), pp. 2583–2629. doi: 10.1007/s10664-020-09816-9.

139

https://doi.org/10.1109/VLHCC.2016.7739676
https://doi.org/10.1145/3266003.3266007
https://doi.org/10.1145/2379636.2379653
https://doi.org/10.1016/j.chb.2016.12.033
https://doi.org/10.1145/3236024.3264830
https://doi.org/10.1145/3236024.3264830
https://doi.org/10.1007/s10664-019-09719-4
https://doi.org/10.1080/10447318.2016.1183330
https://doi.org/10.1007/s10664-020-09816-9

REFERENCES

[66] Will Snipes, Anil R Nair, and Emerson Murphy-Hill. “Experiences gamifying devel-
oper adoption of practices and tools.” In: Companion Proceedings of the 36th International
Conference on Software Engineering. New York, NY, USA: Association for Computing
Machinery, 2014, pp. 105–114. doi: 10.1145/2591062.2591171.

[67] Shawn Nikkila, Silvan Linn, Hari Sundaram, and Aisling Kelliher. “Playing in taskville:
Designing a social game for the workplace.” In: CHI 2011 Workshop on Gamification: Using
Game Design Elements in Non-Game Contexts. 2011, pp. 1–4.

[68] Oki Priyadi, Insan Ramadhan, Dana Indra Sensuse, Ryan Randy Suryono, and Kautsa-
rina. “Gamification in software development: Systematic literature review.” In: Lecture
Notes on Data Engineering and Communications Technologies 147 (2023), pp. 386–398. doi:
10.1007/978-3-031-15191-0_37.

[69] Oscar Pedreira, Félix García, Nieves Brisaboa, and Mario Piattini. “Gamification in
software engineering–A systematic mapping.” In: Information and Software Technology
57 (2015), pp. 157–168. doi: 10.1016/j.infsof.2014.08.007.

[70] Ashton Anderson, Daniel Huttenlocher, Jon Kleinberg, and Jure Leskovec. “Steering
user behavior with badges.” In: Proceedings of the 22nd International Conference on World
Wide Web. New York, NY, USA: Association for Computing Machinery, 2013, pp. 95–
106. doi: 10.1145/2488388.2488398.

[71] Silviya Dencheva, Christian R Prause, and Wolfgang Prinz. “Dynamic self-moderation
in a corporate wiki to improve participation and contribution quality.” In: ECSCW
2011: Proceedings of the 12th European Conference on Computer Supported Cooperative Work,
24-28 September 2011, Aarhus Denmark. Springer. 2011, pp. 1–20. doi: 10.1007/978-
0-85729-913-0_1.

[72] Daniel de Paula Porto, Gabriela Martins de Jesus, Fabiano Cutigi Ferrari, and San-
dra Camargo Pinto Ferraz Fabbri. “Initiatives and challenges of using gamification
in software engineering: A Systematic Mapping.” In: Journal of Systems and Software
173.110870 (2021). issn: 0164-1212. doi: 10.1016/j.jss.2020.110870.

[73] Katie Seaborn and Deborah I Fels. “Gamification in theory and action: A survey.” In:
International Journal of Human-Computer Studies 74 (2015), pp. 14–31. issn: 1071-5819.
doi: 10.1016/j.ijhcs.2014.09.006.

[74] Wael El Gammal, Nada Sherief, and Walid Abdelmoez. “User-based adaptive software
development for gamified systems.” In: Proceedings of the 2020 3rd International Confer-
ence on Geoinformatics and Data Analysis. New York, NY, USA: Association for Com-
puting Machinery, 2020, pp. 115–122. doi: 10.1145/3397056.3397088.

[75] Gartner. Gartner says by 2014, 80 percent of current gamified applications will fail to meet
business objectives primarily due to poor design. Press Release. Available at: https://cdn.
pressebox.de/a/3467bdd08fcb2cf1/attachments/0535150.attachment/
filename/2012GamficiationSpecialReport-November+27+EMEA.pdf. Nov.
2012.

[76] Andreas Lieberoth. “Shallow gamification: Testing psychological effects of framing an
activity as a game.” In: Games and Culture 10.3 (2015), pp. 229–248. doi: 10.1177/
1555412014559978.

140

https://doi.org/10.1145/2591062.2591171
https://doi.org/10.1007/978-3-031-15191-0_37
https://doi.org/10.1016/j.infsof.2014.08.007
https://doi.org/10.1145/2488388.2488398
https://doi.org/10.1007/978-0-85729-913-0_1
https://doi.org/10.1007/978-0-85729-913-0_1
https://doi.org/10.1016/j.jss.2020.110870
https://doi.org/10.1016/j.ijhcs.2014.09.006
https://doi.org/10.1145/3397056.3397088
https://cdn.pressebox.de/a/3467bdd08fcb2cf1/attachments/0535150.attachment/filename/2012GamficiationSpecialReport-November+27+EMEA.pdf
https://cdn.pressebox.de/a/3467bdd08fcb2cf1/attachments/0535150.attachment/filename/2012GamficiationSpecialReport-November+27+EMEA.pdf
https://cdn.pressebox.de/a/3467bdd08fcb2cf1/attachments/0535150.attachment/filename/2012GamficiationSpecialReport-November+27+EMEA.pdf
https://doi.org/10.1177/1555412014559978
https://doi.org/10.1177/1555412014559978

REFERENCES

[77] Wojciech Frącz and Jacek Dajda. “Developers’ game: A preliminary study concerning
a tool for automated developers assessment.” In: 2018 IEEE International Conference on
Software Maintenance and Evolution (ICSME). IEEE. 2018, pp. 695–699. doi: 10.1109/
ICSME.2018.00079.

[78] Scott Grant and Buddy Betts. “Encouraging user behaviour with achievements: an em-
pirical study.” In: 2013 10th Working Conference on Mining Software Repositories (MSR).
IEEE. 2013, pp. 65–68. doi: 10.1109/MSR.2013.6624007.

[79] Mathias Eggert and Melina Kriska. “Gamification for software development processes–
relevant affordances and design principles”. In: Proceedings of the 55th Hawaii Interna-
tional Conference on System Sciences. 2022.

[80] Malik Almaliki, Nan Jiang, Raian Ali, and Fabiano Dalpiaz. “Gamified culture-aware
feedback acquisition.” In: 2014 IEEE/ACM 7th International Conference on Utility and
Cloud Computing. IEEE. 2014, pp. 624–625. doi: 10.1109/UCC.2014.99.

[81] Omar Azouz and Youssef Lefdaoui. “Gamification design frameworks: A systematic
mapping study.” In: 2018 6th International Conference on Multimedia Computing and Sys-
tems (ICMCS). IEEE. 2018, pp. 1–9. doi: 10.1109/ICMCS.2018.8525900.

[82] Scott Nicholson. “A recipe for meaningful gamification.” In: Gamification in Education
and Business (2015), pp. 1–20. doi: 10.1007/978-3-319-10208-5_1.

[83] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell, and An-
ders Wesslén. Experimentation in software engineering. Springer Science & Business Me-
dia, 2012.

141

https://doi.org/10.1109/ICSME.2018.00079
https://doi.org/10.1109/ICSME.2018.00079
https://doi.org/10.1109/MSR.2013.6624007
https://doi.org/10.1109/UCC.2014.99
https://doi.org/10.1109/ICMCS.2018.8525900
https://doi.org/10.1007/978-3-319-10208-5_1

REFERENCES

142

Appendices

143

Appendix A

Interview consent form

This appendix shows the information given in the consent form signed by the authors and
each interview participant during our semi-structured user research interviews. The actual
consent forms also included space for signatures at the end of the form.

Consent to Take Part of Research
Project: Gamifying Security in Software Development (Thesis Project).

Research team: Emma Dahlbo (emmada@axis.com), Essie Lundmark (essiel@axis.com), Emma
Söderberg (emma.soderberg@cs.lth.se), Lisa Eneroth (lisa.eneroth@axis.com).

Purpose: Interview about static code analysis tool use and experience, and gamification pref-
erences.

Participant’s role in the study: Participating in an interview for user research in the project.

Responsibility of the researchers
Before the interview begins, a member of the research team will have:

• Explained the purpose of the interview and the way in which any generated data will
be handled.

• Explained what will happen during the interview.

• Explained the rights of the participant, including the right to withdraw at any time.

What will happen to the data
During the interview, your answers to the questions and discussions will be audio recorded.
All data gathered from the interview will be kept confidential, and only made available to

145

A. Interview consent form

members of the research team, or in case external quality assurance takes place, to assessors
under the same confidentiality conditions.

Excerpts of this data and aggregated results will be used in publications and presentations,
but under no circumstances will personally identifiable information be included in these
publications.

Rights of the participant
I understand the purpose of the interview as explained to me by the researcher and agree
that I can opt-out at any time, without consequence. If I choose to do this my data will be
discarded. I understand that I can decline to answer any questions.

I agree that my answers to questions during the interview will be recorded and that this data
will be handled in accordance with the section above.

146

Appendix B

Interview protocol

This appendix contains the interview protocol used during the more thorough eight inter-
views of our user research. Before the start of each interview, the interviewee was informed
of the aim of the study and their rights, in accordance with the consent form presented in
Appendix A. Then, questions were asked according to the subsections below. Since the in-
terviews were semi-structured, questions and follow-up questions varied slightly between
participants, based on their answers and the interviewer’s previous knowledge of the partic-
ipant.

Note that all questions were asked in Swedish since all participants were Swedish-speaking.
Both the translations and the original Swedish questions are thus offered below.

B.1 Background questions
• Which team at Axis do you work at? / Vilket team på Axis jobbar du i?

• What’s your role in the team? / Vilken roll har du i ditt team?

• How long have you been there? / Hur länge har du varit där?

• How long have you worked at Axis? / Hur länge har du jobbat på Axis?

• How long have you worked with development? / Hur länge har du jobbat med utveckling?

B.2 SCA tool questions
• Which tool do you use for code review? / Vilket verktyg använder ni för code review?

• What static code analysis tools do you use in your work? (E.g., Coverity.) / Vilka statiska
kodanalysverktyg använder du i ditt arbete?

147

B. Interview protocol

• Where in your workflow do you use SCA tools? [Examples: IDE, Git hooks, Gerrit,
Jenkins] / Var i ditt arbetsflöde/setup använder du dessa verktyg?

• How much do you use these tools? / Hur mycket använder du dessa verktyg?

• How long is your experience with static code analysis tools? / Hur lång erfarenhet har
du med statiska kodanalysverktyg?

• What are your motivations to use SCA tools? / Vad motiverar dig till att använda statiska
kodanalysverktyg?

• Would you still use these SCA tools if it was not enforced by your team or the organiza-
tion? / Skulle du ha använt dessa statiska kodanalysverktyg även om det inte var obligatoriskt
inom ditt team eller organisationen?

• What is your general experience when working with SCA tools at Axis? What is pos-
itive, what is negative? / Hur skulle du beskriva din upplevelse av att jobba med statiska
kodanalysverktyg på Axis? Vad är positivt, vad är negativt?

• Which of the SCA tools that you use do you find useful, or not useful, and in which
ways? / Vilka av de statiska kodanalysverktyg som du använder tycker du är användbara, och
inte användbara, och på vilka sätt?

• Are there many false positives? (I.e., the analyzer warns about something which is not
actually erroneous?) / Är det många falska positiva? (D.v.s. att ett verktyg varnar om något
som egentligen inte är felaktigt.)

• Is it possible to suppress warnings? Should it be? / Är det möjligt att stänga av specifika
varningar? Borde det vara?

• What do you think of the warning messages? Do they give enough information to
understand and fix the problem? Are they clearly written? / Vad tycker du om varn-
ingsmeddelandena? Ger de tillräckligt med information för att förstå och fixa problemen? Är
de tydligt skrivna?

• How often do you find that a warning is difficult to understand? / Hur ofta upplever du
att en varning är svår att förstå?

• What do you do if a warning is difficult to understand? [Examples: Leave for later,
ask for help, ignore, research and fix, suppress the warning.] / Vad gör du om du om en
varning är svår att förstå?

• What do you do if you suspect that a warning is a false positive? / Vad gör du om du
misstänker att en varning är en falsk positiv?

• Would you like a way to offer feedback to the system, for example on which warnings
are useful and not? / Skulle du vilja ha ett sätt att ge feedback till systemet, t.ex. på vilka
varningar som är användbara och inte?

• Is there anything that do you wish existed but is not currently available in the tools? /
Finns det något du önskar fanns i verktygen som inte erbjuds i nuläget?

148

B.3 Gamification questions

B.3 Gamification questions
Before these questions, a short explanation was given on what gamification is and examples
on how we might use it in our thesis, in order to give the participants some more context on
the subject.

• Would you appreciate a playful user interface inside your SCA tool setup? (For exam-
ple, cute monsters representing bugs.) / Skulle du uppskatta ett ‘playful user interface’ i
dina statiska kodanalysverktyg? (T.ex. söta små monster som representerar buggar.)

• Would you appreciate a playful user interface if it was on a separate website but not
visible in your development setup? / Skulle du uppskatta ett ‘playful user interface’ på en
separat gamification-hemsida, som inte påverkar din utvecklings-setup?

• Would you appreciate playful competition at the workplace, for example, leaderboards
on who fixed the most SCA-tool warnings last week? / Uppskattar du att tävla mot andra
på jobbet för skojs skull, t.ex. med en leaderboard som visar vem som fixade flest kodanalys-
varningar förra veckan?

• Have you experienced any previous playful competition at the workplace? How did
you experience that? / Har ni haft någon tidigare liknande tävling på jobbet? Hur upplevde
du det?

• Do you appreciate such competition within your own team? / Uppskattar du sådana
tävlingar inom ditt egna team?

• Do you appreciate such competition on an organizational level? / Uppskattar du sådan
tävling på företagsnivå?

• Do you appreciate such competition if it was on a team-vs-team level, where your team
competes together? / Uppskattar du sådan tävling team-mot-team, där ditt team tävlar
tillsammans?

• What do you think of sharing your data on a team-level, for example by showing leader-
boards and individual scores for team members? / Vad tycker du om att dela din data inom
ditt eget team, t.ex. med leaderboards och individuella poäng synliga för andra teamarbetare?

• What do you think of sharing your data on an organizational level, for example by
showing leaderboards and individual scores for everyone at Axis? / Vad tycker du om att
dela din data med hela organisationen, t.ex. med leaderboards och individuella poäng synliga
för alla på Axis?

• What do you think of avatars as an anonymization technique, for example, if you were
visible on a leaderboard but with a chosen name and a profile picture of an animal? /
Vad tycker du om avatarer som anonymiserings-teknik, t.ex. om du var synlig på en leader-
board, men med ett taget namn och en profilbild på ett djur?

• What do you think of sharing your data, but keeping it anonymized, for example by
only showing a mean score of everyone at Axis? / Vad tycker du om att dela din data, men
hålla den anonym, t.ex. bara genom att visa anonym statistik för alla på Axis?

149

B. Interview protocol

B.4 End question
• Is there anything you want to add, or ask about? / Finns det något du vill tillägga, eller

fråga om?

150

Appendix C

Questionnaire

This appendix presents the questionnaire used in this thesis’ user research phase. All ques-
tions, except the control variable questions, were graded on a 7-point Likert scale. At the
beginning of each section, the information displayed to the user before the questions is also
shown, in cursive.

Note that the questions in the Hexad player type section (Section C.2) are taken directly
from the Hexad framework as described by Tondello et al. [37], and are depicted here only
for readability.

C.1 Control variables
1. Age

(a) 18–25

(b) 26–30

(c) 31–40

(d) 41–50

(e) 51–60

(f) 60+

(g) Prefer not to say

2. Sex

(a) Male

(b) Female

(c) Other

151

C. Questionnaire

(d) Prefer not to say

3. For how long have you worked in development?

(a) 0–2 years

(b) 3–5 years

(c) 6–9 years

(d) 10–20 years

(e) 20+ years

C.2 Hexad player types
Below are 24 questions that examine what “player type” you most resemble, according to the Hexad
framework by Marczewski. (Andrzej Marczewski. 2015. “User Types”. In Even Ninja Monkeys Like
to Play: Gamification, Game Thinking & Motivational Design. CreateSpace Independent Publishing
Platform, 69-84.)

4. I like helping others to orient themselves in new situations.

5. Interacting with others is important to me.

6. The wellbeing of others is important to me.

7. Being independent is important to me.

8. I like being part of a team.

9. I like overcoming obstacles.

10. I like sharing my knowledge.

11. It is important to me to follow my own path.

12. It makes me happy if I am able to help others.

13. It is important to me to feel like I am part of a community.

14. Rewards are a great way to motivate me.

15. I often let my curiosity guide me.

16. Opportunities for self expression are important to me.

17. I enjoy group activities.

18. I enjoy emerging victorious out of difficult circumstances.

19. I like to provoke.

20. It is important to me to continuously improve my skills.

152

C.3 Leaving feedback on static code analysis tools

21. I dislike following rules.

22. I like mastering difficult tasks.

23. I like competitions where a price can be won.

24. If the reward is sufficient I will put in the effort.

25. I see myself as a rebel.

26. Return of investment is important to me.

27. I like to question the status quo.

If you want to receive the results of this test via email, you can enter your email address below. This
means that your results from the entire survey will be linked to your email address non-anonymously
– however, it will only be used for the purpose of sending you your results.

C.3 Leaving feedback on static code analy-
sis tools

28. I would like to leave feedback on static code analysis warnings.

29. I would like to see others’ feedback on static code analysis warnings.

30. I am motivated to leave multiple-choice feedback, for example to mark a warning as
“false positive”

31. I am motivated to leave text feedback, for example describe why a warning is a false
positive.

32. I feel more motivated to leave feedback if it can help other users.

33. I feel more motivated to leave feedback if it can directly improve the system.

34. I feel more motivated to leave feedback if there is no other feedback on the topic. E.g.,
voting on a warning to be marked as a false positive if there are no previous votes.

35. I feel more motivated to leave feedback if there is already previous feedback that is
similar to my own opinion. E.g., voting on a warning to be marked as a false positive
if previous voters are of a similar opinion.

36. I feel more motivated to leave feedback if there is already previous feedback that is
different from my own opinion. E.g., voting on a warning to be marked as a false
positive if previous voters are of a different opinion.

C.4 GDPR
37. I allow for my data to be stored for the duration of this master thesis, in compliance

with GDPR.

153

C. Questionnaire

154

Appendix D

Chat interview protocol

This appendix presents the chat interview protocol. The participants were contacted via
Microsoft Teams and sent both a short informed consent message and some questions, as
presented in the sections below.

Note that all questions were written in Swedish since all participants were Swedish-
speaking. Both the translations and the original Swedish questions are thus offered below.

D.1 Informed consent
If you want, we would appreciate you answering a few questions here via Teams about your
experience with our ongoing feedback collection in Gerrit (for our master’s thesis). The an-
swers would, in that case, be saved (confidentially), and used in our report and presentation,
possibly as direct quotes, but not connect to your identity. / Om du vill får du gärna svara
på lite frågor här via Teams om dina erfarenheter. Svaren skulle i så fall sparas (konfidentiellt), och
användas i vår rapport och presentation, kanske som direkta citat, men inte kopplas till din identitet.

D.2 Questions
1. Did you leave feedback at any point via the form in Gerrit? Why/why not? / Lämnade

du feedback någon gång via formuläret i Gerrit? Varför/varför inte?

2. Did you feel there was any purpose for you to give feedback? / Kände du att det fanns
något syfte för dig att ge feedback?

3. What influenced your motivation to give/not give feedback? / Vad påverkade din moti-
vation till att ge/inte ge feedback?

155

D. Chat interview protocol

4. Did you appreciate the feedback system? Did you find it disruptive in Gerrit? Why/why
not? / Uppskattade du feedback-systemet? Upplevde du det som störande i Gerrit? Var-
för/varför inte?

5. Did you visit the Confluence space? If yes, what did you think of it? If no, why not? /
Besökte du Confluence-sidan? Om ja, vad tyckte du om den? Om nej, varför inte?

6. Do you know how your team interacted with our project? Was it mentioned in the
team? / Vet du hur ditt team interagerade kring vårt projekt? Nämndes det i teamet?

7. Do you have any other thoughts or opinions? / Har du några andra tankar eller åsikter?

Were you one of the users who had access to gamification features? If so, we have a few more
questions: / Tillhörde du en av de användare som hade tillgång till gamification features? Om ja,
så har vi några fler frågor:

8. Did you notice any of the gamification features? How? / Märkte du något av gamification-
funktionerna? Hur?

9. What did you think of the gamification features? Did you like/dislike them? / Vad
tyckte du om gamification-funktionerna? Gillade/ogillade du dem?

10. Did you feel that the gamification features motivated you to give feedback? Why/why
not? / Upplevde du att gamification-funktionerna motiverade dig att ge feedback? Varför/varför
inte?

156

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2023-06-19

EXAMENSARBETE Gamifying User Feedback Collection on Static Analysis Tools
STUDENTER Emma Dahlbo, Essie Lundmark
HANDLEDARE Emma Söderberg (LTH), Lisa Eneroth (Axis)
EXAMINATOR Martin Höst (LTH)

Samla feedback på statisk kodanalys -
kan det göras engagerande?

POPULÄRVETENSKAPLIG SAMMANFATTNING Emma Dahlbo, Essie Lundmark

Det är allmänt känt att det är svårt att få folk att ge feedback. Vi har utvecklat ett
feedbacksystem med spelelement för att maximera mängden feedback på statiska kod-
analysverktyg. Under arbetets gång har vi upptäckt att mjukvaruutvecklare har många
starka åsikter, positiva som negativa, om både statisk kodanalys och gamifiering.

Har du nyligen fått en uppmaning att lämna feed-
back på ett program, till exempel i ett program-
meringsverktyg? Allt som oftast kommer det upp
notiser och popups på hemsidor och appar som
frågar vad du tycker om verktyget. Hur ofta
klickar du ner dem? Skulle du överväga att inte
klicka ner dem om du kunde få någon sorts belön-
ing för att ge feedback – eller om det till och
med framstod som ett spel? Vårt examensarbete
visar att så kallad gamifiering av feedbackinsam-
ling, alltså att lägga till spelelement såsom poäng
till feedbacksystemet, kan öka mängden feedback
som ges från mjukvaruutvecklare.

Vi har undersökt feedbackinsamling i kontexten
av statiska kodanalysverktyg, det vill säga verk-
tyg som letar efter buggar i programvarukod. Så-
dana verktyg är värdefulla för att få bättre kvalitet
på koden, men ogillas ofta av mjukvaruutveck-
lare till den grad att de helt enkelt stängs av –
och om verktygen inte används spelar det ingen
roll hur bra de egentligen är. För att förstå var-
för det är så här, och hur det kan åtgärdas, kan
man samla in feedback om statisk kodanalys –
men mjukvaruutvecklare gillar inte att ge feedback
heller. Vi har därför undersökt hur utvecklare
kan motiveras bättre, och därefter utvecklat ett
system för att maximera mängden insamlad feed-
back. Systemet möjliggör för utvecklare att ge
återkoppling på det statiska kodanalysverktyget
Coverity, varje gång Coverity publicerar en analys
i kodgranskningsprogrammet Gerrit. Vi gjorde
en “vanlig” version av systemet och en version

där utvecklarna också kunde samla poäng, tackla
utmaningar, och vinna kak-kuponger – alltså en
gamifierad (“spelifierad”) version.

Vårt system rullades ut till cirka 900 utvecklare på
teknikföretaget Axis. Resultaten visar att utveck-
larna som använde den gamifierade versionen gav
147% mer feedback. Samtidigt finns det väldigt
skilda, och starka, åsikter om att lägga till spel-
funktioner på det här sättet. I våra uppföljande
intervjuer sade en utvecklare, angående gamifier-
ing i allmänhet: “I bästa fall är det distraherande,
i värsta fall får det en att känna sig som ett hus-
djur som tränas att gå fint.” För att uppnå bästa
möjliga resultat måste sådana åsikter också tas
hänsyn till i designen av feedbacksystem. Vårt
exjobb bidrar med en utförlig metod om hur gam-
ifiering kan anpassas och utvecklas efter en speci-
fik kontext och användarbas, både för att motivera
utvecklare att ge feedback och för att göra dem så
nöjda som möjligt med feedbacksystemet.

Nästa gång du får en notis som ber dig att
lämna feedback, ägna en tanke åt vad som får dig
att klicka “OK” eller att bara stänga ner notisen.
Ett helt forskningsfält ägnar sig åt att försöka få
dig att göra det förstnämnda.

	Introduction
	Objectives
	Research questions
	Delimitations

	Report overview
	Contributions
	Glossary
	Related work
	Tricorder
	MEAN

	Software development at Axis
	Development processes
	SCA tools practices
	Local programming
	Code review
	Frequency of SCA
	SCA tool decisions

	Coverity use at Axis
	History of Coverity at Axis
	Previous Coverity feedback through Gerrit
	Existing data from Gerrit to Elastic

	Work culture at Axis
	Advent of code

	Method
	Literature review
	Static code analysis theory
	Feedback theory
	Gamification theory

	User research
	Goals of user research
	Initial informal interviews
	Semi-structured interviews
	Questionnaire

	Design and implementation
	Design steps
	Testing the implementation

	System deployment and evaluation
	Deployment setup
	Test groups
	Announcements
	Evaluation of the system approach

	Theory
	Static code analysis
	Overview
	Tool-developer interaction
	Usability

	Software user feedback
	Feedback types
	Feedback acquisition methods
	Likelihood to give feedback
	Feedback response statistics
	Categorization of users

	Gamification
	Definition
	Goals of gamification
	Gamification approaches
	Gamification in different contexts
	Efficacy of gamification
	Possible pitfalls
	Static analysis feedback gamification
	Gamification frameworks
	Current state of research

	User research results
	Interview findings
	T1.2: Views and experiences of SCA tools
	T2: Leaving feedback on SCA tool warnings
	T3: Experiences and thoughts on competition
	T4: Motivation by work efficiency and work results

	Questionnaire findings
	Control variables
	Hexad player types
	Feedback on SCA warnings

	Conclusions of user research

	System design
	Technical system design
	Jenkins code
	Gerrit plugin
	Elastic database
	Confluence space

	Feedback interface design
	Feedback form
	Design motivations
	Statistics in Confluence

	Game design
	Game elements
	Game rules
	Moral and ethical principles

	System evaluation results
	General statistics
	User engagement
	Feedback form
	Game elements
	Confluence space
	Misuse/cheating

	User motivation
	Feedback form
	Confluence
	Gamification

	User satisfaction
	Feedback form
	Confluence
	Gamification

	Feedback content
	Satisfaction
	Issue tags

	Threats to validity
	Conclusion validity
	Short test period
	Company culture misinterpretation

	Internal validity
	Selection bias
	Causal influences
	Diffusion or imitation of group behavior
	Conscious altering of user behavior

	External validity
	Construct validity
	Metric definition
	Insufficient metrics
	Questionnaire clarity

	Discussion
	Reasons for feedback results
	System not noticed
	System not available
	No purpose to give feedback
	Prioritization of work efficiency
	Philanthropy
	Feedback giver user types

	Gamification efficacy
	Game design specifics
	No team organizers

	Possible method improvements
	Alternative system design ideas
	Comparison to MEAN and Tricorder

	Conclusions
	Summary of findings
	Future work

	References
	Appendix Interview consent form
	Appendix Interview protocol
	Background questions
	SCA tool questions
	Gamification questions
	End question

	Appendix Questionnaire
	Control variables
	Hexad player types
	Leaving feedback on static code analysis tools
	GDPR

	Appendix Chat interview protocol
	Informed consent
	Questions

