
Defining an Evaluation Model for
Container Orchestration Operator

Frameworks

André Arnesson
an8336ar-s@student.lu.se

Samuel Alberius
sa1068al-s@student.lu.se

Sinch AB

Supervisors: William Tärneberg & Josef Holmberg

Examiner: Maria Kihl

June 22, 2023

© 2023
Printed in Sweden
Tryckeriet i E-huset, Lund

Abstract

The growing complexity of cloud native applications has necessitated the intro-
duction of operators to the container orchestration tools’ suite of components.
Operators affords developers the ability to encode domain knowledge and make
fine-grained controllers for their Kubernetes clusters, radically extending the range
of feasible applications to host. Operators are however vast software entities and
places large requirements on its developing party, almost forcing the use of a soft-
ware framework. This master’s thesis explores the evaluation and comparison of
Kubernetes operator frameworks. To address the challenge, a novel solution de-
sign is proposed, presenting an evaluation model that categorizes and assesses the
frameworks using predefined attributes and accompanying metrics. The attributes
were related to one of two overarching categories deemed appropriate for by the
performed framework study, open source health status or operator capability. Pro-
file assignment is done through the concordance non-discordance principle, inspired
by multi-criteria decision theory. This research contributes to the understanding of
evaluating Kubernetes operator frameworks and offers valuable insights for devel-
opers and decision-makers in selecting appropriate tools for managing cloud-based
applications.

Key words: container orchestration, cloud native application, operator, soft-
ware framework, evaluation model

i

ii

Acknowledgements

We would like to thank and acknowledge our supervisor and examiner from LTH,
William Tärneberg and Maria Kihl. We would also like to thank our company
partner Sinch AB, especially Josef Holmberg.

iii

iv

Popular Science Summary

Applying evaluation models in all the right places
In today’s interconnected world,
online services have become an in-
tegral part of our lives. This has
seen the demand for scalable, re-
liable, and efficient infrastructure
skyrocket. In the wake of this de-
mand cloud services and Kuber-
netes have taken great strides to
become industry standards. How-
ever, large parts of Kubernetes’s
facilitating technologies are still
unexplored.

Cloud services have enjoyed great
success on the premise of cloud na-
tive applications. Such applications
are what facilitates sought-after quali-
ties such as scalability and reliability.
However, cloud services and their appli-
cations are prone to difficulties in host-
ing due to their micro-service-based ar-
chitecture approach. This has spurred
the uprising of orchestration tools, such
as Kubernetes, which serve as a central
hub for management of micro-services.

Kubernetes was introduced by
Google in 2014 and offers a set of build-
ing blocks that collectively provides
mechanisms to deploy and maintain
cloud native applications. These build-
ing blocks are heavily standardized, and
for good reason. Kubernetes delves
into very complex areas and developers

would rather focus on their application’s
logic than the intricacies of microser-
vices and orchestration. Such stan-
dardization may however prove prob-
lematic, something that is made obvi-
ous in the cases of more elaborate and
multi-faceted applications. Cloud na-
tive applications are often divided on
the condition of either being stateful or
stateless, meaning it either keeps per-
sistent data or it doesn’t. Applications
of the stateful kind requires knowledge
and techniques that the native Kuber-
netes building blocks have difficulties
providing. To rectify this gap of capa-
bility Kubernetes recently introduced
the operator pattern into its suits of
components.

Once implemented, operators can
extend Kubernetes with encoded do-
main knowledge, enabling developers to
provide Kubernetes with whatever ca-
pability they find missing. As with most
things orchestration related, operators
are complex pieces of software, and in
practice developers are forced to build
them from existing frameworks. This
however proves a difficult task, frame-
works are plentiful and provide vastly
different developing conditions for its
users. As Kubernetes itself, frameworks
are developed through open source de-

v

velopment adding a new dimension of
considerations, atop of the more obvi-
ous of capability and policy compliance.

To address the challenges associ-
ated with comparing and selecting op-
erator frameworks, we present a model
for their evaluation. Through litera-
ture review and a study of the Ku-
bernetes environment, several attributes
representing the qualities of an oper-
ator framework are in this study de-
fined. When applied, this model should
allow developers to draw conclusions
based on familiar and relevant con-
cepts instead of figuratively fumbling
in the darkness of online articles and
user-provided reviews and sales pitches.
Because after all, who doesn’t want
a smooth operator-framework-choosing-
experience?

vi

Contributions

Author1 was the main contributor to Chapter 2 and Chapter 6. Author2 was
the main contributor to Chapter 1, Chapter 3, Chapter 4, Chapter 5, and
Chapter 8. Chapter 7 was deemed equally split amongst the two.

vii

viii

Table of Contents

1 Introduction 1
1.1 Background to Thesis . 1
1.2 Motivation and Goal Formulation 2
1.3 Report Structure . 3
1.4 Related Work . 3

2 Theory 5
2.1 Cloud services . 5
2.2 Container Technology . 6
2.3 Kubernetes . 8
2.4 Open Source Software . 12

3 Operator Framework Study 15
3.1 WhatsApp Business API Client . 15
3.2 The Operator Pattern . 16
3.3 Operator Frameworks . 20

4 Solution Design 23
4.1 Proposed Operator Framework Evaluation Model 23
4.2 Attribute Profiles . 26
4.3 Considered Operator Frameworks 26

5 Solution Implementation 29
5.1 Initial Filtering of Operator Frameworks 29
5.2 Employing Goal-Question-Metric . 29
5.3 Defined Metrics and Metric Collection 31
5.4 Profile Definition . 34
5.5 Aggregation . 35

6 Results 37
6.1 Filtering . 37
6.2 Attribute Profiles . 37
6.3 Framework Evaluation . 37

ix

7 Discussion 41
7.1 Abilities and Limitations of the Evaluation Model 41
7.2 Initial Selection Pool of Frameworks 42
7.3 Profiles and Metrics . 42
7.4 Answers to Research questions . 44
7.5 Limitations . 45

8 Conclusion 47
8.1 Conclusion . 47
8.2 Future Work . 48

x

Chapter 1
Introduction

This chapter aims to introduce to the reader the field of cloud services and its
facilitating technologies, mainly container orchestration. It will motivate cloud
computing’s existence and prominence in the current technology landscape as well
as present existing difficulties in specific cloud deployments, those being the reason
for this thesis. It will also present this thesis’ aims for scientific contribution.

1.1 Background to Thesis

Cloud computing and cloud services are evergrowing in popularity due to their
ability to provide organizations with flexible and scalable access to computing re-
sources, without the need for complex on-premises infrastructure. The technology
behind such services is in turn largely facilitated by the creation and deployment
of isolated environments achieved by containerization and virtualization [37]. Sev-
eral demands are being placed on such environments, among which scalability,
availability, portability, and resource management are most prominent. Such en-
vironments or architectures are generally complex to maintain and in light of this,
container orchestration is often employed [29].

Orchestration relies on pre-built platforms in order to manage creation, de-
ployment, and supervision over containerized systems. Containers themselves are
lightweight and short-lived by nature meaning a well-defined infrastructure such
as an orchestration tool is necessary for any non-arbitrary production environ-
ment [29]. Container orchestration is a now well-established practice performed
by a multitude of tools such as Amazon Elastic, Google Cloud Run, Centurion,
and Kubernetes [47], this thesis will focus on Kubernetes. Container orchestration
tools such as Kubernetes handle stateless containerized applications with built-in
functionality. The problem arises when applications and systems become more
complex. An example of such complexity is applications becoming stateful, mean-
ing it keeps an internal, persisting state. Such applications are often subject to a
more complex life-cycle management scheme and can therefore not be maintained
by default Kubernetes functionality [18].

To rectify this operators were built atop Kubernetes, effectively extending its
API to incorporate functionality based on ad hoc domain knowledge. Operators
allow for Kubernetes-native, self-contained application management systems capa-
ble of handling complex logic for stateful applications. The operator continuously

1

2 Introduction

runs a reconciliation loop to compare the observed state of the resource against
a predefined desired state, thus ensuring a healthy application. Operators may
be built in different ways using various programming languages, software devel-
opment kits (SDKs) and frameworks. This versatility of development presents a
challenging barrier to enter for any stakeholder intending to implement an oper-
ator. The choice of framework is a largely unexplored science, leaving developers
with the intimidating task of sifting through a vast array of options with varying
capabilities, ease of implementation, and community support.

1.2 Motivation and Goal Formulation

Together with Sinch, we have identified a challenge presented to developers and
those in technology leadership positions when deploying a Kubernetes Operator,
specifically for complex, stateful applications. Effective decision-making requires
extensive knowledge of both containerized applications in the Kubernetes environ-
ment and various Kubernetes operator frameworks. Our thesis aims to clarify the
options available for operator frameworks, and later proposing a method for their
evaluation and subsequent decision-making.

1.2.1 Research Questions

This thesis aims to answer the following questions

RQ 1 What Kubernetes operator frameworks are most widely used today for
managing the lifecycle of containerized applications?

RQ 2 What attributes and metrics should be used to aid in operator framework-
related decision making?

RQ 3 How can the operator frameworks (see Research Question 1) be classified
and categorized?

Introduction 3

1.3 Report Structure

This thesis spans eight chapters. Chapter 1 introduces the subject at hand and
provides motivation for and the scope of this study. It also brings up previous
works related to this thesis’s process. Chapter 2 introduces all necessary theory.
Chapter 3 presents our framework study. Chapter 4 and Chapter 5 provides
an overlook of the proposed solution design as well as our implementation of it.
Chapter 6 displays all found results. Chapter 7 discusses the gathered results.
Chapter 8 concludes this master thesis and discusses potential future work.

1.4 Related Work

Related work will introduce previous research papers that lay as foundations for
conclusions drawn in this thesis.

1.4.1 Evaluating the Quality of Open Source Software

A paper published by Sinellis et al. [41] discusses and attempts to remedy the
current difficulties of assessing the quality of open-source software projects. Tra-
ditionally, software product quality attributes, which describe the effectiveness of
software projects, have been kept proprietary and so too was the code base it
assessed. However, due to the emergence and growing adoption of open-source
software, there is now an opportunity for transparent evaluations of both the
software products and the underlying processes that produce them. The authors
present metrics relating to both product and process and share how they may
provide insights into software quality. The study evaluates and finds appropriate
attributes based on found metric values and the correlation of those to a set of
predefined project quality profiles. A hierarchical quality model is presented in
which categories of evaluation are defined, as well as attributes and their under-
lying metrics. The study finds two overarching attributes that comprehensively
describe the quality of open source software being Product (Code) Quality and
Community Quality. Under the former lies the attributes maintainability, relia-
bility, and security. Under the latter documentation quality and developer base
quality.

1.4.2 Software Product and Process Assessment

Morisio et al. [31] define a methodology, applied in this thesis, in which software
entities, products, or processes, may be assessed and evaluated for the purpose of
decision-making. The authors explain how a software entity is characterized by its
defining attributes, each attribute measured through one or several metrics. Eval-
uation and future decision-making however greatly benefit from a compiled view
of the entity, requiring attribute and metric aggregation. A commonly employed
approach for aggregation is the weighted average sum (WAS) approach. This
however lacks any relevance when its intended subjects are unable to be placed
on interval scales, and instead only ordinal scales (such as bad, acceptable, and
good). Ordinal scales imply a ranking relation among its attributes however make

4 Introduction

no statement of the magnitude of difference. WAS assumes equal intervals between
scale values and when applied to ordinal scales introduces arbitrary information,
invalidating future analysis. Due to the frequency with which ordinal scales occur
in real-world situations, Morisio et al. introduce a methodology for a better-suited
aggregation affording a holistic and complete evaluation of a software entity.

The method described in the paper is divided into two phases, with the first
phase being the definition of an appropriate evaluation model and its attributes
and profiles, the second phase is then metric collection and aggregation. The model
definition is highly case-specific and carries no universally applicable method. It
is instead a process of defining the purpose of the evaluation, what resources
for evaluation are available, and what uncertainties currently trouble decision-
making. This is largely based on domain knowledge and previous experiences.
With due research attributes for evaluation may be defined and introduced to the
model. All chosen attributes must be paired with a scale expressing preference. As
attributes themselves are neutral a preference relation is placed atop them stating
an intentional ranking order. Such could be the relation r set on the attribute
length of code l :
More lines of code are desirable (identity scale)

l(x) > l(y) ↔ r(x, y) (x is better than y if l(x) is greater than l(y))

or Less lines of code are desirable (inverse scale)

l(x) < l(y) ↔ r(x, y) (x is better than y if l(x) is lesser than l(y))

Both are applicable relations but with obvious semantic differences. The cor-
rect or intended relation is expressed by the model attribute preference relation
and should be motivated by domain knowledge. To then make possible potential
categorization and feasible comparison of the software entities, profiles are defined
for the model. Profiles allow for a justifiable aggregation of different metrics, im-
portantly both placed on interval and ordinal scales. Metrics are to be assigned
profiles using measurements when placed on interval scales, otherwise pending
predefined preferences.

The second phase constitutes data collection and subsequent evaluation in
accordance with the created model. All relevant software entities are assessed by
gathering metrics that represent the various attributes, and a profile is assigned.
This stage presents a first possibility of comparison as all attributes now have
ordinal profiles attributed to them. Further aggregation may however be employed
to achieve a single grade for comparison. Morisio et al. introduce the outranking
relation, a commonly practiced tool when evaluating based on multiple criteria.

Chapter 2
Theory

The following chapter will provide the information necessary to comprehend the ra-
tionale of this thesis. It will begin by exploring the fundamental principles of cloud
services and container orchestration tools, with a specific emphasis on Kubernetes.
The focus will later shift to investigating the problems with deploying stateful ap-
plications in a Kubernetes environment. Finally, the section will present relevant
qualities of open source development.

2.1 Cloud services

The technology architectures of modern enterprises are largely characterized by
the need for on-demand scalability and flexibility in its employed IT resources. As
the adoption of technology solutions is ever-increasing, so is the need for a greater
financial and personnel investment to ensure IT resources are consistently avail-
able. Offered as solutions to complex on-premises infrastructure, cloud computing,
and cloud services represent a paradigm shift of such architecture design, instead
delivering IT resources via internet [43].

Cloud computing services encompass all such services delivered from remote
instances, with notable categories being Software as a Service (SaaS), Platform as
a Service (PaaS), and Infrastructure as a Service (IaaS). The topic of cloud services
is further sub-categorized based on the infrastructure location and utilization. A
private instance may be operated for a single organization’s benefit only, while a
public instance instead serves over the public internet being employed by several
organizations through subscriptions. Additionally, hybrid solutions exist as a cross
between the two previous deployment models [44].

There are several documented benefits to utilizing cloud services, such as ease
of deployment, cost efficiency, rapid flexibility, and elastic scalability. The argu-
ment for ease of deployment stems from cloud services often being an opt-in sub-
scription model in which utilities are dispensed as needed by the provider. Since
the service is provided via external sources, there are only minimal requirements for
on-premises hardware and implementation expertise. Similarly, it applies to cost
efficiency as the cost-model of cloud services is preferable to organizations wanting
to avoid the upfront cost of deploying hardware for hosting services. Rapid flexi-
bility and elastic scalability share the domain of adjusting the current workforce,
one proactively by configuration and one retroactively through load-balancing al-

5

6 Theory

gorithmic decision-making. Both of which are possible and encouraged through
cloud services due to its nature of dynamically allocating resources based on de-
mand [21].

2.1.1 Cloud Native Applications

Applications offered via the cloud may in theory be identical to its on-premises
counterparts. However, they often differs structurally in order to better utilize
the qualities of cloud services. This approach to software development, in which
focus lies on efficient cloud deployment, spawned the idea of the term cloud-native
development and is largely facilitated by service-distribution-focused implementa-
tion [21]. This may take many forms but is often realized through micro-service-
oriented application architecture. This style of architecture structures an appli-
cation as a collection of independently deployable and manageable services that,
when working together, create the impression of a unified workflow. Independently
existing micro-services reinforce and highlight the benefits associated with cloud
services with great synergy [36].

2.2 Container Technology

In recent years, there has been a shift in application deployment from being hosted
on physical machines to virtual machines, and more recently to containers. While
all the different approaches are still in use, containerization has become the stan-
dard in the industry [30]. The underlying reason for the development has been
driven by the need for scaling and greater flexibility deploying and managing ap-
plications.

2.2.1 Isolated Environments

All technologies relying on individually deployed micro-services require a separate
and isolated environment for each involved service, thus ensuring configurations
and specific dependencies are satisfied. Establishing separation of deployed micro-
services is in theory rudimentary, however when applying principles of scaling,
cost-efficiency, and centralized management the issue quickly grows more complex.
This motivated the development of micro-services being separated virtually, a
technique in which a single machine may act host for multiple separated services.
Over the course of numerous years, there have been several generations of preferred
technologies for virtualized separation when deploying micro-services [39].

2.2.2 From Traditional to Containerized Deployments

Going from physical deployment to hosting multiple virtual services on the same
machine allowed greater utilization of resources. Every virtual machine gets al-
located some hardware resources, thus making it behave like a separate machine.
The next step in the evolution of application deployment was containerization,
which is a form of virtualization where multiple applications are isolated from

Theory 7

each other on a single machine, similar to virtual machines [30]. The main dif-
ference being that containers enable multiple applications to be run on a single
operating system.

Apart from the hosting medium, the approach of deploying applications has
evolved from a monolithic architecture to microservice-based architecture [4]. Hav-
ing a traditional monolithic architecture means that the entire application is built
as one big unit, whereas a microservice-based approach is composed of independent
services that communicate with each other using APIs. Having a monolithic appli-
cation naturally comes with a tightly coupled structure, meaning that the whole
application has to be managed as one big entity. In contrast, with a microservice-
based approach, you can choose what services to scale within the application based
on their resource requirement. However, deploying microservice-based applications
can become more complex since the individual services need to be able to com-
municate with each other. This is one of the reasons why container orchestration
tools, such as Kubernetes, have increasingly gained popularity in recent years [42].

2.2.3 Containers

Containers are a lightweight virtualized technology that packages the application
with its code and dependencies. Unlike traditional virtual machines, they do not
require an operating system per application, instead, they share the OS kernel,
which increases portability. These features of containerized applications simplify
testing and deployment by providing a consistent environment across platforms
[10].

2.2.4 Container Orchestration Tools

Managing the entire life cycle of hundreds or even thousands of containerized
applications is a difficult task if done manually, especially if the application is
more complex. This is why container orchestration tools have become increasingly
popular in recent years [26]. The orchestration tools assist with automation in the
cluster, automatically scaling, load balancing, resource allocation, and monitoring.
One of the main benefits of using container orchestration, and the one that will
be of focus of this thesis, is automation. By automating the process of application
management the organization can save time and reduce the risk of human error
[30].

There are numerous different orchestration tools available, each with its own
unique strengths and weaknesses. Malviya and Dwivedi [26] present a study where
they compare 4 popular orchestrators that are used in the industry: Kubernetes,
Docker Swarm, Mesos, and Redhat OpenShift. The different factors that were
compared amongst the orchestrators were deployment, security, stability, scalabil-
ity etc. The conclusion of the study was that some orchestrators offered higher
security than Kubernetes and were easier to use while Kubernetes was the most
optimal one regarding scheduling features.

8 Theory

2.3 Kubernetes

Kubernetes is an open-source platform for automating deployment scaling and
management of containerized applications. The platform provides features such
as service discovery and load balancing, self-healing, automated roll-outs and roll-
backs, secret and configuration management, storage orchestration, and automatic
bin packing [45]. Due to it being widely used and open source, Kubernetes has a
very active community advancing the technology and features [22]. To define how
the Kubernetes cluster should look and operate, a state configuration is created.
The state configuration will include information such as the number of replicas,
resource requirements, environment variables, and other relevant parameters. Ku-
bernetes continuously compares the desired state defined in the configuration with
the current actual state [6]. This self-healing mechanism ensures high reliabil-
ity and automation, eliminating the need for developers to manually manage the
cluster’s state.

2.3.1 Kubernetes Architecture and Components

The architecture of Kubernetes is ideally suited deploying and managing microservice-
based applications, where the individual services are decoupled. The advantages
compared to a monolithic approach are it becomes more resilient, flexible, and scal-
able and can utilize resources more efficiently [6]. A Kubernetes cluster is made up
of nodes that are machines, either physical or virtual, that host the applications.
It is divided into two different planes, the control plane and the application plane
[18] which can be viewed in figure 2.1.

Figure 2.1: Architectural overview of a Kubernetes cluster

Control Plane

The control plane, also called master, handles the orchestration logic of the cluster
and ensures that the desired state is equal to the actual state. There can exist

Theory 9

more than one control plane in a Kubernetes cluster to achieve a more reliable
cluster [25]. The control plane consists of the API server, etcd, scheduler, and
controller manager [45].

• API Server: The API server is the front-end to all components of a Ku-
bernetes cluster, serving as an entry point for all communications between
different planes. Requests are authenticated and later handled to update
corresponding objects in the etcd.

• Etcd: The etcd is an open source key-value store used to maintain con-
figuration data and cluster state. It ensures consistency and availability to
support correct scheduling and overall operating service [45].

• Scheduler: Initially when a pod is created it is unassigned, it is the role
of the scheduler to assign these to nodes in the cluster. The assignment is
based on the available resource metrics and pre-determined prioritization
algorithms.

• Controller Manager: The Controller Manager is ultimately responsible
for ensuring a correct and desirable state for its assigned cluster. It contin-
uously checks the shared cluster state via the API server and attempts to
rectify any discrepancies. Such rectifications may include redeploying dead
pods, thus maintaining a desired state.

Application plane

The application plane consists of the worker nodes which maintain the pods. It is
divided into Kubelet, Kube-proxy, and container runtime [45].

• Kubelet: The Kubelet is an agent that operates on every node in the clus-
ter. It is responsible for managing containers deployed on the node and
reports their status to the API Server. The Kubelet maintains communi-
cation with the API server to receive instructions on how pods should be
running. It starts the containers within each pod by directing the container
runtime to launch the corresponding container image.

• Kube-proxy: The Kube-proxy is responsible for managing network con-
nections on deployed worker nodes. It ensures communication both internal
and external to the cluster is correct and follows preset protocols.

• Container Runtime: Each node in the cluster has its container runtime
engine which provides an environment to run the containers.

Pods

A pod in Kubernetes is the smallest unit of deployment. A pod is a collection of
containers running in the same environment, where containers can share resources
and communicate. Although applications in the same pod share attributes, sepa-
rate pods are completely isolated from each other [6]. The selection of containers
to be grouped together should be based on the specific applications and their re-
spective usage requirements. Generally, it is not a good idea to group a simple

10 Theory

stateless application in the same pod with a database container. The reason is
that the stateful application will likely require more resources and being in the
same pod will mean that they would be scaled equally.

Namespaces

Namespaces in Kubernetes are a way to isolate resources within a cluster and
provide a way to organize and group objects into scopes, which makes managing
and monitoring large and complex applications easier. The name of a resource
must be unique within the same namespace but not across namespaces [45].

Containers in Kubernetes

Kubernetes serves as a platform for managing an application’s life cycle, from
deployment to maintenance. In order to achieve this, a container image needs to
be built including the application and its required dependencies. The most widely
used platform used to build container images is Docker [42]. The container image
packages the application together with the dependencies necessary into one single
artifact [6], which can then be used to run the application inside an OS container.

Kubernetes Controller

The controller is a core concept in Kubernetes which manages at least one resource.
It utilizes the reconciliation loop that compares the current state with the desired
state that has been defined in the controller’s resource specification and makes
adjustments accordingly [45]. The controller is closely related to the operator
concept, which is the main subject of this thesis. An operator is used to manage a
specific application or service, it builds on top of the controller concepts [45]. All
operators are essentially a controller but not all controllers are operators.

2.3.2 External tools in Kubernetes

Kubernetes comes with a set of built-in tools to help manage a cluster, but an
important part of the Kubernetes ecosystem is the tools that extend the function-
ality [8]. These tools can for example help with monitoring, management, and
logging. Due to Kubernetes being such a widely used open source platform it
has gained a large active community that contributes to its ongoing development
and evolution [8]. Cloud Native Computing Foundation (CNCF) is a foundation
subsidiary of the Linux Foundation that was created to help advance the technol-
ogy surrounding cloud-native computing technologies [9]. One goal of CNCF is
to foster cloud-native projects and create a collaborative platform for developers.
Projects can become part of the CNCF ecosystem and gain one of three classifica-
tions: Sandbox, Incubating or Graduate. The level indicates the level of maturity
and overall engagement of the project.

Theory 11

2.3.3 Helm Charts

Helm is a popular package manager for Kubernetes that simplifies the deploy-
ment of complex applications consisting of multiple components through the use
of Helm charts. These charts function as templates that describe Kubernetes re-
sources, streamlining their packaging and deployment [18]. Helm can also be used
as an operator in the Kubernetes cluster to handle the lifecycle of an application
or service. This is done by defining a chart for the application and then the Helm
operator will watch for new Custom Resources (CRs) that correspond to the de-
sired application state. The Helm operator will create and manage Kubernetes
resources according to the defined YAML within the chart. The current operator
that is currently in use at Sinch AB is a Helm-based operator. While Helm pro-
vides a convenient way to package and deploy Kubernetes resources, it may not
be suitable for managing more complex stateful applications. Since it is limited
by the underlying Helm technology.

2.3.4 Stateful Applications in Kubernetes

In a containerized environment, applications are commonly categorized as either
stateful or stateless, based on whether they maintain and rely on persistent state
information [1]. When a pod hosting a stateless application, such as a website,
becomes unavailable, another instance can easily replace it without any lasting con-
sequences for the application. Managing stateless applications is therefore fully
possible and rudimentary using native Kubernetes capabilities [45]. However, deal-
ing with stateful applications, such as a database implemented in a microservice
architecture, presents a greater challenge, as each service has its own state that
must be synchronized in the cluster and maintained in the event of a failure.

Kubernetes Native Stateful Handling

There are built-in resources in Kubernetes made for handling basic stateful appli-
cations, the prominent one being a StatefulSet. Unlike native Kubernetes types
made for stateless applications, such as Deployment, a StatefulSet assigns labels to
each pod that remain consistent meaning pods may maintain a consistent associa-
tion with other Kubernetes resources [45]. Another notable feature of StatefulSet
is the ordered creation and deletion of pods, which can be important for stateful
applications requiring predictable behavior. In StatefulSet, storage is composed
of Persistent Volumes (PVs) defined by Persistent Volume Claims (PVCs). PVCs
contain information about the PV’s characteristics and act as a request for stor-
age while PVs represent the actual storage units assigned to a pod based on those
requests. Each pod has its own dedicated PV, accessible only by that specific pod.
This differs from the Deployment controller, where all pods share the same PV
[1].

Unlike stateless applications that benefit from pod replication for improved
availability, stateful applications mainly rely on repairing failed pods [1]. This is
because each pod is isolated with its own storage and lacks awareness of the state
of other pods within the application. StatefulSets typically perform well when

12 Theory

applied to simpler use cases and applications, but suffer limitations in contexts of
automation and high availability [34].

Kubernetes Add-ons for Stateful Handling

As mentioned previously there are many requirements put on applications offered
through cloud services. Among which are requirements poorly coinciding with the
capabilities of StatefulSets. This has motivated the development of alternative
tools, focusing on the implementation of both operational and domain-specific
knowledge into custom Kubernetes controllers. Such controllers allow for fine-
grained control over even complex and stateful applications, offering capabilities
reaching over those of StatefulSets [17]. The utilization of a custom controller
within a Kubernetes cluster is referred to as a Kubernetes operator.

By leveraging a custom controller, an operator can customize the behavior
and automation of clusters to meet the specific requirements of their stateful ap-
plications. Operators encapsulate operational best practices, application-specific
logic, and automation, providing a higher level of control and customization,
especially when compared to StatefulSets. Custom controllers can handle vari-
ous tasks related to stateful application management, including advanced deploy-
ment strategies, automatic scaling based on application-specific metrics, intelligent
failover, and recovery mechanisms, and seamless integration with storage systems
and databases.

2.4 Open Source Software

The concept open source software (OSS) refers to software or code that is publicly
accessible for anyone to modify and distribute [46]. The advantages of open source
include increased transparency, flexibility, and collaboration. By allowing anyone
to access and modify the source code, open source enables a wider community of
contributors to innovate, improve, and customize the software to fit their specific
requirements [32]. In the Kubernetes ecosystem, external tools that improve func-
tionality and capability is an important role in the growth and success [6]. In their
report, Nasserifar [32] emphasizes the importance of multiple actors in maintain-
ing a healthy open source ecosystem. While end-users and bug reporters make
valuable contributions, developers are considered niche players who has a central
role within the ecosystem. Therefore, it is essential to create an environment that
encourages developer involvement and recognizes their contributions.

2.4.1 Evaluating Open Source Software

In order to evaluate Open Source Software (OSS) in a structured way, different
approaches can be used. Bolling and Gustafson [3] conducted interviews and
found that users typically want to compare all available solutions before making a
selection of what open source software package to use. Users normally evaluate the
package in terms of security, future compatibility, and longevity. As well as more
specific metrics such as downloads or how fast issues got resolved. The interviews
also revealed that the evaluation process varied greatly depending on the size of

Theory 13

the software. For bigger architectural decisions, such as selecting a framework, the
process was more collaborative and longer. Bolling and Gustafson categorize the
metrics into: popularity, activity, license, quality, and others.

Petrinja et al. [35] introduced the Open Maturity Model, which is an assess-
ment model to evaluate OSS consisting of three layers: Basic, intermediate, and
advanced. Through interviews, they identified the twelve most important metrics
to consider to assess the quality of an open source product. Documentation, popu-
larity, availability, maintainability, licenses, and technical environment were some
of the metrics identified. Ardagna et al. [2] proposed a quantitative framework
to evaluate and analyze security-related OSS systems, combining metrics into a
single value for ease of use. They divide their metrics into six broad categories:
Generic Aspects, developers community, users community, software quality, doc-
umentation, Interaction support, and integration, and adaptability with new and
existing technologies.

In a literature review conducted by Lenarduzz et al. [24], the authors in-
vestigated 262 papers to analyze OSS models and identify commonly referenced
metrics. The findings revealed that cost, support and service, license, code qual-
ity, and reliability were some of the recurrent cited metrics. In a similar empirical
study, Zhao et al. [48], classified metrics into five types: code, license, popu-
larity, developer, and sponsorship. They identified similar metrics as previously
mentioned papers but also pointed out vulnerability and project activity as useful
metrics. Additionally, Zhao et al. analyzed the correlation between different met-
rics and found that some metrics, such as project age, activity, status, and license,
influenced the popularity of OSS projects.

In general, commonly identified metrics that were considered important by the
mentioned studies were: Documentation, popularity, user community, maintain-
ability, license, security, and compatibility.

14 Theory

Chapter 3
Operator Framework Study

The aim of this framework study is to provide comprehensive information for an-
alyzing and comparing software frameworks, with a specific focus on Kubernetes
operator frameworks. To achieve this, we will present an example Kubernetes en-
vironment as well as an in-depth view of the operator pattern.

3.1 WhatsApp Business API Client

This thesis is motivated by the existence of complex, stateful applications and the
subsequent need for operators. To aid in understanding the decisions taken during
the solution design chapter we present an overview of the WhatsApp client cluster
and its components, a fitting example-application which Sinch AB has experience
provisioning.

3.1.1 Architecture and Configuration

Unlike a majority of REST APIs, the WhatsApp Business API requires all cus-
tomers to provision and manage the WhatsApp Business API Client as an on-
premises service in order for it to access the WhatsApp internal systems. This
structure is motivated by Meta’s desire for messages on the WhatsApp service to
be encrypted end-to-end, a major selling point for its end users. A new client clus-
ter is provisioned for every customer wanting to communicate over the WhatsApp
messaging channel, meaning maintenance of multiple customers quickly presents
a repetitive and time-consuming administrative task. Each API client runs as
a cluster of individual components, all run on separate machines or virtual ma-
chines. The final configuration setup of the API client may vary depending on
each individual business constraint for service availability and wanted maximum
throughput, but ultimately share major traits with each other. An architectural
overview of the WhatsApp Business client may be seen in figure 3.1, where it also
integrates into Sinch’s as well as WhatsApp’s internal systems [28].

3.1.2 Components

The client is built using three major node types. The first node type is the We-
bApp node which communicates directly with an external business service and dis-

15

16 Operator Framework Study

Figure 3.1: An architectural overview of the WhatsApp Business
API Client

tributes messages. It responds to REST API calls with message statuses, storing
relevant messaging information such as message content and contact information
in storage nodes. The storage nodes are subcategorized into a database and a
media volume, with the media volume handling media files transmitted to or from
the client. The database instead stores data such as message content, relational
contact information, and configuration details. The CoreApp node is deployed to
facilitate communication between the WebApp node and WhatsApp’s internal ser-
vices, accepting REST API calls and forwarding resulting messages and returning
messages to the business service. The configuration of CoreApps in the client is a
key determinant of its conditions for high availability and load sharing to increase
message throughput. CoreApps support sharding to effectively increase message
bandwidth and avoid message backlogs in the system. Multiples of CoreApp nodes
require master nodes for coordination and status checks. Seeing that the client
maintains stateful data critical to its operation it may be considered a stateful
application [28].

3.2 The Operator Pattern

A Kubernetes operator is an extension of the existing Kubernetes API, augment-
ing ad hoc domain knowledge and life-cycle management capabilities. Similar to
Kubernetes controllers, they reside in the control plane of the Kubernetes archi-
tecture but differ in that they serve a function tailored to a specific application,
instead of a general purpose [23]. The operator pattern was introduced as an
abstraction to the task of implementing logic that was previously performed by

Operator Framework Study 17

a human operator managing running services. Maintaining the state of imple-
mented infrastructure to ensure a productive and healthy system requires many
repetitive activities and tasks, usually without lasting value to the system. This
motivated the introduction of computerized intervention, enabling implementation
of automated supervision and appropriate action-taking, completely devoid of hu-
man interaction. Kubernetes Operators offer intelligent, specialized, and dynamic
application management capabilities aimed at maintaining a desirable state for
even complex and intricate deployments. Figure 3.2 shows the general structure
according to the Operator design pattern [18].

Figure 3.2: The Kubernetes Operator design pattern

3.2.1 Operator Components

The increasing complexity of cloud-hosted applications and the growing respon-
sibility for managing them have led to higher demands for availability, fault tol-
erance, and scalability. To meet these demands, the operator pattern relies on
declarative configuration, allowing a desired state of a resource to be defined and
maintained [23]. Figure 3.3 illustrates the main components of the operator pat-
tern at a high level: the managed application or infrastructure, a mechanism for
defining declarative, domain-specific requirements for a desired state, and a custom
controller that reads the current state and initiates actions based on a reconcilia-
tion loop. There are three major components involved in building a Kubernetes
operator.

• Custom Resource Definition: A Custom Resource Definition (CRD) is
a user-specified object schema that is not provided by native Kubernetes.
It defines the characteristics of a custom resource type, including its name,
field structure, and behavior. The definition is supplied in YAML or JSON
format and can be dynamically inserted into a running Kubernetes environ-
ment.

• Custom Resource: Custom Resources (CRs) enable the extension of the
Kubernetes API CRDs. Within a running cluster, CRs can be dynamically
installed to expand the existing suite of types, including pods, deployments,
or services. Once installed, a CR can be queried and manipulated through
the Kubernetes API, similar to Kubernetes native types.

18 Operator Framework Study

• Controller: The controller is responsible for implementing all decision-
making and automated orchestration within a Kubernetes Operator. It
executes this logic using a reconciliation loop, which can be triggered by
specific events or run at predefined intervals. During each iteration of the
loop, the controller accesses the state of the objects it monitors and ensures
they align with their declared and desired state. Controllers are a native
feature of Kubernetes, but when deployed to handle custom resources, they
become custom controllers. The ability to manage user-defined resources
empowers controllers to administer clusters using domain-specific knowledge
[27].

Figure 3.3: Typical workflow for Kubernetes Operator

3.2.2 Benefits of using the Operator Pattern

As previously stated, an operator’s underlying purpose is to extend the capabilities
of the Kubernetes API, making it specifically tailored to an existing infrastructure
and ensuring a functional and desirable state. This addition to native Kuber-
netes is largely necessary due to its inability to otherwise proficiently manage the
life-cycle of complex and especially stateful applications [25]. The supplemented
features may further be sub-categorized into dynamic configuration, operational
automation, and extended domain knowledge. The first of which refers to cluster
configuration through Kubernetes operators’ interaction with custom resources.

Native Kubernetes provides built-in tools to interact with and query configu-
ration files, the most commonly used are ConfigMaps and Secrets. However, such
solutions are often inadequate as they are designed for generic application pur-
poses and lack the ability to provide detailed specifications [18]. An operator may
declare and subsequently query a custom resource to express a particular applica-
tion configuration in a Kubernetes context. This allows operators to dynamically
configure the underlying infrastructure based on the specific requirements of the
application being deployed. This dynamic configuration capability is one of the
key benefits of using Kubernetes operators, as it allows for more fine-grained con-

Operator Framework Study 19

trol over the application’s environment, resulting in better performance, reliability,
and scalability.

Operational automation is another key benefit of Kubernetes operators. By
automating the deployment, scaling, and management of complex applications,
operators may reduce the burden on human operators, freeing them up to focus
on more strategic tasks [18]. This is particularly important in large-scale en-
vironments, where managing the life-cycle of multiple applications may quickly
become overwhelming. Finally, Kubernetes operators may provide extended do-
main knowledge by leveraging the expertise of developers and operators who are
intimately familiar with a particular application or technology stack. By encap-
sulating this knowledge in the form of an operator, organizations may ensure that
their applications are deployed and managed in a way that is optimized for their
unique requirements [18].

3.2.3 Operator Maturity

The quality of an operator has a significant impact on metrics regarding perfor-
mance for its intended application, including availability and overall quality of
service. In an effort to aid in quantifying the proficiency and capability of an
operator a maturity scale was devised. Based on the used framework and im-
plementation of an operator it is said to achieve varying maturity levels. The
maturity scale can be seen in figure 3.4 and comprises five set levels covering basic
install, seamless upgrade, full lifecycle, deep insights, and autopilot [19].

• Basic Install: Basic install allows for simple install and workload configu-
ration via pre-defined Custom Resources, the very basics for any operator.

• Seamless Upgrade: Seamless upgrade allows for version upgrading with-
out loss of service or data loss.

• Full Lifecycle: Reaching the level of full lifecycle indicates the operator
manages backup and fail-over duties. It then automates processes such as
data backup and restorations of failed pods

• Deep Insights: Deep insights refer to the operator’s ability to monitor
and alert the health statuses of its application components. This may be
aided by external software such as Prometheus, a prominent open-source
monitoring solution.

• Auto Pilot: Auto pilot is the highest level of the maturity scale. This level
requires the operator to maintain a stable and efficient application lacking
human intervention. Relevant to cloud services is the operator’s capabilities
of application scaling, done either using horizontal or vertical scaling.

20 Operator Framework Study

Figure 3.4: Five maturity levels for operators

3.3 Operator Frameworks

Frameworks are frequently employed in all areas of software development. Such
frameworks are characterized by a set of established practices, guidelines, and
standards that offer a structured and swift approach to development. By leverag-
ing pre-built structures and components designed to handle general case problems,
frameworks simplify and streamline the development process. While Kubernetes
operators were introduced fairly recently to the Kubernetes ecosystem, they still
show widespread adoption of frameworks being used to aid their development. Op-
erators make use of large parts of the Kubernetes capabilities exposed by its API,
a luxury largely facilitated by frameworks providing a layer of abstraction to the
API’s otherwise complicated nature. This abstraction releases operator implemen-
tation from intricate and complex solutions for integrating to stock Kubernetes,
allowing them instead to focus on the more relevant domain-specific logic. As
demonstrated in the above sections both Kubernetes and its extending operator
pattern are complex, multifaceted entities requiring deep and specific technical
knowledge. Different frameworks pertaining to operators were developed in an
effort to counter the high barrier to entry.

3.3.1 Qualities of Operator Frameworks

Operator frameworks have several central qualities defining both their potential
use cases and capabilities. There are numerous existing operator frameworks avail-
able, which can make the selection process challenging for specific scenarios. A
major point of contention for operator frameworks is their allowed operator com-
plexity. There exists a trade-off between allowing operators developed through
a framework to exhibit the desired capability and maturity and the difficulty of
actual implementation. This often takes shape as the development method and
the support language offered by a framework.

The majority of operator frameworks share the trait of being open source,
meaning the existence of a willing and able developing group is needed. Open
source development is a common and strategic development tactic for framework
development seeing as frameworks greatly benefit from qualities common in open
source projects such as high transparency, flexibility, and a lack of vendor lock-in.
The development tactic does however expose the project to pitfalls of community
engagement and a lack of structured leadership and contribution. They are ad-
ditionally, by standard practice released under licenses that define the permitted

Operator Framework Study 21

usage, modification, and redistribution of the framework. If unsuitable, the license
may affect or even strictly prohibit the use of a framework, especially applied to
business settings.

3.3.2 Operator Framework Availability

As open source projects the operator frameworks are mostly available to find and
explore online, either through the version-control platform GitHub or through
dedicated distribution channels such as CNCF themselves.

22 Operator Framework Study

Chapter 4
Solution Design

This chapter will present the proposed solution design, define what attributes were
considered appropriate for evaluation as well as present the evaluation profiles. It
will also introduce a selection of currently available operator frameworks.

4.1 Proposed Operator Framework Evaluation Model

This thesis aims to perform an evaluation and subsequent comparison of operator
frameworks, all with varying origins and stated goals. To accomplish a yielding
experiment, we defined an evaluation process based on findings in the literature
study. The evaluation process is based on the paper written by Morisio et al. [31],
introduced in section 1.4.2. The evaluation was to encapsulate all relevant obser-
vations in order to produce a model able to be used for comparison. The process
comprised two phases, the definition of the evaluation model and the measuring
and data collection and aggregation.

Phase 1: Definition of evaluation model

1. Definition of model attributes

2. Definition of attribute metrics

Phase 2: Definition of Metrics and Data collection

1. Definition of profiles

2. Measurement collection

3. Aggregation of measures

From investigation of operator frameworks and the performed literature study we
concluded two main aspects should be considered for the evaluation model, the
first being operator capability and the second being open source project health.
Operator capability would include all notions of the potential quality of the imple-
mented operator. This would encapsulate its capabilities, implementation process,
use cases, and any restrictions placed on the developing party. The open source
project health would instead focus on the health status of the project, with respect
to operator frameworks being sustained through open source development. The
model aimed for a standardized list of attributes and while there are numerous

23

24 Solution Design

available, only a few were deemed attainable and relevant enough. Also due to the
diversity of the framework application, notice was taken to select attributes that
were applicable to all. Further motivation to the attribute selections is provided
in section 4.1.1.

4.1.1 Proposed Attributes

Attributes suitable for the evaluation model were informed by the previous litera-
ture study. Some attributes were regarded as the industry standard for evaluation
of software and therefore included, others were by us deemed necessary based on
previous learning. By considering a wider range of attributes, we aim to provide a
holistic assessment framework that facilitates effective comparison and selection of
operator frameworks for various use cases. Each attribute was to be accompanied
by a single or several relevant metrics, making them quantitatively measurable
and comparable. The final evaluation model may be seen in figure 4.1. Each at-
tribute is later justified, highlighting its relevance and motivating its inclusion in
the model.

Figure 4.1: Proposed Evaluation Model with Accompanying At-
tributes

Community Engagement

Ardagna et al. [2] lists user community as one of the six core macro areas in
their framework model. The success of open source projects depends heavily on
the support and engagement offered by its community. While the projects often
are launched and maintained by groups or organizations community involvement
is crucial for further advancement at every stage, including design, development,
and testing.

Maintenance

Maintenance is an essential aspect of software development that ensures that the
framework continues to function as intended and remains secure. Bolling and

Solution Design 25

Gustafson [3] study showed that active development is an important aspect ac-
cording to several developers. Maintenance involves fixing bugs, implementing
new features, and updating dependencies. The level of maintenance required de-
pends on the complexity and scope of the framework, as well as the rate of changes
in the environment in which it operates. The quality of maintenance may have a
significant impact on the usefulness and longevity of a framework and should be
a consideration when evaluating software options.

Popularity

Popularity is a metric used for easy understanding of a framework’s market dom-
inance, often an indication of its perceived value and usefulness within the devel-
opment community. According to Bolling and Gustafson’s thesis [3], interviews
revealed that project popularity was often the primary metric considered when
selecting an open source package. A more popular framework typically indicates
that it has been more thoroughly tested, making it a more secure choice.

Documentation

Effective software documentation plays a vital role in ensuring that public, open
source software is accessible and comprehensible to its intended audience. In a
literature review done by Lenarduzzi et al. [24], documentation was one factor
that was taken into consideration when opting to use an open source project.
Documentation should include any and all relevant information for understanding
a software entity’s qualities such as intended use, technical requirements, or guides
for deployment. Documentation may therefore be a crucial point of consideration
when selecting what software to use.

Functional Scope

Implemented operators are burdened with requirements in both functionality and
policy compliance. They are often employed in heavily controlled environments
where rules restricting the use of licenses, programming practices and languages
and package dependencies exist. The functional scope of an operator framework
should therefore convey its feasibility of use pending the requirements set on its
environment.

Developer Features

What features a framework provides can potentially be an important aspect to con-
sider when selecting a framework. In accordance with the Open Maturity Model
proposed by Petrinja et al. [35], it is recommended to consider the framework’s
technical environment, which encompasses various aspects such as tools and de-
velopment environment in their model. By examining the available features and
tools, developers can not only save time but also ensure that they adhere to best
practices throughout the development process.

26 Solution Design

4.2 Attribute Profiles

For evaluation and comparison of different frameworks a systematic metric aggre-
gation method was required, as argued by Morisio et al. [31]. To accomplish this,
a scaling method was adopted in which a set number of levels ranking each metric
was introduced. The levels were to each other rankable in order. Morisio et al.
introduce the notion of having three to five attribute categories that are suitable
for the supplied methodology. This thesis opted for four levels being Acceptable
(A), Good (G), Very Good (VG), and Excellent (E) in which A < G < VG <
E. The ordinal levels allow for a standardized and consistent assessment of the
frameworks. Each level represents a minimum measurement required to reach it,
if not the value falls into its lower neighbour. The levels and scales are also de-
fined separately for each metric of the model. This model will encompass scales
of different types, both nominal and absolute and while some metrics are placed
pending a numerical measurement, some are instead placed by qualitative evalu-
ation or subjective judgment. This will be made clear when metrics are decided
and presented.

4.3 Considered Operator Frameworks

This study will implement its evaluation model on a select number of operator
frameworks. Following is a compiled list of operator frameworks currently avail-
able accompanied by their respective motivation for use supplied by their chief
maintainer. This will lay grounds for future operator framework filtering. The
listed frameworks are not the only ones available but the ones that we found men-
tioned in sources about Kubernetes operators. The list is meant to provide an
overview of the breadth of the current scene of operator frameworks. Not all will
be included in the performed experiment.

Operator Framework

The Operator Framework was first introduced in 2016 by CoreOS but is now
currently managed by Red Hat. The framework provides libraries, tools, and
best practices to simplify the process of implementing operators for more complex
applications. It consists of three main components [17]:

• The Operator SDK: The main part of the Operator framework which is used
to build the operator, providing developers with scaffolding tools, high-level
APIs, and abstractions to build operators efficiently. It is built on top of
the Kubernetes controller-runtime, which is a set of libraries for building
controllers.

• Operator Lifecycle Manager (OLM): A declarative way to install, build and
manage the operator on the cluster.

• OperatorHub: Provides a platform to distribute finalized operators with the
open source community.

The Operator SDK provides three different ways to build an operator [33]:

Solution Design 27

• Helm: This option allows you to use Helm charts to define your Kubernetes
resources and manage their lifecycle.

• Ansible: This option allows you to use Ansible playbooks to manage the
lifecycle of your Kubernetes resources. Ansible is an automation tool that
is widely used in IT operations and allows for the management of complex
deployments and configurations.

• Go: This option allows you to write operators in the Go programming lan-
guage. This provides a flexible option for building operators, as you have
direct access to the Kubernetes API and can write custom controllers to
manage your resources.

Kubebuilder

Kubebuilder is an open source framework used to build Kubernetes APIs using Go.
By providing various tools and libraries, Kubebuilder streamlines the process of
building controllers and customer resources [38]. Additionally, Kubebuilder offers
a local development environment for testing purposes. Kubebuilder is extensible
and it is embedded within Operator SDK in the Operator Framework. This means
that a Kubebuilder project is also compatible with the Operator SDK.

Dotnet Operator SDK

Dotnet Operator SDK was inspired by Kubebuilder but is based on dotnet, mak-
ing it a suitable option for developers who prefer working in C#. It provides a set
of tools and libraries which simplifies the implementation of an operator. The mo-
tivation behind the project according to their own documentation was to provide
an alternative to the Go-based frameworks like Kubebuilder and Operator SDK
[5].

Shell Operator

The Shell Operator provides tools to run event-driven scripts within a Kubernetes
cluster. The framework is tailored to system administrators by providing a way
to implement operators in a way that they are familiar with [20]. It leverages the
flexibility of shell scripts and treats them as hooks that are triggered by specific
events in the cluster [11]. The Shell operator listens to certain Kubernetes events
and executes the hooks when these events are triggered. A hook is an executable
file written either as a script or compiled program in any programming language.

KUDO

Kubernetes Universal Declarative Operator (KUDO) is a framework that stream-
lines the development of a Kubernetes operator by utilizing mostly declarative
YAML-based configuration while most other frameworks require written code [15].
KUDO offers various abstractions and APIs and also features both a command line
interface and a web-based user interface that enable the management and monitor-
ing of operator deployments. The operator is made up of several plans that act as

28 Solution Design

a runbook. Each plan is made out of different phases which can contain multiple
steps. A phase can for example include installation, upgrade and uninstall.

Kopf

Kopf (Kubernetes Operator Pythonic Framework) is a Python framework for
building Kubernetes operators. It was developed by Zalando in 2019 to address
the high entry barrier that existing operator frameworks had, which required sig-
nificant amounts of boilerplate code to be written [40]. Zalando wanted to create
a framework that would allow developers to create operators more easily by only
displaying high-level concepts. Kopf has a set of Python decorators that defines
actions the operator should take when an event occurs, such as a pod getting
created, deleted, or updated.

Java Operator SDK

Java Operator SDK is a higher-level framework for building Kubernetes operators
using Java. Allowing developers to focus on the operator’s business logic instead
of focusing on low-level interactions with the Kubernetes API. The goal of the
framework is to simplify operator implementation by providing an API that is
familiar to Java developers to define custom resources and controllers [12].

Quarkus Operator SDK

Quarkus Operator SDK is a Java-based operator framework. It is an extension
to Java Operator SDK, therefore, providing additional features simplifying the
implementation of operators [16].

kube-rs

Kube-rs is a CNCF-hosted project that enables the implementation of Kubernetes
operators using the Rust programming language. By abstracting away the com-
plexities of interacting with the Kubernetes API, Kube-rs simplifies the process of
building controllers and custom resource definitions (CRDs) [14].

Charmed Operator Framework

The Charmed Operator Framework provides a Python library to streamline the
operator implementation. The motivation behind the project was to simplify
the process for Python experienced developers to create an operator [13]. The
Charmed Framework also contains features for testing operators as well as a hub
called CharmedHub.io, where developers can share their finished operators.

Chapter 5
Solution Implementation

This chapter aims to explain how the metrics for comparing Kubernetes operator
frameworks were defined and later collected. It will provide an in-depth view of our
methodology for metric data collection, including the selection of appropriate data
sources, tools, and techniques for gathering such information. The primary goal of
this section is to motivate how the metrics selected for evaluating the frameworks
were reliable, accurate, and representative of the frameworks’ effectiveness and
their practical difficulties.

5.1 Initial Filtering of Operator Frameworks

Despite being a relatively new concept in Kubernetes, there is a wide range of
frameworks available to use when designing and creating operators. To conduct
a comprehensive and yielding experiment, we first wanted to filter these tools.
The remaining list of frameworks should provide a good representation of the
current market for operator frameworks, but also be concise enough to perform a
thorough investigation. Section 4.3 presented the basis for the selection process
and was considered a starting point for determining which frameworks to examine.
Furthermore, frameworks should have been ordered by relevance to the current
development scene of Kubernetes operators, with framework popularity in terms
of GitHub statistics being a main point of consideration. Additionally, the study
prioritized frameworks with varying origins, utilizing different technologies and
having diverse stated intentions. This was done to provide as broad a coverage
of the current market as possible, making the experiment a utilizable and topical
evaluation.

5.2 Employing Goal-Question-Metric

With a proposed model outlining all attributes to be considered when evaluat-
ing operator frameworks the next step was finding metrics. This process involved
defining metrics that were both available and measurable, accurately representing
the attributes of the model. To aid in methodologically choosing metrics suit-
able for attributes in the model, the Goal-Question-Metric (GQM) practice was
implemented. This approach involves iteratively formulating questions related to

29

30 Solution Implementation

predetermined goals in order to generate metrics [7]. Following is a demonstration
of how metrics were chosen using the GQM method.

Solution Implementation 31

The goal was defined.

G. ”Assess the health status of an open source project ”

From the stated goal a set of investigatory questions were formulated.

Q. ”Is the open source project maintained sustainably? ”

The questions were perceived as second iteration goals, following a similar pattern
to their predecessor, the initial goal. As so, they were repetitively reformulated
into more specific and segmented goals and following questions.

G. ”Evaluate the maintenance of an open source project ”

Q. ”Are known code issues being actively addressed? ”

Finally leading to clearly and easily interpretable metrics, derived from the objec-
tives.

M. ”The quotient of number of resolved issues and the number of posted issues ”

The above example details a single branch of objectives stemming from the original
question. The process was repeated exhaustively until all attributes had clear and
descriptive metrics.

5.3 Defined Metrics and Metric Collection

As described previously, the evaluation model is defined with attributes measured
by appropriate and available metrics. This section outlines the metrics established
through GQM as well as the methods used to collect and measure them.

5.3.1 Community Engagement

Community Engagement was deduced to be measured best through statistics of
stakeholder and patron interaction and involvement. The metrics were specifi-
cally designed to measure the level of interest in learning and or teaching about
the framework and the level of interest in actively contributing to its code base.
Metrics for community engagement were sourced from the framework’s hosting
service, therein the number of project contributors and the total number of posted
issues. Additionally, data was retrieved from GitHub discussions and the question-
and-answer platform, Stack Overflow. Specifically, the total number of questions
related to the framework and the corresponding number of questions that received
an accepted answer was collected. The primary focus was to retrieve the number
of posts on the framework’s GitHub discussion. If that was unavailable, Stack
Overflow was used as an alternative source.

Another approach to measure community engagement is to consider the range
of community platforms and communication channels provided by the framework.
These platforms can take various forms and provide diverse opportunities for in-
teraction. This comparison will focus on the presence of weekly meetings and

32 Solution Implementation

mailing lists, as well as whether the project is part of the CNCF (Cloud Native
Computing Foundation) ecosystem. Additionally, the existence of official channels
on the communication platforms Slack and Discord will be assessed. The metrics
are presented in table 5.1.

Attribute Metric
Community Engagement # of issues posted on GitHub repository

of contributors on GitHub repository
of public forum posts on topic
of public forum posts on topic w/ accepted answer
Community channels

Table 5.1: Found Metrics for Community Engagement

5.3.2 Project Maintenance

The maintenance score of a framework was made to capture the framework’s cur-
rent health, as well as provide an indication of its potential future prospects. This
attribute was measured through statistics pertaining to the framework’s repository
status and visible trends. For this, we measured the number of active contributors
and lines of codded added, modified, or removed in the past 6 months. In addition,
the relation between resolved and total issues, mean issue resolution time, and the
mean contributor lifetime was deemed relevant and valuable.

Since all frameworks are hosted on GitHub, the metrics could be fetched with
the help of GitHub’s API. The relation between resolved issues and total issues
was simply calculated as the current balance between the number of posted issues
and the number of resolved issues. The resolution time was captured as the mean
time for a posted repository issue to be marked as resolved, calculated as the
time difference between its post time and its resolved time. The contributor life
team was calculated as the mean time a contributor was active in the project.
Both mean contributor lifetime and mean issue resolution time was measured in
number of days. A table showing resulting metrics may be seen in table 5.2.

Attribute Metric
Project Maintenance # of active contributors (6 months)

of LOC added, modified, or removed (6 months)
Quotient of resolved issues and total issues
Mean issue resolution time
Mean contributor lifetime

Table 5.2: Found Metrics for Project Maintenance

5.3.3 Project Popularity

Popularity was considered to be the culmination of publicly available statistics
regarding the extent of a framework’s usage and digital footprint. This included
a selection of relevant data available on their hosting service, being Github. The

Solution Implementation 33

data was gathered by employing a Python script fetching repository data from
GitHub’s public API. A table for all collected metrics may be seen in table 5.3.

Attribute Metric
Project Popularity # of stargazers on GitHub repository

of forks on GitHub repository
of used by on GitHub repository
of watchers on GitHub repository

Table 5.3: Found metrics for Project Popularity

5.3.4 Documentation

Documentation was made to take into account the extent of the provided docu-
mentation, the percentage of commenting in supplied code-scaffolding, and what
criteria were achieved by the supplied documentation. The amount of documen-
tation was measured by compiling all relevant code documentation provided by
the framework maintainer and counting the total amount of words using a Python
script. Comments on code were also retrieved using a Python script. It was calcu-
lated as the quotient of lines of code and lines of code containing comments using
the provided source code for the investigated frameworks. To exclude non-relevant
code, only the files with languages relevant to the framework were included. The
documentation criteria used were formed based on the perceived needs of a de-
veloping party wanting to undertake the creation of an operator, as well as ask-
ing experienced operator developers on forums such as Slack and Discord. Some
criteria were industry standards, generally accepted to be necessary in software
documentation and others were instead found needed for the specific use case.

• Section: Quick start/Getting started

• Section: Tutorials

• Section: System architecture

• Dedicated web page

• Example operator implementation(s)

• Documentation has been updated within a year

A table containing the collected metrics may be seen in Table 5.4.

Attribute Metric
Documentation Quotient of LOC containing comments and total LOC

of words in compiled documentation
of documentation criteria fulfilled

Table 5.4: Found metrics for Documentation

34 Solution Implementation

5.3.5 Functional Scope

The functional scope became largely based on known limitations and requirements
set on operator frameworks. We deduced it encompassed what level of operator
maturity, introduced in section 3.2.3, an implemented operator was theoretically
able to reach using the framework, the permissiveness of the license shipped with
the framework, and the number of dependencies. The maturity level was evaluated
by analyzing the documentation and finished operators publicly available for each
framework, as well as talking to the developers of the framework via Slack or email.
The number of dependencies, along with licenses, were sourced from the GitHub
repository of the project. The resulting metrics can be seen in figure 5.5

Attribute Metric
Functional Scope Reachable level of operator maturity model

Level of License permissiveness
of subsidiary dependencies

Table 5.5: Found metrics for Functional Scope

5.3.6 Developer Features

Developer features can aid the development of an operator and lower the entry
barrier to using a framework. To assess the features provided by the framework, we
evaluated the presence of a testing environment, if a custom-made Command Line
Interface (CLI) existed, and the availability of code-generation tools. The code
generation tools will often provide boilerplate code for new resources. For this
comparison, we limited the code generation tools to the following functionalities:

• Project initialization

• CRD manifest generation

To evaluate the presence of a testing suite, CLI, and available code generation
tools, we examined the framework’s documentation. The table for showing the
resulting metrics can be seen in figure 5.6.

Attribute Metric
Developer features Extensiveness of code generation tools

Provided command line interface
Provided testing suite

Table 5.6: Found metrics for Developer Features

5.4 Profile Definition

Since we used threshold-based techniques to rate and profile the selected metrics,
we needed to determine what thresholds to use. There are generally two accepted
techniques used to derive thresholds (a) expertise-driven and (b) data-driven. The

Solution Implementation 35

former relies on the domain knowledge and previous experiences of, to the sub-
ject, well-informed and knowledgeable parties. Such thresholds may be found in
literature alternatively produced via active consulting of experts. For thresholds
where this was applicable thresholds were collected as off-the-shelf, established
values. However many metrics used in this thesis lacked previously defined ranges
and were therefore subject to the data-driven technique, a technique backed by
previous papers [49]. For this the profiles were defined by dividing the collected
ranges of data into pre-defined percentiles being [P0, P20], [P20, P50], [P50, P80],
and [P80, P100], correlating to the profiles A, G, VG, and E.

For metrics that were not explicitly defined by specific retrieved values, such
as developer features, license, and community platforms, customized thresholds
were established to determine profile ratings. The same was done for maturity
level and documentation criteria. In the case of licenses, frameworks with more
permissive licenses were assigned higher profiles, as they tend to attract greater
attention. Similarly, for community platforms, frameworks offering a wider range
of platforms to engage with the community received higher profiles. For developer
features, if a custom CLI and a testing environment existed it was given the highest
profile, otherwise placed at the lowest. Code generation tools were given a profile
based on the extensiveness of the tools provided. If both initialization tools along
with CRD generation tools were provided it would be given the highest profile.

5.5 Aggregation

The proposed evaluation model composes a hierarchical tree structure in which
attributes form branches, while their various metrics make up corresponding sub-
branches. Measurable evaluation is only performed for the metrics offering little
in the way of high-level concept evaluation and comparison. To rectify this it
was necessary to establish an aggregation method, decomposing evaluation of sub-
branches into a unified measure for their respective main branch. This aggregation
would transform the easily measurable values of the metrics into higher-level con-
cepts that are more readily understandable and usable for the purposes of this
thesis.

5.5.1 The Outranking Relation

In order to achieve a single resulting profile for attributes comprised of multiple
metrics an aggregation procedure was implemented. The method was inspired by
the ELECTRE-TRI methodology and has its basis in establishing an outranking
relation S, read as is at least as good as for each attribute and profile. The
outranking relation S is said to hold should both a concordance C and a non-
discordance ¬D test be satisfied, such that

S(a, b) ↔ C(a, b) ∧ ¬D(a, b)

• The concordance test simply uses the weighted majority rule to decide be-
tween the preference of an element and a profile. More precisely, it deter-
mines whether the combined weights for all metrics at least as good as the

36 Solution Implementation

profile exceed the concordance threshold. All weights were for our exper-
iment considered to be equal, with a value of 1/n, where n represents the
total number of metrics composing the attribute. The threshold was set to
0.6, a commonly used value in literature [31].

• The non-discordance introduces a complementary notion that stating no
metric minorities strongly conflicts the imposed relation. Formally this
is known as the metrics right to veto the relation S by exhibiting strong
enough disagreement with it. A veto is present should the difference be-
tween a metric mi from the attribute and the profile threshold pi be larger
than an accepted limit v. Formally mi − pi > v. Since our scales are not
exclusively numerical, the threshold was instead interpreted as exceeding
the limit of two profiles below the currently evaluated. In other words, if
an attribute was evaluated against profile Pi a metric assigned Pi−2 would
veto the evaluation.

Should an attribute a achieve the outranking relation for a profile p, such that it
may be said that a is at least as good as p, a is assigned that profile. Should it
hold true for multiple profiles, the best profile is always chosen.

5.5.2 Aggregation through Profile Average

To later aggregate profiled attributes in order to produce a profile for the overarch-
ing categories operator capability and open source project health a simple averaging
method was employed. Each profile was assigned a numerical value later summa-
rized for all attributes in a category and divided by the number of categories. This
achieved a final number corresponding best to one of the profiles, being the final
aggregated grade.

Chapter 6
Results

This chapter will present all findings produced by the previously described solution
implementation. Firstly we will present the finalized model profiles as well as the
frameworks resulting from filtration. Later the results from the implemented model
for each framework will be presented, finally achieving grounds for evaluation and
comparison.

6.1 Filtering

In Section 4.3, several operator frameworks currently available for use are intro-
duced. However, not all of them were examined in this experiment, leading to
the need for a filtering process. Following the filtration, six operator frameworks
were identified and selected for further analysis: The Operator Framework, Shell
Operator, KUDO, Kopf, Java Operator SDK, and Kube-rs.

6.2 Attribute Profiles

Chapter 4 outlines the evaluation model, emphasizing the need for attribute pro-
files that are detailed, clearly separable, and capable of being ordered on a se-
mantically appropriate preference scale. Table 6.1 and 6.2 display the resulting
profiles for each attribute’s underlying metrics as well as its accompanying pref-
erence scale. Each profile threshold will carry with it notation telling whether it
was found through data-driven (*) or expertise-driven techniques (†).

6.3 Framework Evaluation

The selected frameworks were all evaluated, in accordance to the previously de-
scribed methodology. For each metric a value was appointed, either stemming
from empirical measurements alternatively by expertice based judgment. Follow-
ing are the results for operator capability as well as open source health. The
tables presents the attributes’ multiple metrics as well as their individual profile
thresholds and appointed scale. The identity scale indicates that greater numeri-
cal values are preferred, while its inverse represents the opposite. A profile scale
simply follows the ordinal preferences layed out in section 4.2.

37

38 Results

Attribute Metric [A, G, VG, E] Scale

Documentation
Comments of code [0.049, 0.086, 0.140, 0.195]* Identity
of words in documentation [6965, 20713, 41334, 61955]* identity
of doc. criteria [2, 3, 5, 6]† identity

Functional Maturity level reachable [1, 3, 4, 5]† identity
Scope Licence permissiveness [A, G, VG, E]† profile

of subsidiary dependencies [436, 357, 238, 119]* inverse
Developer Code generation tools [A, G, VG, E]† profile
Features CLI [no, yes, yes, yes]† no<yes

Testing suite [no, yes, yes, yes]† no<yes

Table 6.1: Resulting profiles for attributes: Documentation, Func-
tional Scope and Developer Features

Attribute Metric [A, G, VG, E] Scale
of issues [130, 605, 1317, 2029]* Identity

Community # of contributors [33, 91, 179, 267]* Identity
Engagement # of public forum posts [12, 32, 62, 92]* Identity

of public forum posts (waa) [2, 7, 14, 21]* Identity
Community channels [A, G, VG, E]† profile
of active contributors [0, 5, 12, 19]* Identity

Project # of LOC changed [0, 4376, 10939, 17502]* Identity
Maintenance Resolved issues quotient [0.72, 0.77, 0.84, 0.91]* Identity

Mean issue resolution time [94, 86, 74, 61]* Inverse
Mean contributor lifetime [44, 81, 136, 190]* Identity

Popularity

of stargazers [585, 1768, 3543, 5317]* Identity
of forks [101, 421, 901, 1380]* Identity
of used [7, 874, 2174, 3473]* Identity
of watchers [15, 37, 70, 103]* Identity

Table 6.2: Resulting profiles for attributes: Community Engage-
ment, Maintenance, and Popularity

6.3.1 Evaluation of Operator Capability

Tables 6.3 and 6.4 display the collected metrics for operator capability along with
the assigned profiles, where the resulting value for each metric is presented in
a performance array. The evaluation stems from the multi-criteria aggregation
method explained in section 5.5. In the interest of table-space the presentation
of the group of frameworks were divided into two, otherwise identical tables. The
tables identifies The Operator Framework, Kopf and Kudo as the most favourable
frameworks with respect to operator capability. The evaluation suggests no strong
opposing metric to their assignment of Very Good, and we may therefore assume
them to be well rounded and capable frameworks. The results of the evaluation
provide a compelling justification for considering The Operator Framework, Kopf,
and Kudo as top choices when evaluating frameworks for potential use.

Results 39

Attribute TOF Shell Operator KUDO
Documentation [0.158, 75703, 5] [0.064, 6965, 4] [0.087, 19593, 5]
Eval. Very Good Acceptable Good
Functional Scope [5, E, 436] [5, E, 117] [3, E, 40]
Eval. Good Excellent Very good
Developer Features [E, Yes, Yes] [A, No, No] [G, Yes, Yes]
Eval. Excellent Acceptable Very good
Operator Capability Very good Good Very good

Table 6.3: Evaluation of operator capability for The Operator
Framework (TOF), Shell Operator and KUDO

Attribute Kopf JOSDK Kube-rs
Documentation [0.205, 33070, 6] [0.0497, 14426, 5] [0.232, 23114, 4]
Eval. Very good Acceptable Good
Functional Scope [5, E, 52] [5, E, 100] [5, E, 161]
Eval. Excellent Excellent Excellent
Developer Features [A, Yes, Yes] [G, No, No] [G, No, No]
Eval. Good Acceptable Acceptable
Operator Capability Very Good Good Good

Table 6.4: Evaluation of operator capability for KOPF, Java Oper-
ator SDK (JOSDK) and Kube-rs

6.3.2 Evaluation of Open Source Health

Tables 6.5 and 6.6 present the results for open source health using the same eval-
uation method employed for operator capability. The results reveal that The
Operator Framework is the standout framework achieving the profile Very Good
regarding the overall open source health based on the attributes. Java Operator
SDK and Kube-rs trails behind The Operator Framework, achieving the profile
Good. When considering the open source health status of the project alone, The
Operator Framework emerges as the top choice for implementation of an operator.

Attribute TOF Shell Operator KUDO
Com. eng. [2504, 325, 112, 12, VG] [140, 33, 15, 6, A] [698, 62, 12, 2, G]
Eval. Very good Acceptable Acceptable
Maintenance [24, 21878, 0.959, 66, 106] [9, 10572, 0.723, 94 , 227] [0, 0, 0.756, 75, 137]
Eval. Very good Good Acceptable
Popularity [6500, 1700, 4340, 125] [2000, 185, 7, 32] [1100, 101, 18, 24]
Eval. Excellent Acceptable Acceptable
OSS Health Very Good Acceptable Acceptable

Table 6.5: Evaluation of open source health for The Operator
Framework (TOF), Shell Operator and KUDO

40 Results

Attribute Kopf JOSDK Kube-rs
Com. eng. [717, 50, 29, 9, A] [627, 65, 28, 11, VG] [461, 101, 60, 26, G]
Eval. Acceptable Good Good
Maintenance [2, 1108, 0.759, 54, 44] [8, 12036, 0.918, 80, 149] [19, 12276, 0.835, 94, 98]
Eval. Acceptable Very good Good
Popularity [1600, 124, 531, 24] [585, 154, 57, 15] [2100, 243, 3989, 32]
Eval. Acceptable Acceptable Good
OSS Health Acceptable Good Good

Table 6.6: Evaluation of open source health for KOPF, Java Oper-
ator SDK (JOSDK) and Kube-rs

Chapter 7
Discussion

The upcoming chapter will present a discussion of the result gathered in this study.
Specifically, the metrics that were selected and the reasoning behind their choice
and measurement will be examined. This will culminate in answering the research
questions of the thesis. Finally, the limitations of the study will be discussed.

7.1 Abilities and Limitations of the Evaluation Model

This thesis aimed to investigate the existing landscape of Kubernetes operator
frameworks and further propose a method for their evaluation. Evaluating soft-
ware entities is an old practice, however highly topical as views differ on what
methodology is best. Relevant for this evaluation is also its chosen application,
namely operator frameworks. The subject itself was only recently introduced and
is therefore largely unexplored by previous papers. In this thesis, the opted-for
evaluation method was chosen on the basis of (a) evaluation, comparison, and
decision-making problems, even though metrics and measurements often lay as
base, questions of preference and judgment. And (b) evaluation of software entities
often uses ordinal scales and measurements, meaning a robust and suited ordinal
aggregation method is required. As discovered through the performed literature
review a significant amount of metrics relevant for comparison of operator frame-
works carry no numerical representation and as so is not applicable on an interval
scale, but rather an ordinal one. The profile-based evaluation model proposed in
this paper fairs well with a combination of interval and ordinal metrics, indicating
its suitability for the issue at hand. The proposed aggregation method, inspired by
multi-criteria filtering using concordance and non-discordance was also observed
as fitting given its attributed qualities. By negotiating the majority strength’s
vote with the right of a single metric veto we observe some auspicious behaviors of
the system such as penalizing alternatives presenting good but irregular profiles,
in favour of good and well-balanced alternatives.

The application of a profile-based evaluation model has shown definition of
suitable attributes and metrics to be difficult tasks. Several metrics are available
and deemed standard practice for evaluating generic software entities, however,
prove of little relevance for this thesis, investigating operator frameworks. Such
metrics are typically heavily focused on code quality, code complexity, and code
efficiency all of which largely prove superfluous to developers studying frameworks

41

42 Discussion

as their interaction with previously written code is very limited, instead focusing
on their own independent and largely contained code. There were metrics rather
obvious to the model which warranted little discussion and further analysis. Such
would be metrics measuring non-compensatory characteristics like maturity level
reachable as it obviously and directly affects the feasibility of use for the framework.
Others were instead more exploratory in nature, resembling that of a predictive
model. For instance, metrics pertaining to the popularity of a repository project
carry no intrinsic value to the feasibility of use but rather serve as node or factor
for a prediction of quality. These metrics benefit from being easily interpretable
and measurable, but the difficulty lies instead in validating their contribution.

Profile assignment, as presented in Chapter 5, was done using lower limits for
qualification where the limits were either data-driven or expertise-driven. Both
procedures carry varying degrees of accuracy, subjectivity, and potential bias. The
model would prefer, as is also argued by Morisio et. al, limits be set prior to mea-
surement and data-gathering. This would emphasize what experience the model
designer possesses, clearly circumventing any bias to the gathered results. How-
ever, for selected metrics, it was deemed unfeasible to, prior to data-gathering,
formulate limits. As so instead the data-driven process was employed which used
pre-defined percentiles, applied to the range of values found. Both empirical and
intuitive indications hint at this being an at least partly flawed approach. As ob-
served in the results we encounter the issue of always assigning the lowest value
found Acceptable, likewise always assigning the greatest value found Excellent.
These are likely erroneous assignments as they rely on only the six gathered data
points, lacking other expertise or motivated preference. Likewise, the percentiles
are estimates based on available data and assume no statistical distribution, oth-
erwise a common point of interest when determining percentile limits.

7.2 Initial Selection Pool of Frameworks

The goal of the first selection was to get a wide overview of the existing operator
landscape, with a focus on frameworks that were most relevant and commonly
used within the Kubernetes ecosystem. To narrow down the selection for a more
in-depth comparison, we applied certain filters to identify the top six remaining
frameworks. Despite Kubebuilder being the second most popular, trailing only
slightly behind the Operator Framework in terms of GitHub statistics, we decided
to not analyze it further. The reasoning was that it was deemed very similar to The
Operator Framework, with The Operator Framework even utilizing Kubebuilder
internally. The framework with the lowest popularity which was included was the
Java Operator SDK, and all frameworks with lower popularity got filtered out. The
remaining pool of frameworks was considered to cover a wide range of functionality
and being representative of the current operator framework ecosystem.

7.3 Profiles and Metrics

The attributes were decided to be divided into multiple metrics in order to receive
a more fair profile ranking. For instance, a high percentage of code comments

Discussion 43

does not automatically translate to having good documentation. But paired with
the overall amount of documentation and certain criteria were considered to give
a more accurate representation. Considering the frequent updates in Kubernetes,
the documentation criteria included that it should have been updated within a
year. KUDO was the only framework that failed that criterion, with its documen-
tation remaining unchanged for two years. Additionally, the framework as a whole
had not been updated in the recent six months, as indicated by the maintenance
attribute. These findings lead us to conclude that KUDO is no longer actively
maintained. Frameworks that it is not up to date with Kubernetes could make it
potentially inaccurate and a less secure option. Which is why developers should
take this into consideration before choosing KUDO as framework for their operator
development.

One potential problem with the evaluation model is that all metrics that are
data-driven are equally weighted using a percentage of the interval. One could
argue that certain metrics are more important than others. For example, the
result revealed that The Operator Framework, KUDO, and Kopf as the highest
profiling for Operator capability, all with an overall score of Very good. However,
the operator framework only had a Good profile for functional scope due to the
number of dependencies, while Kopf received Excellent. This metric heavily favours
smaller projects with a smaller code base, even though having more dependencies
does not necessarily indicate a weaker project. Rather, it implies that it might
be more difficult to maintain and can lead to compatibility issues and security
vulnerabilities. Thus, one possible approach would be to assign a lesser weight to
this metric.

In Open source project health, the only framework which received the profile
Very good was The Operator Framework. This most likely being the result of it
being the longest-lasting framework of the selection. As well as being featured in a
multitude of books and media, such as for example [18] and [17]. The significantly
higher overall popularity and engagement of The Operator Framework created
high thresholds, which made it challenging for other frameworks to gain a profile
better than Acceptable. This is due to using a data-driven approach giving us
somewhat skewed results.

Besides using mostly using data-driven for Community engagement, the metric
Community platforms was an expertise-driven metric that was assessed based on
the offered platforms accessible for the community. The standout frameworks here
were The Operator Framework but also the Java Operator SDK. Which is a bit
surprising considering the size difference between the two frameworks. In contrast
to many other frameworks in the comparison, Java Operator SDK has an active
discord, has weekly meetings for its community as well as being part of CNCF, as
of the 18th 2023.

In the comparison, GitHub discussions served as the primary source for retriev-
ing data within the community engagement attribute. However, for The Operator
Framework and KUDO, where GitHub discussions were disabled on their repos-
itories, Stack Overflow was utilized instead. Initially, our intention was to only
include posts from Stack Overflow for all frameworks. But ultimately GitHub was
chosen as the main source since Stack Overflow yielded unfair results. For instance,
a search query like Shell Operator would provide results completely unrelated to

44 Discussion

Kubernetes Operators, while a Java Operator SDK would give very specific re-
sults. But it is important to acknowledge that comparing two separate platforms
can introduce some bias to the model.

Overall, the model provides a way to determine a framework that best aligns
with the developing parties’ requirements, from a perspective of both open source
and capability. The model relies on domain knowledge, which introduces subjec-
tivity into the process. Ultimately it is up to the developers to interpret the result,
based on preference and need. A senior developer might prioritize familiarity with
programming languages and the frameworks’s capability, rather than focusing on
documentation or community engagement. On the other hand, a developer with
less experience with operators might opt to choose a framework based on its doc-
umentation, tutorials, and community support.

7.4 Answers to Research questions

What Kubernetes operator frameworks are most widely used today for managing
the lifecycle of containerized applications?

There are numerous alternatives of operator frameworks available to develop an
operator for handling an application’s lifecycle in a Kubernetes cluster. Through
the study performed in this thesis, the most popular and commonly used were
evaluated and compared. The frameworks compared were The Operator Frame-
work, KUDO, Kopf, Shell Operator, Java Operator SDK, and Kube-rs. Worth
noting that the area is relatively new and there exists alternatives as well as new
frameworks being created.

What technical metrics should be used to aid in operator framework-related
decision making, based on the task presented in section 1.1?

Attributes and metrics were defined through an extensive literature study and the
gathered domain expertise available to us through working professionals. Based
on our findings, the selection of metrics should consider a combination of metrics
related to operator-specific capabilities and the overall health of the open-source
project. By assessing both Operator Capability, and Open Source Health, develop-
ers can identify a framework that both meets their required capabilities, as well
as a robust and healthy community. The specific attributes and accompanying
metrics are presented and motivated in Chapter 5.

How can the operator frameworks (see Research Question 1) be classified and
categorized based on the task presented in section 1.1?

The proposed answer to this question is two-fold and dependent on at what depth
a party is interested in evaluation frameworks. The process presented by this thesis
defined firstly a novel evaluation model with overarching categories and suitable
attributes. Secondly, it presented ordinal profiles in which varying framework
qualities were assigned using metric aggregation. Categorization for the purpose
of decision-making may hence be performed either using attribute profiles or the

Discussion 45

more compiled, holistic grade. A proposed method for the former is defining
strict, binary requirements on selected attributes most relevant for their situa-
tion/environment/technical specifications. Such would generate a sort of mapping
procedure, marking frameworks either acceptable or not so, pending the decision
maker’s preference applied on top of the evaluation model. The latter simply being
classifying frameworks on their final, compiled grade.

7.5 Limitations

In this report, we decided to narrow down the comparison to six different frame-
works in order to get a more concise comparison. Although, it is important to
acknowledge that there are other frameworks and approaches available for imple-
menting an operator that was not covered in this study.

The selection and gathering of metrics for this study also introduce certain lim-
itations. Our aim was to obtain a combination of open source-related metrics as
well as operator-specific metrics. The open source-related metrics were relatively
straightforward to choose and were supported by previous research. Conversely,
selecting operator-specific metrics presented more challenges. Kubernetes opera-
tors are complex, and determining which qualities are relevant requires extensive
knowledge and expertise. The attributes and metrics in this thesis were a result
of a combination of what we learned was important during our research and want
developers looked for when searching for an operator framework.

Several Python scripts were developed to collect certain metrics, such as word
count and comment percentage. These scripts may contain bugs that can im-
pact the accuracy of the results. Another issue with the metric collection was the
ones that required interpretation to determine. One example is the maturity of
the operator, which is typically determined after implementation. However, im-
plementing an operator with the ambition to reach the highest maturity is not
feasible within the timeframe of a master thesis.

As mentioned briefly in the discussion, there are certain aspects of the model
that may be flawed. For instance, in the model, all metrics have equal importance.
One approach would be to assign weights to metrics considered less important.
Currently, if one metric within an attribute is a negative outlier it significantly
impacts the overall profile of the attribute. Another flaw is the way the threshold
was determined based on thresholds of the interval between the lowest and highest
data points. This caused the worst framework to always get an acceptable ranking,
regardless of the result. Another appropriate approach would be to determine
limits beforehand which would cause certain data points to fall under Unacceptable
profile.

46 Discussion

Chapter 8
Conclusion

The Conclusions section serves as the culmination of our study and aims to offer
a summary of the key insights and outcomes derived from our analysis and evalu-
ation. It will also feature our thoughts on potential future work to be done on the
subject.

8.1 Conclusion

This thesis presented an evaluation model for operator frameworks produced through
a literature review and framework study. The evaluation model is an implementa-
tion of a process proposed by Morisio et al. and stems from a technique of defin-
ing and conducting profile-based evaluations of software entities. The research
objectives of this study were meant to investigate the current scene of operator
frameworks and their surrounding technical environments. As well as assess what
attributes and metrics may be utilized in order to effectively evaluate and com-
pare such frameworks. Cloud services, container technology, and Kubernetes are
all technologies quickly rising in popularity due to the growing demand for their
services. Similarly, the market for Kubernetes operators is also growing, making
their frameworks a highly engaging topic for many, especially obvious in the open
source community. A vast number of frameworks are currently available, lead in
popularity by frameworks such as Operator Framework, Kopf, KUDO, Shell Op-
erator, Java Operator SDK, and Kube-rs. However, popularity only represents a
single aspect of evaluation. Through this study we identified a range of attributes
suitable for evaluation, all falling under two overarching categories being opera-
tor capability and open source project health. Further investigation showed the
approach of defining a profile-based evaluation model to be a suitable option for
framework evaluation, however requiring substantial effort and extensive domain
knowledge. The process proposed by Morisio et al. was deemed utilizable and
effective in the context but should be viewed and considered preference-based as
strong empirical evidence is largely missing, due to the difficulties of verifying its
result.

47

48 Conclusion

8.2 Future Work

This thesis applied established practices to a modern and emerging subject, being
Kubernetes operators and their frameworks. While the practices themselves are
largely explored and well studied the subject and application of it are not, mean-
ing much is yet to discover. An obvious branch of future work is the inclusion
of additional attributes and or metrics to extend the evaluation model. The at-
tributes chosen for this experiment were found using the GQM-technique, applied
with the support of a literature study. However, there are suitable alternatives
for establishing a model, with the most prominent being the inclusion of discus-
sions, questionnaires, or interviews with stakeholders. Such options would thrive
especially if participants represented a wide range experiences, knowledge, and
self-interests. Another approach would be implementing a basic template for all
chosen frameworks in order to get a better grasp of their differences. Preferably
this would involve a more complex stateful application. This would reveal multiple
distinguishing attributes of interest for different frameworks. Such as the difficulty
of achieving a higher level of capability, how time-consuming the different imple-
mentations are and what previous knowledge is required to efficiently utilize the
framework.

The experiment carried out for this thesis was also largely exploratory in na-
ture, and would see great benefits in being supplemented by an empirical study.
Such a study could evaluate the results against more theoretically accepted and
established knowledge in order to validate its results. A feature-based compar-
ison, such as this thesis was, provides a rather structured approach to evaluat-
ing software entities based on specific capabilities and ensuring alignment with
project requirements. However, to gain deeper insights into the frameworks’ per-
formance and efficiency, performance benchmarking seems a suitable option for
future work. By measuring key metrics and assessing real-world performance, per-
formance benchmarking allows for a more comprehensive evaluation of the frame-
works’ abilities and their suitability for potential scenarios.

References

[1] Leila Abdollahi Vayghan et al. “A Kubernetes Controller for Manag-
ing the Availability of Elastic Microservice Based Stateful Applica-
tions”. In: arXiv e-prints (2020), arXiv–2012.

[2] Claudio Agostino Ardagna, Ernesto Damiani, and Fulvio Frati. “Focse:
an owa-based evaluation framework for os adoption in critical environ-
ments”. In: Open Source Development, Adoption and Innovation: IFIP
Working Group 2.13 on Open Source Software, June 11–14, 2007,
Limerick, Ireland 3. Springer. 2007, pp. 3–16.

[3] Filip Bolling and Jonna Gustafson. “Exploring Business Value and
User Experience of Open Source Health”. In: Faculty of Engineering,
Lund University, Sweden (2021).

[4] Antonio Bucchiarone et al. “From monolithic to microservices: An
experience report from the banking domain”. In: Ieee Software 35.3
(2018), pp. 50–55.

[5] Steve Buehler. dotnet-operator-sdk GitHub repository. 2021. url: https:
//buehler.github.io/dotnet-operator-sdk/.

[6] Brendan Burns et al. Kubernetes: up and running. " O’Reilly Media,
Inc.", 2022.

[7] Victor R Basili1 Gianluigi Caldiera and H Dieter Rombach. “The goal
question metric approach”. In: Encyclopedia of software engineering
(1994), pp. 528–532.

[8] Carmen Carrión. “Kubernetes as a Standard Container Orchestrator-
A Bibliometric Analysis”. In: Journal of Grid Computing 20.4 (2022),
p. 42.

[9] CNCF. Who we are. Accessed on April 19, 2023. url: https://www.
cncf.io/about/who-we-are/.

[10] Containers. https://www.ibm.com/topics/containers. Accessed
on April 125, 2023.

49

https://buehler.github.io/dotnet-operator-sdk/
https://buehler.github.io/dotnet-operator-sdk/
https://www.cncf.io/about/who-we-are/
https://www.cncf.io/about/who-we-are/
https://www.ibm.com/topics/containers

50 REFERENCES

[11] Java Operator Contributors. Java Operator Docs. Accessed on April
19, 2023. 2021. url: https://flant.github.io/shell-operator/.

[12] Java Operator SDK Contributors. Java Operator SDK GitHub Repos-
itory. Accessed on April 19, 2023. 2021. url: https://github.com/
java-operator-sdk/java-operator-sdk.

[13] Juju Contributors. Juju Repository. Accessed on April 19, 2023. 2021.
url: https://github.com/juju/juju.

[14] Kube-rs Contributors. Kube-rs Repository. Accessed on April 19, 2023.
2021. url: https://github.com/kube-rs/kube.

[15] KUDO Contributors. KUDO GitHub repository. 2021. url: https:
//github.com/kudobuilder/kudo.

[16] Quarkiverse contributors. Quarkiverse Java Operator SDK. Accessed
on April 20, 2023. 2021. url: https://quarkiverse.github.io/
quarkiverse-docs/quarkus-operator-sdk/dev/index.html.

[17] Michael Dame. The Kubernetes Operator Framework Book: Overcome
complex Kubernetes cluster management challenges with automation
toolkits. Packt Publishing Ltd, 2022.

[18] Jason Dobies and Joshua Wood. Kubernetes operators: Automating
the container orchestration platform. O’Reilly Media, 2020.

[19] Ruxiao Duan, Fan Zhang, and Samee U Khan. “A Case Study on Five
Maturity Levels of A Kubernetes Operator”. In: 2021 IEEE Cloud
Summit (Cloud Summit). IEEE. 2021, pp. 1–6.

[20] Flant. Go? Bash! Meet the shell-operator. Accessed on April 19, 2023.
2020. url: https://medium.com/flant-com/meet-the-shell-
operator-kubecon-36c14ba2f8fe.

[21] Dennis Gannon, Roger Barga, and Neel Sundaresan. “Cloud-native
applications”. In: IEEE Cloud Computing 4.5 (2017), pp. 16–21.

[22] Shazibul Islam Shamim et al. “Benefits, Challenges, and Research
Topics: A Multi-vocal Literature Review of Kubernetes”. In: arXiv
e-prints (2022), arXiv–2211.

[23] Kubernetes. Operator pattern. 2023. url: https : / / kubernetes .
io / docs / concepts / extend - kubernetes / operator/ (visited on
05/01/2023).

[24] Valentina Lenarduzzi et al. “Open source software evaluation, selec-
tion, and adoption: a systematic literature review”. In: 2020 46th Eu-
romicro Conference on Software Engineering and Advanced Applica-
tions (SEAA). IEEE. 2020, pp. 437–444.

https://flant.github.io/shell-operator/
https://github.com/java-operator-sdk/java-operator-sdk
https://github.com/java-operator-sdk/java-operator-sdk
https://github.com/juju/juju
https://github.com/kube-rs/kube
https://github.com/kudobuilder/kudo
https://github.com/kudobuilder/kudo
https://quarkiverse.github.io/quarkiverse-docs/quarkus-operator-sdk/dev/index.html
https://quarkiverse.github.io/quarkiverse-docs/quarkus-operator-sdk/dev/index.html
https://medium.com/flant-com/meet-the-shell-operator-kubecon-36c14ba2f8fe
https://medium.com/flant-com/meet-the-shell-operator-kubecon-36c14ba2f8fe
https://kubernetes.io/docs/concepts/extend-kubernetes/operator/
https://kubernetes.io/docs/concepts/extend-kubernetes/operator/

REFERENCES 51

[25] Marko Luksa. Kubernetes in action. Simon and Schuster, 2017.

[26] Anshita Malviya and Rajendra Kumar Dwivedi. “A Comparative Anal-
ysis of Container Orchestration Tools in Cloud Computing”. In: 2022
9th International Conference on Computing for Sustainable Global
Development (INDIACom). IEEE. 2022, pp. 698–703.

[27] Philippe Martin et al. CNCF Operator WhitePaper. Tech. rep. Cloud
Native Computing Foundation, 2022.

[28] Meta. WhatsApp Onpremises Platform. 2023. url: https://developers.
facebook.com/docs/whatsapp/on-premises/overview (visited on
05/01/2023).

[29] Marek Moravcik and Martin Kontsek. “Overview of Docker container
orchestration tools”. In: 2020 18th International Conference on Emerg-
ing eLearning Technologies and Applications (ICETA). IEEE. 2020,
pp. 475–480.

[30] Marek Moravcik et al. “Kubernetes-evolution of virtualization”. In:
2022 20th International Conference on Emerging eLearning Technolo-
gies and Applications (ICETA). IEEE. 2022, pp. 454–459.

[31] Maurizio Morisio, Ioannis Stamelos, and Alexis Tsoukias. “Software
product and process assessment through profile-based evaluation”. In:
International Journal of Software Engineering and Knowledge Engi-
neering 13.05 ().

[32] Javad Nasserifar. “Open Source Software Ecosystem: A Systematic
Literature Review”. In: (2016).

[33] Operator SDK Documentation. https://sdk.operatorframework.
io/docs/. Accessed: 10 may 2023. 2020.

[34] Jun Xiang Tee Palek Bhatia. Best practices for building Kubernetes
Operators and stateful apps. https://cloud.google.com/blog/
products/containers-kubernetes/best-practices-for-building-
kubernetes-operators-and-stateful-apps. 2018.

[35] Etiel Petrinja, Ranga Nambakam, and Alberto Sillitti. “Introducing
the opensource maturity model”. In: 2009 ICSE Workshop on Emerg-
ing Trends in Free/Libre/Open Source Software Research and Devel-
opment. IEEE. 2009, pp. 37–41.

[36] Chris Richardson. Enabling rapid, frequent and reliable software deliv-
ery. 2023. url: https://microservices.io (visited on 05/01/2023).

[37] Joachim Schaper. “Cloud Services”. In: (2010). doi: 10.1109/DEST.
2010.5610668.

https://developers.facebook.com/docs/whatsapp/on-premises/overview
https://developers.facebook.com/docs/whatsapp/on-premises/overview
https://sdk.operatorframework.io/docs/
https://sdk.operatorframework.io/docs/
https://cloud.google.com/blog/products/containers-kubernetes/best-practices-for-building-kubernetes-operators-and-stateful-apps
https://cloud.google.com/blog/products/containers-kubernetes/best-practices-for-building-kubernetes-operators-and-stateful-apps
https://cloud.google.com/blog/products/containers-kubernetes/best-practices-for-building-kubernetes-operators-and-stateful-apps
https://microservices.io
https://doi.org/10.1109/DEST.2010.5610668
https://doi.org/10.1109/DEST.2010.5610668

52 REFERENCES

[38] Kubernetes SIGs. Kubebuilder GitHub repository. 2021. url: https:
//github.com/kubernetes-sigs/kubebuilder.

[39] Alen Šimec, Bruno Držanić, and Davor Lozić. “Isolated Environment
Tools for Software Development”. In: 2018 International Conference
on Applied Mathematics Computer Science (ICAMCS). 2018. doi:
10.1109/ICAMCS46079.2018.00016.

[40] Nikita Sobolev. Kopf GitHub repository. Accessed on April 19, 2023.
2021. url: https://github.com/nolar/kopf.

[41] Diomidis Spinellis et al. “Evaluating the quality of open source soft-
ware”. In: Electronic Notes in Theoretical Computer Science 233 ().

[42] Statista. Leading containerization technologies market share world-
wide in 2022. Accessed on May 10, 2023. 2022. url: https://www.
statista.com/statistics/1256245/containerization-technologies-
software-market-share/.

[43] Jayachander Surbiryala and Chunming Rong. “Cloud Computing: His-
tory and Overview”. In: 2019 IEEE Cloud Summit. 2019, pp. 1–7. doi:
10.1109/CloudSummit47114.2019.00007.

[44] Heyong Wang, Wu He, and Feng-Kwei Wang. “Enterprise cloud ser-
vice architectures”. In: Information Technology and Management 13
(2012).

[45] What is Kubernetes? https://kubernetes.io/docs/concepts/
overview/. Accessed on April 19, 2023.

[46] What is open source? https://www.redhat.com/en/topics/open-
source/what-is-open-source. Oct. 2019.

[47] Bibin Wilson. Container Orchestration Tools and Services. 2022. url:
https://devopscube.com/docker-container-clustering-tools/
(visited on 02/01/2023).

[48] Yuhang Zhao et al. “Evaluation indicators for open-source software:
a review”. In: Cybersecurity 4.1 (2021), pp. 1–24.

[49] Chen Zhi et al. “Quality Assessment for Large-Scale Industrial Soft-
ware Systems: Experience Report at Alibaba”. In: 2019 26th Asia-
Pacific Software Engineering Conference (APSEC). 2019, pp. 142–
149. doi: 10.1109/APSEC48747.2019.00028.

https://github.com/kubernetes-sigs/kubebuilder
https://github.com/kubernetes-sigs/kubebuilder
https://doi.org/10.1109/ICAMCS46079.2018.00016
https://github.com/nolar/kopf
https://www.statista.com/statistics/1256245/containerization-technologies-software-market-share/
https://www.statista.com/statistics/1256245/containerization-technologies-software-market-share/
https://www.statista.com/statistics/1256245/containerization-technologies-software-market-share/
https://doi.org/10.1109/CloudSummit47114.2019.00007
https://kubernetes.io/docs/concepts/overview/
https://kubernetes.io/docs/concepts/overview/
https://www.redhat.com/en/topics/open-source/what-is-open-source
https://www.redhat.com/en/topics/open-source/what-is-open-source
https://devopscube.com/docker-container-clustering-tools/
https://doi.org/10.1109/APSEC48747.2019.00028

	Introduction
	Background to Thesis
	Motivation and Goal Formulation
	Report Structure
	Related Work

	Theory
	Cloud services
	Container Technology
	Kubernetes
	Open Source Software

	Operator Framework Study
	WhatsApp Business API Client
	The Operator Pattern
	Operator Frameworks

	Solution Design
	Proposed Operator Framework Evaluation Model
	Attribute Profiles
	Considered Operator Frameworks

	Solution Implementation
	Initial Filtering of Operator Frameworks
	Employing Goal-Question-Metric
	Defined Metrics and Metric Collection
	Profile Definition
	Aggregation

	Results
	Filtering
	Attribute Profiles
	Framework Evaluation

	Discussion
	Abilities and Limitations of the Evaluation Model
	Initial Selection Pool of Frameworks
	Profiles and Metrics
	Answers to Research questions
	Limitations

	Conclusion
	Conclusion
	Future Work

